]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/namespace.c
selftests/seccomp: Remove SIGSTOP si_pid check
[thirdparty/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/memblock.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29
30 #include "pnode.h"
31 #include "internal.h"
32
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
43 {
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
53 {
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73
74 /*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90 }
91
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98
99 static int mnt_alloc_id(struct mount *mnt)
100 {
101 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
102
103 if (res < 0)
104 return res;
105 mnt->mnt_id = res;
106 return 0;
107 }
108
109 static void mnt_free_id(struct mount *mnt)
110 {
111 ida_free(&mnt_id_ida, mnt->mnt_id);
112 }
113
114 /*
115 * Allocate a new peer group ID
116 */
117 static int mnt_alloc_group_id(struct mount *mnt)
118 {
119 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
120
121 if (res < 0)
122 return res;
123 mnt->mnt_group_id = res;
124 return 0;
125 }
126
127 /*
128 * Release a peer group ID
129 */
130 void mnt_release_group_id(struct mount *mnt)
131 {
132 ida_free(&mnt_group_ida, mnt->mnt_group_id);
133 mnt->mnt_group_id = 0;
134 }
135
136 /*
137 * vfsmount lock must be held for read
138 */
139 static inline void mnt_add_count(struct mount *mnt, int n)
140 {
141 #ifdef CONFIG_SMP
142 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
143 #else
144 preempt_disable();
145 mnt->mnt_count += n;
146 preempt_enable();
147 #endif
148 }
149
150 /*
151 * vfsmount lock must be held for write
152 */
153 unsigned int mnt_get_count(struct mount *mnt)
154 {
155 #ifdef CONFIG_SMP
156 unsigned int count = 0;
157 int cpu;
158
159 for_each_possible_cpu(cpu) {
160 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
161 }
162
163 return count;
164 #else
165 return mnt->mnt_count;
166 #endif
167 }
168
169 static void drop_mountpoint(struct fs_pin *p)
170 {
171 struct mount *m = container_of(p, struct mount, mnt_umount);
172 dput(m->mnt_ex_mountpoint);
173 pin_remove(p);
174 mntput(&m->mnt);
175 }
176
177 static struct mount *alloc_vfsmnt(const char *name)
178 {
179 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
180 if (mnt) {
181 int err;
182
183 err = mnt_alloc_id(mnt);
184 if (err)
185 goto out_free_cache;
186
187 if (name) {
188 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
189 if (!mnt->mnt_devname)
190 goto out_free_id;
191 }
192
193 #ifdef CONFIG_SMP
194 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
195 if (!mnt->mnt_pcp)
196 goto out_free_devname;
197
198 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
199 #else
200 mnt->mnt_count = 1;
201 mnt->mnt_writers = 0;
202 #endif
203
204 INIT_HLIST_NODE(&mnt->mnt_hash);
205 INIT_LIST_HEAD(&mnt->mnt_child);
206 INIT_LIST_HEAD(&mnt->mnt_mounts);
207 INIT_LIST_HEAD(&mnt->mnt_list);
208 INIT_LIST_HEAD(&mnt->mnt_expire);
209 INIT_LIST_HEAD(&mnt->mnt_share);
210 INIT_LIST_HEAD(&mnt->mnt_slave_list);
211 INIT_LIST_HEAD(&mnt->mnt_slave);
212 INIT_HLIST_NODE(&mnt->mnt_mp_list);
213 INIT_LIST_HEAD(&mnt->mnt_umounting);
214 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
215 }
216 return mnt;
217
218 #ifdef CONFIG_SMP
219 out_free_devname:
220 kfree_const(mnt->mnt_devname);
221 #endif
222 out_free_id:
223 mnt_free_id(mnt);
224 out_free_cache:
225 kmem_cache_free(mnt_cache, mnt);
226 return NULL;
227 }
228
229 /*
230 * Most r/o checks on a fs are for operations that take
231 * discrete amounts of time, like a write() or unlink().
232 * We must keep track of when those operations start
233 * (for permission checks) and when they end, so that
234 * we can determine when writes are able to occur to
235 * a filesystem.
236 */
237 /*
238 * __mnt_is_readonly: check whether a mount is read-only
239 * @mnt: the mount to check for its write status
240 *
241 * This shouldn't be used directly ouside of the VFS.
242 * It does not guarantee that the filesystem will stay
243 * r/w, just that it is right *now*. This can not and
244 * should not be used in place of IS_RDONLY(inode).
245 * mnt_want/drop_write() will _keep_ the filesystem
246 * r/w.
247 */
248 int __mnt_is_readonly(struct vfsmount *mnt)
249 {
250 if (mnt->mnt_flags & MNT_READONLY)
251 return 1;
252 if (sb_rdonly(mnt->mnt_sb))
253 return 1;
254 return 0;
255 }
256 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
257
258 static inline void mnt_inc_writers(struct mount *mnt)
259 {
260 #ifdef CONFIG_SMP
261 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
262 #else
263 mnt->mnt_writers++;
264 #endif
265 }
266
267 static inline void mnt_dec_writers(struct mount *mnt)
268 {
269 #ifdef CONFIG_SMP
270 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
271 #else
272 mnt->mnt_writers--;
273 #endif
274 }
275
276 static unsigned int mnt_get_writers(struct mount *mnt)
277 {
278 #ifdef CONFIG_SMP
279 unsigned int count = 0;
280 int cpu;
281
282 for_each_possible_cpu(cpu) {
283 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
284 }
285
286 return count;
287 #else
288 return mnt->mnt_writers;
289 #endif
290 }
291
292 static int mnt_is_readonly(struct vfsmount *mnt)
293 {
294 if (mnt->mnt_sb->s_readonly_remount)
295 return 1;
296 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
297 smp_rmb();
298 return __mnt_is_readonly(mnt);
299 }
300
301 /*
302 * Most r/o & frozen checks on a fs are for operations that take discrete
303 * amounts of time, like a write() or unlink(). We must keep track of when
304 * those operations start (for permission checks) and when they end, so that we
305 * can determine when writes are able to occur to a filesystem.
306 */
307 /**
308 * __mnt_want_write - get write access to a mount without freeze protection
309 * @m: the mount on which to take a write
310 *
311 * This tells the low-level filesystem that a write is about to be performed to
312 * it, and makes sure that writes are allowed (mnt it read-write) before
313 * returning success. This operation does not protect against filesystem being
314 * frozen. When the write operation is finished, __mnt_drop_write() must be
315 * called. This is effectively a refcount.
316 */
317 int __mnt_want_write(struct vfsmount *m)
318 {
319 struct mount *mnt = real_mount(m);
320 int ret = 0;
321
322 preempt_disable();
323 mnt_inc_writers(mnt);
324 /*
325 * The store to mnt_inc_writers must be visible before we pass
326 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
327 * incremented count after it has set MNT_WRITE_HOLD.
328 */
329 smp_mb();
330 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
331 cpu_relax();
332 /*
333 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
334 * be set to match its requirements. So we must not load that until
335 * MNT_WRITE_HOLD is cleared.
336 */
337 smp_rmb();
338 if (mnt_is_readonly(m)) {
339 mnt_dec_writers(mnt);
340 ret = -EROFS;
341 }
342 preempt_enable();
343
344 return ret;
345 }
346
347 /**
348 * mnt_want_write - get write access to a mount
349 * @m: the mount on which to take a write
350 *
351 * This tells the low-level filesystem that a write is about to be performed to
352 * it, and makes sure that writes are allowed (mount is read-write, filesystem
353 * is not frozen) before returning success. When the write operation is
354 * finished, mnt_drop_write() must be called. This is effectively a refcount.
355 */
356 int mnt_want_write(struct vfsmount *m)
357 {
358 int ret;
359
360 sb_start_write(m->mnt_sb);
361 ret = __mnt_want_write(m);
362 if (ret)
363 sb_end_write(m->mnt_sb);
364 return ret;
365 }
366 EXPORT_SYMBOL_GPL(mnt_want_write);
367
368 /**
369 * mnt_clone_write - get write access to a mount
370 * @mnt: the mount on which to take a write
371 *
372 * This is effectively like mnt_want_write, except
373 * it must only be used to take an extra write reference
374 * on a mountpoint that we already know has a write reference
375 * on it. This allows some optimisation.
376 *
377 * After finished, mnt_drop_write must be called as usual to
378 * drop the reference.
379 */
380 int mnt_clone_write(struct vfsmount *mnt)
381 {
382 /* superblock may be r/o */
383 if (__mnt_is_readonly(mnt))
384 return -EROFS;
385 preempt_disable();
386 mnt_inc_writers(real_mount(mnt));
387 preempt_enable();
388 return 0;
389 }
390 EXPORT_SYMBOL_GPL(mnt_clone_write);
391
392 /**
393 * __mnt_want_write_file - get write access to a file's mount
394 * @file: the file who's mount on which to take a write
395 *
396 * This is like __mnt_want_write, but it takes a file and can
397 * do some optimisations if the file is open for write already
398 */
399 int __mnt_want_write_file(struct file *file)
400 {
401 if (!(file->f_mode & FMODE_WRITER))
402 return __mnt_want_write(file->f_path.mnt);
403 else
404 return mnt_clone_write(file->f_path.mnt);
405 }
406
407 /**
408 * mnt_want_write_file - get write access to a file's mount
409 * @file: the file who's mount on which to take a write
410 *
411 * This is like mnt_want_write, but it takes a file and can
412 * do some optimisations if the file is open for write already
413 */
414 int mnt_want_write_file(struct file *file)
415 {
416 int ret;
417
418 sb_start_write(file_inode(file)->i_sb);
419 ret = __mnt_want_write_file(file);
420 if (ret)
421 sb_end_write(file_inode(file)->i_sb);
422 return ret;
423 }
424 EXPORT_SYMBOL_GPL(mnt_want_write_file);
425
426 /**
427 * __mnt_drop_write - give up write access to a mount
428 * @mnt: the mount on which to give up write access
429 *
430 * Tells the low-level filesystem that we are done
431 * performing writes to it. Must be matched with
432 * __mnt_want_write() call above.
433 */
434 void __mnt_drop_write(struct vfsmount *mnt)
435 {
436 preempt_disable();
437 mnt_dec_writers(real_mount(mnt));
438 preempt_enable();
439 }
440
441 /**
442 * mnt_drop_write - give up write access to a mount
443 * @mnt: the mount on which to give up write access
444 *
445 * Tells the low-level filesystem that we are done performing writes to it and
446 * also allows filesystem to be frozen again. Must be matched with
447 * mnt_want_write() call above.
448 */
449 void mnt_drop_write(struct vfsmount *mnt)
450 {
451 __mnt_drop_write(mnt);
452 sb_end_write(mnt->mnt_sb);
453 }
454 EXPORT_SYMBOL_GPL(mnt_drop_write);
455
456 void __mnt_drop_write_file(struct file *file)
457 {
458 __mnt_drop_write(file->f_path.mnt);
459 }
460
461 void mnt_drop_write_file(struct file *file)
462 {
463 __mnt_drop_write_file(file);
464 sb_end_write(file_inode(file)->i_sb);
465 }
466 EXPORT_SYMBOL(mnt_drop_write_file);
467
468 static int mnt_make_readonly(struct mount *mnt)
469 {
470 int ret = 0;
471
472 lock_mount_hash();
473 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
474 /*
475 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
476 * should be visible before we do.
477 */
478 smp_mb();
479
480 /*
481 * With writers on hold, if this value is zero, then there are
482 * definitely no active writers (although held writers may subsequently
483 * increment the count, they'll have to wait, and decrement it after
484 * seeing MNT_READONLY).
485 *
486 * It is OK to have counter incremented on one CPU and decremented on
487 * another: the sum will add up correctly. The danger would be when we
488 * sum up each counter, if we read a counter before it is incremented,
489 * but then read another CPU's count which it has been subsequently
490 * decremented from -- we would see more decrements than we should.
491 * MNT_WRITE_HOLD protects against this scenario, because
492 * mnt_want_write first increments count, then smp_mb, then spins on
493 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
494 * we're counting up here.
495 */
496 if (mnt_get_writers(mnt) > 0)
497 ret = -EBUSY;
498 else
499 mnt->mnt.mnt_flags |= MNT_READONLY;
500 /*
501 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
502 * that become unheld will see MNT_READONLY.
503 */
504 smp_wmb();
505 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
506 unlock_mount_hash();
507 return ret;
508 }
509
510 static void __mnt_unmake_readonly(struct mount *mnt)
511 {
512 lock_mount_hash();
513 mnt->mnt.mnt_flags &= ~MNT_READONLY;
514 unlock_mount_hash();
515 }
516
517 int sb_prepare_remount_readonly(struct super_block *sb)
518 {
519 struct mount *mnt;
520 int err = 0;
521
522 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
523 if (atomic_long_read(&sb->s_remove_count))
524 return -EBUSY;
525
526 lock_mount_hash();
527 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
528 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
529 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
530 smp_mb();
531 if (mnt_get_writers(mnt) > 0) {
532 err = -EBUSY;
533 break;
534 }
535 }
536 }
537 if (!err && atomic_long_read(&sb->s_remove_count))
538 err = -EBUSY;
539
540 if (!err) {
541 sb->s_readonly_remount = 1;
542 smp_wmb();
543 }
544 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
545 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
546 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
547 }
548 unlock_mount_hash();
549
550 return err;
551 }
552
553 static void free_vfsmnt(struct mount *mnt)
554 {
555 kfree_const(mnt->mnt_devname);
556 #ifdef CONFIG_SMP
557 free_percpu(mnt->mnt_pcp);
558 #endif
559 kmem_cache_free(mnt_cache, mnt);
560 }
561
562 static void delayed_free_vfsmnt(struct rcu_head *head)
563 {
564 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
565 }
566
567 /* call under rcu_read_lock */
568 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
569 {
570 struct mount *mnt;
571 if (read_seqretry(&mount_lock, seq))
572 return 1;
573 if (bastard == NULL)
574 return 0;
575 mnt = real_mount(bastard);
576 mnt_add_count(mnt, 1);
577 smp_mb(); // see mntput_no_expire()
578 if (likely(!read_seqretry(&mount_lock, seq)))
579 return 0;
580 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
581 mnt_add_count(mnt, -1);
582 return 1;
583 }
584 lock_mount_hash();
585 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
586 mnt_add_count(mnt, -1);
587 unlock_mount_hash();
588 return 1;
589 }
590 unlock_mount_hash();
591 /* caller will mntput() */
592 return -1;
593 }
594
595 /* call under rcu_read_lock */
596 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
597 {
598 int res = __legitimize_mnt(bastard, seq);
599 if (likely(!res))
600 return true;
601 if (unlikely(res < 0)) {
602 rcu_read_unlock();
603 mntput(bastard);
604 rcu_read_lock();
605 }
606 return false;
607 }
608
609 /*
610 * find the first mount at @dentry on vfsmount @mnt.
611 * call under rcu_read_lock()
612 */
613 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
614 {
615 struct hlist_head *head = m_hash(mnt, dentry);
616 struct mount *p;
617
618 hlist_for_each_entry_rcu(p, head, mnt_hash)
619 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
620 return p;
621 return NULL;
622 }
623
624 /*
625 * lookup_mnt - Return the first child mount mounted at path
626 *
627 * "First" means first mounted chronologically. If you create the
628 * following mounts:
629 *
630 * mount /dev/sda1 /mnt
631 * mount /dev/sda2 /mnt
632 * mount /dev/sda3 /mnt
633 *
634 * Then lookup_mnt() on the base /mnt dentry in the root mount will
635 * return successively the root dentry and vfsmount of /dev/sda1, then
636 * /dev/sda2, then /dev/sda3, then NULL.
637 *
638 * lookup_mnt takes a reference to the found vfsmount.
639 */
640 struct vfsmount *lookup_mnt(const struct path *path)
641 {
642 struct mount *child_mnt;
643 struct vfsmount *m;
644 unsigned seq;
645
646 rcu_read_lock();
647 do {
648 seq = read_seqbegin(&mount_lock);
649 child_mnt = __lookup_mnt(path->mnt, path->dentry);
650 m = child_mnt ? &child_mnt->mnt : NULL;
651 } while (!legitimize_mnt(m, seq));
652 rcu_read_unlock();
653 return m;
654 }
655
656 /*
657 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
658 * current mount namespace.
659 *
660 * The common case is dentries are not mountpoints at all and that
661 * test is handled inline. For the slow case when we are actually
662 * dealing with a mountpoint of some kind, walk through all of the
663 * mounts in the current mount namespace and test to see if the dentry
664 * is a mountpoint.
665 *
666 * The mount_hashtable is not usable in the context because we
667 * need to identify all mounts that may be in the current mount
668 * namespace not just a mount that happens to have some specified
669 * parent mount.
670 */
671 bool __is_local_mountpoint(struct dentry *dentry)
672 {
673 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
674 struct mount *mnt;
675 bool is_covered = false;
676
677 if (!d_mountpoint(dentry))
678 goto out;
679
680 down_read(&namespace_sem);
681 list_for_each_entry(mnt, &ns->list, mnt_list) {
682 is_covered = (mnt->mnt_mountpoint == dentry);
683 if (is_covered)
684 break;
685 }
686 up_read(&namespace_sem);
687 out:
688 return is_covered;
689 }
690
691 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
692 {
693 struct hlist_head *chain = mp_hash(dentry);
694 struct mountpoint *mp;
695
696 hlist_for_each_entry(mp, chain, m_hash) {
697 if (mp->m_dentry == dentry) {
698 /* might be worth a WARN_ON() */
699 if (d_unlinked(dentry))
700 return ERR_PTR(-ENOENT);
701 mp->m_count++;
702 return mp;
703 }
704 }
705 return NULL;
706 }
707
708 static struct mountpoint *get_mountpoint(struct dentry *dentry)
709 {
710 struct mountpoint *mp, *new = NULL;
711 int ret;
712
713 if (d_mountpoint(dentry)) {
714 mountpoint:
715 read_seqlock_excl(&mount_lock);
716 mp = lookup_mountpoint(dentry);
717 read_sequnlock_excl(&mount_lock);
718 if (mp)
719 goto done;
720 }
721
722 if (!new)
723 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
724 if (!new)
725 return ERR_PTR(-ENOMEM);
726
727
728 /* Exactly one processes may set d_mounted */
729 ret = d_set_mounted(dentry);
730
731 /* Someone else set d_mounted? */
732 if (ret == -EBUSY)
733 goto mountpoint;
734
735 /* The dentry is not available as a mountpoint? */
736 mp = ERR_PTR(ret);
737 if (ret)
738 goto done;
739
740 /* Add the new mountpoint to the hash table */
741 read_seqlock_excl(&mount_lock);
742 new->m_dentry = dentry;
743 new->m_count = 1;
744 hlist_add_head(&new->m_hash, mp_hash(dentry));
745 INIT_HLIST_HEAD(&new->m_list);
746 read_sequnlock_excl(&mount_lock);
747
748 mp = new;
749 new = NULL;
750 done:
751 kfree(new);
752 return mp;
753 }
754
755 static void put_mountpoint(struct mountpoint *mp)
756 {
757 if (!--mp->m_count) {
758 struct dentry *dentry = mp->m_dentry;
759 BUG_ON(!hlist_empty(&mp->m_list));
760 spin_lock(&dentry->d_lock);
761 dentry->d_flags &= ~DCACHE_MOUNTED;
762 spin_unlock(&dentry->d_lock);
763 hlist_del(&mp->m_hash);
764 kfree(mp);
765 }
766 }
767
768 static inline int check_mnt(struct mount *mnt)
769 {
770 return mnt->mnt_ns == current->nsproxy->mnt_ns;
771 }
772
773 /*
774 * vfsmount lock must be held for write
775 */
776 static void touch_mnt_namespace(struct mnt_namespace *ns)
777 {
778 if (ns) {
779 ns->event = ++event;
780 wake_up_interruptible(&ns->poll);
781 }
782 }
783
784 /*
785 * vfsmount lock must be held for write
786 */
787 static void __touch_mnt_namespace(struct mnt_namespace *ns)
788 {
789 if (ns && ns->event != event) {
790 ns->event = event;
791 wake_up_interruptible(&ns->poll);
792 }
793 }
794
795 /*
796 * vfsmount lock must be held for write
797 */
798 static void unhash_mnt(struct mount *mnt)
799 {
800 mnt->mnt_parent = mnt;
801 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
802 list_del_init(&mnt->mnt_child);
803 hlist_del_init_rcu(&mnt->mnt_hash);
804 hlist_del_init(&mnt->mnt_mp_list);
805 put_mountpoint(mnt->mnt_mp);
806 mnt->mnt_mp = NULL;
807 }
808
809 /*
810 * vfsmount lock must be held for write
811 */
812 static void detach_mnt(struct mount *mnt, struct path *old_path)
813 {
814 old_path->dentry = mnt->mnt_mountpoint;
815 old_path->mnt = &mnt->mnt_parent->mnt;
816 unhash_mnt(mnt);
817 }
818
819 /*
820 * vfsmount lock must be held for write
821 */
822 static void umount_mnt(struct mount *mnt)
823 {
824 /* old mountpoint will be dropped when we can do that */
825 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
826 unhash_mnt(mnt);
827 }
828
829 /*
830 * vfsmount lock must be held for write
831 */
832 void mnt_set_mountpoint(struct mount *mnt,
833 struct mountpoint *mp,
834 struct mount *child_mnt)
835 {
836 mp->m_count++;
837 mnt_add_count(mnt, 1); /* essentially, that's mntget */
838 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
839 child_mnt->mnt_parent = mnt;
840 child_mnt->mnt_mp = mp;
841 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
842 }
843
844 static void __attach_mnt(struct mount *mnt, struct mount *parent)
845 {
846 hlist_add_head_rcu(&mnt->mnt_hash,
847 m_hash(&parent->mnt, mnt->mnt_mountpoint));
848 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
849 }
850
851 /*
852 * vfsmount lock must be held for write
853 */
854 static void attach_mnt(struct mount *mnt,
855 struct mount *parent,
856 struct mountpoint *mp)
857 {
858 mnt_set_mountpoint(parent, mp, mnt);
859 __attach_mnt(mnt, parent);
860 }
861
862 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
863 {
864 struct mountpoint *old_mp = mnt->mnt_mp;
865 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
866 struct mount *old_parent = mnt->mnt_parent;
867
868 list_del_init(&mnt->mnt_child);
869 hlist_del_init(&mnt->mnt_mp_list);
870 hlist_del_init_rcu(&mnt->mnt_hash);
871
872 attach_mnt(mnt, parent, mp);
873
874 put_mountpoint(old_mp);
875
876 /*
877 * Safely avoid even the suggestion this code might sleep or
878 * lock the mount hash by taking advantage of the knowledge that
879 * mnt_change_mountpoint will not release the final reference
880 * to a mountpoint.
881 *
882 * During mounting, the mount passed in as the parent mount will
883 * continue to use the old mountpoint and during unmounting, the
884 * old mountpoint will continue to exist until namespace_unlock,
885 * which happens well after mnt_change_mountpoint.
886 */
887 spin_lock(&old_mountpoint->d_lock);
888 old_mountpoint->d_lockref.count--;
889 spin_unlock(&old_mountpoint->d_lock);
890
891 mnt_add_count(old_parent, -1);
892 }
893
894 /*
895 * vfsmount lock must be held for write
896 */
897 static void commit_tree(struct mount *mnt)
898 {
899 struct mount *parent = mnt->mnt_parent;
900 struct mount *m;
901 LIST_HEAD(head);
902 struct mnt_namespace *n = parent->mnt_ns;
903
904 BUG_ON(parent == mnt);
905
906 list_add_tail(&head, &mnt->mnt_list);
907 list_for_each_entry(m, &head, mnt_list)
908 m->mnt_ns = n;
909
910 list_splice(&head, n->list.prev);
911
912 n->mounts += n->pending_mounts;
913 n->pending_mounts = 0;
914
915 __attach_mnt(mnt, parent);
916 touch_mnt_namespace(n);
917 }
918
919 static struct mount *next_mnt(struct mount *p, struct mount *root)
920 {
921 struct list_head *next = p->mnt_mounts.next;
922 if (next == &p->mnt_mounts) {
923 while (1) {
924 if (p == root)
925 return NULL;
926 next = p->mnt_child.next;
927 if (next != &p->mnt_parent->mnt_mounts)
928 break;
929 p = p->mnt_parent;
930 }
931 }
932 return list_entry(next, struct mount, mnt_child);
933 }
934
935 static struct mount *skip_mnt_tree(struct mount *p)
936 {
937 struct list_head *prev = p->mnt_mounts.prev;
938 while (prev != &p->mnt_mounts) {
939 p = list_entry(prev, struct mount, mnt_child);
940 prev = p->mnt_mounts.prev;
941 }
942 return p;
943 }
944
945 struct vfsmount *
946 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
947 {
948 struct mount *mnt;
949 struct dentry *root;
950
951 if (!type)
952 return ERR_PTR(-ENODEV);
953
954 mnt = alloc_vfsmnt(name);
955 if (!mnt)
956 return ERR_PTR(-ENOMEM);
957
958 if (flags & SB_KERNMOUNT)
959 mnt->mnt.mnt_flags = MNT_INTERNAL;
960
961 root = mount_fs(type, flags, name, data);
962 if (IS_ERR(root)) {
963 mnt_free_id(mnt);
964 free_vfsmnt(mnt);
965 return ERR_CAST(root);
966 }
967
968 mnt->mnt.mnt_root = root;
969 mnt->mnt.mnt_sb = root->d_sb;
970 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
971 mnt->mnt_parent = mnt;
972 lock_mount_hash();
973 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
974 unlock_mount_hash();
975 return &mnt->mnt;
976 }
977 EXPORT_SYMBOL_GPL(vfs_kern_mount);
978
979 struct vfsmount *
980 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
981 const char *name, void *data)
982 {
983 /* Until it is worked out how to pass the user namespace
984 * through from the parent mount to the submount don't support
985 * unprivileged mounts with submounts.
986 */
987 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
988 return ERR_PTR(-EPERM);
989
990 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
991 }
992 EXPORT_SYMBOL_GPL(vfs_submount);
993
994 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
995 int flag)
996 {
997 struct super_block *sb = old->mnt.mnt_sb;
998 struct mount *mnt;
999 int err;
1000
1001 mnt = alloc_vfsmnt(old->mnt_devname);
1002 if (!mnt)
1003 return ERR_PTR(-ENOMEM);
1004
1005 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1006 mnt->mnt_group_id = 0; /* not a peer of original */
1007 else
1008 mnt->mnt_group_id = old->mnt_group_id;
1009
1010 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1011 err = mnt_alloc_group_id(mnt);
1012 if (err)
1013 goto out_free;
1014 }
1015
1016 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1017 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1018 /* Don't allow unprivileged users to change mount flags */
1019 if (flag & CL_UNPRIVILEGED) {
1020 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1021
1022 if (mnt->mnt.mnt_flags & MNT_READONLY)
1023 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1024
1025 if (mnt->mnt.mnt_flags & MNT_NODEV)
1026 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1027
1028 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1029 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1030
1031 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1032 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1033 }
1034
1035 /* Don't allow unprivileged users to reveal what is under a mount */
1036 if ((flag & CL_UNPRIVILEGED) &&
1037 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1038 mnt->mnt.mnt_flags |= MNT_LOCKED;
1039
1040 atomic_inc(&sb->s_active);
1041 mnt->mnt.mnt_sb = sb;
1042 mnt->mnt.mnt_root = dget(root);
1043 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1044 mnt->mnt_parent = mnt;
1045 lock_mount_hash();
1046 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1047 unlock_mount_hash();
1048
1049 if ((flag & CL_SLAVE) ||
1050 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1051 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1052 mnt->mnt_master = old;
1053 CLEAR_MNT_SHARED(mnt);
1054 } else if (!(flag & CL_PRIVATE)) {
1055 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1056 list_add(&mnt->mnt_share, &old->mnt_share);
1057 if (IS_MNT_SLAVE(old))
1058 list_add(&mnt->mnt_slave, &old->mnt_slave);
1059 mnt->mnt_master = old->mnt_master;
1060 } else {
1061 CLEAR_MNT_SHARED(mnt);
1062 }
1063 if (flag & CL_MAKE_SHARED)
1064 set_mnt_shared(mnt);
1065
1066 /* stick the duplicate mount on the same expiry list
1067 * as the original if that was on one */
1068 if (flag & CL_EXPIRE) {
1069 if (!list_empty(&old->mnt_expire))
1070 list_add(&mnt->mnt_expire, &old->mnt_expire);
1071 }
1072
1073 return mnt;
1074
1075 out_free:
1076 mnt_free_id(mnt);
1077 free_vfsmnt(mnt);
1078 return ERR_PTR(err);
1079 }
1080
1081 static void cleanup_mnt(struct mount *mnt)
1082 {
1083 /*
1084 * This probably indicates that somebody messed
1085 * up a mnt_want/drop_write() pair. If this
1086 * happens, the filesystem was probably unable
1087 * to make r/w->r/o transitions.
1088 */
1089 /*
1090 * The locking used to deal with mnt_count decrement provides barriers,
1091 * so mnt_get_writers() below is safe.
1092 */
1093 WARN_ON(mnt_get_writers(mnt));
1094 if (unlikely(mnt->mnt_pins.first))
1095 mnt_pin_kill(mnt);
1096 fsnotify_vfsmount_delete(&mnt->mnt);
1097 dput(mnt->mnt.mnt_root);
1098 deactivate_super(mnt->mnt.mnt_sb);
1099 mnt_free_id(mnt);
1100 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1101 }
1102
1103 static void __cleanup_mnt(struct rcu_head *head)
1104 {
1105 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1106 }
1107
1108 static LLIST_HEAD(delayed_mntput_list);
1109 static void delayed_mntput(struct work_struct *unused)
1110 {
1111 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1112 struct mount *m, *t;
1113
1114 llist_for_each_entry_safe(m, t, node, mnt_llist)
1115 cleanup_mnt(m);
1116 }
1117 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1118
1119 static void mntput_no_expire(struct mount *mnt)
1120 {
1121 rcu_read_lock();
1122 if (likely(READ_ONCE(mnt->mnt_ns))) {
1123 /*
1124 * Since we don't do lock_mount_hash() here,
1125 * ->mnt_ns can change under us. However, if it's
1126 * non-NULL, then there's a reference that won't
1127 * be dropped until after an RCU delay done after
1128 * turning ->mnt_ns NULL. So if we observe it
1129 * non-NULL under rcu_read_lock(), the reference
1130 * we are dropping is not the final one.
1131 */
1132 mnt_add_count(mnt, -1);
1133 rcu_read_unlock();
1134 return;
1135 }
1136 lock_mount_hash();
1137 /*
1138 * make sure that if __legitimize_mnt() has not seen us grab
1139 * mount_lock, we'll see their refcount increment here.
1140 */
1141 smp_mb();
1142 mnt_add_count(mnt, -1);
1143 if (mnt_get_count(mnt)) {
1144 rcu_read_unlock();
1145 unlock_mount_hash();
1146 return;
1147 }
1148 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1149 rcu_read_unlock();
1150 unlock_mount_hash();
1151 return;
1152 }
1153 mnt->mnt.mnt_flags |= MNT_DOOMED;
1154 rcu_read_unlock();
1155
1156 list_del(&mnt->mnt_instance);
1157
1158 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1159 struct mount *p, *tmp;
1160 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1161 umount_mnt(p);
1162 }
1163 }
1164 unlock_mount_hash();
1165
1166 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1167 struct task_struct *task = current;
1168 if (likely(!(task->flags & PF_KTHREAD))) {
1169 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1170 if (!task_work_add(task, &mnt->mnt_rcu, true))
1171 return;
1172 }
1173 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1174 schedule_delayed_work(&delayed_mntput_work, 1);
1175 return;
1176 }
1177 cleanup_mnt(mnt);
1178 }
1179
1180 void mntput(struct vfsmount *mnt)
1181 {
1182 if (mnt) {
1183 struct mount *m = real_mount(mnt);
1184 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1185 if (unlikely(m->mnt_expiry_mark))
1186 m->mnt_expiry_mark = 0;
1187 mntput_no_expire(m);
1188 }
1189 }
1190 EXPORT_SYMBOL(mntput);
1191
1192 struct vfsmount *mntget(struct vfsmount *mnt)
1193 {
1194 if (mnt)
1195 mnt_add_count(real_mount(mnt), 1);
1196 return mnt;
1197 }
1198 EXPORT_SYMBOL(mntget);
1199
1200 /* path_is_mountpoint() - Check if path is a mount in the current
1201 * namespace.
1202 *
1203 * d_mountpoint() can only be used reliably to establish if a dentry is
1204 * not mounted in any namespace and that common case is handled inline.
1205 * d_mountpoint() isn't aware of the possibility there may be multiple
1206 * mounts using a given dentry in a different namespace. This function
1207 * checks if the passed in path is a mountpoint rather than the dentry
1208 * alone.
1209 */
1210 bool path_is_mountpoint(const struct path *path)
1211 {
1212 unsigned seq;
1213 bool res;
1214
1215 if (!d_mountpoint(path->dentry))
1216 return false;
1217
1218 rcu_read_lock();
1219 do {
1220 seq = read_seqbegin(&mount_lock);
1221 res = __path_is_mountpoint(path);
1222 } while (read_seqretry(&mount_lock, seq));
1223 rcu_read_unlock();
1224
1225 return res;
1226 }
1227 EXPORT_SYMBOL(path_is_mountpoint);
1228
1229 struct vfsmount *mnt_clone_internal(const struct path *path)
1230 {
1231 struct mount *p;
1232 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1233 if (IS_ERR(p))
1234 return ERR_CAST(p);
1235 p->mnt.mnt_flags |= MNT_INTERNAL;
1236 return &p->mnt;
1237 }
1238
1239 #ifdef CONFIG_PROC_FS
1240 /* iterator; we want it to have access to namespace_sem, thus here... */
1241 static void *m_start(struct seq_file *m, loff_t *pos)
1242 {
1243 struct proc_mounts *p = m->private;
1244
1245 down_read(&namespace_sem);
1246 if (p->cached_event == p->ns->event) {
1247 void *v = p->cached_mount;
1248 if (*pos == p->cached_index)
1249 return v;
1250 if (*pos == p->cached_index + 1) {
1251 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1252 return p->cached_mount = v;
1253 }
1254 }
1255
1256 p->cached_event = p->ns->event;
1257 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1258 p->cached_index = *pos;
1259 return p->cached_mount;
1260 }
1261
1262 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1263 {
1264 struct proc_mounts *p = m->private;
1265
1266 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1267 p->cached_index = *pos;
1268 return p->cached_mount;
1269 }
1270
1271 static void m_stop(struct seq_file *m, void *v)
1272 {
1273 up_read(&namespace_sem);
1274 }
1275
1276 static int m_show(struct seq_file *m, void *v)
1277 {
1278 struct proc_mounts *p = m->private;
1279 struct mount *r = list_entry(v, struct mount, mnt_list);
1280 return p->show(m, &r->mnt);
1281 }
1282
1283 const struct seq_operations mounts_op = {
1284 .start = m_start,
1285 .next = m_next,
1286 .stop = m_stop,
1287 .show = m_show,
1288 };
1289 #endif /* CONFIG_PROC_FS */
1290
1291 /**
1292 * may_umount_tree - check if a mount tree is busy
1293 * @mnt: root of mount tree
1294 *
1295 * This is called to check if a tree of mounts has any
1296 * open files, pwds, chroots or sub mounts that are
1297 * busy.
1298 */
1299 int may_umount_tree(struct vfsmount *m)
1300 {
1301 struct mount *mnt = real_mount(m);
1302 int actual_refs = 0;
1303 int minimum_refs = 0;
1304 struct mount *p;
1305 BUG_ON(!m);
1306
1307 /* write lock needed for mnt_get_count */
1308 lock_mount_hash();
1309 for (p = mnt; p; p = next_mnt(p, mnt)) {
1310 actual_refs += mnt_get_count(p);
1311 minimum_refs += 2;
1312 }
1313 unlock_mount_hash();
1314
1315 if (actual_refs > minimum_refs)
1316 return 0;
1317
1318 return 1;
1319 }
1320
1321 EXPORT_SYMBOL(may_umount_tree);
1322
1323 /**
1324 * may_umount - check if a mount point is busy
1325 * @mnt: root of mount
1326 *
1327 * This is called to check if a mount point has any
1328 * open files, pwds, chroots or sub mounts. If the
1329 * mount has sub mounts this will return busy
1330 * regardless of whether the sub mounts are busy.
1331 *
1332 * Doesn't take quota and stuff into account. IOW, in some cases it will
1333 * give false negatives. The main reason why it's here is that we need
1334 * a non-destructive way to look for easily umountable filesystems.
1335 */
1336 int may_umount(struct vfsmount *mnt)
1337 {
1338 int ret = 1;
1339 down_read(&namespace_sem);
1340 lock_mount_hash();
1341 if (propagate_mount_busy(real_mount(mnt), 2))
1342 ret = 0;
1343 unlock_mount_hash();
1344 up_read(&namespace_sem);
1345 return ret;
1346 }
1347
1348 EXPORT_SYMBOL(may_umount);
1349
1350 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1351
1352 static void namespace_unlock(void)
1353 {
1354 struct hlist_head head;
1355
1356 hlist_move_list(&unmounted, &head);
1357
1358 up_write(&namespace_sem);
1359
1360 if (likely(hlist_empty(&head)))
1361 return;
1362
1363 synchronize_rcu();
1364
1365 group_pin_kill(&head);
1366 }
1367
1368 static inline void namespace_lock(void)
1369 {
1370 down_write(&namespace_sem);
1371 }
1372
1373 enum umount_tree_flags {
1374 UMOUNT_SYNC = 1,
1375 UMOUNT_PROPAGATE = 2,
1376 UMOUNT_CONNECTED = 4,
1377 };
1378
1379 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1380 {
1381 /* Leaving mounts connected is only valid for lazy umounts */
1382 if (how & UMOUNT_SYNC)
1383 return true;
1384
1385 /* A mount without a parent has nothing to be connected to */
1386 if (!mnt_has_parent(mnt))
1387 return true;
1388
1389 /* Because the reference counting rules change when mounts are
1390 * unmounted and connected, umounted mounts may not be
1391 * connected to mounted mounts.
1392 */
1393 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1394 return true;
1395
1396 /* Has it been requested that the mount remain connected? */
1397 if (how & UMOUNT_CONNECTED)
1398 return false;
1399
1400 /* Is the mount locked such that it needs to remain connected? */
1401 if (IS_MNT_LOCKED(mnt))
1402 return false;
1403
1404 /* By default disconnect the mount */
1405 return true;
1406 }
1407
1408 /*
1409 * mount_lock must be held
1410 * namespace_sem must be held for write
1411 */
1412 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1413 {
1414 LIST_HEAD(tmp_list);
1415 struct mount *p;
1416
1417 if (how & UMOUNT_PROPAGATE)
1418 propagate_mount_unlock(mnt);
1419
1420 /* Gather the mounts to umount */
1421 for (p = mnt; p; p = next_mnt(p, mnt)) {
1422 p->mnt.mnt_flags |= MNT_UMOUNT;
1423 list_move(&p->mnt_list, &tmp_list);
1424 }
1425
1426 /* Hide the mounts from mnt_mounts */
1427 list_for_each_entry(p, &tmp_list, mnt_list) {
1428 list_del_init(&p->mnt_child);
1429 }
1430
1431 /* Add propogated mounts to the tmp_list */
1432 if (how & UMOUNT_PROPAGATE)
1433 propagate_umount(&tmp_list);
1434
1435 while (!list_empty(&tmp_list)) {
1436 struct mnt_namespace *ns;
1437 bool disconnect;
1438 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1439 list_del_init(&p->mnt_expire);
1440 list_del_init(&p->mnt_list);
1441 ns = p->mnt_ns;
1442 if (ns) {
1443 ns->mounts--;
1444 __touch_mnt_namespace(ns);
1445 }
1446 p->mnt_ns = NULL;
1447 if (how & UMOUNT_SYNC)
1448 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1449
1450 disconnect = disconnect_mount(p, how);
1451
1452 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1453 disconnect ? &unmounted : NULL);
1454 if (mnt_has_parent(p)) {
1455 mnt_add_count(p->mnt_parent, -1);
1456 if (!disconnect) {
1457 /* Don't forget about p */
1458 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1459 } else {
1460 umount_mnt(p);
1461 }
1462 }
1463 change_mnt_propagation(p, MS_PRIVATE);
1464 }
1465 }
1466
1467 static void shrink_submounts(struct mount *mnt);
1468
1469 static int do_umount(struct mount *mnt, int flags)
1470 {
1471 struct super_block *sb = mnt->mnt.mnt_sb;
1472 int retval;
1473
1474 retval = security_sb_umount(&mnt->mnt, flags);
1475 if (retval)
1476 return retval;
1477
1478 /*
1479 * Allow userspace to request a mountpoint be expired rather than
1480 * unmounting unconditionally. Unmount only happens if:
1481 * (1) the mark is already set (the mark is cleared by mntput())
1482 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1483 */
1484 if (flags & MNT_EXPIRE) {
1485 if (&mnt->mnt == current->fs->root.mnt ||
1486 flags & (MNT_FORCE | MNT_DETACH))
1487 return -EINVAL;
1488
1489 /*
1490 * probably don't strictly need the lock here if we examined
1491 * all race cases, but it's a slowpath.
1492 */
1493 lock_mount_hash();
1494 if (mnt_get_count(mnt) != 2) {
1495 unlock_mount_hash();
1496 return -EBUSY;
1497 }
1498 unlock_mount_hash();
1499
1500 if (!xchg(&mnt->mnt_expiry_mark, 1))
1501 return -EAGAIN;
1502 }
1503
1504 /*
1505 * If we may have to abort operations to get out of this
1506 * mount, and they will themselves hold resources we must
1507 * allow the fs to do things. In the Unix tradition of
1508 * 'Gee thats tricky lets do it in userspace' the umount_begin
1509 * might fail to complete on the first run through as other tasks
1510 * must return, and the like. Thats for the mount program to worry
1511 * about for the moment.
1512 */
1513
1514 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1515 sb->s_op->umount_begin(sb);
1516 }
1517
1518 /*
1519 * No sense to grab the lock for this test, but test itself looks
1520 * somewhat bogus. Suggestions for better replacement?
1521 * Ho-hum... In principle, we might treat that as umount + switch
1522 * to rootfs. GC would eventually take care of the old vfsmount.
1523 * Actually it makes sense, especially if rootfs would contain a
1524 * /reboot - static binary that would close all descriptors and
1525 * call reboot(9). Then init(8) could umount root and exec /reboot.
1526 */
1527 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1528 /*
1529 * Special case for "unmounting" root ...
1530 * we just try to remount it readonly.
1531 */
1532 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1533 return -EPERM;
1534 down_write(&sb->s_umount);
1535 if (!sb_rdonly(sb))
1536 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1537 up_write(&sb->s_umount);
1538 return retval;
1539 }
1540
1541 namespace_lock();
1542 lock_mount_hash();
1543 event++;
1544
1545 if (flags & MNT_DETACH) {
1546 if (!list_empty(&mnt->mnt_list))
1547 umount_tree(mnt, UMOUNT_PROPAGATE);
1548 retval = 0;
1549 } else {
1550 shrink_submounts(mnt);
1551 retval = -EBUSY;
1552 if (!propagate_mount_busy(mnt, 2)) {
1553 if (!list_empty(&mnt->mnt_list))
1554 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1555 retval = 0;
1556 }
1557 }
1558 unlock_mount_hash();
1559 namespace_unlock();
1560 return retval;
1561 }
1562
1563 /*
1564 * __detach_mounts - lazily unmount all mounts on the specified dentry
1565 *
1566 * During unlink, rmdir, and d_drop it is possible to loose the path
1567 * to an existing mountpoint, and wind up leaking the mount.
1568 * detach_mounts allows lazily unmounting those mounts instead of
1569 * leaking them.
1570 *
1571 * The caller may hold dentry->d_inode->i_mutex.
1572 */
1573 void __detach_mounts(struct dentry *dentry)
1574 {
1575 struct mountpoint *mp;
1576 struct mount *mnt;
1577
1578 namespace_lock();
1579 lock_mount_hash();
1580 mp = lookup_mountpoint(dentry);
1581 if (IS_ERR_OR_NULL(mp))
1582 goto out_unlock;
1583
1584 event++;
1585 while (!hlist_empty(&mp->m_list)) {
1586 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1587 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1588 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1589 umount_mnt(mnt);
1590 }
1591 else umount_tree(mnt, UMOUNT_CONNECTED);
1592 }
1593 put_mountpoint(mp);
1594 out_unlock:
1595 unlock_mount_hash();
1596 namespace_unlock();
1597 }
1598
1599 /*
1600 * Is the caller allowed to modify his namespace?
1601 */
1602 static inline bool may_mount(void)
1603 {
1604 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1605 }
1606
1607 static inline bool may_mandlock(void)
1608 {
1609 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1610 return false;
1611 #endif
1612 return capable(CAP_SYS_ADMIN);
1613 }
1614
1615 /*
1616 * Now umount can handle mount points as well as block devices.
1617 * This is important for filesystems which use unnamed block devices.
1618 *
1619 * We now support a flag for forced unmount like the other 'big iron'
1620 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1621 */
1622
1623 int ksys_umount(char __user *name, int flags)
1624 {
1625 struct path path;
1626 struct mount *mnt;
1627 int retval;
1628 int lookup_flags = 0;
1629
1630 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1631 return -EINVAL;
1632
1633 if (!may_mount())
1634 return -EPERM;
1635
1636 if (!(flags & UMOUNT_NOFOLLOW))
1637 lookup_flags |= LOOKUP_FOLLOW;
1638
1639 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1640 if (retval)
1641 goto out;
1642 mnt = real_mount(path.mnt);
1643 retval = -EINVAL;
1644 if (path.dentry != path.mnt->mnt_root)
1645 goto dput_and_out;
1646 if (!check_mnt(mnt))
1647 goto dput_and_out;
1648 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1649 goto dput_and_out;
1650 retval = -EPERM;
1651 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1652 goto dput_and_out;
1653
1654 retval = do_umount(mnt, flags);
1655 dput_and_out:
1656 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1657 dput(path.dentry);
1658 mntput_no_expire(mnt);
1659 out:
1660 return retval;
1661 }
1662
1663 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1664 {
1665 return ksys_umount(name, flags);
1666 }
1667
1668 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1669
1670 /*
1671 * The 2.0 compatible umount. No flags.
1672 */
1673 SYSCALL_DEFINE1(oldumount, char __user *, name)
1674 {
1675 return ksys_umount(name, 0);
1676 }
1677
1678 #endif
1679
1680 static bool is_mnt_ns_file(struct dentry *dentry)
1681 {
1682 /* Is this a proxy for a mount namespace? */
1683 return dentry->d_op == &ns_dentry_operations &&
1684 dentry->d_fsdata == &mntns_operations;
1685 }
1686
1687 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1688 {
1689 return container_of(ns, struct mnt_namespace, ns);
1690 }
1691
1692 static bool mnt_ns_loop(struct dentry *dentry)
1693 {
1694 /* Could bind mounting the mount namespace inode cause a
1695 * mount namespace loop?
1696 */
1697 struct mnt_namespace *mnt_ns;
1698 if (!is_mnt_ns_file(dentry))
1699 return false;
1700
1701 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1702 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1703 }
1704
1705 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1706 int flag)
1707 {
1708 struct mount *res, *p, *q, *r, *parent;
1709
1710 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1711 return ERR_PTR(-EINVAL);
1712
1713 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1714 return ERR_PTR(-EINVAL);
1715
1716 res = q = clone_mnt(mnt, dentry, flag);
1717 if (IS_ERR(q))
1718 return q;
1719
1720 q->mnt_mountpoint = mnt->mnt_mountpoint;
1721
1722 p = mnt;
1723 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1724 struct mount *s;
1725 if (!is_subdir(r->mnt_mountpoint, dentry))
1726 continue;
1727
1728 for (s = r; s; s = next_mnt(s, r)) {
1729 if (!(flag & CL_COPY_UNBINDABLE) &&
1730 IS_MNT_UNBINDABLE(s)) {
1731 s = skip_mnt_tree(s);
1732 continue;
1733 }
1734 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1735 is_mnt_ns_file(s->mnt.mnt_root)) {
1736 s = skip_mnt_tree(s);
1737 continue;
1738 }
1739 while (p != s->mnt_parent) {
1740 p = p->mnt_parent;
1741 q = q->mnt_parent;
1742 }
1743 p = s;
1744 parent = q;
1745 q = clone_mnt(p, p->mnt.mnt_root, flag);
1746 if (IS_ERR(q))
1747 goto out;
1748 lock_mount_hash();
1749 list_add_tail(&q->mnt_list, &res->mnt_list);
1750 attach_mnt(q, parent, p->mnt_mp);
1751 unlock_mount_hash();
1752 }
1753 }
1754 return res;
1755 out:
1756 if (res) {
1757 lock_mount_hash();
1758 umount_tree(res, UMOUNT_SYNC);
1759 unlock_mount_hash();
1760 }
1761 return q;
1762 }
1763
1764 /* Caller should check returned pointer for errors */
1765
1766 struct vfsmount *collect_mounts(const struct path *path)
1767 {
1768 struct mount *tree;
1769 namespace_lock();
1770 if (!check_mnt(real_mount(path->mnt)))
1771 tree = ERR_PTR(-EINVAL);
1772 else
1773 tree = copy_tree(real_mount(path->mnt), path->dentry,
1774 CL_COPY_ALL | CL_PRIVATE);
1775 namespace_unlock();
1776 if (IS_ERR(tree))
1777 return ERR_CAST(tree);
1778 return &tree->mnt;
1779 }
1780
1781 void drop_collected_mounts(struct vfsmount *mnt)
1782 {
1783 namespace_lock();
1784 lock_mount_hash();
1785 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1786 unlock_mount_hash();
1787 namespace_unlock();
1788 }
1789
1790 /**
1791 * clone_private_mount - create a private clone of a path
1792 *
1793 * This creates a new vfsmount, which will be the clone of @path. The new will
1794 * not be attached anywhere in the namespace and will be private (i.e. changes
1795 * to the originating mount won't be propagated into this).
1796 *
1797 * Release with mntput().
1798 */
1799 struct vfsmount *clone_private_mount(const struct path *path)
1800 {
1801 struct mount *old_mnt = real_mount(path->mnt);
1802 struct mount *new_mnt;
1803
1804 if (IS_MNT_UNBINDABLE(old_mnt))
1805 return ERR_PTR(-EINVAL);
1806
1807 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1808 if (IS_ERR(new_mnt))
1809 return ERR_CAST(new_mnt);
1810
1811 return &new_mnt->mnt;
1812 }
1813 EXPORT_SYMBOL_GPL(clone_private_mount);
1814
1815 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1816 struct vfsmount *root)
1817 {
1818 struct mount *mnt;
1819 int res = f(root, arg);
1820 if (res)
1821 return res;
1822 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1823 res = f(&mnt->mnt, arg);
1824 if (res)
1825 return res;
1826 }
1827 return 0;
1828 }
1829
1830 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1831 {
1832 struct mount *p;
1833
1834 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1835 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1836 mnt_release_group_id(p);
1837 }
1838 }
1839
1840 static int invent_group_ids(struct mount *mnt, bool recurse)
1841 {
1842 struct mount *p;
1843
1844 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1845 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1846 int err = mnt_alloc_group_id(p);
1847 if (err) {
1848 cleanup_group_ids(mnt, p);
1849 return err;
1850 }
1851 }
1852 }
1853
1854 return 0;
1855 }
1856
1857 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1858 {
1859 unsigned int max = READ_ONCE(sysctl_mount_max);
1860 unsigned int mounts = 0, old, pending, sum;
1861 struct mount *p;
1862
1863 for (p = mnt; p; p = next_mnt(p, mnt))
1864 mounts++;
1865
1866 old = ns->mounts;
1867 pending = ns->pending_mounts;
1868 sum = old + pending;
1869 if ((old > sum) ||
1870 (pending > sum) ||
1871 (max < sum) ||
1872 (mounts > (max - sum)))
1873 return -ENOSPC;
1874
1875 ns->pending_mounts = pending + mounts;
1876 return 0;
1877 }
1878
1879 /*
1880 * @source_mnt : mount tree to be attached
1881 * @nd : place the mount tree @source_mnt is attached
1882 * @parent_nd : if non-null, detach the source_mnt from its parent and
1883 * store the parent mount and mountpoint dentry.
1884 * (done when source_mnt is moved)
1885 *
1886 * NOTE: in the table below explains the semantics when a source mount
1887 * of a given type is attached to a destination mount of a given type.
1888 * ---------------------------------------------------------------------------
1889 * | BIND MOUNT OPERATION |
1890 * |**************************************************************************
1891 * | source-->| shared | private | slave | unbindable |
1892 * | dest | | | | |
1893 * | | | | | | |
1894 * | v | | | | |
1895 * |**************************************************************************
1896 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1897 * | | | | | |
1898 * |non-shared| shared (+) | private | slave (*) | invalid |
1899 * ***************************************************************************
1900 * A bind operation clones the source mount and mounts the clone on the
1901 * destination mount.
1902 *
1903 * (++) the cloned mount is propagated to all the mounts in the propagation
1904 * tree of the destination mount and the cloned mount is added to
1905 * the peer group of the source mount.
1906 * (+) the cloned mount is created under the destination mount and is marked
1907 * as shared. The cloned mount is added to the peer group of the source
1908 * mount.
1909 * (+++) the mount is propagated to all the mounts in the propagation tree
1910 * of the destination mount and the cloned mount is made slave
1911 * of the same master as that of the source mount. The cloned mount
1912 * is marked as 'shared and slave'.
1913 * (*) the cloned mount is made a slave of the same master as that of the
1914 * source mount.
1915 *
1916 * ---------------------------------------------------------------------------
1917 * | MOVE MOUNT OPERATION |
1918 * |**************************************************************************
1919 * | source-->| shared | private | slave | unbindable |
1920 * | dest | | | | |
1921 * | | | | | | |
1922 * | v | | | | |
1923 * |**************************************************************************
1924 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1925 * | | | | | |
1926 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1927 * ***************************************************************************
1928 *
1929 * (+) the mount is moved to the destination. And is then propagated to
1930 * all the mounts in the propagation tree of the destination mount.
1931 * (+*) the mount is moved to the destination.
1932 * (+++) the mount is moved to the destination and is then propagated to
1933 * all the mounts belonging to the destination mount's propagation tree.
1934 * the mount is marked as 'shared and slave'.
1935 * (*) the mount continues to be a slave at the new location.
1936 *
1937 * if the source mount is a tree, the operations explained above is
1938 * applied to each mount in the tree.
1939 * Must be called without spinlocks held, since this function can sleep
1940 * in allocations.
1941 */
1942 static int attach_recursive_mnt(struct mount *source_mnt,
1943 struct mount *dest_mnt,
1944 struct mountpoint *dest_mp,
1945 struct path *parent_path)
1946 {
1947 HLIST_HEAD(tree_list);
1948 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1949 struct mountpoint *smp;
1950 struct mount *child, *p;
1951 struct hlist_node *n;
1952 int err;
1953
1954 /* Preallocate a mountpoint in case the new mounts need
1955 * to be tucked under other mounts.
1956 */
1957 smp = get_mountpoint(source_mnt->mnt.mnt_root);
1958 if (IS_ERR(smp))
1959 return PTR_ERR(smp);
1960
1961 /* Is there space to add these mounts to the mount namespace? */
1962 if (!parent_path) {
1963 err = count_mounts(ns, source_mnt);
1964 if (err)
1965 goto out;
1966 }
1967
1968 if (IS_MNT_SHARED(dest_mnt)) {
1969 err = invent_group_ids(source_mnt, true);
1970 if (err)
1971 goto out;
1972 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1973 lock_mount_hash();
1974 if (err)
1975 goto out_cleanup_ids;
1976 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1977 set_mnt_shared(p);
1978 } else {
1979 lock_mount_hash();
1980 }
1981 if (parent_path) {
1982 detach_mnt(source_mnt, parent_path);
1983 attach_mnt(source_mnt, dest_mnt, dest_mp);
1984 touch_mnt_namespace(source_mnt->mnt_ns);
1985 } else {
1986 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1987 commit_tree(source_mnt);
1988 }
1989
1990 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1991 struct mount *q;
1992 hlist_del_init(&child->mnt_hash);
1993 q = __lookup_mnt(&child->mnt_parent->mnt,
1994 child->mnt_mountpoint);
1995 if (q)
1996 mnt_change_mountpoint(child, smp, q);
1997 commit_tree(child);
1998 }
1999 put_mountpoint(smp);
2000 unlock_mount_hash();
2001
2002 return 0;
2003
2004 out_cleanup_ids:
2005 while (!hlist_empty(&tree_list)) {
2006 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2007 child->mnt_parent->mnt_ns->pending_mounts = 0;
2008 umount_tree(child, UMOUNT_SYNC);
2009 }
2010 unlock_mount_hash();
2011 cleanup_group_ids(source_mnt, NULL);
2012 out:
2013 ns->pending_mounts = 0;
2014
2015 read_seqlock_excl(&mount_lock);
2016 put_mountpoint(smp);
2017 read_sequnlock_excl(&mount_lock);
2018
2019 return err;
2020 }
2021
2022 static struct mountpoint *lock_mount(struct path *path)
2023 {
2024 struct vfsmount *mnt;
2025 struct dentry *dentry = path->dentry;
2026 retry:
2027 inode_lock(dentry->d_inode);
2028 if (unlikely(cant_mount(dentry))) {
2029 inode_unlock(dentry->d_inode);
2030 return ERR_PTR(-ENOENT);
2031 }
2032 namespace_lock();
2033 mnt = lookup_mnt(path);
2034 if (likely(!mnt)) {
2035 struct mountpoint *mp = get_mountpoint(dentry);
2036 if (IS_ERR(mp)) {
2037 namespace_unlock();
2038 inode_unlock(dentry->d_inode);
2039 return mp;
2040 }
2041 return mp;
2042 }
2043 namespace_unlock();
2044 inode_unlock(path->dentry->d_inode);
2045 path_put(path);
2046 path->mnt = mnt;
2047 dentry = path->dentry = dget(mnt->mnt_root);
2048 goto retry;
2049 }
2050
2051 static void unlock_mount(struct mountpoint *where)
2052 {
2053 struct dentry *dentry = where->m_dentry;
2054
2055 read_seqlock_excl(&mount_lock);
2056 put_mountpoint(where);
2057 read_sequnlock_excl(&mount_lock);
2058
2059 namespace_unlock();
2060 inode_unlock(dentry->d_inode);
2061 }
2062
2063 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2064 {
2065 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2066 return -EINVAL;
2067
2068 if (d_is_dir(mp->m_dentry) !=
2069 d_is_dir(mnt->mnt.mnt_root))
2070 return -ENOTDIR;
2071
2072 return attach_recursive_mnt(mnt, p, mp, NULL);
2073 }
2074
2075 /*
2076 * Sanity check the flags to change_mnt_propagation.
2077 */
2078
2079 static int flags_to_propagation_type(int ms_flags)
2080 {
2081 int type = ms_flags & ~(MS_REC | MS_SILENT);
2082
2083 /* Fail if any non-propagation flags are set */
2084 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2085 return 0;
2086 /* Only one propagation flag should be set */
2087 if (!is_power_of_2(type))
2088 return 0;
2089 return type;
2090 }
2091
2092 /*
2093 * recursively change the type of the mountpoint.
2094 */
2095 static int do_change_type(struct path *path, int ms_flags)
2096 {
2097 struct mount *m;
2098 struct mount *mnt = real_mount(path->mnt);
2099 int recurse = ms_flags & MS_REC;
2100 int type;
2101 int err = 0;
2102
2103 if (path->dentry != path->mnt->mnt_root)
2104 return -EINVAL;
2105
2106 type = flags_to_propagation_type(ms_flags);
2107 if (!type)
2108 return -EINVAL;
2109
2110 namespace_lock();
2111 if (type == MS_SHARED) {
2112 err = invent_group_ids(mnt, recurse);
2113 if (err)
2114 goto out_unlock;
2115 }
2116
2117 lock_mount_hash();
2118 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2119 change_mnt_propagation(m, type);
2120 unlock_mount_hash();
2121
2122 out_unlock:
2123 namespace_unlock();
2124 return err;
2125 }
2126
2127 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2128 {
2129 struct mount *child;
2130 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2131 if (!is_subdir(child->mnt_mountpoint, dentry))
2132 continue;
2133
2134 if (child->mnt.mnt_flags & MNT_LOCKED)
2135 return true;
2136 }
2137 return false;
2138 }
2139
2140 /*
2141 * do loopback mount.
2142 */
2143 static int do_loopback(struct path *path, const char *old_name,
2144 int recurse)
2145 {
2146 struct path old_path;
2147 struct mount *mnt = NULL, *old, *parent;
2148 struct mountpoint *mp;
2149 int err;
2150 if (!old_name || !*old_name)
2151 return -EINVAL;
2152 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2153 if (err)
2154 return err;
2155
2156 err = -EINVAL;
2157 if (mnt_ns_loop(old_path.dentry))
2158 goto out;
2159
2160 mp = lock_mount(path);
2161 err = PTR_ERR(mp);
2162 if (IS_ERR(mp))
2163 goto out;
2164
2165 old = real_mount(old_path.mnt);
2166 parent = real_mount(path->mnt);
2167
2168 err = -EINVAL;
2169 if (IS_MNT_UNBINDABLE(old))
2170 goto out2;
2171
2172 if (!check_mnt(parent))
2173 goto out2;
2174
2175 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2176 goto out2;
2177
2178 if (!recurse && has_locked_children(old, old_path.dentry))
2179 goto out2;
2180
2181 if (recurse)
2182 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2183 else
2184 mnt = clone_mnt(old, old_path.dentry, 0);
2185
2186 if (IS_ERR(mnt)) {
2187 err = PTR_ERR(mnt);
2188 goto out2;
2189 }
2190
2191 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2192
2193 err = graft_tree(mnt, parent, mp);
2194 if (err) {
2195 lock_mount_hash();
2196 umount_tree(mnt, UMOUNT_SYNC);
2197 unlock_mount_hash();
2198 }
2199 out2:
2200 unlock_mount(mp);
2201 out:
2202 path_put(&old_path);
2203 return err;
2204 }
2205
2206 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2207 {
2208 int error = 0;
2209 int readonly_request = 0;
2210
2211 if (ms_flags & MS_RDONLY)
2212 readonly_request = 1;
2213 if (readonly_request == __mnt_is_readonly(mnt))
2214 return 0;
2215
2216 if (readonly_request)
2217 error = mnt_make_readonly(real_mount(mnt));
2218 else
2219 __mnt_unmake_readonly(real_mount(mnt));
2220 return error;
2221 }
2222
2223 /*
2224 * change filesystem flags. dir should be a physical root of filesystem.
2225 * If you've mounted a non-root directory somewhere and want to do remount
2226 * on it - tough luck.
2227 */
2228 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2229 int mnt_flags, void *data)
2230 {
2231 int err;
2232 struct super_block *sb = path->mnt->mnt_sb;
2233 struct mount *mnt = real_mount(path->mnt);
2234
2235 if (!check_mnt(mnt))
2236 return -EINVAL;
2237
2238 if (path->dentry != path->mnt->mnt_root)
2239 return -EINVAL;
2240
2241 /* Don't allow changing of locked mnt flags.
2242 *
2243 * No locks need to be held here while testing the various
2244 * MNT_LOCK flags because those flags can never be cleared
2245 * once they are set.
2246 */
2247 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2248 !(mnt_flags & MNT_READONLY)) {
2249 return -EPERM;
2250 }
2251 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2252 !(mnt_flags & MNT_NODEV)) {
2253 return -EPERM;
2254 }
2255 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2256 !(mnt_flags & MNT_NOSUID)) {
2257 return -EPERM;
2258 }
2259 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2260 !(mnt_flags & MNT_NOEXEC)) {
2261 return -EPERM;
2262 }
2263 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2264 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2265 return -EPERM;
2266 }
2267
2268 err = security_sb_remount(sb, data);
2269 if (err)
2270 return err;
2271
2272 down_write(&sb->s_umount);
2273 if (ms_flags & MS_BIND)
2274 err = change_mount_flags(path->mnt, ms_flags);
2275 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2276 err = -EPERM;
2277 else
2278 err = do_remount_sb(sb, sb_flags, data, 0);
2279 if (!err) {
2280 lock_mount_hash();
2281 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2282 mnt->mnt.mnt_flags = mnt_flags;
2283 touch_mnt_namespace(mnt->mnt_ns);
2284 unlock_mount_hash();
2285 }
2286 up_write(&sb->s_umount);
2287 return err;
2288 }
2289
2290 static inline int tree_contains_unbindable(struct mount *mnt)
2291 {
2292 struct mount *p;
2293 for (p = mnt; p; p = next_mnt(p, mnt)) {
2294 if (IS_MNT_UNBINDABLE(p))
2295 return 1;
2296 }
2297 return 0;
2298 }
2299
2300 static int do_move_mount(struct path *path, const char *old_name)
2301 {
2302 struct path old_path, parent_path;
2303 struct mount *p;
2304 struct mount *old;
2305 struct mountpoint *mp;
2306 int err;
2307 if (!old_name || !*old_name)
2308 return -EINVAL;
2309 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2310 if (err)
2311 return err;
2312
2313 mp = lock_mount(path);
2314 err = PTR_ERR(mp);
2315 if (IS_ERR(mp))
2316 goto out;
2317
2318 old = real_mount(old_path.mnt);
2319 p = real_mount(path->mnt);
2320
2321 err = -EINVAL;
2322 if (!check_mnt(p) || !check_mnt(old))
2323 goto out1;
2324
2325 if (old->mnt.mnt_flags & MNT_LOCKED)
2326 goto out1;
2327
2328 err = -EINVAL;
2329 if (old_path.dentry != old_path.mnt->mnt_root)
2330 goto out1;
2331
2332 if (!mnt_has_parent(old))
2333 goto out1;
2334
2335 if (d_is_dir(path->dentry) !=
2336 d_is_dir(old_path.dentry))
2337 goto out1;
2338 /*
2339 * Don't move a mount residing in a shared parent.
2340 */
2341 if (IS_MNT_SHARED(old->mnt_parent))
2342 goto out1;
2343 /*
2344 * Don't move a mount tree containing unbindable mounts to a destination
2345 * mount which is shared.
2346 */
2347 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2348 goto out1;
2349 err = -ELOOP;
2350 for (; mnt_has_parent(p); p = p->mnt_parent)
2351 if (p == old)
2352 goto out1;
2353
2354 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2355 if (err)
2356 goto out1;
2357
2358 /* if the mount is moved, it should no longer be expire
2359 * automatically */
2360 list_del_init(&old->mnt_expire);
2361 out1:
2362 unlock_mount(mp);
2363 out:
2364 if (!err)
2365 path_put(&parent_path);
2366 path_put(&old_path);
2367 return err;
2368 }
2369
2370 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2371 {
2372 int err;
2373 const char *subtype = strchr(fstype, '.');
2374 if (subtype) {
2375 subtype++;
2376 err = -EINVAL;
2377 if (!subtype[0])
2378 goto err;
2379 } else
2380 subtype = "";
2381
2382 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2383 err = -ENOMEM;
2384 if (!mnt->mnt_sb->s_subtype)
2385 goto err;
2386 return mnt;
2387
2388 err:
2389 mntput(mnt);
2390 return ERR_PTR(err);
2391 }
2392
2393 /*
2394 * add a mount into a namespace's mount tree
2395 */
2396 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2397 {
2398 struct mountpoint *mp;
2399 struct mount *parent;
2400 int err;
2401
2402 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2403
2404 mp = lock_mount(path);
2405 if (IS_ERR(mp))
2406 return PTR_ERR(mp);
2407
2408 parent = real_mount(path->mnt);
2409 err = -EINVAL;
2410 if (unlikely(!check_mnt(parent))) {
2411 /* that's acceptable only for automounts done in private ns */
2412 if (!(mnt_flags & MNT_SHRINKABLE))
2413 goto unlock;
2414 /* ... and for those we'd better have mountpoint still alive */
2415 if (!parent->mnt_ns)
2416 goto unlock;
2417 }
2418
2419 /* Refuse the same filesystem on the same mount point */
2420 err = -EBUSY;
2421 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2422 path->mnt->mnt_root == path->dentry)
2423 goto unlock;
2424
2425 err = -EINVAL;
2426 if (d_is_symlink(newmnt->mnt.mnt_root))
2427 goto unlock;
2428
2429 newmnt->mnt.mnt_flags = mnt_flags;
2430 err = graft_tree(newmnt, parent, mp);
2431
2432 unlock:
2433 unlock_mount(mp);
2434 return err;
2435 }
2436
2437 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2438
2439 /*
2440 * create a new mount for userspace and request it to be added into the
2441 * namespace's tree
2442 */
2443 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2444 int mnt_flags, const char *name, void *data)
2445 {
2446 struct file_system_type *type;
2447 struct vfsmount *mnt;
2448 int err;
2449
2450 if (!fstype)
2451 return -EINVAL;
2452
2453 type = get_fs_type(fstype);
2454 if (!type)
2455 return -ENODEV;
2456
2457 mnt = vfs_kern_mount(type, sb_flags, name, data);
2458 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2459 !mnt->mnt_sb->s_subtype)
2460 mnt = fs_set_subtype(mnt, fstype);
2461
2462 put_filesystem(type);
2463 if (IS_ERR(mnt))
2464 return PTR_ERR(mnt);
2465
2466 if (mount_too_revealing(mnt, &mnt_flags)) {
2467 mntput(mnt);
2468 return -EPERM;
2469 }
2470
2471 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2472 if (err)
2473 mntput(mnt);
2474 return err;
2475 }
2476
2477 int finish_automount(struct vfsmount *m, struct path *path)
2478 {
2479 struct mount *mnt = real_mount(m);
2480 int err;
2481 /* The new mount record should have at least 2 refs to prevent it being
2482 * expired before we get a chance to add it
2483 */
2484 BUG_ON(mnt_get_count(mnt) < 2);
2485
2486 if (m->mnt_sb == path->mnt->mnt_sb &&
2487 m->mnt_root == path->dentry) {
2488 err = -ELOOP;
2489 goto fail;
2490 }
2491
2492 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2493 if (!err)
2494 return 0;
2495 fail:
2496 /* remove m from any expiration list it may be on */
2497 if (!list_empty(&mnt->mnt_expire)) {
2498 namespace_lock();
2499 list_del_init(&mnt->mnt_expire);
2500 namespace_unlock();
2501 }
2502 mntput(m);
2503 mntput(m);
2504 return err;
2505 }
2506
2507 /**
2508 * mnt_set_expiry - Put a mount on an expiration list
2509 * @mnt: The mount to list.
2510 * @expiry_list: The list to add the mount to.
2511 */
2512 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2513 {
2514 namespace_lock();
2515
2516 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2517
2518 namespace_unlock();
2519 }
2520 EXPORT_SYMBOL(mnt_set_expiry);
2521
2522 /*
2523 * process a list of expirable mountpoints with the intent of discarding any
2524 * mountpoints that aren't in use and haven't been touched since last we came
2525 * here
2526 */
2527 void mark_mounts_for_expiry(struct list_head *mounts)
2528 {
2529 struct mount *mnt, *next;
2530 LIST_HEAD(graveyard);
2531
2532 if (list_empty(mounts))
2533 return;
2534
2535 namespace_lock();
2536 lock_mount_hash();
2537
2538 /* extract from the expiration list every vfsmount that matches the
2539 * following criteria:
2540 * - only referenced by its parent vfsmount
2541 * - still marked for expiry (marked on the last call here; marks are
2542 * cleared by mntput())
2543 */
2544 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2545 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2546 propagate_mount_busy(mnt, 1))
2547 continue;
2548 list_move(&mnt->mnt_expire, &graveyard);
2549 }
2550 while (!list_empty(&graveyard)) {
2551 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2552 touch_mnt_namespace(mnt->mnt_ns);
2553 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2554 }
2555 unlock_mount_hash();
2556 namespace_unlock();
2557 }
2558
2559 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2560
2561 /*
2562 * Ripoff of 'select_parent()'
2563 *
2564 * search the list of submounts for a given mountpoint, and move any
2565 * shrinkable submounts to the 'graveyard' list.
2566 */
2567 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2568 {
2569 struct mount *this_parent = parent;
2570 struct list_head *next;
2571 int found = 0;
2572
2573 repeat:
2574 next = this_parent->mnt_mounts.next;
2575 resume:
2576 while (next != &this_parent->mnt_mounts) {
2577 struct list_head *tmp = next;
2578 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2579
2580 next = tmp->next;
2581 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2582 continue;
2583 /*
2584 * Descend a level if the d_mounts list is non-empty.
2585 */
2586 if (!list_empty(&mnt->mnt_mounts)) {
2587 this_parent = mnt;
2588 goto repeat;
2589 }
2590
2591 if (!propagate_mount_busy(mnt, 1)) {
2592 list_move_tail(&mnt->mnt_expire, graveyard);
2593 found++;
2594 }
2595 }
2596 /*
2597 * All done at this level ... ascend and resume the search
2598 */
2599 if (this_parent != parent) {
2600 next = this_parent->mnt_child.next;
2601 this_parent = this_parent->mnt_parent;
2602 goto resume;
2603 }
2604 return found;
2605 }
2606
2607 /*
2608 * process a list of expirable mountpoints with the intent of discarding any
2609 * submounts of a specific parent mountpoint
2610 *
2611 * mount_lock must be held for write
2612 */
2613 static void shrink_submounts(struct mount *mnt)
2614 {
2615 LIST_HEAD(graveyard);
2616 struct mount *m;
2617
2618 /* extract submounts of 'mountpoint' from the expiration list */
2619 while (select_submounts(mnt, &graveyard)) {
2620 while (!list_empty(&graveyard)) {
2621 m = list_first_entry(&graveyard, struct mount,
2622 mnt_expire);
2623 touch_mnt_namespace(m->mnt_ns);
2624 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2625 }
2626 }
2627 }
2628
2629 /*
2630 * Some copy_from_user() implementations do not return the exact number of
2631 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2632 * Note that this function differs from copy_from_user() in that it will oops
2633 * on bad values of `to', rather than returning a short copy.
2634 */
2635 static long exact_copy_from_user(void *to, const void __user * from,
2636 unsigned long n)
2637 {
2638 char *t = to;
2639 const char __user *f = from;
2640 char c;
2641
2642 if (!access_ok(VERIFY_READ, from, n))
2643 return n;
2644
2645 current->kernel_uaccess_faults_ok++;
2646 while (n) {
2647 if (__get_user(c, f)) {
2648 memset(t, 0, n);
2649 break;
2650 }
2651 *t++ = c;
2652 f++;
2653 n--;
2654 }
2655 current->kernel_uaccess_faults_ok--;
2656 return n;
2657 }
2658
2659 void *copy_mount_options(const void __user * data)
2660 {
2661 int i;
2662 unsigned long size;
2663 char *copy;
2664
2665 if (!data)
2666 return NULL;
2667
2668 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2669 if (!copy)
2670 return ERR_PTR(-ENOMEM);
2671
2672 /* We only care that *some* data at the address the user
2673 * gave us is valid. Just in case, we'll zero
2674 * the remainder of the page.
2675 */
2676 /* copy_from_user cannot cross TASK_SIZE ! */
2677 size = TASK_SIZE - (unsigned long)data;
2678 if (size > PAGE_SIZE)
2679 size = PAGE_SIZE;
2680
2681 i = size - exact_copy_from_user(copy, data, size);
2682 if (!i) {
2683 kfree(copy);
2684 return ERR_PTR(-EFAULT);
2685 }
2686 if (i != PAGE_SIZE)
2687 memset(copy + i, 0, PAGE_SIZE - i);
2688 return copy;
2689 }
2690
2691 char *copy_mount_string(const void __user *data)
2692 {
2693 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2694 }
2695
2696 /*
2697 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2698 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2699 *
2700 * data is a (void *) that can point to any structure up to
2701 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2702 * information (or be NULL).
2703 *
2704 * Pre-0.97 versions of mount() didn't have a flags word.
2705 * When the flags word was introduced its top half was required
2706 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2707 * Therefore, if this magic number is present, it carries no information
2708 * and must be discarded.
2709 */
2710 long do_mount(const char *dev_name, const char __user *dir_name,
2711 const char *type_page, unsigned long flags, void *data_page)
2712 {
2713 struct path path;
2714 unsigned int mnt_flags = 0, sb_flags;
2715 int retval = 0;
2716
2717 /* Discard magic */
2718 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2719 flags &= ~MS_MGC_MSK;
2720
2721 /* Basic sanity checks */
2722 if (data_page)
2723 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2724
2725 if (flags & MS_NOUSER)
2726 return -EINVAL;
2727
2728 /* ... and get the mountpoint */
2729 retval = user_path(dir_name, &path);
2730 if (retval)
2731 return retval;
2732
2733 retval = security_sb_mount(dev_name, &path,
2734 type_page, flags, data_page);
2735 if (!retval && !may_mount())
2736 retval = -EPERM;
2737 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2738 retval = -EPERM;
2739 if (retval)
2740 goto dput_out;
2741
2742 /* Default to relatime unless overriden */
2743 if (!(flags & MS_NOATIME))
2744 mnt_flags |= MNT_RELATIME;
2745
2746 /* Separate the per-mountpoint flags */
2747 if (flags & MS_NOSUID)
2748 mnt_flags |= MNT_NOSUID;
2749 if (flags & MS_NODEV)
2750 mnt_flags |= MNT_NODEV;
2751 if (flags & MS_NOEXEC)
2752 mnt_flags |= MNT_NOEXEC;
2753 if (flags & MS_NOATIME)
2754 mnt_flags |= MNT_NOATIME;
2755 if (flags & MS_NODIRATIME)
2756 mnt_flags |= MNT_NODIRATIME;
2757 if (flags & MS_STRICTATIME)
2758 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2759 if (flags & MS_RDONLY)
2760 mnt_flags |= MNT_READONLY;
2761
2762 /* The default atime for remount is preservation */
2763 if ((flags & MS_REMOUNT) &&
2764 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2765 MS_STRICTATIME)) == 0)) {
2766 mnt_flags &= ~MNT_ATIME_MASK;
2767 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2768 }
2769
2770 sb_flags = flags & (SB_RDONLY |
2771 SB_SYNCHRONOUS |
2772 SB_MANDLOCK |
2773 SB_DIRSYNC |
2774 SB_SILENT |
2775 SB_POSIXACL |
2776 SB_LAZYTIME |
2777 SB_I_VERSION);
2778
2779 if (flags & MS_REMOUNT)
2780 retval = do_remount(&path, flags, sb_flags, mnt_flags,
2781 data_page);
2782 else if (flags & MS_BIND)
2783 retval = do_loopback(&path, dev_name, flags & MS_REC);
2784 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2785 retval = do_change_type(&path, flags);
2786 else if (flags & MS_MOVE)
2787 retval = do_move_mount(&path, dev_name);
2788 else
2789 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2790 dev_name, data_page);
2791 dput_out:
2792 path_put(&path);
2793 return retval;
2794 }
2795
2796 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2797 {
2798 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2799 }
2800
2801 static void dec_mnt_namespaces(struct ucounts *ucounts)
2802 {
2803 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2804 }
2805
2806 static void free_mnt_ns(struct mnt_namespace *ns)
2807 {
2808 ns_free_inum(&ns->ns);
2809 dec_mnt_namespaces(ns->ucounts);
2810 put_user_ns(ns->user_ns);
2811 kfree(ns);
2812 }
2813
2814 /*
2815 * Assign a sequence number so we can detect when we attempt to bind
2816 * mount a reference to an older mount namespace into the current
2817 * mount namespace, preventing reference counting loops. A 64bit
2818 * number incrementing at 10Ghz will take 12,427 years to wrap which
2819 * is effectively never, so we can ignore the possibility.
2820 */
2821 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2822
2823 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2824 {
2825 struct mnt_namespace *new_ns;
2826 struct ucounts *ucounts;
2827 int ret;
2828
2829 ucounts = inc_mnt_namespaces(user_ns);
2830 if (!ucounts)
2831 return ERR_PTR(-ENOSPC);
2832
2833 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2834 if (!new_ns) {
2835 dec_mnt_namespaces(ucounts);
2836 return ERR_PTR(-ENOMEM);
2837 }
2838 ret = ns_alloc_inum(&new_ns->ns);
2839 if (ret) {
2840 kfree(new_ns);
2841 dec_mnt_namespaces(ucounts);
2842 return ERR_PTR(ret);
2843 }
2844 new_ns->ns.ops = &mntns_operations;
2845 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2846 atomic_set(&new_ns->count, 1);
2847 new_ns->root = NULL;
2848 INIT_LIST_HEAD(&new_ns->list);
2849 init_waitqueue_head(&new_ns->poll);
2850 new_ns->event = 0;
2851 new_ns->user_ns = get_user_ns(user_ns);
2852 new_ns->ucounts = ucounts;
2853 new_ns->mounts = 0;
2854 new_ns->pending_mounts = 0;
2855 return new_ns;
2856 }
2857
2858 __latent_entropy
2859 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2860 struct user_namespace *user_ns, struct fs_struct *new_fs)
2861 {
2862 struct mnt_namespace *new_ns;
2863 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2864 struct mount *p, *q;
2865 struct mount *old;
2866 struct mount *new;
2867 int copy_flags;
2868
2869 BUG_ON(!ns);
2870
2871 if (likely(!(flags & CLONE_NEWNS))) {
2872 get_mnt_ns(ns);
2873 return ns;
2874 }
2875
2876 old = ns->root;
2877
2878 new_ns = alloc_mnt_ns(user_ns);
2879 if (IS_ERR(new_ns))
2880 return new_ns;
2881
2882 namespace_lock();
2883 /* First pass: copy the tree topology */
2884 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2885 if (user_ns != ns->user_ns)
2886 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2887 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2888 if (IS_ERR(new)) {
2889 namespace_unlock();
2890 free_mnt_ns(new_ns);
2891 return ERR_CAST(new);
2892 }
2893 new_ns->root = new;
2894 list_add_tail(&new_ns->list, &new->mnt_list);
2895
2896 /*
2897 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2898 * as belonging to new namespace. We have already acquired a private
2899 * fs_struct, so tsk->fs->lock is not needed.
2900 */
2901 p = old;
2902 q = new;
2903 while (p) {
2904 q->mnt_ns = new_ns;
2905 new_ns->mounts++;
2906 if (new_fs) {
2907 if (&p->mnt == new_fs->root.mnt) {
2908 new_fs->root.mnt = mntget(&q->mnt);
2909 rootmnt = &p->mnt;
2910 }
2911 if (&p->mnt == new_fs->pwd.mnt) {
2912 new_fs->pwd.mnt = mntget(&q->mnt);
2913 pwdmnt = &p->mnt;
2914 }
2915 }
2916 p = next_mnt(p, old);
2917 q = next_mnt(q, new);
2918 if (!q)
2919 break;
2920 while (p->mnt.mnt_root != q->mnt.mnt_root)
2921 p = next_mnt(p, old);
2922 }
2923 namespace_unlock();
2924
2925 if (rootmnt)
2926 mntput(rootmnt);
2927 if (pwdmnt)
2928 mntput(pwdmnt);
2929
2930 return new_ns;
2931 }
2932
2933 /**
2934 * create_mnt_ns - creates a private namespace and adds a root filesystem
2935 * @mnt: pointer to the new root filesystem mountpoint
2936 */
2937 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2938 {
2939 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2940 if (!IS_ERR(new_ns)) {
2941 struct mount *mnt = real_mount(m);
2942 mnt->mnt_ns = new_ns;
2943 new_ns->root = mnt;
2944 new_ns->mounts++;
2945 list_add(&mnt->mnt_list, &new_ns->list);
2946 } else {
2947 mntput(m);
2948 }
2949 return new_ns;
2950 }
2951
2952 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2953 {
2954 struct mnt_namespace *ns;
2955 struct super_block *s;
2956 struct path path;
2957 int err;
2958
2959 ns = create_mnt_ns(mnt);
2960 if (IS_ERR(ns))
2961 return ERR_CAST(ns);
2962
2963 err = vfs_path_lookup(mnt->mnt_root, mnt,
2964 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2965
2966 put_mnt_ns(ns);
2967
2968 if (err)
2969 return ERR_PTR(err);
2970
2971 /* trade a vfsmount reference for active sb one */
2972 s = path.mnt->mnt_sb;
2973 atomic_inc(&s->s_active);
2974 mntput(path.mnt);
2975 /* lock the sucker */
2976 down_write(&s->s_umount);
2977 /* ... and return the root of (sub)tree on it */
2978 return path.dentry;
2979 }
2980 EXPORT_SYMBOL(mount_subtree);
2981
2982 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
2983 unsigned long flags, void __user *data)
2984 {
2985 int ret;
2986 char *kernel_type;
2987 char *kernel_dev;
2988 void *options;
2989
2990 kernel_type = copy_mount_string(type);
2991 ret = PTR_ERR(kernel_type);
2992 if (IS_ERR(kernel_type))
2993 goto out_type;
2994
2995 kernel_dev = copy_mount_string(dev_name);
2996 ret = PTR_ERR(kernel_dev);
2997 if (IS_ERR(kernel_dev))
2998 goto out_dev;
2999
3000 options = copy_mount_options(data);
3001 ret = PTR_ERR(options);
3002 if (IS_ERR(options))
3003 goto out_data;
3004
3005 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3006
3007 kfree(options);
3008 out_data:
3009 kfree(kernel_dev);
3010 out_dev:
3011 kfree(kernel_type);
3012 out_type:
3013 return ret;
3014 }
3015
3016 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3017 char __user *, type, unsigned long, flags, void __user *, data)
3018 {
3019 return ksys_mount(dev_name, dir_name, type, flags, data);
3020 }
3021
3022 /*
3023 * Return true if path is reachable from root
3024 *
3025 * namespace_sem or mount_lock is held
3026 */
3027 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3028 const struct path *root)
3029 {
3030 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3031 dentry = mnt->mnt_mountpoint;
3032 mnt = mnt->mnt_parent;
3033 }
3034 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3035 }
3036
3037 bool path_is_under(const struct path *path1, const struct path *path2)
3038 {
3039 bool res;
3040 read_seqlock_excl(&mount_lock);
3041 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3042 read_sequnlock_excl(&mount_lock);
3043 return res;
3044 }
3045 EXPORT_SYMBOL(path_is_under);
3046
3047 /*
3048 * pivot_root Semantics:
3049 * Moves the root file system of the current process to the directory put_old,
3050 * makes new_root as the new root file system of the current process, and sets
3051 * root/cwd of all processes which had them on the current root to new_root.
3052 *
3053 * Restrictions:
3054 * The new_root and put_old must be directories, and must not be on the
3055 * same file system as the current process root. The put_old must be
3056 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3057 * pointed to by put_old must yield the same directory as new_root. No other
3058 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3059 *
3060 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3061 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3062 * in this situation.
3063 *
3064 * Notes:
3065 * - we don't move root/cwd if they are not at the root (reason: if something
3066 * cared enough to change them, it's probably wrong to force them elsewhere)
3067 * - it's okay to pick a root that isn't the root of a file system, e.g.
3068 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3069 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3070 * first.
3071 */
3072 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3073 const char __user *, put_old)
3074 {
3075 struct path new, old, parent_path, root_parent, root;
3076 struct mount *new_mnt, *root_mnt, *old_mnt;
3077 struct mountpoint *old_mp, *root_mp;
3078 int error;
3079
3080 if (!may_mount())
3081 return -EPERM;
3082
3083 error = user_path_dir(new_root, &new);
3084 if (error)
3085 goto out0;
3086
3087 error = user_path_dir(put_old, &old);
3088 if (error)
3089 goto out1;
3090
3091 error = security_sb_pivotroot(&old, &new);
3092 if (error)
3093 goto out2;
3094
3095 get_fs_root(current->fs, &root);
3096 old_mp = lock_mount(&old);
3097 error = PTR_ERR(old_mp);
3098 if (IS_ERR(old_mp))
3099 goto out3;
3100
3101 error = -EINVAL;
3102 new_mnt = real_mount(new.mnt);
3103 root_mnt = real_mount(root.mnt);
3104 old_mnt = real_mount(old.mnt);
3105 if (IS_MNT_SHARED(old_mnt) ||
3106 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3107 IS_MNT_SHARED(root_mnt->mnt_parent))
3108 goto out4;
3109 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3110 goto out4;
3111 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3112 goto out4;
3113 error = -ENOENT;
3114 if (d_unlinked(new.dentry))
3115 goto out4;
3116 error = -EBUSY;
3117 if (new_mnt == root_mnt || old_mnt == root_mnt)
3118 goto out4; /* loop, on the same file system */
3119 error = -EINVAL;
3120 if (root.mnt->mnt_root != root.dentry)
3121 goto out4; /* not a mountpoint */
3122 if (!mnt_has_parent(root_mnt))
3123 goto out4; /* not attached */
3124 root_mp = root_mnt->mnt_mp;
3125 if (new.mnt->mnt_root != new.dentry)
3126 goto out4; /* not a mountpoint */
3127 if (!mnt_has_parent(new_mnt))
3128 goto out4; /* not attached */
3129 /* make sure we can reach put_old from new_root */
3130 if (!is_path_reachable(old_mnt, old.dentry, &new))
3131 goto out4;
3132 /* make certain new is below the root */
3133 if (!is_path_reachable(new_mnt, new.dentry, &root))
3134 goto out4;
3135 root_mp->m_count++; /* pin it so it won't go away */
3136 lock_mount_hash();
3137 detach_mnt(new_mnt, &parent_path);
3138 detach_mnt(root_mnt, &root_parent);
3139 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3140 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3141 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3142 }
3143 /* mount old root on put_old */
3144 attach_mnt(root_mnt, old_mnt, old_mp);
3145 /* mount new_root on / */
3146 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3147 touch_mnt_namespace(current->nsproxy->mnt_ns);
3148 /* A moved mount should not expire automatically */
3149 list_del_init(&new_mnt->mnt_expire);
3150 put_mountpoint(root_mp);
3151 unlock_mount_hash();
3152 chroot_fs_refs(&root, &new);
3153 error = 0;
3154 out4:
3155 unlock_mount(old_mp);
3156 if (!error) {
3157 path_put(&root_parent);
3158 path_put(&parent_path);
3159 }
3160 out3:
3161 path_put(&root);
3162 out2:
3163 path_put(&old);
3164 out1:
3165 path_put(&new);
3166 out0:
3167 return error;
3168 }
3169
3170 static void __init init_mount_tree(void)
3171 {
3172 struct vfsmount *mnt;
3173 struct mnt_namespace *ns;
3174 struct path root;
3175 struct file_system_type *type;
3176
3177 type = get_fs_type("rootfs");
3178 if (!type)
3179 panic("Can't find rootfs type");
3180 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3181 put_filesystem(type);
3182 if (IS_ERR(mnt))
3183 panic("Can't create rootfs");
3184
3185 ns = create_mnt_ns(mnt);
3186 if (IS_ERR(ns))
3187 panic("Can't allocate initial namespace");
3188
3189 init_task.nsproxy->mnt_ns = ns;
3190 get_mnt_ns(ns);
3191
3192 root.mnt = mnt;
3193 root.dentry = mnt->mnt_root;
3194 mnt->mnt_flags |= MNT_LOCKED;
3195
3196 set_fs_pwd(current->fs, &root);
3197 set_fs_root(current->fs, &root);
3198 }
3199
3200 void __init mnt_init(void)
3201 {
3202 int err;
3203
3204 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3205 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3206
3207 mount_hashtable = alloc_large_system_hash("Mount-cache",
3208 sizeof(struct hlist_head),
3209 mhash_entries, 19,
3210 HASH_ZERO,
3211 &m_hash_shift, &m_hash_mask, 0, 0);
3212 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3213 sizeof(struct hlist_head),
3214 mphash_entries, 19,
3215 HASH_ZERO,
3216 &mp_hash_shift, &mp_hash_mask, 0, 0);
3217
3218 if (!mount_hashtable || !mountpoint_hashtable)
3219 panic("Failed to allocate mount hash table\n");
3220
3221 kernfs_init();
3222
3223 err = sysfs_init();
3224 if (err)
3225 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3226 __func__, err);
3227 fs_kobj = kobject_create_and_add("fs", NULL);
3228 if (!fs_kobj)
3229 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3230 init_rootfs();
3231 init_mount_tree();
3232 }
3233
3234 void put_mnt_ns(struct mnt_namespace *ns)
3235 {
3236 if (!atomic_dec_and_test(&ns->count))
3237 return;
3238 drop_collected_mounts(&ns->root->mnt);
3239 free_mnt_ns(ns);
3240 }
3241
3242 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3243 {
3244 struct vfsmount *mnt;
3245 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3246 if (!IS_ERR(mnt)) {
3247 /*
3248 * it is a longterm mount, don't release mnt until
3249 * we unmount before file sys is unregistered
3250 */
3251 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3252 }
3253 return mnt;
3254 }
3255 EXPORT_SYMBOL_GPL(kern_mount_data);
3256
3257 void kern_unmount(struct vfsmount *mnt)
3258 {
3259 /* release long term mount so mount point can be released */
3260 if (!IS_ERR_OR_NULL(mnt)) {
3261 real_mount(mnt)->mnt_ns = NULL;
3262 synchronize_rcu(); /* yecchhh... */
3263 mntput(mnt);
3264 }
3265 }
3266 EXPORT_SYMBOL(kern_unmount);
3267
3268 bool our_mnt(struct vfsmount *mnt)
3269 {
3270 return check_mnt(real_mount(mnt));
3271 }
3272
3273 bool current_chrooted(void)
3274 {
3275 /* Does the current process have a non-standard root */
3276 struct path ns_root;
3277 struct path fs_root;
3278 bool chrooted;
3279
3280 /* Find the namespace root */
3281 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3282 ns_root.dentry = ns_root.mnt->mnt_root;
3283 path_get(&ns_root);
3284 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3285 ;
3286
3287 get_fs_root(current->fs, &fs_root);
3288
3289 chrooted = !path_equal(&fs_root, &ns_root);
3290
3291 path_put(&fs_root);
3292 path_put(&ns_root);
3293
3294 return chrooted;
3295 }
3296
3297 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3298 int *new_mnt_flags)
3299 {
3300 int new_flags = *new_mnt_flags;
3301 struct mount *mnt;
3302 bool visible = false;
3303
3304 down_read(&namespace_sem);
3305 list_for_each_entry(mnt, &ns->list, mnt_list) {
3306 struct mount *child;
3307 int mnt_flags;
3308
3309 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3310 continue;
3311
3312 /* This mount is not fully visible if it's root directory
3313 * is not the root directory of the filesystem.
3314 */
3315 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3316 continue;
3317
3318 /* A local view of the mount flags */
3319 mnt_flags = mnt->mnt.mnt_flags;
3320
3321 /* Don't miss readonly hidden in the superblock flags */
3322 if (sb_rdonly(mnt->mnt.mnt_sb))
3323 mnt_flags |= MNT_LOCK_READONLY;
3324
3325 /* Verify the mount flags are equal to or more permissive
3326 * than the proposed new mount.
3327 */
3328 if ((mnt_flags & MNT_LOCK_READONLY) &&
3329 !(new_flags & MNT_READONLY))
3330 continue;
3331 if ((mnt_flags & MNT_LOCK_ATIME) &&
3332 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3333 continue;
3334
3335 /* This mount is not fully visible if there are any
3336 * locked child mounts that cover anything except for
3337 * empty directories.
3338 */
3339 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3340 struct inode *inode = child->mnt_mountpoint->d_inode;
3341 /* Only worry about locked mounts */
3342 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3343 continue;
3344 /* Is the directory permanetly empty? */
3345 if (!is_empty_dir_inode(inode))
3346 goto next;
3347 }
3348 /* Preserve the locked attributes */
3349 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3350 MNT_LOCK_ATIME);
3351 visible = true;
3352 goto found;
3353 next: ;
3354 }
3355 found:
3356 up_read(&namespace_sem);
3357 return visible;
3358 }
3359
3360 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3361 {
3362 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3363 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3364 unsigned long s_iflags;
3365
3366 if (ns->user_ns == &init_user_ns)
3367 return false;
3368
3369 /* Can this filesystem be too revealing? */
3370 s_iflags = mnt->mnt_sb->s_iflags;
3371 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3372 return false;
3373
3374 if ((s_iflags & required_iflags) != required_iflags) {
3375 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3376 required_iflags);
3377 return true;
3378 }
3379
3380 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3381 }
3382
3383 bool mnt_may_suid(struct vfsmount *mnt)
3384 {
3385 /*
3386 * Foreign mounts (accessed via fchdir or through /proc
3387 * symlinks) are always treated as if they are nosuid. This
3388 * prevents namespaces from trusting potentially unsafe
3389 * suid/sgid bits, file caps, or security labels that originate
3390 * in other namespaces.
3391 */
3392 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3393 current_in_userns(mnt->mnt_sb->s_user_ns);
3394 }
3395
3396 static struct ns_common *mntns_get(struct task_struct *task)
3397 {
3398 struct ns_common *ns = NULL;
3399 struct nsproxy *nsproxy;
3400
3401 task_lock(task);
3402 nsproxy = task->nsproxy;
3403 if (nsproxy) {
3404 ns = &nsproxy->mnt_ns->ns;
3405 get_mnt_ns(to_mnt_ns(ns));
3406 }
3407 task_unlock(task);
3408
3409 return ns;
3410 }
3411
3412 static void mntns_put(struct ns_common *ns)
3413 {
3414 put_mnt_ns(to_mnt_ns(ns));
3415 }
3416
3417 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3418 {
3419 struct fs_struct *fs = current->fs;
3420 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3421 struct path root;
3422 int err;
3423
3424 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3425 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3426 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3427 return -EPERM;
3428
3429 if (fs->users != 1)
3430 return -EINVAL;
3431
3432 get_mnt_ns(mnt_ns);
3433 old_mnt_ns = nsproxy->mnt_ns;
3434 nsproxy->mnt_ns = mnt_ns;
3435
3436 /* Find the root */
3437 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3438 "/", LOOKUP_DOWN, &root);
3439 if (err) {
3440 /* revert to old namespace */
3441 nsproxy->mnt_ns = old_mnt_ns;
3442 put_mnt_ns(mnt_ns);
3443 return err;
3444 }
3445
3446 put_mnt_ns(old_mnt_ns);
3447
3448 /* Update the pwd and root */
3449 set_fs_pwd(fs, &root);
3450 set_fs_root(fs, &root);
3451
3452 path_put(&root);
3453 return 0;
3454 }
3455
3456 static struct user_namespace *mntns_owner(struct ns_common *ns)
3457 {
3458 return to_mnt_ns(ns)->user_ns;
3459 }
3460
3461 const struct proc_ns_operations mntns_operations = {
3462 .name = "mnt",
3463 .type = CLONE_NEWNS,
3464 .get = mntns_get,
3465 .put = mntns_put,
3466 .install = mntns_install,
3467 .owner = mntns_owner,
3468 };