]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/namei.c
Merge tag 'sound-5.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[thirdparty/kernel/linux.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
51 *
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
58 *
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
62 *
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
65 *
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
72 */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
81 *
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
89 */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
93 *
94 * [10-Sep-98 Alan Modra] Another symlink change.
95 */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
104 *
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
110 */
111 /*
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
115 */
116
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
120 *
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
123 */
124
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 struct filename *result;
131 char *kname;
132 int len;
133
134 result = audit_reusename(filename);
135 if (result)
136 return result;
137
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
141
142 /*
143 * First, try to embed the struct filename inside the names_cache
144 * allocation
145 */
146 kname = (char *)result->iname;
147 result->name = kname;
148
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
151 __putname(result);
152 return ERR_PTR(len);
153 }
154
155 /*
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
159 * userland.
160 */
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
164
165 /*
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
169 */
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
172 __putname(kname);
173 return ERR_PTR(-ENOMEM);
174 }
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
178 __putname(kname);
179 kfree(result);
180 return ERR_PTR(len);
181 }
182 if (unlikely(len == PATH_MAX)) {
183 __putname(kname);
184 kfree(result);
185 return ERR_PTR(-ENAMETOOLONG);
186 }
187 }
188
189 result->refcnt = 1;
190 /* The empty path is special. */
191 if (unlikely(!len)) {
192 if (empty)
193 *empty = 1;
194 if (!(flags & LOOKUP_EMPTY)) {
195 putname(result);
196 return ERR_PTR(-ENOENT);
197 }
198 }
199
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
203 return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209 return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 struct filename *result;
216 int len = strlen(filename) + 1;
217
218 result = __getname();
219 if (unlikely(!result))
220 return ERR_PTR(-ENOMEM);
221
222 if (len <= EMBEDDED_NAME_MAX) {
223 result->name = (char *)result->iname;
224 } else if (len <= PATH_MAX) {
225 const size_t size = offsetof(struct filename, iname[1]);
226 struct filename *tmp;
227
228 tmp = kmalloc(size, GFP_KERNEL);
229 if (unlikely(!tmp)) {
230 __putname(result);
231 return ERR_PTR(-ENOMEM);
232 }
233 tmp->name = (char *)result;
234 result = tmp;
235 } else {
236 __putname(result);
237 return ERR_PTR(-ENAMETOOLONG);
238 }
239 memcpy((char *)result->name, filename, len);
240 result->uptr = NULL;
241 result->aname = NULL;
242 result->refcnt = 1;
243 audit_getname(result);
244
245 return result;
246 }
247
248 void putname(struct filename *name)
249 {
250 BUG_ON(name->refcnt <= 0);
251
252 if (--name->refcnt > 0)
253 return;
254
255 if (name->name != name->iname) {
256 __putname(name->name);
257 kfree(name);
258 } else
259 __putname(name);
260 }
261
262 /**
263 * check_acl - perform ACL permission checking
264 * @mnt_userns: user namespace of the mount the inode was found from
265 * @inode: inode to check permissions on
266 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
267 *
268 * This function performs the ACL permission checking. Since this function
269 * retrieve POSIX acls it needs to know whether it is called from a blocking or
270 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
271 *
272 * If the inode has been found through an idmapped mount the user namespace of
273 * the vfsmount must be passed through @mnt_userns. This function will then take
274 * care to map the inode according to @mnt_userns before checking permissions.
275 * On non-idmapped mounts or if permission checking is to be performed on the
276 * raw inode simply passs init_user_ns.
277 */
278 static int check_acl(struct user_namespace *mnt_userns,
279 struct inode *inode, int mask)
280 {
281 #ifdef CONFIG_FS_POSIX_ACL
282 struct posix_acl *acl;
283
284 if (mask & MAY_NOT_BLOCK) {
285 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
286 if (!acl)
287 return -EAGAIN;
288 /* no ->get_acl() calls in RCU mode... */
289 if (is_uncached_acl(acl))
290 return -ECHILD;
291 return posix_acl_permission(mnt_userns, inode, acl, mask);
292 }
293
294 acl = get_acl(inode, ACL_TYPE_ACCESS);
295 if (IS_ERR(acl))
296 return PTR_ERR(acl);
297 if (acl) {
298 int error = posix_acl_permission(mnt_userns, inode, acl, mask);
299 posix_acl_release(acl);
300 return error;
301 }
302 #endif
303
304 return -EAGAIN;
305 }
306
307 /**
308 * acl_permission_check - perform basic UNIX permission checking
309 * @mnt_userns: user namespace of the mount the inode was found from
310 * @inode: inode to check permissions on
311 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
312 *
313 * This function performs the basic UNIX permission checking. Since this
314 * function may retrieve POSIX acls it needs to know whether it is called from a
315 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
316 *
317 * If the inode has been found through an idmapped mount the user namespace of
318 * the vfsmount must be passed through @mnt_userns. This function will then take
319 * care to map the inode according to @mnt_userns before checking permissions.
320 * On non-idmapped mounts or if permission checking is to be performed on the
321 * raw inode simply passs init_user_ns.
322 */
323 static int acl_permission_check(struct user_namespace *mnt_userns,
324 struct inode *inode, int mask)
325 {
326 unsigned int mode = inode->i_mode;
327 kuid_t i_uid;
328
329 /* Are we the owner? If so, ACL's don't matter */
330 i_uid = i_uid_into_mnt(mnt_userns, inode);
331 if (likely(uid_eq(current_fsuid(), i_uid))) {
332 mask &= 7;
333 mode >>= 6;
334 return (mask & ~mode) ? -EACCES : 0;
335 }
336
337 /* Do we have ACL's? */
338 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
339 int error = check_acl(mnt_userns, inode, mask);
340 if (error != -EAGAIN)
341 return error;
342 }
343
344 /* Only RWX matters for group/other mode bits */
345 mask &= 7;
346
347 /*
348 * Are the group permissions different from
349 * the other permissions in the bits we care
350 * about? Need to check group ownership if so.
351 */
352 if (mask & (mode ^ (mode >> 3))) {
353 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
354 if (in_group_p(kgid))
355 mode >>= 3;
356 }
357
358 /* Bits in 'mode' clear that we require? */
359 return (mask & ~mode) ? -EACCES : 0;
360 }
361
362 /**
363 * generic_permission - check for access rights on a Posix-like filesystem
364 * @mnt_userns: user namespace of the mount the inode was found from
365 * @inode: inode to check access rights for
366 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
367 * %MAY_NOT_BLOCK ...)
368 *
369 * Used to check for read/write/execute permissions on a file.
370 * We use "fsuid" for this, letting us set arbitrary permissions
371 * for filesystem access without changing the "normal" uids which
372 * are used for other things.
373 *
374 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
375 * request cannot be satisfied (eg. requires blocking or too much complexity).
376 * It would then be called again in ref-walk mode.
377 *
378 * If the inode has been found through an idmapped mount the user namespace of
379 * the vfsmount must be passed through @mnt_userns. This function will then take
380 * care to map the inode according to @mnt_userns before checking permissions.
381 * On non-idmapped mounts or if permission checking is to be performed on the
382 * raw inode simply passs init_user_ns.
383 */
384 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
385 int mask)
386 {
387 int ret;
388
389 /*
390 * Do the basic permission checks.
391 */
392 ret = acl_permission_check(mnt_userns, inode, mask);
393 if (ret != -EACCES)
394 return ret;
395
396 if (S_ISDIR(inode->i_mode)) {
397 /* DACs are overridable for directories */
398 if (!(mask & MAY_WRITE))
399 if (capable_wrt_inode_uidgid(mnt_userns, inode,
400 CAP_DAC_READ_SEARCH))
401 return 0;
402 if (capable_wrt_inode_uidgid(mnt_userns, inode,
403 CAP_DAC_OVERRIDE))
404 return 0;
405 return -EACCES;
406 }
407
408 /*
409 * Searching includes executable on directories, else just read.
410 */
411 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
412 if (mask == MAY_READ)
413 if (capable_wrt_inode_uidgid(mnt_userns, inode,
414 CAP_DAC_READ_SEARCH))
415 return 0;
416 /*
417 * Read/write DACs are always overridable.
418 * Executable DACs are overridable when there is
419 * at least one exec bit set.
420 */
421 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
422 if (capable_wrt_inode_uidgid(mnt_userns, inode,
423 CAP_DAC_OVERRIDE))
424 return 0;
425
426 return -EACCES;
427 }
428 EXPORT_SYMBOL(generic_permission);
429
430 /**
431 * do_inode_permission - UNIX permission checking
432 * @mnt_userns: user namespace of the mount the inode was found from
433 * @inode: inode to check permissions on
434 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
435 *
436 * We _really_ want to just do "generic_permission()" without
437 * even looking at the inode->i_op values. So we keep a cache
438 * flag in inode->i_opflags, that says "this has not special
439 * permission function, use the fast case".
440 */
441 static inline int do_inode_permission(struct user_namespace *mnt_userns,
442 struct inode *inode, int mask)
443 {
444 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
445 if (likely(inode->i_op->permission))
446 return inode->i_op->permission(mnt_userns, inode, mask);
447
448 /* This gets set once for the inode lifetime */
449 spin_lock(&inode->i_lock);
450 inode->i_opflags |= IOP_FASTPERM;
451 spin_unlock(&inode->i_lock);
452 }
453 return generic_permission(mnt_userns, inode, mask);
454 }
455
456 /**
457 * sb_permission - Check superblock-level permissions
458 * @sb: Superblock of inode to check permission on
459 * @inode: Inode to check permission on
460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461 *
462 * Separate out file-system wide checks from inode-specific permission checks.
463 */
464 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
465 {
466 if (unlikely(mask & MAY_WRITE)) {
467 umode_t mode = inode->i_mode;
468
469 /* Nobody gets write access to a read-only fs. */
470 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
471 return -EROFS;
472 }
473 return 0;
474 }
475
476 /**
477 * inode_permission - Check for access rights to a given inode
478 * @mnt_userns: User namespace of the mount the inode was found from
479 * @inode: Inode to check permission on
480 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
481 *
482 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
483 * this, letting us set arbitrary permissions for filesystem access without
484 * changing the "normal" UIDs which are used for other things.
485 *
486 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
487 */
488 int inode_permission(struct user_namespace *mnt_userns,
489 struct inode *inode, int mask)
490 {
491 int retval;
492
493 retval = sb_permission(inode->i_sb, inode, mask);
494 if (retval)
495 return retval;
496
497 if (unlikely(mask & MAY_WRITE)) {
498 /*
499 * Nobody gets write access to an immutable file.
500 */
501 if (IS_IMMUTABLE(inode))
502 return -EPERM;
503
504 /*
505 * Updating mtime will likely cause i_uid and i_gid to be
506 * written back improperly if their true value is unknown
507 * to the vfs.
508 */
509 if (HAS_UNMAPPED_ID(mnt_userns, inode))
510 return -EACCES;
511 }
512
513 retval = do_inode_permission(mnt_userns, inode, mask);
514 if (retval)
515 return retval;
516
517 retval = devcgroup_inode_permission(inode, mask);
518 if (retval)
519 return retval;
520
521 return security_inode_permission(inode, mask);
522 }
523 EXPORT_SYMBOL(inode_permission);
524
525 /**
526 * path_get - get a reference to a path
527 * @path: path to get the reference to
528 *
529 * Given a path increment the reference count to the dentry and the vfsmount.
530 */
531 void path_get(const struct path *path)
532 {
533 mntget(path->mnt);
534 dget(path->dentry);
535 }
536 EXPORT_SYMBOL(path_get);
537
538 /**
539 * path_put - put a reference to a path
540 * @path: path to put the reference to
541 *
542 * Given a path decrement the reference count to the dentry and the vfsmount.
543 */
544 void path_put(const struct path *path)
545 {
546 dput(path->dentry);
547 mntput(path->mnt);
548 }
549 EXPORT_SYMBOL(path_put);
550
551 #define EMBEDDED_LEVELS 2
552 struct nameidata {
553 struct path path;
554 struct qstr last;
555 struct path root;
556 struct inode *inode; /* path.dentry.d_inode */
557 unsigned int flags;
558 unsigned seq, m_seq, r_seq;
559 int last_type;
560 unsigned depth;
561 int total_link_count;
562 struct saved {
563 struct path link;
564 struct delayed_call done;
565 const char *name;
566 unsigned seq;
567 } *stack, internal[EMBEDDED_LEVELS];
568 struct filename *name;
569 struct nameidata *saved;
570 unsigned root_seq;
571 int dfd;
572 kuid_t dir_uid;
573 umode_t dir_mode;
574 } __randomize_layout;
575
576 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
577 {
578 struct nameidata *old = current->nameidata;
579 p->stack = p->internal;
580 p->dfd = dfd;
581 p->name = name;
582 p->total_link_count = old ? old->total_link_count : 0;
583 p->saved = old;
584 current->nameidata = p;
585 }
586
587 static void restore_nameidata(void)
588 {
589 struct nameidata *now = current->nameidata, *old = now->saved;
590
591 current->nameidata = old;
592 if (old)
593 old->total_link_count = now->total_link_count;
594 if (now->stack != now->internal)
595 kfree(now->stack);
596 }
597
598 static bool nd_alloc_stack(struct nameidata *nd)
599 {
600 struct saved *p;
601
602 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
603 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
604 if (unlikely(!p))
605 return false;
606 memcpy(p, nd->internal, sizeof(nd->internal));
607 nd->stack = p;
608 return true;
609 }
610
611 /**
612 * path_connected - Verify that a dentry is below mnt.mnt_root
613 *
614 * Rename can sometimes move a file or directory outside of a bind
615 * mount, path_connected allows those cases to be detected.
616 */
617 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
618 {
619 struct super_block *sb = mnt->mnt_sb;
620
621 /* Bind mounts can have disconnected paths */
622 if (mnt->mnt_root == sb->s_root)
623 return true;
624
625 return is_subdir(dentry, mnt->mnt_root);
626 }
627
628 static void drop_links(struct nameidata *nd)
629 {
630 int i = nd->depth;
631 while (i--) {
632 struct saved *last = nd->stack + i;
633 do_delayed_call(&last->done);
634 clear_delayed_call(&last->done);
635 }
636 }
637
638 static void terminate_walk(struct nameidata *nd)
639 {
640 drop_links(nd);
641 if (!(nd->flags & LOOKUP_RCU)) {
642 int i;
643 path_put(&nd->path);
644 for (i = 0; i < nd->depth; i++)
645 path_put(&nd->stack[i].link);
646 if (nd->flags & LOOKUP_ROOT_GRABBED) {
647 path_put(&nd->root);
648 nd->flags &= ~LOOKUP_ROOT_GRABBED;
649 }
650 } else {
651 nd->flags &= ~LOOKUP_RCU;
652 rcu_read_unlock();
653 }
654 nd->depth = 0;
655 }
656
657 /* path_put is needed afterwards regardless of success or failure */
658 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
659 {
660 int res = __legitimize_mnt(path->mnt, mseq);
661 if (unlikely(res)) {
662 if (res > 0)
663 path->mnt = NULL;
664 path->dentry = NULL;
665 return false;
666 }
667 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
668 path->dentry = NULL;
669 return false;
670 }
671 return !read_seqcount_retry(&path->dentry->d_seq, seq);
672 }
673
674 static inline bool legitimize_path(struct nameidata *nd,
675 struct path *path, unsigned seq)
676 {
677 return __legitimize_path(path, seq, nd->m_seq);
678 }
679
680 static bool legitimize_links(struct nameidata *nd)
681 {
682 int i;
683 if (unlikely(nd->flags & LOOKUP_CACHED)) {
684 drop_links(nd);
685 nd->depth = 0;
686 return false;
687 }
688 for (i = 0; i < nd->depth; i++) {
689 struct saved *last = nd->stack + i;
690 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
691 drop_links(nd);
692 nd->depth = i + 1;
693 return false;
694 }
695 }
696 return true;
697 }
698
699 static bool legitimize_root(struct nameidata *nd)
700 {
701 /*
702 * For scoped-lookups (where nd->root has been zeroed), we need to
703 * restart the whole lookup from scratch -- because set_root() is wrong
704 * for these lookups (nd->dfd is the root, not the filesystem root).
705 */
706 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
707 return false;
708 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
709 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
710 return true;
711 nd->flags |= LOOKUP_ROOT_GRABBED;
712 return legitimize_path(nd, &nd->root, nd->root_seq);
713 }
714
715 /*
716 * Path walking has 2 modes, rcu-walk and ref-walk (see
717 * Documentation/filesystems/path-lookup.txt). In situations when we can't
718 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
719 * normal reference counts on dentries and vfsmounts to transition to ref-walk
720 * mode. Refcounts are grabbed at the last known good point before rcu-walk
721 * got stuck, so ref-walk may continue from there. If this is not successful
722 * (eg. a seqcount has changed), then failure is returned and it's up to caller
723 * to restart the path walk from the beginning in ref-walk mode.
724 */
725
726 /**
727 * try_to_unlazy - try to switch to ref-walk mode.
728 * @nd: nameidata pathwalk data
729 * Returns: true on success, false on failure
730 *
731 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
732 * for ref-walk mode.
733 * Must be called from rcu-walk context.
734 * Nothing should touch nameidata between try_to_unlazy() failure and
735 * terminate_walk().
736 */
737 static bool try_to_unlazy(struct nameidata *nd)
738 {
739 struct dentry *parent = nd->path.dentry;
740
741 BUG_ON(!(nd->flags & LOOKUP_RCU));
742
743 nd->flags &= ~LOOKUP_RCU;
744 if (unlikely(!legitimize_links(nd)))
745 goto out1;
746 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
747 goto out;
748 if (unlikely(!legitimize_root(nd)))
749 goto out;
750 rcu_read_unlock();
751 BUG_ON(nd->inode != parent->d_inode);
752 return true;
753
754 out1:
755 nd->path.mnt = NULL;
756 nd->path.dentry = NULL;
757 out:
758 rcu_read_unlock();
759 return false;
760 }
761
762 /**
763 * try_to_unlazy_next - try to switch to ref-walk mode.
764 * @nd: nameidata pathwalk data
765 * @dentry: next dentry to step into
766 * @seq: seq number to check @dentry against
767 * Returns: true on success, false on failure
768 *
769 * Similar to to try_to_unlazy(), but here we have the next dentry already
770 * picked by rcu-walk and want to legitimize that in addition to the current
771 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
772 * Nothing should touch nameidata between try_to_unlazy_next() failure and
773 * terminate_walk().
774 */
775 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
776 {
777 BUG_ON(!(nd->flags & LOOKUP_RCU));
778
779 nd->flags &= ~LOOKUP_RCU;
780 if (unlikely(!legitimize_links(nd)))
781 goto out2;
782 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
783 goto out2;
784 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
785 goto out1;
786
787 /*
788 * We need to move both the parent and the dentry from the RCU domain
789 * to be properly refcounted. And the sequence number in the dentry
790 * validates *both* dentry counters, since we checked the sequence
791 * number of the parent after we got the child sequence number. So we
792 * know the parent must still be valid if the child sequence number is
793 */
794 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
795 goto out;
796 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
797 goto out_dput;
798 /*
799 * Sequence counts matched. Now make sure that the root is
800 * still valid and get it if required.
801 */
802 if (unlikely(!legitimize_root(nd)))
803 goto out_dput;
804 rcu_read_unlock();
805 return true;
806
807 out2:
808 nd->path.mnt = NULL;
809 out1:
810 nd->path.dentry = NULL;
811 out:
812 rcu_read_unlock();
813 return false;
814 out_dput:
815 rcu_read_unlock();
816 dput(dentry);
817 return false;
818 }
819
820 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
821 {
822 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
823 return dentry->d_op->d_revalidate(dentry, flags);
824 else
825 return 1;
826 }
827
828 /**
829 * complete_walk - successful completion of path walk
830 * @nd: pointer nameidata
831 *
832 * If we had been in RCU mode, drop out of it and legitimize nd->path.
833 * Revalidate the final result, unless we'd already done that during
834 * the path walk or the filesystem doesn't ask for it. Return 0 on
835 * success, -error on failure. In case of failure caller does not
836 * need to drop nd->path.
837 */
838 static int complete_walk(struct nameidata *nd)
839 {
840 struct dentry *dentry = nd->path.dentry;
841 int status;
842
843 if (nd->flags & LOOKUP_RCU) {
844 /*
845 * We don't want to zero nd->root for scoped-lookups or
846 * externally-managed nd->root.
847 */
848 if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
849 nd->root.mnt = NULL;
850 nd->flags &= ~LOOKUP_CACHED;
851 if (!try_to_unlazy(nd))
852 return -ECHILD;
853 }
854
855 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
856 /*
857 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
858 * ever step outside the root during lookup" and should already
859 * be guaranteed by the rest of namei, we want to avoid a namei
860 * BUG resulting in userspace being given a path that was not
861 * scoped within the root at some point during the lookup.
862 *
863 * So, do a final sanity-check to make sure that in the
864 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
865 * we won't silently return an fd completely outside of the
866 * requested root to userspace.
867 *
868 * Userspace could move the path outside the root after this
869 * check, but as discussed elsewhere this is not a concern (the
870 * resolved file was inside the root at some point).
871 */
872 if (!path_is_under(&nd->path, &nd->root))
873 return -EXDEV;
874 }
875
876 if (likely(!(nd->flags & LOOKUP_JUMPED)))
877 return 0;
878
879 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
880 return 0;
881
882 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
883 if (status > 0)
884 return 0;
885
886 if (!status)
887 status = -ESTALE;
888
889 return status;
890 }
891
892 static int set_root(struct nameidata *nd)
893 {
894 struct fs_struct *fs = current->fs;
895
896 /*
897 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
898 * still have to ensure it doesn't happen because it will cause a breakout
899 * from the dirfd.
900 */
901 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
902 return -ENOTRECOVERABLE;
903
904 if (nd->flags & LOOKUP_RCU) {
905 unsigned seq;
906
907 do {
908 seq = read_seqcount_begin(&fs->seq);
909 nd->root = fs->root;
910 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
911 } while (read_seqcount_retry(&fs->seq, seq));
912 } else {
913 get_fs_root(fs, &nd->root);
914 nd->flags |= LOOKUP_ROOT_GRABBED;
915 }
916 return 0;
917 }
918
919 static int nd_jump_root(struct nameidata *nd)
920 {
921 if (unlikely(nd->flags & LOOKUP_BENEATH))
922 return -EXDEV;
923 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
924 /* Absolute path arguments to path_init() are allowed. */
925 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
926 return -EXDEV;
927 }
928 if (!nd->root.mnt) {
929 int error = set_root(nd);
930 if (error)
931 return error;
932 }
933 if (nd->flags & LOOKUP_RCU) {
934 struct dentry *d;
935 nd->path = nd->root;
936 d = nd->path.dentry;
937 nd->inode = d->d_inode;
938 nd->seq = nd->root_seq;
939 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
940 return -ECHILD;
941 } else {
942 path_put(&nd->path);
943 nd->path = nd->root;
944 path_get(&nd->path);
945 nd->inode = nd->path.dentry->d_inode;
946 }
947 nd->flags |= LOOKUP_JUMPED;
948 return 0;
949 }
950
951 /*
952 * Helper to directly jump to a known parsed path from ->get_link,
953 * caller must have taken a reference to path beforehand.
954 */
955 int nd_jump_link(struct path *path)
956 {
957 int error = -ELOOP;
958 struct nameidata *nd = current->nameidata;
959
960 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
961 goto err;
962
963 error = -EXDEV;
964 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
965 if (nd->path.mnt != path->mnt)
966 goto err;
967 }
968 /* Not currently safe for scoped-lookups. */
969 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
970 goto err;
971
972 path_put(&nd->path);
973 nd->path = *path;
974 nd->inode = nd->path.dentry->d_inode;
975 nd->flags |= LOOKUP_JUMPED;
976 return 0;
977
978 err:
979 path_put(path);
980 return error;
981 }
982
983 static inline void put_link(struct nameidata *nd)
984 {
985 struct saved *last = nd->stack + --nd->depth;
986 do_delayed_call(&last->done);
987 if (!(nd->flags & LOOKUP_RCU))
988 path_put(&last->link);
989 }
990
991 int sysctl_protected_symlinks __read_mostly = 0;
992 int sysctl_protected_hardlinks __read_mostly = 0;
993 int sysctl_protected_fifos __read_mostly;
994 int sysctl_protected_regular __read_mostly;
995
996 /**
997 * may_follow_link - Check symlink following for unsafe situations
998 * @nd: nameidata pathwalk data
999 *
1000 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1001 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1002 * in a sticky world-writable directory. This is to protect privileged
1003 * processes from failing races against path names that may change out
1004 * from under them by way of other users creating malicious symlinks.
1005 * It will permit symlinks to be followed only when outside a sticky
1006 * world-writable directory, or when the uid of the symlink and follower
1007 * match, or when the directory owner matches the symlink's owner.
1008 *
1009 * Returns 0 if following the symlink is allowed, -ve on error.
1010 */
1011 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1012 {
1013 struct user_namespace *mnt_userns;
1014 kuid_t i_uid;
1015
1016 if (!sysctl_protected_symlinks)
1017 return 0;
1018
1019 mnt_userns = mnt_user_ns(nd->path.mnt);
1020 i_uid = i_uid_into_mnt(mnt_userns, inode);
1021 /* Allowed if owner and follower match. */
1022 if (uid_eq(current_cred()->fsuid, i_uid))
1023 return 0;
1024
1025 /* Allowed if parent directory not sticky and world-writable. */
1026 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1027 return 0;
1028
1029 /* Allowed if parent directory and link owner match. */
1030 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1031 return 0;
1032
1033 if (nd->flags & LOOKUP_RCU)
1034 return -ECHILD;
1035
1036 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1037 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1038 return -EACCES;
1039 }
1040
1041 /**
1042 * safe_hardlink_source - Check for safe hardlink conditions
1043 * @mnt_userns: user namespace of the mount the inode was found from
1044 * @inode: the source inode to hardlink from
1045 *
1046 * Return false if at least one of the following conditions:
1047 * - inode is not a regular file
1048 * - inode is setuid
1049 * - inode is setgid and group-exec
1050 * - access failure for read and write
1051 *
1052 * Otherwise returns true.
1053 */
1054 static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1055 struct inode *inode)
1056 {
1057 umode_t mode = inode->i_mode;
1058
1059 /* Special files should not get pinned to the filesystem. */
1060 if (!S_ISREG(mode))
1061 return false;
1062
1063 /* Setuid files should not get pinned to the filesystem. */
1064 if (mode & S_ISUID)
1065 return false;
1066
1067 /* Executable setgid files should not get pinned to the filesystem. */
1068 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1069 return false;
1070
1071 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1072 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1073 return false;
1074
1075 return true;
1076 }
1077
1078 /**
1079 * may_linkat - Check permissions for creating a hardlink
1080 * @mnt_userns: user namespace of the mount the inode was found from
1081 * @link: the source to hardlink from
1082 *
1083 * Block hardlink when all of:
1084 * - sysctl_protected_hardlinks enabled
1085 * - fsuid does not match inode
1086 * - hardlink source is unsafe (see safe_hardlink_source() above)
1087 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1088 *
1089 * If the inode has been found through an idmapped mount the user namespace of
1090 * the vfsmount must be passed through @mnt_userns. This function will then take
1091 * care to map the inode according to @mnt_userns before checking permissions.
1092 * On non-idmapped mounts or if permission checking is to be performed on the
1093 * raw inode simply passs init_user_ns.
1094 *
1095 * Returns 0 if successful, -ve on error.
1096 */
1097 int may_linkat(struct user_namespace *mnt_userns, struct path *link)
1098 {
1099 struct inode *inode = link->dentry->d_inode;
1100
1101 /* Inode writeback is not safe when the uid or gid are invalid. */
1102 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1103 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1104 return -EOVERFLOW;
1105
1106 if (!sysctl_protected_hardlinks)
1107 return 0;
1108
1109 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1110 * otherwise, it must be a safe source.
1111 */
1112 if (safe_hardlink_source(mnt_userns, inode) ||
1113 inode_owner_or_capable(mnt_userns, inode))
1114 return 0;
1115
1116 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1117 return -EPERM;
1118 }
1119
1120 /**
1121 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1122 * should be allowed, or not, on files that already
1123 * exist.
1124 * @mnt_userns: user namespace of the mount the inode was found from
1125 * @dir_mode: mode bits of directory
1126 * @dir_uid: owner of directory
1127 * @inode: the inode of the file to open
1128 *
1129 * Block an O_CREAT open of a FIFO (or a regular file) when:
1130 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1131 * - the file already exists
1132 * - we are in a sticky directory
1133 * - we don't own the file
1134 * - the owner of the directory doesn't own the file
1135 * - the directory is world writable
1136 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1137 * the directory doesn't have to be world writable: being group writable will
1138 * be enough.
1139 *
1140 * If the inode has been found through an idmapped mount the user namespace of
1141 * the vfsmount must be passed through @mnt_userns. This function will then take
1142 * care to map the inode according to @mnt_userns before checking permissions.
1143 * On non-idmapped mounts or if permission checking is to be performed on the
1144 * raw inode simply passs init_user_ns.
1145 *
1146 * Returns 0 if the open is allowed, -ve on error.
1147 */
1148 static int may_create_in_sticky(struct user_namespace *mnt_userns,
1149 struct nameidata *nd, struct inode *const inode)
1150 {
1151 umode_t dir_mode = nd->dir_mode;
1152 kuid_t dir_uid = nd->dir_uid;
1153
1154 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1155 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1156 likely(!(dir_mode & S_ISVTX)) ||
1157 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1158 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1159 return 0;
1160
1161 if (likely(dir_mode & 0002) ||
1162 (dir_mode & 0020 &&
1163 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1164 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1165 const char *operation = S_ISFIFO(inode->i_mode) ?
1166 "sticky_create_fifo" :
1167 "sticky_create_regular";
1168 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1169 return -EACCES;
1170 }
1171 return 0;
1172 }
1173
1174 /*
1175 * follow_up - Find the mountpoint of path's vfsmount
1176 *
1177 * Given a path, find the mountpoint of its source file system.
1178 * Replace @path with the path of the mountpoint in the parent mount.
1179 * Up is towards /.
1180 *
1181 * Return 1 if we went up a level and 0 if we were already at the
1182 * root.
1183 */
1184 int follow_up(struct path *path)
1185 {
1186 struct mount *mnt = real_mount(path->mnt);
1187 struct mount *parent;
1188 struct dentry *mountpoint;
1189
1190 read_seqlock_excl(&mount_lock);
1191 parent = mnt->mnt_parent;
1192 if (parent == mnt) {
1193 read_sequnlock_excl(&mount_lock);
1194 return 0;
1195 }
1196 mntget(&parent->mnt);
1197 mountpoint = dget(mnt->mnt_mountpoint);
1198 read_sequnlock_excl(&mount_lock);
1199 dput(path->dentry);
1200 path->dentry = mountpoint;
1201 mntput(path->mnt);
1202 path->mnt = &parent->mnt;
1203 return 1;
1204 }
1205 EXPORT_SYMBOL(follow_up);
1206
1207 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1208 struct path *path, unsigned *seqp)
1209 {
1210 while (mnt_has_parent(m)) {
1211 struct dentry *mountpoint = m->mnt_mountpoint;
1212
1213 m = m->mnt_parent;
1214 if (unlikely(root->dentry == mountpoint &&
1215 root->mnt == &m->mnt))
1216 break;
1217 if (mountpoint != m->mnt.mnt_root) {
1218 path->mnt = &m->mnt;
1219 path->dentry = mountpoint;
1220 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1221 return true;
1222 }
1223 }
1224 return false;
1225 }
1226
1227 static bool choose_mountpoint(struct mount *m, const struct path *root,
1228 struct path *path)
1229 {
1230 bool found;
1231
1232 rcu_read_lock();
1233 while (1) {
1234 unsigned seq, mseq = read_seqbegin(&mount_lock);
1235
1236 found = choose_mountpoint_rcu(m, root, path, &seq);
1237 if (unlikely(!found)) {
1238 if (!read_seqretry(&mount_lock, mseq))
1239 break;
1240 } else {
1241 if (likely(__legitimize_path(path, seq, mseq)))
1242 break;
1243 rcu_read_unlock();
1244 path_put(path);
1245 rcu_read_lock();
1246 }
1247 }
1248 rcu_read_unlock();
1249 return found;
1250 }
1251
1252 /*
1253 * Perform an automount
1254 * - return -EISDIR to tell follow_managed() to stop and return the path we
1255 * were called with.
1256 */
1257 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1258 {
1259 struct dentry *dentry = path->dentry;
1260
1261 /* We don't want to mount if someone's just doing a stat -
1262 * unless they're stat'ing a directory and appended a '/' to
1263 * the name.
1264 *
1265 * We do, however, want to mount if someone wants to open or
1266 * create a file of any type under the mountpoint, wants to
1267 * traverse through the mountpoint or wants to open the
1268 * mounted directory. Also, autofs may mark negative dentries
1269 * as being automount points. These will need the attentions
1270 * of the daemon to instantiate them before they can be used.
1271 */
1272 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1273 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1274 dentry->d_inode)
1275 return -EISDIR;
1276
1277 if (count && (*count)++ >= MAXSYMLINKS)
1278 return -ELOOP;
1279
1280 return finish_automount(dentry->d_op->d_automount(path), path);
1281 }
1282
1283 /*
1284 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1285 * dentries are pinned but not locked here, so negative dentry can go
1286 * positive right under us. Use of smp_load_acquire() provides a barrier
1287 * sufficient for ->d_inode and ->d_flags consistency.
1288 */
1289 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1290 int *count, unsigned lookup_flags)
1291 {
1292 struct vfsmount *mnt = path->mnt;
1293 bool need_mntput = false;
1294 int ret = 0;
1295
1296 while (flags & DCACHE_MANAGED_DENTRY) {
1297 /* Allow the filesystem to manage the transit without i_mutex
1298 * being held. */
1299 if (flags & DCACHE_MANAGE_TRANSIT) {
1300 ret = path->dentry->d_op->d_manage(path, false);
1301 flags = smp_load_acquire(&path->dentry->d_flags);
1302 if (ret < 0)
1303 break;
1304 }
1305
1306 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1307 struct vfsmount *mounted = lookup_mnt(path);
1308 if (mounted) { // ... in our namespace
1309 dput(path->dentry);
1310 if (need_mntput)
1311 mntput(path->mnt);
1312 path->mnt = mounted;
1313 path->dentry = dget(mounted->mnt_root);
1314 // here we know it's positive
1315 flags = path->dentry->d_flags;
1316 need_mntput = true;
1317 continue;
1318 }
1319 }
1320
1321 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1322 break;
1323
1324 // uncovered automount point
1325 ret = follow_automount(path, count, lookup_flags);
1326 flags = smp_load_acquire(&path->dentry->d_flags);
1327 if (ret < 0)
1328 break;
1329 }
1330
1331 if (ret == -EISDIR)
1332 ret = 0;
1333 // possible if you race with several mount --move
1334 if (need_mntput && path->mnt == mnt)
1335 mntput(path->mnt);
1336 if (!ret && unlikely(d_flags_negative(flags)))
1337 ret = -ENOENT;
1338 *jumped = need_mntput;
1339 return ret;
1340 }
1341
1342 static inline int traverse_mounts(struct path *path, bool *jumped,
1343 int *count, unsigned lookup_flags)
1344 {
1345 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1346
1347 /* fastpath */
1348 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1349 *jumped = false;
1350 if (unlikely(d_flags_negative(flags)))
1351 return -ENOENT;
1352 return 0;
1353 }
1354 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1355 }
1356
1357 int follow_down_one(struct path *path)
1358 {
1359 struct vfsmount *mounted;
1360
1361 mounted = lookup_mnt(path);
1362 if (mounted) {
1363 dput(path->dentry);
1364 mntput(path->mnt);
1365 path->mnt = mounted;
1366 path->dentry = dget(mounted->mnt_root);
1367 return 1;
1368 }
1369 return 0;
1370 }
1371 EXPORT_SYMBOL(follow_down_one);
1372
1373 /*
1374 * Follow down to the covering mount currently visible to userspace. At each
1375 * point, the filesystem owning that dentry may be queried as to whether the
1376 * caller is permitted to proceed or not.
1377 */
1378 int follow_down(struct path *path)
1379 {
1380 struct vfsmount *mnt = path->mnt;
1381 bool jumped;
1382 int ret = traverse_mounts(path, &jumped, NULL, 0);
1383
1384 if (path->mnt != mnt)
1385 mntput(mnt);
1386 return ret;
1387 }
1388 EXPORT_SYMBOL(follow_down);
1389
1390 /*
1391 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1392 * we meet a managed dentry that would need blocking.
1393 */
1394 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1395 struct inode **inode, unsigned *seqp)
1396 {
1397 struct dentry *dentry = path->dentry;
1398 unsigned int flags = dentry->d_flags;
1399
1400 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1401 return true;
1402
1403 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1404 return false;
1405
1406 for (;;) {
1407 /*
1408 * Don't forget we might have a non-mountpoint managed dentry
1409 * that wants to block transit.
1410 */
1411 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1412 int res = dentry->d_op->d_manage(path, true);
1413 if (res)
1414 return res == -EISDIR;
1415 flags = dentry->d_flags;
1416 }
1417
1418 if (flags & DCACHE_MOUNTED) {
1419 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1420 if (mounted) {
1421 path->mnt = &mounted->mnt;
1422 dentry = path->dentry = mounted->mnt.mnt_root;
1423 nd->flags |= LOOKUP_JUMPED;
1424 *seqp = read_seqcount_begin(&dentry->d_seq);
1425 *inode = dentry->d_inode;
1426 /*
1427 * We don't need to re-check ->d_seq after this
1428 * ->d_inode read - there will be an RCU delay
1429 * between mount hash removal and ->mnt_root
1430 * becoming unpinned.
1431 */
1432 flags = dentry->d_flags;
1433 continue;
1434 }
1435 if (read_seqretry(&mount_lock, nd->m_seq))
1436 return false;
1437 }
1438 return !(flags & DCACHE_NEED_AUTOMOUNT);
1439 }
1440 }
1441
1442 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1443 struct path *path, struct inode **inode,
1444 unsigned int *seqp)
1445 {
1446 bool jumped;
1447 int ret;
1448
1449 path->mnt = nd->path.mnt;
1450 path->dentry = dentry;
1451 if (nd->flags & LOOKUP_RCU) {
1452 unsigned int seq = *seqp;
1453 if (unlikely(!*inode))
1454 return -ENOENT;
1455 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1456 return 0;
1457 if (!try_to_unlazy_next(nd, dentry, seq))
1458 return -ECHILD;
1459 // *path might've been clobbered by __follow_mount_rcu()
1460 path->mnt = nd->path.mnt;
1461 path->dentry = dentry;
1462 }
1463 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1464 if (jumped) {
1465 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1466 ret = -EXDEV;
1467 else
1468 nd->flags |= LOOKUP_JUMPED;
1469 }
1470 if (unlikely(ret)) {
1471 dput(path->dentry);
1472 if (path->mnt != nd->path.mnt)
1473 mntput(path->mnt);
1474 } else {
1475 *inode = d_backing_inode(path->dentry);
1476 *seqp = 0; /* out of RCU mode, so the value doesn't matter */
1477 }
1478 return ret;
1479 }
1480
1481 /*
1482 * This looks up the name in dcache and possibly revalidates the found dentry.
1483 * NULL is returned if the dentry does not exist in the cache.
1484 */
1485 static struct dentry *lookup_dcache(const struct qstr *name,
1486 struct dentry *dir,
1487 unsigned int flags)
1488 {
1489 struct dentry *dentry = d_lookup(dir, name);
1490 if (dentry) {
1491 int error = d_revalidate(dentry, flags);
1492 if (unlikely(error <= 0)) {
1493 if (!error)
1494 d_invalidate(dentry);
1495 dput(dentry);
1496 return ERR_PTR(error);
1497 }
1498 }
1499 return dentry;
1500 }
1501
1502 /*
1503 * Parent directory has inode locked exclusive. This is one
1504 * and only case when ->lookup() gets called on non in-lookup
1505 * dentries - as the matter of fact, this only gets called
1506 * when directory is guaranteed to have no in-lookup children
1507 * at all.
1508 */
1509 static struct dentry *__lookup_hash(const struct qstr *name,
1510 struct dentry *base, unsigned int flags)
1511 {
1512 struct dentry *dentry = lookup_dcache(name, base, flags);
1513 struct dentry *old;
1514 struct inode *dir = base->d_inode;
1515
1516 if (dentry)
1517 return dentry;
1518
1519 /* Don't create child dentry for a dead directory. */
1520 if (unlikely(IS_DEADDIR(dir)))
1521 return ERR_PTR(-ENOENT);
1522
1523 dentry = d_alloc(base, name);
1524 if (unlikely(!dentry))
1525 return ERR_PTR(-ENOMEM);
1526
1527 old = dir->i_op->lookup(dir, dentry, flags);
1528 if (unlikely(old)) {
1529 dput(dentry);
1530 dentry = old;
1531 }
1532 return dentry;
1533 }
1534
1535 static struct dentry *lookup_fast(struct nameidata *nd,
1536 struct inode **inode,
1537 unsigned *seqp)
1538 {
1539 struct dentry *dentry, *parent = nd->path.dentry;
1540 int status = 1;
1541
1542 /*
1543 * Rename seqlock is not required here because in the off chance
1544 * of a false negative due to a concurrent rename, the caller is
1545 * going to fall back to non-racy lookup.
1546 */
1547 if (nd->flags & LOOKUP_RCU) {
1548 unsigned seq;
1549 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1550 if (unlikely(!dentry)) {
1551 if (!try_to_unlazy(nd))
1552 return ERR_PTR(-ECHILD);
1553 return NULL;
1554 }
1555
1556 /*
1557 * This sequence count validates that the inode matches
1558 * the dentry name information from lookup.
1559 */
1560 *inode = d_backing_inode(dentry);
1561 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1562 return ERR_PTR(-ECHILD);
1563
1564 /*
1565 * This sequence count validates that the parent had no
1566 * changes while we did the lookup of the dentry above.
1567 *
1568 * The memory barrier in read_seqcount_begin of child is
1569 * enough, we can use __read_seqcount_retry here.
1570 */
1571 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1572 return ERR_PTR(-ECHILD);
1573
1574 *seqp = seq;
1575 status = d_revalidate(dentry, nd->flags);
1576 if (likely(status > 0))
1577 return dentry;
1578 if (!try_to_unlazy_next(nd, dentry, seq))
1579 return ERR_PTR(-ECHILD);
1580 if (status == -ECHILD)
1581 /* we'd been told to redo it in non-rcu mode */
1582 status = d_revalidate(dentry, nd->flags);
1583 } else {
1584 dentry = __d_lookup(parent, &nd->last);
1585 if (unlikely(!dentry))
1586 return NULL;
1587 status = d_revalidate(dentry, nd->flags);
1588 }
1589 if (unlikely(status <= 0)) {
1590 if (!status)
1591 d_invalidate(dentry);
1592 dput(dentry);
1593 return ERR_PTR(status);
1594 }
1595 return dentry;
1596 }
1597
1598 /* Fast lookup failed, do it the slow way */
1599 static struct dentry *__lookup_slow(const struct qstr *name,
1600 struct dentry *dir,
1601 unsigned int flags)
1602 {
1603 struct dentry *dentry, *old;
1604 struct inode *inode = dir->d_inode;
1605 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1606
1607 /* Don't go there if it's already dead */
1608 if (unlikely(IS_DEADDIR(inode)))
1609 return ERR_PTR(-ENOENT);
1610 again:
1611 dentry = d_alloc_parallel(dir, name, &wq);
1612 if (IS_ERR(dentry))
1613 return dentry;
1614 if (unlikely(!d_in_lookup(dentry))) {
1615 int error = d_revalidate(dentry, flags);
1616 if (unlikely(error <= 0)) {
1617 if (!error) {
1618 d_invalidate(dentry);
1619 dput(dentry);
1620 goto again;
1621 }
1622 dput(dentry);
1623 dentry = ERR_PTR(error);
1624 }
1625 } else {
1626 old = inode->i_op->lookup(inode, dentry, flags);
1627 d_lookup_done(dentry);
1628 if (unlikely(old)) {
1629 dput(dentry);
1630 dentry = old;
1631 }
1632 }
1633 return dentry;
1634 }
1635
1636 static struct dentry *lookup_slow(const struct qstr *name,
1637 struct dentry *dir,
1638 unsigned int flags)
1639 {
1640 struct inode *inode = dir->d_inode;
1641 struct dentry *res;
1642 inode_lock_shared(inode);
1643 res = __lookup_slow(name, dir, flags);
1644 inode_unlock_shared(inode);
1645 return res;
1646 }
1647
1648 static inline int may_lookup(struct user_namespace *mnt_userns,
1649 struct nameidata *nd)
1650 {
1651 if (nd->flags & LOOKUP_RCU) {
1652 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1653 if (err != -ECHILD || !try_to_unlazy(nd))
1654 return err;
1655 }
1656 return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1657 }
1658
1659 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1660 {
1661 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1662 return -ELOOP;
1663
1664 if (likely(nd->depth != EMBEDDED_LEVELS))
1665 return 0;
1666 if (likely(nd->stack != nd->internal))
1667 return 0;
1668 if (likely(nd_alloc_stack(nd)))
1669 return 0;
1670
1671 if (nd->flags & LOOKUP_RCU) {
1672 // we need to grab link before we do unlazy. And we can't skip
1673 // unlazy even if we fail to grab the link - cleanup needs it
1674 bool grabbed_link = legitimize_path(nd, link, seq);
1675
1676 if (!try_to_unlazy(nd) != 0 || !grabbed_link)
1677 return -ECHILD;
1678
1679 if (nd_alloc_stack(nd))
1680 return 0;
1681 }
1682 return -ENOMEM;
1683 }
1684
1685 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1686
1687 static const char *pick_link(struct nameidata *nd, struct path *link,
1688 struct inode *inode, unsigned seq, int flags)
1689 {
1690 struct saved *last;
1691 const char *res;
1692 int error = reserve_stack(nd, link, seq);
1693
1694 if (unlikely(error)) {
1695 if (!(nd->flags & LOOKUP_RCU))
1696 path_put(link);
1697 return ERR_PTR(error);
1698 }
1699 last = nd->stack + nd->depth++;
1700 last->link = *link;
1701 clear_delayed_call(&last->done);
1702 last->seq = seq;
1703
1704 if (flags & WALK_TRAILING) {
1705 error = may_follow_link(nd, inode);
1706 if (unlikely(error))
1707 return ERR_PTR(error);
1708 }
1709
1710 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1711 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1712 return ERR_PTR(-ELOOP);
1713
1714 if (!(nd->flags & LOOKUP_RCU)) {
1715 touch_atime(&last->link);
1716 cond_resched();
1717 } else if (atime_needs_update(&last->link, inode)) {
1718 if (!try_to_unlazy(nd))
1719 return ERR_PTR(-ECHILD);
1720 touch_atime(&last->link);
1721 }
1722
1723 error = security_inode_follow_link(link->dentry, inode,
1724 nd->flags & LOOKUP_RCU);
1725 if (unlikely(error))
1726 return ERR_PTR(error);
1727
1728 res = READ_ONCE(inode->i_link);
1729 if (!res) {
1730 const char * (*get)(struct dentry *, struct inode *,
1731 struct delayed_call *);
1732 get = inode->i_op->get_link;
1733 if (nd->flags & LOOKUP_RCU) {
1734 res = get(NULL, inode, &last->done);
1735 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1736 res = get(link->dentry, inode, &last->done);
1737 } else {
1738 res = get(link->dentry, inode, &last->done);
1739 }
1740 if (!res)
1741 goto all_done;
1742 if (IS_ERR(res))
1743 return res;
1744 }
1745 if (*res == '/') {
1746 error = nd_jump_root(nd);
1747 if (unlikely(error))
1748 return ERR_PTR(error);
1749 while (unlikely(*++res == '/'))
1750 ;
1751 }
1752 if (*res)
1753 return res;
1754 all_done: // pure jump
1755 put_link(nd);
1756 return NULL;
1757 }
1758
1759 /*
1760 * Do we need to follow links? We _really_ want to be able
1761 * to do this check without having to look at inode->i_op,
1762 * so we keep a cache of "no, this doesn't need follow_link"
1763 * for the common case.
1764 */
1765 static const char *step_into(struct nameidata *nd, int flags,
1766 struct dentry *dentry, struct inode *inode, unsigned seq)
1767 {
1768 struct path path;
1769 int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1770
1771 if (err < 0)
1772 return ERR_PTR(err);
1773 if (likely(!d_is_symlink(path.dentry)) ||
1774 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1775 (flags & WALK_NOFOLLOW)) {
1776 /* not a symlink or should not follow */
1777 if (!(nd->flags & LOOKUP_RCU)) {
1778 dput(nd->path.dentry);
1779 if (nd->path.mnt != path.mnt)
1780 mntput(nd->path.mnt);
1781 }
1782 nd->path = path;
1783 nd->inode = inode;
1784 nd->seq = seq;
1785 return NULL;
1786 }
1787 if (nd->flags & LOOKUP_RCU) {
1788 /* make sure that d_is_symlink above matches inode */
1789 if (read_seqcount_retry(&path.dentry->d_seq, seq))
1790 return ERR_PTR(-ECHILD);
1791 } else {
1792 if (path.mnt == nd->path.mnt)
1793 mntget(path.mnt);
1794 }
1795 return pick_link(nd, &path, inode, seq, flags);
1796 }
1797
1798 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1799 struct inode **inodep,
1800 unsigned *seqp)
1801 {
1802 struct dentry *parent, *old;
1803
1804 if (path_equal(&nd->path, &nd->root))
1805 goto in_root;
1806 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1807 struct path path;
1808 unsigned seq;
1809 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1810 &nd->root, &path, &seq))
1811 goto in_root;
1812 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1813 return ERR_PTR(-ECHILD);
1814 nd->path = path;
1815 nd->inode = path.dentry->d_inode;
1816 nd->seq = seq;
1817 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1818 return ERR_PTR(-ECHILD);
1819 /* we know that mountpoint was pinned */
1820 }
1821 old = nd->path.dentry;
1822 parent = old->d_parent;
1823 *inodep = parent->d_inode;
1824 *seqp = read_seqcount_begin(&parent->d_seq);
1825 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1826 return ERR_PTR(-ECHILD);
1827 if (unlikely(!path_connected(nd->path.mnt, parent)))
1828 return ERR_PTR(-ECHILD);
1829 return parent;
1830 in_root:
1831 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1832 return ERR_PTR(-ECHILD);
1833 if (unlikely(nd->flags & LOOKUP_BENEATH))
1834 return ERR_PTR(-ECHILD);
1835 return NULL;
1836 }
1837
1838 static struct dentry *follow_dotdot(struct nameidata *nd,
1839 struct inode **inodep,
1840 unsigned *seqp)
1841 {
1842 struct dentry *parent;
1843
1844 if (path_equal(&nd->path, &nd->root))
1845 goto in_root;
1846 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1847 struct path path;
1848
1849 if (!choose_mountpoint(real_mount(nd->path.mnt),
1850 &nd->root, &path))
1851 goto in_root;
1852 path_put(&nd->path);
1853 nd->path = path;
1854 nd->inode = path.dentry->d_inode;
1855 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1856 return ERR_PTR(-EXDEV);
1857 }
1858 /* rare case of legitimate dget_parent()... */
1859 parent = dget_parent(nd->path.dentry);
1860 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1861 dput(parent);
1862 return ERR_PTR(-ENOENT);
1863 }
1864 *seqp = 0;
1865 *inodep = parent->d_inode;
1866 return parent;
1867
1868 in_root:
1869 if (unlikely(nd->flags & LOOKUP_BENEATH))
1870 return ERR_PTR(-EXDEV);
1871 dget(nd->path.dentry);
1872 return NULL;
1873 }
1874
1875 static const char *handle_dots(struct nameidata *nd, int type)
1876 {
1877 if (type == LAST_DOTDOT) {
1878 const char *error = NULL;
1879 struct dentry *parent;
1880 struct inode *inode;
1881 unsigned seq;
1882
1883 if (!nd->root.mnt) {
1884 error = ERR_PTR(set_root(nd));
1885 if (error)
1886 return error;
1887 }
1888 if (nd->flags & LOOKUP_RCU)
1889 parent = follow_dotdot_rcu(nd, &inode, &seq);
1890 else
1891 parent = follow_dotdot(nd, &inode, &seq);
1892 if (IS_ERR(parent))
1893 return ERR_CAST(parent);
1894 if (unlikely(!parent))
1895 error = step_into(nd, WALK_NOFOLLOW,
1896 nd->path.dentry, nd->inode, nd->seq);
1897 else
1898 error = step_into(nd, WALK_NOFOLLOW,
1899 parent, inode, seq);
1900 if (unlikely(error))
1901 return error;
1902
1903 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1904 /*
1905 * If there was a racing rename or mount along our
1906 * path, then we can't be sure that ".." hasn't jumped
1907 * above nd->root (and so userspace should retry or use
1908 * some fallback).
1909 */
1910 smp_rmb();
1911 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1912 return ERR_PTR(-EAGAIN);
1913 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1914 return ERR_PTR(-EAGAIN);
1915 }
1916 }
1917 return NULL;
1918 }
1919
1920 static const char *walk_component(struct nameidata *nd, int flags)
1921 {
1922 struct dentry *dentry;
1923 struct inode *inode;
1924 unsigned seq;
1925 /*
1926 * "." and ".." are special - ".." especially so because it has
1927 * to be able to know about the current root directory and
1928 * parent relationships.
1929 */
1930 if (unlikely(nd->last_type != LAST_NORM)) {
1931 if (!(flags & WALK_MORE) && nd->depth)
1932 put_link(nd);
1933 return handle_dots(nd, nd->last_type);
1934 }
1935 dentry = lookup_fast(nd, &inode, &seq);
1936 if (IS_ERR(dentry))
1937 return ERR_CAST(dentry);
1938 if (unlikely(!dentry)) {
1939 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1940 if (IS_ERR(dentry))
1941 return ERR_CAST(dentry);
1942 }
1943 if (!(flags & WALK_MORE) && nd->depth)
1944 put_link(nd);
1945 return step_into(nd, flags, dentry, inode, seq);
1946 }
1947
1948 /*
1949 * We can do the critical dentry name comparison and hashing
1950 * operations one word at a time, but we are limited to:
1951 *
1952 * - Architectures with fast unaligned word accesses. We could
1953 * do a "get_unaligned()" if this helps and is sufficiently
1954 * fast.
1955 *
1956 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1957 * do not trap on the (extremely unlikely) case of a page
1958 * crossing operation.
1959 *
1960 * - Furthermore, we need an efficient 64-bit compile for the
1961 * 64-bit case in order to generate the "number of bytes in
1962 * the final mask". Again, that could be replaced with a
1963 * efficient population count instruction or similar.
1964 */
1965 #ifdef CONFIG_DCACHE_WORD_ACCESS
1966
1967 #include <asm/word-at-a-time.h>
1968
1969 #ifdef HASH_MIX
1970
1971 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1972
1973 #elif defined(CONFIG_64BIT)
1974 /*
1975 * Register pressure in the mixing function is an issue, particularly
1976 * on 32-bit x86, but almost any function requires one state value and
1977 * one temporary. Instead, use a function designed for two state values
1978 * and no temporaries.
1979 *
1980 * This function cannot create a collision in only two iterations, so
1981 * we have two iterations to achieve avalanche. In those two iterations,
1982 * we have six layers of mixing, which is enough to spread one bit's
1983 * influence out to 2^6 = 64 state bits.
1984 *
1985 * Rotate constants are scored by considering either 64 one-bit input
1986 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1987 * probability of that delta causing a change to each of the 128 output
1988 * bits, using a sample of random initial states.
1989 *
1990 * The Shannon entropy of the computed probabilities is then summed
1991 * to produce a score. Ideally, any input change has a 50% chance of
1992 * toggling any given output bit.
1993 *
1994 * Mixing scores (in bits) for (12,45):
1995 * Input delta: 1-bit 2-bit
1996 * 1 round: 713.3 42542.6
1997 * 2 rounds: 2753.7 140389.8
1998 * 3 rounds: 5954.1 233458.2
1999 * 4 rounds: 7862.6 256672.2
2000 * Perfect: 8192 258048
2001 * (64*128) (64*63/2 * 128)
2002 */
2003 #define HASH_MIX(x, y, a) \
2004 ( x ^= (a), \
2005 y ^= x, x = rol64(x,12),\
2006 x += y, y = rol64(y,45),\
2007 y *= 9 )
2008
2009 /*
2010 * Fold two longs into one 32-bit hash value. This must be fast, but
2011 * latency isn't quite as critical, as there is a fair bit of additional
2012 * work done before the hash value is used.
2013 */
2014 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2015 {
2016 y ^= x * GOLDEN_RATIO_64;
2017 y *= GOLDEN_RATIO_64;
2018 return y >> 32;
2019 }
2020
2021 #else /* 32-bit case */
2022
2023 /*
2024 * Mixing scores (in bits) for (7,20):
2025 * Input delta: 1-bit 2-bit
2026 * 1 round: 330.3 9201.6
2027 * 2 rounds: 1246.4 25475.4
2028 * 3 rounds: 1907.1 31295.1
2029 * 4 rounds: 2042.3 31718.6
2030 * Perfect: 2048 31744
2031 * (32*64) (32*31/2 * 64)
2032 */
2033 #define HASH_MIX(x, y, a) \
2034 ( x ^= (a), \
2035 y ^= x, x = rol32(x, 7),\
2036 x += y, y = rol32(y,20),\
2037 y *= 9 )
2038
2039 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2040 {
2041 /* Use arch-optimized multiply if one exists */
2042 return __hash_32(y ^ __hash_32(x));
2043 }
2044
2045 #endif
2046
2047 /*
2048 * Return the hash of a string of known length. This is carfully
2049 * designed to match hash_name(), which is the more critical function.
2050 * In particular, we must end by hashing a final word containing 0..7
2051 * payload bytes, to match the way that hash_name() iterates until it
2052 * finds the delimiter after the name.
2053 */
2054 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2055 {
2056 unsigned long a, x = 0, y = (unsigned long)salt;
2057
2058 for (;;) {
2059 if (!len)
2060 goto done;
2061 a = load_unaligned_zeropad(name);
2062 if (len < sizeof(unsigned long))
2063 break;
2064 HASH_MIX(x, y, a);
2065 name += sizeof(unsigned long);
2066 len -= sizeof(unsigned long);
2067 }
2068 x ^= a & bytemask_from_count(len);
2069 done:
2070 return fold_hash(x, y);
2071 }
2072 EXPORT_SYMBOL(full_name_hash);
2073
2074 /* Return the "hash_len" (hash and length) of a null-terminated string */
2075 u64 hashlen_string(const void *salt, const char *name)
2076 {
2077 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2078 unsigned long adata, mask, len;
2079 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2080
2081 len = 0;
2082 goto inside;
2083
2084 do {
2085 HASH_MIX(x, y, a);
2086 len += sizeof(unsigned long);
2087 inside:
2088 a = load_unaligned_zeropad(name+len);
2089 } while (!has_zero(a, &adata, &constants));
2090
2091 adata = prep_zero_mask(a, adata, &constants);
2092 mask = create_zero_mask(adata);
2093 x ^= a & zero_bytemask(mask);
2094
2095 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2096 }
2097 EXPORT_SYMBOL(hashlen_string);
2098
2099 /*
2100 * Calculate the length and hash of the path component, and
2101 * return the "hash_len" as the result.
2102 */
2103 static inline u64 hash_name(const void *salt, const char *name)
2104 {
2105 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2106 unsigned long adata, bdata, mask, len;
2107 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2108
2109 len = 0;
2110 goto inside;
2111
2112 do {
2113 HASH_MIX(x, y, a);
2114 len += sizeof(unsigned long);
2115 inside:
2116 a = load_unaligned_zeropad(name+len);
2117 b = a ^ REPEAT_BYTE('/');
2118 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2119
2120 adata = prep_zero_mask(a, adata, &constants);
2121 bdata = prep_zero_mask(b, bdata, &constants);
2122 mask = create_zero_mask(adata | bdata);
2123 x ^= a & zero_bytemask(mask);
2124
2125 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2126 }
2127
2128 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2129
2130 /* Return the hash of a string of known length */
2131 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2132 {
2133 unsigned long hash = init_name_hash(salt);
2134 while (len--)
2135 hash = partial_name_hash((unsigned char)*name++, hash);
2136 return end_name_hash(hash);
2137 }
2138 EXPORT_SYMBOL(full_name_hash);
2139
2140 /* Return the "hash_len" (hash and length) of a null-terminated string */
2141 u64 hashlen_string(const void *salt, const char *name)
2142 {
2143 unsigned long hash = init_name_hash(salt);
2144 unsigned long len = 0, c;
2145
2146 c = (unsigned char)*name;
2147 while (c) {
2148 len++;
2149 hash = partial_name_hash(c, hash);
2150 c = (unsigned char)name[len];
2151 }
2152 return hashlen_create(end_name_hash(hash), len);
2153 }
2154 EXPORT_SYMBOL(hashlen_string);
2155
2156 /*
2157 * We know there's a real path component here of at least
2158 * one character.
2159 */
2160 static inline u64 hash_name(const void *salt, const char *name)
2161 {
2162 unsigned long hash = init_name_hash(salt);
2163 unsigned long len = 0, c;
2164
2165 c = (unsigned char)*name;
2166 do {
2167 len++;
2168 hash = partial_name_hash(c, hash);
2169 c = (unsigned char)name[len];
2170 } while (c && c != '/');
2171 return hashlen_create(end_name_hash(hash), len);
2172 }
2173
2174 #endif
2175
2176 /*
2177 * Name resolution.
2178 * This is the basic name resolution function, turning a pathname into
2179 * the final dentry. We expect 'base' to be positive and a directory.
2180 *
2181 * Returns 0 and nd will have valid dentry and mnt on success.
2182 * Returns error and drops reference to input namei data on failure.
2183 */
2184 static int link_path_walk(const char *name, struct nameidata *nd)
2185 {
2186 int depth = 0; // depth <= nd->depth
2187 int err;
2188
2189 nd->last_type = LAST_ROOT;
2190 nd->flags |= LOOKUP_PARENT;
2191 if (IS_ERR(name))
2192 return PTR_ERR(name);
2193 while (*name=='/')
2194 name++;
2195 if (!*name) {
2196 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2197 return 0;
2198 }
2199
2200 /* At this point we know we have a real path component. */
2201 for(;;) {
2202 struct user_namespace *mnt_userns;
2203 const char *link;
2204 u64 hash_len;
2205 int type;
2206
2207 mnt_userns = mnt_user_ns(nd->path.mnt);
2208 err = may_lookup(mnt_userns, nd);
2209 if (err)
2210 return err;
2211
2212 hash_len = hash_name(nd->path.dentry, name);
2213
2214 type = LAST_NORM;
2215 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2216 case 2:
2217 if (name[1] == '.') {
2218 type = LAST_DOTDOT;
2219 nd->flags |= LOOKUP_JUMPED;
2220 }
2221 break;
2222 case 1:
2223 type = LAST_DOT;
2224 }
2225 if (likely(type == LAST_NORM)) {
2226 struct dentry *parent = nd->path.dentry;
2227 nd->flags &= ~LOOKUP_JUMPED;
2228 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2229 struct qstr this = { { .hash_len = hash_len }, .name = name };
2230 err = parent->d_op->d_hash(parent, &this);
2231 if (err < 0)
2232 return err;
2233 hash_len = this.hash_len;
2234 name = this.name;
2235 }
2236 }
2237
2238 nd->last.hash_len = hash_len;
2239 nd->last.name = name;
2240 nd->last_type = type;
2241
2242 name += hashlen_len(hash_len);
2243 if (!*name)
2244 goto OK;
2245 /*
2246 * If it wasn't NUL, we know it was '/'. Skip that
2247 * slash, and continue until no more slashes.
2248 */
2249 do {
2250 name++;
2251 } while (unlikely(*name == '/'));
2252 if (unlikely(!*name)) {
2253 OK:
2254 /* pathname or trailing symlink, done */
2255 if (!depth) {
2256 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2257 nd->dir_mode = nd->inode->i_mode;
2258 nd->flags &= ~LOOKUP_PARENT;
2259 return 0;
2260 }
2261 /* last component of nested symlink */
2262 name = nd->stack[--depth].name;
2263 link = walk_component(nd, 0);
2264 } else {
2265 /* not the last component */
2266 link = walk_component(nd, WALK_MORE);
2267 }
2268 if (unlikely(link)) {
2269 if (IS_ERR(link))
2270 return PTR_ERR(link);
2271 /* a symlink to follow */
2272 nd->stack[depth++].name = name;
2273 name = link;
2274 continue;
2275 }
2276 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2277 if (nd->flags & LOOKUP_RCU) {
2278 if (!try_to_unlazy(nd))
2279 return -ECHILD;
2280 }
2281 return -ENOTDIR;
2282 }
2283 }
2284 }
2285
2286 /* must be paired with terminate_walk() */
2287 static const char *path_init(struct nameidata *nd, unsigned flags)
2288 {
2289 int error;
2290 const char *s = nd->name->name;
2291
2292 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2293 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2294 return ERR_PTR(-EAGAIN);
2295
2296 if (!*s)
2297 flags &= ~LOOKUP_RCU;
2298 if (flags & LOOKUP_RCU)
2299 rcu_read_lock();
2300
2301 nd->flags = flags | LOOKUP_JUMPED;
2302 nd->depth = 0;
2303
2304 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2305 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2306 smp_rmb();
2307
2308 if (flags & LOOKUP_ROOT) {
2309 struct dentry *root = nd->root.dentry;
2310 struct inode *inode = root->d_inode;
2311 if (*s && unlikely(!d_can_lookup(root)))
2312 return ERR_PTR(-ENOTDIR);
2313 nd->path = nd->root;
2314 nd->inode = inode;
2315 if (flags & LOOKUP_RCU) {
2316 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2317 nd->root_seq = nd->seq;
2318 } else {
2319 path_get(&nd->path);
2320 }
2321 return s;
2322 }
2323
2324 nd->root.mnt = NULL;
2325 nd->path.mnt = NULL;
2326 nd->path.dentry = NULL;
2327
2328 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2329 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2330 error = nd_jump_root(nd);
2331 if (unlikely(error))
2332 return ERR_PTR(error);
2333 return s;
2334 }
2335
2336 /* Relative pathname -- get the starting-point it is relative to. */
2337 if (nd->dfd == AT_FDCWD) {
2338 if (flags & LOOKUP_RCU) {
2339 struct fs_struct *fs = current->fs;
2340 unsigned seq;
2341
2342 do {
2343 seq = read_seqcount_begin(&fs->seq);
2344 nd->path = fs->pwd;
2345 nd->inode = nd->path.dentry->d_inode;
2346 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2347 } while (read_seqcount_retry(&fs->seq, seq));
2348 } else {
2349 get_fs_pwd(current->fs, &nd->path);
2350 nd->inode = nd->path.dentry->d_inode;
2351 }
2352 } else {
2353 /* Caller must check execute permissions on the starting path component */
2354 struct fd f = fdget_raw(nd->dfd);
2355 struct dentry *dentry;
2356
2357 if (!f.file)
2358 return ERR_PTR(-EBADF);
2359
2360 dentry = f.file->f_path.dentry;
2361
2362 if (*s && unlikely(!d_can_lookup(dentry))) {
2363 fdput(f);
2364 return ERR_PTR(-ENOTDIR);
2365 }
2366
2367 nd->path = f.file->f_path;
2368 if (flags & LOOKUP_RCU) {
2369 nd->inode = nd->path.dentry->d_inode;
2370 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2371 } else {
2372 path_get(&nd->path);
2373 nd->inode = nd->path.dentry->d_inode;
2374 }
2375 fdput(f);
2376 }
2377
2378 /* For scoped-lookups we need to set the root to the dirfd as well. */
2379 if (flags & LOOKUP_IS_SCOPED) {
2380 nd->root = nd->path;
2381 if (flags & LOOKUP_RCU) {
2382 nd->root_seq = nd->seq;
2383 } else {
2384 path_get(&nd->root);
2385 nd->flags |= LOOKUP_ROOT_GRABBED;
2386 }
2387 }
2388 return s;
2389 }
2390
2391 static inline const char *lookup_last(struct nameidata *nd)
2392 {
2393 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2394 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2395
2396 return walk_component(nd, WALK_TRAILING);
2397 }
2398
2399 static int handle_lookup_down(struct nameidata *nd)
2400 {
2401 if (!(nd->flags & LOOKUP_RCU))
2402 dget(nd->path.dentry);
2403 return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2404 nd->path.dentry, nd->inode, nd->seq));
2405 }
2406
2407 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2408 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2409 {
2410 const char *s = path_init(nd, flags);
2411 int err;
2412
2413 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2414 err = handle_lookup_down(nd);
2415 if (unlikely(err < 0))
2416 s = ERR_PTR(err);
2417 }
2418
2419 while (!(err = link_path_walk(s, nd)) &&
2420 (s = lookup_last(nd)) != NULL)
2421 ;
2422 if (!err)
2423 err = complete_walk(nd);
2424
2425 if (!err && nd->flags & LOOKUP_DIRECTORY)
2426 if (!d_can_lookup(nd->path.dentry))
2427 err = -ENOTDIR;
2428 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2429 err = handle_lookup_down(nd);
2430 nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please...
2431 }
2432 if (!err) {
2433 *path = nd->path;
2434 nd->path.mnt = NULL;
2435 nd->path.dentry = NULL;
2436 }
2437 terminate_walk(nd);
2438 return err;
2439 }
2440
2441 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2442 struct path *path, struct path *root)
2443 {
2444 int retval;
2445 struct nameidata nd;
2446 if (IS_ERR(name))
2447 return PTR_ERR(name);
2448 if (unlikely(root)) {
2449 nd.root = *root;
2450 flags |= LOOKUP_ROOT;
2451 }
2452 set_nameidata(&nd, dfd, name);
2453 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2454 if (unlikely(retval == -ECHILD))
2455 retval = path_lookupat(&nd, flags, path);
2456 if (unlikely(retval == -ESTALE))
2457 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2458
2459 if (likely(!retval))
2460 audit_inode(name, path->dentry,
2461 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2462 restore_nameidata();
2463 putname(name);
2464 return retval;
2465 }
2466
2467 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2468 static int path_parentat(struct nameidata *nd, unsigned flags,
2469 struct path *parent)
2470 {
2471 const char *s = path_init(nd, flags);
2472 int err = link_path_walk(s, nd);
2473 if (!err)
2474 err = complete_walk(nd);
2475 if (!err) {
2476 *parent = nd->path;
2477 nd->path.mnt = NULL;
2478 nd->path.dentry = NULL;
2479 }
2480 terminate_walk(nd);
2481 return err;
2482 }
2483
2484 static struct filename *filename_parentat(int dfd, struct filename *name,
2485 unsigned int flags, struct path *parent,
2486 struct qstr *last, int *type)
2487 {
2488 int retval;
2489 struct nameidata nd;
2490
2491 if (IS_ERR(name))
2492 return name;
2493 set_nameidata(&nd, dfd, name);
2494 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2495 if (unlikely(retval == -ECHILD))
2496 retval = path_parentat(&nd, flags, parent);
2497 if (unlikely(retval == -ESTALE))
2498 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2499 if (likely(!retval)) {
2500 *last = nd.last;
2501 *type = nd.last_type;
2502 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2503 } else {
2504 putname(name);
2505 name = ERR_PTR(retval);
2506 }
2507 restore_nameidata();
2508 return name;
2509 }
2510
2511 /* does lookup, returns the object with parent locked */
2512 struct dentry *kern_path_locked(const char *name, struct path *path)
2513 {
2514 struct filename *filename;
2515 struct dentry *d;
2516 struct qstr last;
2517 int type;
2518
2519 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2520 &last, &type);
2521 if (IS_ERR(filename))
2522 return ERR_CAST(filename);
2523 if (unlikely(type != LAST_NORM)) {
2524 path_put(path);
2525 putname(filename);
2526 return ERR_PTR(-EINVAL);
2527 }
2528 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2529 d = __lookup_hash(&last, path->dentry, 0);
2530 if (IS_ERR(d)) {
2531 inode_unlock(path->dentry->d_inode);
2532 path_put(path);
2533 }
2534 putname(filename);
2535 return d;
2536 }
2537
2538 int kern_path(const char *name, unsigned int flags, struct path *path)
2539 {
2540 return filename_lookup(AT_FDCWD, getname_kernel(name),
2541 flags, path, NULL);
2542 }
2543 EXPORT_SYMBOL(kern_path);
2544
2545 /**
2546 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2547 * @dentry: pointer to dentry of the base directory
2548 * @mnt: pointer to vfs mount of the base directory
2549 * @name: pointer to file name
2550 * @flags: lookup flags
2551 * @path: pointer to struct path to fill
2552 */
2553 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2554 const char *name, unsigned int flags,
2555 struct path *path)
2556 {
2557 struct path root = {.mnt = mnt, .dentry = dentry};
2558 /* the first argument of filename_lookup() is ignored with root */
2559 return filename_lookup(AT_FDCWD, getname_kernel(name),
2560 flags , path, &root);
2561 }
2562 EXPORT_SYMBOL(vfs_path_lookup);
2563
2564 static int lookup_one_len_common(const char *name, struct dentry *base,
2565 int len, struct qstr *this)
2566 {
2567 this->name = name;
2568 this->len = len;
2569 this->hash = full_name_hash(base, name, len);
2570 if (!len)
2571 return -EACCES;
2572
2573 if (unlikely(name[0] == '.')) {
2574 if (len < 2 || (len == 2 && name[1] == '.'))
2575 return -EACCES;
2576 }
2577
2578 while (len--) {
2579 unsigned int c = *(const unsigned char *)name++;
2580 if (c == '/' || c == '\0')
2581 return -EACCES;
2582 }
2583 /*
2584 * See if the low-level filesystem might want
2585 * to use its own hash..
2586 */
2587 if (base->d_flags & DCACHE_OP_HASH) {
2588 int err = base->d_op->d_hash(base, this);
2589 if (err < 0)
2590 return err;
2591 }
2592
2593 return inode_permission(&init_user_ns, base->d_inode, MAY_EXEC);
2594 }
2595
2596 /**
2597 * try_lookup_one_len - filesystem helper to lookup single pathname component
2598 * @name: pathname component to lookup
2599 * @base: base directory to lookup from
2600 * @len: maximum length @len should be interpreted to
2601 *
2602 * Look up a dentry by name in the dcache, returning NULL if it does not
2603 * currently exist. The function does not try to create a dentry.
2604 *
2605 * Note that this routine is purely a helper for filesystem usage and should
2606 * not be called by generic code.
2607 *
2608 * The caller must hold base->i_mutex.
2609 */
2610 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2611 {
2612 struct qstr this;
2613 int err;
2614
2615 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2616
2617 err = lookup_one_len_common(name, base, len, &this);
2618 if (err)
2619 return ERR_PTR(err);
2620
2621 return lookup_dcache(&this, base, 0);
2622 }
2623 EXPORT_SYMBOL(try_lookup_one_len);
2624
2625 /**
2626 * lookup_one_len - filesystem helper to lookup single pathname component
2627 * @name: pathname component to lookup
2628 * @base: base directory to lookup from
2629 * @len: maximum length @len should be interpreted to
2630 *
2631 * Note that this routine is purely a helper for filesystem usage and should
2632 * not be called by generic code.
2633 *
2634 * The caller must hold base->i_mutex.
2635 */
2636 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2637 {
2638 struct dentry *dentry;
2639 struct qstr this;
2640 int err;
2641
2642 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2643
2644 err = lookup_one_len_common(name, base, len, &this);
2645 if (err)
2646 return ERR_PTR(err);
2647
2648 dentry = lookup_dcache(&this, base, 0);
2649 return dentry ? dentry : __lookup_slow(&this, base, 0);
2650 }
2651 EXPORT_SYMBOL(lookup_one_len);
2652
2653 /**
2654 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2655 * @name: pathname component to lookup
2656 * @base: base directory to lookup from
2657 * @len: maximum length @len should be interpreted to
2658 *
2659 * Note that this routine is purely a helper for filesystem usage and should
2660 * not be called by generic code.
2661 *
2662 * Unlike lookup_one_len, it should be called without the parent
2663 * i_mutex held, and will take the i_mutex itself if necessary.
2664 */
2665 struct dentry *lookup_one_len_unlocked(const char *name,
2666 struct dentry *base, int len)
2667 {
2668 struct qstr this;
2669 int err;
2670 struct dentry *ret;
2671
2672 err = lookup_one_len_common(name, base, len, &this);
2673 if (err)
2674 return ERR_PTR(err);
2675
2676 ret = lookup_dcache(&this, base, 0);
2677 if (!ret)
2678 ret = lookup_slow(&this, base, 0);
2679 return ret;
2680 }
2681 EXPORT_SYMBOL(lookup_one_len_unlocked);
2682
2683 /*
2684 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2685 * on negatives. Returns known positive or ERR_PTR(); that's what
2686 * most of the users want. Note that pinned negative with unlocked parent
2687 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2688 * need to be very careful; pinned positives have ->d_inode stable, so
2689 * this one avoids such problems.
2690 */
2691 struct dentry *lookup_positive_unlocked(const char *name,
2692 struct dentry *base, int len)
2693 {
2694 struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2695 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2696 dput(ret);
2697 ret = ERR_PTR(-ENOENT);
2698 }
2699 return ret;
2700 }
2701 EXPORT_SYMBOL(lookup_positive_unlocked);
2702
2703 #ifdef CONFIG_UNIX98_PTYS
2704 int path_pts(struct path *path)
2705 {
2706 /* Find something mounted on "pts" in the same directory as
2707 * the input path.
2708 */
2709 struct dentry *parent = dget_parent(path->dentry);
2710 struct dentry *child;
2711 struct qstr this = QSTR_INIT("pts", 3);
2712
2713 if (unlikely(!path_connected(path->mnt, parent))) {
2714 dput(parent);
2715 return -ENOENT;
2716 }
2717 dput(path->dentry);
2718 path->dentry = parent;
2719 child = d_hash_and_lookup(parent, &this);
2720 if (!child)
2721 return -ENOENT;
2722
2723 path->dentry = child;
2724 dput(parent);
2725 follow_down(path);
2726 return 0;
2727 }
2728 #endif
2729
2730 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2731 struct path *path, int *empty)
2732 {
2733 return filename_lookup(dfd, getname_flags(name, flags, empty),
2734 flags, path, NULL);
2735 }
2736 EXPORT_SYMBOL(user_path_at_empty);
2737
2738 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2739 struct inode *inode)
2740 {
2741 kuid_t fsuid = current_fsuid();
2742
2743 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2744 return 0;
2745 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2746 return 0;
2747 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2748 }
2749 EXPORT_SYMBOL(__check_sticky);
2750
2751 /*
2752 * Check whether we can remove a link victim from directory dir, check
2753 * whether the type of victim is right.
2754 * 1. We can't do it if dir is read-only (done in permission())
2755 * 2. We should have write and exec permissions on dir
2756 * 3. We can't remove anything from append-only dir
2757 * 4. We can't do anything with immutable dir (done in permission())
2758 * 5. If the sticky bit on dir is set we should either
2759 * a. be owner of dir, or
2760 * b. be owner of victim, or
2761 * c. have CAP_FOWNER capability
2762 * 6. If the victim is append-only or immutable we can't do antyhing with
2763 * links pointing to it.
2764 * 7. If the victim has an unknown uid or gid we can't change the inode.
2765 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2766 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2767 * 10. We can't remove a root or mountpoint.
2768 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2769 * nfs_async_unlink().
2770 */
2771 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2772 struct dentry *victim, bool isdir)
2773 {
2774 struct inode *inode = d_backing_inode(victim);
2775 int error;
2776
2777 if (d_is_negative(victim))
2778 return -ENOENT;
2779 BUG_ON(!inode);
2780
2781 BUG_ON(victim->d_parent->d_inode != dir);
2782
2783 /* Inode writeback is not safe when the uid or gid are invalid. */
2784 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2785 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2786 return -EOVERFLOW;
2787
2788 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2789
2790 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2791 if (error)
2792 return error;
2793 if (IS_APPEND(dir))
2794 return -EPERM;
2795
2796 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2797 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2798 HAS_UNMAPPED_ID(mnt_userns, inode))
2799 return -EPERM;
2800 if (isdir) {
2801 if (!d_is_dir(victim))
2802 return -ENOTDIR;
2803 if (IS_ROOT(victim))
2804 return -EBUSY;
2805 } else if (d_is_dir(victim))
2806 return -EISDIR;
2807 if (IS_DEADDIR(dir))
2808 return -ENOENT;
2809 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2810 return -EBUSY;
2811 return 0;
2812 }
2813
2814 /* Check whether we can create an object with dentry child in directory
2815 * dir.
2816 * 1. We can't do it if child already exists (open has special treatment for
2817 * this case, but since we are inlined it's OK)
2818 * 2. We can't do it if dir is read-only (done in permission())
2819 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2820 * 4. We should have write and exec permissions on dir
2821 * 5. We can't do it if dir is immutable (done in permission())
2822 */
2823 static inline int may_create(struct user_namespace *mnt_userns,
2824 struct inode *dir, struct dentry *child)
2825 {
2826 struct user_namespace *s_user_ns;
2827 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2828 if (child->d_inode)
2829 return -EEXIST;
2830 if (IS_DEADDIR(dir))
2831 return -ENOENT;
2832 s_user_ns = dir->i_sb->s_user_ns;
2833 if (!kuid_has_mapping(s_user_ns, fsuid_into_mnt(mnt_userns)) ||
2834 !kgid_has_mapping(s_user_ns, fsgid_into_mnt(mnt_userns)))
2835 return -EOVERFLOW;
2836 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2837 }
2838
2839 /*
2840 * p1 and p2 should be directories on the same fs.
2841 */
2842 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2843 {
2844 struct dentry *p;
2845
2846 if (p1 == p2) {
2847 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2848 return NULL;
2849 }
2850
2851 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2852
2853 p = d_ancestor(p2, p1);
2854 if (p) {
2855 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2856 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2857 return p;
2858 }
2859
2860 p = d_ancestor(p1, p2);
2861 if (p) {
2862 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2863 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2864 return p;
2865 }
2866
2867 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2868 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2869 return NULL;
2870 }
2871 EXPORT_SYMBOL(lock_rename);
2872
2873 void unlock_rename(struct dentry *p1, struct dentry *p2)
2874 {
2875 inode_unlock(p1->d_inode);
2876 if (p1 != p2) {
2877 inode_unlock(p2->d_inode);
2878 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2879 }
2880 }
2881 EXPORT_SYMBOL(unlock_rename);
2882
2883 /**
2884 * vfs_create - create new file
2885 * @mnt_userns: user namespace of the mount the inode was found from
2886 * @dir: inode of @dentry
2887 * @dentry: pointer to dentry of the base directory
2888 * @mode: mode of the new file
2889 * @want_excl: whether the file must not yet exist
2890 *
2891 * Create a new file.
2892 *
2893 * If the inode has been found through an idmapped mount the user namespace of
2894 * the vfsmount must be passed through @mnt_userns. This function will then take
2895 * care to map the inode according to @mnt_userns before checking permissions.
2896 * On non-idmapped mounts or if permission checking is to be performed on the
2897 * raw inode simply passs init_user_ns.
2898 */
2899 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2900 struct dentry *dentry, umode_t mode, bool want_excl)
2901 {
2902 int error = may_create(mnt_userns, dir, dentry);
2903 if (error)
2904 return error;
2905
2906 if (!dir->i_op->create)
2907 return -EACCES; /* shouldn't it be ENOSYS? */
2908 mode &= S_IALLUGO;
2909 mode |= S_IFREG;
2910 error = security_inode_create(dir, dentry, mode);
2911 if (error)
2912 return error;
2913 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
2914 if (!error)
2915 fsnotify_create(dir, dentry);
2916 return error;
2917 }
2918 EXPORT_SYMBOL(vfs_create);
2919
2920 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2921 int (*f)(struct dentry *, umode_t, void *),
2922 void *arg)
2923 {
2924 struct inode *dir = dentry->d_parent->d_inode;
2925 int error = may_create(&init_user_ns, dir, dentry);
2926 if (error)
2927 return error;
2928
2929 mode &= S_IALLUGO;
2930 mode |= S_IFREG;
2931 error = security_inode_create(dir, dentry, mode);
2932 if (error)
2933 return error;
2934 error = f(dentry, mode, arg);
2935 if (!error)
2936 fsnotify_create(dir, dentry);
2937 return error;
2938 }
2939 EXPORT_SYMBOL(vfs_mkobj);
2940
2941 bool may_open_dev(const struct path *path)
2942 {
2943 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2944 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2945 }
2946
2947 static int may_open(struct user_namespace *mnt_userns, const struct path *path,
2948 int acc_mode, int flag)
2949 {
2950 struct dentry *dentry = path->dentry;
2951 struct inode *inode = dentry->d_inode;
2952 int error;
2953
2954 if (!inode)
2955 return -ENOENT;
2956
2957 switch (inode->i_mode & S_IFMT) {
2958 case S_IFLNK:
2959 return -ELOOP;
2960 case S_IFDIR:
2961 if (acc_mode & MAY_WRITE)
2962 return -EISDIR;
2963 if (acc_mode & MAY_EXEC)
2964 return -EACCES;
2965 break;
2966 case S_IFBLK:
2967 case S_IFCHR:
2968 if (!may_open_dev(path))
2969 return -EACCES;
2970 fallthrough;
2971 case S_IFIFO:
2972 case S_IFSOCK:
2973 if (acc_mode & MAY_EXEC)
2974 return -EACCES;
2975 flag &= ~O_TRUNC;
2976 break;
2977 case S_IFREG:
2978 if ((acc_mode & MAY_EXEC) && path_noexec(path))
2979 return -EACCES;
2980 break;
2981 }
2982
2983 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
2984 if (error)
2985 return error;
2986
2987 /*
2988 * An append-only file must be opened in append mode for writing.
2989 */
2990 if (IS_APPEND(inode)) {
2991 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2992 return -EPERM;
2993 if (flag & O_TRUNC)
2994 return -EPERM;
2995 }
2996
2997 /* O_NOATIME can only be set by the owner or superuser */
2998 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
2999 return -EPERM;
3000
3001 return 0;
3002 }
3003
3004 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3005 {
3006 const struct path *path = &filp->f_path;
3007 struct inode *inode = path->dentry->d_inode;
3008 int error = get_write_access(inode);
3009 if (error)
3010 return error;
3011 /*
3012 * Refuse to truncate files with mandatory locks held on them.
3013 */
3014 error = locks_verify_locked(filp);
3015 if (!error)
3016 error = security_path_truncate(path);
3017 if (!error) {
3018 error = do_truncate(mnt_userns, path->dentry, 0,
3019 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3020 filp);
3021 }
3022 put_write_access(inode);
3023 return error;
3024 }
3025
3026 static inline int open_to_namei_flags(int flag)
3027 {
3028 if ((flag & O_ACCMODE) == 3)
3029 flag--;
3030 return flag;
3031 }
3032
3033 static int may_o_create(struct user_namespace *mnt_userns,
3034 const struct path *dir, struct dentry *dentry,
3035 umode_t mode)
3036 {
3037 struct user_namespace *s_user_ns;
3038 int error = security_path_mknod(dir, dentry, mode, 0);
3039 if (error)
3040 return error;
3041
3042 s_user_ns = dir->dentry->d_sb->s_user_ns;
3043 if (!kuid_has_mapping(s_user_ns, fsuid_into_mnt(mnt_userns)) ||
3044 !kgid_has_mapping(s_user_ns, fsgid_into_mnt(mnt_userns)))
3045 return -EOVERFLOW;
3046
3047 error = inode_permission(mnt_userns, dir->dentry->d_inode,
3048 MAY_WRITE | MAY_EXEC);
3049 if (error)
3050 return error;
3051
3052 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3053 }
3054
3055 /*
3056 * Attempt to atomically look up, create and open a file from a negative
3057 * dentry.
3058 *
3059 * Returns 0 if successful. The file will have been created and attached to
3060 * @file by the filesystem calling finish_open().
3061 *
3062 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3063 * be set. The caller will need to perform the open themselves. @path will
3064 * have been updated to point to the new dentry. This may be negative.
3065 *
3066 * Returns an error code otherwise.
3067 */
3068 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3069 struct file *file,
3070 int open_flag, umode_t mode)
3071 {
3072 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3073 struct inode *dir = nd->path.dentry->d_inode;
3074 int error;
3075
3076 if (nd->flags & LOOKUP_DIRECTORY)
3077 open_flag |= O_DIRECTORY;
3078
3079 file->f_path.dentry = DENTRY_NOT_SET;
3080 file->f_path.mnt = nd->path.mnt;
3081 error = dir->i_op->atomic_open(dir, dentry, file,
3082 open_to_namei_flags(open_flag), mode);
3083 d_lookup_done(dentry);
3084 if (!error) {
3085 if (file->f_mode & FMODE_OPENED) {
3086 if (unlikely(dentry != file->f_path.dentry)) {
3087 dput(dentry);
3088 dentry = dget(file->f_path.dentry);
3089 }
3090 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3091 error = -EIO;
3092 } else {
3093 if (file->f_path.dentry) {
3094 dput(dentry);
3095 dentry = file->f_path.dentry;
3096 }
3097 if (unlikely(d_is_negative(dentry)))
3098 error = -ENOENT;
3099 }
3100 }
3101 if (error) {
3102 dput(dentry);
3103 dentry = ERR_PTR(error);
3104 }
3105 return dentry;
3106 }
3107
3108 /*
3109 * Look up and maybe create and open the last component.
3110 *
3111 * Must be called with parent locked (exclusive in O_CREAT case).
3112 *
3113 * Returns 0 on success, that is, if
3114 * the file was successfully atomically created (if necessary) and opened, or
3115 * the file was not completely opened at this time, though lookups and
3116 * creations were performed.
3117 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3118 * In the latter case dentry returned in @path might be negative if O_CREAT
3119 * hadn't been specified.
3120 *
3121 * An error code is returned on failure.
3122 */
3123 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3124 const struct open_flags *op,
3125 bool got_write)
3126 {
3127 struct user_namespace *mnt_userns;
3128 struct dentry *dir = nd->path.dentry;
3129 struct inode *dir_inode = dir->d_inode;
3130 int open_flag = op->open_flag;
3131 struct dentry *dentry;
3132 int error, create_error = 0;
3133 umode_t mode = op->mode;
3134 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3135
3136 if (unlikely(IS_DEADDIR(dir_inode)))
3137 return ERR_PTR(-ENOENT);
3138
3139 file->f_mode &= ~FMODE_CREATED;
3140 dentry = d_lookup(dir, &nd->last);
3141 for (;;) {
3142 if (!dentry) {
3143 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3144 if (IS_ERR(dentry))
3145 return dentry;
3146 }
3147 if (d_in_lookup(dentry))
3148 break;
3149
3150 error = d_revalidate(dentry, nd->flags);
3151 if (likely(error > 0))
3152 break;
3153 if (error)
3154 goto out_dput;
3155 d_invalidate(dentry);
3156 dput(dentry);
3157 dentry = NULL;
3158 }
3159 if (dentry->d_inode) {
3160 /* Cached positive dentry: will open in f_op->open */
3161 return dentry;
3162 }
3163
3164 /*
3165 * Checking write permission is tricky, bacuse we don't know if we are
3166 * going to actually need it: O_CREAT opens should work as long as the
3167 * file exists. But checking existence breaks atomicity. The trick is
3168 * to check access and if not granted clear O_CREAT from the flags.
3169 *
3170 * Another problem is returing the "right" error value (e.g. for an
3171 * O_EXCL open we want to return EEXIST not EROFS).
3172 */
3173 if (unlikely(!got_write))
3174 open_flag &= ~O_TRUNC;
3175 mnt_userns = mnt_user_ns(nd->path.mnt);
3176 if (open_flag & O_CREAT) {
3177 if (open_flag & O_EXCL)
3178 open_flag &= ~O_TRUNC;
3179 if (!IS_POSIXACL(dir->d_inode))
3180 mode &= ~current_umask();
3181 if (likely(got_write))
3182 create_error = may_o_create(mnt_userns, &nd->path,
3183 dentry, mode);
3184 else
3185 create_error = -EROFS;
3186 }
3187 if (create_error)
3188 open_flag &= ~O_CREAT;
3189 if (dir_inode->i_op->atomic_open) {
3190 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3191 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3192 dentry = ERR_PTR(create_error);
3193 return dentry;
3194 }
3195
3196 if (d_in_lookup(dentry)) {
3197 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3198 nd->flags);
3199 d_lookup_done(dentry);
3200 if (unlikely(res)) {
3201 if (IS_ERR(res)) {
3202 error = PTR_ERR(res);
3203 goto out_dput;
3204 }
3205 dput(dentry);
3206 dentry = res;
3207 }
3208 }
3209
3210 /* Negative dentry, just create the file */
3211 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3212 file->f_mode |= FMODE_CREATED;
3213 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3214 if (!dir_inode->i_op->create) {
3215 error = -EACCES;
3216 goto out_dput;
3217 }
3218
3219 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3220 mode, open_flag & O_EXCL);
3221 if (error)
3222 goto out_dput;
3223 }
3224 if (unlikely(create_error) && !dentry->d_inode) {
3225 error = create_error;
3226 goto out_dput;
3227 }
3228 return dentry;
3229
3230 out_dput:
3231 dput(dentry);
3232 return ERR_PTR(error);
3233 }
3234
3235 static const char *open_last_lookups(struct nameidata *nd,
3236 struct file *file, const struct open_flags *op)
3237 {
3238 struct dentry *dir = nd->path.dentry;
3239 int open_flag = op->open_flag;
3240 bool got_write = false;
3241 unsigned seq;
3242 struct inode *inode;
3243 struct dentry *dentry;
3244 const char *res;
3245
3246 nd->flags |= op->intent;
3247
3248 if (nd->last_type != LAST_NORM) {
3249 if (nd->depth)
3250 put_link(nd);
3251 return handle_dots(nd, nd->last_type);
3252 }
3253
3254 if (!(open_flag & O_CREAT)) {
3255 if (nd->last.name[nd->last.len])
3256 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3257 /* we _can_ be in RCU mode here */
3258 dentry = lookup_fast(nd, &inode, &seq);
3259 if (IS_ERR(dentry))
3260 return ERR_CAST(dentry);
3261 if (likely(dentry))
3262 goto finish_lookup;
3263
3264 BUG_ON(nd->flags & LOOKUP_RCU);
3265 } else {
3266 /* create side of things */
3267 if (nd->flags & LOOKUP_RCU) {
3268 if (!try_to_unlazy(nd))
3269 return ERR_PTR(-ECHILD);
3270 }
3271 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3272 /* trailing slashes? */
3273 if (unlikely(nd->last.name[nd->last.len]))
3274 return ERR_PTR(-EISDIR);
3275 }
3276
3277 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3278 got_write = !mnt_want_write(nd->path.mnt);
3279 /*
3280 * do _not_ fail yet - we might not need that or fail with
3281 * a different error; let lookup_open() decide; we'll be
3282 * dropping this one anyway.
3283 */
3284 }
3285 if (open_flag & O_CREAT)
3286 inode_lock(dir->d_inode);
3287 else
3288 inode_lock_shared(dir->d_inode);
3289 dentry = lookup_open(nd, file, op, got_write);
3290 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3291 fsnotify_create(dir->d_inode, dentry);
3292 if (open_flag & O_CREAT)
3293 inode_unlock(dir->d_inode);
3294 else
3295 inode_unlock_shared(dir->d_inode);
3296
3297 if (got_write)
3298 mnt_drop_write(nd->path.mnt);
3299
3300 if (IS_ERR(dentry))
3301 return ERR_CAST(dentry);
3302
3303 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3304 dput(nd->path.dentry);
3305 nd->path.dentry = dentry;
3306 return NULL;
3307 }
3308
3309 finish_lookup:
3310 if (nd->depth)
3311 put_link(nd);
3312 res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3313 if (unlikely(res))
3314 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3315 return res;
3316 }
3317
3318 /*
3319 * Handle the last step of open()
3320 */
3321 static int do_open(struct nameidata *nd,
3322 struct file *file, const struct open_flags *op)
3323 {
3324 struct user_namespace *mnt_userns;
3325 int open_flag = op->open_flag;
3326 bool do_truncate;
3327 int acc_mode;
3328 int error;
3329
3330 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3331 error = complete_walk(nd);
3332 if (error)
3333 return error;
3334 }
3335 if (!(file->f_mode & FMODE_CREATED))
3336 audit_inode(nd->name, nd->path.dentry, 0);
3337 mnt_userns = mnt_user_ns(nd->path.mnt);
3338 if (open_flag & O_CREAT) {
3339 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3340 return -EEXIST;
3341 if (d_is_dir(nd->path.dentry))
3342 return -EISDIR;
3343 error = may_create_in_sticky(mnt_userns, nd,
3344 d_backing_inode(nd->path.dentry));
3345 if (unlikely(error))
3346 return error;
3347 }
3348 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3349 return -ENOTDIR;
3350
3351 do_truncate = false;
3352 acc_mode = op->acc_mode;
3353 if (file->f_mode & FMODE_CREATED) {
3354 /* Don't check for write permission, don't truncate */
3355 open_flag &= ~O_TRUNC;
3356 acc_mode = 0;
3357 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3358 error = mnt_want_write(nd->path.mnt);
3359 if (error)
3360 return error;
3361 do_truncate = true;
3362 }
3363 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3364 if (!error && !(file->f_mode & FMODE_OPENED))
3365 error = vfs_open(&nd->path, file);
3366 if (!error)
3367 error = ima_file_check(file, op->acc_mode);
3368 if (!error && do_truncate)
3369 error = handle_truncate(mnt_userns, file);
3370 if (unlikely(error > 0)) {
3371 WARN_ON(1);
3372 error = -EINVAL;
3373 }
3374 if (do_truncate)
3375 mnt_drop_write(nd->path.mnt);
3376 return error;
3377 }
3378
3379 /**
3380 * vfs_tmpfile - create tmpfile
3381 * @mnt_userns: user namespace of the mount the inode was found from
3382 * @dentry: pointer to dentry of the base directory
3383 * @mode: mode of the new tmpfile
3384 * @open_flags: flags
3385 *
3386 * Create a temporary file.
3387 *
3388 * If the inode has been found through an idmapped mount the user namespace of
3389 * the vfsmount must be passed through @mnt_userns. This function will then take
3390 * care to map the inode according to @mnt_userns before checking permissions.
3391 * On non-idmapped mounts or if permission checking is to be performed on the
3392 * raw inode simply passs init_user_ns.
3393 */
3394 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns,
3395 struct dentry *dentry, umode_t mode, int open_flag)
3396 {
3397 struct dentry *child = NULL;
3398 struct inode *dir = dentry->d_inode;
3399 struct inode *inode;
3400 int error;
3401
3402 /* we want directory to be writable */
3403 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3404 if (error)
3405 goto out_err;
3406 error = -EOPNOTSUPP;
3407 if (!dir->i_op->tmpfile)
3408 goto out_err;
3409 error = -ENOMEM;
3410 child = d_alloc(dentry, &slash_name);
3411 if (unlikely(!child))
3412 goto out_err;
3413 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode);
3414 if (error)
3415 goto out_err;
3416 error = -ENOENT;
3417 inode = child->d_inode;
3418 if (unlikely(!inode))
3419 goto out_err;
3420 if (!(open_flag & O_EXCL)) {
3421 spin_lock(&inode->i_lock);
3422 inode->i_state |= I_LINKABLE;
3423 spin_unlock(&inode->i_lock);
3424 }
3425 ima_post_create_tmpfile(mnt_userns, inode);
3426 return child;
3427
3428 out_err:
3429 dput(child);
3430 return ERR_PTR(error);
3431 }
3432 EXPORT_SYMBOL(vfs_tmpfile);
3433
3434 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3435 const struct open_flags *op,
3436 struct file *file)
3437 {
3438 struct user_namespace *mnt_userns;
3439 struct dentry *child;
3440 struct path path;
3441 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3442 if (unlikely(error))
3443 return error;
3444 error = mnt_want_write(path.mnt);
3445 if (unlikely(error))
3446 goto out;
3447 mnt_userns = mnt_user_ns(path.mnt);
3448 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag);
3449 error = PTR_ERR(child);
3450 if (IS_ERR(child))
3451 goto out2;
3452 dput(path.dentry);
3453 path.dentry = child;
3454 audit_inode(nd->name, child, 0);
3455 /* Don't check for other permissions, the inode was just created */
3456 error = may_open(mnt_userns, &path, 0, op->open_flag);
3457 if (!error)
3458 error = vfs_open(&path, file);
3459 out2:
3460 mnt_drop_write(path.mnt);
3461 out:
3462 path_put(&path);
3463 return error;
3464 }
3465
3466 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3467 {
3468 struct path path;
3469 int error = path_lookupat(nd, flags, &path);
3470 if (!error) {
3471 audit_inode(nd->name, path.dentry, 0);
3472 error = vfs_open(&path, file);
3473 path_put(&path);
3474 }
3475 return error;
3476 }
3477
3478 static struct file *path_openat(struct nameidata *nd,
3479 const struct open_flags *op, unsigned flags)
3480 {
3481 struct file *file;
3482 int error;
3483
3484 file = alloc_empty_file(op->open_flag, current_cred());
3485 if (IS_ERR(file))
3486 return file;
3487
3488 if (unlikely(file->f_flags & __O_TMPFILE)) {
3489 error = do_tmpfile(nd, flags, op, file);
3490 } else if (unlikely(file->f_flags & O_PATH)) {
3491 error = do_o_path(nd, flags, file);
3492 } else {
3493 const char *s = path_init(nd, flags);
3494 while (!(error = link_path_walk(s, nd)) &&
3495 (s = open_last_lookups(nd, file, op)) != NULL)
3496 ;
3497 if (!error)
3498 error = do_open(nd, file, op);
3499 terminate_walk(nd);
3500 }
3501 if (likely(!error)) {
3502 if (likely(file->f_mode & FMODE_OPENED))
3503 return file;
3504 WARN_ON(1);
3505 error = -EINVAL;
3506 }
3507 fput(file);
3508 if (error == -EOPENSTALE) {
3509 if (flags & LOOKUP_RCU)
3510 error = -ECHILD;
3511 else
3512 error = -ESTALE;
3513 }
3514 return ERR_PTR(error);
3515 }
3516
3517 struct file *do_filp_open(int dfd, struct filename *pathname,
3518 const struct open_flags *op)
3519 {
3520 struct nameidata nd;
3521 int flags = op->lookup_flags;
3522 struct file *filp;
3523
3524 set_nameidata(&nd, dfd, pathname);
3525 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3526 if (unlikely(filp == ERR_PTR(-ECHILD)))
3527 filp = path_openat(&nd, op, flags);
3528 if (unlikely(filp == ERR_PTR(-ESTALE)))
3529 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3530 restore_nameidata();
3531 return filp;
3532 }
3533
3534 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3535 const char *name, const struct open_flags *op)
3536 {
3537 struct nameidata nd;
3538 struct file *file;
3539 struct filename *filename;
3540 int flags = op->lookup_flags | LOOKUP_ROOT;
3541
3542 nd.root.mnt = mnt;
3543 nd.root.dentry = dentry;
3544
3545 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3546 return ERR_PTR(-ELOOP);
3547
3548 filename = getname_kernel(name);
3549 if (IS_ERR(filename))
3550 return ERR_CAST(filename);
3551
3552 set_nameidata(&nd, -1, filename);
3553 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3554 if (unlikely(file == ERR_PTR(-ECHILD)))
3555 file = path_openat(&nd, op, flags);
3556 if (unlikely(file == ERR_PTR(-ESTALE)))
3557 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3558 restore_nameidata();
3559 putname(filename);
3560 return file;
3561 }
3562
3563 static struct dentry *filename_create(int dfd, struct filename *name,
3564 struct path *path, unsigned int lookup_flags)
3565 {
3566 struct dentry *dentry = ERR_PTR(-EEXIST);
3567 struct qstr last;
3568 int type;
3569 int err2;
3570 int error;
3571 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3572
3573 /*
3574 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3575 * other flags passed in are ignored!
3576 */
3577 lookup_flags &= LOOKUP_REVAL;
3578
3579 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3580 if (IS_ERR(name))
3581 return ERR_CAST(name);
3582
3583 /*
3584 * Yucky last component or no last component at all?
3585 * (foo/., foo/.., /////)
3586 */
3587 if (unlikely(type != LAST_NORM))
3588 goto out;
3589
3590 /* don't fail immediately if it's r/o, at least try to report other errors */
3591 err2 = mnt_want_write(path->mnt);
3592 /*
3593 * Do the final lookup.
3594 */
3595 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3596 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3597 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3598 if (IS_ERR(dentry))
3599 goto unlock;
3600
3601 error = -EEXIST;
3602 if (d_is_positive(dentry))
3603 goto fail;
3604
3605 /*
3606 * Special case - lookup gave negative, but... we had foo/bar/
3607 * From the vfs_mknod() POV we just have a negative dentry -
3608 * all is fine. Let's be bastards - you had / on the end, you've
3609 * been asking for (non-existent) directory. -ENOENT for you.
3610 */
3611 if (unlikely(!is_dir && last.name[last.len])) {
3612 error = -ENOENT;
3613 goto fail;
3614 }
3615 if (unlikely(err2)) {
3616 error = err2;
3617 goto fail;
3618 }
3619 putname(name);
3620 return dentry;
3621 fail:
3622 dput(dentry);
3623 dentry = ERR_PTR(error);
3624 unlock:
3625 inode_unlock(path->dentry->d_inode);
3626 if (!err2)
3627 mnt_drop_write(path->mnt);
3628 out:
3629 path_put(path);
3630 putname(name);
3631 return dentry;
3632 }
3633
3634 struct dentry *kern_path_create(int dfd, const char *pathname,
3635 struct path *path, unsigned int lookup_flags)
3636 {
3637 return filename_create(dfd, getname_kernel(pathname),
3638 path, lookup_flags);
3639 }
3640 EXPORT_SYMBOL(kern_path_create);
3641
3642 void done_path_create(struct path *path, struct dentry *dentry)
3643 {
3644 dput(dentry);
3645 inode_unlock(path->dentry->d_inode);
3646 mnt_drop_write(path->mnt);
3647 path_put(path);
3648 }
3649 EXPORT_SYMBOL(done_path_create);
3650
3651 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3652 struct path *path, unsigned int lookup_flags)
3653 {
3654 return filename_create(dfd, getname(pathname), path, lookup_flags);
3655 }
3656 EXPORT_SYMBOL(user_path_create);
3657
3658 /**
3659 * vfs_mknod - create device node or file
3660 * @mnt_userns: user namespace of the mount the inode was found from
3661 * @dir: inode of @dentry
3662 * @dentry: pointer to dentry of the base directory
3663 * @mode: mode of the new device node or file
3664 * @dev: device number of device to create
3665 *
3666 * Create a device node or file.
3667 *
3668 * If the inode has been found through an idmapped mount the user namespace of
3669 * the vfsmount must be passed through @mnt_userns. This function will then take
3670 * care to map the inode according to @mnt_userns before checking permissions.
3671 * On non-idmapped mounts or if permission checking is to be performed on the
3672 * raw inode simply passs init_user_ns.
3673 */
3674 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3675 struct dentry *dentry, umode_t mode, dev_t dev)
3676 {
3677 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3678 int error = may_create(mnt_userns, dir, dentry);
3679
3680 if (error)
3681 return error;
3682
3683 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3684 !capable(CAP_MKNOD))
3685 return -EPERM;
3686
3687 if (!dir->i_op->mknod)
3688 return -EPERM;
3689
3690 error = devcgroup_inode_mknod(mode, dev);
3691 if (error)
3692 return error;
3693
3694 error = security_inode_mknod(dir, dentry, mode, dev);
3695 if (error)
3696 return error;
3697
3698 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3699 if (!error)
3700 fsnotify_create(dir, dentry);
3701 return error;
3702 }
3703 EXPORT_SYMBOL(vfs_mknod);
3704
3705 static int may_mknod(umode_t mode)
3706 {
3707 switch (mode & S_IFMT) {
3708 case S_IFREG:
3709 case S_IFCHR:
3710 case S_IFBLK:
3711 case S_IFIFO:
3712 case S_IFSOCK:
3713 case 0: /* zero mode translates to S_IFREG */
3714 return 0;
3715 case S_IFDIR:
3716 return -EPERM;
3717 default:
3718 return -EINVAL;
3719 }
3720 }
3721
3722 static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3723 unsigned int dev)
3724 {
3725 struct user_namespace *mnt_userns;
3726 struct dentry *dentry;
3727 struct path path;
3728 int error;
3729 unsigned int lookup_flags = 0;
3730
3731 error = may_mknod(mode);
3732 if (error)
3733 return error;
3734 retry:
3735 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3736 if (IS_ERR(dentry))
3737 return PTR_ERR(dentry);
3738
3739 if (!IS_POSIXACL(path.dentry->d_inode))
3740 mode &= ~current_umask();
3741 error = security_path_mknod(&path, dentry, mode, dev);
3742 if (error)
3743 goto out;
3744
3745 mnt_userns = mnt_user_ns(path.mnt);
3746 switch (mode & S_IFMT) {
3747 case 0: case S_IFREG:
3748 error = vfs_create(mnt_userns, path.dentry->d_inode,
3749 dentry, mode, true);
3750 if (!error)
3751 ima_post_path_mknod(mnt_userns, dentry);
3752 break;
3753 case S_IFCHR: case S_IFBLK:
3754 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3755 dentry, mode, new_decode_dev(dev));
3756 break;
3757 case S_IFIFO: case S_IFSOCK:
3758 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3759 dentry, mode, 0);
3760 break;
3761 }
3762 out:
3763 done_path_create(&path, dentry);
3764 if (retry_estale(error, lookup_flags)) {
3765 lookup_flags |= LOOKUP_REVAL;
3766 goto retry;
3767 }
3768 return error;
3769 }
3770
3771 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3772 unsigned int, dev)
3773 {
3774 return do_mknodat(dfd, filename, mode, dev);
3775 }
3776
3777 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3778 {
3779 return do_mknodat(AT_FDCWD, filename, mode, dev);
3780 }
3781
3782 /**
3783 * vfs_mkdir - create directory
3784 * @mnt_userns: user namespace of the mount the inode was found from
3785 * @dir: inode of @dentry
3786 * @dentry: pointer to dentry of the base directory
3787 * @mode: mode of the new directory
3788 *
3789 * Create a directory.
3790 *
3791 * If the inode has been found through an idmapped mount the user namespace of
3792 * the vfsmount must be passed through @mnt_userns. This function will then take
3793 * care to map the inode according to @mnt_userns before checking permissions.
3794 * On non-idmapped mounts or if permission checking is to be performed on the
3795 * raw inode simply passs init_user_ns.
3796 */
3797 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
3798 struct dentry *dentry, umode_t mode)
3799 {
3800 int error = may_create(mnt_userns, dir, dentry);
3801 unsigned max_links = dir->i_sb->s_max_links;
3802
3803 if (error)
3804 return error;
3805
3806 if (!dir->i_op->mkdir)
3807 return -EPERM;
3808
3809 mode &= (S_IRWXUGO|S_ISVTX);
3810 error = security_inode_mkdir(dir, dentry, mode);
3811 if (error)
3812 return error;
3813
3814 if (max_links && dir->i_nlink >= max_links)
3815 return -EMLINK;
3816
3817 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
3818 if (!error)
3819 fsnotify_mkdir(dir, dentry);
3820 return error;
3821 }
3822 EXPORT_SYMBOL(vfs_mkdir);
3823
3824 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3825 {
3826 struct dentry *dentry;
3827 struct path path;
3828 int error;
3829 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3830
3831 retry:
3832 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3833 if (IS_ERR(dentry))
3834 return PTR_ERR(dentry);
3835
3836 if (!IS_POSIXACL(path.dentry->d_inode))
3837 mode &= ~current_umask();
3838 error = security_path_mkdir(&path, dentry, mode);
3839 if (!error) {
3840 struct user_namespace *mnt_userns;
3841 mnt_userns = mnt_user_ns(path.mnt);
3842 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
3843 mode);
3844 }
3845 done_path_create(&path, dentry);
3846 if (retry_estale(error, lookup_flags)) {
3847 lookup_flags |= LOOKUP_REVAL;
3848 goto retry;
3849 }
3850 return error;
3851 }
3852
3853 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3854 {
3855 return do_mkdirat(dfd, pathname, mode);
3856 }
3857
3858 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3859 {
3860 return do_mkdirat(AT_FDCWD, pathname, mode);
3861 }
3862
3863 /**
3864 * vfs_rmdir - remove directory
3865 * @mnt_userns: user namespace of the mount the inode was found from
3866 * @dir: inode of @dentry
3867 * @dentry: pointer to dentry of the base directory
3868 *
3869 * Remove a directory.
3870 *
3871 * If the inode has been found through an idmapped mount the user namespace of
3872 * the vfsmount must be passed through @mnt_userns. This function will then take
3873 * care to map the inode according to @mnt_userns before checking permissions.
3874 * On non-idmapped mounts or if permission checking is to be performed on the
3875 * raw inode simply passs init_user_ns.
3876 */
3877 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
3878 struct dentry *dentry)
3879 {
3880 int error = may_delete(mnt_userns, dir, dentry, 1);
3881
3882 if (error)
3883 return error;
3884
3885 if (!dir->i_op->rmdir)
3886 return -EPERM;
3887
3888 dget(dentry);
3889 inode_lock(dentry->d_inode);
3890
3891 error = -EBUSY;
3892 if (is_local_mountpoint(dentry))
3893 goto out;
3894
3895 error = security_inode_rmdir(dir, dentry);
3896 if (error)
3897 goto out;
3898
3899 error = dir->i_op->rmdir(dir, dentry);
3900 if (error)
3901 goto out;
3902
3903 shrink_dcache_parent(dentry);
3904 dentry->d_inode->i_flags |= S_DEAD;
3905 dont_mount(dentry);
3906 detach_mounts(dentry);
3907 fsnotify_rmdir(dir, dentry);
3908
3909 out:
3910 inode_unlock(dentry->d_inode);
3911 dput(dentry);
3912 if (!error)
3913 d_delete(dentry);
3914 return error;
3915 }
3916 EXPORT_SYMBOL(vfs_rmdir);
3917
3918 long do_rmdir(int dfd, struct filename *name)
3919 {
3920 struct user_namespace *mnt_userns;
3921 int error = 0;
3922 struct dentry *dentry;
3923 struct path path;
3924 struct qstr last;
3925 int type;
3926 unsigned int lookup_flags = 0;
3927 retry:
3928 name = filename_parentat(dfd, name, lookup_flags,
3929 &path, &last, &type);
3930 if (IS_ERR(name))
3931 return PTR_ERR(name);
3932
3933 switch (type) {
3934 case LAST_DOTDOT:
3935 error = -ENOTEMPTY;
3936 goto exit1;
3937 case LAST_DOT:
3938 error = -EINVAL;
3939 goto exit1;
3940 case LAST_ROOT:
3941 error = -EBUSY;
3942 goto exit1;
3943 }
3944
3945 error = mnt_want_write(path.mnt);
3946 if (error)
3947 goto exit1;
3948
3949 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3950 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3951 error = PTR_ERR(dentry);
3952 if (IS_ERR(dentry))
3953 goto exit2;
3954 if (!dentry->d_inode) {
3955 error = -ENOENT;
3956 goto exit3;
3957 }
3958 error = security_path_rmdir(&path, dentry);
3959 if (error)
3960 goto exit3;
3961 mnt_userns = mnt_user_ns(path.mnt);
3962 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
3963 exit3:
3964 dput(dentry);
3965 exit2:
3966 inode_unlock(path.dentry->d_inode);
3967 mnt_drop_write(path.mnt);
3968 exit1:
3969 path_put(&path);
3970 if (retry_estale(error, lookup_flags)) {
3971 lookup_flags |= LOOKUP_REVAL;
3972 goto retry;
3973 }
3974 putname(name);
3975 return error;
3976 }
3977
3978 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3979 {
3980 return do_rmdir(AT_FDCWD, getname(pathname));
3981 }
3982
3983 /**
3984 * vfs_unlink - unlink a filesystem object
3985 * @mnt_userns: user namespace of the mount the inode was found from
3986 * @dir: parent directory
3987 * @dentry: victim
3988 * @delegated_inode: returns victim inode, if the inode is delegated.
3989 *
3990 * The caller must hold dir->i_mutex.
3991 *
3992 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3993 * return a reference to the inode in delegated_inode. The caller
3994 * should then break the delegation on that inode and retry. Because
3995 * breaking a delegation may take a long time, the caller should drop
3996 * dir->i_mutex before doing so.
3997 *
3998 * Alternatively, a caller may pass NULL for delegated_inode. This may
3999 * be appropriate for callers that expect the underlying filesystem not
4000 * to be NFS exported.
4001 *
4002 * If the inode has been found through an idmapped mount the user namespace of
4003 * the vfsmount must be passed through @mnt_userns. This function will then take
4004 * care to map the inode according to @mnt_userns before checking permissions.
4005 * On non-idmapped mounts or if permission checking is to be performed on the
4006 * raw inode simply passs init_user_ns.
4007 */
4008 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4009 struct dentry *dentry, struct inode **delegated_inode)
4010 {
4011 struct inode *target = dentry->d_inode;
4012 int error = may_delete(mnt_userns, dir, dentry, 0);
4013
4014 if (error)
4015 return error;
4016
4017 if (!dir->i_op->unlink)
4018 return -EPERM;
4019
4020 inode_lock(target);
4021 if (is_local_mountpoint(dentry))
4022 error = -EBUSY;
4023 else {
4024 error = security_inode_unlink(dir, dentry);
4025 if (!error) {
4026 error = try_break_deleg(target, delegated_inode);
4027 if (error)
4028 goto out;
4029 error = dir->i_op->unlink(dir, dentry);
4030 if (!error) {
4031 dont_mount(dentry);
4032 detach_mounts(dentry);
4033 fsnotify_unlink(dir, dentry);
4034 }
4035 }
4036 }
4037 out:
4038 inode_unlock(target);
4039
4040 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4041 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4042 fsnotify_link_count(target);
4043 d_delete(dentry);
4044 }
4045
4046 return error;
4047 }
4048 EXPORT_SYMBOL(vfs_unlink);
4049
4050 /*
4051 * Make sure that the actual truncation of the file will occur outside its
4052 * directory's i_mutex. Truncate can take a long time if there is a lot of
4053 * writeout happening, and we don't want to prevent access to the directory
4054 * while waiting on the I/O.
4055 */
4056 long do_unlinkat(int dfd, struct filename *name)
4057 {
4058 int error;
4059 struct dentry *dentry;
4060 struct path path;
4061 struct qstr last;
4062 int type;
4063 struct inode *inode = NULL;
4064 struct inode *delegated_inode = NULL;
4065 unsigned int lookup_flags = 0;
4066 retry:
4067 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4068 if (IS_ERR(name))
4069 return PTR_ERR(name);
4070
4071 error = -EISDIR;
4072 if (type != LAST_NORM)
4073 goto exit1;
4074
4075 error = mnt_want_write(path.mnt);
4076 if (error)
4077 goto exit1;
4078 retry_deleg:
4079 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4080 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4081 error = PTR_ERR(dentry);
4082 if (!IS_ERR(dentry)) {
4083 struct user_namespace *mnt_userns;
4084
4085 /* Why not before? Because we want correct error value */
4086 if (last.name[last.len])
4087 goto slashes;
4088 inode = dentry->d_inode;
4089 if (d_is_negative(dentry))
4090 goto slashes;
4091 ihold(inode);
4092 error = security_path_unlink(&path, dentry);
4093 if (error)
4094 goto exit2;
4095 mnt_userns = mnt_user_ns(path.mnt);
4096 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4097 &delegated_inode);
4098 exit2:
4099 dput(dentry);
4100 }
4101 inode_unlock(path.dentry->d_inode);
4102 if (inode)
4103 iput(inode); /* truncate the inode here */
4104 inode = NULL;
4105 if (delegated_inode) {
4106 error = break_deleg_wait(&delegated_inode);
4107 if (!error)
4108 goto retry_deleg;
4109 }
4110 mnt_drop_write(path.mnt);
4111 exit1:
4112 path_put(&path);
4113 if (retry_estale(error, lookup_flags)) {
4114 lookup_flags |= LOOKUP_REVAL;
4115 inode = NULL;
4116 goto retry;
4117 }
4118 putname(name);
4119 return error;
4120
4121 slashes:
4122 if (d_is_negative(dentry))
4123 error = -ENOENT;
4124 else if (d_is_dir(dentry))
4125 error = -EISDIR;
4126 else
4127 error = -ENOTDIR;
4128 goto exit2;
4129 }
4130
4131 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4132 {
4133 if ((flag & ~AT_REMOVEDIR) != 0)
4134 return -EINVAL;
4135
4136 if (flag & AT_REMOVEDIR)
4137 return do_rmdir(dfd, getname(pathname));
4138 return do_unlinkat(dfd, getname(pathname));
4139 }
4140
4141 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4142 {
4143 return do_unlinkat(AT_FDCWD, getname(pathname));
4144 }
4145
4146 /**
4147 * vfs_symlink - create symlink
4148 * @mnt_userns: user namespace of the mount the inode was found from
4149 * @dir: inode of @dentry
4150 * @dentry: pointer to dentry of the base directory
4151 * @oldname: name of the file to link to
4152 *
4153 * Create a symlink.
4154 *
4155 * If the inode has been found through an idmapped mount the user namespace of
4156 * the vfsmount must be passed through @mnt_userns. This function will then take
4157 * care to map the inode according to @mnt_userns before checking permissions.
4158 * On non-idmapped mounts or if permission checking is to be performed on the
4159 * raw inode simply passs init_user_ns.
4160 */
4161 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4162 struct dentry *dentry, const char *oldname)
4163 {
4164 int error = may_create(mnt_userns, dir, dentry);
4165
4166 if (error)
4167 return error;
4168
4169 if (!dir->i_op->symlink)
4170 return -EPERM;
4171
4172 error = security_inode_symlink(dir, dentry, oldname);
4173 if (error)
4174 return error;
4175
4176 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4177 if (!error)
4178 fsnotify_create(dir, dentry);
4179 return error;
4180 }
4181 EXPORT_SYMBOL(vfs_symlink);
4182
4183 static long do_symlinkat(const char __user *oldname, int newdfd,
4184 const char __user *newname)
4185 {
4186 int error;
4187 struct filename *from;
4188 struct dentry *dentry;
4189 struct path path;
4190 unsigned int lookup_flags = 0;
4191
4192 from = getname(oldname);
4193 if (IS_ERR(from))
4194 return PTR_ERR(from);
4195 retry:
4196 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4197 error = PTR_ERR(dentry);
4198 if (IS_ERR(dentry))
4199 goto out_putname;
4200
4201 error = security_path_symlink(&path, dentry, from->name);
4202 if (!error) {
4203 struct user_namespace *mnt_userns;
4204
4205 mnt_userns = mnt_user_ns(path.mnt);
4206 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4207 from->name);
4208 }
4209 done_path_create(&path, dentry);
4210 if (retry_estale(error, lookup_flags)) {
4211 lookup_flags |= LOOKUP_REVAL;
4212 goto retry;
4213 }
4214 out_putname:
4215 putname(from);
4216 return error;
4217 }
4218
4219 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4220 int, newdfd, const char __user *, newname)
4221 {
4222 return do_symlinkat(oldname, newdfd, newname);
4223 }
4224
4225 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4226 {
4227 return do_symlinkat(oldname, AT_FDCWD, newname);
4228 }
4229
4230 /**
4231 * vfs_link - create a new link
4232 * @old_dentry: object to be linked
4233 * @mnt_userns: the user namespace of the mount
4234 * @dir: new parent
4235 * @new_dentry: where to create the new link
4236 * @delegated_inode: returns inode needing a delegation break
4237 *
4238 * The caller must hold dir->i_mutex
4239 *
4240 * If vfs_link discovers a delegation on the to-be-linked file in need
4241 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4242 * inode in delegated_inode. The caller should then break the delegation
4243 * and retry. Because breaking a delegation may take a long time, the
4244 * caller should drop the i_mutex before doing so.
4245 *
4246 * Alternatively, a caller may pass NULL for delegated_inode. This may
4247 * be appropriate for callers that expect the underlying filesystem not
4248 * to be NFS exported.
4249 *
4250 * If the inode has been found through an idmapped mount the user namespace of
4251 * the vfsmount must be passed through @mnt_userns. This function will then take
4252 * care to map the inode according to @mnt_userns before checking permissions.
4253 * On non-idmapped mounts or if permission checking is to be performed on the
4254 * raw inode simply passs init_user_ns.
4255 */
4256 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4257 struct inode *dir, struct dentry *new_dentry,
4258 struct inode **delegated_inode)
4259 {
4260 struct inode *inode = old_dentry->d_inode;
4261 unsigned max_links = dir->i_sb->s_max_links;
4262 int error;
4263
4264 if (!inode)
4265 return -ENOENT;
4266
4267 error = may_create(mnt_userns, dir, new_dentry);
4268 if (error)
4269 return error;
4270
4271 if (dir->i_sb != inode->i_sb)
4272 return -EXDEV;
4273
4274 /*
4275 * A link to an append-only or immutable file cannot be created.
4276 */
4277 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4278 return -EPERM;
4279 /*
4280 * Updating the link count will likely cause i_uid and i_gid to
4281 * be writen back improperly if their true value is unknown to
4282 * the vfs.
4283 */
4284 if (HAS_UNMAPPED_ID(mnt_userns, inode))
4285 return -EPERM;
4286 if (!dir->i_op->link)
4287 return -EPERM;
4288 if (S_ISDIR(inode->i_mode))
4289 return -EPERM;
4290
4291 error = security_inode_link(old_dentry, dir, new_dentry);
4292 if (error)
4293 return error;
4294
4295 inode_lock(inode);
4296 /* Make sure we don't allow creating hardlink to an unlinked file */
4297 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4298 error = -ENOENT;
4299 else if (max_links && inode->i_nlink >= max_links)
4300 error = -EMLINK;
4301 else {
4302 error = try_break_deleg(inode, delegated_inode);
4303 if (!error)
4304 error = dir->i_op->link(old_dentry, dir, new_dentry);
4305 }
4306
4307 if (!error && (inode->i_state & I_LINKABLE)) {
4308 spin_lock(&inode->i_lock);
4309 inode->i_state &= ~I_LINKABLE;
4310 spin_unlock(&inode->i_lock);
4311 }
4312 inode_unlock(inode);
4313 if (!error)
4314 fsnotify_link(dir, inode, new_dentry);
4315 return error;
4316 }
4317 EXPORT_SYMBOL(vfs_link);
4318
4319 /*
4320 * Hardlinks are often used in delicate situations. We avoid
4321 * security-related surprises by not following symlinks on the
4322 * newname. --KAB
4323 *
4324 * We don't follow them on the oldname either to be compatible
4325 * with linux 2.0, and to avoid hard-linking to directories
4326 * and other special files. --ADM
4327 */
4328 static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4329 const char __user *newname, int flags)
4330 {
4331 struct user_namespace *mnt_userns;
4332 struct dentry *new_dentry;
4333 struct path old_path, new_path;
4334 struct inode *delegated_inode = NULL;
4335 int how = 0;
4336 int error;
4337
4338 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4339 return -EINVAL;
4340 /*
4341 * To use null names we require CAP_DAC_READ_SEARCH
4342 * This ensures that not everyone will be able to create
4343 * handlink using the passed filedescriptor.
4344 */
4345 if (flags & AT_EMPTY_PATH) {
4346 if (!capable(CAP_DAC_READ_SEARCH))
4347 return -ENOENT;
4348 how = LOOKUP_EMPTY;
4349 }
4350
4351 if (flags & AT_SYMLINK_FOLLOW)
4352 how |= LOOKUP_FOLLOW;
4353 retry:
4354 error = user_path_at(olddfd, oldname, how, &old_path);
4355 if (error)
4356 return error;
4357
4358 new_dentry = user_path_create(newdfd, newname, &new_path,
4359 (how & LOOKUP_REVAL));
4360 error = PTR_ERR(new_dentry);
4361 if (IS_ERR(new_dentry))
4362 goto out;
4363
4364 error = -EXDEV;
4365 if (old_path.mnt != new_path.mnt)
4366 goto out_dput;
4367 mnt_userns = mnt_user_ns(new_path.mnt);
4368 error = may_linkat(mnt_userns, &old_path);
4369 if (unlikely(error))
4370 goto out_dput;
4371 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4372 if (error)
4373 goto out_dput;
4374 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4375 new_dentry, &delegated_inode);
4376 out_dput:
4377 done_path_create(&new_path, new_dentry);
4378 if (delegated_inode) {
4379 error = break_deleg_wait(&delegated_inode);
4380 if (!error) {
4381 path_put(&old_path);
4382 goto retry;
4383 }
4384 }
4385 if (retry_estale(error, how)) {
4386 path_put(&old_path);
4387 how |= LOOKUP_REVAL;
4388 goto retry;
4389 }
4390 out:
4391 path_put(&old_path);
4392
4393 return error;
4394 }
4395
4396 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4397 int, newdfd, const char __user *, newname, int, flags)
4398 {
4399 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4400 }
4401
4402 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4403 {
4404 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4405 }
4406
4407 /**
4408 * vfs_rename - rename a filesystem object
4409 * @old_mnt_userns: old user namespace of the mount the inode was found from
4410 * @old_dir: parent of source
4411 * @old_dentry: source
4412 * @new_mnt_userns: new user namespace of the mount the inode was found from
4413 * @new_dir: parent of destination
4414 * @new_dentry: destination
4415 * @delegated_inode: returns an inode needing a delegation break
4416 * @flags: rename flags
4417 *
4418 * The caller must hold multiple mutexes--see lock_rename()).
4419 *
4420 * If vfs_rename discovers a delegation in need of breaking at either
4421 * the source or destination, it will return -EWOULDBLOCK and return a
4422 * reference to the inode in delegated_inode. The caller should then
4423 * break the delegation and retry. Because breaking a delegation may
4424 * take a long time, the caller should drop all locks before doing
4425 * so.
4426 *
4427 * Alternatively, a caller may pass NULL for delegated_inode. This may
4428 * be appropriate for callers that expect the underlying filesystem not
4429 * to be NFS exported.
4430 *
4431 * The worst of all namespace operations - renaming directory. "Perverted"
4432 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4433 * Problems:
4434 *
4435 * a) we can get into loop creation.
4436 * b) race potential - two innocent renames can create a loop together.
4437 * That's where 4.4 screws up. Current fix: serialization on
4438 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4439 * story.
4440 * c) we have to lock _four_ objects - parents and victim (if it exists),
4441 * and source (if it is not a directory).
4442 * And that - after we got ->i_mutex on parents (until then we don't know
4443 * whether the target exists). Solution: try to be smart with locking
4444 * order for inodes. We rely on the fact that tree topology may change
4445 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4446 * move will be locked. Thus we can rank directories by the tree
4447 * (ancestors first) and rank all non-directories after them.
4448 * That works since everybody except rename does "lock parent, lookup,
4449 * lock child" and rename is under ->s_vfs_rename_mutex.
4450 * HOWEVER, it relies on the assumption that any object with ->lookup()
4451 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4452 * we'd better make sure that there's no link(2) for them.
4453 * d) conversion from fhandle to dentry may come in the wrong moment - when
4454 * we are removing the target. Solution: we will have to grab ->i_mutex
4455 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4456 * ->i_mutex on parents, which works but leads to some truly excessive
4457 * locking].
4458 */
4459 int vfs_rename(struct renamedata *rd)
4460 {
4461 int error;
4462 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4463 struct dentry *old_dentry = rd->old_dentry;
4464 struct dentry *new_dentry = rd->new_dentry;
4465 struct inode **delegated_inode = rd->delegated_inode;
4466 unsigned int flags = rd->flags;
4467 bool is_dir = d_is_dir(old_dentry);
4468 struct inode *source = old_dentry->d_inode;
4469 struct inode *target = new_dentry->d_inode;
4470 bool new_is_dir = false;
4471 unsigned max_links = new_dir->i_sb->s_max_links;
4472 struct name_snapshot old_name;
4473
4474 if (source == target)
4475 return 0;
4476
4477 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4478 if (error)
4479 return error;
4480
4481 if (!target) {
4482 error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4483 } else {
4484 new_is_dir = d_is_dir(new_dentry);
4485
4486 if (!(flags & RENAME_EXCHANGE))
4487 error = may_delete(rd->new_mnt_userns, new_dir,
4488 new_dentry, is_dir);
4489 else
4490 error = may_delete(rd->new_mnt_userns, new_dir,
4491 new_dentry, new_is_dir);
4492 }
4493 if (error)
4494 return error;
4495
4496 if (!old_dir->i_op->rename)
4497 return -EPERM;
4498
4499 /*
4500 * If we are going to change the parent - check write permissions,
4501 * we'll need to flip '..'.
4502 */
4503 if (new_dir != old_dir) {
4504 if (is_dir) {
4505 error = inode_permission(rd->old_mnt_userns, source,
4506 MAY_WRITE);
4507 if (error)
4508 return error;
4509 }
4510 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4511 error = inode_permission(rd->new_mnt_userns, target,
4512 MAY_WRITE);
4513 if (error)
4514 return error;
4515 }
4516 }
4517
4518 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4519 flags);
4520 if (error)
4521 return error;
4522
4523 take_dentry_name_snapshot(&old_name, old_dentry);
4524 dget(new_dentry);
4525 if (!is_dir || (flags & RENAME_EXCHANGE))
4526 lock_two_nondirectories(source, target);
4527 else if (target)
4528 inode_lock(target);
4529
4530 error = -EBUSY;
4531 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4532 goto out;
4533
4534 if (max_links && new_dir != old_dir) {
4535 error = -EMLINK;
4536 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4537 goto out;
4538 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4539 old_dir->i_nlink >= max_links)
4540 goto out;
4541 }
4542 if (!is_dir) {
4543 error = try_break_deleg(source, delegated_inode);
4544 if (error)
4545 goto out;
4546 }
4547 if (target && !new_is_dir) {
4548 error = try_break_deleg(target, delegated_inode);
4549 if (error)
4550 goto out;
4551 }
4552 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4553 new_dir, new_dentry, flags);
4554 if (error)
4555 goto out;
4556
4557 if (!(flags & RENAME_EXCHANGE) && target) {
4558 if (is_dir) {
4559 shrink_dcache_parent(new_dentry);
4560 target->i_flags |= S_DEAD;
4561 }
4562 dont_mount(new_dentry);
4563 detach_mounts(new_dentry);
4564 }
4565 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4566 if (!(flags & RENAME_EXCHANGE))
4567 d_move(old_dentry, new_dentry);
4568 else
4569 d_exchange(old_dentry, new_dentry);
4570 }
4571 out:
4572 if (!is_dir || (flags & RENAME_EXCHANGE))
4573 unlock_two_nondirectories(source, target);
4574 else if (target)
4575 inode_unlock(target);
4576 dput(new_dentry);
4577 if (!error) {
4578 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4579 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4580 if (flags & RENAME_EXCHANGE) {
4581 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4582 new_is_dir, NULL, new_dentry);
4583 }
4584 }
4585 release_dentry_name_snapshot(&old_name);
4586
4587 return error;
4588 }
4589 EXPORT_SYMBOL(vfs_rename);
4590
4591 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4592 struct filename *to, unsigned int flags)
4593 {
4594 struct renamedata rd;
4595 struct dentry *old_dentry, *new_dentry;
4596 struct dentry *trap;
4597 struct path old_path, new_path;
4598 struct qstr old_last, new_last;
4599 int old_type, new_type;
4600 struct inode *delegated_inode = NULL;
4601 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4602 bool should_retry = false;
4603 int error = -EINVAL;
4604
4605 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4606 goto put_both;
4607
4608 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4609 (flags & RENAME_EXCHANGE))
4610 goto put_both;
4611
4612 if (flags & RENAME_EXCHANGE)
4613 target_flags = 0;
4614
4615 retry:
4616 from = filename_parentat(olddfd, from, lookup_flags, &old_path,
4617 &old_last, &old_type);
4618 if (IS_ERR(from)) {
4619 error = PTR_ERR(from);
4620 goto put_new;
4621 }
4622
4623 to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4624 &new_type);
4625 if (IS_ERR(to)) {
4626 error = PTR_ERR(to);
4627 goto exit1;
4628 }
4629
4630 error = -EXDEV;
4631 if (old_path.mnt != new_path.mnt)
4632 goto exit2;
4633
4634 error = -EBUSY;
4635 if (old_type != LAST_NORM)
4636 goto exit2;
4637
4638 if (flags & RENAME_NOREPLACE)
4639 error = -EEXIST;
4640 if (new_type != LAST_NORM)
4641 goto exit2;
4642
4643 error = mnt_want_write(old_path.mnt);
4644 if (error)
4645 goto exit2;
4646
4647 retry_deleg:
4648 trap = lock_rename(new_path.dentry, old_path.dentry);
4649
4650 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4651 error = PTR_ERR(old_dentry);
4652 if (IS_ERR(old_dentry))
4653 goto exit3;
4654 /* source must exist */
4655 error = -ENOENT;
4656 if (d_is_negative(old_dentry))
4657 goto exit4;
4658 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4659 error = PTR_ERR(new_dentry);
4660 if (IS_ERR(new_dentry))
4661 goto exit4;
4662 error = -EEXIST;
4663 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4664 goto exit5;
4665 if (flags & RENAME_EXCHANGE) {
4666 error = -ENOENT;
4667 if (d_is_negative(new_dentry))
4668 goto exit5;
4669
4670 if (!d_is_dir(new_dentry)) {
4671 error = -ENOTDIR;
4672 if (new_last.name[new_last.len])
4673 goto exit5;
4674 }
4675 }
4676 /* unless the source is a directory trailing slashes give -ENOTDIR */
4677 if (!d_is_dir(old_dentry)) {
4678 error = -ENOTDIR;
4679 if (old_last.name[old_last.len])
4680 goto exit5;
4681 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4682 goto exit5;
4683 }
4684 /* source should not be ancestor of target */
4685 error = -EINVAL;
4686 if (old_dentry == trap)
4687 goto exit5;
4688 /* target should not be an ancestor of source */
4689 if (!(flags & RENAME_EXCHANGE))
4690 error = -ENOTEMPTY;
4691 if (new_dentry == trap)
4692 goto exit5;
4693
4694 error = security_path_rename(&old_path, old_dentry,
4695 &new_path, new_dentry, flags);
4696 if (error)
4697 goto exit5;
4698
4699 rd.old_dir = old_path.dentry->d_inode;
4700 rd.old_dentry = old_dentry;
4701 rd.old_mnt_userns = mnt_user_ns(old_path.mnt);
4702 rd.new_dir = new_path.dentry->d_inode;
4703 rd.new_dentry = new_dentry;
4704 rd.new_mnt_userns = mnt_user_ns(new_path.mnt);
4705 rd.delegated_inode = &delegated_inode;
4706 rd.flags = flags;
4707 error = vfs_rename(&rd);
4708 exit5:
4709 dput(new_dentry);
4710 exit4:
4711 dput(old_dentry);
4712 exit3:
4713 unlock_rename(new_path.dentry, old_path.dentry);
4714 if (delegated_inode) {
4715 error = break_deleg_wait(&delegated_inode);
4716 if (!error)
4717 goto retry_deleg;
4718 }
4719 mnt_drop_write(old_path.mnt);
4720 exit2:
4721 if (retry_estale(error, lookup_flags))
4722 should_retry = true;
4723 path_put(&new_path);
4724 exit1:
4725 path_put(&old_path);
4726 if (should_retry) {
4727 should_retry = false;
4728 lookup_flags |= LOOKUP_REVAL;
4729 goto retry;
4730 }
4731 put_both:
4732 if (!IS_ERR(from))
4733 putname(from);
4734 put_new:
4735 if (!IS_ERR(to))
4736 putname(to);
4737 return error;
4738 }
4739
4740 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4741 int, newdfd, const char __user *, newname, unsigned int, flags)
4742 {
4743 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4744 flags);
4745 }
4746
4747 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4748 int, newdfd, const char __user *, newname)
4749 {
4750 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4751 0);
4752 }
4753
4754 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4755 {
4756 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4757 getname(newname), 0);
4758 }
4759
4760 int readlink_copy(char __user *buffer, int buflen, const char *link)
4761 {
4762 int len = PTR_ERR(link);
4763 if (IS_ERR(link))
4764 goto out;
4765
4766 len = strlen(link);
4767 if (len > (unsigned) buflen)
4768 len = buflen;
4769 if (copy_to_user(buffer, link, len))
4770 len = -EFAULT;
4771 out:
4772 return len;
4773 }
4774
4775 /**
4776 * vfs_readlink - copy symlink body into userspace buffer
4777 * @dentry: dentry on which to get symbolic link
4778 * @buffer: user memory pointer
4779 * @buflen: size of buffer
4780 *
4781 * Does not touch atime. That's up to the caller if necessary
4782 *
4783 * Does not call security hook.
4784 */
4785 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4786 {
4787 struct inode *inode = d_inode(dentry);
4788 DEFINE_DELAYED_CALL(done);
4789 const char *link;
4790 int res;
4791
4792 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4793 if (unlikely(inode->i_op->readlink))
4794 return inode->i_op->readlink(dentry, buffer, buflen);
4795
4796 if (!d_is_symlink(dentry))
4797 return -EINVAL;
4798
4799 spin_lock(&inode->i_lock);
4800 inode->i_opflags |= IOP_DEFAULT_READLINK;
4801 spin_unlock(&inode->i_lock);
4802 }
4803
4804 link = READ_ONCE(inode->i_link);
4805 if (!link) {
4806 link = inode->i_op->get_link(dentry, inode, &done);
4807 if (IS_ERR(link))
4808 return PTR_ERR(link);
4809 }
4810 res = readlink_copy(buffer, buflen, link);
4811 do_delayed_call(&done);
4812 return res;
4813 }
4814 EXPORT_SYMBOL(vfs_readlink);
4815
4816 /**
4817 * vfs_get_link - get symlink body
4818 * @dentry: dentry on which to get symbolic link
4819 * @done: caller needs to free returned data with this
4820 *
4821 * Calls security hook and i_op->get_link() on the supplied inode.
4822 *
4823 * It does not touch atime. That's up to the caller if necessary.
4824 *
4825 * Does not work on "special" symlinks like /proc/$$/fd/N
4826 */
4827 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4828 {
4829 const char *res = ERR_PTR(-EINVAL);
4830 struct inode *inode = d_inode(dentry);
4831
4832 if (d_is_symlink(dentry)) {
4833 res = ERR_PTR(security_inode_readlink(dentry));
4834 if (!res)
4835 res = inode->i_op->get_link(dentry, inode, done);
4836 }
4837 return res;
4838 }
4839 EXPORT_SYMBOL(vfs_get_link);
4840
4841 /* get the link contents into pagecache */
4842 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4843 struct delayed_call *callback)
4844 {
4845 char *kaddr;
4846 struct page *page;
4847 struct address_space *mapping = inode->i_mapping;
4848
4849 if (!dentry) {
4850 page = find_get_page(mapping, 0);
4851 if (!page)
4852 return ERR_PTR(-ECHILD);
4853 if (!PageUptodate(page)) {
4854 put_page(page);
4855 return ERR_PTR(-ECHILD);
4856 }
4857 } else {
4858 page = read_mapping_page(mapping, 0, NULL);
4859 if (IS_ERR(page))
4860 return (char*)page;
4861 }
4862 set_delayed_call(callback, page_put_link, page);
4863 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4864 kaddr = page_address(page);
4865 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4866 return kaddr;
4867 }
4868
4869 EXPORT_SYMBOL(page_get_link);
4870
4871 void page_put_link(void *arg)
4872 {
4873 put_page(arg);
4874 }
4875 EXPORT_SYMBOL(page_put_link);
4876
4877 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4878 {
4879 DEFINE_DELAYED_CALL(done);
4880 int res = readlink_copy(buffer, buflen,
4881 page_get_link(dentry, d_inode(dentry),
4882 &done));
4883 do_delayed_call(&done);
4884 return res;
4885 }
4886 EXPORT_SYMBOL(page_readlink);
4887
4888 /*
4889 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4890 */
4891 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4892 {
4893 struct address_space *mapping = inode->i_mapping;
4894 struct page *page;
4895 void *fsdata;
4896 int err;
4897 unsigned int flags = 0;
4898 if (nofs)
4899 flags |= AOP_FLAG_NOFS;
4900
4901 retry:
4902 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4903 flags, &page, &fsdata);
4904 if (err)
4905 goto fail;
4906
4907 memcpy(page_address(page), symname, len-1);
4908
4909 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4910 page, fsdata);
4911 if (err < 0)
4912 goto fail;
4913 if (err < len-1)
4914 goto retry;
4915
4916 mark_inode_dirty(inode);
4917 return 0;
4918 fail:
4919 return err;
4920 }
4921 EXPORT_SYMBOL(__page_symlink);
4922
4923 int page_symlink(struct inode *inode, const char *symname, int len)
4924 {
4925 return __page_symlink(inode, symname, len,
4926 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4927 }
4928 EXPORT_SYMBOL(page_symlink);
4929
4930 const struct inode_operations page_symlink_inode_operations = {
4931 .get_link = page_get_link,
4932 };
4933 EXPORT_SYMBOL(page_symlink_inode_operations);