]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/namei.c
Merge tag 'phy-for-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/phy/linux-phy
[thirdparty/linux.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/ima.h>
31 #include <linux/syscalls.h>
32 #include <linux/mount.h>
33 #include <linux/audit.h>
34 #include <linux/capability.h>
35 #include <linux/file.h>
36 #include <linux/fcntl.h>
37 #include <linux/device_cgroup.h>
38 #include <linux/fs_struct.h>
39 #include <linux/posix_acl.h>
40 #include <linux/hash.h>
41 #include <linux/bitops.h>
42 #include <linux/init_task.h>
43 #include <linux/uaccess.h>
44
45 #include "internal.h"
46 #include "mount.h"
47
48 /* [Feb-1997 T. Schoebel-Theuer]
49 * Fundamental changes in the pathname lookup mechanisms (namei)
50 * were necessary because of omirr. The reason is that omirr needs
51 * to know the _real_ pathname, not the user-supplied one, in case
52 * of symlinks (and also when transname replacements occur).
53 *
54 * The new code replaces the old recursive symlink resolution with
55 * an iterative one (in case of non-nested symlink chains). It does
56 * this with calls to <fs>_follow_link().
57 * As a side effect, dir_namei(), _namei() and follow_link() are now
58 * replaced with a single function lookup_dentry() that can handle all
59 * the special cases of the former code.
60 *
61 * With the new dcache, the pathname is stored at each inode, at least as
62 * long as the refcount of the inode is positive. As a side effect, the
63 * size of the dcache depends on the inode cache and thus is dynamic.
64 *
65 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
66 * resolution to correspond with current state of the code.
67 *
68 * Note that the symlink resolution is not *completely* iterative.
69 * There is still a significant amount of tail- and mid- recursion in
70 * the algorithm. Also, note that <fs>_readlink() is not used in
71 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
72 * may return different results than <fs>_follow_link(). Many virtual
73 * filesystems (including /proc) exhibit this behavior.
74 */
75
76 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
77 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
78 * and the name already exists in form of a symlink, try to create the new
79 * name indicated by the symlink. The old code always complained that the
80 * name already exists, due to not following the symlink even if its target
81 * is nonexistent. The new semantics affects also mknod() and link() when
82 * the name is a symlink pointing to a non-existent name.
83 *
84 * I don't know which semantics is the right one, since I have no access
85 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
86 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
87 * "old" one. Personally, I think the new semantics is much more logical.
88 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
89 * file does succeed in both HP-UX and SunOs, but not in Solaris
90 * and in the old Linux semantics.
91 */
92
93 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
94 * semantics. See the comments in "open_namei" and "do_link" below.
95 *
96 * [10-Sep-98 Alan Modra] Another symlink change.
97 */
98
99 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
100 * inside the path - always follow.
101 * in the last component in creation/removal/renaming - never follow.
102 * if LOOKUP_FOLLOW passed - follow.
103 * if the pathname has trailing slashes - follow.
104 * otherwise - don't follow.
105 * (applied in that order).
106 *
107 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
108 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
109 * During the 2.4 we need to fix the userland stuff depending on it -
110 * hopefully we will be able to get rid of that wart in 2.5. So far only
111 * XEmacs seems to be relying on it...
112 */
113 /*
114 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
115 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
116 * any extra contention...
117 */
118
119 /* In order to reduce some races, while at the same time doing additional
120 * checking and hopefully speeding things up, we copy filenames to the
121 * kernel data space before using them..
122 *
123 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
124 * PATH_MAX includes the nul terminator --RR.
125 */
126
127 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
128
129 struct filename *
130 getname_flags(const char __user *filename, int flags, int *empty)
131 {
132 struct filename *result;
133 char *kname;
134 int len;
135
136 result = audit_reusename(filename);
137 if (result)
138 return result;
139
140 result = __getname();
141 if (unlikely(!result))
142 return ERR_PTR(-ENOMEM);
143
144 /*
145 * First, try to embed the struct filename inside the names_cache
146 * allocation
147 */
148 kname = (char *)result->iname;
149 result->name = kname;
150
151 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 if (unlikely(len < 0)) {
153 __putname(result);
154 return ERR_PTR(len);
155 }
156
157 /*
158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 * separate struct filename so we can dedicate the entire
160 * names_cache allocation for the pathname, and re-do the copy from
161 * userland.
162 */
163 if (unlikely(len == EMBEDDED_NAME_MAX)) {
164 const size_t size = offsetof(struct filename, iname[1]);
165 kname = (char *)result;
166
167 /*
168 * size is chosen that way we to guarantee that
169 * result->iname[0] is within the same object and that
170 * kname can't be equal to result->iname, no matter what.
171 */
172 result = kzalloc(size, GFP_KERNEL);
173 if (unlikely(!result)) {
174 __putname(kname);
175 return ERR_PTR(-ENOMEM);
176 }
177 result->name = kname;
178 len = strncpy_from_user(kname, filename, PATH_MAX);
179 if (unlikely(len < 0)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(len);
183 }
184 if (unlikely(len == PATH_MAX)) {
185 __putname(kname);
186 kfree(result);
187 return ERR_PTR(-ENAMETOOLONG);
188 }
189 }
190
191 atomic_set(&result->refcnt, 1);
192 /* The empty path is special. */
193 if (unlikely(!len)) {
194 if (empty)
195 *empty = 1;
196 if (!(flags & LOOKUP_EMPTY)) {
197 putname(result);
198 return ERR_PTR(-ENOENT);
199 }
200 }
201
202 result->uptr = filename;
203 result->aname = NULL;
204 audit_getname(result);
205 return result;
206 }
207
208 struct filename *
209 getname_uflags(const char __user *filename, int uflags)
210 {
211 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
212
213 return getname_flags(filename, flags, NULL);
214 }
215
216 struct filename *
217 getname(const char __user * filename)
218 {
219 return getname_flags(filename, 0, NULL);
220 }
221
222 struct filename *
223 getname_kernel(const char * filename)
224 {
225 struct filename *result;
226 int len = strlen(filename) + 1;
227
228 result = __getname();
229 if (unlikely(!result))
230 return ERR_PTR(-ENOMEM);
231
232 if (len <= EMBEDDED_NAME_MAX) {
233 result->name = (char *)result->iname;
234 } else if (len <= PATH_MAX) {
235 const size_t size = offsetof(struct filename, iname[1]);
236 struct filename *tmp;
237
238 tmp = kmalloc(size, GFP_KERNEL);
239 if (unlikely(!tmp)) {
240 __putname(result);
241 return ERR_PTR(-ENOMEM);
242 }
243 tmp->name = (char *)result;
244 result = tmp;
245 } else {
246 __putname(result);
247 return ERR_PTR(-ENAMETOOLONG);
248 }
249 memcpy((char *)result->name, filename, len);
250 result->uptr = NULL;
251 result->aname = NULL;
252 atomic_set(&result->refcnt, 1);
253 audit_getname(result);
254
255 return result;
256 }
257 EXPORT_SYMBOL(getname_kernel);
258
259 void putname(struct filename *name)
260 {
261 if (IS_ERR(name))
262 return;
263
264 if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
265 return;
266
267 if (!atomic_dec_and_test(&name->refcnt))
268 return;
269
270 if (name->name != name->iname) {
271 __putname(name->name);
272 kfree(name);
273 } else
274 __putname(name);
275 }
276 EXPORT_SYMBOL(putname);
277
278 /**
279 * check_acl - perform ACL permission checking
280 * @idmap: idmap of the mount the inode was found from
281 * @inode: inode to check permissions on
282 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
283 *
284 * This function performs the ACL permission checking. Since this function
285 * retrieve POSIX acls it needs to know whether it is called from a blocking or
286 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
287 *
288 * If the inode has been found through an idmapped mount the idmap of
289 * the vfsmount must be passed through @idmap. This function will then take
290 * care to map the inode according to @idmap before checking permissions.
291 * On non-idmapped mounts or if permission checking is to be performed on the
292 * raw inode simply pass @nop_mnt_idmap.
293 */
294 static int check_acl(struct mnt_idmap *idmap,
295 struct inode *inode, int mask)
296 {
297 #ifdef CONFIG_FS_POSIX_ACL
298 struct posix_acl *acl;
299
300 if (mask & MAY_NOT_BLOCK) {
301 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
302 if (!acl)
303 return -EAGAIN;
304 /* no ->get_inode_acl() calls in RCU mode... */
305 if (is_uncached_acl(acl))
306 return -ECHILD;
307 return posix_acl_permission(idmap, inode, acl, mask);
308 }
309
310 acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
311 if (IS_ERR(acl))
312 return PTR_ERR(acl);
313 if (acl) {
314 int error = posix_acl_permission(idmap, inode, acl, mask);
315 posix_acl_release(acl);
316 return error;
317 }
318 #endif
319
320 return -EAGAIN;
321 }
322
323 /**
324 * acl_permission_check - perform basic UNIX permission checking
325 * @idmap: idmap of the mount the inode was found from
326 * @inode: inode to check permissions on
327 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
328 *
329 * This function performs the basic UNIX permission checking. Since this
330 * function may retrieve POSIX acls it needs to know whether it is called from a
331 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
332 *
333 * If the inode has been found through an idmapped mount the idmap of
334 * the vfsmount must be passed through @idmap. This function will then take
335 * care to map the inode according to @idmap before checking permissions.
336 * On non-idmapped mounts or if permission checking is to be performed on the
337 * raw inode simply pass @nop_mnt_idmap.
338 */
339 static int acl_permission_check(struct mnt_idmap *idmap,
340 struct inode *inode, int mask)
341 {
342 unsigned int mode = inode->i_mode;
343 vfsuid_t vfsuid;
344
345 /* Are we the owner? If so, ACL's don't matter */
346 vfsuid = i_uid_into_vfsuid(idmap, inode);
347 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
348 mask &= 7;
349 mode >>= 6;
350 return (mask & ~mode) ? -EACCES : 0;
351 }
352
353 /* Do we have ACL's? */
354 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
355 int error = check_acl(idmap, inode, mask);
356 if (error != -EAGAIN)
357 return error;
358 }
359
360 /* Only RWX matters for group/other mode bits */
361 mask &= 7;
362
363 /*
364 * Are the group permissions different from
365 * the other permissions in the bits we care
366 * about? Need to check group ownership if so.
367 */
368 if (mask & (mode ^ (mode >> 3))) {
369 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
370 if (vfsgid_in_group_p(vfsgid))
371 mode >>= 3;
372 }
373
374 /* Bits in 'mode' clear that we require? */
375 return (mask & ~mode) ? -EACCES : 0;
376 }
377
378 /**
379 * generic_permission - check for access rights on a Posix-like filesystem
380 * @idmap: idmap of the mount the inode was found from
381 * @inode: inode to check access rights for
382 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
383 * %MAY_NOT_BLOCK ...)
384 *
385 * Used to check for read/write/execute permissions on a file.
386 * We use "fsuid" for this, letting us set arbitrary permissions
387 * for filesystem access without changing the "normal" uids which
388 * are used for other things.
389 *
390 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
391 * request cannot be satisfied (eg. requires blocking or too much complexity).
392 * It would then be called again in ref-walk mode.
393 *
394 * If the inode has been found through an idmapped mount the idmap of
395 * the vfsmount must be passed through @idmap. This function will then take
396 * care to map the inode according to @idmap before checking permissions.
397 * On non-idmapped mounts or if permission checking is to be performed on the
398 * raw inode simply pass @nop_mnt_idmap.
399 */
400 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
401 int mask)
402 {
403 int ret;
404
405 /*
406 * Do the basic permission checks.
407 */
408 ret = acl_permission_check(idmap, inode, mask);
409 if (ret != -EACCES)
410 return ret;
411
412 if (S_ISDIR(inode->i_mode)) {
413 /* DACs are overridable for directories */
414 if (!(mask & MAY_WRITE))
415 if (capable_wrt_inode_uidgid(idmap, inode,
416 CAP_DAC_READ_SEARCH))
417 return 0;
418 if (capable_wrt_inode_uidgid(idmap, inode,
419 CAP_DAC_OVERRIDE))
420 return 0;
421 return -EACCES;
422 }
423
424 /*
425 * Searching includes executable on directories, else just read.
426 */
427 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
428 if (mask == MAY_READ)
429 if (capable_wrt_inode_uidgid(idmap, inode,
430 CAP_DAC_READ_SEARCH))
431 return 0;
432 /*
433 * Read/write DACs are always overridable.
434 * Executable DACs are overridable when there is
435 * at least one exec bit set.
436 */
437 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
438 if (capable_wrt_inode_uidgid(idmap, inode,
439 CAP_DAC_OVERRIDE))
440 return 0;
441
442 return -EACCES;
443 }
444 EXPORT_SYMBOL(generic_permission);
445
446 /**
447 * do_inode_permission - UNIX permission checking
448 * @idmap: idmap of the mount the inode was found from
449 * @inode: inode to check permissions on
450 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
451 *
452 * We _really_ want to just do "generic_permission()" without
453 * even looking at the inode->i_op values. So we keep a cache
454 * flag in inode->i_opflags, that says "this has not special
455 * permission function, use the fast case".
456 */
457 static inline int do_inode_permission(struct mnt_idmap *idmap,
458 struct inode *inode, int mask)
459 {
460 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
461 if (likely(inode->i_op->permission))
462 return inode->i_op->permission(idmap, inode, mask);
463
464 /* This gets set once for the inode lifetime */
465 spin_lock(&inode->i_lock);
466 inode->i_opflags |= IOP_FASTPERM;
467 spin_unlock(&inode->i_lock);
468 }
469 return generic_permission(idmap, inode, mask);
470 }
471
472 /**
473 * sb_permission - Check superblock-level permissions
474 * @sb: Superblock of inode to check permission on
475 * @inode: Inode to check permission on
476 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
477 *
478 * Separate out file-system wide checks from inode-specific permission checks.
479 */
480 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
481 {
482 if (unlikely(mask & MAY_WRITE)) {
483 umode_t mode = inode->i_mode;
484
485 /* Nobody gets write access to a read-only fs. */
486 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
487 return -EROFS;
488 }
489 return 0;
490 }
491
492 /**
493 * inode_permission - Check for access rights to a given inode
494 * @idmap: idmap of the mount the inode was found from
495 * @inode: Inode to check permission on
496 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
497 *
498 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
499 * this, letting us set arbitrary permissions for filesystem access without
500 * changing the "normal" UIDs which are used for other things.
501 *
502 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
503 */
504 int inode_permission(struct mnt_idmap *idmap,
505 struct inode *inode, int mask)
506 {
507 int retval;
508
509 retval = sb_permission(inode->i_sb, inode, mask);
510 if (retval)
511 return retval;
512
513 if (unlikely(mask & MAY_WRITE)) {
514 /*
515 * Nobody gets write access to an immutable file.
516 */
517 if (IS_IMMUTABLE(inode))
518 return -EPERM;
519
520 /*
521 * Updating mtime will likely cause i_uid and i_gid to be
522 * written back improperly if their true value is unknown
523 * to the vfs.
524 */
525 if (HAS_UNMAPPED_ID(idmap, inode))
526 return -EACCES;
527 }
528
529 retval = do_inode_permission(idmap, inode, mask);
530 if (retval)
531 return retval;
532
533 retval = devcgroup_inode_permission(inode, mask);
534 if (retval)
535 return retval;
536
537 return security_inode_permission(inode, mask);
538 }
539 EXPORT_SYMBOL(inode_permission);
540
541 /**
542 * path_get - get a reference to a path
543 * @path: path to get the reference to
544 *
545 * Given a path increment the reference count to the dentry and the vfsmount.
546 */
547 void path_get(const struct path *path)
548 {
549 mntget(path->mnt);
550 dget(path->dentry);
551 }
552 EXPORT_SYMBOL(path_get);
553
554 /**
555 * path_put - put a reference to a path
556 * @path: path to put the reference to
557 *
558 * Given a path decrement the reference count to the dentry and the vfsmount.
559 */
560 void path_put(const struct path *path)
561 {
562 dput(path->dentry);
563 mntput(path->mnt);
564 }
565 EXPORT_SYMBOL(path_put);
566
567 #define EMBEDDED_LEVELS 2
568 struct nameidata {
569 struct path path;
570 struct qstr last;
571 struct path root;
572 struct inode *inode; /* path.dentry.d_inode */
573 unsigned int flags, state;
574 unsigned seq, next_seq, m_seq, r_seq;
575 int last_type;
576 unsigned depth;
577 int total_link_count;
578 struct saved {
579 struct path link;
580 struct delayed_call done;
581 const char *name;
582 unsigned seq;
583 } *stack, internal[EMBEDDED_LEVELS];
584 struct filename *name;
585 struct nameidata *saved;
586 unsigned root_seq;
587 int dfd;
588 vfsuid_t dir_vfsuid;
589 umode_t dir_mode;
590 } __randomize_layout;
591
592 #define ND_ROOT_PRESET 1
593 #define ND_ROOT_GRABBED 2
594 #define ND_JUMPED 4
595
596 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
597 {
598 struct nameidata *old = current->nameidata;
599 p->stack = p->internal;
600 p->depth = 0;
601 p->dfd = dfd;
602 p->name = name;
603 p->path.mnt = NULL;
604 p->path.dentry = NULL;
605 p->total_link_count = old ? old->total_link_count : 0;
606 p->saved = old;
607 current->nameidata = p;
608 }
609
610 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
611 const struct path *root)
612 {
613 __set_nameidata(p, dfd, name);
614 p->state = 0;
615 if (unlikely(root)) {
616 p->state = ND_ROOT_PRESET;
617 p->root = *root;
618 }
619 }
620
621 static void restore_nameidata(void)
622 {
623 struct nameidata *now = current->nameidata, *old = now->saved;
624
625 current->nameidata = old;
626 if (old)
627 old->total_link_count = now->total_link_count;
628 if (now->stack != now->internal)
629 kfree(now->stack);
630 }
631
632 static bool nd_alloc_stack(struct nameidata *nd)
633 {
634 struct saved *p;
635
636 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
637 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
638 if (unlikely(!p))
639 return false;
640 memcpy(p, nd->internal, sizeof(nd->internal));
641 nd->stack = p;
642 return true;
643 }
644
645 /**
646 * path_connected - Verify that a dentry is below mnt.mnt_root
647 * @mnt: The mountpoint to check.
648 * @dentry: The dentry to check.
649 *
650 * Rename can sometimes move a file or directory outside of a bind
651 * mount, path_connected allows those cases to be detected.
652 */
653 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
654 {
655 struct super_block *sb = mnt->mnt_sb;
656
657 /* Bind mounts can have disconnected paths */
658 if (mnt->mnt_root == sb->s_root)
659 return true;
660
661 return is_subdir(dentry, mnt->mnt_root);
662 }
663
664 static void drop_links(struct nameidata *nd)
665 {
666 int i = nd->depth;
667 while (i--) {
668 struct saved *last = nd->stack + i;
669 do_delayed_call(&last->done);
670 clear_delayed_call(&last->done);
671 }
672 }
673
674 static void leave_rcu(struct nameidata *nd)
675 {
676 nd->flags &= ~LOOKUP_RCU;
677 nd->seq = nd->next_seq = 0;
678 rcu_read_unlock();
679 }
680
681 static void terminate_walk(struct nameidata *nd)
682 {
683 drop_links(nd);
684 if (!(nd->flags & LOOKUP_RCU)) {
685 int i;
686 path_put(&nd->path);
687 for (i = 0; i < nd->depth; i++)
688 path_put(&nd->stack[i].link);
689 if (nd->state & ND_ROOT_GRABBED) {
690 path_put(&nd->root);
691 nd->state &= ~ND_ROOT_GRABBED;
692 }
693 } else {
694 leave_rcu(nd);
695 }
696 nd->depth = 0;
697 nd->path.mnt = NULL;
698 nd->path.dentry = NULL;
699 }
700
701 /* path_put is needed afterwards regardless of success or failure */
702 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
703 {
704 int res = __legitimize_mnt(path->mnt, mseq);
705 if (unlikely(res)) {
706 if (res > 0)
707 path->mnt = NULL;
708 path->dentry = NULL;
709 return false;
710 }
711 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
712 path->dentry = NULL;
713 return false;
714 }
715 return !read_seqcount_retry(&path->dentry->d_seq, seq);
716 }
717
718 static inline bool legitimize_path(struct nameidata *nd,
719 struct path *path, unsigned seq)
720 {
721 return __legitimize_path(path, seq, nd->m_seq);
722 }
723
724 static bool legitimize_links(struct nameidata *nd)
725 {
726 int i;
727 if (unlikely(nd->flags & LOOKUP_CACHED)) {
728 drop_links(nd);
729 nd->depth = 0;
730 return false;
731 }
732 for (i = 0; i < nd->depth; i++) {
733 struct saved *last = nd->stack + i;
734 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
735 drop_links(nd);
736 nd->depth = i + 1;
737 return false;
738 }
739 }
740 return true;
741 }
742
743 static bool legitimize_root(struct nameidata *nd)
744 {
745 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
746 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
747 return true;
748 nd->state |= ND_ROOT_GRABBED;
749 return legitimize_path(nd, &nd->root, nd->root_seq);
750 }
751
752 /*
753 * Path walking has 2 modes, rcu-walk and ref-walk (see
754 * Documentation/filesystems/path-lookup.txt). In situations when we can't
755 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
756 * normal reference counts on dentries and vfsmounts to transition to ref-walk
757 * mode. Refcounts are grabbed at the last known good point before rcu-walk
758 * got stuck, so ref-walk may continue from there. If this is not successful
759 * (eg. a seqcount has changed), then failure is returned and it's up to caller
760 * to restart the path walk from the beginning in ref-walk mode.
761 */
762
763 /**
764 * try_to_unlazy - try to switch to ref-walk mode.
765 * @nd: nameidata pathwalk data
766 * Returns: true on success, false on failure
767 *
768 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
769 * for ref-walk mode.
770 * Must be called from rcu-walk context.
771 * Nothing should touch nameidata between try_to_unlazy() failure and
772 * terminate_walk().
773 */
774 static bool try_to_unlazy(struct nameidata *nd)
775 {
776 struct dentry *parent = nd->path.dentry;
777
778 BUG_ON(!(nd->flags & LOOKUP_RCU));
779
780 if (unlikely(!legitimize_links(nd)))
781 goto out1;
782 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
783 goto out;
784 if (unlikely(!legitimize_root(nd)))
785 goto out;
786 leave_rcu(nd);
787 BUG_ON(nd->inode != parent->d_inode);
788 return true;
789
790 out1:
791 nd->path.mnt = NULL;
792 nd->path.dentry = NULL;
793 out:
794 leave_rcu(nd);
795 return false;
796 }
797
798 /**
799 * try_to_unlazy_next - try to switch to ref-walk mode.
800 * @nd: nameidata pathwalk data
801 * @dentry: next dentry to step into
802 * Returns: true on success, false on failure
803 *
804 * Similar to try_to_unlazy(), but here we have the next dentry already
805 * picked by rcu-walk and want to legitimize that in addition to the current
806 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
807 * Nothing should touch nameidata between try_to_unlazy_next() failure and
808 * terminate_walk().
809 */
810 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
811 {
812 int res;
813 BUG_ON(!(nd->flags & LOOKUP_RCU));
814
815 if (unlikely(!legitimize_links(nd)))
816 goto out2;
817 res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
818 if (unlikely(res)) {
819 if (res > 0)
820 goto out2;
821 goto out1;
822 }
823 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
824 goto out1;
825
826 /*
827 * We need to move both the parent and the dentry from the RCU domain
828 * to be properly refcounted. And the sequence number in the dentry
829 * validates *both* dentry counters, since we checked the sequence
830 * number of the parent after we got the child sequence number. So we
831 * know the parent must still be valid if the child sequence number is
832 */
833 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
834 goto out;
835 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
836 goto out_dput;
837 /*
838 * Sequence counts matched. Now make sure that the root is
839 * still valid and get it if required.
840 */
841 if (unlikely(!legitimize_root(nd)))
842 goto out_dput;
843 leave_rcu(nd);
844 return true;
845
846 out2:
847 nd->path.mnt = NULL;
848 out1:
849 nd->path.dentry = NULL;
850 out:
851 leave_rcu(nd);
852 return false;
853 out_dput:
854 leave_rcu(nd);
855 dput(dentry);
856 return false;
857 }
858
859 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
860 {
861 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
862 return dentry->d_op->d_revalidate(dentry, flags);
863 else
864 return 1;
865 }
866
867 /**
868 * complete_walk - successful completion of path walk
869 * @nd: pointer nameidata
870 *
871 * If we had been in RCU mode, drop out of it and legitimize nd->path.
872 * Revalidate the final result, unless we'd already done that during
873 * the path walk or the filesystem doesn't ask for it. Return 0 on
874 * success, -error on failure. In case of failure caller does not
875 * need to drop nd->path.
876 */
877 static int complete_walk(struct nameidata *nd)
878 {
879 struct dentry *dentry = nd->path.dentry;
880 int status;
881
882 if (nd->flags & LOOKUP_RCU) {
883 /*
884 * We don't want to zero nd->root for scoped-lookups or
885 * externally-managed nd->root.
886 */
887 if (!(nd->state & ND_ROOT_PRESET))
888 if (!(nd->flags & LOOKUP_IS_SCOPED))
889 nd->root.mnt = NULL;
890 nd->flags &= ~LOOKUP_CACHED;
891 if (!try_to_unlazy(nd))
892 return -ECHILD;
893 }
894
895 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
896 /*
897 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
898 * ever step outside the root during lookup" and should already
899 * be guaranteed by the rest of namei, we want to avoid a namei
900 * BUG resulting in userspace being given a path that was not
901 * scoped within the root at some point during the lookup.
902 *
903 * So, do a final sanity-check to make sure that in the
904 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
905 * we won't silently return an fd completely outside of the
906 * requested root to userspace.
907 *
908 * Userspace could move the path outside the root after this
909 * check, but as discussed elsewhere this is not a concern (the
910 * resolved file was inside the root at some point).
911 */
912 if (!path_is_under(&nd->path, &nd->root))
913 return -EXDEV;
914 }
915
916 if (likely(!(nd->state & ND_JUMPED)))
917 return 0;
918
919 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
920 return 0;
921
922 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
923 if (status > 0)
924 return 0;
925
926 if (!status)
927 status = -ESTALE;
928
929 return status;
930 }
931
932 static int set_root(struct nameidata *nd)
933 {
934 struct fs_struct *fs = current->fs;
935
936 /*
937 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
938 * still have to ensure it doesn't happen because it will cause a breakout
939 * from the dirfd.
940 */
941 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
942 return -ENOTRECOVERABLE;
943
944 if (nd->flags & LOOKUP_RCU) {
945 unsigned seq;
946
947 do {
948 seq = read_seqcount_begin(&fs->seq);
949 nd->root = fs->root;
950 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
951 } while (read_seqcount_retry(&fs->seq, seq));
952 } else {
953 get_fs_root(fs, &nd->root);
954 nd->state |= ND_ROOT_GRABBED;
955 }
956 return 0;
957 }
958
959 static int nd_jump_root(struct nameidata *nd)
960 {
961 if (unlikely(nd->flags & LOOKUP_BENEATH))
962 return -EXDEV;
963 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
964 /* Absolute path arguments to path_init() are allowed. */
965 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
966 return -EXDEV;
967 }
968 if (!nd->root.mnt) {
969 int error = set_root(nd);
970 if (error)
971 return error;
972 }
973 if (nd->flags & LOOKUP_RCU) {
974 struct dentry *d;
975 nd->path = nd->root;
976 d = nd->path.dentry;
977 nd->inode = d->d_inode;
978 nd->seq = nd->root_seq;
979 if (read_seqcount_retry(&d->d_seq, nd->seq))
980 return -ECHILD;
981 } else {
982 path_put(&nd->path);
983 nd->path = nd->root;
984 path_get(&nd->path);
985 nd->inode = nd->path.dentry->d_inode;
986 }
987 nd->state |= ND_JUMPED;
988 return 0;
989 }
990
991 /*
992 * Helper to directly jump to a known parsed path from ->get_link,
993 * caller must have taken a reference to path beforehand.
994 */
995 int nd_jump_link(const struct path *path)
996 {
997 int error = -ELOOP;
998 struct nameidata *nd = current->nameidata;
999
1000 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1001 goto err;
1002
1003 error = -EXDEV;
1004 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1005 if (nd->path.mnt != path->mnt)
1006 goto err;
1007 }
1008 /* Not currently safe for scoped-lookups. */
1009 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1010 goto err;
1011
1012 path_put(&nd->path);
1013 nd->path = *path;
1014 nd->inode = nd->path.dentry->d_inode;
1015 nd->state |= ND_JUMPED;
1016 return 0;
1017
1018 err:
1019 path_put(path);
1020 return error;
1021 }
1022
1023 static inline void put_link(struct nameidata *nd)
1024 {
1025 struct saved *last = nd->stack + --nd->depth;
1026 do_delayed_call(&last->done);
1027 if (!(nd->flags & LOOKUP_RCU))
1028 path_put(&last->link);
1029 }
1030
1031 static int sysctl_protected_symlinks __read_mostly;
1032 static int sysctl_protected_hardlinks __read_mostly;
1033 static int sysctl_protected_fifos __read_mostly;
1034 static int sysctl_protected_regular __read_mostly;
1035
1036 #ifdef CONFIG_SYSCTL
1037 static struct ctl_table namei_sysctls[] = {
1038 {
1039 .procname = "protected_symlinks",
1040 .data = &sysctl_protected_symlinks,
1041 .maxlen = sizeof(int),
1042 .mode = 0644,
1043 .proc_handler = proc_dointvec_minmax,
1044 .extra1 = SYSCTL_ZERO,
1045 .extra2 = SYSCTL_ONE,
1046 },
1047 {
1048 .procname = "protected_hardlinks",
1049 .data = &sysctl_protected_hardlinks,
1050 .maxlen = sizeof(int),
1051 .mode = 0644,
1052 .proc_handler = proc_dointvec_minmax,
1053 .extra1 = SYSCTL_ZERO,
1054 .extra2 = SYSCTL_ONE,
1055 },
1056 {
1057 .procname = "protected_fifos",
1058 .data = &sysctl_protected_fifos,
1059 .maxlen = sizeof(int),
1060 .mode = 0644,
1061 .proc_handler = proc_dointvec_minmax,
1062 .extra1 = SYSCTL_ZERO,
1063 .extra2 = SYSCTL_TWO,
1064 },
1065 {
1066 .procname = "protected_regular",
1067 .data = &sysctl_protected_regular,
1068 .maxlen = sizeof(int),
1069 .mode = 0644,
1070 .proc_handler = proc_dointvec_minmax,
1071 .extra1 = SYSCTL_ZERO,
1072 .extra2 = SYSCTL_TWO,
1073 },
1074 };
1075
1076 static int __init init_fs_namei_sysctls(void)
1077 {
1078 register_sysctl_init("fs", namei_sysctls);
1079 return 0;
1080 }
1081 fs_initcall(init_fs_namei_sysctls);
1082
1083 #endif /* CONFIG_SYSCTL */
1084
1085 /**
1086 * may_follow_link - Check symlink following for unsafe situations
1087 * @nd: nameidata pathwalk data
1088 * @inode: Used for idmapping.
1089 *
1090 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1091 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1092 * in a sticky world-writable directory. This is to protect privileged
1093 * processes from failing races against path names that may change out
1094 * from under them by way of other users creating malicious symlinks.
1095 * It will permit symlinks to be followed only when outside a sticky
1096 * world-writable directory, or when the uid of the symlink and follower
1097 * match, or when the directory owner matches the symlink's owner.
1098 *
1099 * Returns 0 if following the symlink is allowed, -ve on error.
1100 */
1101 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1102 {
1103 struct mnt_idmap *idmap;
1104 vfsuid_t vfsuid;
1105
1106 if (!sysctl_protected_symlinks)
1107 return 0;
1108
1109 idmap = mnt_idmap(nd->path.mnt);
1110 vfsuid = i_uid_into_vfsuid(idmap, inode);
1111 /* Allowed if owner and follower match. */
1112 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1113 return 0;
1114
1115 /* Allowed if parent directory not sticky and world-writable. */
1116 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1117 return 0;
1118
1119 /* Allowed if parent directory and link owner match. */
1120 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1121 return 0;
1122
1123 if (nd->flags & LOOKUP_RCU)
1124 return -ECHILD;
1125
1126 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1127 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1128 return -EACCES;
1129 }
1130
1131 /**
1132 * safe_hardlink_source - Check for safe hardlink conditions
1133 * @idmap: idmap of the mount the inode was found from
1134 * @inode: the source inode to hardlink from
1135 *
1136 * Return false if at least one of the following conditions:
1137 * - inode is not a regular file
1138 * - inode is setuid
1139 * - inode is setgid and group-exec
1140 * - access failure for read and write
1141 *
1142 * Otherwise returns true.
1143 */
1144 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1145 struct inode *inode)
1146 {
1147 umode_t mode = inode->i_mode;
1148
1149 /* Special files should not get pinned to the filesystem. */
1150 if (!S_ISREG(mode))
1151 return false;
1152
1153 /* Setuid files should not get pinned to the filesystem. */
1154 if (mode & S_ISUID)
1155 return false;
1156
1157 /* Executable setgid files should not get pinned to the filesystem. */
1158 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1159 return false;
1160
1161 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1162 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1163 return false;
1164
1165 return true;
1166 }
1167
1168 /**
1169 * may_linkat - Check permissions for creating a hardlink
1170 * @idmap: idmap of the mount the inode was found from
1171 * @link: the source to hardlink from
1172 *
1173 * Block hardlink when all of:
1174 * - sysctl_protected_hardlinks enabled
1175 * - fsuid does not match inode
1176 * - hardlink source is unsafe (see safe_hardlink_source() above)
1177 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1178 *
1179 * If the inode has been found through an idmapped mount the idmap of
1180 * the vfsmount must be passed through @idmap. This function will then take
1181 * care to map the inode according to @idmap before checking permissions.
1182 * On non-idmapped mounts or if permission checking is to be performed on the
1183 * raw inode simply pass @nop_mnt_idmap.
1184 *
1185 * Returns 0 if successful, -ve on error.
1186 */
1187 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1188 {
1189 struct inode *inode = link->dentry->d_inode;
1190
1191 /* Inode writeback is not safe when the uid or gid are invalid. */
1192 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1193 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1194 return -EOVERFLOW;
1195
1196 if (!sysctl_protected_hardlinks)
1197 return 0;
1198
1199 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1200 * otherwise, it must be a safe source.
1201 */
1202 if (safe_hardlink_source(idmap, inode) ||
1203 inode_owner_or_capable(idmap, inode))
1204 return 0;
1205
1206 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1207 return -EPERM;
1208 }
1209
1210 /**
1211 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1212 * should be allowed, or not, on files that already
1213 * exist.
1214 * @idmap: idmap of the mount the inode was found from
1215 * @nd: nameidata pathwalk data
1216 * @inode: the inode of the file to open
1217 *
1218 * Block an O_CREAT open of a FIFO (or a regular file) when:
1219 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1220 * - the file already exists
1221 * - we are in a sticky directory
1222 * - we don't own the file
1223 * - the owner of the directory doesn't own the file
1224 * - the directory is world writable
1225 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1226 * the directory doesn't have to be world writable: being group writable will
1227 * be enough.
1228 *
1229 * If the inode has been found through an idmapped mount the idmap of
1230 * the vfsmount must be passed through @idmap. This function will then take
1231 * care to map the inode according to @idmap before checking permissions.
1232 * On non-idmapped mounts or if permission checking is to be performed on the
1233 * raw inode simply pass @nop_mnt_idmap.
1234 *
1235 * Returns 0 if the open is allowed, -ve on error.
1236 */
1237 static int may_create_in_sticky(struct mnt_idmap *idmap,
1238 struct nameidata *nd, struct inode *const inode)
1239 {
1240 umode_t dir_mode = nd->dir_mode;
1241 vfsuid_t dir_vfsuid = nd->dir_vfsuid;
1242
1243 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1244 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1245 likely(!(dir_mode & S_ISVTX)) ||
1246 vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) ||
1247 vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid()))
1248 return 0;
1249
1250 if (likely(dir_mode & 0002) ||
1251 (dir_mode & 0020 &&
1252 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1253 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1254 const char *operation = S_ISFIFO(inode->i_mode) ?
1255 "sticky_create_fifo" :
1256 "sticky_create_regular";
1257 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1258 return -EACCES;
1259 }
1260 return 0;
1261 }
1262
1263 /*
1264 * follow_up - Find the mountpoint of path's vfsmount
1265 *
1266 * Given a path, find the mountpoint of its source file system.
1267 * Replace @path with the path of the mountpoint in the parent mount.
1268 * Up is towards /.
1269 *
1270 * Return 1 if we went up a level and 0 if we were already at the
1271 * root.
1272 */
1273 int follow_up(struct path *path)
1274 {
1275 struct mount *mnt = real_mount(path->mnt);
1276 struct mount *parent;
1277 struct dentry *mountpoint;
1278
1279 read_seqlock_excl(&mount_lock);
1280 parent = mnt->mnt_parent;
1281 if (parent == mnt) {
1282 read_sequnlock_excl(&mount_lock);
1283 return 0;
1284 }
1285 mntget(&parent->mnt);
1286 mountpoint = dget(mnt->mnt_mountpoint);
1287 read_sequnlock_excl(&mount_lock);
1288 dput(path->dentry);
1289 path->dentry = mountpoint;
1290 mntput(path->mnt);
1291 path->mnt = &parent->mnt;
1292 return 1;
1293 }
1294 EXPORT_SYMBOL(follow_up);
1295
1296 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1297 struct path *path, unsigned *seqp)
1298 {
1299 while (mnt_has_parent(m)) {
1300 struct dentry *mountpoint = m->mnt_mountpoint;
1301
1302 m = m->mnt_parent;
1303 if (unlikely(root->dentry == mountpoint &&
1304 root->mnt == &m->mnt))
1305 break;
1306 if (mountpoint != m->mnt.mnt_root) {
1307 path->mnt = &m->mnt;
1308 path->dentry = mountpoint;
1309 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1310 return true;
1311 }
1312 }
1313 return false;
1314 }
1315
1316 static bool choose_mountpoint(struct mount *m, const struct path *root,
1317 struct path *path)
1318 {
1319 bool found;
1320
1321 rcu_read_lock();
1322 while (1) {
1323 unsigned seq, mseq = read_seqbegin(&mount_lock);
1324
1325 found = choose_mountpoint_rcu(m, root, path, &seq);
1326 if (unlikely(!found)) {
1327 if (!read_seqretry(&mount_lock, mseq))
1328 break;
1329 } else {
1330 if (likely(__legitimize_path(path, seq, mseq)))
1331 break;
1332 rcu_read_unlock();
1333 path_put(path);
1334 rcu_read_lock();
1335 }
1336 }
1337 rcu_read_unlock();
1338 return found;
1339 }
1340
1341 /*
1342 * Perform an automount
1343 * - return -EISDIR to tell follow_managed() to stop and return the path we
1344 * were called with.
1345 */
1346 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1347 {
1348 struct dentry *dentry = path->dentry;
1349
1350 /* We don't want to mount if someone's just doing a stat -
1351 * unless they're stat'ing a directory and appended a '/' to
1352 * the name.
1353 *
1354 * We do, however, want to mount if someone wants to open or
1355 * create a file of any type under the mountpoint, wants to
1356 * traverse through the mountpoint or wants to open the
1357 * mounted directory. Also, autofs may mark negative dentries
1358 * as being automount points. These will need the attentions
1359 * of the daemon to instantiate them before they can be used.
1360 */
1361 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1362 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1363 dentry->d_inode)
1364 return -EISDIR;
1365
1366 if (count && (*count)++ >= MAXSYMLINKS)
1367 return -ELOOP;
1368
1369 return finish_automount(dentry->d_op->d_automount(path), path);
1370 }
1371
1372 /*
1373 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1374 * dentries are pinned but not locked here, so negative dentry can go
1375 * positive right under us. Use of smp_load_acquire() provides a barrier
1376 * sufficient for ->d_inode and ->d_flags consistency.
1377 */
1378 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1379 int *count, unsigned lookup_flags)
1380 {
1381 struct vfsmount *mnt = path->mnt;
1382 bool need_mntput = false;
1383 int ret = 0;
1384
1385 while (flags & DCACHE_MANAGED_DENTRY) {
1386 /* Allow the filesystem to manage the transit without i_mutex
1387 * being held. */
1388 if (flags & DCACHE_MANAGE_TRANSIT) {
1389 ret = path->dentry->d_op->d_manage(path, false);
1390 flags = smp_load_acquire(&path->dentry->d_flags);
1391 if (ret < 0)
1392 break;
1393 }
1394
1395 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1396 struct vfsmount *mounted = lookup_mnt(path);
1397 if (mounted) { // ... in our namespace
1398 dput(path->dentry);
1399 if (need_mntput)
1400 mntput(path->mnt);
1401 path->mnt = mounted;
1402 path->dentry = dget(mounted->mnt_root);
1403 // here we know it's positive
1404 flags = path->dentry->d_flags;
1405 need_mntput = true;
1406 continue;
1407 }
1408 }
1409
1410 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1411 break;
1412
1413 // uncovered automount point
1414 ret = follow_automount(path, count, lookup_flags);
1415 flags = smp_load_acquire(&path->dentry->d_flags);
1416 if (ret < 0)
1417 break;
1418 }
1419
1420 if (ret == -EISDIR)
1421 ret = 0;
1422 // possible if you race with several mount --move
1423 if (need_mntput && path->mnt == mnt)
1424 mntput(path->mnt);
1425 if (!ret && unlikely(d_flags_negative(flags)))
1426 ret = -ENOENT;
1427 *jumped = need_mntput;
1428 return ret;
1429 }
1430
1431 static inline int traverse_mounts(struct path *path, bool *jumped,
1432 int *count, unsigned lookup_flags)
1433 {
1434 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1435
1436 /* fastpath */
1437 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1438 *jumped = false;
1439 if (unlikely(d_flags_negative(flags)))
1440 return -ENOENT;
1441 return 0;
1442 }
1443 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1444 }
1445
1446 int follow_down_one(struct path *path)
1447 {
1448 struct vfsmount *mounted;
1449
1450 mounted = lookup_mnt(path);
1451 if (mounted) {
1452 dput(path->dentry);
1453 mntput(path->mnt);
1454 path->mnt = mounted;
1455 path->dentry = dget(mounted->mnt_root);
1456 return 1;
1457 }
1458 return 0;
1459 }
1460 EXPORT_SYMBOL(follow_down_one);
1461
1462 /*
1463 * Follow down to the covering mount currently visible to userspace. At each
1464 * point, the filesystem owning that dentry may be queried as to whether the
1465 * caller is permitted to proceed or not.
1466 */
1467 int follow_down(struct path *path, unsigned int flags)
1468 {
1469 struct vfsmount *mnt = path->mnt;
1470 bool jumped;
1471 int ret = traverse_mounts(path, &jumped, NULL, flags);
1472
1473 if (path->mnt != mnt)
1474 mntput(mnt);
1475 return ret;
1476 }
1477 EXPORT_SYMBOL(follow_down);
1478
1479 /*
1480 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1481 * we meet a managed dentry that would need blocking.
1482 */
1483 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1484 {
1485 struct dentry *dentry = path->dentry;
1486 unsigned int flags = dentry->d_flags;
1487
1488 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1489 return true;
1490
1491 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1492 return false;
1493
1494 for (;;) {
1495 /*
1496 * Don't forget we might have a non-mountpoint managed dentry
1497 * that wants to block transit.
1498 */
1499 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1500 int res = dentry->d_op->d_manage(path, true);
1501 if (res)
1502 return res == -EISDIR;
1503 flags = dentry->d_flags;
1504 }
1505
1506 if (flags & DCACHE_MOUNTED) {
1507 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1508 if (mounted) {
1509 path->mnt = &mounted->mnt;
1510 dentry = path->dentry = mounted->mnt.mnt_root;
1511 nd->state |= ND_JUMPED;
1512 nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1513 flags = dentry->d_flags;
1514 // makes sure that non-RCU pathwalk could reach
1515 // this state.
1516 if (read_seqretry(&mount_lock, nd->m_seq))
1517 return false;
1518 continue;
1519 }
1520 if (read_seqretry(&mount_lock, nd->m_seq))
1521 return false;
1522 }
1523 return !(flags & DCACHE_NEED_AUTOMOUNT);
1524 }
1525 }
1526
1527 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1528 struct path *path)
1529 {
1530 bool jumped;
1531 int ret;
1532
1533 path->mnt = nd->path.mnt;
1534 path->dentry = dentry;
1535 if (nd->flags & LOOKUP_RCU) {
1536 unsigned int seq = nd->next_seq;
1537 if (likely(__follow_mount_rcu(nd, path)))
1538 return 0;
1539 // *path and nd->next_seq might've been clobbered
1540 path->mnt = nd->path.mnt;
1541 path->dentry = dentry;
1542 nd->next_seq = seq;
1543 if (!try_to_unlazy_next(nd, dentry))
1544 return -ECHILD;
1545 }
1546 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1547 if (jumped) {
1548 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1549 ret = -EXDEV;
1550 else
1551 nd->state |= ND_JUMPED;
1552 }
1553 if (unlikely(ret)) {
1554 dput(path->dentry);
1555 if (path->mnt != nd->path.mnt)
1556 mntput(path->mnt);
1557 }
1558 return ret;
1559 }
1560
1561 /*
1562 * This looks up the name in dcache and possibly revalidates the found dentry.
1563 * NULL is returned if the dentry does not exist in the cache.
1564 */
1565 static struct dentry *lookup_dcache(const struct qstr *name,
1566 struct dentry *dir,
1567 unsigned int flags)
1568 {
1569 struct dentry *dentry = d_lookup(dir, name);
1570 if (dentry) {
1571 int error = d_revalidate(dentry, flags);
1572 if (unlikely(error <= 0)) {
1573 if (!error)
1574 d_invalidate(dentry);
1575 dput(dentry);
1576 return ERR_PTR(error);
1577 }
1578 }
1579 return dentry;
1580 }
1581
1582 /*
1583 * Parent directory has inode locked exclusive. This is one
1584 * and only case when ->lookup() gets called on non in-lookup
1585 * dentries - as the matter of fact, this only gets called
1586 * when directory is guaranteed to have no in-lookup children
1587 * at all.
1588 */
1589 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1590 struct dentry *base,
1591 unsigned int flags)
1592 {
1593 struct dentry *dentry = lookup_dcache(name, base, flags);
1594 struct dentry *old;
1595 struct inode *dir = base->d_inode;
1596
1597 if (dentry)
1598 return dentry;
1599
1600 /* Don't create child dentry for a dead directory. */
1601 if (unlikely(IS_DEADDIR(dir)))
1602 return ERR_PTR(-ENOENT);
1603
1604 dentry = d_alloc(base, name);
1605 if (unlikely(!dentry))
1606 return ERR_PTR(-ENOMEM);
1607
1608 old = dir->i_op->lookup(dir, dentry, flags);
1609 if (unlikely(old)) {
1610 dput(dentry);
1611 dentry = old;
1612 }
1613 return dentry;
1614 }
1615 EXPORT_SYMBOL(lookup_one_qstr_excl);
1616
1617 static struct dentry *lookup_fast(struct nameidata *nd)
1618 {
1619 struct dentry *dentry, *parent = nd->path.dentry;
1620 int status = 1;
1621
1622 /*
1623 * Rename seqlock is not required here because in the off chance
1624 * of a false negative due to a concurrent rename, the caller is
1625 * going to fall back to non-racy lookup.
1626 */
1627 if (nd->flags & LOOKUP_RCU) {
1628 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1629 if (unlikely(!dentry)) {
1630 if (!try_to_unlazy(nd))
1631 return ERR_PTR(-ECHILD);
1632 return NULL;
1633 }
1634
1635 /*
1636 * This sequence count validates that the parent had no
1637 * changes while we did the lookup of the dentry above.
1638 */
1639 if (read_seqcount_retry(&parent->d_seq, nd->seq))
1640 return ERR_PTR(-ECHILD);
1641
1642 status = d_revalidate(dentry, nd->flags);
1643 if (likely(status > 0))
1644 return dentry;
1645 if (!try_to_unlazy_next(nd, dentry))
1646 return ERR_PTR(-ECHILD);
1647 if (status == -ECHILD)
1648 /* we'd been told to redo it in non-rcu mode */
1649 status = d_revalidate(dentry, nd->flags);
1650 } else {
1651 dentry = __d_lookup(parent, &nd->last);
1652 if (unlikely(!dentry))
1653 return NULL;
1654 status = d_revalidate(dentry, nd->flags);
1655 }
1656 if (unlikely(status <= 0)) {
1657 if (!status)
1658 d_invalidate(dentry);
1659 dput(dentry);
1660 return ERR_PTR(status);
1661 }
1662 return dentry;
1663 }
1664
1665 /* Fast lookup failed, do it the slow way */
1666 static struct dentry *__lookup_slow(const struct qstr *name,
1667 struct dentry *dir,
1668 unsigned int flags)
1669 {
1670 struct dentry *dentry, *old;
1671 struct inode *inode = dir->d_inode;
1672 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1673
1674 /* Don't go there if it's already dead */
1675 if (unlikely(IS_DEADDIR(inode)))
1676 return ERR_PTR(-ENOENT);
1677 again:
1678 dentry = d_alloc_parallel(dir, name, &wq);
1679 if (IS_ERR(dentry))
1680 return dentry;
1681 if (unlikely(!d_in_lookup(dentry))) {
1682 int error = d_revalidate(dentry, flags);
1683 if (unlikely(error <= 0)) {
1684 if (!error) {
1685 d_invalidate(dentry);
1686 dput(dentry);
1687 goto again;
1688 }
1689 dput(dentry);
1690 dentry = ERR_PTR(error);
1691 }
1692 } else {
1693 old = inode->i_op->lookup(inode, dentry, flags);
1694 d_lookup_done(dentry);
1695 if (unlikely(old)) {
1696 dput(dentry);
1697 dentry = old;
1698 }
1699 }
1700 return dentry;
1701 }
1702
1703 static struct dentry *lookup_slow(const struct qstr *name,
1704 struct dentry *dir,
1705 unsigned int flags)
1706 {
1707 struct inode *inode = dir->d_inode;
1708 struct dentry *res;
1709 inode_lock_shared(inode);
1710 res = __lookup_slow(name, dir, flags);
1711 inode_unlock_shared(inode);
1712 return res;
1713 }
1714
1715 static inline int may_lookup(struct mnt_idmap *idmap,
1716 struct nameidata *nd)
1717 {
1718 if (nd->flags & LOOKUP_RCU) {
1719 int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1720 if (err != -ECHILD || !try_to_unlazy(nd))
1721 return err;
1722 }
1723 return inode_permission(idmap, nd->inode, MAY_EXEC);
1724 }
1725
1726 static int reserve_stack(struct nameidata *nd, struct path *link)
1727 {
1728 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1729 return -ELOOP;
1730
1731 if (likely(nd->depth != EMBEDDED_LEVELS))
1732 return 0;
1733 if (likely(nd->stack != nd->internal))
1734 return 0;
1735 if (likely(nd_alloc_stack(nd)))
1736 return 0;
1737
1738 if (nd->flags & LOOKUP_RCU) {
1739 // we need to grab link before we do unlazy. And we can't skip
1740 // unlazy even if we fail to grab the link - cleanup needs it
1741 bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1742
1743 if (!try_to_unlazy(nd) || !grabbed_link)
1744 return -ECHILD;
1745
1746 if (nd_alloc_stack(nd))
1747 return 0;
1748 }
1749 return -ENOMEM;
1750 }
1751
1752 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1753
1754 static const char *pick_link(struct nameidata *nd, struct path *link,
1755 struct inode *inode, int flags)
1756 {
1757 struct saved *last;
1758 const char *res;
1759 int error = reserve_stack(nd, link);
1760
1761 if (unlikely(error)) {
1762 if (!(nd->flags & LOOKUP_RCU))
1763 path_put(link);
1764 return ERR_PTR(error);
1765 }
1766 last = nd->stack + nd->depth++;
1767 last->link = *link;
1768 clear_delayed_call(&last->done);
1769 last->seq = nd->next_seq;
1770
1771 if (flags & WALK_TRAILING) {
1772 error = may_follow_link(nd, inode);
1773 if (unlikely(error))
1774 return ERR_PTR(error);
1775 }
1776
1777 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1778 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1779 return ERR_PTR(-ELOOP);
1780
1781 if (!(nd->flags & LOOKUP_RCU)) {
1782 touch_atime(&last->link);
1783 cond_resched();
1784 } else if (atime_needs_update(&last->link, inode)) {
1785 if (!try_to_unlazy(nd))
1786 return ERR_PTR(-ECHILD);
1787 touch_atime(&last->link);
1788 }
1789
1790 error = security_inode_follow_link(link->dentry, inode,
1791 nd->flags & LOOKUP_RCU);
1792 if (unlikely(error))
1793 return ERR_PTR(error);
1794
1795 res = READ_ONCE(inode->i_link);
1796 if (!res) {
1797 const char * (*get)(struct dentry *, struct inode *,
1798 struct delayed_call *);
1799 get = inode->i_op->get_link;
1800 if (nd->flags & LOOKUP_RCU) {
1801 res = get(NULL, inode, &last->done);
1802 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1803 res = get(link->dentry, inode, &last->done);
1804 } else {
1805 res = get(link->dentry, inode, &last->done);
1806 }
1807 if (!res)
1808 goto all_done;
1809 if (IS_ERR(res))
1810 return res;
1811 }
1812 if (*res == '/') {
1813 error = nd_jump_root(nd);
1814 if (unlikely(error))
1815 return ERR_PTR(error);
1816 while (unlikely(*++res == '/'))
1817 ;
1818 }
1819 if (*res)
1820 return res;
1821 all_done: // pure jump
1822 put_link(nd);
1823 return NULL;
1824 }
1825
1826 /*
1827 * Do we need to follow links? We _really_ want to be able
1828 * to do this check without having to look at inode->i_op,
1829 * so we keep a cache of "no, this doesn't need follow_link"
1830 * for the common case.
1831 *
1832 * NOTE: dentry must be what nd->next_seq had been sampled from.
1833 */
1834 static const char *step_into(struct nameidata *nd, int flags,
1835 struct dentry *dentry)
1836 {
1837 struct path path;
1838 struct inode *inode;
1839 int err = handle_mounts(nd, dentry, &path);
1840
1841 if (err < 0)
1842 return ERR_PTR(err);
1843 inode = path.dentry->d_inode;
1844 if (likely(!d_is_symlink(path.dentry)) ||
1845 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1846 (flags & WALK_NOFOLLOW)) {
1847 /* not a symlink or should not follow */
1848 if (nd->flags & LOOKUP_RCU) {
1849 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1850 return ERR_PTR(-ECHILD);
1851 if (unlikely(!inode))
1852 return ERR_PTR(-ENOENT);
1853 } else {
1854 dput(nd->path.dentry);
1855 if (nd->path.mnt != path.mnt)
1856 mntput(nd->path.mnt);
1857 }
1858 nd->path = path;
1859 nd->inode = inode;
1860 nd->seq = nd->next_seq;
1861 return NULL;
1862 }
1863 if (nd->flags & LOOKUP_RCU) {
1864 /* make sure that d_is_symlink above matches inode */
1865 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1866 return ERR_PTR(-ECHILD);
1867 } else {
1868 if (path.mnt == nd->path.mnt)
1869 mntget(path.mnt);
1870 }
1871 return pick_link(nd, &path, inode, flags);
1872 }
1873
1874 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1875 {
1876 struct dentry *parent, *old;
1877
1878 if (path_equal(&nd->path, &nd->root))
1879 goto in_root;
1880 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1881 struct path path;
1882 unsigned seq;
1883 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1884 &nd->root, &path, &seq))
1885 goto in_root;
1886 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1887 return ERR_PTR(-ECHILD);
1888 nd->path = path;
1889 nd->inode = path.dentry->d_inode;
1890 nd->seq = seq;
1891 // makes sure that non-RCU pathwalk could reach this state
1892 if (read_seqretry(&mount_lock, nd->m_seq))
1893 return ERR_PTR(-ECHILD);
1894 /* we know that mountpoint was pinned */
1895 }
1896 old = nd->path.dentry;
1897 parent = old->d_parent;
1898 nd->next_seq = read_seqcount_begin(&parent->d_seq);
1899 // makes sure that non-RCU pathwalk could reach this state
1900 if (read_seqcount_retry(&old->d_seq, nd->seq))
1901 return ERR_PTR(-ECHILD);
1902 if (unlikely(!path_connected(nd->path.mnt, parent)))
1903 return ERR_PTR(-ECHILD);
1904 return parent;
1905 in_root:
1906 if (read_seqretry(&mount_lock, nd->m_seq))
1907 return ERR_PTR(-ECHILD);
1908 if (unlikely(nd->flags & LOOKUP_BENEATH))
1909 return ERR_PTR(-ECHILD);
1910 nd->next_seq = nd->seq;
1911 return nd->path.dentry;
1912 }
1913
1914 static struct dentry *follow_dotdot(struct nameidata *nd)
1915 {
1916 struct dentry *parent;
1917
1918 if (path_equal(&nd->path, &nd->root))
1919 goto in_root;
1920 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1921 struct path path;
1922
1923 if (!choose_mountpoint(real_mount(nd->path.mnt),
1924 &nd->root, &path))
1925 goto in_root;
1926 path_put(&nd->path);
1927 nd->path = path;
1928 nd->inode = path.dentry->d_inode;
1929 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1930 return ERR_PTR(-EXDEV);
1931 }
1932 /* rare case of legitimate dget_parent()... */
1933 parent = dget_parent(nd->path.dentry);
1934 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1935 dput(parent);
1936 return ERR_PTR(-ENOENT);
1937 }
1938 return parent;
1939
1940 in_root:
1941 if (unlikely(nd->flags & LOOKUP_BENEATH))
1942 return ERR_PTR(-EXDEV);
1943 return dget(nd->path.dentry);
1944 }
1945
1946 static const char *handle_dots(struct nameidata *nd, int type)
1947 {
1948 if (type == LAST_DOTDOT) {
1949 const char *error = NULL;
1950 struct dentry *parent;
1951
1952 if (!nd->root.mnt) {
1953 error = ERR_PTR(set_root(nd));
1954 if (error)
1955 return error;
1956 }
1957 if (nd->flags & LOOKUP_RCU)
1958 parent = follow_dotdot_rcu(nd);
1959 else
1960 parent = follow_dotdot(nd);
1961 if (IS_ERR(parent))
1962 return ERR_CAST(parent);
1963 error = step_into(nd, WALK_NOFOLLOW, parent);
1964 if (unlikely(error))
1965 return error;
1966
1967 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1968 /*
1969 * If there was a racing rename or mount along our
1970 * path, then we can't be sure that ".." hasn't jumped
1971 * above nd->root (and so userspace should retry or use
1972 * some fallback).
1973 */
1974 smp_rmb();
1975 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1976 return ERR_PTR(-EAGAIN);
1977 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1978 return ERR_PTR(-EAGAIN);
1979 }
1980 }
1981 return NULL;
1982 }
1983
1984 static const char *walk_component(struct nameidata *nd, int flags)
1985 {
1986 struct dentry *dentry;
1987 /*
1988 * "." and ".." are special - ".." especially so because it has
1989 * to be able to know about the current root directory and
1990 * parent relationships.
1991 */
1992 if (unlikely(nd->last_type != LAST_NORM)) {
1993 if (!(flags & WALK_MORE) && nd->depth)
1994 put_link(nd);
1995 return handle_dots(nd, nd->last_type);
1996 }
1997 dentry = lookup_fast(nd);
1998 if (IS_ERR(dentry))
1999 return ERR_CAST(dentry);
2000 if (unlikely(!dentry)) {
2001 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2002 if (IS_ERR(dentry))
2003 return ERR_CAST(dentry);
2004 }
2005 if (!(flags & WALK_MORE) && nd->depth)
2006 put_link(nd);
2007 return step_into(nd, flags, dentry);
2008 }
2009
2010 /*
2011 * We can do the critical dentry name comparison and hashing
2012 * operations one word at a time, but we are limited to:
2013 *
2014 * - Architectures with fast unaligned word accesses. We could
2015 * do a "get_unaligned()" if this helps and is sufficiently
2016 * fast.
2017 *
2018 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2019 * do not trap on the (extremely unlikely) case of a page
2020 * crossing operation.
2021 *
2022 * - Furthermore, we need an efficient 64-bit compile for the
2023 * 64-bit case in order to generate the "number of bytes in
2024 * the final mask". Again, that could be replaced with a
2025 * efficient population count instruction or similar.
2026 */
2027 #ifdef CONFIG_DCACHE_WORD_ACCESS
2028
2029 #include <asm/word-at-a-time.h>
2030
2031 #ifdef HASH_MIX
2032
2033 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2034
2035 #elif defined(CONFIG_64BIT)
2036 /*
2037 * Register pressure in the mixing function is an issue, particularly
2038 * on 32-bit x86, but almost any function requires one state value and
2039 * one temporary. Instead, use a function designed for two state values
2040 * and no temporaries.
2041 *
2042 * This function cannot create a collision in only two iterations, so
2043 * we have two iterations to achieve avalanche. In those two iterations,
2044 * we have six layers of mixing, which is enough to spread one bit's
2045 * influence out to 2^6 = 64 state bits.
2046 *
2047 * Rotate constants are scored by considering either 64 one-bit input
2048 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2049 * probability of that delta causing a change to each of the 128 output
2050 * bits, using a sample of random initial states.
2051 *
2052 * The Shannon entropy of the computed probabilities is then summed
2053 * to produce a score. Ideally, any input change has a 50% chance of
2054 * toggling any given output bit.
2055 *
2056 * Mixing scores (in bits) for (12,45):
2057 * Input delta: 1-bit 2-bit
2058 * 1 round: 713.3 42542.6
2059 * 2 rounds: 2753.7 140389.8
2060 * 3 rounds: 5954.1 233458.2
2061 * 4 rounds: 7862.6 256672.2
2062 * Perfect: 8192 258048
2063 * (64*128) (64*63/2 * 128)
2064 */
2065 #define HASH_MIX(x, y, a) \
2066 ( x ^= (a), \
2067 y ^= x, x = rol64(x,12),\
2068 x += y, y = rol64(y,45),\
2069 y *= 9 )
2070
2071 /*
2072 * Fold two longs into one 32-bit hash value. This must be fast, but
2073 * latency isn't quite as critical, as there is a fair bit of additional
2074 * work done before the hash value is used.
2075 */
2076 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2077 {
2078 y ^= x * GOLDEN_RATIO_64;
2079 y *= GOLDEN_RATIO_64;
2080 return y >> 32;
2081 }
2082
2083 #else /* 32-bit case */
2084
2085 /*
2086 * Mixing scores (in bits) for (7,20):
2087 * Input delta: 1-bit 2-bit
2088 * 1 round: 330.3 9201.6
2089 * 2 rounds: 1246.4 25475.4
2090 * 3 rounds: 1907.1 31295.1
2091 * 4 rounds: 2042.3 31718.6
2092 * Perfect: 2048 31744
2093 * (32*64) (32*31/2 * 64)
2094 */
2095 #define HASH_MIX(x, y, a) \
2096 ( x ^= (a), \
2097 y ^= x, x = rol32(x, 7),\
2098 x += y, y = rol32(y,20),\
2099 y *= 9 )
2100
2101 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2102 {
2103 /* Use arch-optimized multiply if one exists */
2104 return __hash_32(y ^ __hash_32(x));
2105 }
2106
2107 #endif
2108
2109 /*
2110 * Return the hash of a string of known length. This is carfully
2111 * designed to match hash_name(), which is the more critical function.
2112 * In particular, we must end by hashing a final word containing 0..7
2113 * payload bytes, to match the way that hash_name() iterates until it
2114 * finds the delimiter after the name.
2115 */
2116 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2117 {
2118 unsigned long a, x = 0, y = (unsigned long)salt;
2119
2120 for (;;) {
2121 if (!len)
2122 goto done;
2123 a = load_unaligned_zeropad(name);
2124 if (len < sizeof(unsigned long))
2125 break;
2126 HASH_MIX(x, y, a);
2127 name += sizeof(unsigned long);
2128 len -= sizeof(unsigned long);
2129 }
2130 x ^= a & bytemask_from_count(len);
2131 done:
2132 return fold_hash(x, y);
2133 }
2134 EXPORT_SYMBOL(full_name_hash);
2135
2136 /* Return the "hash_len" (hash and length) of a null-terminated string */
2137 u64 hashlen_string(const void *salt, const char *name)
2138 {
2139 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2140 unsigned long adata, mask, len;
2141 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2142
2143 len = 0;
2144 goto inside;
2145
2146 do {
2147 HASH_MIX(x, y, a);
2148 len += sizeof(unsigned long);
2149 inside:
2150 a = load_unaligned_zeropad(name+len);
2151 } while (!has_zero(a, &adata, &constants));
2152
2153 adata = prep_zero_mask(a, adata, &constants);
2154 mask = create_zero_mask(adata);
2155 x ^= a & zero_bytemask(mask);
2156
2157 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2158 }
2159 EXPORT_SYMBOL(hashlen_string);
2160
2161 /*
2162 * Calculate the length and hash of the path component, and
2163 * return the "hash_len" as the result.
2164 */
2165 static inline u64 hash_name(const void *salt, const char *name)
2166 {
2167 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2168 unsigned long adata, bdata, mask, len;
2169 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2170
2171 len = 0;
2172 goto inside;
2173
2174 do {
2175 HASH_MIX(x, y, a);
2176 len += sizeof(unsigned long);
2177 inside:
2178 a = load_unaligned_zeropad(name+len);
2179 b = a ^ REPEAT_BYTE('/');
2180 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2181
2182 adata = prep_zero_mask(a, adata, &constants);
2183 bdata = prep_zero_mask(b, bdata, &constants);
2184 mask = create_zero_mask(adata | bdata);
2185 x ^= a & zero_bytemask(mask);
2186
2187 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2188 }
2189
2190 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2191
2192 /* Return the hash of a string of known length */
2193 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2194 {
2195 unsigned long hash = init_name_hash(salt);
2196 while (len--)
2197 hash = partial_name_hash((unsigned char)*name++, hash);
2198 return end_name_hash(hash);
2199 }
2200 EXPORT_SYMBOL(full_name_hash);
2201
2202 /* Return the "hash_len" (hash and length) of a null-terminated string */
2203 u64 hashlen_string(const void *salt, const char *name)
2204 {
2205 unsigned long hash = init_name_hash(salt);
2206 unsigned long len = 0, c;
2207
2208 c = (unsigned char)*name;
2209 while (c) {
2210 len++;
2211 hash = partial_name_hash(c, hash);
2212 c = (unsigned char)name[len];
2213 }
2214 return hashlen_create(end_name_hash(hash), len);
2215 }
2216 EXPORT_SYMBOL(hashlen_string);
2217
2218 /*
2219 * We know there's a real path component here of at least
2220 * one character.
2221 */
2222 static inline u64 hash_name(const void *salt, const char *name)
2223 {
2224 unsigned long hash = init_name_hash(salt);
2225 unsigned long len = 0, c;
2226
2227 c = (unsigned char)*name;
2228 do {
2229 len++;
2230 hash = partial_name_hash(c, hash);
2231 c = (unsigned char)name[len];
2232 } while (c && c != '/');
2233 return hashlen_create(end_name_hash(hash), len);
2234 }
2235
2236 #endif
2237
2238 /*
2239 * Name resolution.
2240 * This is the basic name resolution function, turning a pathname into
2241 * the final dentry. We expect 'base' to be positive and a directory.
2242 *
2243 * Returns 0 and nd will have valid dentry and mnt on success.
2244 * Returns error and drops reference to input namei data on failure.
2245 */
2246 static int link_path_walk(const char *name, struct nameidata *nd)
2247 {
2248 int depth = 0; // depth <= nd->depth
2249 int err;
2250
2251 nd->last_type = LAST_ROOT;
2252 nd->flags |= LOOKUP_PARENT;
2253 if (IS_ERR(name))
2254 return PTR_ERR(name);
2255 while (*name=='/')
2256 name++;
2257 if (!*name) {
2258 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2259 return 0;
2260 }
2261
2262 /* At this point we know we have a real path component. */
2263 for(;;) {
2264 struct mnt_idmap *idmap;
2265 const char *link;
2266 u64 hash_len;
2267 int type;
2268
2269 idmap = mnt_idmap(nd->path.mnt);
2270 err = may_lookup(idmap, nd);
2271 if (err)
2272 return err;
2273
2274 hash_len = hash_name(nd->path.dentry, name);
2275
2276 type = LAST_NORM;
2277 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2278 case 2:
2279 if (name[1] == '.') {
2280 type = LAST_DOTDOT;
2281 nd->state |= ND_JUMPED;
2282 }
2283 break;
2284 case 1:
2285 type = LAST_DOT;
2286 }
2287 if (likely(type == LAST_NORM)) {
2288 struct dentry *parent = nd->path.dentry;
2289 nd->state &= ~ND_JUMPED;
2290 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2291 struct qstr this = { { .hash_len = hash_len }, .name = name };
2292 err = parent->d_op->d_hash(parent, &this);
2293 if (err < 0)
2294 return err;
2295 hash_len = this.hash_len;
2296 name = this.name;
2297 }
2298 }
2299
2300 nd->last.hash_len = hash_len;
2301 nd->last.name = name;
2302 nd->last_type = type;
2303
2304 name += hashlen_len(hash_len);
2305 if (!*name)
2306 goto OK;
2307 /*
2308 * If it wasn't NUL, we know it was '/'. Skip that
2309 * slash, and continue until no more slashes.
2310 */
2311 do {
2312 name++;
2313 } while (unlikely(*name == '/'));
2314 if (unlikely(!*name)) {
2315 OK:
2316 /* pathname or trailing symlink, done */
2317 if (!depth) {
2318 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2319 nd->dir_mode = nd->inode->i_mode;
2320 nd->flags &= ~LOOKUP_PARENT;
2321 return 0;
2322 }
2323 /* last component of nested symlink */
2324 name = nd->stack[--depth].name;
2325 link = walk_component(nd, 0);
2326 } else {
2327 /* not the last component */
2328 link = walk_component(nd, WALK_MORE);
2329 }
2330 if (unlikely(link)) {
2331 if (IS_ERR(link))
2332 return PTR_ERR(link);
2333 /* a symlink to follow */
2334 nd->stack[depth++].name = name;
2335 name = link;
2336 continue;
2337 }
2338 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2339 if (nd->flags & LOOKUP_RCU) {
2340 if (!try_to_unlazy(nd))
2341 return -ECHILD;
2342 }
2343 return -ENOTDIR;
2344 }
2345 }
2346 }
2347
2348 /* must be paired with terminate_walk() */
2349 static const char *path_init(struct nameidata *nd, unsigned flags)
2350 {
2351 int error;
2352 const char *s = nd->name->name;
2353
2354 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2355 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2356 return ERR_PTR(-EAGAIN);
2357
2358 if (!*s)
2359 flags &= ~LOOKUP_RCU;
2360 if (flags & LOOKUP_RCU)
2361 rcu_read_lock();
2362 else
2363 nd->seq = nd->next_seq = 0;
2364
2365 nd->flags = flags;
2366 nd->state |= ND_JUMPED;
2367
2368 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2369 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2370 smp_rmb();
2371
2372 if (nd->state & ND_ROOT_PRESET) {
2373 struct dentry *root = nd->root.dentry;
2374 struct inode *inode = root->d_inode;
2375 if (*s && unlikely(!d_can_lookup(root)))
2376 return ERR_PTR(-ENOTDIR);
2377 nd->path = nd->root;
2378 nd->inode = inode;
2379 if (flags & LOOKUP_RCU) {
2380 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2381 nd->root_seq = nd->seq;
2382 } else {
2383 path_get(&nd->path);
2384 }
2385 return s;
2386 }
2387
2388 nd->root.mnt = NULL;
2389
2390 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2391 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2392 error = nd_jump_root(nd);
2393 if (unlikely(error))
2394 return ERR_PTR(error);
2395 return s;
2396 }
2397
2398 /* Relative pathname -- get the starting-point it is relative to. */
2399 if (nd->dfd == AT_FDCWD) {
2400 if (flags & LOOKUP_RCU) {
2401 struct fs_struct *fs = current->fs;
2402 unsigned seq;
2403
2404 do {
2405 seq = read_seqcount_begin(&fs->seq);
2406 nd->path = fs->pwd;
2407 nd->inode = nd->path.dentry->d_inode;
2408 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2409 } while (read_seqcount_retry(&fs->seq, seq));
2410 } else {
2411 get_fs_pwd(current->fs, &nd->path);
2412 nd->inode = nd->path.dentry->d_inode;
2413 }
2414 } else {
2415 /* Caller must check execute permissions on the starting path component */
2416 struct fd f = fdget_raw(nd->dfd);
2417 struct dentry *dentry;
2418
2419 if (!f.file)
2420 return ERR_PTR(-EBADF);
2421
2422 dentry = f.file->f_path.dentry;
2423
2424 if (*s && unlikely(!d_can_lookup(dentry))) {
2425 fdput(f);
2426 return ERR_PTR(-ENOTDIR);
2427 }
2428
2429 nd->path = f.file->f_path;
2430 if (flags & LOOKUP_RCU) {
2431 nd->inode = nd->path.dentry->d_inode;
2432 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2433 } else {
2434 path_get(&nd->path);
2435 nd->inode = nd->path.dentry->d_inode;
2436 }
2437 fdput(f);
2438 }
2439
2440 /* For scoped-lookups we need to set the root to the dirfd as well. */
2441 if (flags & LOOKUP_IS_SCOPED) {
2442 nd->root = nd->path;
2443 if (flags & LOOKUP_RCU) {
2444 nd->root_seq = nd->seq;
2445 } else {
2446 path_get(&nd->root);
2447 nd->state |= ND_ROOT_GRABBED;
2448 }
2449 }
2450 return s;
2451 }
2452
2453 static inline const char *lookup_last(struct nameidata *nd)
2454 {
2455 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2456 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2457
2458 return walk_component(nd, WALK_TRAILING);
2459 }
2460
2461 static int handle_lookup_down(struct nameidata *nd)
2462 {
2463 if (!(nd->flags & LOOKUP_RCU))
2464 dget(nd->path.dentry);
2465 nd->next_seq = nd->seq;
2466 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2467 }
2468
2469 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2470 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2471 {
2472 const char *s = path_init(nd, flags);
2473 int err;
2474
2475 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2476 err = handle_lookup_down(nd);
2477 if (unlikely(err < 0))
2478 s = ERR_PTR(err);
2479 }
2480
2481 while (!(err = link_path_walk(s, nd)) &&
2482 (s = lookup_last(nd)) != NULL)
2483 ;
2484 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2485 err = handle_lookup_down(nd);
2486 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2487 }
2488 if (!err)
2489 err = complete_walk(nd);
2490
2491 if (!err && nd->flags & LOOKUP_DIRECTORY)
2492 if (!d_can_lookup(nd->path.dentry))
2493 err = -ENOTDIR;
2494 if (!err) {
2495 *path = nd->path;
2496 nd->path.mnt = NULL;
2497 nd->path.dentry = NULL;
2498 }
2499 terminate_walk(nd);
2500 return err;
2501 }
2502
2503 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2504 struct path *path, struct path *root)
2505 {
2506 int retval;
2507 struct nameidata nd;
2508 if (IS_ERR(name))
2509 return PTR_ERR(name);
2510 set_nameidata(&nd, dfd, name, root);
2511 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2512 if (unlikely(retval == -ECHILD))
2513 retval = path_lookupat(&nd, flags, path);
2514 if (unlikely(retval == -ESTALE))
2515 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2516
2517 if (likely(!retval))
2518 audit_inode(name, path->dentry,
2519 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2520 restore_nameidata();
2521 return retval;
2522 }
2523
2524 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2525 static int path_parentat(struct nameidata *nd, unsigned flags,
2526 struct path *parent)
2527 {
2528 const char *s = path_init(nd, flags);
2529 int err = link_path_walk(s, nd);
2530 if (!err)
2531 err = complete_walk(nd);
2532 if (!err) {
2533 *parent = nd->path;
2534 nd->path.mnt = NULL;
2535 nd->path.dentry = NULL;
2536 }
2537 terminate_walk(nd);
2538 return err;
2539 }
2540
2541 /* Note: this does not consume "name" */
2542 static int __filename_parentat(int dfd, struct filename *name,
2543 unsigned int flags, struct path *parent,
2544 struct qstr *last, int *type,
2545 const struct path *root)
2546 {
2547 int retval;
2548 struct nameidata nd;
2549
2550 if (IS_ERR(name))
2551 return PTR_ERR(name);
2552 set_nameidata(&nd, dfd, name, root);
2553 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2554 if (unlikely(retval == -ECHILD))
2555 retval = path_parentat(&nd, flags, parent);
2556 if (unlikely(retval == -ESTALE))
2557 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2558 if (likely(!retval)) {
2559 *last = nd.last;
2560 *type = nd.last_type;
2561 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2562 }
2563 restore_nameidata();
2564 return retval;
2565 }
2566
2567 static int filename_parentat(int dfd, struct filename *name,
2568 unsigned int flags, struct path *parent,
2569 struct qstr *last, int *type)
2570 {
2571 return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2572 }
2573
2574 /* does lookup, returns the object with parent locked */
2575 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2576 {
2577 struct dentry *d;
2578 struct qstr last;
2579 int type, error;
2580
2581 error = filename_parentat(dfd, name, 0, path, &last, &type);
2582 if (error)
2583 return ERR_PTR(error);
2584 if (unlikely(type != LAST_NORM)) {
2585 path_put(path);
2586 return ERR_PTR(-EINVAL);
2587 }
2588 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2589 d = lookup_one_qstr_excl(&last, path->dentry, 0);
2590 if (IS_ERR(d)) {
2591 inode_unlock(path->dentry->d_inode);
2592 path_put(path);
2593 }
2594 return d;
2595 }
2596
2597 struct dentry *kern_path_locked(const char *name, struct path *path)
2598 {
2599 struct filename *filename = getname_kernel(name);
2600 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2601
2602 putname(filename);
2603 return res;
2604 }
2605
2606 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2607 {
2608 struct filename *filename = getname(name);
2609 struct dentry *res = __kern_path_locked(dfd, filename, path);
2610
2611 putname(filename);
2612 return res;
2613 }
2614 EXPORT_SYMBOL(user_path_locked_at);
2615
2616 int kern_path(const char *name, unsigned int flags, struct path *path)
2617 {
2618 struct filename *filename = getname_kernel(name);
2619 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2620
2621 putname(filename);
2622 return ret;
2623
2624 }
2625 EXPORT_SYMBOL(kern_path);
2626
2627 /**
2628 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2629 * @filename: filename structure
2630 * @flags: lookup flags
2631 * @parent: pointer to struct path to fill
2632 * @last: last component
2633 * @type: type of the last component
2634 * @root: pointer to struct path of the base directory
2635 */
2636 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2637 struct path *parent, struct qstr *last, int *type,
2638 const struct path *root)
2639 {
2640 return __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2641 type, root);
2642 }
2643 EXPORT_SYMBOL(vfs_path_parent_lookup);
2644
2645 /**
2646 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2647 * @dentry: pointer to dentry of the base directory
2648 * @mnt: pointer to vfs mount of the base directory
2649 * @name: pointer to file name
2650 * @flags: lookup flags
2651 * @path: pointer to struct path to fill
2652 */
2653 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2654 const char *name, unsigned int flags,
2655 struct path *path)
2656 {
2657 struct filename *filename;
2658 struct path root = {.mnt = mnt, .dentry = dentry};
2659 int ret;
2660
2661 filename = getname_kernel(name);
2662 /* the first argument of filename_lookup() is ignored with root */
2663 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2664 putname(filename);
2665 return ret;
2666 }
2667 EXPORT_SYMBOL(vfs_path_lookup);
2668
2669 static int lookup_one_common(struct mnt_idmap *idmap,
2670 const char *name, struct dentry *base, int len,
2671 struct qstr *this)
2672 {
2673 this->name = name;
2674 this->len = len;
2675 this->hash = full_name_hash(base, name, len);
2676 if (!len)
2677 return -EACCES;
2678
2679 if (unlikely(name[0] == '.')) {
2680 if (len < 2 || (len == 2 && name[1] == '.'))
2681 return -EACCES;
2682 }
2683
2684 while (len--) {
2685 unsigned int c = *(const unsigned char *)name++;
2686 if (c == '/' || c == '\0')
2687 return -EACCES;
2688 }
2689 /*
2690 * See if the low-level filesystem might want
2691 * to use its own hash..
2692 */
2693 if (base->d_flags & DCACHE_OP_HASH) {
2694 int err = base->d_op->d_hash(base, this);
2695 if (err < 0)
2696 return err;
2697 }
2698
2699 return inode_permission(idmap, base->d_inode, MAY_EXEC);
2700 }
2701
2702 /**
2703 * try_lookup_one_len - filesystem helper to lookup single pathname component
2704 * @name: pathname component to lookup
2705 * @base: base directory to lookup from
2706 * @len: maximum length @len should be interpreted to
2707 *
2708 * Look up a dentry by name in the dcache, returning NULL if it does not
2709 * currently exist. The function does not try to create a dentry.
2710 *
2711 * Note that this routine is purely a helper for filesystem usage and should
2712 * not be called by generic code.
2713 *
2714 * The caller must hold base->i_mutex.
2715 */
2716 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2717 {
2718 struct qstr this;
2719 int err;
2720
2721 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2722
2723 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2724 if (err)
2725 return ERR_PTR(err);
2726
2727 return lookup_dcache(&this, base, 0);
2728 }
2729 EXPORT_SYMBOL(try_lookup_one_len);
2730
2731 /**
2732 * lookup_one_len - filesystem helper to lookup single pathname component
2733 * @name: pathname component to lookup
2734 * @base: base directory to lookup from
2735 * @len: maximum length @len should be interpreted to
2736 *
2737 * Note that this routine is purely a helper for filesystem usage and should
2738 * not be called by generic code.
2739 *
2740 * The caller must hold base->i_mutex.
2741 */
2742 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2743 {
2744 struct dentry *dentry;
2745 struct qstr this;
2746 int err;
2747
2748 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2749
2750 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2751 if (err)
2752 return ERR_PTR(err);
2753
2754 dentry = lookup_dcache(&this, base, 0);
2755 return dentry ? dentry : __lookup_slow(&this, base, 0);
2756 }
2757 EXPORT_SYMBOL(lookup_one_len);
2758
2759 /**
2760 * lookup_one - filesystem helper to lookup single pathname component
2761 * @idmap: idmap of the mount the lookup is performed from
2762 * @name: pathname component to lookup
2763 * @base: base directory to lookup from
2764 * @len: maximum length @len should be interpreted to
2765 *
2766 * Note that this routine is purely a helper for filesystem usage and should
2767 * not be called by generic code.
2768 *
2769 * The caller must hold base->i_mutex.
2770 */
2771 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2772 struct dentry *base, int len)
2773 {
2774 struct dentry *dentry;
2775 struct qstr this;
2776 int err;
2777
2778 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2779
2780 err = lookup_one_common(idmap, name, base, len, &this);
2781 if (err)
2782 return ERR_PTR(err);
2783
2784 dentry = lookup_dcache(&this, base, 0);
2785 return dentry ? dentry : __lookup_slow(&this, base, 0);
2786 }
2787 EXPORT_SYMBOL(lookup_one);
2788
2789 /**
2790 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2791 * @idmap: idmap of the mount the lookup is performed from
2792 * @name: pathname component to lookup
2793 * @base: base directory to lookup from
2794 * @len: maximum length @len should be interpreted to
2795 *
2796 * Note that this routine is purely a helper for filesystem usage and should
2797 * not be called by generic code.
2798 *
2799 * Unlike lookup_one_len, it should be called without the parent
2800 * i_mutex held, and will take the i_mutex itself if necessary.
2801 */
2802 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2803 const char *name, struct dentry *base,
2804 int len)
2805 {
2806 struct qstr this;
2807 int err;
2808 struct dentry *ret;
2809
2810 err = lookup_one_common(idmap, name, base, len, &this);
2811 if (err)
2812 return ERR_PTR(err);
2813
2814 ret = lookup_dcache(&this, base, 0);
2815 if (!ret)
2816 ret = lookup_slow(&this, base, 0);
2817 return ret;
2818 }
2819 EXPORT_SYMBOL(lookup_one_unlocked);
2820
2821 /**
2822 * lookup_one_positive_unlocked - filesystem helper to lookup single
2823 * pathname component
2824 * @idmap: idmap of the mount the lookup is performed from
2825 * @name: pathname component to lookup
2826 * @base: base directory to lookup from
2827 * @len: maximum length @len should be interpreted to
2828 *
2829 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2830 * known positive or ERR_PTR(). This is what most of the users want.
2831 *
2832 * Note that pinned negative with unlocked parent _can_ become positive at any
2833 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2834 * positives have >d_inode stable, so this one avoids such problems.
2835 *
2836 * Note that this routine is purely a helper for filesystem usage and should
2837 * not be called by generic code.
2838 *
2839 * The helper should be called without i_mutex held.
2840 */
2841 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2842 const char *name,
2843 struct dentry *base, int len)
2844 {
2845 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2846
2847 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2848 dput(ret);
2849 ret = ERR_PTR(-ENOENT);
2850 }
2851 return ret;
2852 }
2853 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2854
2855 /**
2856 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2857 * @name: pathname component to lookup
2858 * @base: base directory to lookup from
2859 * @len: maximum length @len should be interpreted to
2860 *
2861 * Note that this routine is purely a helper for filesystem usage and should
2862 * not be called by generic code.
2863 *
2864 * Unlike lookup_one_len, it should be called without the parent
2865 * i_mutex held, and will take the i_mutex itself if necessary.
2866 */
2867 struct dentry *lookup_one_len_unlocked(const char *name,
2868 struct dentry *base, int len)
2869 {
2870 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
2871 }
2872 EXPORT_SYMBOL(lookup_one_len_unlocked);
2873
2874 /*
2875 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2876 * on negatives. Returns known positive or ERR_PTR(); that's what
2877 * most of the users want. Note that pinned negative with unlocked parent
2878 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2879 * need to be very careful; pinned positives have ->d_inode stable, so
2880 * this one avoids such problems.
2881 */
2882 struct dentry *lookup_positive_unlocked(const char *name,
2883 struct dentry *base, int len)
2884 {
2885 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
2886 }
2887 EXPORT_SYMBOL(lookup_positive_unlocked);
2888
2889 #ifdef CONFIG_UNIX98_PTYS
2890 int path_pts(struct path *path)
2891 {
2892 /* Find something mounted on "pts" in the same directory as
2893 * the input path.
2894 */
2895 struct dentry *parent = dget_parent(path->dentry);
2896 struct dentry *child;
2897 struct qstr this = QSTR_INIT("pts", 3);
2898
2899 if (unlikely(!path_connected(path->mnt, parent))) {
2900 dput(parent);
2901 return -ENOENT;
2902 }
2903 dput(path->dentry);
2904 path->dentry = parent;
2905 child = d_hash_and_lookup(parent, &this);
2906 if (IS_ERR_OR_NULL(child))
2907 return -ENOENT;
2908
2909 path->dentry = child;
2910 dput(parent);
2911 follow_down(path, 0);
2912 return 0;
2913 }
2914 #endif
2915
2916 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2917 struct path *path, int *empty)
2918 {
2919 struct filename *filename = getname_flags(name, flags, empty);
2920 int ret = filename_lookup(dfd, filename, flags, path, NULL);
2921
2922 putname(filename);
2923 return ret;
2924 }
2925 EXPORT_SYMBOL(user_path_at_empty);
2926
2927 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2928 struct inode *inode)
2929 {
2930 kuid_t fsuid = current_fsuid();
2931
2932 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
2933 return 0;
2934 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
2935 return 0;
2936 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
2937 }
2938 EXPORT_SYMBOL(__check_sticky);
2939
2940 /*
2941 * Check whether we can remove a link victim from directory dir, check
2942 * whether the type of victim is right.
2943 * 1. We can't do it if dir is read-only (done in permission())
2944 * 2. We should have write and exec permissions on dir
2945 * 3. We can't remove anything from append-only dir
2946 * 4. We can't do anything with immutable dir (done in permission())
2947 * 5. If the sticky bit on dir is set we should either
2948 * a. be owner of dir, or
2949 * b. be owner of victim, or
2950 * c. have CAP_FOWNER capability
2951 * 6. If the victim is append-only or immutable we can't do antyhing with
2952 * links pointing to it.
2953 * 7. If the victim has an unknown uid or gid we can't change the inode.
2954 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2955 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2956 * 10. We can't remove a root or mountpoint.
2957 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2958 * nfs_async_unlink().
2959 */
2960 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
2961 struct dentry *victim, bool isdir)
2962 {
2963 struct inode *inode = d_backing_inode(victim);
2964 int error;
2965
2966 if (d_is_negative(victim))
2967 return -ENOENT;
2968 BUG_ON(!inode);
2969
2970 BUG_ON(victim->d_parent->d_inode != dir);
2971
2972 /* Inode writeback is not safe when the uid or gid are invalid. */
2973 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2974 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
2975 return -EOVERFLOW;
2976
2977 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2978
2979 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
2980 if (error)
2981 return error;
2982 if (IS_APPEND(dir))
2983 return -EPERM;
2984
2985 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
2986 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2987 HAS_UNMAPPED_ID(idmap, inode))
2988 return -EPERM;
2989 if (isdir) {
2990 if (!d_is_dir(victim))
2991 return -ENOTDIR;
2992 if (IS_ROOT(victim))
2993 return -EBUSY;
2994 } else if (d_is_dir(victim))
2995 return -EISDIR;
2996 if (IS_DEADDIR(dir))
2997 return -ENOENT;
2998 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2999 return -EBUSY;
3000 return 0;
3001 }
3002
3003 /* Check whether we can create an object with dentry child in directory
3004 * dir.
3005 * 1. We can't do it if child already exists (open has special treatment for
3006 * this case, but since we are inlined it's OK)
3007 * 2. We can't do it if dir is read-only (done in permission())
3008 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
3009 * 4. We should have write and exec permissions on dir
3010 * 5. We can't do it if dir is immutable (done in permission())
3011 */
3012 static inline int may_create(struct mnt_idmap *idmap,
3013 struct inode *dir, struct dentry *child)
3014 {
3015 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3016 if (child->d_inode)
3017 return -EEXIST;
3018 if (IS_DEADDIR(dir))
3019 return -ENOENT;
3020 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3021 return -EOVERFLOW;
3022
3023 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3024 }
3025
3026 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3027 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3028 {
3029 struct dentry *p = p1, *q = p2, *r;
3030
3031 while ((r = p->d_parent) != p2 && r != p)
3032 p = r;
3033 if (r == p2) {
3034 // p is a child of p2 and an ancestor of p1 or p1 itself
3035 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3036 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3037 return p;
3038 }
3039 // p is the root of connected component that contains p1
3040 // p2 does not occur on the path from p to p1
3041 while ((r = q->d_parent) != p1 && r != p && r != q)
3042 q = r;
3043 if (r == p1) {
3044 // q is a child of p1 and an ancestor of p2 or p2 itself
3045 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3046 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3047 return q;
3048 } else if (likely(r == p)) {
3049 // both p2 and p1 are descendents of p
3050 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3051 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3052 return NULL;
3053 } else { // no common ancestor at the time we'd been called
3054 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3055 return ERR_PTR(-EXDEV);
3056 }
3057 }
3058
3059 /*
3060 * p1 and p2 should be directories on the same fs.
3061 */
3062 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3063 {
3064 if (p1 == p2) {
3065 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3066 return NULL;
3067 }
3068
3069 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3070 return lock_two_directories(p1, p2);
3071 }
3072 EXPORT_SYMBOL(lock_rename);
3073
3074 /*
3075 * c1 and p2 should be on the same fs.
3076 */
3077 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3078 {
3079 if (READ_ONCE(c1->d_parent) == p2) {
3080 /*
3081 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3082 */
3083 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3084 /*
3085 * now that p2 is locked, nobody can move in or out of it,
3086 * so the test below is safe.
3087 */
3088 if (likely(c1->d_parent == p2))
3089 return NULL;
3090
3091 /*
3092 * c1 got moved out of p2 while we'd been taking locks;
3093 * unlock and fall back to slow case.
3094 */
3095 inode_unlock(p2->d_inode);
3096 }
3097
3098 mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3099 /*
3100 * nobody can move out of any directories on this fs.
3101 */
3102 if (likely(c1->d_parent != p2))
3103 return lock_two_directories(c1->d_parent, p2);
3104
3105 /*
3106 * c1 got moved into p2 while we were taking locks;
3107 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3108 * for consistency with lock_rename().
3109 */
3110 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3111 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3112 return NULL;
3113 }
3114 EXPORT_SYMBOL(lock_rename_child);
3115
3116 void unlock_rename(struct dentry *p1, struct dentry *p2)
3117 {
3118 inode_unlock(p1->d_inode);
3119 if (p1 != p2) {
3120 inode_unlock(p2->d_inode);
3121 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3122 }
3123 }
3124 EXPORT_SYMBOL(unlock_rename);
3125
3126 /**
3127 * vfs_prepare_mode - prepare the mode to be used for a new inode
3128 * @idmap: idmap of the mount the inode was found from
3129 * @dir: parent directory of the new inode
3130 * @mode: mode of the new inode
3131 * @mask_perms: allowed permission by the vfs
3132 * @type: type of file to be created
3133 *
3134 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3135 * object to be created.
3136 *
3137 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3138 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3139 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3140 * POSIX ACL supporting filesystems.
3141 *
3142 * Note that it's currently valid for @type to be 0 if a directory is created.
3143 * Filesystems raise that flag individually and we need to check whether each
3144 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3145 * non-zero type.
3146 *
3147 * Returns: mode to be passed to the filesystem
3148 */
3149 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3150 const struct inode *dir, umode_t mode,
3151 umode_t mask_perms, umode_t type)
3152 {
3153 mode = mode_strip_sgid(idmap, dir, mode);
3154 mode = mode_strip_umask(dir, mode);
3155
3156 /*
3157 * Apply the vfs mandated allowed permission mask and set the type of
3158 * file to be created before we call into the filesystem.
3159 */
3160 mode &= (mask_perms & ~S_IFMT);
3161 mode |= (type & S_IFMT);
3162
3163 return mode;
3164 }
3165
3166 /**
3167 * vfs_create - create new file
3168 * @idmap: idmap of the mount the inode was found from
3169 * @dir: inode of @dentry
3170 * @dentry: pointer to dentry of the base directory
3171 * @mode: mode of the new file
3172 * @want_excl: whether the file must not yet exist
3173 *
3174 * Create a new file.
3175 *
3176 * If the inode has been found through an idmapped mount the idmap of
3177 * the vfsmount must be passed through @idmap. This function will then take
3178 * care to map the inode according to @idmap before checking permissions.
3179 * On non-idmapped mounts or if permission checking is to be performed on the
3180 * raw inode simply pass @nop_mnt_idmap.
3181 */
3182 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3183 struct dentry *dentry, umode_t mode, bool want_excl)
3184 {
3185 int error;
3186
3187 error = may_create(idmap, dir, dentry);
3188 if (error)
3189 return error;
3190
3191 if (!dir->i_op->create)
3192 return -EACCES; /* shouldn't it be ENOSYS? */
3193
3194 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3195 error = security_inode_create(dir, dentry, mode);
3196 if (error)
3197 return error;
3198 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3199 if (!error)
3200 fsnotify_create(dir, dentry);
3201 return error;
3202 }
3203 EXPORT_SYMBOL(vfs_create);
3204
3205 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3206 int (*f)(struct dentry *, umode_t, void *),
3207 void *arg)
3208 {
3209 struct inode *dir = dentry->d_parent->d_inode;
3210 int error = may_create(&nop_mnt_idmap, dir, dentry);
3211 if (error)
3212 return error;
3213
3214 mode &= S_IALLUGO;
3215 mode |= S_IFREG;
3216 error = security_inode_create(dir, dentry, mode);
3217 if (error)
3218 return error;
3219 error = f(dentry, mode, arg);
3220 if (!error)
3221 fsnotify_create(dir, dentry);
3222 return error;
3223 }
3224 EXPORT_SYMBOL(vfs_mkobj);
3225
3226 bool may_open_dev(const struct path *path)
3227 {
3228 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3229 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3230 }
3231
3232 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3233 int acc_mode, int flag)
3234 {
3235 struct dentry *dentry = path->dentry;
3236 struct inode *inode = dentry->d_inode;
3237 int error;
3238
3239 if (!inode)
3240 return -ENOENT;
3241
3242 switch (inode->i_mode & S_IFMT) {
3243 case S_IFLNK:
3244 return -ELOOP;
3245 case S_IFDIR:
3246 if (acc_mode & MAY_WRITE)
3247 return -EISDIR;
3248 if (acc_mode & MAY_EXEC)
3249 return -EACCES;
3250 break;
3251 case S_IFBLK:
3252 case S_IFCHR:
3253 if (!may_open_dev(path))
3254 return -EACCES;
3255 fallthrough;
3256 case S_IFIFO:
3257 case S_IFSOCK:
3258 if (acc_mode & MAY_EXEC)
3259 return -EACCES;
3260 flag &= ~O_TRUNC;
3261 break;
3262 case S_IFREG:
3263 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3264 return -EACCES;
3265 break;
3266 }
3267
3268 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3269 if (error)
3270 return error;
3271
3272 /*
3273 * An append-only file must be opened in append mode for writing.
3274 */
3275 if (IS_APPEND(inode)) {
3276 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3277 return -EPERM;
3278 if (flag & O_TRUNC)
3279 return -EPERM;
3280 }
3281
3282 /* O_NOATIME can only be set by the owner or superuser */
3283 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3284 return -EPERM;
3285
3286 return 0;
3287 }
3288
3289 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3290 {
3291 const struct path *path = &filp->f_path;
3292 struct inode *inode = path->dentry->d_inode;
3293 int error = get_write_access(inode);
3294 if (error)
3295 return error;
3296
3297 error = security_file_truncate(filp);
3298 if (!error) {
3299 error = do_truncate(idmap, path->dentry, 0,
3300 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3301 filp);
3302 }
3303 put_write_access(inode);
3304 return error;
3305 }
3306
3307 static inline int open_to_namei_flags(int flag)
3308 {
3309 if ((flag & O_ACCMODE) == 3)
3310 flag--;
3311 return flag;
3312 }
3313
3314 static int may_o_create(struct mnt_idmap *idmap,
3315 const struct path *dir, struct dentry *dentry,
3316 umode_t mode)
3317 {
3318 int error = security_path_mknod(dir, dentry, mode, 0);
3319 if (error)
3320 return error;
3321
3322 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3323 return -EOVERFLOW;
3324
3325 error = inode_permission(idmap, dir->dentry->d_inode,
3326 MAY_WRITE | MAY_EXEC);
3327 if (error)
3328 return error;
3329
3330 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3331 }
3332
3333 /*
3334 * Attempt to atomically look up, create and open a file from a negative
3335 * dentry.
3336 *
3337 * Returns 0 if successful. The file will have been created and attached to
3338 * @file by the filesystem calling finish_open().
3339 *
3340 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3341 * be set. The caller will need to perform the open themselves. @path will
3342 * have been updated to point to the new dentry. This may be negative.
3343 *
3344 * Returns an error code otherwise.
3345 */
3346 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3347 struct file *file,
3348 int open_flag, umode_t mode)
3349 {
3350 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3351 struct inode *dir = nd->path.dentry->d_inode;
3352 int error;
3353
3354 if (nd->flags & LOOKUP_DIRECTORY)
3355 open_flag |= O_DIRECTORY;
3356
3357 file->f_path.dentry = DENTRY_NOT_SET;
3358 file->f_path.mnt = nd->path.mnt;
3359 error = dir->i_op->atomic_open(dir, dentry, file,
3360 open_to_namei_flags(open_flag), mode);
3361 d_lookup_done(dentry);
3362 if (!error) {
3363 if (file->f_mode & FMODE_OPENED) {
3364 if (unlikely(dentry != file->f_path.dentry)) {
3365 dput(dentry);
3366 dentry = dget(file->f_path.dentry);
3367 }
3368 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3369 error = -EIO;
3370 } else {
3371 if (file->f_path.dentry) {
3372 dput(dentry);
3373 dentry = file->f_path.dentry;
3374 }
3375 if (unlikely(d_is_negative(dentry)))
3376 error = -ENOENT;
3377 }
3378 }
3379 if (error) {
3380 dput(dentry);
3381 dentry = ERR_PTR(error);
3382 }
3383 return dentry;
3384 }
3385
3386 /*
3387 * Look up and maybe create and open the last component.
3388 *
3389 * Must be called with parent locked (exclusive in O_CREAT case).
3390 *
3391 * Returns 0 on success, that is, if
3392 * the file was successfully atomically created (if necessary) and opened, or
3393 * the file was not completely opened at this time, though lookups and
3394 * creations were performed.
3395 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3396 * In the latter case dentry returned in @path might be negative if O_CREAT
3397 * hadn't been specified.
3398 *
3399 * An error code is returned on failure.
3400 */
3401 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3402 const struct open_flags *op,
3403 bool got_write)
3404 {
3405 struct mnt_idmap *idmap;
3406 struct dentry *dir = nd->path.dentry;
3407 struct inode *dir_inode = dir->d_inode;
3408 int open_flag = op->open_flag;
3409 struct dentry *dentry;
3410 int error, create_error = 0;
3411 umode_t mode = op->mode;
3412 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3413
3414 if (unlikely(IS_DEADDIR(dir_inode)))
3415 return ERR_PTR(-ENOENT);
3416
3417 file->f_mode &= ~FMODE_CREATED;
3418 dentry = d_lookup(dir, &nd->last);
3419 for (;;) {
3420 if (!dentry) {
3421 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3422 if (IS_ERR(dentry))
3423 return dentry;
3424 }
3425 if (d_in_lookup(dentry))
3426 break;
3427
3428 error = d_revalidate(dentry, nd->flags);
3429 if (likely(error > 0))
3430 break;
3431 if (error)
3432 goto out_dput;
3433 d_invalidate(dentry);
3434 dput(dentry);
3435 dentry = NULL;
3436 }
3437 if (dentry->d_inode) {
3438 /* Cached positive dentry: will open in f_op->open */
3439 return dentry;
3440 }
3441
3442 /*
3443 * Checking write permission is tricky, bacuse we don't know if we are
3444 * going to actually need it: O_CREAT opens should work as long as the
3445 * file exists. But checking existence breaks atomicity. The trick is
3446 * to check access and if not granted clear O_CREAT from the flags.
3447 *
3448 * Another problem is returing the "right" error value (e.g. for an
3449 * O_EXCL open we want to return EEXIST not EROFS).
3450 */
3451 if (unlikely(!got_write))
3452 open_flag &= ~O_TRUNC;
3453 idmap = mnt_idmap(nd->path.mnt);
3454 if (open_flag & O_CREAT) {
3455 if (open_flag & O_EXCL)
3456 open_flag &= ~O_TRUNC;
3457 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3458 if (likely(got_write))
3459 create_error = may_o_create(idmap, &nd->path,
3460 dentry, mode);
3461 else
3462 create_error = -EROFS;
3463 }
3464 if (create_error)
3465 open_flag &= ~O_CREAT;
3466 if (dir_inode->i_op->atomic_open) {
3467 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3468 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3469 dentry = ERR_PTR(create_error);
3470 return dentry;
3471 }
3472
3473 if (d_in_lookup(dentry)) {
3474 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3475 nd->flags);
3476 d_lookup_done(dentry);
3477 if (unlikely(res)) {
3478 if (IS_ERR(res)) {
3479 error = PTR_ERR(res);
3480 goto out_dput;
3481 }
3482 dput(dentry);
3483 dentry = res;
3484 }
3485 }
3486
3487 /* Negative dentry, just create the file */
3488 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3489 file->f_mode |= FMODE_CREATED;
3490 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3491 if (!dir_inode->i_op->create) {
3492 error = -EACCES;
3493 goto out_dput;
3494 }
3495
3496 error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3497 mode, open_flag & O_EXCL);
3498 if (error)
3499 goto out_dput;
3500 }
3501 if (unlikely(create_error) && !dentry->d_inode) {
3502 error = create_error;
3503 goto out_dput;
3504 }
3505 return dentry;
3506
3507 out_dput:
3508 dput(dentry);
3509 return ERR_PTR(error);
3510 }
3511
3512 static const char *open_last_lookups(struct nameidata *nd,
3513 struct file *file, const struct open_flags *op)
3514 {
3515 struct dentry *dir = nd->path.dentry;
3516 int open_flag = op->open_flag;
3517 bool got_write = false;
3518 struct dentry *dentry;
3519 const char *res;
3520
3521 nd->flags |= op->intent;
3522
3523 if (nd->last_type != LAST_NORM) {
3524 if (nd->depth)
3525 put_link(nd);
3526 return handle_dots(nd, nd->last_type);
3527 }
3528
3529 if (!(open_flag & O_CREAT)) {
3530 if (nd->last.name[nd->last.len])
3531 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3532 /* we _can_ be in RCU mode here */
3533 dentry = lookup_fast(nd);
3534 if (IS_ERR(dentry))
3535 return ERR_CAST(dentry);
3536 if (likely(dentry))
3537 goto finish_lookup;
3538
3539 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3540 return ERR_PTR(-ECHILD);
3541 } else {
3542 /* create side of things */
3543 if (nd->flags & LOOKUP_RCU) {
3544 if (!try_to_unlazy(nd))
3545 return ERR_PTR(-ECHILD);
3546 }
3547 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3548 /* trailing slashes? */
3549 if (unlikely(nd->last.name[nd->last.len]))
3550 return ERR_PTR(-EISDIR);
3551 }
3552
3553 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3554 got_write = !mnt_want_write(nd->path.mnt);
3555 /*
3556 * do _not_ fail yet - we might not need that or fail with
3557 * a different error; let lookup_open() decide; we'll be
3558 * dropping this one anyway.
3559 */
3560 }
3561 if (open_flag & O_CREAT)
3562 inode_lock(dir->d_inode);
3563 else
3564 inode_lock_shared(dir->d_inode);
3565 dentry = lookup_open(nd, file, op, got_write);
3566 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3567 fsnotify_create(dir->d_inode, dentry);
3568 if (open_flag & O_CREAT)
3569 inode_unlock(dir->d_inode);
3570 else
3571 inode_unlock_shared(dir->d_inode);
3572
3573 if (got_write)
3574 mnt_drop_write(nd->path.mnt);
3575
3576 if (IS_ERR(dentry))
3577 return ERR_CAST(dentry);
3578
3579 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3580 dput(nd->path.dentry);
3581 nd->path.dentry = dentry;
3582 return NULL;
3583 }
3584
3585 finish_lookup:
3586 if (nd->depth)
3587 put_link(nd);
3588 res = step_into(nd, WALK_TRAILING, dentry);
3589 if (unlikely(res))
3590 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3591 return res;
3592 }
3593
3594 /*
3595 * Handle the last step of open()
3596 */
3597 static int do_open(struct nameidata *nd,
3598 struct file *file, const struct open_flags *op)
3599 {
3600 struct mnt_idmap *idmap;
3601 int open_flag = op->open_flag;
3602 bool do_truncate;
3603 int acc_mode;
3604 int error;
3605
3606 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3607 error = complete_walk(nd);
3608 if (error)
3609 return error;
3610 }
3611 if (!(file->f_mode & FMODE_CREATED))
3612 audit_inode(nd->name, nd->path.dentry, 0);
3613 idmap = mnt_idmap(nd->path.mnt);
3614 if (open_flag & O_CREAT) {
3615 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3616 return -EEXIST;
3617 if (d_is_dir(nd->path.dentry))
3618 return -EISDIR;
3619 error = may_create_in_sticky(idmap, nd,
3620 d_backing_inode(nd->path.dentry));
3621 if (unlikely(error))
3622 return error;
3623 }
3624 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3625 return -ENOTDIR;
3626
3627 do_truncate = false;
3628 acc_mode = op->acc_mode;
3629 if (file->f_mode & FMODE_CREATED) {
3630 /* Don't check for write permission, don't truncate */
3631 open_flag &= ~O_TRUNC;
3632 acc_mode = 0;
3633 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3634 error = mnt_want_write(nd->path.mnt);
3635 if (error)
3636 return error;
3637 do_truncate = true;
3638 }
3639 error = may_open(idmap, &nd->path, acc_mode, open_flag);
3640 if (!error && !(file->f_mode & FMODE_OPENED))
3641 error = vfs_open(&nd->path, file);
3642 if (!error)
3643 error = ima_file_check(file, op->acc_mode);
3644 if (!error && do_truncate)
3645 error = handle_truncate(idmap, file);
3646 if (unlikely(error > 0)) {
3647 WARN_ON(1);
3648 error = -EINVAL;
3649 }
3650 if (do_truncate)
3651 mnt_drop_write(nd->path.mnt);
3652 return error;
3653 }
3654
3655 /**
3656 * vfs_tmpfile - create tmpfile
3657 * @idmap: idmap of the mount the inode was found from
3658 * @parentpath: pointer to the path of the base directory
3659 * @file: file descriptor of the new tmpfile
3660 * @mode: mode of the new tmpfile
3661 *
3662 * Create a temporary file.
3663 *
3664 * If the inode has been found through an idmapped mount the idmap of
3665 * the vfsmount must be passed through @idmap. This function will then take
3666 * care to map the inode according to @idmap before checking permissions.
3667 * On non-idmapped mounts or if permission checking is to be performed on the
3668 * raw inode simply pass @nop_mnt_idmap.
3669 */
3670 static int vfs_tmpfile(struct mnt_idmap *idmap,
3671 const struct path *parentpath,
3672 struct file *file, umode_t mode)
3673 {
3674 struct dentry *child;
3675 struct inode *dir = d_inode(parentpath->dentry);
3676 struct inode *inode;
3677 int error;
3678 int open_flag = file->f_flags;
3679
3680 /* we want directory to be writable */
3681 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3682 if (error)
3683 return error;
3684 if (!dir->i_op->tmpfile)
3685 return -EOPNOTSUPP;
3686 child = d_alloc(parentpath->dentry, &slash_name);
3687 if (unlikely(!child))
3688 return -ENOMEM;
3689 file->f_path.mnt = parentpath->mnt;
3690 file->f_path.dentry = child;
3691 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3692 error = dir->i_op->tmpfile(idmap, dir, file, mode);
3693 dput(child);
3694 if (error)
3695 return error;
3696 /* Don't check for other permissions, the inode was just created */
3697 error = may_open(idmap, &file->f_path, 0, file->f_flags);
3698 if (error)
3699 return error;
3700 inode = file_inode(file);
3701 if (!(open_flag & O_EXCL)) {
3702 spin_lock(&inode->i_lock);
3703 inode->i_state |= I_LINKABLE;
3704 spin_unlock(&inode->i_lock);
3705 }
3706 ima_post_create_tmpfile(idmap, inode);
3707 return 0;
3708 }
3709
3710 /**
3711 * kernel_tmpfile_open - open a tmpfile for kernel internal use
3712 * @idmap: idmap of the mount the inode was found from
3713 * @parentpath: path of the base directory
3714 * @mode: mode of the new tmpfile
3715 * @open_flag: flags
3716 * @cred: credentials for open
3717 *
3718 * Create and open a temporary file. The file is not accounted in nr_files,
3719 * hence this is only for kernel internal use, and must not be installed into
3720 * file tables or such.
3721 */
3722 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3723 const struct path *parentpath,
3724 umode_t mode, int open_flag,
3725 const struct cred *cred)
3726 {
3727 struct file *file;
3728 int error;
3729
3730 file = alloc_empty_file_noaccount(open_flag, cred);
3731 if (IS_ERR(file))
3732 return file;
3733
3734 error = vfs_tmpfile(idmap, parentpath, file, mode);
3735 if (error) {
3736 fput(file);
3737 file = ERR_PTR(error);
3738 }
3739 return file;
3740 }
3741 EXPORT_SYMBOL(kernel_tmpfile_open);
3742
3743 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3744 const struct open_flags *op,
3745 struct file *file)
3746 {
3747 struct path path;
3748 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3749
3750 if (unlikely(error))
3751 return error;
3752 error = mnt_want_write(path.mnt);
3753 if (unlikely(error))
3754 goto out;
3755 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3756 if (error)
3757 goto out2;
3758 audit_inode(nd->name, file->f_path.dentry, 0);
3759 out2:
3760 mnt_drop_write(path.mnt);
3761 out:
3762 path_put(&path);
3763 return error;
3764 }
3765
3766 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3767 {
3768 struct path path;
3769 int error = path_lookupat(nd, flags, &path);
3770 if (!error) {
3771 audit_inode(nd->name, path.dentry, 0);
3772 error = vfs_open(&path, file);
3773 path_put(&path);
3774 }
3775 return error;
3776 }
3777
3778 static struct file *path_openat(struct nameidata *nd,
3779 const struct open_flags *op, unsigned flags)
3780 {
3781 struct file *file;
3782 int error;
3783
3784 file = alloc_empty_file(op->open_flag, current_cred());
3785 if (IS_ERR(file))
3786 return file;
3787
3788 if (unlikely(file->f_flags & __O_TMPFILE)) {
3789 error = do_tmpfile(nd, flags, op, file);
3790 } else if (unlikely(file->f_flags & O_PATH)) {
3791 error = do_o_path(nd, flags, file);
3792 } else {
3793 const char *s = path_init(nd, flags);
3794 while (!(error = link_path_walk(s, nd)) &&
3795 (s = open_last_lookups(nd, file, op)) != NULL)
3796 ;
3797 if (!error)
3798 error = do_open(nd, file, op);
3799 terminate_walk(nd);
3800 }
3801 if (likely(!error)) {
3802 if (likely(file->f_mode & FMODE_OPENED))
3803 return file;
3804 WARN_ON(1);
3805 error = -EINVAL;
3806 }
3807 fput(file);
3808 if (error == -EOPENSTALE) {
3809 if (flags & LOOKUP_RCU)
3810 error = -ECHILD;
3811 else
3812 error = -ESTALE;
3813 }
3814 return ERR_PTR(error);
3815 }
3816
3817 struct file *do_filp_open(int dfd, struct filename *pathname,
3818 const struct open_flags *op)
3819 {
3820 struct nameidata nd;
3821 int flags = op->lookup_flags;
3822 struct file *filp;
3823
3824 set_nameidata(&nd, dfd, pathname, NULL);
3825 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3826 if (unlikely(filp == ERR_PTR(-ECHILD)))
3827 filp = path_openat(&nd, op, flags);
3828 if (unlikely(filp == ERR_PTR(-ESTALE)))
3829 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3830 restore_nameidata();
3831 return filp;
3832 }
3833
3834 struct file *do_file_open_root(const struct path *root,
3835 const char *name, const struct open_flags *op)
3836 {
3837 struct nameidata nd;
3838 struct file *file;
3839 struct filename *filename;
3840 int flags = op->lookup_flags;
3841
3842 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3843 return ERR_PTR(-ELOOP);
3844
3845 filename = getname_kernel(name);
3846 if (IS_ERR(filename))
3847 return ERR_CAST(filename);
3848
3849 set_nameidata(&nd, -1, filename, root);
3850 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3851 if (unlikely(file == ERR_PTR(-ECHILD)))
3852 file = path_openat(&nd, op, flags);
3853 if (unlikely(file == ERR_PTR(-ESTALE)))
3854 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3855 restore_nameidata();
3856 putname(filename);
3857 return file;
3858 }
3859
3860 static struct dentry *filename_create(int dfd, struct filename *name,
3861 struct path *path, unsigned int lookup_flags)
3862 {
3863 struct dentry *dentry = ERR_PTR(-EEXIST);
3864 struct qstr last;
3865 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3866 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3867 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3868 int type;
3869 int err2;
3870 int error;
3871
3872 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3873 if (error)
3874 return ERR_PTR(error);
3875
3876 /*
3877 * Yucky last component or no last component at all?
3878 * (foo/., foo/.., /////)
3879 */
3880 if (unlikely(type != LAST_NORM))
3881 goto out;
3882
3883 /* don't fail immediately if it's r/o, at least try to report other errors */
3884 err2 = mnt_want_write(path->mnt);
3885 /*
3886 * Do the final lookup. Suppress 'create' if there is a trailing
3887 * '/', and a directory wasn't requested.
3888 */
3889 if (last.name[last.len] && !want_dir)
3890 create_flags = 0;
3891 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3892 dentry = lookup_one_qstr_excl(&last, path->dentry,
3893 reval_flag | create_flags);
3894 if (IS_ERR(dentry))
3895 goto unlock;
3896
3897 error = -EEXIST;
3898 if (d_is_positive(dentry))
3899 goto fail;
3900
3901 /*
3902 * Special case - lookup gave negative, but... we had foo/bar/
3903 * From the vfs_mknod() POV we just have a negative dentry -
3904 * all is fine. Let's be bastards - you had / on the end, you've
3905 * been asking for (non-existent) directory. -ENOENT for you.
3906 */
3907 if (unlikely(!create_flags)) {
3908 error = -ENOENT;
3909 goto fail;
3910 }
3911 if (unlikely(err2)) {
3912 error = err2;
3913 goto fail;
3914 }
3915 return dentry;
3916 fail:
3917 dput(dentry);
3918 dentry = ERR_PTR(error);
3919 unlock:
3920 inode_unlock(path->dentry->d_inode);
3921 if (!err2)
3922 mnt_drop_write(path->mnt);
3923 out:
3924 path_put(path);
3925 return dentry;
3926 }
3927
3928 struct dentry *kern_path_create(int dfd, const char *pathname,
3929 struct path *path, unsigned int lookup_flags)
3930 {
3931 struct filename *filename = getname_kernel(pathname);
3932 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3933
3934 putname(filename);
3935 return res;
3936 }
3937 EXPORT_SYMBOL(kern_path_create);
3938
3939 void done_path_create(struct path *path, struct dentry *dentry)
3940 {
3941 dput(dentry);
3942 inode_unlock(path->dentry->d_inode);
3943 mnt_drop_write(path->mnt);
3944 path_put(path);
3945 }
3946 EXPORT_SYMBOL(done_path_create);
3947
3948 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3949 struct path *path, unsigned int lookup_flags)
3950 {
3951 struct filename *filename = getname(pathname);
3952 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3953
3954 putname(filename);
3955 return res;
3956 }
3957 EXPORT_SYMBOL(user_path_create);
3958
3959 /**
3960 * vfs_mknod - create device node or file
3961 * @idmap: idmap of the mount the inode was found from
3962 * @dir: inode of @dentry
3963 * @dentry: pointer to dentry of the base directory
3964 * @mode: mode of the new device node or file
3965 * @dev: device number of device to create
3966 *
3967 * Create a device node or file.
3968 *
3969 * If the inode has been found through an idmapped mount the idmap of
3970 * the vfsmount must be passed through @idmap. This function will then take
3971 * care to map the inode according to @idmap before checking permissions.
3972 * On non-idmapped mounts or if permission checking is to be performed on the
3973 * raw inode simply pass @nop_mnt_idmap.
3974 */
3975 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
3976 struct dentry *dentry, umode_t mode, dev_t dev)
3977 {
3978 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3979 int error = may_create(idmap, dir, dentry);
3980
3981 if (error)
3982 return error;
3983
3984 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3985 !capable(CAP_MKNOD))
3986 return -EPERM;
3987
3988 if (!dir->i_op->mknod)
3989 return -EPERM;
3990
3991 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3992 error = devcgroup_inode_mknod(mode, dev);
3993 if (error)
3994 return error;
3995
3996 error = security_inode_mknod(dir, dentry, mode, dev);
3997 if (error)
3998 return error;
3999
4000 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4001 if (!error)
4002 fsnotify_create(dir, dentry);
4003 return error;
4004 }
4005 EXPORT_SYMBOL(vfs_mknod);
4006
4007 static int may_mknod(umode_t mode)
4008 {
4009 switch (mode & S_IFMT) {
4010 case S_IFREG:
4011 case S_IFCHR:
4012 case S_IFBLK:
4013 case S_IFIFO:
4014 case S_IFSOCK:
4015 case 0: /* zero mode translates to S_IFREG */
4016 return 0;
4017 case S_IFDIR:
4018 return -EPERM;
4019 default:
4020 return -EINVAL;
4021 }
4022 }
4023
4024 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4025 unsigned int dev)
4026 {
4027 struct mnt_idmap *idmap;
4028 struct dentry *dentry;
4029 struct path path;
4030 int error;
4031 unsigned int lookup_flags = 0;
4032
4033 error = may_mknod(mode);
4034 if (error)
4035 goto out1;
4036 retry:
4037 dentry = filename_create(dfd, name, &path, lookup_flags);
4038 error = PTR_ERR(dentry);
4039 if (IS_ERR(dentry))
4040 goto out1;
4041
4042 error = security_path_mknod(&path, dentry,
4043 mode_strip_umask(path.dentry->d_inode, mode), dev);
4044 if (error)
4045 goto out2;
4046
4047 idmap = mnt_idmap(path.mnt);
4048 switch (mode & S_IFMT) {
4049 case 0: case S_IFREG:
4050 error = vfs_create(idmap, path.dentry->d_inode,
4051 dentry, mode, true);
4052 if (!error)
4053 ima_post_path_mknod(idmap, dentry);
4054 break;
4055 case S_IFCHR: case S_IFBLK:
4056 error = vfs_mknod(idmap, path.dentry->d_inode,
4057 dentry, mode, new_decode_dev(dev));
4058 break;
4059 case S_IFIFO: case S_IFSOCK:
4060 error = vfs_mknod(idmap, path.dentry->d_inode,
4061 dentry, mode, 0);
4062 break;
4063 }
4064 out2:
4065 done_path_create(&path, dentry);
4066 if (retry_estale(error, lookup_flags)) {
4067 lookup_flags |= LOOKUP_REVAL;
4068 goto retry;
4069 }
4070 out1:
4071 putname(name);
4072 return error;
4073 }
4074
4075 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4076 unsigned int, dev)
4077 {
4078 return do_mknodat(dfd, getname(filename), mode, dev);
4079 }
4080
4081 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4082 {
4083 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4084 }
4085
4086 /**
4087 * vfs_mkdir - create directory
4088 * @idmap: idmap of the mount the inode was found from
4089 * @dir: inode of @dentry
4090 * @dentry: pointer to dentry of the base directory
4091 * @mode: mode of the new directory
4092 *
4093 * Create a directory.
4094 *
4095 * If the inode has been found through an idmapped mount the idmap of
4096 * the vfsmount must be passed through @idmap. This function will then take
4097 * care to map the inode according to @idmap before checking permissions.
4098 * On non-idmapped mounts or if permission checking is to be performed on the
4099 * raw inode simply pass @nop_mnt_idmap.
4100 */
4101 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4102 struct dentry *dentry, umode_t mode)
4103 {
4104 int error;
4105 unsigned max_links = dir->i_sb->s_max_links;
4106
4107 error = may_create(idmap, dir, dentry);
4108 if (error)
4109 return error;
4110
4111 if (!dir->i_op->mkdir)
4112 return -EPERM;
4113
4114 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4115 error = security_inode_mkdir(dir, dentry, mode);
4116 if (error)
4117 return error;
4118
4119 if (max_links && dir->i_nlink >= max_links)
4120 return -EMLINK;
4121
4122 error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4123 if (!error)
4124 fsnotify_mkdir(dir, dentry);
4125 return error;
4126 }
4127 EXPORT_SYMBOL(vfs_mkdir);
4128
4129 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4130 {
4131 struct dentry *dentry;
4132 struct path path;
4133 int error;
4134 unsigned int lookup_flags = LOOKUP_DIRECTORY;
4135
4136 retry:
4137 dentry = filename_create(dfd, name, &path, lookup_flags);
4138 error = PTR_ERR(dentry);
4139 if (IS_ERR(dentry))
4140 goto out_putname;
4141
4142 error = security_path_mkdir(&path, dentry,
4143 mode_strip_umask(path.dentry->d_inode, mode));
4144 if (!error) {
4145 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4146 dentry, mode);
4147 }
4148 done_path_create(&path, dentry);
4149 if (retry_estale(error, lookup_flags)) {
4150 lookup_flags |= LOOKUP_REVAL;
4151 goto retry;
4152 }
4153 out_putname:
4154 putname(name);
4155 return error;
4156 }
4157
4158 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4159 {
4160 return do_mkdirat(dfd, getname(pathname), mode);
4161 }
4162
4163 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4164 {
4165 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4166 }
4167
4168 /**
4169 * vfs_rmdir - remove directory
4170 * @idmap: idmap of the mount the inode was found from
4171 * @dir: inode of @dentry
4172 * @dentry: pointer to dentry of the base directory
4173 *
4174 * Remove a directory.
4175 *
4176 * If the inode has been found through an idmapped mount the idmap of
4177 * the vfsmount must be passed through @idmap. This function will then take
4178 * care to map the inode according to @idmap before checking permissions.
4179 * On non-idmapped mounts or if permission checking is to be performed on the
4180 * raw inode simply pass @nop_mnt_idmap.
4181 */
4182 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4183 struct dentry *dentry)
4184 {
4185 int error = may_delete(idmap, dir, dentry, 1);
4186
4187 if (error)
4188 return error;
4189
4190 if (!dir->i_op->rmdir)
4191 return -EPERM;
4192
4193 dget(dentry);
4194 inode_lock(dentry->d_inode);
4195
4196 error = -EBUSY;
4197 if (is_local_mountpoint(dentry) ||
4198 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4199 goto out;
4200
4201 error = security_inode_rmdir(dir, dentry);
4202 if (error)
4203 goto out;
4204
4205 error = dir->i_op->rmdir(dir, dentry);
4206 if (error)
4207 goto out;
4208
4209 shrink_dcache_parent(dentry);
4210 dentry->d_inode->i_flags |= S_DEAD;
4211 dont_mount(dentry);
4212 detach_mounts(dentry);
4213
4214 out:
4215 inode_unlock(dentry->d_inode);
4216 dput(dentry);
4217 if (!error)
4218 d_delete_notify(dir, dentry);
4219 return error;
4220 }
4221 EXPORT_SYMBOL(vfs_rmdir);
4222
4223 int do_rmdir(int dfd, struct filename *name)
4224 {
4225 int error;
4226 struct dentry *dentry;
4227 struct path path;
4228 struct qstr last;
4229 int type;
4230 unsigned int lookup_flags = 0;
4231 retry:
4232 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4233 if (error)
4234 goto exit1;
4235
4236 switch (type) {
4237 case LAST_DOTDOT:
4238 error = -ENOTEMPTY;
4239 goto exit2;
4240 case LAST_DOT:
4241 error = -EINVAL;
4242 goto exit2;
4243 case LAST_ROOT:
4244 error = -EBUSY;
4245 goto exit2;
4246 }
4247
4248 error = mnt_want_write(path.mnt);
4249 if (error)
4250 goto exit2;
4251
4252 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4253 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4254 error = PTR_ERR(dentry);
4255 if (IS_ERR(dentry))
4256 goto exit3;
4257 if (!dentry->d_inode) {
4258 error = -ENOENT;
4259 goto exit4;
4260 }
4261 error = security_path_rmdir(&path, dentry);
4262 if (error)
4263 goto exit4;
4264 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4265 exit4:
4266 dput(dentry);
4267 exit3:
4268 inode_unlock(path.dentry->d_inode);
4269 mnt_drop_write(path.mnt);
4270 exit2:
4271 path_put(&path);
4272 if (retry_estale(error, lookup_flags)) {
4273 lookup_flags |= LOOKUP_REVAL;
4274 goto retry;
4275 }
4276 exit1:
4277 putname(name);
4278 return error;
4279 }
4280
4281 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4282 {
4283 return do_rmdir(AT_FDCWD, getname(pathname));
4284 }
4285
4286 /**
4287 * vfs_unlink - unlink a filesystem object
4288 * @idmap: idmap of the mount the inode was found from
4289 * @dir: parent directory
4290 * @dentry: victim
4291 * @delegated_inode: returns victim inode, if the inode is delegated.
4292 *
4293 * The caller must hold dir->i_mutex.
4294 *
4295 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4296 * return a reference to the inode in delegated_inode. The caller
4297 * should then break the delegation on that inode and retry. Because
4298 * breaking a delegation may take a long time, the caller should drop
4299 * dir->i_mutex before doing so.
4300 *
4301 * Alternatively, a caller may pass NULL for delegated_inode. This may
4302 * be appropriate for callers that expect the underlying filesystem not
4303 * to be NFS exported.
4304 *
4305 * If the inode has been found through an idmapped mount the idmap of
4306 * the vfsmount must be passed through @idmap. This function will then take
4307 * care to map the inode according to @idmap before checking permissions.
4308 * On non-idmapped mounts or if permission checking is to be performed on the
4309 * raw inode simply pass @nop_mnt_idmap.
4310 */
4311 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4312 struct dentry *dentry, struct inode **delegated_inode)
4313 {
4314 struct inode *target = dentry->d_inode;
4315 int error = may_delete(idmap, dir, dentry, 0);
4316
4317 if (error)
4318 return error;
4319
4320 if (!dir->i_op->unlink)
4321 return -EPERM;
4322
4323 inode_lock(target);
4324 if (IS_SWAPFILE(target))
4325 error = -EPERM;
4326 else if (is_local_mountpoint(dentry))
4327 error = -EBUSY;
4328 else {
4329 error = security_inode_unlink(dir, dentry);
4330 if (!error) {
4331 error = try_break_deleg(target, delegated_inode);
4332 if (error)
4333 goto out;
4334 error = dir->i_op->unlink(dir, dentry);
4335 if (!error) {
4336 dont_mount(dentry);
4337 detach_mounts(dentry);
4338 }
4339 }
4340 }
4341 out:
4342 inode_unlock(target);
4343
4344 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4345 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4346 fsnotify_unlink(dir, dentry);
4347 } else if (!error) {
4348 fsnotify_link_count(target);
4349 d_delete_notify(dir, dentry);
4350 }
4351
4352 return error;
4353 }
4354 EXPORT_SYMBOL(vfs_unlink);
4355
4356 /*
4357 * Make sure that the actual truncation of the file will occur outside its
4358 * directory's i_mutex. Truncate can take a long time if there is a lot of
4359 * writeout happening, and we don't want to prevent access to the directory
4360 * while waiting on the I/O.
4361 */
4362 int do_unlinkat(int dfd, struct filename *name)
4363 {
4364 int error;
4365 struct dentry *dentry;
4366 struct path path;
4367 struct qstr last;
4368 int type;
4369 struct inode *inode = NULL;
4370 struct inode *delegated_inode = NULL;
4371 unsigned int lookup_flags = 0;
4372 retry:
4373 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4374 if (error)
4375 goto exit1;
4376
4377 error = -EISDIR;
4378 if (type != LAST_NORM)
4379 goto exit2;
4380
4381 error = mnt_want_write(path.mnt);
4382 if (error)
4383 goto exit2;
4384 retry_deleg:
4385 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4386 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4387 error = PTR_ERR(dentry);
4388 if (!IS_ERR(dentry)) {
4389
4390 /* Why not before? Because we want correct error value */
4391 if (last.name[last.len] || d_is_negative(dentry))
4392 goto slashes;
4393 inode = dentry->d_inode;
4394 ihold(inode);
4395 error = security_path_unlink(&path, dentry);
4396 if (error)
4397 goto exit3;
4398 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4399 dentry, &delegated_inode);
4400 exit3:
4401 dput(dentry);
4402 }
4403 inode_unlock(path.dentry->d_inode);
4404 if (inode)
4405 iput(inode); /* truncate the inode here */
4406 inode = NULL;
4407 if (delegated_inode) {
4408 error = break_deleg_wait(&delegated_inode);
4409 if (!error)
4410 goto retry_deleg;
4411 }
4412 mnt_drop_write(path.mnt);
4413 exit2:
4414 path_put(&path);
4415 if (retry_estale(error, lookup_flags)) {
4416 lookup_flags |= LOOKUP_REVAL;
4417 inode = NULL;
4418 goto retry;
4419 }
4420 exit1:
4421 putname(name);
4422 return error;
4423
4424 slashes:
4425 if (d_is_negative(dentry))
4426 error = -ENOENT;
4427 else if (d_is_dir(dentry))
4428 error = -EISDIR;
4429 else
4430 error = -ENOTDIR;
4431 goto exit3;
4432 }
4433
4434 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4435 {
4436 if ((flag & ~AT_REMOVEDIR) != 0)
4437 return -EINVAL;
4438
4439 if (flag & AT_REMOVEDIR)
4440 return do_rmdir(dfd, getname(pathname));
4441 return do_unlinkat(dfd, getname(pathname));
4442 }
4443
4444 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4445 {
4446 return do_unlinkat(AT_FDCWD, getname(pathname));
4447 }
4448
4449 /**
4450 * vfs_symlink - create symlink
4451 * @idmap: idmap of the mount the inode was found from
4452 * @dir: inode of @dentry
4453 * @dentry: pointer to dentry of the base directory
4454 * @oldname: name of the file to link to
4455 *
4456 * Create a symlink.
4457 *
4458 * If the inode has been found through an idmapped mount the idmap of
4459 * the vfsmount must be passed through @idmap. This function will then take
4460 * care to map the inode according to @idmap before checking permissions.
4461 * On non-idmapped mounts or if permission checking is to be performed on the
4462 * raw inode simply pass @nop_mnt_idmap.
4463 */
4464 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4465 struct dentry *dentry, const char *oldname)
4466 {
4467 int error;
4468
4469 error = may_create(idmap, dir, dentry);
4470 if (error)
4471 return error;
4472
4473 if (!dir->i_op->symlink)
4474 return -EPERM;
4475
4476 error = security_inode_symlink(dir, dentry, oldname);
4477 if (error)
4478 return error;
4479
4480 error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4481 if (!error)
4482 fsnotify_create(dir, dentry);
4483 return error;
4484 }
4485 EXPORT_SYMBOL(vfs_symlink);
4486
4487 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4488 {
4489 int error;
4490 struct dentry *dentry;
4491 struct path path;
4492 unsigned int lookup_flags = 0;
4493
4494 if (IS_ERR(from)) {
4495 error = PTR_ERR(from);
4496 goto out_putnames;
4497 }
4498 retry:
4499 dentry = filename_create(newdfd, to, &path, lookup_flags);
4500 error = PTR_ERR(dentry);
4501 if (IS_ERR(dentry))
4502 goto out_putnames;
4503
4504 error = security_path_symlink(&path, dentry, from->name);
4505 if (!error)
4506 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4507 dentry, from->name);
4508 done_path_create(&path, dentry);
4509 if (retry_estale(error, lookup_flags)) {
4510 lookup_flags |= LOOKUP_REVAL;
4511 goto retry;
4512 }
4513 out_putnames:
4514 putname(to);
4515 putname(from);
4516 return error;
4517 }
4518
4519 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4520 int, newdfd, const char __user *, newname)
4521 {
4522 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4523 }
4524
4525 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4526 {
4527 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4528 }
4529
4530 /**
4531 * vfs_link - create a new link
4532 * @old_dentry: object to be linked
4533 * @idmap: idmap of the mount
4534 * @dir: new parent
4535 * @new_dentry: where to create the new link
4536 * @delegated_inode: returns inode needing a delegation break
4537 *
4538 * The caller must hold dir->i_mutex
4539 *
4540 * If vfs_link discovers a delegation on the to-be-linked file in need
4541 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4542 * inode in delegated_inode. The caller should then break the delegation
4543 * and retry. Because breaking a delegation may take a long time, the
4544 * caller should drop the i_mutex before doing so.
4545 *
4546 * Alternatively, a caller may pass NULL for delegated_inode. This may
4547 * be appropriate for callers that expect the underlying filesystem not
4548 * to be NFS exported.
4549 *
4550 * If the inode has been found through an idmapped mount the idmap of
4551 * the vfsmount must be passed through @idmap. This function will then take
4552 * care to map the inode according to @idmap before checking permissions.
4553 * On non-idmapped mounts or if permission checking is to be performed on the
4554 * raw inode simply pass @nop_mnt_idmap.
4555 */
4556 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4557 struct inode *dir, struct dentry *new_dentry,
4558 struct inode **delegated_inode)
4559 {
4560 struct inode *inode = old_dentry->d_inode;
4561 unsigned max_links = dir->i_sb->s_max_links;
4562 int error;
4563
4564 if (!inode)
4565 return -ENOENT;
4566
4567 error = may_create(idmap, dir, new_dentry);
4568 if (error)
4569 return error;
4570
4571 if (dir->i_sb != inode->i_sb)
4572 return -EXDEV;
4573
4574 /*
4575 * A link to an append-only or immutable file cannot be created.
4576 */
4577 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4578 return -EPERM;
4579 /*
4580 * Updating the link count will likely cause i_uid and i_gid to
4581 * be writen back improperly if their true value is unknown to
4582 * the vfs.
4583 */
4584 if (HAS_UNMAPPED_ID(idmap, inode))
4585 return -EPERM;
4586 if (!dir->i_op->link)
4587 return -EPERM;
4588 if (S_ISDIR(inode->i_mode))
4589 return -EPERM;
4590
4591 error = security_inode_link(old_dentry, dir, new_dentry);
4592 if (error)
4593 return error;
4594
4595 inode_lock(inode);
4596 /* Make sure we don't allow creating hardlink to an unlinked file */
4597 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4598 error = -ENOENT;
4599 else if (max_links && inode->i_nlink >= max_links)
4600 error = -EMLINK;
4601 else {
4602 error = try_break_deleg(inode, delegated_inode);
4603 if (!error)
4604 error = dir->i_op->link(old_dentry, dir, new_dentry);
4605 }
4606
4607 if (!error && (inode->i_state & I_LINKABLE)) {
4608 spin_lock(&inode->i_lock);
4609 inode->i_state &= ~I_LINKABLE;
4610 spin_unlock(&inode->i_lock);
4611 }
4612 inode_unlock(inode);
4613 if (!error)
4614 fsnotify_link(dir, inode, new_dentry);
4615 return error;
4616 }
4617 EXPORT_SYMBOL(vfs_link);
4618
4619 /*
4620 * Hardlinks are often used in delicate situations. We avoid
4621 * security-related surprises by not following symlinks on the
4622 * newname. --KAB
4623 *
4624 * We don't follow them on the oldname either to be compatible
4625 * with linux 2.0, and to avoid hard-linking to directories
4626 * and other special files. --ADM
4627 */
4628 int do_linkat(int olddfd, struct filename *old, int newdfd,
4629 struct filename *new, int flags)
4630 {
4631 struct mnt_idmap *idmap;
4632 struct dentry *new_dentry;
4633 struct path old_path, new_path;
4634 struct inode *delegated_inode = NULL;
4635 int how = 0;
4636 int error;
4637
4638 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4639 error = -EINVAL;
4640 goto out_putnames;
4641 }
4642 /*
4643 * To use null names we require CAP_DAC_READ_SEARCH
4644 * This ensures that not everyone will be able to create
4645 * handlink using the passed filedescriptor.
4646 */
4647 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4648 error = -ENOENT;
4649 goto out_putnames;
4650 }
4651
4652 if (flags & AT_SYMLINK_FOLLOW)
4653 how |= LOOKUP_FOLLOW;
4654 retry:
4655 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4656 if (error)
4657 goto out_putnames;
4658
4659 new_dentry = filename_create(newdfd, new, &new_path,
4660 (how & LOOKUP_REVAL));
4661 error = PTR_ERR(new_dentry);
4662 if (IS_ERR(new_dentry))
4663 goto out_putpath;
4664
4665 error = -EXDEV;
4666 if (old_path.mnt != new_path.mnt)
4667 goto out_dput;
4668 idmap = mnt_idmap(new_path.mnt);
4669 error = may_linkat(idmap, &old_path);
4670 if (unlikely(error))
4671 goto out_dput;
4672 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4673 if (error)
4674 goto out_dput;
4675 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4676 new_dentry, &delegated_inode);
4677 out_dput:
4678 done_path_create(&new_path, new_dentry);
4679 if (delegated_inode) {
4680 error = break_deleg_wait(&delegated_inode);
4681 if (!error) {
4682 path_put(&old_path);
4683 goto retry;
4684 }
4685 }
4686 if (retry_estale(error, how)) {
4687 path_put(&old_path);
4688 how |= LOOKUP_REVAL;
4689 goto retry;
4690 }
4691 out_putpath:
4692 path_put(&old_path);
4693 out_putnames:
4694 putname(old);
4695 putname(new);
4696
4697 return error;
4698 }
4699
4700 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4701 int, newdfd, const char __user *, newname, int, flags)
4702 {
4703 return do_linkat(olddfd, getname_uflags(oldname, flags),
4704 newdfd, getname(newname), flags);
4705 }
4706
4707 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4708 {
4709 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4710 }
4711
4712 /**
4713 * vfs_rename - rename a filesystem object
4714 * @rd: pointer to &struct renamedata info
4715 *
4716 * The caller must hold multiple mutexes--see lock_rename()).
4717 *
4718 * If vfs_rename discovers a delegation in need of breaking at either
4719 * the source or destination, it will return -EWOULDBLOCK and return a
4720 * reference to the inode in delegated_inode. The caller should then
4721 * break the delegation and retry. Because breaking a delegation may
4722 * take a long time, the caller should drop all locks before doing
4723 * so.
4724 *
4725 * Alternatively, a caller may pass NULL for delegated_inode. This may
4726 * be appropriate for callers that expect the underlying filesystem not
4727 * to be NFS exported.
4728 *
4729 * The worst of all namespace operations - renaming directory. "Perverted"
4730 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4731 * Problems:
4732 *
4733 * a) we can get into loop creation.
4734 * b) race potential - two innocent renames can create a loop together.
4735 * That's where 4.4BSD screws up. Current fix: serialization on
4736 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4737 * story.
4738 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4739 * and source (if it's a non-directory or a subdirectory that moves to
4740 * different parent).
4741 * And that - after we got ->i_mutex on parents (until then we don't know
4742 * whether the target exists). Solution: try to be smart with locking
4743 * order for inodes. We rely on the fact that tree topology may change
4744 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4745 * move will be locked. Thus we can rank directories by the tree
4746 * (ancestors first) and rank all non-directories after them.
4747 * That works since everybody except rename does "lock parent, lookup,
4748 * lock child" and rename is under ->s_vfs_rename_mutex.
4749 * HOWEVER, it relies on the assumption that any object with ->lookup()
4750 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4751 * we'd better make sure that there's no link(2) for them.
4752 * d) conversion from fhandle to dentry may come in the wrong moment - when
4753 * we are removing the target. Solution: we will have to grab ->i_mutex
4754 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4755 * ->i_mutex on parents, which works but leads to some truly excessive
4756 * locking].
4757 */
4758 int vfs_rename(struct renamedata *rd)
4759 {
4760 int error;
4761 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4762 struct dentry *old_dentry = rd->old_dentry;
4763 struct dentry *new_dentry = rd->new_dentry;
4764 struct inode **delegated_inode = rd->delegated_inode;
4765 unsigned int flags = rd->flags;
4766 bool is_dir = d_is_dir(old_dentry);
4767 struct inode *source = old_dentry->d_inode;
4768 struct inode *target = new_dentry->d_inode;
4769 bool new_is_dir = false;
4770 unsigned max_links = new_dir->i_sb->s_max_links;
4771 struct name_snapshot old_name;
4772 bool lock_old_subdir, lock_new_subdir;
4773
4774 if (source == target)
4775 return 0;
4776
4777 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4778 if (error)
4779 return error;
4780
4781 if (!target) {
4782 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4783 } else {
4784 new_is_dir = d_is_dir(new_dentry);
4785
4786 if (!(flags & RENAME_EXCHANGE))
4787 error = may_delete(rd->new_mnt_idmap, new_dir,
4788 new_dentry, is_dir);
4789 else
4790 error = may_delete(rd->new_mnt_idmap, new_dir,
4791 new_dentry, new_is_dir);
4792 }
4793 if (error)
4794 return error;
4795
4796 if (!old_dir->i_op->rename)
4797 return -EPERM;
4798
4799 /*
4800 * If we are going to change the parent - check write permissions,
4801 * we'll need to flip '..'.
4802 */
4803 if (new_dir != old_dir) {
4804 if (is_dir) {
4805 error = inode_permission(rd->old_mnt_idmap, source,
4806 MAY_WRITE);
4807 if (error)
4808 return error;
4809 }
4810 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4811 error = inode_permission(rd->new_mnt_idmap, target,
4812 MAY_WRITE);
4813 if (error)
4814 return error;
4815 }
4816 }
4817
4818 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4819 flags);
4820 if (error)
4821 return error;
4822
4823 take_dentry_name_snapshot(&old_name, old_dentry);
4824 dget(new_dentry);
4825 /*
4826 * Lock children.
4827 * The source subdirectory needs to be locked on cross-directory
4828 * rename or cross-directory exchange since its parent changes.
4829 * The target subdirectory needs to be locked on cross-directory
4830 * exchange due to parent change and on any rename due to becoming
4831 * a victim.
4832 * Non-directories need locking in all cases (for NFS reasons);
4833 * they get locked after any subdirectories (in inode address order).
4834 *
4835 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4836 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4837 */
4838 lock_old_subdir = new_dir != old_dir;
4839 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4840 if (is_dir) {
4841 if (lock_old_subdir)
4842 inode_lock_nested(source, I_MUTEX_CHILD);
4843 if (target && (!new_is_dir || lock_new_subdir))
4844 inode_lock(target);
4845 } else if (new_is_dir) {
4846 if (lock_new_subdir)
4847 inode_lock_nested(target, I_MUTEX_CHILD);
4848 inode_lock(source);
4849 } else {
4850 lock_two_nondirectories(source, target);
4851 }
4852
4853 error = -EPERM;
4854 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4855 goto out;
4856
4857 error = -EBUSY;
4858 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4859 goto out;
4860
4861 if (max_links && new_dir != old_dir) {
4862 error = -EMLINK;
4863 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4864 goto out;
4865 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4866 old_dir->i_nlink >= max_links)
4867 goto out;
4868 }
4869 if (!is_dir) {
4870 error = try_break_deleg(source, delegated_inode);
4871 if (error)
4872 goto out;
4873 }
4874 if (target && !new_is_dir) {
4875 error = try_break_deleg(target, delegated_inode);
4876 if (error)
4877 goto out;
4878 }
4879 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
4880 new_dir, new_dentry, flags);
4881 if (error)
4882 goto out;
4883
4884 if (!(flags & RENAME_EXCHANGE) && target) {
4885 if (is_dir) {
4886 shrink_dcache_parent(new_dentry);
4887 target->i_flags |= S_DEAD;
4888 }
4889 dont_mount(new_dentry);
4890 detach_mounts(new_dentry);
4891 }
4892 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4893 if (!(flags & RENAME_EXCHANGE))
4894 d_move(old_dentry, new_dentry);
4895 else
4896 d_exchange(old_dentry, new_dentry);
4897 }
4898 out:
4899 if (!is_dir || lock_old_subdir)
4900 inode_unlock(source);
4901 if (target && (!new_is_dir || lock_new_subdir))
4902 inode_unlock(target);
4903 dput(new_dentry);
4904 if (!error) {
4905 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4906 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4907 if (flags & RENAME_EXCHANGE) {
4908 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4909 new_is_dir, NULL, new_dentry);
4910 }
4911 }
4912 release_dentry_name_snapshot(&old_name);
4913
4914 return error;
4915 }
4916 EXPORT_SYMBOL(vfs_rename);
4917
4918 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4919 struct filename *to, unsigned int flags)
4920 {
4921 struct renamedata rd;
4922 struct dentry *old_dentry, *new_dentry;
4923 struct dentry *trap;
4924 struct path old_path, new_path;
4925 struct qstr old_last, new_last;
4926 int old_type, new_type;
4927 struct inode *delegated_inode = NULL;
4928 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4929 bool should_retry = false;
4930 int error = -EINVAL;
4931
4932 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4933 goto put_names;
4934
4935 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4936 (flags & RENAME_EXCHANGE))
4937 goto put_names;
4938
4939 if (flags & RENAME_EXCHANGE)
4940 target_flags = 0;
4941
4942 retry:
4943 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4944 &old_last, &old_type);
4945 if (error)
4946 goto put_names;
4947
4948 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4949 &new_type);
4950 if (error)
4951 goto exit1;
4952
4953 error = -EXDEV;
4954 if (old_path.mnt != new_path.mnt)
4955 goto exit2;
4956
4957 error = -EBUSY;
4958 if (old_type != LAST_NORM)
4959 goto exit2;
4960
4961 if (flags & RENAME_NOREPLACE)
4962 error = -EEXIST;
4963 if (new_type != LAST_NORM)
4964 goto exit2;
4965
4966 error = mnt_want_write(old_path.mnt);
4967 if (error)
4968 goto exit2;
4969
4970 retry_deleg:
4971 trap = lock_rename(new_path.dentry, old_path.dentry);
4972 if (IS_ERR(trap)) {
4973 error = PTR_ERR(trap);
4974 goto exit_lock_rename;
4975 }
4976
4977 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
4978 lookup_flags);
4979 error = PTR_ERR(old_dentry);
4980 if (IS_ERR(old_dentry))
4981 goto exit3;
4982 /* source must exist */
4983 error = -ENOENT;
4984 if (d_is_negative(old_dentry))
4985 goto exit4;
4986 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
4987 lookup_flags | target_flags);
4988 error = PTR_ERR(new_dentry);
4989 if (IS_ERR(new_dentry))
4990 goto exit4;
4991 error = -EEXIST;
4992 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4993 goto exit5;
4994 if (flags & RENAME_EXCHANGE) {
4995 error = -ENOENT;
4996 if (d_is_negative(new_dentry))
4997 goto exit5;
4998
4999 if (!d_is_dir(new_dentry)) {
5000 error = -ENOTDIR;
5001 if (new_last.name[new_last.len])
5002 goto exit5;
5003 }
5004 }
5005 /* unless the source is a directory trailing slashes give -ENOTDIR */
5006 if (!d_is_dir(old_dentry)) {
5007 error = -ENOTDIR;
5008 if (old_last.name[old_last.len])
5009 goto exit5;
5010 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5011 goto exit5;
5012 }
5013 /* source should not be ancestor of target */
5014 error = -EINVAL;
5015 if (old_dentry == trap)
5016 goto exit5;
5017 /* target should not be an ancestor of source */
5018 if (!(flags & RENAME_EXCHANGE))
5019 error = -ENOTEMPTY;
5020 if (new_dentry == trap)
5021 goto exit5;
5022
5023 error = security_path_rename(&old_path, old_dentry,
5024 &new_path, new_dentry, flags);
5025 if (error)
5026 goto exit5;
5027
5028 rd.old_dir = old_path.dentry->d_inode;
5029 rd.old_dentry = old_dentry;
5030 rd.old_mnt_idmap = mnt_idmap(old_path.mnt);
5031 rd.new_dir = new_path.dentry->d_inode;
5032 rd.new_dentry = new_dentry;
5033 rd.new_mnt_idmap = mnt_idmap(new_path.mnt);
5034 rd.delegated_inode = &delegated_inode;
5035 rd.flags = flags;
5036 error = vfs_rename(&rd);
5037 exit5:
5038 dput(new_dentry);
5039 exit4:
5040 dput(old_dentry);
5041 exit3:
5042 unlock_rename(new_path.dentry, old_path.dentry);
5043 exit_lock_rename:
5044 if (delegated_inode) {
5045 error = break_deleg_wait(&delegated_inode);
5046 if (!error)
5047 goto retry_deleg;
5048 }
5049 mnt_drop_write(old_path.mnt);
5050 exit2:
5051 if (retry_estale(error, lookup_flags))
5052 should_retry = true;
5053 path_put(&new_path);
5054 exit1:
5055 path_put(&old_path);
5056 if (should_retry) {
5057 should_retry = false;
5058 lookup_flags |= LOOKUP_REVAL;
5059 goto retry;
5060 }
5061 put_names:
5062 putname(from);
5063 putname(to);
5064 return error;
5065 }
5066
5067 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5068 int, newdfd, const char __user *, newname, unsigned int, flags)
5069 {
5070 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5071 flags);
5072 }
5073
5074 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5075 int, newdfd, const char __user *, newname)
5076 {
5077 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5078 0);
5079 }
5080
5081 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5082 {
5083 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5084 getname(newname), 0);
5085 }
5086
5087 int readlink_copy(char __user *buffer, int buflen, const char *link)
5088 {
5089 int len = PTR_ERR(link);
5090 if (IS_ERR(link))
5091 goto out;
5092
5093 len = strlen(link);
5094 if (len > (unsigned) buflen)
5095 len = buflen;
5096 if (copy_to_user(buffer, link, len))
5097 len = -EFAULT;
5098 out:
5099 return len;
5100 }
5101
5102 /**
5103 * vfs_readlink - copy symlink body into userspace buffer
5104 * @dentry: dentry on which to get symbolic link
5105 * @buffer: user memory pointer
5106 * @buflen: size of buffer
5107 *
5108 * Does not touch atime. That's up to the caller if necessary
5109 *
5110 * Does not call security hook.
5111 */
5112 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5113 {
5114 struct inode *inode = d_inode(dentry);
5115 DEFINE_DELAYED_CALL(done);
5116 const char *link;
5117 int res;
5118
5119 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5120 if (unlikely(inode->i_op->readlink))
5121 return inode->i_op->readlink(dentry, buffer, buflen);
5122
5123 if (!d_is_symlink(dentry))
5124 return -EINVAL;
5125
5126 spin_lock(&inode->i_lock);
5127 inode->i_opflags |= IOP_DEFAULT_READLINK;
5128 spin_unlock(&inode->i_lock);
5129 }
5130
5131 link = READ_ONCE(inode->i_link);
5132 if (!link) {
5133 link = inode->i_op->get_link(dentry, inode, &done);
5134 if (IS_ERR(link))
5135 return PTR_ERR(link);
5136 }
5137 res = readlink_copy(buffer, buflen, link);
5138 do_delayed_call(&done);
5139 return res;
5140 }
5141 EXPORT_SYMBOL(vfs_readlink);
5142
5143 /**
5144 * vfs_get_link - get symlink body
5145 * @dentry: dentry on which to get symbolic link
5146 * @done: caller needs to free returned data with this
5147 *
5148 * Calls security hook and i_op->get_link() on the supplied inode.
5149 *
5150 * It does not touch atime. That's up to the caller if necessary.
5151 *
5152 * Does not work on "special" symlinks like /proc/$$/fd/N
5153 */
5154 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5155 {
5156 const char *res = ERR_PTR(-EINVAL);
5157 struct inode *inode = d_inode(dentry);
5158
5159 if (d_is_symlink(dentry)) {
5160 res = ERR_PTR(security_inode_readlink(dentry));
5161 if (!res)
5162 res = inode->i_op->get_link(dentry, inode, done);
5163 }
5164 return res;
5165 }
5166 EXPORT_SYMBOL(vfs_get_link);
5167
5168 /* get the link contents into pagecache */
5169 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5170 struct delayed_call *callback)
5171 {
5172 char *kaddr;
5173 struct page *page;
5174 struct address_space *mapping = inode->i_mapping;
5175
5176 if (!dentry) {
5177 page = find_get_page(mapping, 0);
5178 if (!page)
5179 return ERR_PTR(-ECHILD);
5180 if (!PageUptodate(page)) {
5181 put_page(page);
5182 return ERR_PTR(-ECHILD);
5183 }
5184 } else {
5185 page = read_mapping_page(mapping, 0, NULL);
5186 if (IS_ERR(page))
5187 return (char*)page;
5188 }
5189 set_delayed_call(callback, page_put_link, page);
5190 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5191 kaddr = page_address(page);
5192 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5193 return kaddr;
5194 }
5195
5196 EXPORT_SYMBOL(page_get_link);
5197
5198 void page_put_link(void *arg)
5199 {
5200 put_page(arg);
5201 }
5202 EXPORT_SYMBOL(page_put_link);
5203
5204 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5205 {
5206 DEFINE_DELAYED_CALL(done);
5207 int res = readlink_copy(buffer, buflen,
5208 page_get_link(dentry, d_inode(dentry),
5209 &done));
5210 do_delayed_call(&done);
5211 return res;
5212 }
5213 EXPORT_SYMBOL(page_readlink);
5214
5215 int page_symlink(struct inode *inode, const char *symname, int len)
5216 {
5217 struct address_space *mapping = inode->i_mapping;
5218 const struct address_space_operations *aops = mapping->a_ops;
5219 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5220 struct page *page;
5221 void *fsdata = NULL;
5222 int err;
5223 unsigned int flags;
5224
5225 retry:
5226 if (nofs)
5227 flags = memalloc_nofs_save();
5228 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5229 if (nofs)
5230 memalloc_nofs_restore(flags);
5231 if (err)
5232 goto fail;
5233
5234 memcpy(page_address(page), symname, len-1);
5235
5236 err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5237 page, fsdata);
5238 if (err < 0)
5239 goto fail;
5240 if (err < len-1)
5241 goto retry;
5242
5243 mark_inode_dirty(inode);
5244 return 0;
5245 fail:
5246 return err;
5247 }
5248 EXPORT_SYMBOL(page_symlink);
5249
5250 const struct inode_operations page_symlink_inode_operations = {
5251 .get_link = page_get_link,
5252 };
5253 EXPORT_SYMBOL(page_symlink_inode_operations);