]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/namespace.c
fs: rework listmount() implementation
[thirdparty/linux.git] / fs / namespace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/nospec.h>
36
37 #include "pnode.h"
38 #include "internal.h"
39
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
42
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
47
48 static __initdata unsigned long mhash_entries;
49 static int __init set_mhash_entries(char *str)
50 {
51 if (!str)
52 return 0;
53 mhash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55 }
56 __setup("mhash_entries=", set_mhash_entries);
57
58 static __initdata unsigned long mphash_entries;
59 static int __init set_mphash_entries(char *str)
60 {
61 if (!str)
62 return 0;
63 mphash_entries = simple_strtoul(str, &str, 0);
64 return 1;
65 }
66 __setup("mphash_entries=", set_mphash_entries);
67
68 static u64 event;
69 static DEFINE_IDA(mnt_id_ida);
70 static DEFINE_IDA(mnt_group_ida);
71
72 /* Don't allow confusion with old 32bit mount ID */
73 static atomic64_t mnt_id_ctr = ATOMIC64_INIT(1ULL << 32);
74
75 static struct hlist_head *mount_hashtable __ro_after_init;
76 static struct hlist_head *mountpoint_hashtable __ro_after_init;
77 static struct kmem_cache *mnt_cache __ro_after_init;
78 static DECLARE_RWSEM(namespace_sem);
79 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
80 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
81
82 struct mount_kattr {
83 unsigned int attr_set;
84 unsigned int attr_clr;
85 unsigned int propagation;
86 unsigned int lookup_flags;
87 bool recurse;
88 struct user_namespace *mnt_userns;
89 struct mnt_idmap *mnt_idmap;
90 };
91
92 /* /sys/fs */
93 struct kobject *fs_kobj __ro_after_init;
94 EXPORT_SYMBOL_GPL(fs_kobj);
95
96 /*
97 * vfsmount lock may be taken for read to prevent changes to the
98 * vfsmount hash, ie. during mountpoint lookups or walking back
99 * up the tree.
100 *
101 * It should be taken for write in all cases where the vfsmount
102 * tree or hash is modified or when a vfsmount structure is modified.
103 */
104 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
105
106 static inline void lock_mount_hash(void)
107 {
108 write_seqlock(&mount_lock);
109 }
110
111 static inline void unlock_mount_hash(void)
112 {
113 write_sequnlock(&mount_lock);
114 }
115
116 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
117 {
118 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
119 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
120 tmp = tmp + (tmp >> m_hash_shift);
121 return &mount_hashtable[tmp & m_hash_mask];
122 }
123
124 static inline struct hlist_head *mp_hash(struct dentry *dentry)
125 {
126 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
127 tmp = tmp + (tmp >> mp_hash_shift);
128 return &mountpoint_hashtable[tmp & mp_hash_mask];
129 }
130
131 static int mnt_alloc_id(struct mount *mnt)
132 {
133 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
134
135 if (res < 0)
136 return res;
137 mnt->mnt_id = res;
138 mnt->mnt_id_unique = atomic64_inc_return(&mnt_id_ctr);
139 return 0;
140 }
141
142 static void mnt_free_id(struct mount *mnt)
143 {
144 ida_free(&mnt_id_ida, mnt->mnt_id);
145 }
146
147 /*
148 * Allocate a new peer group ID
149 */
150 static int mnt_alloc_group_id(struct mount *mnt)
151 {
152 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
153
154 if (res < 0)
155 return res;
156 mnt->mnt_group_id = res;
157 return 0;
158 }
159
160 /*
161 * Release a peer group ID
162 */
163 void mnt_release_group_id(struct mount *mnt)
164 {
165 ida_free(&mnt_group_ida, mnt->mnt_group_id);
166 mnt->mnt_group_id = 0;
167 }
168
169 /*
170 * vfsmount lock must be held for read
171 */
172 static inline void mnt_add_count(struct mount *mnt, int n)
173 {
174 #ifdef CONFIG_SMP
175 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
176 #else
177 preempt_disable();
178 mnt->mnt_count += n;
179 preempt_enable();
180 #endif
181 }
182
183 /*
184 * vfsmount lock must be held for write
185 */
186 int mnt_get_count(struct mount *mnt)
187 {
188 #ifdef CONFIG_SMP
189 int count = 0;
190 int cpu;
191
192 for_each_possible_cpu(cpu) {
193 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
194 }
195
196 return count;
197 #else
198 return mnt->mnt_count;
199 #endif
200 }
201
202 static struct mount *alloc_vfsmnt(const char *name)
203 {
204 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
205 if (mnt) {
206 int err;
207
208 err = mnt_alloc_id(mnt);
209 if (err)
210 goto out_free_cache;
211
212 if (name) {
213 mnt->mnt_devname = kstrdup_const(name,
214 GFP_KERNEL_ACCOUNT);
215 if (!mnt->mnt_devname)
216 goto out_free_id;
217 }
218
219 #ifdef CONFIG_SMP
220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 if (!mnt->mnt_pcp)
222 goto out_free_devname;
223
224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 #else
226 mnt->mnt_count = 1;
227 mnt->mnt_writers = 0;
228 #endif
229
230 INIT_HLIST_NODE(&mnt->mnt_hash);
231 INIT_LIST_HEAD(&mnt->mnt_child);
232 INIT_LIST_HEAD(&mnt->mnt_mounts);
233 INIT_LIST_HEAD(&mnt->mnt_list);
234 INIT_LIST_HEAD(&mnt->mnt_expire);
235 INIT_LIST_HEAD(&mnt->mnt_share);
236 INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 INIT_LIST_HEAD(&mnt->mnt_slave);
238 INIT_HLIST_NODE(&mnt->mnt_mp_list);
239 INIT_LIST_HEAD(&mnt->mnt_umounting);
240 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
241 mnt->mnt.mnt_idmap = &nop_mnt_idmap;
242 }
243 return mnt;
244
245 #ifdef CONFIG_SMP
246 out_free_devname:
247 kfree_const(mnt->mnt_devname);
248 #endif
249 out_free_id:
250 mnt_free_id(mnt);
251 out_free_cache:
252 kmem_cache_free(mnt_cache, mnt);
253 return NULL;
254 }
255
256 /*
257 * Most r/o checks on a fs are for operations that take
258 * discrete amounts of time, like a write() or unlink().
259 * We must keep track of when those operations start
260 * (for permission checks) and when they end, so that
261 * we can determine when writes are able to occur to
262 * a filesystem.
263 */
264 /*
265 * __mnt_is_readonly: check whether a mount is read-only
266 * @mnt: the mount to check for its write status
267 *
268 * This shouldn't be used directly ouside of the VFS.
269 * It does not guarantee that the filesystem will stay
270 * r/w, just that it is right *now*. This can not and
271 * should not be used in place of IS_RDONLY(inode).
272 * mnt_want/drop_write() will _keep_ the filesystem
273 * r/w.
274 */
275 bool __mnt_is_readonly(struct vfsmount *mnt)
276 {
277 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
278 }
279 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
280
281 static inline void mnt_inc_writers(struct mount *mnt)
282 {
283 #ifdef CONFIG_SMP
284 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
285 #else
286 mnt->mnt_writers++;
287 #endif
288 }
289
290 static inline void mnt_dec_writers(struct mount *mnt)
291 {
292 #ifdef CONFIG_SMP
293 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
294 #else
295 mnt->mnt_writers--;
296 #endif
297 }
298
299 static unsigned int mnt_get_writers(struct mount *mnt)
300 {
301 #ifdef CONFIG_SMP
302 unsigned int count = 0;
303 int cpu;
304
305 for_each_possible_cpu(cpu) {
306 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
307 }
308
309 return count;
310 #else
311 return mnt->mnt_writers;
312 #endif
313 }
314
315 static int mnt_is_readonly(struct vfsmount *mnt)
316 {
317 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
318 return 1;
319 /*
320 * The barrier pairs with the barrier in sb_start_ro_state_change()
321 * making sure if we don't see s_readonly_remount set yet, we also will
322 * not see any superblock / mount flag changes done by remount.
323 * It also pairs with the barrier in sb_end_ro_state_change()
324 * assuring that if we see s_readonly_remount already cleared, we will
325 * see the values of superblock / mount flags updated by remount.
326 */
327 smp_rmb();
328 return __mnt_is_readonly(mnt);
329 }
330
331 /*
332 * Most r/o & frozen checks on a fs are for operations that take discrete
333 * amounts of time, like a write() or unlink(). We must keep track of when
334 * those operations start (for permission checks) and when they end, so that we
335 * can determine when writes are able to occur to a filesystem.
336 */
337 /**
338 * mnt_get_write_access - get write access to a mount without freeze protection
339 * @m: the mount on which to take a write
340 *
341 * This tells the low-level filesystem that a write is about to be performed to
342 * it, and makes sure that writes are allowed (mnt it read-write) before
343 * returning success. This operation does not protect against filesystem being
344 * frozen. When the write operation is finished, mnt_put_write_access() must be
345 * called. This is effectively a refcount.
346 */
347 int mnt_get_write_access(struct vfsmount *m)
348 {
349 struct mount *mnt = real_mount(m);
350 int ret = 0;
351
352 preempt_disable();
353 mnt_inc_writers(mnt);
354 /*
355 * The store to mnt_inc_writers must be visible before we pass
356 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
357 * incremented count after it has set MNT_WRITE_HOLD.
358 */
359 smp_mb();
360 might_lock(&mount_lock.lock);
361 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
362 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
363 cpu_relax();
364 } else {
365 /*
366 * This prevents priority inversion, if the task
367 * setting MNT_WRITE_HOLD got preempted on a remote
368 * CPU, and it prevents life lock if the task setting
369 * MNT_WRITE_HOLD has a lower priority and is bound to
370 * the same CPU as the task that is spinning here.
371 */
372 preempt_enable();
373 lock_mount_hash();
374 unlock_mount_hash();
375 preempt_disable();
376 }
377 }
378 /*
379 * The barrier pairs with the barrier sb_start_ro_state_change() making
380 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
381 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
382 * mnt_is_readonly() and bail in case we are racing with remount
383 * read-only.
384 */
385 smp_rmb();
386 if (mnt_is_readonly(m)) {
387 mnt_dec_writers(mnt);
388 ret = -EROFS;
389 }
390 preempt_enable();
391
392 return ret;
393 }
394 EXPORT_SYMBOL_GPL(mnt_get_write_access);
395
396 /**
397 * mnt_want_write - get write access to a mount
398 * @m: the mount on which to take a write
399 *
400 * This tells the low-level filesystem that a write is about to be performed to
401 * it, and makes sure that writes are allowed (mount is read-write, filesystem
402 * is not frozen) before returning success. When the write operation is
403 * finished, mnt_drop_write() must be called. This is effectively a refcount.
404 */
405 int mnt_want_write(struct vfsmount *m)
406 {
407 int ret;
408
409 sb_start_write(m->mnt_sb);
410 ret = mnt_get_write_access(m);
411 if (ret)
412 sb_end_write(m->mnt_sb);
413 return ret;
414 }
415 EXPORT_SYMBOL_GPL(mnt_want_write);
416
417 /**
418 * mnt_get_write_access_file - get write access to a file's mount
419 * @file: the file who's mount on which to take a write
420 *
421 * This is like mnt_get_write_access, but if @file is already open for write it
422 * skips incrementing mnt_writers (since the open file already has a reference)
423 * and instead only does the check for emergency r/o remounts. This must be
424 * paired with mnt_put_write_access_file.
425 */
426 int mnt_get_write_access_file(struct file *file)
427 {
428 if (file->f_mode & FMODE_WRITER) {
429 /*
430 * Superblock may have become readonly while there are still
431 * writable fd's, e.g. due to a fs error with errors=remount-ro
432 */
433 if (__mnt_is_readonly(file->f_path.mnt))
434 return -EROFS;
435 return 0;
436 }
437 return mnt_get_write_access(file->f_path.mnt);
438 }
439
440 /**
441 * mnt_want_write_file - get write access to a file's mount
442 * @file: the file who's mount on which to take a write
443 *
444 * This is like mnt_want_write, but if the file is already open for writing it
445 * skips incrementing mnt_writers (since the open file already has a reference)
446 * and instead only does the freeze protection and the check for emergency r/o
447 * remounts. This must be paired with mnt_drop_write_file.
448 */
449 int mnt_want_write_file(struct file *file)
450 {
451 int ret;
452
453 sb_start_write(file_inode(file)->i_sb);
454 ret = mnt_get_write_access_file(file);
455 if (ret)
456 sb_end_write(file_inode(file)->i_sb);
457 return ret;
458 }
459 EXPORT_SYMBOL_GPL(mnt_want_write_file);
460
461 /**
462 * mnt_put_write_access - give up write access to a mount
463 * @mnt: the mount on which to give up write access
464 *
465 * Tells the low-level filesystem that we are done
466 * performing writes to it. Must be matched with
467 * mnt_get_write_access() call above.
468 */
469 void mnt_put_write_access(struct vfsmount *mnt)
470 {
471 preempt_disable();
472 mnt_dec_writers(real_mount(mnt));
473 preempt_enable();
474 }
475 EXPORT_SYMBOL_GPL(mnt_put_write_access);
476
477 /**
478 * mnt_drop_write - give up write access to a mount
479 * @mnt: the mount on which to give up write access
480 *
481 * Tells the low-level filesystem that we are done performing writes to it and
482 * also allows filesystem to be frozen again. Must be matched with
483 * mnt_want_write() call above.
484 */
485 void mnt_drop_write(struct vfsmount *mnt)
486 {
487 mnt_put_write_access(mnt);
488 sb_end_write(mnt->mnt_sb);
489 }
490 EXPORT_SYMBOL_GPL(mnt_drop_write);
491
492 void mnt_put_write_access_file(struct file *file)
493 {
494 if (!(file->f_mode & FMODE_WRITER))
495 mnt_put_write_access(file->f_path.mnt);
496 }
497
498 void mnt_drop_write_file(struct file *file)
499 {
500 mnt_put_write_access_file(file);
501 sb_end_write(file_inode(file)->i_sb);
502 }
503 EXPORT_SYMBOL(mnt_drop_write_file);
504
505 /**
506 * mnt_hold_writers - prevent write access to the given mount
507 * @mnt: mnt to prevent write access to
508 *
509 * Prevents write access to @mnt if there are no active writers for @mnt.
510 * This function needs to be called and return successfully before changing
511 * properties of @mnt that need to remain stable for callers with write access
512 * to @mnt.
513 *
514 * After this functions has been called successfully callers must pair it with
515 * a call to mnt_unhold_writers() in order to stop preventing write access to
516 * @mnt.
517 *
518 * Context: This function expects lock_mount_hash() to be held serializing
519 * setting MNT_WRITE_HOLD.
520 * Return: On success 0 is returned.
521 * On error, -EBUSY is returned.
522 */
523 static inline int mnt_hold_writers(struct mount *mnt)
524 {
525 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
526 /*
527 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
528 * should be visible before we do.
529 */
530 smp_mb();
531
532 /*
533 * With writers on hold, if this value is zero, then there are
534 * definitely no active writers (although held writers may subsequently
535 * increment the count, they'll have to wait, and decrement it after
536 * seeing MNT_READONLY).
537 *
538 * It is OK to have counter incremented on one CPU and decremented on
539 * another: the sum will add up correctly. The danger would be when we
540 * sum up each counter, if we read a counter before it is incremented,
541 * but then read another CPU's count which it has been subsequently
542 * decremented from -- we would see more decrements than we should.
543 * MNT_WRITE_HOLD protects against this scenario, because
544 * mnt_want_write first increments count, then smp_mb, then spins on
545 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
546 * we're counting up here.
547 */
548 if (mnt_get_writers(mnt) > 0)
549 return -EBUSY;
550
551 return 0;
552 }
553
554 /**
555 * mnt_unhold_writers - stop preventing write access to the given mount
556 * @mnt: mnt to stop preventing write access to
557 *
558 * Stop preventing write access to @mnt allowing callers to gain write access
559 * to @mnt again.
560 *
561 * This function can only be called after a successful call to
562 * mnt_hold_writers().
563 *
564 * Context: This function expects lock_mount_hash() to be held.
565 */
566 static inline void mnt_unhold_writers(struct mount *mnt)
567 {
568 /*
569 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
570 * that become unheld will see MNT_READONLY.
571 */
572 smp_wmb();
573 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
574 }
575
576 static int mnt_make_readonly(struct mount *mnt)
577 {
578 int ret;
579
580 ret = mnt_hold_writers(mnt);
581 if (!ret)
582 mnt->mnt.mnt_flags |= MNT_READONLY;
583 mnt_unhold_writers(mnt);
584 return ret;
585 }
586
587 int sb_prepare_remount_readonly(struct super_block *sb)
588 {
589 struct mount *mnt;
590 int err = 0;
591
592 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
593 if (atomic_long_read(&sb->s_remove_count))
594 return -EBUSY;
595
596 lock_mount_hash();
597 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
598 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
599 err = mnt_hold_writers(mnt);
600 if (err)
601 break;
602 }
603 }
604 if (!err && atomic_long_read(&sb->s_remove_count))
605 err = -EBUSY;
606
607 if (!err)
608 sb_start_ro_state_change(sb);
609 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
610 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
611 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
612 }
613 unlock_mount_hash();
614
615 return err;
616 }
617
618 static void free_vfsmnt(struct mount *mnt)
619 {
620 mnt_idmap_put(mnt_idmap(&mnt->mnt));
621 kfree_const(mnt->mnt_devname);
622 #ifdef CONFIG_SMP
623 free_percpu(mnt->mnt_pcp);
624 #endif
625 kmem_cache_free(mnt_cache, mnt);
626 }
627
628 static void delayed_free_vfsmnt(struct rcu_head *head)
629 {
630 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
631 }
632
633 /* call under rcu_read_lock */
634 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
635 {
636 struct mount *mnt;
637 if (read_seqretry(&mount_lock, seq))
638 return 1;
639 if (bastard == NULL)
640 return 0;
641 mnt = real_mount(bastard);
642 mnt_add_count(mnt, 1);
643 smp_mb(); // see mntput_no_expire()
644 if (likely(!read_seqretry(&mount_lock, seq)))
645 return 0;
646 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
647 mnt_add_count(mnt, -1);
648 return 1;
649 }
650 lock_mount_hash();
651 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
652 mnt_add_count(mnt, -1);
653 unlock_mount_hash();
654 return 1;
655 }
656 unlock_mount_hash();
657 /* caller will mntput() */
658 return -1;
659 }
660
661 /* call under rcu_read_lock */
662 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
663 {
664 int res = __legitimize_mnt(bastard, seq);
665 if (likely(!res))
666 return true;
667 if (unlikely(res < 0)) {
668 rcu_read_unlock();
669 mntput(bastard);
670 rcu_read_lock();
671 }
672 return false;
673 }
674
675 /**
676 * __lookup_mnt - find first child mount
677 * @mnt: parent mount
678 * @dentry: mountpoint
679 *
680 * If @mnt has a child mount @c mounted @dentry find and return it.
681 *
682 * Note that the child mount @c need not be unique. There are cases
683 * where shadow mounts are created. For example, during mount
684 * propagation when a source mount @mnt whose root got overmounted by a
685 * mount @o after path lookup but before @namespace_sem could be
686 * acquired gets copied and propagated. So @mnt gets copied including
687 * @o. When @mnt is propagated to a destination mount @d that already
688 * has another mount @n mounted at the same mountpoint then the source
689 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
690 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
691 * on @dentry.
692 *
693 * Return: The first child of @mnt mounted @dentry or NULL.
694 */
695 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
696 {
697 struct hlist_head *head = m_hash(mnt, dentry);
698 struct mount *p;
699
700 hlist_for_each_entry_rcu(p, head, mnt_hash)
701 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
702 return p;
703 return NULL;
704 }
705
706 /*
707 * lookup_mnt - Return the first child mount mounted at path
708 *
709 * "First" means first mounted chronologically. If you create the
710 * following mounts:
711 *
712 * mount /dev/sda1 /mnt
713 * mount /dev/sda2 /mnt
714 * mount /dev/sda3 /mnt
715 *
716 * Then lookup_mnt() on the base /mnt dentry in the root mount will
717 * return successively the root dentry and vfsmount of /dev/sda1, then
718 * /dev/sda2, then /dev/sda3, then NULL.
719 *
720 * lookup_mnt takes a reference to the found vfsmount.
721 */
722 struct vfsmount *lookup_mnt(const struct path *path)
723 {
724 struct mount *child_mnt;
725 struct vfsmount *m;
726 unsigned seq;
727
728 rcu_read_lock();
729 do {
730 seq = read_seqbegin(&mount_lock);
731 child_mnt = __lookup_mnt(path->mnt, path->dentry);
732 m = child_mnt ? &child_mnt->mnt : NULL;
733 } while (!legitimize_mnt(m, seq));
734 rcu_read_unlock();
735 return m;
736 }
737
738 /*
739 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
740 * current mount namespace.
741 *
742 * The common case is dentries are not mountpoints at all and that
743 * test is handled inline. For the slow case when we are actually
744 * dealing with a mountpoint of some kind, walk through all of the
745 * mounts in the current mount namespace and test to see if the dentry
746 * is a mountpoint.
747 *
748 * The mount_hashtable is not usable in the context because we
749 * need to identify all mounts that may be in the current mount
750 * namespace not just a mount that happens to have some specified
751 * parent mount.
752 */
753 bool __is_local_mountpoint(struct dentry *dentry)
754 {
755 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
756 struct mount *mnt, *n;
757 bool is_covered = false;
758
759 down_read(&namespace_sem);
760 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
761 is_covered = (mnt->mnt_mountpoint == dentry);
762 if (is_covered)
763 break;
764 }
765 up_read(&namespace_sem);
766
767 return is_covered;
768 }
769
770 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
771 {
772 struct hlist_head *chain = mp_hash(dentry);
773 struct mountpoint *mp;
774
775 hlist_for_each_entry(mp, chain, m_hash) {
776 if (mp->m_dentry == dentry) {
777 mp->m_count++;
778 return mp;
779 }
780 }
781 return NULL;
782 }
783
784 static struct mountpoint *get_mountpoint(struct dentry *dentry)
785 {
786 struct mountpoint *mp, *new = NULL;
787 int ret;
788
789 if (d_mountpoint(dentry)) {
790 /* might be worth a WARN_ON() */
791 if (d_unlinked(dentry))
792 return ERR_PTR(-ENOENT);
793 mountpoint:
794 read_seqlock_excl(&mount_lock);
795 mp = lookup_mountpoint(dentry);
796 read_sequnlock_excl(&mount_lock);
797 if (mp)
798 goto done;
799 }
800
801 if (!new)
802 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
803 if (!new)
804 return ERR_PTR(-ENOMEM);
805
806
807 /* Exactly one processes may set d_mounted */
808 ret = d_set_mounted(dentry);
809
810 /* Someone else set d_mounted? */
811 if (ret == -EBUSY)
812 goto mountpoint;
813
814 /* The dentry is not available as a mountpoint? */
815 mp = ERR_PTR(ret);
816 if (ret)
817 goto done;
818
819 /* Add the new mountpoint to the hash table */
820 read_seqlock_excl(&mount_lock);
821 new->m_dentry = dget(dentry);
822 new->m_count = 1;
823 hlist_add_head(&new->m_hash, mp_hash(dentry));
824 INIT_HLIST_HEAD(&new->m_list);
825 read_sequnlock_excl(&mount_lock);
826
827 mp = new;
828 new = NULL;
829 done:
830 kfree(new);
831 return mp;
832 }
833
834 /*
835 * vfsmount lock must be held. Additionally, the caller is responsible
836 * for serializing calls for given disposal list.
837 */
838 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
839 {
840 if (!--mp->m_count) {
841 struct dentry *dentry = mp->m_dentry;
842 BUG_ON(!hlist_empty(&mp->m_list));
843 spin_lock(&dentry->d_lock);
844 dentry->d_flags &= ~DCACHE_MOUNTED;
845 spin_unlock(&dentry->d_lock);
846 dput_to_list(dentry, list);
847 hlist_del(&mp->m_hash);
848 kfree(mp);
849 }
850 }
851
852 /* called with namespace_lock and vfsmount lock */
853 static void put_mountpoint(struct mountpoint *mp)
854 {
855 __put_mountpoint(mp, &ex_mountpoints);
856 }
857
858 static inline int check_mnt(struct mount *mnt)
859 {
860 return mnt->mnt_ns == current->nsproxy->mnt_ns;
861 }
862
863 /*
864 * vfsmount lock must be held for write
865 */
866 static void touch_mnt_namespace(struct mnt_namespace *ns)
867 {
868 if (ns) {
869 ns->event = ++event;
870 wake_up_interruptible(&ns->poll);
871 }
872 }
873
874 /*
875 * vfsmount lock must be held for write
876 */
877 static void __touch_mnt_namespace(struct mnt_namespace *ns)
878 {
879 if (ns && ns->event != event) {
880 ns->event = event;
881 wake_up_interruptible(&ns->poll);
882 }
883 }
884
885 /*
886 * vfsmount lock must be held for write
887 */
888 static struct mountpoint *unhash_mnt(struct mount *mnt)
889 {
890 struct mountpoint *mp;
891 mnt->mnt_parent = mnt;
892 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
893 list_del_init(&mnt->mnt_child);
894 hlist_del_init_rcu(&mnt->mnt_hash);
895 hlist_del_init(&mnt->mnt_mp_list);
896 mp = mnt->mnt_mp;
897 mnt->mnt_mp = NULL;
898 return mp;
899 }
900
901 /*
902 * vfsmount lock must be held for write
903 */
904 static void umount_mnt(struct mount *mnt)
905 {
906 put_mountpoint(unhash_mnt(mnt));
907 }
908
909 /*
910 * vfsmount lock must be held for write
911 */
912 void mnt_set_mountpoint(struct mount *mnt,
913 struct mountpoint *mp,
914 struct mount *child_mnt)
915 {
916 mp->m_count++;
917 mnt_add_count(mnt, 1); /* essentially, that's mntget */
918 child_mnt->mnt_mountpoint = mp->m_dentry;
919 child_mnt->mnt_parent = mnt;
920 child_mnt->mnt_mp = mp;
921 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
922 }
923
924 /**
925 * mnt_set_mountpoint_beneath - mount a mount beneath another one
926 *
927 * @new_parent: the source mount
928 * @top_mnt: the mount beneath which @new_parent is mounted
929 * @new_mp: the new mountpoint of @top_mnt on @new_parent
930 *
931 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
932 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
933 * @new_mp. And mount @new_parent on the old parent and old
934 * mountpoint of @top_mnt.
935 *
936 * Context: This function expects namespace_lock() and lock_mount_hash()
937 * to have been acquired in that order.
938 */
939 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
940 struct mount *top_mnt,
941 struct mountpoint *new_mp)
942 {
943 struct mount *old_top_parent = top_mnt->mnt_parent;
944 struct mountpoint *old_top_mp = top_mnt->mnt_mp;
945
946 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
947 mnt_change_mountpoint(new_parent, new_mp, top_mnt);
948 }
949
950
951 static void __attach_mnt(struct mount *mnt, struct mount *parent)
952 {
953 hlist_add_head_rcu(&mnt->mnt_hash,
954 m_hash(&parent->mnt, mnt->mnt_mountpoint));
955 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
956 }
957
958 /**
959 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
960 * list of child mounts
961 * @parent: the parent
962 * @mnt: the new mount
963 * @mp: the new mountpoint
964 * @beneath: whether to mount @mnt beneath or on top of @parent
965 *
966 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
967 * to @parent's child mount list and to @mount_hashtable.
968 *
969 * If @beneath is true, remove @mnt from its current parent and
970 * mountpoint and mount it on @mp on @parent, and mount @parent on the
971 * old parent and old mountpoint of @mnt. Finally, attach @parent to
972 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
973 *
974 * Note, when __attach_mnt() is called @mnt->mnt_parent already points
975 * to the correct parent.
976 *
977 * Context: This function expects namespace_lock() and lock_mount_hash()
978 * to have been acquired in that order.
979 */
980 static void attach_mnt(struct mount *mnt, struct mount *parent,
981 struct mountpoint *mp, bool beneath)
982 {
983 if (beneath)
984 mnt_set_mountpoint_beneath(mnt, parent, mp);
985 else
986 mnt_set_mountpoint(parent, mp, mnt);
987 /*
988 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
989 * beneath @parent then @mnt will need to be attached to
990 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
991 * isn't the same mount as @parent.
992 */
993 __attach_mnt(mnt, mnt->mnt_parent);
994 }
995
996 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
997 {
998 struct mountpoint *old_mp = mnt->mnt_mp;
999 struct mount *old_parent = mnt->mnt_parent;
1000
1001 list_del_init(&mnt->mnt_child);
1002 hlist_del_init(&mnt->mnt_mp_list);
1003 hlist_del_init_rcu(&mnt->mnt_hash);
1004
1005 attach_mnt(mnt, parent, mp, false);
1006
1007 put_mountpoint(old_mp);
1008 mnt_add_count(old_parent, -1);
1009 }
1010
1011 static inline struct mount *node_to_mount(struct rb_node *node)
1012 {
1013 return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1014 }
1015
1016 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1017 {
1018 struct rb_node **link = &ns->mounts.rb_node;
1019 struct rb_node *parent = NULL;
1020
1021 WARN_ON(mnt->mnt.mnt_flags & MNT_ONRB);
1022 mnt->mnt_ns = ns;
1023 while (*link) {
1024 parent = *link;
1025 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique)
1026 link = &parent->rb_left;
1027 else
1028 link = &parent->rb_right;
1029 }
1030 rb_link_node(&mnt->mnt_node, parent, link);
1031 rb_insert_color(&mnt->mnt_node, &ns->mounts);
1032 mnt->mnt.mnt_flags |= MNT_ONRB;
1033 }
1034
1035 /*
1036 * vfsmount lock must be held for write
1037 */
1038 static void commit_tree(struct mount *mnt)
1039 {
1040 struct mount *parent = mnt->mnt_parent;
1041 struct mount *m;
1042 LIST_HEAD(head);
1043 struct mnt_namespace *n = parent->mnt_ns;
1044
1045 BUG_ON(parent == mnt);
1046
1047 list_add_tail(&head, &mnt->mnt_list);
1048 while (!list_empty(&head)) {
1049 m = list_first_entry(&head, typeof(*m), mnt_list);
1050 list_del(&m->mnt_list);
1051
1052 mnt_add_to_ns(n, m);
1053 }
1054 n->nr_mounts += n->pending_mounts;
1055 n->pending_mounts = 0;
1056
1057 __attach_mnt(mnt, parent);
1058 touch_mnt_namespace(n);
1059 }
1060
1061 static struct mount *next_mnt(struct mount *p, struct mount *root)
1062 {
1063 struct list_head *next = p->mnt_mounts.next;
1064 if (next == &p->mnt_mounts) {
1065 while (1) {
1066 if (p == root)
1067 return NULL;
1068 next = p->mnt_child.next;
1069 if (next != &p->mnt_parent->mnt_mounts)
1070 break;
1071 p = p->mnt_parent;
1072 }
1073 }
1074 return list_entry(next, struct mount, mnt_child);
1075 }
1076
1077 static struct mount *skip_mnt_tree(struct mount *p)
1078 {
1079 struct list_head *prev = p->mnt_mounts.prev;
1080 while (prev != &p->mnt_mounts) {
1081 p = list_entry(prev, struct mount, mnt_child);
1082 prev = p->mnt_mounts.prev;
1083 }
1084 return p;
1085 }
1086
1087 /**
1088 * vfs_create_mount - Create a mount for a configured superblock
1089 * @fc: The configuration context with the superblock attached
1090 *
1091 * Create a mount to an already configured superblock. If necessary, the
1092 * caller should invoke vfs_get_tree() before calling this.
1093 *
1094 * Note that this does not attach the mount to anything.
1095 */
1096 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1097 {
1098 struct mount *mnt;
1099
1100 if (!fc->root)
1101 return ERR_PTR(-EINVAL);
1102
1103 mnt = alloc_vfsmnt(fc->source ?: "none");
1104 if (!mnt)
1105 return ERR_PTR(-ENOMEM);
1106
1107 if (fc->sb_flags & SB_KERNMOUNT)
1108 mnt->mnt.mnt_flags = MNT_INTERNAL;
1109
1110 atomic_inc(&fc->root->d_sb->s_active);
1111 mnt->mnt.mnt_sb = fc->root->d_sb;
1112 mnt->mnt.mnt_root = dget(fc->root);
1113 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1114 mnt->mnt_parent = mnt;
1115
1116 lock_mount_hash();
1117 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1118 unlock_mount_hash();
1119 return &mnt->mnt;
1120 }
1121 EXPORT_SYMBOL(vfs_create_mount);
1122
1123 struct vfsmount *fc_mount(struct fs_context *fc)
1124 {
1125 int err = vfs_get_tree(fc);
1126 if (!err) {
1127 up_write(&fc->root->d_sb->s_umount);
1128 return vfs_create_mount(fc);
1129 }
1130 return ERR_PTR(err);
1131 }
1132 EXPORT_SYMBOL(fc_mount);
1133
1134 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1135 int flags, const char *name,
1136 void *data)
1137 {
1138 struct fs_context *fc;
1139 struct vfsmount *mnt;
1140 int ret = 0;
1141
1142 if (!type)
1143 return ERR_PTR(-EINVAL);
1144
1145 fc = fs_context_for_mount(type, flags);
1146 if (IS_ERR(fc))
1147 return ERR_CAST(fc);
1148
1149 if (name)
1150 ret = vfs_parse_fs_string(fc, "source",
1151 name, strlen(name));
1152 if (!ret)
1153 ret = parse_monolithic_mount_data(fc, data);
1154 if (!ret)
1155 mnt = fc_mount(fc);
1156 else
1157 mnt = ERR_PTR(ret);
1158
1159 put_fs_context(fc);
1160 return mnt;
1161 }
1162 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1163
1164 struct vfsmount *
1165 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1166 const char *name, void *data)
1167 {
1168 /* Until it is worked out how to pass the user namespace
1169 * through from the parent mount to the submount don't support
1170 * unprivileged mounts with submounts.
1171 */
1172 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1173 return ERR_PTR(-EPERM);
1174
1175 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1176 }
1177 EXPORT_SYMBOL_GPL(vfs_submount);
1178
1179 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1180 int flag)
1181 {
1182 struct super_block *sb = old->mnt.mnt_sb;
1183 struct mount *mnt;
1184 int err;
1185
1186 mnt = alloc_vfsmnt(old->mnt_devname);
1187 if (!mnt)
1188 return ERR_PTR(-ENOMEM);
1189
1190 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1191 mnt->mnt_group_id = 0; /* not a peer of original */
1192 else
1193 mnt->mnt_group_id = old->mnt_group_id;
1194
1195 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1196 err = mnt_alloc_group_id(mnt);
1197 if (err)
1198 goto out_free;
1199 }
1200
1201 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1202 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL|MNT_ONRB);
1203
1204 atomic_inc(&sb->s_active);
1205 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1206
1207 mnt->mnt.mnt_sb = sb;
1208 mnt->mnt.mnt_root = dget(root);
1209 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1210 mnt->mnt_parent = mnt;
1211 lock_mount_hash();
1212 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1213 unlock_mount_hash();
1214
1215 if ((flag & CL_SLAVE) ||
1216 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1217 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1218 mnt->mnt_master = old;
1219 CLEAR_MNT_SHARED(mnt);
1220 } else if (!(flag & CL_PRIVATE)) {
1221 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1222 list_add(&mnt->mnt_share, &old->mnt_share);
1223 if (IS_MNT_SLAVE(old))
1224 list_add(&mnt->mnt_slave, &old->mnt_slave);
1225 mnt->mnt_master = old->mnt_master;
1226 } else {
1227 CLEAR_MNT_SHARED(mnt);
1228 }
1229 if (flag & CL_MAKE_SHARED)
1230 set_mnt_shared(mnt);
1231
1232 /* stick the duplicate mount on the same expiry list
1233 * as the original if that was on one */
1234 if (flag & CL_EXPIRE) {
1235 if (!list_empty(&old->mnt_expire))
1236 list_add(&mnt->mnt_expire, &old->mnt_expire);
1237 }
1238
1239 return mnt;
1240
1241 out_free:
1242 mnt_free_id(mnt);
1243 free_vfsmnt(mnt);
1244 return ERR_PTR(err);
1245 }
1246
1247 static void cleanup_mnt(struct mount *mnt)
1248 {
1249 struct hlist_node *p;
1250 struct mount *m;
1251 /*
1252 * The warning here probably indicates that somebody messed
1253 * up a mnt_want/drop_write() pair. If this happens, the
1254 * filesystem was probably unable to make r/w->r/o transitions.
1255 * The locking used to deal with mnt_count decrement provides barriers,
1256 * so mnt_get_writers() below is safe.
1257 */
1258 WARN_ON(mnt_get_writers(mnt));
1259 if (unlikely(mnt->mnt_pins.first))
1260 mnt_pin_kill(mnt);
1261 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1262 hlist_del(&m->mnt_umount);
1263 mntput(&m->mnt);
1264 }
1265 fsnotify_vfsmount_delete(&mnt->mnt);
1266 dput(mnt->mnt.mnt_root);
1267 deactivate_super(mnt->mnt.mnt_sb);
1268 mnt_free_id(mnt);
1269 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1270 }
1271
1272 static void __cleanup_mnt(struct rcu_head *head)
1273 {
1274 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1275 }
1276
1277 static LLIST_HEAD(delayed_mntput_list);
1278 static void delayed_mntput(struct work_struct *unused)
1279 {
1280 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1281 struct mount *m, *t;
1282
1283 llist_for_each_entry_safe(m, t, node, mnt_llist)
1284 cleanup_mnt(m);
1285 }
1286 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1287
1288 static void mntput_no_expire(struct mount *mnt)
1289 {
1290 LIST_HEAD(list);
1291 int count;
1292
1293 rcu_read_lock();
1294 if (likely(READ_ONCE(mnt->mnt_ns))) {
1295 /*
1296 * Since we don't do lock_mount_hash() here,
1297 * ->mnt_ns can change under us. However, if it's
1298 * non-NULL, then there's a reference that won't
1299 * be dropped until after an RCU delay done after
1300 * turning ->mnt_ns NULL. So if we observe it
1301 * non-NULL under rcu_read_lock(), the reference
1302 * we are dropping is not the final one.
1303 */
1304 mnt_add_count(mnt, -1);
1305 rcu_read_unlock();
1306 return;
1307 }
1308 lock_mount_hash();
1309 /*
1310 * make sure that if __legitimize_mnt() has not seen us grab
1311 * mount_lock, we'll see their refcount increment here.
1312 */
1313 smp_mb();
1314 mnt_add_count(mnt, -1);
1315 count = mnt_get_count(mnt);
1316 if (count != 0) {
1317 WARN_ON(count < 0);
1318 rcu_read_unlock();
1319 unlock_mount_hash();
1320 return;
1321 }
1322 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1323 rcu_read_unlock();
1324 unlock_mount_hash();
1325 return;
1326 }
1327 mnt->mnt.mnt_flags |= MNT_DOOMED;
1328 rcu_read_unlock();
1329
1330 list_del(&mnt->mnt_instance);
1331
1332 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1333 struct mount *p, *tmp;
1334 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1335 __put_mountpoint(unhash_mnt(p), &list);
1336 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1337 }
1338 }
1339 unlock_mount_hash();
1340 shrink_dentry_list(&list);
1341
1342 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1343 struct task_struct *task = current;
1344 if (likely(!(task->flags & PF_KTHREAD))) {
1345 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1346 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1347 return;
1348 }
1349 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1350 schedule_delayed_work(&delayed_mntput_work, 1);
1351 return;
1352 }
1353 cleanup_mnt(mnt);
1354 }
1355
1356 void mntput(struct vfsmount *mnt)
1357 {
1358 if (mnt) {
1359 struct mount *m = real_mount(mnt);
1360 /* avoid cacheline pingpong */
1361 if (unlikely(m->mnt_expiry_mark))
1362 WRITE_ONCE(m->mnt_expiry_mark, 0);
1363 mntput_no_expire(m);
1364 }
1365 }
1366 EXPORT_SYMBOL(mntput);
1367
1368 struct vfsmount *mntget(struct vfsmount *mnt)
1369 {
1370 if (mnt)
1371 mnt_add_count(real_mount(mnt), 1);
1372 return mnt;
1373 }
1374 EXPORT_SYMBOL(mntget);
1375
1376 /*
1377 * Make a mount point inaccessible to new lookups.
1378 * Because there may still be current users, the caller MUST WAIT
1379 * for an RCU grace period before destroying the mount point.
1380 */
1381 void mnt_make_shortterm(struct vfsmount *mnt)
1382 {
1383 if (mnt)
1384 real_mount(mnt)->mnt_ns = NULL;
1385 }
1386
1387 /**
1388 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1389 * @path: path to check
1390 *
1391 * d_mountpoint() can only be used reliably to establish if a dentry is
1392 * not mounted in any namespace and that common case is handled inline.
1393 * d_mountpoint() isn't aware of the possibility there may be multiple
1394 * mounts using a given dentry in a different namespace. This function
1395 * checks if the passed in path is a mountpoint rather than the dentry
1396 * alone.
1397 */
1398 bool path_is_mountpoint(const struct path *path)
1399 {
1400 unsigned seq;
1401 bool res;
1402
1403 if (!d_mountpoint(path->dentry))
1404 return false;
1405
1406 rcu_read_lock();
1407 do {
1408 seq = read_seqbegin(&mount_lock);
1409 res = __path_is_mountpoint(path);
1410 } while (read_seqretry(&mount_lock, seq));
1411 rcu_read_unlock();
1412
1413 return res;
1414 }
1415 EXPORT_SYMBOL(path_is_mountpoint);
1416
1417 struct vfsmount *mnt_clone_internal(const struct path *path)
1418 {
1419 struct mount *p;
1420 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1421 if (IS_ERR(p))
1422 return ERR_CAST(p);
1423 p->mnt.mnt_flags |= MNT_INTERNAL;
1424 return &p->mnt;
1425 }
1426
1427 /*
1428 * Returns the mount which either has the specified mnt_id, or has the next
1429 * smallest id afer the specified one.
1430 */
1431 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1432 {
1433 struct rb_node *node = ns->mounts.rb_node;
1434 struct mount *ret = NULL;
1435
1436 while (node) {
1437 struct mount *m = node_to_mount(node);
1438
1439 if (mnt_id <= m->mnt_id_unique) {
1440 ret = node_to_mount(node);
1441 if (mnt_id == m->mnt_id_unique)
1442 break;
1443 node = node->rb_left;
1444 } else {
1445 node = node->rb_right;
1446 }
1447 }
1448 return ret;
1449 }
1450
1451 #ifdef CONFIG_PROC_FS
1452
1453 /* iterator; we want it to have access to namespace_sem, thus here... */
1454 static void *m_start(struct seq_file *m, loff_t *pos)
1455 {
1456 struct proc_mounts *p = m->private;
1457
1458 down_read(&namespace_sem);
1459
1460 return mnt_find_id_at(p->ns, *pos);
1461 }
1462
1463 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1464 {
1465 struct mount *next = NULL, *mnt = v;
1466 struct rb_node *node = rb_next(&mnt->mnt_node);
1467
1468 ++*pos;
1469 if (node) {
1470 next = node_to_mount(node);
1471 *pos = next->mnt_id_unique;
1472 }
1473 return next;
1474 }
1475
1476 static void m_stop(struct seq_file *m, void *v)
1477 {
1478 up_read(&namespace_sem);
1479 }
1480
1481 static int m_show(struct seq_file *m, void *v)
1482 {
1483 struct proc_mounts *p = m->private;
1484 struct mount *r = v;
1485 return p->show(m, &r->mnt);
1486 }
1487
1488 const struct seq_operations mounts_op = {
1489 .start = m_start,
1490 .next = m_next,
1491 .stop = m_stop,
1492 .show = m_show,
1493 };
1494
1495 #endif /* CONFIG_PROC_FS */
1496
1497 /**
1498 * may_umount_tree - check if a mount tree is busy
1499 * @m: root of mount tree
1500 *
1501 * This is called to check if a tree of mounts has any
1502 * open files, pwds, chroots or sub mounts that are
1503 * busy.
1504 */
1505 int may_umount_tree(struct vfsmount *m)
1506 {
1507 struct mount *mnt = real_mount(m);
1508 int actual_refs = 0;
1509 int minimum_refs = 0;
1510 struct mount *p;
1511 BUG_ON(!m);
1512
1513 /* write lock needed for mnt_get_count */
1514 lock_mount_hash();
1515 for (p = mnt; p; p = next_mnt(p, mnt)) {
1516 actual_refs += mnt_get_count(p);
1517 minimum_refs += 2;
1518 }
1519 unlock_mount_hash();
1520
1521 if (actual_refs > minimum_refs)
1522 return 0;
1523
1524 return 1;
1525 }
1526
1527 EXPORT_SYMBOL(may_umount_tree);
1528
1529 /**
1530 * may_umount - check if a mount point is busy
1531 * @mnt: root of mount
1532 *
1533 * This is called to check if a mount point has any
1534 * open files, pwds, chroots or sub mounts. If the
1535 * mount has sub mounts this will return busy
1536 * regardless of whether the sub mounts are busy.
1537 *
1538 * Doesn't take quota and stuff into account. IOW, in some cases it will
1539 * give false negatives. The main reason why it's here is that we need
1540 * a non-destructive way to look for easily umountable filesystems.
1541 */
1542 int may_umount(struct vfsmount *mnt)
1543 {
1544 int ret = 1;
1545 down_read(&namespace_sem);
1546 lock_mount_hash();
1547 if (propagate_mount_busy(real_mount(mnt), 2))
1548 ret = 0;
1549 unlock_mount_hash();
1550 up_read(&namespace_sem);
1551 return ret;
1552 }
1553
1554 EXPORT_SYMBOL(may_umount);
1555
1556 static void namespace_unlock(void)
1557 {
1558 struct hlist_head head;
1559 struct hlist_node *p;
1560 struct mount *m;
1561 LIST_HEAD(list);
1562
1563 hlist_move_list(&unmounted, &head);
1564 list_splice_init(&ex_mountpoints, &list);
1565
1566 up_write(&namespace_sem);
1567
1568 shrink_dentry_list(&list);
1569
1570 if (likely(hlist_empty(&head)))
1571 return;
1572
1573 synchronize_rcu_expedited();
1574
1575 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1576 hlist_del(&m->mnt_umount);
1577 mntput(&m->mnt);
1578 }
1579 }
1580
1581 static inline void namespace_lock(void)
1582 {
1583 down_write(&namespace_sem);
1584 }
1585
1586 enum umount_tree_flags {
1587 UMOUNT_SYNC = 1,
1588 UMOUNT_PROPAGATE = 2,
1589 UMOUNT_CONNECTED = 4,
1590 };
1591
1592 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1593 {
1594 /* Leaving mounts connected is only valid for lazy umounts */
1595 if (how & UMOUNT_SYNC)
1596 return true;
1597
1598 /* A mount without a parent has nothing to be connected to */
1599 if (!mnt_has_parent(mnt))
1600 return true;
1601
1602 /* Because the reference counting rules change when mounts are
1603 * unmounted and connected, umounted mounts may not be
1604 * connected to mounted mounts.
1605 */
1606 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1607 return true;
1608
1609 /* Has it been requested that the mount remain connected? */
1610 if (how & UMOUNT_CONNECTED)
1611 return false;
1612
1613 /* Is the mount locked such that it needs to remain connected? */
1614 if (IS_MNT_LOCKED(mnt))
1615 return false;
1616
1617 /* By default disconnect the mount */
1618 return true;
1619 }
1620
1621 /*
1622 * mount_lock must be held
1623 * namespace_sem must be held for write
1624 */
1625 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1626 {
1627 LIST_HEAD(tmp_list);
1628 struct mount *p;
1629
1630 if (how & UMOUNT_PROPAGATE)
1631 propagate_mount_unlock(mnt);
1632
1633 /* Gather the mounts to umount */
1634 for (p = mnt; p; p = next_mnt(p, mnt)) {
1635 p->mnt.mnt_flags |= MNT_UMOUNT;
1636 if (p->mnt.mnt_flags & MNT_ONRB)
1637 move_from_ns(p, &tmp_list);
1638 else
1639 list_move(&p->mnt_list, &tmp_list);
1640 }
1641
1642 /* Hide the mounts from mnt_mounts */
1643 list_for_each_entry(p, &tmp_list, mnt_list) {
1644 list_del_init(&p->mnt_child);
1645 }
1646
1647 /* Add propogated mounts to the tmp_list */
1648 if (how & UMOUNT_PROPAGATE)
1649 propagate_umount(&tmp_list);
1650
1651 while (!list_empty(&tmp_list)) {
1652 struct mnt_namespace *ns;
1653 bool disconnect;
1654 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1655 list_del_init(&p->mnt_expire);
1656 list_del_init(&p->mnt_list);
1657 ns = p->mnt_ns;
1658 if (ns) {
1659 ns->nr_mounts--;
1660 __touch_mnt_namespace(ns);
1661 }
1662 p->mnt_ns = NULL;
1663 if (how & UMOUNT_SYNC)
1664 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1665
1666 disconnect = disconnect_mount(p, how);
1667 if (mnt_has_parent(p)) {
1668 mnt_add_count(p->mnt_parent, -1);
1669 if (!disconnect) {
1670 /* Don't forget about p */
1671 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1672 } else {
1673 umount_mnt(p);
1674 }
1675 }
1676 change_mnt_propagation(p, MS_PRIVATE);
1677 if (disconnect)
1678 hlist_add_head(&p->mnt_umount, &unmounted);
1679 }
1680 }
1681
1682 static void shrink_submounts(struct mount *mnt);
1683
1684 static int do_umount_root(struct super_block *sb)
1685 {
1686 int ret = 0;
1687
1688 down_write(&sb->s_umount);
1689 if (!sb_rdonly(sb)) {
1690 struct fs_context *fc;
1691
1692 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1693 SB_RDONLY);
1694 if (IS_ERR(fc)) {
1695 ret = PTR_ERR(fc);
1696 } else {
1697 ret = parse_monolithic_mount_data(fc, NULL);
1698 if (!ret)
1699 ret = reconfigure_super(fc);
1700 put_fs_context(fc);
1701 }
1702 }
1703 up_write(&sb->s_umount);
1704 return ret;
1705 }
1706
1707 static int do_umount(struct mount *mnt, int flags)
1708 {
1709 struct super_block *sb = mnt->mnt.mnt_sb;
1710 int retval;
1711
1712 retval = security_sb_umount(&mnt->mnt, flags);
1713 if (retval)
1714 return retval;
1715
1716 /*
1717 * Allow userspace to request a mountpoint be expired rather than
1718 * unmounting unconditionally. Unmount only happens if:
1719 * (1) the mark is already set (the mark is cleared by mntput())
1720 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1721 */
1722 if (flags & MNT_EXPIRE) {
1723 if (&mnt->mnt == current->fs->root.mnt ||
1724 flags & (MNT_FORCE | MNT_DETACH))
1725 return -EINVAL;
1726
1727 /*
1728 * probably don't strictly need the lock here if we examined
1729 * all race cases, but it's a slowpath.
1730 */
1731 lock_mount_hash();
1732 if (mnt_get_count(mnt) != 2) {
1733 unlock_mount_hash();
1734 return -EBUSY;
1735 }
1736 unlock_mount_hash();
1737
1738 if (!xchg(&mnt->mnt_expiry_mark, 1))
1739 return -EAGAIN;
1740 }
1741
1742 /*
1743 * If we may have to abort operations to get out of this
1744 * mount, and they will themselves hold resources we must
1745 * allow the fs to do things. In the Unix tradition of
1746 * 'Gee thats tricky lets do it in userspace' the umount_begin
1747 * might fail to complete on the first run through as other tasks
1748 * must return, and the like. Thats for the mount program to worry
1749 * about for the moment.
1750 */
1751
1752 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1753 sb->s_op->umount_begin(sb);
1754 }
1755
1756 /*
1757 * No sense to grab the lock for this test, but test itself looks
1758 * somewhat bogus. Suggestions for better replacement?
1759 * Ho-hum... In principle, we might treat that as umount + switch
1760 * to rootfs. GC would eventually take care of the old vfsmount.
1761 * Actually it makes sense, especially if rootfs would contain a
1762 * /reboot - static binary that would close all descriptors and
1763 * call reboot(9). Then init(8) could umount root and exec /reboot.
1764 */
1765 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1766 /*
1767 * Special case for "unmounting" root ...
1768 * we just try to remount it readonly.
1769 */
1770 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1771 return -EPERM;
1772 return do_umount_root(sb);
1773 }
1774
1775 namespace_lock();
1776 lock_mount_hash();
1777
1778 /* Recheck MNT_LOCKED with the locks held */
1779 retval = -EINVAL;
1780 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1781 goto out;
1782
1783 event++;
1784 if (flags & MNT_DETACH) {
1785 if (mnt->mnt.mnt_flags & MNT_ONRB ||
1786 !list_empty(&mnt->mnt_list))
1787 umount_tree(mnt, UMOUNT_PROPAGATE);
1788 retval = 0;
1789 } else {
1790 shrink_submounts(mnt);
1791 retval = -EBUSY;
1792 if (!propagate_mount_busy(mnt, 2)) {
1793 if (mnt->mnt.mnt_flags & MNT_ONRB ||
1794 !list_empty(&mnt->mnt_list))
1795 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1796 retval = 0;
1797 }
1798 }
1799 out:
1800 unlock_mount_hash();
1801 namespace_unlock();
1802 return retval;
1803 }
1804
1805 /*
1806 * __detach_mounts - lazily unmount all mounts on the specified dentry
1807 *
1808 * During unlink, rmdir, and d_drop it is possible to loose the path
1809 * to an existing mountpoint, and wind up leaking the mount.
1810 * detach_mounts allows lazily unmounting those mounts instead of
1811 * leaking them.
1812 *
1813 * The caller may hold dentry->d_inode->i_mutex.
1814 */
1815 void __detach_mounts(struct dentry *dentry)
1816 {
1817 struct mountpoint *mp;
1818 struct mount *mnt;
1819
1820 namespace_lock();
1821 lock_mount_hash();
1822 mp = lookup_mountpoint(dentry);
1823 if (!mp)
1824 goto out_unlock;
1825
1826 event++;
1827 while (!hlist_empty(&mp->m_list)) {
1828 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1829 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1830 umount_mnt(mnt);
1831 hlist_add_head(&mnt->mnt_umount, &unmounted);
1832 }
1833 else umount_tree(mnt, UMOUNT_CONNECTED);
1834 }
1835 put_mountpoint(mp);
1836 out_unlock:
1837 unlock_mount_hash();
1838 namespace_unlock();
1839 }
1840
1841 /*
1842 * Is the caller allowed to modify his namespace?
1843 */
1844 bool may_mount(void)
1845 {
1846 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1847 }
1848
1849 /**
1850 * path_mounted - check whether path is mounted
1851 * @path: path to check
1852 *
1853 * Determine whether @path refers to the root of a mount.
1854 *
1855 * Return: true if @path is the root of a mount, false if not.
1856 */
1857 static inline bool path_mounted(const struct path *path)
1858 {
1859 return path->mnt->mnt_root == path->dentry;
1860 }
1861
1862 static void warn_mandlock(void)
1863 {
1864 pr_warn_once("=======================================================\n"
1865 "WARNING: The mand mount option has been deprecated and\n"
1866 " and is ignored by this kernel. Remove the mand\n"
1867 " option from the mount to silence this warning.\n"
1868 "=======================================================\n");
1869 }
1870
1871 static int can_umount(const struct path *path, int flags)
1872 {
1873 struct mount *mnt = real_mount(path->mnt);
1874
1875 if (!may_mount())
1876 return -EPERM;
1877 if (!path_mounted(path))
1878 return -EINVAL;
1879 if (!check_mnt(mnt))
1880 return -EINVAL;
1881 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1882 return -EINVAL;
1883 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1884 return -EPERM;
1885 return 0;
1886 }
1887
1888 // caller is responsible for flags being sane
1889 int path_umount(struct path *path, int flags)
1890 {
1891 struct mount *mnt = real_mount(path->mnt);
1892 int ret;
1893
1894 ret = can_umount(path, flags);
1895 if (!ret)
1896 ret = do_umount(mnt, flags);
1897
1898 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1899 dput(path->dentry);
1900 mntput_no_expire(mnt);
1901 return ret;
1902 }
1903
1904 static int ksys_umount(char __user *name, int flags)
1905 {
1906 int lookup_flags = LOOKUP_MOUNTPOINT;
1907 struct path path;
1908 int ret;
1909
1910 // basic validity checks done first
1911 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1912 return -EINVAL;
1913
1914 if (!(flags & UMOUNT_NOFOLLOW))
1915 lookup_flags |= LOOKUP_FOLLOW;
1916 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1917 if (ret)
1918 return ret;
1919 return path_umount(&path, flags);
1920 }
1921
1922 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1923 {
1924 return ksys_umount(name, flags);
1925 }
1926
1927 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1928
1929 /*
1930 * The 2.0 compatible umount. No flags.
1931 */
1932 SYSCALL_DEFINE1(oldumount, char __user *, name)
1933 {
1934 return ksys_umount(name, 0);
1935 }
1936
1937 #endif
1938
1939 static bool is_mnt_ns_file(struct dentry *dentry)
1940 {
1941 /* Is this a proxy for a mount namespace? */
1942 return dentry->d_op == &ns_dentry_operations &&
1943 dentry->d_fsdata == &mntns_operations;
1944 }
1945
1946 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1947 {
1948 return container_of(ns, struct mnt_namespace, ns);
1949 }
1950
1951 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1952 {
1953 return &mnt->ns;
1954 }
1955
1956 static bool mnt_ns_loop(struct dentry *dentry)
1957 {
1958 /* Could bind mounting the mount namespace inode cause a
1959 * mount namespace loop?
1960 */
1961 struct mnt_namespace *mnt_ns;
1962 if (!is_mnt_ns_file(dentry))
1963 return false;
1964
1965 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1966 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1967 }
1968
1969 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1970 int flag)
1971 {
1972 struct mount *res, *p, *q, *r, *parent;
1973
1974 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1975 return ERR_PTR(-EINVAL);
1976
1977 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1978 return ERR_PTR(-EINVAL);
1979
1980 res = q = clone_mnt(mnt, dentry, flag);
1981 if (IS_ERR(q))
1982 return q;
1983
1984 q->mnt_mountpoint = mnt->mnt_mountpoint;
1985
1986 p = mnt;
1987 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1988 struct mount *s;
1989 if (!is_subdir(r->mnt_mountpoint, dentry))
1990 continue;
1991
1992 for (s = r; s; s = next_mnt(s, r)) {
1993 if (!(flag & CL_COPY_UNBINDABLE) &&
1994 IS_MNT_UNBINDABLE(s)) {
1995 if (s->mnt.mnt_flags & MNT_LOCKED) {
1996 /* Both unbindable and locked. */
1997 q = ERR_PTR(-EPERM);
1998 goto out;
1999 } else {
2000 s = skip_mnt_tree(s);
2001 continue;
2002 }
2003 }
2004 if (!(flag & CL_COPY_MNT_NS_FILE) &&
2005 is_mnt_ns_file(s->mnt.mnt_root)) {
2006 s = skip_mnt_tree(s);
2007 continue;
2008 }
2009 while (p != s->mnt_parent) {
2010 p = p->mnt_parent;
2011 q = q->mnt_parent;
2012 }
2013 p = s;
2014 parent = q;
2015 q = clone_mnt(p, p->mnt.mnt_root, flag);
2016 if (IS_ERR(q))
2017 goto out;
2018 lock_mount_hash();
2019 list_add_tail(&q->mnt_list, &res->mnt_list);
2020 attach_mnt(q, parent, p->mnt_mp, false);
2021 unlock_mount_hash();
2022 }
2023 }
2024 return res;
2025 out:
2026 if (res) {
2027 lock_mount_hash();
2028 umount_tree(res, UMOUNT_SYNC);
2029 unlock_mount_hash();
2030 }
2031 return q;
2032 }
2033
2034 /* Caller should check returned pointer for errors */
2035
2036 struct vfsmount *collect_mounts(const struct path *path)
2037 {
2038 struct mount *tree;
2039 namespace_lock();
2040 if (!check_mnt(real_mount(path->mnt)))
2041 tree = ERR_PTR(-EINVAL);
2042 else
2043 tree = copy_tree(real_mount(path->mnt), path->dentry,
2044 CL_COPY_ALL | CL_PRIVATE);
2045 namespace_unlock();
2046 if (IS_ERR(tree))
2047 return ERR_CAST(tree);
2048 return &tree->mnt;
2049 }
2050
2051 static void free_mnt_ns(struct mnt_namespace *);
2052 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2053
2054 void dissolve_on_fput(struct vfsmount *mnt)
2055 {
2056 struct mnt_namespace *ns;
2057 namespace_lock();
2058 lock_mount_hash();
2059 ns = real_mount(mnt)->mnt_ns;
2060 if (ns) {
2061 if (is_anon_ns(ns))
2062 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2063 else
2064 ns = NULL;
2065 }
2066 unlock_mount_hash();
2067 namespace_unlock();
2068 if (ns)
2069 free_mnt_ns(ns);
2070 }
2071
2072 void drop_collected_mounts(struct vfsmount *mnt)
2073 {
2074 namespace_lock();
2075 lock_mount_hash();
2076 umount_tree(real_mount(mnt), 0);
2077 unlock_mount_hash();
2078 namespace_unlock();
2079 }
2080
2081 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2082 {
2083 struct mount *child;
2084
2085 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2086 if (!is_subdir(child->mnt_mountpoint, dentry))
2087 continue;
2088
2089 if (child->mnt.mnt_flags & MNT_LOCKED)
2090 return true;
2091 }
2092 return false;
2093 }
2094
2095 /**
2096 * clone_private_mount - create a private clone of a path
2097 * @path: path to clone
2098 *
2099 * This creates a new vfsmount, which will be the clone of @path. The new mount
2100 * will not be attached anywhere in the namespace and will be private (i.e.
2101 * changes to the originating mount won't be propagated into this).
2102 *
2103 * Release with mntput().
2104 */
2105 struct vfsmount *clone_private_mount(const struct path *path)
2106 {
2107 struct mount *old_mnt = real_mount(path->mnt);
2108 struct mount *new_mnt;
2109
2110 down_read(&namespace_sem);
2111 if (IS_MNT_UNBINDABLE(old_mnt))
2112 goto invalid;
2113
2114 if (!check_mnt(old_mnt))
2115 goto invalid;
2116
2117 if (has_locked_children(old_mnt, path->dentry))
2118 goto invalid;
2119
2120 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2121 up_read(&namespace_sem);
2122
2123 if (IS_ERR(new_mnt))
2124 return ERR_CAST(new_mnt);
2125
2126 /* Longterm mount to be removed by kern_unmount*() */
2127 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2128
2129 return &new_mnt->mnt;
2130
2131 invalid:
2132 up_read(&namespace_sem);
2133 return ERR_PTR(-EINVAL);
2134 }
2135 EXPORT_SYMBOL_GPL(clone_private_mount);
2136
2137 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2138 struct vfsmount *root)
2139 {
2140 struct mount *mnt;
2141 int res = f(root, arg);
2142 if (res)
2143 return res;
2144 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2145 res = f(&mnt->mnt, arg);
2146 if (res)
2147 return res;
2148 }
2149 return 0;
2150 }
2151
2152 static void lock_mnt_tree(struct mount *mnt)
2153 {
2154 struct mount *p;
2155
2156 for (p = mnt; p; p = next_mnt(p, mnt)) {
2157 int flags = p->mnt.mnt_flags;
2158 /* Don't allow unprivileged users to change mount flags */
2159 flags |= MNT_LOCK_ATIME;
2160
2161 if (flags & MNT_READONLY)
2162 flags |= MNT_LOCK_READONLY;
2163
2164 if (flags & MNT_NODEV)
2165 flags |= MNT_LOCK_NODEV;
2166
2167 if (flags & MNT_NOSUID)
2168 flags |= MNT_LOCK_NOSUID;
2169
2170 if (flags & MNT_NOEXEC)
2171 flags |= MNT_LOCK_NOEXEC;
2172 /* Don't allow unprivileged users to reveal what is under a mount */
2173 if (list_empty(&p->mnt_expire))
2174 flags |= MNT_LOCKED;
2175 p->mnt.mnt_flags = flags;
2176 }
2177 }
2178
2179 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2180 {
2181 struct mount *p;
2182
2183 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2184 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2185 mnt_release_group_id(p);
2186 }
2187 }
2188
2189 static int invent_group_ids(struct mount *mnt, bool recurse)
2190 {
2191 struct mount *p;
2192
2193 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2194 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2195 int err = mnt_alloc_group_id(p);
2196 if (err) {
2197 cleanup_group_ids(mnt, p);
2198 return err;
2199 }
2200 }
2201 }
2202
2203 return 0;
2204 }
2205
2206 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2207 {
2208 unsigned int max = READ_ONCE(sysctl_mount_max);
2209 unsigned int mounts = 0;
2210 struct mount *p;
2211
2212 if (ns->nr_mounts >= max)
2213 return -ENOSPC;
2214 max -= ns->nr_mounts;
2215 if (ns->pending_mounts >= max)
2216 return -ENOSPC;
2217 max -= ns->pending_mounts;
2218
2219 for (p = mnt; p; p = next_mnt(p, mnt))
2220 mounts++;
2221
2222 if (mounts > max)
2223 return -ENOSPC;
2224
2225 ns->pending_mounts += mounts;
2226 return 0;
2227 }
2228
2229 enum mnt_tree_flags_t {
2230 MNT_TREE_MOVE = BIT(0),
2231 MNT_TREE_BENEATH = BIT(1),
2232 };
2233
2234 /**
2235 * attach_recursive_mnt - attach a source mount tree
2236 * @source_mnt: mount tree to be attached
2237 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath
2238 * @dest_mp: the mountpoint @source_mnt will be mounted at
2239 * @flags: modify how @source_mnt is supposed to be attached
2240 *
2241 * NOTE: in the table below explains the semantics when a source mount
2242 * of a given type is attached to a destination mount of a given type.
2243 * ---------------------------------------------------------------------------
2244 * | BIND MOUNT OPERATION |
2245 * |**************************************************************************
2246 * | source-->| shared | private | slave | unbindable |
2247 * | dest | | | | |
2248 * | | | | | | |
2249 * | v | | | | |
2250 * |**************************************************************************
2251 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2252 * | | | | | |
2253 * |non-shared| shared (+) | private | slave (*) | invalid |
2254 * ***************************************************************************
2255 * A bind operation clones the source mount and mounts the clone on the
2256 * destination mount.
2257 *
2258 * (++) the cloned mount is propagated to all the mounts in the propagation
2259 * tree of the destination mount and the cloned mount is added to
2260 * the peer group of the source mount.
2261 * (+) the cloned mount is created under the destination mount and is marked
2262 * as shared. The cloned mount is added to the peer group of the source
2263 * mount.
2264 * (+++) the mount is propagated to all the mounts in the propagation tree
2265 * of the destination mount and the cloned mount is made slave
2266 * of the same master as that of the source mount. The cloned mount
2267 * is marked as 'shared and slave'.
2268 * (*) the cloned mount is made a slave of the same master as that of the
2269 * source mount.
2270 *
2271 * ---------------------------------------------------------------------------
2272 * | MOVE MOUNT OPERATION |
2273 * |**************************************************************************
2274 * | source-->| shared | private | slave | unbindable |
2275 * | dest | | | | |
2276 * | | | | | | |
2277 * | v | | | | |
2278 * |**************************************************************************
2279 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2280 * | | | | | |
2281 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2282 * ***************************************************************************
2283 *
2284 * (+) the mount is moved to the destination. And is then propagated to
2285 * all the mounts in the propagation tree of the destination mount.
2286 * (+*) the mount is moved to the destination.
2287 * (+++) the mount is moved to the destination and is then propagated to
2288 * all the mounts belonging to the destination mount's propagation tree.
2289 * the mount is marked as 'shared and slave'.
2290 * (*) the mount continues to be a slave at the new location.
2291 *
2292 * if the source mount is a tree, the operations explained above is
2293 * applied to each mount in the tree.
2294 * Must be called without spinlocks held, since this function can sleep
2295 * in allocations.
2296 *
2297 * Context: The function expects namespace_lock() to be held.
2298 * Return: If @source_mnt was successfully attached 0 is returned.
2299 * Otherwise a negative error code is returned.
2300 */
2301 static int attach_recursive_mnt(struct mount *source_mnt,
2302 struct mount *top_mnt,
2303 struct mountpoint *dest_mp,
2304 enum mnt_tree_flags_t flags)
2305 {
2306 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2307 HLIST_HEAD(tree_list);
2308 struct mnt_namespace *ns = top_mnt->mnt_ns;
2309 struct mountpoint *smp;
2310 struct mount *child, *dest_mnt, *p;
2311 struct hlist_node *n;
2312 int err = 0;
2313 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2314
2315 /*
2316 * Preallocate a mountpoint in case the new mounts need to be
2317 * mounted beneath mounts on the same mountpoint.
2318 */
2319 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2320 if (IS_ERR(smp))
2321 return PTR_ERR(smp);
2322
2323 /* Is there space to add these mounts to the mount namespace? */
2324 if (!moving) {
2325 err = count_mounts(ns, source_mnt);
2326 if (err)
2327 goto out;
2328 }
2329
2330 if (beneath)
2331 dest_mnt = top_mnt->mnt_parent;
2332 else
2333 dest_mnt = top_mnt;
2334
2335 if (IS_MNT_SHARED(dest_mnt)) {
2336 err = invent_group_ids(source_mnt, true);
2337 if (err)
2338 goto out;
2339 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2340 }
2341 lock_mount_hash();
2342 if (err)
2343 goto out_cleanup_ids;
2344
2345 if (IS_MNT_SHARED(dest_mnt)) {
2346 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2347 set_mnt_shared(p);
2348 }
2349
2350 if (moving) {
2351 if (beneath)
2352 dest_mp = smp;
2353 unhash_mnt(source_mnt);
2354 attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2355 touch_mnt_namespace(source_mnt->mnt_ns);
2356 } else {
2357 if (source_mnt->mnt_ns) {
2358 LIST_HEAD(head);
2359
2360 /* move from anon - the caller will destroy */
2361 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2362 move_from_ns(p, &head);
2363 list_del_init(&head);
2364 }
2365 if (beneath)
2366 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2367 else
2368 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2369 commit_tree(source_mnt);
2370 }
2371
2372 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2373 struct mount *q;
2374 hlist_del_init(&child->mnt_hash);
2375 q = __lookup_mnt(&child->mnt_parent->mnt,
2376 child->mnt_mountpoint);
2377 if (q)
2378 mnt_change_mountpoint(child, smp, q);
2379 /* Notice when we are propagating across user namespaces */
2380 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2381 lock_mnt_tree(child);
2382 child->mnt.mnt_flags &= ~MNT_LOCKED;
2383 commit_tree(child);
2384 }
2385 put_mountpoint(smp);
2386 unlock_mount_hash();
2387
2388 return 0;
2389
2390 out_cleanup_ids:
2391 while (!hlist_empty(&tree_list)) {
2392 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2393 child->mnt_parent->mnt_ns->pending_mounts = 0;
2394 umount_tree(child, UMOUNT_SYNC);
2395 }
2396 unlock_mount_hash();
2397 cleanup_group_ids(source_mnt, NULL);
2398 out:
2399 ns->pending_mounts = 0;
2400
2401 read_seqlock_excl(&mount_lock);
2402 put_mountpoint(smp);
2403 read_sequnlock_excl(&mount_lock);
2404
2405 return err;
2406 }
2407
2408 /**
2409 * do_lock_mount - lock mount and mountpoint
2410 * @path: target path
2411 * @beneath: whether the intention is to mount beneath @path
2412 *
2413 * Follow the mount stack on @path until the top mount @mnt is found. If
2414 * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2415 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2416 * until nothing is stacked on top of it anymore.
2417 *
2418 * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2419 * against concurrent removal of the new mountpoint from another mount
2420 * namespace.
2421 *
2422 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2423 * @mp on @mnt->mnt_parent must be acquired. This protects against a
2424 * concurrent unlink of @mp->mnt_dentry from another mount namespace
2425 * where @mnt doesn't have a child mount mounted @mp. A concurrent
2426 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2427 * on top of it for @beneath.
2428 *
2429 * In addition, @beneath needs to make sure that @mnt hasn't been
2430 * unmounted or moved from its current mountpoint in between dropping
2431 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2432 * being unmounted would be detected later by e.g., calling
2433 * check_mnt(mnt) in the function it's called from. For the @beneath
2434 * case however, it's useful to detect it directly in do_lock_mount().
2435 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2436 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2437 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2438 *
2439 * Return: Either the target mountpoint on the top mount or the top
2440 * mount's mountpoint.
2441 */
2442 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2443 {
2444 struct vfsmount *mnt = path->mnt;
2445 struct dentry *dentry;
2446 struct mountpoint *mp = ERR_PTR(-ENOENT);
2447
2448 for (;;) {
2449 struct mount *m;
2450
2451 if (beneath) {
2452 m = real_mount(mnt);
2453 read_seqlock_excl(&mount_lock);
2454 dentry = dget(m->mnt_mountpoint);
2455 read_sequnlock_excl(&mount_lock);
2456 } else {
2457 dentry = path->dentry;
2458 }
2459
2460 inode_lock(dentry->d_inode);
2461 if (unlikely(cant_mount(dentry))) {
2462 inode_unlock(dentry->d_inode);
2463 goto out;
2464 }
2465
2466 namespace_lock();
2467
2468 if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) {
2469 namespace_unlock();
2470 inode_unlock(dentry->d_inode);
2471 goto out;
2472 }
2473
2474 mnt = lookup_mnt(path);
2475 if (likely(!mnt))
2476 break;
2477
2478 namespace_unlock();
2479 inode_unlock(dentry->d_inode);
2480 if (beneath)
2481 dput(dentry);
2482 path_put(path);
2483 path->mnt = mnt;
2484 path->dentry = dget(mnt->mnt_root);
2485 }
2486
2487 mp = get_mountpoint(dentry);
2488 if (IS_ERR(mp)) {
2489 namespace_unlock();
2490 inode_unlock(dentry->d_inode);
2491 }
2492
2493 out:
2494 if (beneath)
2495 dput(dentry);
2496
2497 return mp;
2498 }
2499
2500 static inline struct mountpoint *lock_mount(struct path *path)
2501 {
2502 return do_lock_mount(path, false);
2503 }
2504
2505 static void unlock_mount(struct mountpoint *where)
2506 {
2507 struct dentry *dentry = where->m_dentry;
2508
2509 read_seqlock_excl(&mount_lock);
2510 put_mountpoint(where);
2511 read_sequnlock_excl(&mount_lock);
2512
2513 namespace_unlock();
2514 inode_unlock(dentry->d_inode);
2515 }
2516
2517 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2518 {
2519 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2520 return -EINVAL;
2521
2522 if (d_is_dir(mp->m_dentry) !=
2523 d_is_dir(mnt->mnt.mnt_root))
2524 return -ENOTDIR;
2525
2526 return attach_recursive_mnt(mnt, p, mp, 0);
2527 }
2528
2529 /*
2530 * Sanity check the flags to change_mnt_propagation.
2531 */
2532
2533 static int flags_to_propagation_type(int ms_flags)
2534 {
2535 int type = ms_flags & ~(MS_REC | MS_SILENT);
2536
2537 /* Fail if any non-propagation flags are set */
2538 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2539 return 0;
2540 /* Only one propagation flag should be set */
2541 if (!is_power_of_2(type))
2542 return 0;
2543 return type;
2544 }
2545
2546 /*
2547 * recursively change the type of the mountpoint.
2548 */
2549 static int do_change_type(struct path *path, int ms_flags)
2550 {
2551 struct mount *m;
2552 struct mount *mnt = real_mount(path->mnt);
2553 int recurse = ms_flags & MS_REC;
2554 int type;
2555 int err = 0;
2556
2557 if (!path_mounted(path))
2558 return -EINVAL;
2559
2560 type = flags_to_propagation_type(ms_flags);
2561 if (!type)
2562 return -EINVAL;
2563
2564 namespace_lock();
2565 if (type == MS_SHARED) {
2566 err = invent_group_ids(mnt, recurse);
2567 if (err)
2568 goto out_unlock;
2569 }
2570
2571 lock_mount_hash();
2572 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2573 change_mnt_propagation(m, type);
2574 unlock_mount_hash();
2575
2576 out_unlock:
2577 namespace_unlock();
2578 return err;
2579 }
2580
2581 static struct mount *__do_loopback(struct path *old_path, int recurse)
2582 {
2583 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2584
2585 if (IS_MNT_UNBINDABLE(old))
2586 return mnt;
2587
2588 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2589 return mnt;
2590
2591 if (!recurse && has_locked_children(old, old_path->dentry))
2592 return mnt;
2593
2594 if (recurse)
2595 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2596 else
2597 mnt = clone_mnt(old, old_path->dentry, 0);
2598
2599 if (!IS_ERR(mnt))
2600 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2601
2602 return mnt;
2603 }
2604
2605 /*
2606 * do loopback mount.
2607 */
2608 static int do_loopback(struct path *path, const char *old_name,
2609 int recurse)
2610 {
2611 struct path old_path;
2612 struct mount *mnt = NULL, *parent;
2613 struct mountpoint *mp;
2614 int err;
2615 if (!old_name || !*old_name)
2616 return -EINVAL;
2617 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2618 if (err)
2619 return err;
2620
2621 err = -EINVAL;
2622 if (mnt_ns_loop(old_path.dentry))
2623 goto out;
2624
2625 mp = lock_mount(path);
2626 if (IS_ERR(mp)) {
2627 err = PTR_ERR(mp);
2628 goto out;
2629 }
2630
2631 parent = real_mount(path->mnt);
2632 if (!check_mnt(parent))
2633 goto out2;
2634
2635 mnt = __do_loopback(&old_path, recurse);
2636 if (IS_ERR(mnt)) {
2637 err = PTR_ERR(mnt);
2638 goto out2;
2639 }
2640
2641 err = graft_tree(mnt, parent, mp);
2642 if (err) {
2643 lock_mount_hash();
2644 umount_tree(mnt, UMOUNT_SYNC);
2645 unlock_mount_hash();
2646 }
2647 out2:
2648 unlock_mount(mp);
2649 out:
2650 path_put(&old_path);
2651 return err;
2652 }
2653
2654 static struct file *open_detached_copy(struct path *path, bool recursive)
2655 {
2656 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2657 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2658 struct mount *mnt, *p;
2659 struct file *file;
2660
2661 if (IS_ERR(ns))
2662 return ERR_CAST(ns);
2663
2664 namespace_lock();
2665 mnt = __do_loopback(path, recursive);
2666 if (IS_ERR(mnt)) {
2667 namespace_unlock();
2668 free_mnt_ns(ns);
2669 return ERR_CAST(mnt);
2670 }
2671
2672 lock_mount_hash();
2673 for (p = mnt; p; p = next_mnt(p, mnt)) {
2674 mnt_add_to_ns(ns, p);
2675 ns->nr_mounts++;
2676 }
2677 ns->root = mnt;
2678 mntget(&mnt->mnt);
2679 unlock_mount_hash();
2680 namespace_unlock();
2681
2682 mntput(path->mnt);
2683 path->mnt = &mnt->mnt;
2684 file = dentry_open(path, O_PATH, current_cred());
2685 if (IS_ERR(file))
2686 dissolve_on_fput(path->mnt);
2687 else
2688 file->f_mode |= FMODE_NEED_UNMOUNT;
2689 return file;
2690 }
2691
2692 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2693 {
2694 struct file *file;
2695 struct path path;
2696 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2697 bool detached = flags & OPEN_TREE_CLONE;
2698 int error;
2699 int fd;
2700
2701 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2702
2703 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2704 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2705 OPEN_TREE_CLOEXEC))
2706 return -EINVAL;
2707
2708 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2709 return -EINVAL;
2710
2711 if (flags & AT_NO_AUTOMOUNT)
2712 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2713 if (flags & AT_SYMLINK_NOFOLLOW)
2714 lookup_flags &= ~LOOKUP_FOLLOW;
2715 if (flags & AT_EMPTY_PATH)
2716 lookup_flags |= LOOKUP_EMPTY;
2717
2718 if (detached && !may_mount())
2719 return -EPERM;
2720
2721 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2722 if (fd < 0)
2723 return fd;
2724
2725 error = user_path_at(dfd, filename, lookup_flags, &path);
2726 if (unlikely(error)) {
2727 file = ERR_PTR(error);
2728 } else {
2729 if (detached)
2730 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2731 else
2732 file = dentry_open(&path, O_PATH, current_cred());
2733 path_put(&path);
2734 }
2735 if (IS_ERR(file)) {
2736 put_unused_fd(fd);
2737 return PTR_ERR(file);
2738 }
2739 fd_install(fd, file);
2740 return fd;
2741 }
2742
2743 /*
2744 * Don't allow locked mount flags to be cleared.
2745 *
2746 * No locks need to be held here while testing the various MNT_LOCK
2747 * flags because those flags can never be cleared once they are set.
2748 */
2749 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2750 {
2751 unsigned int fl = mnt->mnt.mnt_flags;
2752
2753 if ((fl & MNT_LOCK_READONLY) &&
2754 !(mnt_flags & MNT_READONLY))
2755 return false;
2756
2757 if ((fl & MNT_LOCK_NODEV) &&
2758 !(mnt_flags & MNT_NODEV))
2759 return false;
2760
2761 if ((fl & MNT_LOCK_NOSUID) &&
2762 !(mnt_flags & MNT_NOSUID))
2763 return false;
2764
2765 if ((fl & MNT_LOCK_NOEXEC) &&
2766 !(mnt_flags & MNT_NOEXEC))
2767 return false;
2768
2769 if ((fl & MNT_LOCK_ATIME) &&
2770 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2771 return false;
2772
2773 return true;
2774 }
2775
2776 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2777 {
2778 bool readonly_request = (mnt_flags & MNT_READONLY);
2779
2780 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2781 return 0;
2782
2783 if (readonly_request)
2784 return mnt_make_readonly(mnt);
2785
2786 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2787 return 0;
2788 }
2789
2790 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2791 {
2792 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2793 mnt->mnt.mnt_flags = mnt_flags;
2794 touch_mnt_namespace(mnt->mnt_ns);
2795 }
2796
2797 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2798 {
2799 struct super_block *sb = mnt->mnt_sb;
2800
2801 if (!__mnt_is_readonly(mnt) &&
2802 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2803 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2804 char *buf = (char *)__get_free_page(GFP_KERNEL);
2805 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2806
2807 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2808 sb->s_type->name,
2809 is_mounted(mnt) ? "remounted" : "mounted",
2810 mntpath, &sb->s_time_max,
2811 (unsigned long long)sb->s_time_max);
2812
2813 free_page((unsigned long)buf);
2814 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2815 }
2816 }
2817
2818 /*
2819 * Handle reconfiguration of the mountpoint only without alteration of the
2820 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2821 * to mount(2).
2822 */
2823 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2824 {
2825 struct super_block *sb = path->mnt->mnt_sb;
2826 struct mount *mnt = real_mount(path->mnt);
2827 int ret;
2828
2829 if (!check_mnt(mnt))
2830 return -EINVAL;
2831
2832 if (!path_mounted(path))
2833 return -EINVAL;
2834
2835 if (!can_change_locked_flags(mnt, mnt_flags))
2836 return -EPERM;
2837
2838 /*
2839 * We're only checking whether the superblock is read-only not
2840 * changing it, so only take down_read(&sb->s_umount).
2841 */
2842 down_read(&sb->s_umount);
2843 lock_mount_hash();
2844 ret = change_mount_ro_state(mnt, mnt_flags);
2845 if (ret == 0)
2846 set_mount_attributes(mnt, mnt_flags);
2847 unlock_mount_hash();
2848 up_read(&sb->s_umount);
2849
2850 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2851
2852 return ret;
2853 }
2854
2855 /*
2856 * change filesystem flags. dir should be a physical root of filesystem.
2857 * If you've mounted a non-root directory somewhere and want to do remount
2858 * on it - tough luck.
2859 */
2860 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2861 int mnt_flags, void *data)
2862 {
2863 int err;
2864 struct super_block *sb = path->mnt->mnt_sb;
2865 struct mount *mnt = real_mount(path->mnt);
2866 struct fs_context *fc;
2867
2868 if (!check_mnt(mnt))
2869 return -EINVAL;
2870
2871 if (!path_mounted(path))
2872 return -EINVAL;
2873
2874 if (!can_change_locked_flags(mnt, mnt_flags))
2875 return -EPERM;
2876
2877 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2878 if (IS_ERR(fc))
2879 return PTR_ERR(fc);
2880
2881 /*
2882 * Indicate to the filesystem that the remount request is coming
2883 * from the legacy mount system call.
2884 */
2885 fc->oldapi = true;
2886
2887 err = parse_monolithic_mount_data(fc, data);
2888 if (!err) {
2889 down_write(&sb->s_umount);
2890 err = -EPERM;
2891 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2892 err = reconfigure_super(fc);
2893 if (!err) {
2894 lock_mount_hash();
2895 set_mount_attributes(mnt, mnt_flags);
2896 unlock_mount_hash();
2897 }
2898 }
2899 up_write(&sb->s_umount);
2900 }
2901
2902 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2903
2904 put_fs_context(fc);
2905 return err;
2906 }
2907
2908 static inline int tree_contains_unbindable(struct mount *mnt)
2909 {
2910 struct mount *p;
2911 for (p = mnt; p; p = next_mnt(p, mnt)) {
2912 if (IS_MNT_UNBINDABLE(p))
2913 return 1;
2914 }
2915 return 0;
2916 }
2917
2918 /*
2919 * Check that there aren't references to earlier/same mount namespaces in the
2920 * specified subtree. Such references can act as pins for mount namespaces
2921 * that aren't checked by the mount-cycle checking code, thereby allowing
2922 * cycles to be made.
2923 */
2924 static bool check_for_nsfs_mounts(struct mount *subtree)
2925 {
2926 struct mount *p;
2927 bool ret = false;
2928
2929 lock_mount_hash();
2930 for (p = subtree; p; p = next_mnt(p, subtree))
2931 if (mnt_ns_loop(p->mnt.mnt_root))
2932 goto out;
2933
2934 ret = true;
2935 out:
2936 unlock_mount_hash();
2937 return ret;
2938 }
2939
2940 static int do_set_group(struct path *from_path, struct path *to_path)
2941 {
2942 struct mount *from, *to;
2943 int err;
2944
2945 from = real_mount(from_path->mnt);
2946 to = real_mount(to_path->mnt);
2947
2948 namespace_lock();
2949
2950 err = -EINVAL;
2951 /* To and From must be mounted */
2952 if (!is_mounted(&from->mnt))
2953 goto out;
2954 if (!is_mounted(&to->mnt))
2955 goto out;
2956
2957 err = -EPERM;
2958 /* We should be allowed to modify mount namespaces of both mounts */
2959 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2960 goto out;
2961 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2962 goto out;
2963
2964 err = -EINVAL;
2965 /* To and From paths should be mount roots */
2966 if (!path_mounted(from_path))
2967 goto out;
2968 if (!path_mounted(to_path))
2969 goto out;
2970
2971 /* Setting sharing groups is only allowed across same superblock */
2972 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2973 goto out;
2974
2975 /* From mount root should be wider than To mount root */
2976 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2977 goto out;
2978
2979 /* From mount should not have locked children in place of To's root */
2980 if (has_locked_children(from, to->mnt.mnt_root))
2981 goto out;
2982
2983 /* Setting sharing groups is only allowed on private mounts */
2984 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2985 goto out;
2986
2987 /* From should not be private */
2988 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2989 goto out;
2990
2991 if (IS_MNT_SLAVE(from)) {
2992 struct mount *m = from->mnt_master;
2993
2994 list_add(&to->mnt_slave, &m->mnt_slave_list);
2995 to->mnt_master = m;
2996 }
2997
2998 if (IS_MNT_SHARED(from)) {
2999 to->mnt_group_id = from->mnt_group_id;
3000 list_add(&to->mnt_share, &from->mnt_share);
3001 lock_mount_hash();
3002 set_mnt_shared(to);
3003 unlock_mount_hash();
3004 }
3005
3006 err = 0;
3007 out:
3008 namespace_unlock();
3009 return err;
3010 }
3011
3012 /**
3013 * path_overmounted - check if path is overmounted
3014 * @path: path to check
3015 *
3016 * Check if path is overmounted, i.e., if there's a mount on top of
3017 * @path->mnt with @path->dentry as mountpoint.
3018 *
3019 * Context: This function expects namespace_lock() to be held.
3020 * Return: If path is overmounted true is returned, false if not.
3021 */
3022 static inline bool path_overmounted(const struct path *path)
3023 {
3024 rcu_read_lock();
3025 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3026 rcu_read_unlock();
3027 return true;
3028 }
3029 rcu_read_unlock();
3030 return false;
3031 }
3032
3033 /**
3034 * can_move_mount_beneath - check that we can mount beneath the top mount
3035 * @from: mount to mount beneath
3036 * @to: mount under which to mount
3037 * @mp: mountpoint of @to
3038 *
3039 * - Make sure that @to->dentry is actually the root of a mount under
3040 * which we can mount another mount.
3041 * - Make sure that nothing can be mounted beneath the caller's current
3042 * root or the rootfs of the namespace.
3043 * - Make sure that the caller can unmount the topmost mount ensuring
3044 * that the caller could reveal the underlying mountpoint.
3045 * - Ensure that nothing has been mounted on top of @from before we
3046 * grabbed @namespace_sem to avoid creating pointless shadow mounts.
3047 * - Prevent mounting beneath a mount if the propagation relationship
3048 * between the source mount, parent mount, and top mount would lead to
3049 * nonsensical mount trees.
3050 *
3051 * Context: This function expects namespace_lock() to be held.
3052 * Return: On success 0, and on error a negative error code is returned.
3053 */
3054 static int can_move_mount_beneath(const struct path *from,
3055 const struct path *to,
3056 const struct mountpoint *mp)
3057 {
3058 struct mount *mnt_from = real_mount(from->mnt),
3059 *mnt_to = real_mount(to->mnt),
3060 *parent_mnt_to = mnt_to->mnt_parent;
3061
3062 if (!mnt_has_parent(mnt_to))
3063 return -EINVAL;
3064
3065 if (!path_mounted(to))
3066 return -EINVAL;
3067
3068 if (IS_MNT_LOCKED(mnt_to))
3069 return -EINVAL;
3070
3071 /* Avoid creating shadow mounts during mount propagation. */
3072 if (path_overmounted(from))
3073 return -EINVAL;
3074
3075 /*
3076 * Mounting beneath the rootfs only makes sense when the
3077 * semantics of pivot_root(".", ".") are used.
3078 */
3079 if (&mnt_to->mnt == current->fs->root.mnt)
3080 return -EINVAL;
3081 if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3082 return -EINVAL;
3083
3084 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3085 if (p == mnt_to)
3086 return -EINVAL;
3087
3088 /*
3089 * If the parent mount propagates to the child mount this would
3090 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3091 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3092 * defeats the whole purpose of mounting beneath another mount.
3093 */
3094 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3095 return -EINVAL;
3096
3097 /*
3098 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3099 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3100 * Afterwards @mnt_from would be mounted on top of
3101 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3102 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3103 * already mounted on @mnt_from, @mnt_to would ultimately be
3104 * remounted on top of @c. Afterwards, @mnt_from would be
3105 * covered by a copy @c of @mnt_from and @c would be covered by
3106 * @mnt_from itself. This defeats the whole purpose of mounting
3107 * @mnt_from beneath @mnt_to.
3108 */
3109 if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3110 return -EINVAL;
3111
3112 return 0;
3113 }
3114
3115 static int do_move_mount(struct path *old_path, struct path *new_path,
3116 bool beneath)
3117 {
3118 struct mnt_namespace *ns;
3119 struct mount *p;
3120 struct mount *old;
3121 struct mount *parent;
3122 struct mountpoint *mp, *old_mp;
3123 int err;
3124 bool attached;
3125 enum mnt_tree_flags_t flags = 0;
3126
3127 mp = do_lock_mount(new_path, beneath);
3128 if (IS_ERR(mp))
3129 return PTR_ERR(mp);
3130
3131 old = real_mount(old_path->mnt);
3132 p = real_mount(new_path->mnt);
3133 parent = old->mnt_parent;
3134 attached = mnt_has_parent(old);
3135 if (attached)
3136 flags |= MNT_TREE_MOVE;
3137 old_mp = old->mnt_mp;
3138 ns = old->mnt_ns;
3139
3140 err = -EINVAL;
3141 /* The mountpoint must be in our namespace. */
3142 if (!check_mnt(p))
3143 goto out;
3144
3145 /* The thing moved must be mounted... */
3146 if (!is_mounted(&old->mnt))
3147 goto out;
3148
3149 /* ... and either ours or the root of anon namespace */
3150 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3151 goto out;
3152
3153 if (old->mnt.mnt_flags & MNT_LOCKED)
3154 goto out;
3155
3156 if (!path_mounted(old_path))
3157 goto out;
3158
3159 if (d_is_dir(new_path->dentry) !=
3160 d_is_dir(old_path->dentry))
3161 goto out;
3162 /*
3163 * Don't move a mount residing in a shared parent.
3164 */
3165 if (attached && IS_MNT_SHARED(parent))
3166 goto out;
3167
3168 if (beneath) {
3169 err = can_move_mount_beneath(old_path, new_path, mp);
3170 if (err)
3171 goto out;
3172
3173 err = -EINVAL;
3174 p = p->mnt_parent;
3175 flags |= MNT_TREE_BENEATH;
3176 }
3177
3178 /*
3179 * Don't move a mount tree containing unbindable mounts to a destination
3180 * mount which is shared.
3181 */
3182 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3183 goto out;
3184 err = -ELOOP;
3185 if (!check_for_nsfs_mounts(old))
3186 goto out;
3187 for (; mnt_has_parent(p); p = p->mnt_parent)
3188 if (p == old)
3189 goto out;
3190
3191 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3192 if (err)
3193 goto out;
3194
3195 /* if the mount is moved, it should no longer be expire
3196 * automatically */
3197 list_del_init(&old->mnt_expire);
3198 if (attached)
3199 put_mountpoint(old_mp);
3200 out:
3201 unlock_mount(mp);
3202 if (!err) {
3203 if (attached)
3204 mntput_no_expire(parent);
3205 else
3206 free_mnt_ns(ns);
3207 }
3208 return err;
3209 }
3210
3211 static int do_move_mount_old(struct path *path, const char *old_name)
3212 {
3213 struct path old_path;
3214 int err;
3215
3216 if (!old_name || !*old_name)
3217 return -EINVAL;
3218
3219 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3220 if (err)
3221 return err;
3222
3223 err = do_move_mount(&old_path, path, false);
3224 path_put(&old_path);
3225 return err;
3226 }
3227
3228 /*
3229 * add a mount into a namespace's mount tree
3230 */
3231 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3232 const struct path *path, int mnt_flags)
3233 {
3234 struct mount *parent = real_mount(path->mnt);
3235
3236 mnt_flags &= ~MNT_INTERNAL_FLAGS;
3237
3238 if (unlikely(!check_mnt(parent))) {
3239 /* that's acceptable only for automounts done in private ns */
3240 if (!(mnt_flags & MNT_SHRINKABLE))
3241 return -EINVAL;
3242 /* ... and for those we'd better have mountpoint still alive */
3243 if (!parent->mnt_ns)
3244 return -EINVAL;
3245 }
3246
3247 /* Refuse the same filesystem on the same mount point */
3248 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3249 return -EBUSY;
3250
3251 if (d_is_symlink(newmnt->mnt.mnt_root))
3252 return -EINVAL;
3253
3254 newmnt->mnt.mnt_flags = mnt_flags;
3255 return graft_tree(newmnt, parent, mp);
3256 }
3257
3258 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3259
3260 /*
3261 * Create a new mount using a superblock configuration and request it
3262 * be added to the namespace tree.
3263 */
3264 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3265 unsigned int mnt_flags)
3266 {
3267 struct vfsmount *mnt;
3268 struct mountpoint *mp;
3269 struct super_block *sb = fc->root->d_sb;
3270 int error;
3271
3272 error = security_sb_kern_mount(sb);
3273 if (!error && mount_too_revealing(sb, &mnt_flags))
3274 error = -EPERM;
3275
3276 if (unlikely(error)) {
3277 fc_drop_locked(fc);
3278 return error;
3279 }
3280
3281 up_write(&sb->s_umount);
3282
3283 mnt = vfs_create_mount(fc);
3284 if (IS_ERR(mnt))
3285 return PTR_ERR(mnt);
3286
3287 mnt_warn_timestamp_expiry(mountpoint, mnt);
3288
3289 mp = lock_mount(mountpoint);
3290 if (IS_ERR(mp)) {
3291 mntput(mnt);
3292 return PTR_ERR(mp);
3293 }
3294 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3295 unlock_mount(mp);
3296 if (error < 0)
3297 mntput(mnt);
3298 return error;
3299 }
3300
3301 /*
3302 * create a new mount for userspace and request it to be added into the
3303 * namespace's tree
3304 */
3305 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3306 int mnt_flags, const char *name, void *data)
3307 {
3308 struct file_system_type *type;
3309 struct fs_context *fc;
3310 const char *subtype = NULL;
3311 int err = 0;
3312
3313 if (!fstype)
3314 return -EINVAL;
3315
3316 type = get_fs_type(fstype);
3317 if (!type)
3318 return -ENODEV;
3319
3320 if (type->fs_flags & FS_HAS_SUBTYPE) {
3321 subtype = strchr(fstype, '.');
3322 if (subtype) {
3323 subtype++;
3324 if (!*subtype) {
3325 put_filesystem(type);
3326 return -EINVAL;
3327 }
3328 }
3329 }
3330
3331 fc = fs_context_for_mount(type, sb_flags);
3332 put_filesystem(type);
3333 if (IS_ERR(fc))
3334 return PTR_ERR(fc);
3335
3336 /*
3337 * Indicate to the filesystem that the mount request is coming
3338 * from the legacy mount system call.
3339 */
3340 fc->oldapi = true;
3341
3342 if (subtype)
3343 err = vfs_parse_fs_string(fc, "subtype",
3344 subtype, strlen(subtype));
3345 if (!err && name)
3346 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3347 if (!err)
3348 err = parse_monolithic_mount_data(fc, data);
3349 if (!err && !mount_capable(fc))
3350 err = -EPERM;
3351 if (!err)
3352 err = vfs_get_tree(fc);
3353 if (!err)
3354 err = do_new_mount_fc(fc, path, mnt_flags);
3355
3356 put_fs_context(fc);
3357 return err;
3358 }
3359
3360 int finish_automount(struct vfsmount *m, const struct path *path)
3361 {
3362 struct dentry *dentry = path->dentry;
3363 struct mountpoint *mp;
3364 struct mount *mnt;
3365 int err;
3366
3367 if (!m)
3368 return 0;
3369 if (IS_ERR(m))
3370 return PTR_ERR(m);
3371
3372 mnt = real_mount(m);
3373 /* The new mount record should have at least 2 refs to prevent it being
3374 * expired before we get a chance to add it
3375 */
3376 BUG_ON(mnt_get_count(mnt) < 2);
3377
3378 if (m->mnt_sb == path->mnt->mnt_sb &&
3379 m->mnt_root == dentry) {
3380 err = -ELOOP;
3381 goto discard;
3382 }
3383
3384 /*
3385 * we don't want to use lock_mount() - in this case finding something
3386 * that overmounts our mountpoint to be means "quitely drop what we've
3387 * got", not "try to mount it on top".
3388 */
3389 inode_lock(dentry->d_inode);
3390 namespace_lock();
3391 if (unlikely(cant_mount(dentry))) {
3392 err = -ENOENT;
3393 goto discard_locked;
3394 }
3395 if (path_overmounted(path)) {
3396 err = 0;
3397 goto discard_locked;
3398 }
3399 mp = get_mountpoint(dentry);
3400 if (IS_ERR(mp)) {
3401 err = PTR_ERR(mp);
3402 goto discard_locked;
3403 }
3404
3405 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3406 unlock_mount(mp);
3407 if (unlikely(err))
3408 goto discard;
3409 mntput(m);
3410 return 0;
3411
3412 discard_locked:
3413 namespace_unlock();
3414 inode_unlock(dentry->d_inode);
3415 discard:
3416 /* remove m from any expiration list it may be on */
3417 if (!list_empty(&mnt->mnt_expire)) {
3418 namespace_lock();
3419 list_del_init(&mnt->mnt_expire);
3420 namespace_unlock();
3421 }
3422 mntput(m);
3423 mntput(m);
3424 return err;
3425 }
3426
3427 /**
3428 * mnt_set_expiry - Put a mount on an expiration list
3429 * @mnt: The mount to list.
3430 * @expiry_list: The list to add the mount to.
3431 */
3432 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3433 {
3434 namespace_lock();
3435
3436 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3437
3438 namespace_unlock();
3439 }
3440 EXPORT_SYMBOL(mnt_set_expiry);
3441
3442 /*
3443 * process a list of expirable mountpoints with the intent of discarding any
3444 * mountpoints that aren't in use and haven't been touched since last we came
3445 * here
3446 */
3447 void mark_mounts_for_expiry(struct list_head *mounts)
3448 {
3449 struct mount *mnt, *next;
3450 LIST_HEAD(graveyard);
3451
3452 if (list_empty(mounts))
3453 return;
3454
3455 namespace_lock();
3456 lock_mount_hash();
3457
3458 /* extract from the expiration list every vfsmount that matches the
3459 * following criteria:
3460 * - only referenced by its parent vfsmount
3461 * - still marked for expiry (marked on the last call here; marks are
3462 * cleared by mntput())
3463 */
3464 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3465 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3466 propagate_mount_busy(mnt, 1))
3467 continue;
3468 list_move(&mnt->mnt_expire, &graveyard);
3469 }
3470 while (!list_empty(&graveyard)) {
3471 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3472 touch_mnt_namespace(mnt->mnt_ns);
3473 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3474 }
3475 unlock_mount_hash();
3476 namespace_unlock();
3477 }
3478
3479 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3480
3481 /*
3482 * Ripoff of 'select_parent()'
3483 *
3484 * search the list of submounts for a given mountpoint, and move any
3485 * shrinkable submounts to the 'graveyard' list.
3486 */
3487 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3488 {
3489 struct mount *this_parent = parent;
3490 struct list_head *next;
3491 int found = 0;
3492
3493 repeat:
3494 next = this_parent->mnt_mounts.next;
3495 resume:
3496 while (next != &this_parent->mnt_mounts) {
3497 struct list_head *tmp = next;
3498 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3499
3500 next = tmp->next;
3501 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3502 continue;
3503 /*
3504 * Descend a level if the d_mounts list is non-empty.
3505 */
3506 if (!list_empty(&mnt->mnt_mounts)) {
3507 this_parent = mnt;
3508 goto repeat;
3509 }
3510
3511 if (!propagate_mount_busy(mnt, 1)) {
3512 list_move_tail(&mnt->mnt_expire, graveyard);
3513 found++;
3514 }
3515 }
3516 /*
3517 * All done at this level ... ascend and resume the search
3518 */
3519 if (this_parent != parent) {
3520 next = this_parent->mnt_child.next;
3521 this_parent = this_parent->mnt_parent;
3522 goto resume;
3523 }
3524 return found;
3525 }
3526
3527 /*
3528 * process a list of expirable mountpoints with the intent of discarding any
3529 * submounts of a specific parent mountpoint
3530 *
3531 * mount_lock must be held for write
3532 */
3533 static void shrink_submounts(struct mount *mnt)
3534 {
3535 LIST_HEAD(graveyard);
3536 struct mount *m;
3537
3538 /* extract submounts of 'mountpoint' from the expiration list */
3539 while (select_submounts(mnt, &graveyard)) {
3540 while (!list_empty(&graveyard)) {
3541 m = list_first_entry(&graveyard, struct mount,
3542 mnt_expire);
3543 touch_mnt_namespace(m->mnt_ns);
3544 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3545 }
3546 }
3547 }
3548
3549 static void *copy_mount_options(const void __user * data)
3550 {
3551 char *copy;
3552 unsigned left, offset;
3553
3554 if (!data)
3555 return NULL;
3556
3557 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3558 if (!copy)
3559 return ERR_PTR(-ENOMEM);
3560
3561 left = copy_from_user(copy, data, PAGE_SIZE);
3562
3563 /*
3564 * Not all architectures have an exact copy_from_user(). Resort to
3565 * byte at a time.
3566 */
3567 offset = PAGE_SIZE - left;
3568 while (left) {
3569 char c;
3570 if (get_user(c, (const char __user *)data + offset))
3571 break;
3572 copy[offset] = c;
3573 left--;
3574 offset++;
3575 }
3576
3577 if (left == PAGE_SIZE) {
3578 kfree(copy);
3579 return ERR_PTR(-EFAULT);
3580 }
3581
3582 return copy;
3583 }
3584
3585 static char *copy_mount_string(const void __user *data)
3586 {
3587 return data ? strndup_user(data, PATH_MAX) : NULL;
3588 }
3589
3590 /*
3591 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3592 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3593 *
3594 * data is a (void *) that can point to any structure up to
3595 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3596 * information (or be NULL).
3597 *
3598 * Pre-0.97 versions of mount() didn't have a flags word.
3599 * When the flags word was introduced its top half was required
3600 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3601 * Therefore, if this magic number is present, it carries no information
3602 * and must be discarded.
3603 */
3604 int path_mount(const char *dev_name, struct path *path,
3605 const char *type_page, unsigned long flags, void *data_page)
3606 {
3607 unsigned int mnt_flags = 0, sb_flags;
3608 int ret;
3609
3610 /* Discard magic */
3611 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3612 flags &= ~MS_MGC_MSK;
3613
3614 /* Basic sanity checks */
3615 if (data_page)
3616 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3617
3618 if (flags & MS_NOUSER)
3619 return -EINVAL;
3620
3621 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3622 if (ret)
3623 return ret;
3624 if (!may_mount())
3625 return -EPERM;
3626 if (flags & SB_MANDLOCK)
3627 warn_mandlock();
3628
3629 /* Default to relatime unless overriden */
3630 if (!(flags & MS_NOATIME))
3631 mnt_flags |= MNT_RELATIME;
3632
3633 /* Separate the per-mountpoint flags */
3634 if (flags & MS_NOSUID)
3635 mnt_flags |= MNT_NOSUID;
3636 if (flags & MS_NODEV)
3637 mnt_flags |= MNT_NODEV;
3638 if (flags & MS_NOEXEC)
3639 mnt_flags |= MNT_NOEXEC;
3640 if (flags & MS_NOATIME)
3641 mnt_flags |= MNT_NOATIME;
3642 if (flags & MS_NODIRATIME)
3643 mnt_flags |= MNT_NODIRATIME;
3644 if (flags & MS_STRICTATIME)
3645 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3646 if (flags & MS_RDONLY)
3647 mnt_flags |= MNT_READONLY;
3648 if (flags & MS_NOSYMFOLLOW)
3649 mnt_flags |= MNT_NOSYMFOLLOW;
3650
3651 /* The default atime for remount is preservation */
3652 if ((flags & MS_REMOUNT) &&
3653 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3654 MS_STRICTATIME)) == 0)) {
3655 mnt_flags &= ~MNT_ATIME_MASK;
3656 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3657 }
3658
3659 sb_flags = flags & (SB_RDONLY |
3660 SB_SYNCHRONOUS |
3661 SB_MANDLOCK |
3662 SB_DIRSYNC |
3663 SB_SILENT |
3664 SB_POSIXACL |
3665 SB_LAZYTIME |
3666 SB_I_VERSION);
3667
3668 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3669 return do_reconfigure_mnt(path, mnt_flags);
3670 if (flags & MS_REMOUNT)
3671 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3672 if (flags & MS_BIND)
3673 return do_loopback(path, dev_name, flags & MS_REC);
3674 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3675 return do_change_type(path, flags);
3676 if (flags & MS_MOVE)
3677 return do_move_mount_old(path, dev_name);
3678
3679 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3680 data_page);
3681 }
3682
3683 long do_mount(const char *dev_name, const char __user *dir_name,
3684 const char *type_page, unsigned long flags, void *data_page)
3685 {
3686 struct path path;
3687 int ret;
3688
3689 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3690 if (ret)
3691 return ret;
3692 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3693 path_put(&path);
3694 return ret;
3695 }
3696
3697 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3698 {
3699 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3700 }
3701
3702 static void dec_mnt_namespaces(struct ucounts *ucounts)
3703 {
3704 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3705 }
3706
3707 static void free_mnt_ns(struct mnt_namespace *ns)
3708 {
3709 if (!is_anon_ns(ns))
3710 ns_free_inum(&ns->ns);
3711 dec_mnt_namespaces(ns->ucounts);
3712 put_user_ns(ns->user_ns);
3713 kfree(ns);
3714 }
3715
3716 /*
3717 * Assign a sequence number so we can detect when we attempt to bind
3718 * mount a reference to an older mount namespace into the current
3719 * mount namespace, preventing reference counting loops. A 64bit
3720 * number incrementing at 10Ghz will take 12,427 years to wrap which
3721 * is effectively never, so we can ignore the possibility.
3722 */
3723 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3724
3725 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3726 {
3727 struct mnt_namespace *new_ns;
3728 struct ucounts *ucounts;
3729 int ret;
3730
3731 ucounts = inc_mnt_namespaces(user_ns);
3732 if (!ucounts)
3733 return ERR_PTR(-ENOSPC);
3734
3735 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3736 if (!new_ns) {
3737 dec_mnt_namespaces(ucounts);
3738 return ERR_PTR(-ENOMEM);
3739 }
3740 if (!anon) {
3741 ret = ns_alloc_inum(&new_ns->ns);
3742 if (ret) {
3743 kfree(new_ns);
3744 dec_mnt_namespaces(ucounts);
3745 return ERR_PTR(ret);
3746 }
3747 }
3748 new_ns->ns.ops = &mntns_operations;
3749 if (!anon)
3750 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3751 refcount_set(&new_ns->ns.count, 1);
3752 new_ns->mounts = RB_ROOT;
3753 init_waitqueue_head(&new_ns->poll);
3754 new_ns->user_ns = get_user_ns(user_ns);
3755 new_ns->ucounts = ucounts;
3756 return new_ns;
3757 }
3758
3759 __latent_entropy
3760 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3761 struct user_namespace *user_ns, struct fs_struct *new_fs)
3762 {
3763 struct mnt_namespace *new_ns;
3764 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3765 struct mount *p, *q;
3766 struct mount *old;
3767 struct mount *new;
3768 int copy_flags;
3769
3770 BUG_ON(!ns);
3771
3772 if (likely(!(flags & CLONE_NEWNS))) {
3773 get_mnt_ns(ns);
3774 return ns;
3775 }
3776
3777 old = ns->root;
3778
3779 new_ns = alloc_mnt_ns(user_ns, false);
3780 if (IS_ERR(new_ns))
3781 return new_ns;
3782
3783 namespace_lock();
3784 /* First pass: copy the tree topology */
3785 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3786 if (user_ns != ns->user_ns)
3787 copy_flags |= CL_SHARED_TO_SLAVE;
3788 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3789 if (IS_ERR(new)) {
3790 namespace_unlock();
3791 free_mnt_ns(new_ns);
3792 return ERR_CAST(new);
3793 }
3794 if (user_ns != ns->user_ns) {
3795 lock_mount_hash();
3796 lock_mnt_tree(new);
3797 unlock_mount_hash();
3798 }
3799 new_ns->root = new;
3800
3801 /*
3802 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3803 * as belonging to new namespace. We have already acquired a private
3804 * fs_struct, so tsk->fs->lock is not needed.
3805 */
3806 p = old;
3807 q = new;
3808 while (p) {
3809 mnt_add_to_ns(new_ns, q);
3810 new_ns->nr_mounts++;
3811 if (new_fs) {
3812 if (&p->mnt == new_fs->root.mnt) {
3813 new_fs->root.mnt = mntget(&q->mnt);
3814 rootmnt = &p->mnt;
3815 }
3816 if (&p->mnt == new_fs->pwd.mnt) {
3817 new_fs->pwd.mnt = mntget(&q->mnt);
3818 pwdmnt = &p->mnt;
3819 }
3820 }
3821 p = next_mnt(p, old);
3822 q = next_mnt(q, new);
3823 if (!q)
3824 break;
3825 // an mntns binding we'd skipped?
3826 while (p->mnt.mnt_root != q->mnt.mnt_root)
3827 p = next_mnt(skip_mnt_tree(p), old);
3828 }
3829 namespace_unlock();
3830
3831 if (rootmnt)
3832 mntput(rootmnt);
3833 if (pwdmnt)
3834 mntput(pwdmnt);
3835
3836 return new_ns;
3837 }
3838
3839 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3840 {
3841 struct mount *mnt = real_mount(m);
3842 struct mnt_namespace *ns;
3843 struct super_block *s;
3844 struct path path;
3845 int err;
3846
3847 ns = alloc_mnt_ns(&init_user_ns, true);
3848 if (IS_ERR(ns)) {
3849 mntput(m);
3850 return ERR_CAST(ns);
3851 }
3852 ns->root = mnt;
3853 ns->nr_mounts++;
3854 mnt_add_to_ns(ns, mnt);
3855
3856 err = vfs_path_lookup(m->mnt_root, m,
3857 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3858
3859 put_mnt_ns(ns);
3860
3861 if (err)
3862 return ERR_PTR(err);
3863
3864 /* trade a vfsmount reference for active sb one */
3865 s = path.mnt->mnt_sb;
3866 atomic_inc(&s->s_active);
3867 mntput(path.mnt);
3868 /* lock the sucker */
3869 down_write(&s->s_umount);
3870 /* ... and return the root of (sub)tree on it */
3871 return path.dentry;
3872 }
3873 EXPORT_SYMBOL(mount_subtree);
3874
3875 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3876 char __user *, type, unsigned long, flags, void __user *, data)
3877 {
3878 int ret;
3879 char *kernel_type;
3880 char *kernel_dev;
3881 void *options;
3882
3883 kernel_type = copy_mount_string(type);
3884 ret = PTR_ERR(kernel_type);
3885 if (IS_ERR(kernel_type))
3886 goto out_type;
3887
3888 kernel_dev = copy_mount_string(dev_name);
3889 ret = PTR_ERR(kernel_dev);
3890 if (IS_ERR(kernel_dev))
3891 goto out_dev;
3892
3893 options = copy_mount_options(data);
3894 ret = PTR_ERR(options);
3895 if (IS_ERR(options))
3896 goto out_data;
3897
3898 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3899
3900 kfree(options);
3901 out_data:
3902 kfree(kernel_dev);
3903 out_dev:
3904 kfree(kernel_type);
3905 out_type:
3906 return ret;
3907 }
3908
3909 #define FSMOUNT_VALID_FLAGS \
3910 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3911 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
3912 MOUNT_ATTR_NOSYMFOLLOW)
3913
3914 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3915
3916 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3917 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3918
3919 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3920 {
3921 unsigned int mnt_flags = 0;
3922
3923 if (attr_flags & MOUNT_ATTR_RDONLY)
3924 mnt_flags |= MNT_READONLY;
3925 if (attr_flags & MOUNT_ATTR_NOSUID)
3926 mnt_flags |= MNT_NOSUID;
3927 if (attr_flags & MOUNT_ATTR_NODEV)
3928 mnt_flags |= MNT_NODEV;
3929 if (attr_flags & MOUNT_ATTR_NOEXEC)
3930 mnt_flags |= MNT_NOEXEC;
3931 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3932 mnt_flags |= MNT_NODIRATIME;
3933 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3934 mnt_flags |= MNT_NOSYMFOLLOW;
3935
3936 return mnt_flags;
3937 }
3938
3939 /*
3940 * Create a kernel mount representation for a new, prepared superblock
3941 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3942 */
3943 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3944 unsigned int, attr_flags)
3945 {
3946 struct mnt_namespace *ns;
3947 struct fs_context *fc;
3948 struct file *file;
3949 struct path newmount;
3950 struct mount *mnt;
3951 struct fd f;
3952 unsigned int mnt_flags = 0;
3953 long ret;
3954
3955 if (!may_mount())
3956 return -EPERM;
3957
3958 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3959 return -EINVAL;
3960
3961 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3962 return -EINVAL;
3963
3964 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3965
3966 switch (attr_flags & MOUNT_ATTR__ATIME) {
3967 case MOUNT_ATTR_STRICTATIME:
3968 break;
3969 case MOUNT_ATTR_NOATIME:
3970 mnt_flags |= MNT_NOATIME;
3971 break;
3972 case MOUNT_ATTR_RELATIME:
3973 mnt_flags |= MNT_RELATIME;
3974 break;
3975 default:
3976 return -EINVAL;
3977 }
3978
3979 f = fdget(fs_fd);
3980 if (!f.file)
3981 return -EBADF;
3982
3983 ret = -EINVAL;
3984 if (f.file->f_op != &fscontext_fops)
3985 goto err_fsfd;
3986
3987 fc = f.file->private_data;
3988
3989 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3990 if (ret < 0)
3991 goto err_fsfd;
3992
3993 /* There must be a valid superblock or we can't mount it */
3994 ret = -EINVAL;
3995 if (!fc->root)
3996 goto err_unlock;
3997
3998 ret = -EPERM;
3999 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4000 pr_warn("VFS: Mount too revealing\n");
4001 goto err_unlock;
4002 }
4003
4004 ret = -EBUSY;
4005 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4006 goto err_unlock;
4007
4008 if (fc->sb_flags & SB_MANDLOCK)
4009 warn_mandlock();
4010
4011 newmount.mnt = vfs_create_mount(fc);
4012 if (IS_ERR(newmount.mnt)) {
4013 ret = PTR_ERR(newmount.mnt);
4014 goto err_unlock;
4015 }
4016 newmount.dentry = dget(fc->root);
4017 newmount.mnt->mnt_flags = mnt_flags;
4018
4019 /* We've done the mount bit - now move the file context into more or
4020 * less the same state as if we'd done an fspick(). We don't want to
4021 * do any memory allocation or anything like that at this point as we
4022 * don't want to have to handle any errors incurred.
4023 */
4024 vfs_clean_context(fc);
4025
4026 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4027 if (IS_ERR(ns)) {
4028 ret = PTR_ERR(ns);
4029 goto err_path;
4030 }
4031 mnt = real_mount(newmount.mnt);
4032 ns->root = mnt;
4033 ns->nr_mounts = 1;
4034 mnt_add_to_ns(ns, mnt);
4035 mntget(newmount.mnt);
4036
4037 /* Attach to an apparent O_PATH fd with a note that we need to unmount
4038 * it, not just simply put it.
4039 */
4040 file = dentry_open(&newmount, O_PATH, fc->cred);
4041 if (IS_ERR(file)) {
4042 dissolve_on_fput(newmount.mnt);
4043 ret = PTR_ERR(file);
4044 goto err_path;
4045 }
4046 file->f_mode |= FMODE_NEED_UNMOUNT;
4047
4048 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4049 if (ret >= 0)
4050 fd_install(ret, file);
4051 else
4052 fput(file);
4053
4054 err_path:
4055 path_put(&newmount);
4056 err_unlock:
4057 mutex_unlock(&fc->uapi_mutex);
4058 err_fsfd:
4059 fdput(f);
4060 return ret;
4061 }
4062
4063 /*
4064 * Move a mount from one place to another. In combination with
4065 * fsopen()/fsmount() this is used to install a new mount and in combination
4066 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4067 * a mount subtree.
4068 *
4069 * Note the flags value is a combination of MOVE_MOUNT_* flags.
4070 */
4071 SYSCALL_DEFINE5(move_mount,
4072 int, from_dfd, const char __user *, from_pathname,
4073 int, to_dfd, const char __user *, to_pathname,
4074 unsigned int, flags)
4075 {
4076 struct path from_path, to_path;
4077 unsigned int lflags;
4078 int ret = 0;
4079
4080 if (!may_mount())
4081 return -EPERM;
4082
4083 if (flags & ~MOVE_MOUNT__MASK)
4084 return -EINVAL;
4085
4086 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4087 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4088 return -EINVAL;
4089
4090 /* If someone gives a pathname, they aren't permitted to move
4091 * from an fd that requires unmount as we can't get at the flag
4092 * to clear it afterwards.
4093 */
4094 lflags = 0;
4095 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4096 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4097 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
4098
4099 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4100 if (ret < 0)
4101 return ret;
4102
4103 lflags = 0;
4104 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4105 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4106 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
4107
4108 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4109 if (ret < 0)
4110 goto out_from;
4111
4112 ret = security_move_mount(&from_path, &to_path);
4113 if (ret < 0)
4114 goto out_to;
4115
4116 if (flags & MOVE_MOUNT_SET_GROUP)
4117 ret = do_set_group(&from_path, &to_path);
4118 else
4119 ret = do_move_mount(&from_path, &to_path,
4120 (flags & MOVE_MOUNT_BENEATH));
4121
4122 out_to:
4123 path_put(&to_path);
4124 out_from:
4125 path_put(&from_path);
4126 return ret;
4127 }
4128
4129 /*
4130 * Return true if path is reachable from root
4131 *
4132 * namespace_sem or mount_lock is held
4133 */
4134 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4135 const struct path *root)
4136 {
4137 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4138 dentry = mnt->mnt_mountpoint;
4139 mnt = mnt->mnt_parent;
4140 }
4141 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4142 }
4143
4144 bool path_is_under(const struct path *path1, const struct path *path2)
4145 {
4146 bool res;
4147 read_seqlock_excl(&mount_lock);
4148 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4149 read_sequnlock_excl(&mount_lock);
4150 return res;
4151 }
4152 EXPORT_SYMBOL(path_is_under);
4153
4154 /*
4155 * pivot_root Semantics:
4156 * Moves the root file system of the current process to the directory put_old,
4157 * makes new_root as the new root file system of the current process, and sets
4158 * root/cwd of all processes which had them on the current root to new_root.
4159 *
4160 * Restrictions:
4161 * The new_root and put_old must be directories, and must not be on the
4162 * same file system as the current process root. The put_old must be
4163 * underneath new_root, i.e. adding a non-zero number of /.. to the string
4164 * pointed to by put_old must yield the same directory as new_root. No other
4165 * file system may be mounted on put_old. After all, new_root is a mountpoint.
4166 *
4167 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4168 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4169 * in this situation.
4170 *
4171 * Notes:
4172 * - we don't move root/cwd if they are not at the root (reason: if something
4173 * cared enough to change them, it's probably wrong to force them elsewhere)
4174 * - it's okay to pick a root that isn't the root of a file system, e.g.
4175 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4176 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4177 * first.
4178 */
4179 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4180 const char __user *, put_old)
4181 {
4182 struct path new, old, root;
4183 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4184 struct mountpoint *old_mp, *root_mp;
4185 int error;
4186
4187 if (!may_mount())
4188 return -EPERM;
4189
4190 error = user_path_at(AT_FDCWD, new_root,
4191 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4192 if (error)
4193 goto out0;
4194
4195 error = user_path_at(AT_FDCWD, put_old,
4196 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4197 if (error)
4198 goto out1;
4199
4200 error = security_sb_pivotroot(&old, &new);
4201 if (error)
4202 goto out2;
4203
4204 get_fs_root(current->fs, &root);
4205 old_mp = lock_mount(&old);
4206 error = PTR_ERR(old_mp);
4207 if (IS_ERR(old_mp))
4208 goto out3;
4209
4210 error = -EINVAL;
4211 new_mnt = real_mount(new.mnt);
4212 root_mnt = real_mount(root.mnt);
4213 old_mnt = real_mount(old.mnt);
4214 ex_parent = new_mnt->mnt_parent;
4215 root_parent = root_mnt->mnt_parent;
4216 if (IS_MNT_SHARED(old_mnt) ||
4217 IS_MNT_SHARED(ex_parent) ||
4218 IS_MNT_SHARED(root_parent))
4219 goto out4;
4220 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4221 goto out4;
4222 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4223 goto out4;
4224 error = -ENOENT;
4225 if (d_unlinked(new.dentry))
4226 goto out4;
4227 error = -EBUSY;
4228 if (new_mnt == root_mnt || old_mnt == root_mnt)
4229 goto out4; /* loop, on the same file system */
4230 error = -EINVAL;
4231 if (!path_mounted(&root))
4232 goto out4; /* not a mountpoint */
4233 if (!mnt_has_parent(root_mnt))
4234 goto out4; /* not attached */
4235 if (!path_mounted(&new))
4236 goto out4; /* not a mountpoint */
4237 if (!mnt_has_parent(new_mnt))
4238 goto out4; /* not attached */
4239 /* make sure we can reach put_old from new_root */
4240 if (!is_path_reachable(old_mnt, old.dentry, &new))
4241 goto out4;
4242 /* make certain new is below the root */
4243 if (!is_path_reachable(new_mnt, new.dentry, &root))
4244 goto out4;
4245 lock_mount_hash();
4246 umount_mnt(new_mnt);
4247 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
4248 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4249 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4250 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4251 }
4252 /* mount old root on put_old */
4253 attach_mnt(root_mnt, old_mnt, old_mp, false);
4254 /* mount new_root on / */
4255 attach_mnt(new_mnt, root_parent, root_mp, false);
4256 mnt_add_count(root_parent, -1);
4257 touch_mnt_namespace(current->nsproxy->mnt_ns);
4258 /* A moved mount should not expire automatically */
4259 list_del_init(&new_mnt->mnt_expire);
4260 put_mountpoint(root_mp);
4261 unlock_mount_hash();
4262 chroot_fs_refs(&root, &new);
4263 error = 0;
4264 out4:
4265 unlock_mount(old_mp);
4266 if (!error)
4267 mntput_no_expire(ex_parent);
4268 out3:
4269 path_put(&root);
4270 out2:
4271 path_put(&old);
4272 out1:
4273 path_put(&new);
4274 out0:
4275 return error;
4276 }
4277
4278 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4279 {
4280 unsigned int flags = mnt->mnt.mnt_flags;
4281
4282 /* flags to clear */
4283 flags &= ~kattr->attr_clr;
4284 /* flags to raise */
4285 flags |= kattr->attr_set;
4286
4287 return flags;
4288 }
4289
4290 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4291 {
4292 struct vfsmount *m = &mnt->mnt;
4293 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4294
4295 if (!kattr->mnt_idmap)
4296 return 0;
4297
4298 /*
4299 * Creating an idmapped mount with the filesystem wide idmapping
4300 * doesn't make sense so block that. We don't allow mushy semantics.
4301 */
4302 if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4303 return -EINVAL;
4304
4305 /*
4306 * Once a mount has been idmapped we don't allow it to change its
4307 * mapping. It makes things simpler and callers can just create
4308 * another bind-mount they can idmap if they want to.
4309 */
4310 if (is_idmapped_mnt(m))
4311 return -EPERM;
4312
4313 /* The underlying filesystem doesn't support idmapped mounts yet. */
4314 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4315 return -EINVAL;
4316
4317 /* We're not controlling the superblock. */
4318 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4319 return -EPERM;
4320
4321 /* Mount has already been visible in the filesystem hierarchy. */
4322 if (!is_anon_ns(mnt->mnt_ns))
4323 return -EINVAL;
4324
4325 return 0;
4326 }
4327
4328 /**
4329 * mnt_allow_writers() - check whether the attribute change allows writers
4330 * @kattr: the new mount attributes
4331 * @mnt: the mount to which @kattr will be applied
4332 *
4333 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4334 *
4335 * Return: true if writers need to be held, false if not
4336 */
4337 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4338 const struct mount *mnt)
4339 {
4340 return (!(kattr->attr_set & MNT_READONLY) ||
4341 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4342 !kattr->mnt_idmap;
4343 }
4344
4345 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4346 {
4347 struct mount *m;
4348 int err;
4349
4350 for (m = mnt; m; m = next_mnt(m, mnt)) {
4351 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4352 err = -EPERM;
4353 break;
4354 }
4355
4356 err = can_idmap_mount(kattr, m);
4357 if (err)
4358 break;
4359
4360 if (!mnt_allow_writers(kattr, m)) {
4361 err = mnt_hold_writers(m);
4362 if (err)
4363 break;
4364 }
4365
4366 if (!kattr->recurse)
4367 return 0;
4368 }
4369
4370 if (err) {
4371 struct mount *p;
4372
4373 /*
4374 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4375 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4376 * mounts and needs to take care to include the first mount.
4377 */
4378 for (p = mnt; p; p = next_mnt(p, mnt)) {
4379 /* If we had to hold writers unblock them. */
4380 if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4381 mnt_unhold_writers(p);
4382
4383 /*
4384 * We're done once the first mount we changed got
4385 * MNT_WRITE_HOLD unset.
4386 */
4387 if (p == m)
4388 break;
4389 }
4390 }
4391 return err;
4392 }
4393
4394 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4395 {
4396 if (!kattr->mnt_idmap)
4397 return;
4398
4399 /*
4400 * Pairs with smp_load_acquire() in mnt_idmap().
4401 *
4402 * Since we only allow a mount to change the idmapping once and
4403 * verified this in can_idmap_mount() we know that the mount has
4404 * @nop_mnt_idmap attached to it. So there's no need to drop any
4405 * references.
4406 */
4407 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4408 }
4409
4410 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4411 {
4412 struct mount *m;
4413
4414 for (m = mnt; m; m = next_mnt(m, mnt)) {
4415 unsigned int flags;
4416
4417 do_idmap_mount(kattr, m);
4418 flags = recalc_flags(kattr, m);
4419 WRITE_ONCE(m->mnt.mnt_flags, flags);
4420
4421 /* If we had to hold writers unblock them. */
4422 if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4423 mnt_unhold_writers(m);
4424
4425 if (kattr->propagation)
4426 change_mnt_propagation(m, kattr->propagation);
4427 if (!kattr->recurse)
4428 break;
4429 }
4430 touch_mnt_namespace(mnt->mnt_ns);
4431 }
4432
4433 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4434 {
4435 struct mount *mnt = real_mount(path->mnt);
4436 int err = 0;
4437
4438 if (!path_mounted(path))
4439 return -EINVAL;
4440
4441 if (kattr->mnt_userns) {
4442 struct mnt_idmap *mnt_idmap;
4443
4444 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4445 if (IS_ERR(mnt_idmap))
4446 return PTR_ERR(mnt_idmap);
4447 kattr->mnt_idmap = mnt_idmap;
4448 }
4449
4450 if (kattr->propagation) {
4451 /*
4452 * Only take namespace_lock() if we're actually changing
4453 * propagation.
4454 */
4455 namespace_lock();
4456 if (kattr->propagation == MS_SHARED) {
4457 err = invent_group_ids(mnt, kattr->recurse);
4458 if (err) {
4459 namespace_unlock();
4460 return err;
4461 }
4462 }
4463 }
4464
4465 err = -EINVAL;
4466 lock_mount_hash();
4467
4468 /* Ensure that this isn't anything purely vfs internal. */
4469 if (!is_mounted(&mnt->mnt))
4470 goto out;
4471
4472 /*
4473 * If this is an attached mount make sure it's located in the callers
4474 * mount namespace. If it's not don't let the caller interact with it.
4475 * If this is a detached mount make sure it has an anonymous mount
4476 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4477 */
4478 if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4479 goto out;
4480
4481 /*
4482 * First, we get the mount tree in a shape where we can change mount
4483 * properties without failure. If we succeeded to do so we commit all
4484 * changes and if we failed we clean up.
4485 */
4486 err = mount_setattr_prepare(kattr, mnt);
4487 if (!err)
4488 mount_setattr_commit(kattr, mnt);
4489
4490 out:
4491 unlock_mount_hash();
4492
4493 if (kattr->propagation) {
4494 if (err)
4495 cleanup_group_ids(mnt, NULL);
4496 namespace_unlock();
4497 }
4498
4499 return err;
4500 }
4501
4502 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4503 struct mount_kattr *kattr, unsigned int flags)
4504 {
4505 int err = 0;
4506 struct ns_common *ns;
4507 struct user_namespace *mnt_userns;
4508 struct fd f;
4509
4510 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4511 return 0;
4512
4513 /*
4514 * We currently do not support clearing an idmapped mount. If this ever
4515 * is a use-case we can revisit this but for now let's keep it simple
4516 * and not allow it.
4517 */
4518 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4519 return -EINVAL;
4520
4521 if (attr->userns_fd > INT_MAX)
4522 return -EINVAL;
4523
4524 f = fdget(attr->userns_fd);
4525 if (!f.file)
4526 return -EBADF;
4527
4528 if (!proc_ns_file(f.file)) {
4529 err = -EINVAL;
4530 goto out_fput;
4531 }
4532
4533 ns = get_proc_ns(file_inode(f.file));
4534 if (ns->ops->type != CLONE_NEWUSER) {
4535 err = -EINVAL;
4536 goto out_fput;
4537 }
4538
4539 /*
4540 * The initial idmapping cannot be used to create an idmapped
4541 * mount. We use the initial idmapping as an indicator of a mount
4542 * that is not idmapped. It can simply be passed into helpers that
4543 * are aware of idmapped mounts as a convenient shortcut. A user
4544 * can just create a dedicated identity mapping to achieve the same
4545 * result.
4546 */
4547 mnt_userns = container_of(ns, struct user_namespace, ns);
4548 if (mnt_userns == &init_user_ns) {
4549 err = -EPERM;
4550 goto out_fput;
4551 }
4552
4553 /* We're not controlling the target namespace. */
4554 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4555 err = -EPERM;
4556 goto out_fput;
4557 }
4558
4559 kattr->mnt_userns = get_user_ns(mnt_userns);
4560
4561 out_fput:
4562 fdput(f);
4563 return err;
4564 }
4565
4566 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4567 struct mount_kattr *kattr, unsigned int flags)
4568 {
4569 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4570
4571 if (flags & AT_NO_AUTOMOUNT)
4572 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4573 if (flags & AT_SYMLINK_NOFOLLOW)
4574 lookup_flags &= ~LOOKUP_FOLLOW;
4575 if (flags & AT_EMPTY_PATH)
4576 lookup_flags |= LOOKUP_EMPTY;
4577
4578 *kattr = (struct mount_kattr) {
4579 .lookup_flags = lookup_flags,
4580 .recurse = !!(flags & AT_RECURSIVE),
4581 };
4582
4583 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4584 return -EINVAL;
4585 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4586 return -EINVAL;
4587 kattr->propagation = attr->propagation;
4588
4589 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4590 return -EINVAL;
4591
4592 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4593 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4594
4595 /*
4596 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4597 * users wanting to transition to a different atime setting cannot
4598 * simply specify the atime setting in @attr_set, but must also
4599 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4600 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4601 * @attr_clr and that @attr_set can't have any atime bits set if
4602 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4603 */
4604 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4605 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4606 return -EINVAL;
4607
4608 /*
4609 * Clear all previous time settings as they are mutually
4610 * exclusive.
4611 */
4612 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4613 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4614 case MOUNT_ATTR_RELATIME:
4615 kattr->attr_set |= MNT_RELATIME;
4616 break;
4617 case MOUNT_ATTR_NOATIME:
4618 kattr->attr_set |= MNT_NOATIME;
4619 break;
4620 case MOUNT_ATTR_STRICTATIME:
4621 break;
4622 default:
4623 return -EINVAL;
4624 }
4625 } else {
4626 if (attr->attr_set & MOUNT_ATTR__ATIME)
4627 return -EINVAL;
4628 }
4629
4630 return build_mount_idmapped(attr, usize, kattr, flags);
4631 }
4632
4633 static void finish_mount_kattr(struct mount_kattr *kattr)
4634 {
4635 put_user_ns(kattr->mnt_userns);
4636 kattr->mnt_userns = NULL;
4637
4638 if (kattr->mnt_idmap)
4639 mnt_idmap_put(kattr->mnt_idmap);
4640 }
4641
4642 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4643 unsigned int, flags, struct mount_attr __user *, uattr,
4644 size_t, usize)
4645 {
4646 int err;
4647 struct path target;
4648 struct mount_attr attr;
4649 struct mount_kattr kattr;
4650
4651 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4652
4653 if (flags & ~(AT_EMPTY_PATH |
4654 AT_RECURSIVE |
4655 AT_SYMLINK_NOFOLLOW |
4656 AT_NO_AUTOMOUNT))
4657 return -EINVAL;
4658
4659 if (unlikely(usize > PAGE_SIZE))
4660 return -E2BIG;
4661 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4662 return -EINVAL;
4663
4664 if (!may_mount())
4665 return -EPERM;
4666
4667 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4668 if (err)
4669 return err;
4670
4671 /* Don't bother walking through the mounts if this is a nop. */
4672 if (attr.attr_set == 0 &&
4673 attr.attr_clr == 0 &&
4674 attr.propagation == 0)
4675 return 0;
4676
4677 err = build_mount_kattr(&attr, usize, &kattr, flags);
4678 if (err)
4679 return err;
4680
4681 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4682 if (!err) {
4683 err = do_mount_setattr(&target, &kattr);
4684 path_put(&target);
4685 }
4686 finish_mount_kattr(&kattr);
4687 return err;
4688 }
4689
4690 int show_path(struct seq_file *m, struct dentry *root)
4691 {
4692 if (root->d_sb->s_op->show_path)
4693 return root->d_sb->s_op->show_path(m, root);
4694
4695 seq_dentry(m, root, " \t\n\\");
4696 return 0;
4697 }
4698
4699 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
4700 {
4701 struct mount *mnt = mnt_find_id_at(ns, id);
4702
4703 if (!mnt || mnt->mnt_id_unique != id)
4704 return NULL;
4705
4706 return &mnt->mnt;
4707 }
4708
4709 struct kstatmount {
4710 struct statmount __user *buf;
4711 size_t bufsize;
4712 struct vfsmount *mnt;
4713 u64 mask;
4714 struct path root;
4715 struct statmount sm;
4716 struct seq_file seq;
4717 };
4718
4719 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
4720 {
4721 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
4722 u64 attr_flags = 0;
4723
4724 if (mnt_flags & MNT_READONLY)
4725 attr_flags |= MOUNT_ATTR_RDONLY;
4726 if (mnt_flags & MNT_NOSUID)
4727 attr_flags |= MOUNT_ATTR_NOSUID;
4728 if (mnt_flags & MNT_NODEV)
4729 attr_flags |= MOUNT_ATTR_NODEV;
4730 if (mnt_flags & MNT_NOEXEC)
4731 attr_flags |= MOUNT_ATTR_NOEXEC;
4732 if (mnt_flags & MNT_NODIRATIME)
4733 attr_flags |= MOUNT_ATTR_NODIRATIME;
4734 if (mnt_flags & MNT_NOSYMFOLLOW)
4735 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
4736
4737 if (mnt_flags & MNT_NOATIME)
4738 attr_flags |= MOUNT_ATTR_NOATIME;
4739 else if (mnt_flags & MNT_RELATIME)
4740 attr_flags |= MOUNT_ATTR_RELATIME;
4741 else
4742 attr_flags |= MOUNT_ATTR_STRICTATIME;
4743
4744 if (is_idmapped_mnt(mnt))
4745 attr_flags |= MOUNT_ATTR_IDMAP;
4746
4747 return attr_flags;
4748 }
4749
4750 static u64 mnt_to_propagation_flags(struct mount *m)
4751 {
4752 u64 propagation = 0;
4753
4754 if (IS_MNT_SHARED(m))
4755 propagation |= MS_SHARED;
4756 if (IS_MNT_SLAVE(m))
4757 propagation |= MS_SLAVE;
4758 if (IS_MNT_UNBINDABLE(m))
4759 propagation |= MS_UNBINDABLE;
4760 if (!propagation)
4761 propagation |= MS_PRIVATE;
4762
4763 return propagation;
4764 }
4765
4766 static void statmount_sb_basic(struct kstatmount *s)
4767 {
4768 struct super_block *sb = s->mnt->mnt_sb;
4769
4770 s->sm.mask |= STATMOUNT_SB_BASIC;
4771 s->sm.sb_dev_major = MAJOR(sb->s_dev);
4772 s->sm.sb_dev_minor = MINOR(sb->s_dev);
4773 s->sm.sb_magic = sb->s_magic;
4774 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
4775 }
4776
4777 static void statmount_mnt_basic(struct kstatmount *s)
4778 {
4779 struct mount *m = real_mount(s->mnt);
4780
4781 s->sm.mask |= STATMOUNT_MNT_BASIC;
4782 s->sm.mnt_id = m->mnt_id_unique;
4783 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
4784 s->sm.mnt_id_old = m->mnt_id;
4785 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
4786 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
4787 s->sm.mnt_propagation = mnt_to_propagation_flags(m);
4788 s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
4789 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
4790 }
4791
4792 static void statmount_propagate_from(struct kstatmount *s)
4793 {
4794 struct mount *m = real_mount(s->mnt);
4795
4796 s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
4797 if (IS_MNT_SLAVE(m))
4798 s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
4799 }
4800
4801 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
4802 {
4803 int ret;
4804 size_t start = seq->count;
4805
4806 ret = show_path(seq, s->mnt->mnt_root);
4807 if (ret)
4808 return ret;
4809
4810 if (unlikely(seq_has_overflowed(seq)))
4811 return -EAGAIN;
4812
4813 /*
4814 * Unescape the result. It would be better if supplied string was not
4815 * escaped in the first place, but that's a pretty invasive change.
4816 */
4817 seq->buf[seq->count] = '\0';
4818 seq->count = start;
4819 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
4820 return 0;
4821 }
4822
4823 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
4824 {
4825 struct vfsmount *mnt = s->mnt;
4826 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
4827 int err;
4828
4829 err = seq_path_root(seq, &mnt_path, &s->root, "");
4830 return err == SEQ_SKIP ? 0 : err;
4831 }
4832
4833 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
4834 {
4835 struct super_block *sb = s->mnt->mnt_sb;
4836
4837 seq_puts(seq, sb->s_type->name);
4838 return 0;
4839 }
4840
4841 static int statmount_string(struct kstatmount *s, u64 flag)
4842 {
4843 int ret;
4844 size_t kbufsize;
4845 struct seq_file *seq = &s->seq;
4846 struct statmount *sm = &s->sm;
4847
4848 switch (flag) {
4849 case STATMOUNT_FS_TYPE:
4850 sm->fs_type = seq->count;
4851 ret = statmount_fs_type(s, seq);
4852 break;
4853 case STATMOUNT_MNT_ROOT:
4854 sm->mnt_root = seq->count;
4855 ret = statmount_mnt_root(s, seq);
4856 break;
4857 case STATMOUNT_MNT_POINT:
4858 sm->mnt_point = seq->count;
4859 ret = statmount_mnt_point(s, seq);
4860 break;
4861 default:
4862 WARN_ON_ONCE(true);
4863 return -EINVAL;
4864 }
4865
4866 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
4867 return -EOVERFLOW;
4868 if (kbufsize >= s->bufsize)
4869 return -EOVERFLOW;
4870
4871 /* signal a retry */
4872 if (unlikely(seq_has_overflowed(seq)))
4873 return -EAGAIN;
4874
4875 if (ret)
4876 return ret;
4877
4878 seq->buf[seq->count++] = '\0';
4879 sm->mask |= flag;
4880 return 0;
4881 }
4882
4883 static int copy_statmount_to_user(struct kstatmount *s)
4884 {
4885 struct statmount *sm = &s->sm;
4886 struct seq_file *seq = &s->seq;
4887 char __user *str = ((char __user *)s->buf) + sizeof(*sm);
4888 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
4889
4890 if (seq->count && copy_to_user(str, seq->buf, seq->count))
4891 return -EFAULT;
4892
4893 /* Return the number of bytes copied to the buffer */
4894 sm->size = copysize + seq->count;
4895 if (copy_to_user(s->buf, sm, copysize))
4896 return -EFAULT;
4897
4898 return 0;
4899 }
4900
4901 static int do_statmount(struct kstatmount *s)
4902 {
4903 struct mount *m = real_mount(s->mnt);
4904 int err;
4905
4906 /*
4907 * Don't trigger audit denials. We just want to determine what
4908 * mounts to show users.
4909 */
4910 if (!is_path_reachable(m, m->mnt.mnt_root, &s->root) &&
4911 !ns_capable_noaudit(&init_user_ns, CAP_SYS_ADMIN))
4912 return -EPERM;
4913
4914 err = security_sb_statfs(s->mnt->mnt_root);
4915 if (err)
4916 return err;
4917
4918 if (s->mask & STATMOUNT_SB_BASIC)
4919 statmount_sb_basic(s);
4920
4921 if (s->mask & STATMOUNT_MNT_BASIC)
4922 statmount_mnt_basic(s);
4923
4924 if (s->mask & STATMOUNT_PROPAGATE_FROM)
4925 statmount_propagate_from(s);
4926
4927 if (s->mask & STATMOUNT_FS_TYPE)
4928 err = statmount_string(s, STATMOUNT_FS_TYPE);
4929
4930 if (!err && s->mask & STATMOUNT_MNT_ROOT)
4931 err = statmount_string(s, STATMOUNT_MNT_ROOT);
4932
4933 if (!err && s->mask & STATMOUNT_MNT_POINT)
4934 err = statmount_string(s, STATMOUNT_MNT_POINT);
4935
4936 if (err)
4937 return err;
4938
4939 return 0;
4940 }
4941
4942 static inline bool retry_statmount(const long ret, size_t *seq_size)
4943 {
4944 if (likely(ret != -EAGAIN))
4945 return false;
4946 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
4947 return false;
4948 if (unlikely(*seq_size > MAX_RW_COUNT))
4949 return false;
4950 return true;
4951 }
4952
4953 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
4954 struct statmount __user *buf, size_t bufsize,
4955 size_t seq_size)
4956 {
4957 if (!access_ok(buf, bufsize))
4958 return -EFAULT;
4959
4960 memset(ks, 0, sizeof(*ks));
4961 ks->mask = kreq->param;
4962 ks->buf = buf;
4963 ks->bufsize = bufsize;
4964 ks->seq.size = seq_size;
4965 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
4966 if (!ks->seq.buf)
4967 return -ENOMEM;
4968 return 0;
4969 }
4970
4971 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
4972 struct mnt_id_req *kreq)
4973 {
4974 int ret;
4975 size_t usize;
4976
4977 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER0);
4978
4979 ret = get_user(usize, &req->size);
4980 if (ret)
4981 return -EFAULT;
4982 if (unlikely(usize > PAGE_SIZE))
4983 return -E2BIG;
4984 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
4985 return -EINVAL;
4986 memset(kreq, 0, sizeof(*kreq));
4987 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
4988 if (ret)
4989 return ret;
4990 if (kreq->spare != 0)
4991 return -EINVAL;
4992 return 0;
4993 }
4994
4995 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
4996 struct statmount __user *, buf, size_t, bufsize,
4997 unsigned int, flags)
4998 {
4999 struct vfsmount *mnt;
5000 struct mnt_id_req kreq;
5001 struct kstatmount ks;
5002 /* We currently support retrieval of 3 strings. */
5003 size_t seq_size = 3 * PATH_MAX;
5004 int ret;
5005
5006 if (flags)
5007 return -EINVAL;
5008
5009 ret = copy_mnt_id_req(req, &kreq);
5010 if (ret)
5011 return ret;
5012
5013 retry:
5014 ret = prepare_kstatmount(&ks, &kreq, buf, bufsize, seq_size);
5015 if (ret)
5016 return ret;
5017
5018 down_read(&namespace_sem);
5019 mnt = lookup_mnt_in_ns(kreq.mnt_id, current->nsproxy->mnt_ns);
5020 if (!mnt) {
5021 up_read(&namespace_sem);
5022 kvfree(ks.seq.buf);
5023 return -ENOENT;
5024 }
5025
5026 ks.mnt = mnt;
5027 get_fs_root(current->fs, &ks.root);
5028 ret = do_statmount(&ks);
5029 path_put(&ks.root);
5030 up_read(&namespace_sem);
5031
5032 if (!ret)
5033 ret = copy_statmount_to_user(&ks);
5034 kvfree(ks.seq.buf);
5035 if (retry_statmount(ret, &seq_size))
5036 goto retry;
5037 return ret;
5038 }
5039
5040 static struct mount *listmnt_next(struct mount *curr)
5041 {
5042 return node_to_mount(rb_next(&curr->mnt_node));
5043 }
5044
5045 static ssize_t do_listmount(struct mount *first, struct path *orig,
5046 u64 mnt_parent_id, u64 __user *mnt_ids,
5047 size_t nr_mnt_ids, const struct path *root)
5048 {
5049 struct mount *r;
5050 ssize_t ret;
5051
5052 /*
5053 * Don't trigger audit denials. We just want to determine what
5054 * mounts to show users.
5055 */
5056 if (!is_path_reachable(real_mount(orig->mnt), orig->dentry, root) &&
5057 !ns_capable_noaudit(&init_user_ns, CAP_SYS_ADMIN))
5058 return -EPERM;
5059
5060 ret = security_sb_statfs(orig->dentry);
5061 if (ret)
5062 return ret;
5063
5064 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r)) {
5065 if (r->mnt_id_unique == mnt_parent_id)
5066 continue;
5067 if (!is_path_reachable(r, r->mnt.mnt_root, orig))
5068 continue;
5069 if (put_user(r->mnt_id_unique, mnt_ids))
5070 return -EFAULT;
5071 mnt_ids++;
5072 nr_mnt_ids--;
5073 ret++;
5074 }
5075 return ret;
5076 }
5077
5078 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req, u64 __user *,
5079 mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5080 {
5081 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
5082 struct mnt_id_req kreq;
5083 struct mount *first;
5084 struct path root, orig;
5085 u64 mnt_parent_id, last_mnt_id;
5086 const size_t maxcount = (size_t)-1 >> 3;
5087 ssize_t ret;
5088
5089 if (flags)
5090 return -EINVAL;
5091
5092 if (unlikely(nr_mnt_ids > maxcount))
5093 return -EFAULT;
5094
5095 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5096 return -EFAULT;
5097
5098 ret = copy_mnt_id_req(req, &kreq);
5099 if (ret)
5100 return ret;
5101 mnt_parent_id = kreq.mnt_id;
5102 last_mnt_id = kreq.param;
5103
5104 down_read(&namespace_sem);
5105 get_fs_root(current->fs, &root);
5106 if (mnt_parent_id == LSMT_ROOT) {
5107 orig = root;
5108 } else {
5109 ret = -ENOENT;
5110 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5111 if (!orig.mnt)
5112 goto err;
5113 orig.dentry = orig.mnt->mnt_root;
5114 }
5115 if (!last_mnt_id)
5116 first = node_to_mount(rb_first(&ns->mounts));
5117 else
5118 first = mnt_find_id_at(ns, last_mnt_id + 1);
5119
5120 ret = do_listmount(first, &orig, mnt_parent_id, mnt_ids, nr_mnt_ids, &root);
5121 err:
5122 path_put(&root);
5123 up_read(&namespace_sem);
5124 return ret;
5125 }
5126
5127
5128 static void __init init_mount_tree(void)
5129 {
5130 struct vfsmount *mnt;
5131 struct mount *m;
5132 struct mnt_namespace *ns;
5133 struct path root;
5134
5135 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
5136 if (IS_ERR(mnt))
5137 panic("Can't create rootfs");
5138
5139 ns = alloc_mnt_ns(&init_user_ns, false);
5140 if (IS_ERR(ns))
5141 panic("Can't allocate initial namespace");
5142 m = real_mount(mnt);
5143 ns->root = m;
5144 ns->nr_mounts = 1;
5145 mnt_add_to_ns(ns, m);
5146 init_task.nsproxy->mnt_ns = ns;
5147 get_mnt_ns(ns);
5148
5149 root.mnt = mnt;
5150 root.dentry = mnt->mnt_root;
5151 mnt->mnt_flags |= MNT_LOCKED;
5152
5153 set_fs_pwd(current->fs, &root);
5154 set_fs_root(current->fs, &root);
5155 }
5156
5157 void __init mnt_init(void)
5158 {
5159 int err;
5160
5161 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
5162 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
5163
5164 mount_hashtable = alloc_large_system_hash("Mount-cache",
5165 sizeof(struct hlist_head),
5166 mhash_entries, 19,
5167 HASH_ZERO,
5168 &m_hash_shift, &m_hash_mask, 0, 0);
5169 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
5170 sizeof(struct hlist_head),
5171 mphash_entries, 19,
5172 HASH_ZERO,
5173 &mp_hash_shift, &mp_hash_mask, 0, 0);
5174
5175 if (!mount_hashtable || !mountpoint_hashtable)
5176 panic("Failed to allocate mount hash table\n");
5177
5178 kernfs_init();
5179
5180 err = sysfs_init();
5181 if (err)
5182 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
5183 __func__, err);
5184 fs_kobj = kobject_create_and_add("fs", NULL);
5185 if (!fs_kobj)
5186 printk(KERN_WARNING "%s: kobj create error\n", __func__);
5187 shmem_init();
5188 init_rootfs();
5189 init_mount_tree();
5190 }
5191
5192 void put_mnt_ns(struct mnt_namespace *ns)
5193 {
5194 if (!refcount_dec_and_test(&ns->ns.count))
5195 return;
5196 drop_collected_mounts(&ns->root->mnt);
5197 free_mnt_ns(ns);
5198 }
5199
5200 struct vfsmount *kern_mount(struct file_system_type *type)
5201 {
5202 struct vfsmount *mnt;
5203 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
5204 if (!IS_ERR(mnt)) {
5205 /*
5206 * it is a longterm mount, don't release mnt until
5207 * we unmount before file sys is unregistered
5208 */
5209 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
5210 }
5211 return mnt;
5212 }
5213 EXPORT_SYMBOL_GPL(kern_mount);
5214
5215 void kern_unmount(struct vfsmount *mnt)
5216 {
5217 /* release long term mount so mount point can be released */
5218 if (!IS_ERR(mnt)) {
5219 mnt_make_shortterm(mnt);
5220 synchronize_rcu(); /* yecchhh... */
5221 mntput(mnt);
5222 }
5223 }
5224 EXPORT_SYMBOL(kern_unmount);
5225
5226 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
5227 {
5228 unsigned int i;
5229
5230 for (i = 0; i < num; i++)
5231 mnt_make_shortterm(mnt[i]);
5232 synchronize_rcu_expedited();
5233 for (i = 0; i < num; i++)
5234 mntput(mnt[i]);
5235 }
5236 EXPORT_SYMBOL(kern_unmount_array);
5237
5238 bool our_mnt(struct vfsmount *mnt)
5239 {
5240 return check_mnt(real_mount(mnt));
5241 }
5242
5243 bool current_chrooted(void)
5244 {
5245 /* Does the current process have a non-standard root */
5246 struct path ns_root;
5247 struct path fs_root;
5248 bool chrooted;
5249
5250 /* Find the namespace root */
5251 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
5252 ns_root.dentry = ns_root.mnt->mnt_root;
5253 path_get(&ns_root);
5254 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
5255 ;
5256
5257 get_fs_root(current->fs, &fs_root);
5258
5259 chrooted = !path_equal(&fs_root, &ns_root);
5260
5261 path_put(&fs_root);
5262 path_put(&ns_root);
5263
5264 return chrooted;
5265 }
5266
5267 static bool mnt_already_visible(struct mnt_namespace *ns,
5268 const struct super_block *sb,
5269 int *new_mnt_flags)
5270 {
5271 int new_flags = *new_mnt_flags;
5272 struct mount *mnt, *n;
5273 bool visible = false;
5274
5275 down_read(&namespace_sem);
5276 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
5277 struct mount *child;
5278 int mnt_flags;
5279
5280 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
5281 continue;
5282
5283 /* This mount is not fully visible if it's root directory
5284 * is not the root directory of the filesystem.
5285 */
5286 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
5287 continue;
5288
5289 /* A local view of the mount flags */
5290 mnt_flags = mnt->mnt.mnt_flags;
5291
5292 /* Don't miss readonly hidden in the superblock flags */
5293 if (sb_rdonly(mnt->mnt.mnt_sb))
5294 mnt_flags |= MNT_LOCK_READONLY;
5295
5296 /* Verify the mount flags are equal to or more permissive
5297 * than the proposed new mount.
5298 */
5299 if ((mnt_flags & MNT_LOCK_READONLY) &&
5300 !(new_flags & MNT_READONLY))
5301 continue;
5302 if ((mnt_flags & MNT_LOCK_ATIME) &&
5303 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
5304 continue;
5305
5306 /* This mount is not fully visible if there are any
5307 * locked child mounts that cover anything except for
5308 * empty directories.
5309 */
5310 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
5311 struct inode *inode = child->mnt_mountpoint->d_inode;
5312 /* Only worry about locked mounts */
5313 if (!(child->mnt.mnt_flags & MNT_LOCKED))
5314 continue;
5315 /* Is the directory permanetly empty? */
5316 if (!is_empty_dir_inode(inode))
5317 goto next;
5318 }
5319 /* Preserve the locked attributes */
5320 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
5321 MNT_LOCK_ATIME);
5322 visible = true;
5323 goto found;
5324 next: ;
5325 }
5326 found:
5327 up_read(&namespace_sem);
5328 return visible;
5329 }
5330
5331 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
5332 {
5333 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
5334 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
5335 unsigned long s_iflags;
5336
5337 if (ns->user_ns == &init_user_ns)
5338 return false;
5339
5340 /* Can this filesystem be too revealing? */
5341 s_iflags = sb->s_iflags;
5342 if (!(s_iflags & SB_I_USERNS_VISIBLE))
5343 return false;
5344
5345 if ((s_iflags & required_iflags) != required_iflags) {
5346 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
5347 required_iflags);
5348 return true;
5349 }
5350
5351 return !mnt_already_visible(ns, sb, new_mnt_flags);
5352 }
5353
5354 bool mnt_may_suid(struct vfsmount *mnt)
5355 {
5356 /*
5357 * Foreign mounts (accessed via fchdir or through /proc
5358 * symlinks) are always treated as if they are nosuid. This
5359 * prevents namespaces from trusting potentially unsafe
5360 * suid/sgid bits, file caps, or security labels that originate
5361 * in other namespaces.
5362 */
5363 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
5364 current_in_userns(mnt->mnt_sb->s_user_ns);
5365 }
5366
5367 static struct ns_common *mntns_get(struct task_struct *task)
5368 {
5369 struct ns_common *ns = NULL;
5370 struct nsproxy *nsproxy;
5371
5372 task_lock(task);
5373 nsproxy = task->nsproxy;
5374 if (nsproxy) {
5375 ns = &nsproxy->mnt_ns->ns;
5376 get_mnt_ns(to_mnt_ns(ns));
5377 }
5378 task_unlock(task);
5379
5380 return ns;
5381 }
5382
5383 static void mntns_put(struct ns_common *ns)
5384 {
5385 put_mnt_ns(to_mnt_ns(ns));
5386 }
5387
5388 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
5389 {
5390 struct nsproxy *nsproxy = nsset->nsproxy;
5391 struct fs_struct *fs = nsset->fs;
5392 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
5393 struct user_namespace *user_ns = nsset->cred->user_ns;
5394 struct path root;
5395 int err;
5396
5397 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5398 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
5399 !ns_capable(user_ns, CAP_SYS_ADMIN))
5400 return -EPERM;
5401
5402 if (is_anon_ns(mnt_ns))
5403 return -EINVAL;
5404
5405 if (fs->users != 1)
5406 return -EINVAL;
5407
5408 get_mnt_ns(mnt_ns);
5409 old_mnt_ns = nsproxy->mnt_ns;
5410 nsproxy->mnt_ns = mnt_ns;
5411
5412 /* Find the root */
5413 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
5414 "/", LOOKUP_DOWN, &root);
5415 if (err) {
5416 /* revert to old namespace */
5417 nsproxy->mnt_ns = old_mnt_ns;
5418 put_mnt_ns(mnt_ns);
5419 return err;
5420 }
5421
5422 put_mnt_ns(old_mnt_ns);
5423
5424 /* Update the pwd and root */
5425 set_fs_pwd(fs, &root);
5426 set_fs_root(fs, &root);
5427
5428 path_put(&root);
5429 return 0;
5430 }
5431
5432 static struct user_namespace *mntns_owner(struct ns_common *ns)
5433 {
5434 return to_mnt_ns(ns)->user_ns;
5435 }
5436
5437 const struct proc_ns_operations mntns_operations = {
5438 .name = "mnt",
5439 .type = CLONE_NEWNS,
5440 .get = mntns_get,
5441 .put = mntns_put,
5442 .install = mntns_install,
5443 .owner = mntns_owner,
5444 };
5445
5446 #ifdef CONFIG_SYSCTL
5447 static struct ctl_table fs_namespace_sysctls[] = {
5448 {
5449 .procname = "mount-max",
5450 .data = &sysctl_mount_max,
5451 .maxlen = sizeof(unsigned int),
5452 .mode = 0644,
5453 .proc_handler = proc_dointvec_minmax,
5454 .extra1 = SYSCTL_ONE,
5455 },
5456 };
5457
5458 static int __init init_fs_namespace_sysctls(void)
5459 {
5460 register_sysctl_init("fs", fs_namespace_sysctls);
5461 return 0;
5462 }
5463 fs_initcall(init_fs_namespace_sysctls);
5464
5465 #endif /* CONFIG_SYSCTL */