]> git.ipfire.org Git - people/ms/linux.git/blob - fs/namespace.c
nios2: Port OOM changes to do_page_fault()
[people/ms/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
37 {
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70
71 /*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87 }
88
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95
96 /*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 int res;
103
104 retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115 }
116
117 static void mnt_free_id(struct mount *mnt)
118 {
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
125 }
126
127 /*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 int res;
135
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
144
145 return res;
146 }
147
148 /*
149 * Release a peer group ID
150 */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
158 }
159
160 /*
161 * vfsmount lock must be held for read
162 */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171 #endif
172 }
173
174 /*
175 * vfsmount lock must be held for write
176 */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 }
186
187 return count;
188 #else
189 return mnt->mnt_count;
190 #endif
191 }
192
193 static struct mount *alloc_vfsmnt(const char *name)
194 {
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
197 int err;
198
199 err = mnt_alloc_id(mnt);
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
206 goto out_free_id;
207 }
208
209 #ifdef CONFIG_SMP
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
212 goto out_free_devname;
213
214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
215 #else
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
218 #endif
219
220 INIT_HLIST_NODE(&mnt->mnt_hash);
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
228 INIT_HLIST_NODE(&mnt->mnt_mp_list);
229 #ifdef CONFIG_FSNOTIFY
230 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
231 #endif
232 }
233 return mnt;
234
235 #ifdef CONFIG_SMP
236 out_free_devname:
237 kfree(mnt->mnt_devname);
238 #endif
239 out_free_id:
240 mnt_free_id(mnt);
241 out_free_cache:
242 kmem_cache_free(mnt_cache, mnt);
243 return NULL;
244 }
245
246 /*
247 * Most r/o checks on a fs are for operations that take
248 * discrete amounts of time, like a write() or unlink().
249 * We must keep track of when those operations start
250 * (for permission checks) and when they end, so that
251 * we can determine when writes are able to occur to
252 * a filesystem.
253 */
254 /*
255 * __mnt_is_readonly: check whether a mount is read-only
256 * @mnt: the mount to check for its write status
257 *
258 * This shouldn't be used directly ouside of the VFS.
259 * It does not guarantee that the filesystem will stay
260 * r/w, just that it is right *now*. This can not and
261 * should not be used in place of IS_RDONLY(inode).
262 * mnt_want/drop_write() will _keep_ the filesystem
263 * r/w.
264 */
265 int __mnt_is_readonly(struct vfsmount *mnt)
266 {
267 if (mnt->mnt_flags & MNT_READONLY)
268 return 1;
269 if (mnt->mnt_sb->s_flags & MS_RDONLY)
270 return 1;
271 return 0;
272 }
273 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274
275 static inline void mnt_inc_writers(struct mount *mnt)
276 {
277 #ifdef CONFIG_SMP
278 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
279 #else
280 mnt->mnt_writers++;
281 #endif
282 }
283
284 static inline void mnt_dec_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers--;
290 #endif
291 }
292
293 static unsigned int mnt_get_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 unsigned int count = 0;
297 int cpu;
298
299 for_each_possible_cpu(cpu) {
300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
301 }
302
303 return count;
304 #else
305 return mnt->mnt_writers;
306 #endif
307 }
308
309 static int mnt_is_readonly(struct vfsmount *mnt)
310 {
311 if (mnt->mnt_sb->s_readonly_remount)
312 return 1;
313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 smp_rmb();
315 return __mnt_is_readonly(mnt);
316 }
317
318 /*
319 * Most r/o & frozen checks on a fs are for operations that take discrete
320 * amounts of time, like a write() or unlink(). We must keep track of when
321 * those operations start (for permission checks) and when they end, so that we
322 * can determine when writes are able to occur to a filesystem.
323 */
324 /**
325 * __mnt_want_write - get write access to a mount without freeze protection
326 * @m: the mount on which to take a write
327 *
328 * This tells the low-level filesystem that a write is about to be performed to
329 * it, and makes sure that writes are allowed (mnt it read-write) before
330 * returning success. This operation does not protect against filesystem being
331 * frozen. When the write operation is finished, __mnt_drop_write() must be
332 * called. This is effectively a refcount.
333 */
334 int __mnt_want_write(struct vfsmount *m)
335 {
336 struct mount *mnt = real_mount(m);
337 int ret = 0;
338
339 preempt_disable();
340 mnt_inc_writers(mnt);
341 /*
342 * The store to mnt_inc_writers must be visible before we pass
343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 * incremented count after it has set MNT_WRITE_HOLD.
345 */
346 smp_mb();
347 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
348 cpu_relax();
349 /*
350 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
351 * be set to match its requirements. So we must not load that until
352 * MNT_WRITE_HOLD is cleared.
353 */
354 smp_rmb();
355 if (mnt_is_readonly(m)) {
356 mnt_dec_writers(mnt);
357 ret = -EROFS;
358 }
359 preempt_enable();
360
361 return ret;
362 }
363
364 /**
365 * mnt_want_write - get write access to a mount
366 * @m: the mount on which to take a write
367 *
368 * This tells the low-level filesystem that a write is about to be performed to
369 * it, and makes sure that writes are allowed (mount is read-write, filesystem
370 * is not frozen) before returning success. When the write operation is
371 * finished, mnt_drop_write() must be called. This is effectively a refcount.
372 */
373 int mnt_want_write(struct vfsmount *m)
374 {
375 int ret;
376
377 sb_start_write(m->mnt_sb);
378 ret = __mnt_want_write(m);
379 if (ret)
380 sb_end_write(m->mnt_sb);
381 return ret;
382 }
383 EXPORT_SYMBOL_GPL(mnt_want_write);
384
385 /**
386 * mnt_clone_write - get write access to a mount
387 * @mnt: the mount on which to take a write
388 *
389 * This is effectively like mnt_want_write, except
390 * it must only be used to take an extra write reference
391 * on a mountpoint that we already know has a write reference
392 * on it. This allows some optimisation.
393 *
394 * After finished, mnt_drop_write must be called as usual to
395 * drop the reference.
396 */
397 int mnt_clone_write(struct vfsmount *mnt)
398 {
399 /* superblock may be r/o */
400 if (__mnt_is_readonly(mnt))
401 return -EROFS;
402 preempt_disable();
403 mnt_inc_writers(real_mount(mnt));
404 preempt_enable();
405 return 0;
406 }
407 EXPORT_SYMBOL_GPL(mnt_clone_write);
408
409 /**
410 * __mnt_want_write_file - get write access to a file's mount
411 * @file: the file who's mount on which to take a write
412 *
413 * This is like __mnt_want_write, but it takes a file and can
414 * do some optimisations if the file is open for write already
415 */
416 int __mnt_want_write_file(struct file *file)
417 {
418 if (!(file->f_mode & FMODE_WRITER))
419 return __mnt_want_write(file->f_path.mnt);
420 else
421 return mnt_clone_write(file->f_path.mnt);
422 }
423
424 /**
425 * mnt_want_write_file - get write access to a file's mount
426 * @file: the file who's mount on which to take a write
427 *
428 * This is like mnt_want_write, but it takes a file and can
429 * do some optimisations if the file is open for write already
430 */
431 int mnt_want_write_file(struct file *file)
432 {
433 int ret;
434
435 sb_start_write(file->f_path.mnt->mnt_sb);
436 ret = __mnt_want_write_file(file);
437 if (ret)
438 sb_end_write(file->f_path.mnt->mnt_sb);
439 return ret;
440 }
441 EXPORT_SYMBOL_GPL(mnt_want_write_file);
442
443 /**
444 * __mnt_drop_write - give up write access to a mount
445 * @mnt: the mount on which to give up write access
446 *
447 * Tells the low-level filesystem that we are done
448 * performing writes to it. Must be matched with
449 * __mnt_want_write() call above.
450 */
451 void __mnt_drop_write(struct vfsmount *mnt)
452 {
453 preempt_disable();
454 mnt_dec_writers(real_mount(mnt));
455 preempt_enable();
456 }
457
458 /**
459 * mnt_drop_write - give up write access to a mount
460 * @mnt: the mount on which to give up write access
461 *
462 * Tells the low-level filesystem that we are done performing writes to it and
463 * also allows filesystem to be frozen again. Must be matched with
464 * mnt_want_write() call above.
465 */
466 void mnt_drop_write(struct vfsmount *mnt)
467 {
468 __mnt_drop_write(mnt);
469 sb_end_write(mnt->mnt_sb);
470 }
471 EXPORT_SYMBOL_GPL(mnt_drop_write);
472
473 void __mnt_drop_write_file(struct file *file)
474 {
475 __mnt_drop_write(file->f_path.mnt);
476 }
477
478 void mnt_drop_write_file(struct file *file)
479 {
480 mnt_drop_write(file->f_path.mnt);
481 }
482 EXPORT_SYMBOL(mnt_drop_write_file);
483
484 static int mnt_make_readonly(struct mount *mnt)
485 {
486 int ret = 0;
487
488 lock_mount_hash();
489 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
490 /*
491 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
492 * should be visible before we do.
493 */
494 smp_mb();
495
496 /*
497 * With writers on hold, if this value is zero, then there are
498 * definitely no active writers (although held writers may subsequently
499 * increment the count, they'll have to wait, and decrement it after
500 * seeing MNT_READONLY).
501 *
502 * It is OK to have counter incremented on one CPU and decremented on
503 * another: the sum will add up correctly. The danger would be when we
504 * sum up each counter, if we read a counter before it is incremented,
505 * but then read another CPU's count which it has been subsequently
506 * decremented from -- we would see more decrements than we should.
507 * MNT_WRITE_HOLD protects against this scenario, because
508 * mnt_want_write first increments count, then smp_mb, then spins on
509 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
510 * we're counting up here.
511 */
512 if (mnt_get_writers(mnt) > 0)
513 ret = -EBUSY;
514 else
515 mnt->mnt.mnt_flags |= MNT_READONLY;
516 /*
517 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
518 * that become unheld will see MNT_READONLY.
519 */
520 smp_wmb();
521 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
522 unlock_mount_hash();
523 return ret;
524 }
525
526 static void __mnt_unmake_readonly(struct mount *mnt)
527 {
528 lock_mount_hash();
529 mnt->mnt.mnt_flags &= ~MNT_READONLY;
530 unlock_mount_hash();
531 }
532
533 int sb_prepare_remount_readonly(struct super_block *sb)
534 {
535 struct mount *mnt;
536 int err = 0;
537
538 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
539 if (atomic_long_read(&sb->s_remove_count))
540 return -EBUSY;
541
542 lock_mount_hash();
543 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
544 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
545 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
546 smp_mb();
547 if (mnt_get_writers(mnt) > 0) {
548 err = -EBUSY;
549 break;
550 }
551 }
552 }
553 if (!err && atomic_long_read(&sb->s_remove_count))
554 err = -EBUSY;
555
556 if (!err) {
557 sb->s_readonly_remount = 1;
558 smp_wmb();
559 }
560 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
561 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
562 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
563 }
564 unlock_mount_hash();
565
566 return err;
567 }
568
569 static void free_vfsmnt(struct mount *mnt)
570 {
571 kfree(mnt->mnt_devname);
572 #ifdef CONFIG_SMP
573 free_percpu(mnt->mnt_pcp);
574 #endif
575 kmem_cache_free(mnt_cache, mnt);
576 }
577
578 static void delayed_free_vfsmnt(struct rcu_head *head)
579 {
580 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
581 }
582
583 /* call under rcu_read_lock */
584 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
585 {
586 struct mount *mnt;
587 if (read_seqretry(&mount_lock, seq))
588 return false;
589 if (bastard == NULL)
590 return true;
591 mnt = real_mount(bastard);
592 mnt_add_count(mnt, 1);
593 if (likely(!read_seqretry(&mount_lock, seq)))
594 return true;
595 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
596 mnt_add_count(mnt, -1);
597 return false;
598 }
599 rcu_read_unlock();
600 mntput(bastard);
601 rcu_read_lock();
602 return false;
603 }
604
605 /*
606 * find the first mount at @dentry on vfsmount @mnt.
607 * call under rcu_read_lock()
608 */
609 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
610 {
611 struct hlist_head *head = m_hash(mnt, dentry);
612 struct mount *p;
613
614 hlist_for_each_entry_rcu(p, head, mnt_hash)
615 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
616 return p;
617 return NULL;
618 }
619
620 /*
621 * find the last mount at @dentry on vfsmount @mnt.
622 * mount_lock must be held.
623 */
624 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
625 {
626 struct mount *p, *res;
627 res = p = __lookup_mnt(mnt, dentry);
628 if (!p)
629 goto out;
630 hlist_for_each_entry_continue(p, mnt_hash) {
631 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
632 break;
633 res = p;
634 }
635 out:
636 return res;
637 }
638
639 /*
640 * lookup_mnt - Return the first child mount mounted at path
641 *
642 * "First" means first mounted chronologically. If you create the
643 * following mounts:
644 *
645 * mount /dev/sda1 /mnt
646 * mount /dev/sda2 /mnt
647 * mount /dev/sda3 /mnt
648 *
649 * Then lookup_mnt() on the base /mnt dentry in the root mount will
650 * return successively the root dentry and vfsmount of /dev/sda1, then
651 * /dev/sda2, then /dev/sda3, then NULL.
652 *
653 * lookup_mnt takes a reference to the found vfsmount.
654 */
655 struct vfsmount *lookup_mnt(struct path *path)
656 {
657 struct mount *child_mnt;
658 struct vfsmount *m;
659 unsigned seq;
660
661 rcu_read_lock();
662 do {
663 seq = read_seqbegin(&mount_lock);
664 child_mnt = __lookup_mnt(path->mnt, path->dentry);
665 m = child_mnt ? &child_mnt->mnt : NULL;
666 } while (!legitimize_mnt(m, seq));
667 rcu_read_unlock();
668 return m;
669 }
670
671 /*
672 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
673 * current mount namespace.
674 *
675 * The common case is dentries are not mountpoints at all and that
676 * test is handled inline. For the slow case when we are actually
677 * dealing with a mountpoint of some kind, walk through all of the
678 * mounts in the current mount namespace and test to see if the dentry
679 * is a mountpoint.
680 *
681 * The mount_hashtable is not usable in the context because we
682 * need to identify all mounts that may be in the current mount
683 * namespace not just a mount that happens to have some specified
684 * parent mount.
685 */
686 bool __is_local_mountpoint(struct dentry *dentry)
687 {
688 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
689 struct mount *mnt;
690 bool is_covered = false;
691
692 if (!d_mountpoint(dentry))
693 goto out;
694
695 down_read(&namespace_sem);
696 list_for_each_entry(mnt, &ns->list, mnt_list) {
697 is_covered = (mnt->mnt_mountpoint == dentry);
698 if (is_covered)
699 break;
700 }
701 up_read(&namespace_sem);
702 out:
703 return is_covered;
704 }
705
706 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
707 {
708 struct hlist_head *chain = mp_hash(dentry);
709 struct mountpoint *mp;
710
711 hlist_for_each_entry(mp, chain, m_hash) {
712 if (mp->m_dentry == dentry) {
713 /* might be worth a WARN_ON() */
714 if (d_unlinked(dentry))
715 return ERR_PTR(-ENOENT);
716 mp->m_count++;
717 return mp;
718 }
719 }
720 return NULL;
721 }
722
723 static struct mountpoint *new_mountpoint(struct dentry *dentry)
724 {
725 struct hlist_head *chain = mp_hash(dentry);
726 struct mountpoint *mp;
727 int ret;
728
729 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
730 if (!mp)
731 return ERR_PTR(-ENOMEM);
732
733 ret = d_set_mounted(dentry);
734 if (ret) {
735 kfree(mp);
736 return ERR_PTR(ret);
737 }
738
739 mp->m_dentry = dentry;
740 mp->m_count = 1;
741 hlist_add_head(&mp->m_hash, chain);
742 INIT_HLIST_HEAD(&mp->m_list);
743 return mp;
744 }
745
746 static void put_mountpoint(struct mountpoint *mp)
747 {
748 if (!--mp->m_count) {
749 struct dentry *dentry = mp->m_dentry;
750 BUG_ON(!hlist_empty(&mp->m_list));
751 spin_lock(&dentry->d_lock);
752 dentry->d_flags &= ~DCACHE_MOUNTED;
753 spin_unlock(&dentry->d_lock);
754 hlist_del(&mp->m_hash);
755 kfree(mp);
756 }
757 }
758
759 static inline int check_mnt(struct mount *mnt)
760 {
761 return mnt->mnt_ns == current->nsproxy->mnt_ns;
762 }
763
764 /*
765 * vfsmount lock must be held for write
766 */
767 static void touch_mnt_namespace(struct mnt_namespace *ns)
768 {
769 if (ns) {
770 ns->event = ++event;
771 wake_up_interruptible(&ns->poll);
772 }
773 }
774
775 /*
776 * vfsmount lock must be held for write
777 */
778 static void __touch_mnt_namespace(struct mnt_namespace *ns)
779 {
780 if (ns && ns->event != event) {
781 ns->event = event;
782 wake_up_interruptible(&ns->poll);
783 }
784 }
785
786 /*
787 * vfsmount lock must be held for write
788 */
789 static void detach_mnt(struct mount *mnt, struct path *old_path)
790 {
791 old_path->dentry = mnt->mnt_mountpoint;
792 old_path->mnt = &mnt->mnt_parent->mnt;
793 mnt->mnt_parent = mnt;
794 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
795 list_del_init(&mnt->mnt_child);
796 hlist_del_init_rcu(&mnt->mnt_hash);
797 hlist_del_init(&mnt->mnt_mp_list);
798 put_mountpoint(mnt->mnt_mp);
799 mnt->mnt_mp = NULL;
800 }
801
802 /*
803 * vfsmount lock must be held for write
804 */
805 void mnt_set_mountpoint(struct mount *mnt,
806 struct mountpoint *mp,
807 struct mount *child_mnt)
808 {
809 mp->m_count++;
810 mnt_add_count(mnt, 1); /* essentially, that's mntget */
811 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
812 child_mnt->mnt_parent = mnt;
813 child_mnt->mnt_mp = mp;
814 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
815 }
816
817 /*
818 * vfsmount lock must be held for write
819 */
820 static void attach_mnt(struct mount *mnt,
821 struct mount *parent,
822 struct mountpoint *mp)
823 {
824 mnt_set_mountpoint(parent, mp, mnt);
825 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
826 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
827 }
828
829 static void attach_shadowed(struct mount *mnt,
830 struct mount *parent,
831 struct mount *shadows)
832 {
833 if (shadows) {
834 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
835 list_add(&mnt->mnt_child, &shadows->mnt_child);
836 } else {
837 hlist_add_head_rcu(&mnt->mnt_hash,
838 m_hash(&parent->mnt, mnt->mnt_mountpoint));
839 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
840 }
841 }
842
843 /*
844 * vfsmount lock must be held for write
845 */
846 static void commit_tree(struct mount *mnt, struct mount *shadows)
847 {
848 struct mount *parent = mnt->mnt_parent;
849 struct mount *m;
850 LIST_HEAD(head);
851 struct mnt_namespace *n = parent->mnt_ns;
852
853 BUG_ON(parent == mnt);
854
855 list_add_tail(&head, &mnt->mnt_list);
856 list_for_each_entry(m, &head, mnt_list)
857 m->mnt_ns = n;
858
859 list_splice(&head, n->list.prev);
860
861 attach_shadowed(mnt, parent, shadows);
862 touch_mnt_namespace(n);
863 }
864
865 static struct mount *next_mnt(struct mount *p, struct mount *root)
866 {
867 struct list_head *next = p->mnt_mounts.next;
868 if (next == &p->mnt_mounts) {
869 while (1) {
870 if (p == root)
871 return NULL;
872 next = p->mnt_child.next;
873 if (next != &p->mnt_parent->mnt_mounts)
874 break;
875 p = p->mnt_parent;
876 }
877 }
878 return list_entry(next, struct mount, mnt_child);
879 }
880
881 static struct mount *skip_mnt_tree(struct mount *p)
882 {
883 struct list_head *prev = p->mnt_mounts.prev;
884 while (prev != &p->mnt_mounts) {
885 p = list_entry(prev, struct mount, mnt_child);
886 prev = p->mnt_mounts.prev;
887 }
888 return p;
889 }
890
891 struct vfsmount *
892 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
893 {
894 struct mount *mnt;
895 struct dentry *root;
896
897 if (!type)
898 return ERR_PTR(-ENODEV);
899
900 mnt = alloc_vfsmnt(name);
901 if (!mnt)
902 return ERR_PTR(-ENOMEM);
903
904 if (flags & MS_KERNMOUNT)
905 mnt->mnt.mnt_flags = MNT_INTERNAL;
906
907 root = mount_fs(type, flags, name, data);
908 if (IS_ERR(root)) {
909 mnt_free_id(mnt);
910 free_vfsmnt(mnt);
911 return ERR_CAST(root);
912 }
913
914 mnt->mnt.mnt_root = root;
915 mnt->mnt.mnt_sb = root->d_sb;
916 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
917 mnt->mnt_parent = mnt;
918 lock_mount_hash();
919 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
920 unlock_mount_hash();
921 return &mnt->mnt;
922 }
923 EXPORT_SYMBOL_GPL(vfs_kern_mount);
924
925 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
926 int flag)
927 {
928 struct super_block *sb = old->mnt.mnt_sb;
929 struct mount *mnt;
930 int err;
931
932 mnt = alloc_vfsmnt(old->mnt_devname);
933 if (!mnt)
934 return ERR_PTR(-ENOMEM);
935
936 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
937 mnt->mnt_group_id = 0; /* not a peer of original */
938 else
939 mnt->mnt_group_id = old->mnt_group_id;
940
941 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
942 err = mnt_alloc_group_id(mnt);
943 if (err)
944 goto out_free;
945 }
946
947 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
948 /* Don't allow unprivileged users to change mount flags */
949 if (flag & CL_UNPRIVILEGED) {
950 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
951
952 if (mnt->mnt.mnt_flags & MNT_READONLY)
953 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
954
955 if (mnt->mnt.mnt_flags & MNT_NODEV)
956 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
957
958 if (mnt->mnt.mnt_flags & MNT_NOSUID)
959 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
960
961 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
962 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
963 }
964
965 /* Don't allow unprivileged users to reveal what is under a mount */
966 if ((flag & CL_UNPRIVILEGED) &&
967 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
968 mnt->mnt.mnt_flags |= MNT_LOCKED;
969
970 atomic_inc(&sb->s_active);
971 mnt->mnt.mnt_sb = sb;
972 mnt->mnt.mnt_root = dget(root);
973 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
974 mnt->mnt_parent = mnt;
975 lock_mount_hash();
976 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
977 unlock_mount_hash();
978
979 if ((flag & CL_SLAVE) ||
980 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
981 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
982 mnt->mnt_master = old;
983 CLEAR_MNT_SHARED(mnt);
984 } else if (!(flag & CL_PRIVATE)) {
985 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
986 list_add(&mnt->mnt_share, &old->mnt_share);
987 if (IS_MNT_SLAVE(old))
988 list_add(&mnt->mnt_slave, &old->mnt_slave);
989 mnt->mnt_master = old->mnt_master;
990 }
991 if (flag & CL_MAKE_SHARED)
992 set_mnt_shared(mnt);
993
994 /* stick the duplicate mount on the same expiry list
995 * as the original if that was on one */
996 if (flag & CL_EXPIRE) {
997 if (!list_empty(&old->mnt_expire))
998 list_add(&mnt->mnt_expire, &old->mnt_expire);
999 }
1000
1001 return mnt;
1002
1003 out_free:
1004 mnt_free_id(mnt);
1005 free_vfsmnt(mnt);
1006 return ERR_PTR(err);
1007 }
1008
1009 static void cleanup_mnt(struct mount *mnt)
1010 {
1011 /*
1012 * This probably indicates that somebody messed
1013 * up a mnt_want/drop_write() pair. If this
1014 * happens, the filesystem was probably unable
1015 * to make r/w->r/o transitions.
1016 */
1017 /*
1018 * The locking used to deal with mnt_count decrement provides barriers,
1019 * so mnt_get_writers() below is safe.
1020 */
1021 WARN_ON(mnt_get_writers(mnt));
1022 if (unlikely(mnt->mnt_pins.first))
1023 mnt_pin_kill(mnt);
1024 fsnotify_vfsmount_delete(&mnt->mnt);
1025 dput(mnt->mnt.mnt_root);
1026 deactivate_super(mnt->mnt.mnt_sb);
1027 mnt_free_id(mnt);
1028 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1029 }
1030
1031 static void __cleanup_mnt(struct rcu_head *head)
1032 {
1033 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1034 }
1035
1036 static LLIST_HEAD(delayed_mntput_list);
1037 static void delayed_mntput(struct work_struct *unused)
1038 {
1039 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1040 struct llist_node *next;
1041
1042 for (; node; node = next) {
1043 next = llist_next(node);
1044 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1045 }
1046 }
1047 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1048
1049 static void mntput_no_expire(struct mount *mnt)
1050 {
1051 rcu_read_lock();
1052 mnt_add_count(mnt, -1);
1053 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1054 rcu_read_unlock();
1055 return;
1056 }
1057 lock_mount_hash();
1058 if (mnt_get_count(mnt)) {
1059 rcu_read_unlock();
1060 unlock_mount_hash();
1061 return;
1062 }
1063 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1064 rcu_read_unlock();
1065 unlock_mount_hash();
1066 return;
1067 }
1068 mnt->mnt.mnt_flags |= MNT_DOOMED;
1069 rcu_read_unlock();
1070
1071 list_del(&mnt->mnt_instance);
1072 unlock_mount_hash();
1073
1074 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1075 struct task_struct *task = current;
1076 if (likely(!(task->flags & PF_KTHREAD))) {
1077 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1078 if (!task_work_add(task, &mnt->mnt_rcu, true))
1079 return;
1080 }
1081 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1082 schedule_delayed_work(&delayed_mntput_work, 1);
1083 return;
1084 }
1085 cleanup_mnt(mnt);
1086 }
1087
1088 void mntput(struct vfsmount *mnt)
1089 {
1090 if (mnt) {
1091 struct mount *m = real_mount(mnt);
1092 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1093 if (unlikely(m->mnt_expiry_mark))
1094 m->mnt_expiry_mark = 0;
1095 mntput_no_expire(m);
1096 }
1097 }
1098 EXPORT_SYMBOL(mntput);
1099
1100 struct vfsmount *mntget(struct vfsmount *mnt)
1101 {
1102 if (mnt)
1103 mnt_add_count(real_mount(mnt), 1);
1104 return mnt;
1105 }
1106 EXPORT_SYMBOL(mntget);
1107
1108 struct vfsmount *mnt_clone_internal(struct path *path)
1109 {
1110 struct mount *p;
1111 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1112 if (IS_ERR(p))
1113 return ERR_CAST(p);
1114 p->mnt.mnt_flags |= MNT_INTERNAL;
1115 return &p->mnt;
1116 }
1117
1118 static inline void mangle(struct seq_file *m, const char *s)
1119 {
1120 seq_escape(m, s, " \t\n\\");
1121 }
1122
1123 /*
1124 * Simple .show_options callback for filesystems which don't want to
1125 * implement more complex mount option showing.
1126 *
1127 * See also save_mount_options().
1128 */
1129 int generic_show_options(struct seq_file *m, struct dentry *root)
1130 {
1131 const char *options;
1132
1133 rcu_read_lock();
1134 options = rcu_dereference(root->d_sb->s_options);
1135
1136 if (options != NULL && options[0]) {
1137 seq_putc(m, ',');
1138 mangle(m, options);
1139 }
1140 rcu_read_unlock();
1141
1142 return 0;
1143 }
1144 EXPORT_SYMBOL(generic_show_options);
1145
1146 /*
1147 * If filesystem uses generic_show_options(), this function should be
1148 * called from the fill_super() callback.
1149 *
1150 * The .remount_fs callback usually needs to be handled in a special
1151 * way, to make sure, that previous options are not overwritten if the
1152 * remount fails.
1153 *
1154 * Also note, that if the filesystem's .remount_fs function doesn't
1155 * reset all options to their default value, but changes only newly
1156 * given options, then the displayed options will not reflect reality
1157 * any more.
1158 */
1159 void save_mount_options(struct super_block *sb, char *options)
1160 {
1161 BUG_ON(sb->s_options);
1162 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1163 }
1164 EXPORT_SYMBOL(save_mount_options);
1165
1166 void replace_mount_options(struct super_block *sb, char *options)
1167 {
1168 char *old = sb->s_options;
1169 rcu_assign_pointer(sb->s_options, options);
1170 if (old) {
1171 synchronize_rcu();
1172 kfree(old);
1173 }
1174 }
1175 EXPORT_SYMBOL(replace_mount_options);
1176
1177 #ifdef CONFIG_PROC_FS
1178 /* iterator; we want it to have access to namespace_sem, thus here... */
1179 static void *m_start(struct seq_file *m, loff_t *pos)
1180 {
1181 struct proc_mounts *p = proc_mounts(m);
1182
1183 down_read(&namespace_sem);
1184 if (p->cached_event == p->ns->event) {
1185 void *v = p->cached_mount;
1186 if (*pos == p->cached_index)
1187 return v;
1188 if (*pos == p->cached_index + 1) {
1189 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1190 return p->cached_mount = v;
1191 }
1192 }
1193
1194 p->cached_event = p->ns->event;
1195 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1196 p->cached_index = *pos;
1197 return p->cached_mount;
1198 }
1199
1200 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1201 {
1202 struct proc_mounts *p = proc_mounts(m);
1203
1204 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1205 p->cached_index = *pos;
1206 return p->cached_mount;
1207 }
1208
1209 static void m_stop(struct seq_file *m, void *v)
1210 {
1211 up_read(&namespace_sem);
1212 }
1213
1214 static int m_show(struct seq_file *m, void *v)
1215 {
1216 struct proc_mounts *p = proc_mounts(m);
1217 struct mount *r = list_entry(v, struct mount, mnt_list);
1218 return p->show(m, &r->mnt);
1219 }
1220
1221 const struct seq_operations mounts_op = {
1222 .start = m_start,
1223 .next = m_next,
1224 .stop = m_stop,
1225 .show = m_show,
1226 };
1227 #endif /* CONFIG_PROC_FS */
1228
1229 /**
1230 * may_umount_tree - check if a mount tree is busy
1231 * @mnt: root of mount tree
1232 *
1233 * This is called to check if a tree of mounts has any
1234 * open files, pwds, chroots or sub mounts that are
1235 * busy.
1236 */
1237 int may_umount_tree(struct vfsmount *m)
1238 {
1239 struct mount *mnt = real_mount(m);
1240 int actual_refs = 0;
1241 int minimum_refs = 0;
1242 struct mount *p;
1243 BUG_ON(!m);
1244
1245 /* write lock needed for mnt_get_count */
1246 lock_mount_hash();
1247 for (p = mnt; p; p = next_mnt(p, mnt)) {
1248 actual_refs += mnt_get_count(p);
1249 minimum_refs += 2;
1250 }
1251 unlock_mount_hash();
1252
1253 if (actual_refs > minimum_refs)
1254 return 0;
1255
1256 return 1;
1257 }
1258
1259 EXPORT_SYMBOL(may_umount_tree);
1260
1261 /**
1262 * may_umount - check if a mount point is busy
1263 * @mnt: root of mount
1264 *
1265 * This is called to check if a mount point has any
1266 * open files, pwds, chroots or sub mounts. If the
1267 * mount has sub mounts this will return busy
1268 * regardless of whether the sub mounts are busy.
1269 *
1270 * Doesn't take quota and stuff into account. IOW, in some cases it will
1271 * give false negatives. The main reason why it's here is that we need
1272 * a non-destructive way to look for easily umountable filesystems.
1273 */
1274 int may_umount(struct vfsmount *mnt)
1275 {
1276 int ret = 1;
1277 down_read(&namespace_sem);
1278 lock_mount_hash();
1279 if (propagate_mount_busy(real_mount(mnt), 2))
1280 ret = 0;
1281 unlock_mount_hash();
1282 up_read(&namespace_sem);
1283 return ret;
1284 }
1285
1286 EXPORT_SYMBOL(may_umount);
1287
1288 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1289
1290 static void namespace_unlock(void)
1291 {
1292 struct mount *mnt;
1293 struct hlist_head head = unmounted;
1294
1295 if (likely(hlist_empty(&head))) {
1296 up_write(&namespace_sem);
1297 return;
1298 }
1299
1300 head.first->pprev = &head.first;
1301 INIT_HLIST_HEAD(&unmounted);
1302
1303 /* undo decrements we'd done in umount_tree() */
1304 hlist_for_each_entry(mnt, &head, mnt_hash)
1305 if (mnt->mnt_ex_mountpoint.mnt)
1306 mntget(mnt->mnt_ex_mountpoint.mnt);
1307
1308 up_write(&namespace_sem);
1309
1310 synchronize_rcu();
1311
1312 while (!hlist_empty(&head)) {
1313 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1314 hlist_del_init(&mnt->mnt_hash);
1315 if (mnt->mnt_ex_mountpoint.mnt)
1316 path_put(&mnt->mnt_ex_mountpoint);
1317 mntput(&mnt->mnt);
1318 }
1319 }
1320
1321 static inline void namespace_lock(void)
1322 {
1323 down_write(&namespace_sem);
1324 }
1325
1326 /*
1327 * mount_lock must be held
1328 * namespace_sem must be held for write
1329 * how = 0 => just this tree, don't propagate
1330 * how = 1 => propagate; we know that nobody else has reference to any victims
1331 * how = 2 => lazy umount
1332 */
1333 void umount_tree(struct mount *mnt, int how)
1334 {
1335 HLIST_HEAD(tmp_list);
1336 struct mount *p;
1337 struct mount *last = NULL;
1338
1339 for (p = mnt; p; p = next_mnt(p, mnt)) {
1340 hlist_del_init_rcu(&p->mnt_hash);
1341 hlist_add_head(&p->mnt_hash, &tmp_list);
1342 }
1343
1344 hlist_for_each_entry(p, &tmp_list, mnt_hash)
1345 list_del_init(&p->mnt_child);
1346
1347 if (how)
1348 propagate_umount(&tmp_list);
1349
1350 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1351 list_del_init(&p->mnt_expire);
1352 list_del_init(&p->mnt_list);
1353 __touch_mnt_namespace(p->mnt_ns);
1354 p->mnt_ns = NULL;
1355 if (how < 2)
1356 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1357 if (mnt_has_parent(p)) {
1358 hlist_del_init(&p->mnt_mp_list);
1359 put_mountpoint(p->mnt_mp);
1360 mnt_add_count(p->mnt_parent, -1);
1361 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1362 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1363 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1364 p->mnt_mountpoint = p->mnt.mnt_root;
1365 p->mnt_parent = p;
1366 p->mnt_mp = NULL;
1367 }
1368 change_mnt_propagation(p, MS_PRIVATE);
1369 last = p;
1370 }
1371 if (last) {
1372 last->mnt_hash.next = unmounted.first;
1373 if (unmounted.first)
1374 unmounted.first->pprev = &last->mnt_hash.next;
1375 unmounted.first = tmp_list.first;
1376 unmounted.first->pprev = &unmounted.first;
1377 }
1378 }
1379
1380 static void shrink_submounts(struct mount *mnt);
1381
1382 static int do_umount(struct mount *mnt, int flags)
1383 {
1384 struct super_block *sb = mnt->mnt.mnt_sb;
1385 int retval;
1386
1387 retval = security_sb_umount(&mnt->mnt, flags);
1388 if (retval)
1389 return retval;
1390
1391 /*
1392 * Allow userspace to request a mountpoint be expired rather than
1393 * unmounting unconditionally. Unmount only happens if:
1394 * (1) the mark is already set (the mark is cleared by mntput())
1395 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1396 */
1397 if (flags & MNT_EXPIRE) {
1398 if (&mnt->mnt == current->fs->root.mnt ||
1399 flags & (MNT_FORCE | MNT_DETACH))
1400 return -EINVAL;
1401
1402 /*
1403 * probably don't strictly need the lock here if we examined
1404 * all race cases, but it's a slowpath.
1405 */
1406 lock_mount_hash();
1407 if (mnt_get_count(mnt) != 2) {
1408 unlock_mount_hash();
1409 return -EBUSY;
1410 }
1411 unlock_mount_hash();
1412
1413 if (!xchg(&mnt->mnt_expiry_mark, 1))
1414 return -EAGAIN;
1415 }
1416
1417 /*
1418 * If we may have to abort operations to get out of this
1419 * mount, and they will themselves hold resources we must
1420 * allow the fs to do things. In the Unix tradition of
1421 * 'Gee thats tricky lets do it in userspace' the umount_begin
1422 * might fail to complete on the first run through as other tasks
1423 * must return, and the like. Thats for the mount program to worry
1424 * about for the moment.
1425 */
1426
1427 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1428 sb->s_op->umount_begin(sb);
1429 }
1430
1431 /*
1432 * No sense to grab the lock for this test, but test itself looks
1433 * somewhat bogus. Suggestions for better replacement?
1434 * Ho-hum... In principle, we might treat that as umount + switch
1435 * to rootfs. GC would eventually take care of the old vfsmount.
1436 * Actually it makes sense, especially if rootfs would contain a
1437 * /reboot - static binary that would close all descriptors and
1438 * call reboot(9). Then init(8) could umount root and exec /reboot.
1439 */
1440 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1441 /*
1442 * Special case for "unmounting" root ...
1443 * we just try to remount it readonly.
1444 */
1445 if (!capable(CAP_SYS_ADMIN))
1446 return -EPERM;
1447 down_write(&sb->s_umount);
1448 if (!(sb->s_flags & MS_RDONLY))
1449 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1450 up_write(&sb->s_umount);
1451 return retval;
1452 }
1453
1454 namespace_lock();
1455 lock_mount_hash();
1456 event++;
1457
1458 if (flags & MNT_DETACH) {
1459 if (!list_empty(&mnt->mnt_list))
1460 umount_tree(mnt, 2);
1461 retval = 0;
1462 } else {
1463 shrink_submounts(mnt);
1464 retval = -EBUSY;
1465 if (!propagate_mount_busy(mnt, 2)) {
1466 if (!list_empty(&mnt->mnt_list))
1467 umount_tree(mnt, 1);
1468 retval = 0;
1469 }
1470 }
1471 unlock_mount_hash();
1472 namespace_unlock();
1473 return retval;
1474 }
1475
1476 /*
1477 * __detach_mounts - lazily unmount all mounts on the specified dentry
1478 *
1479 * During unlink, rmdir, and d_drop it is possible to loose the path
1480 * to an existing mountpoint, and wind up leaking the mount.
1481 * detach_mounts allows lazily unmounting those mounts instead of
1482 * leaking them.
1483 *
1484 * The caller may hold dentry->d_inode->i_mutex.
1485 */
1486 void __detach_mounts(struct dentry *dentry)
1487 {
1488 struct mountpoint *mp;
1489 struct mount *mnt;
1490
1491 namespace_lock();
1492 mp = lookup_mountpoint(dentry);
1493 if (!mp)
1494 goto out_unlock;
1495
1496 lock_mount_hash();
1497 while (!hlist_empty(&mp->m_list)) {
1498 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1499 umount_tree(mnt, 2);
1500 }
1501 unlock_mount_hash();
1502 put_mountpoint(mp);
1503 out_unlock:
1504 namespace_unlock();
1505 }
1506
1507 /*
1508 * Is the caller allowed to modify his namespace?
1509 */
1510 static inline bool may_mount(void)
1511 {
1512 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1513 }
1514
1515 /*
1516 * Now umount can handle mount points as well as block devices.
1517 * This is important for filesystems which use unnamed block devices.
1518 *
1519 * We now support a flag for forced unmount like the other 'big iron'
1520 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1521 */
1522
1523 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1524 {
1525 struct path path;
1526 struct mount *mnt;
1527 int retval;
1528 int lookup_flags = 0;
1529
1530 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1531 return -EINVAL;
1532
1533 if (!may_mount())
1534 return -EPERM;
1535
1536 if (!(flags & UMOUNT_NOFOLLOW))
1537 lookup_flags |= LOOKUP_FOLLOW;
1538
1539 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1540 if (retval)
1541 goto out;
1542 mnt = real_mount(path.mnt);
1543 retval = -EINVAL;
1544 if (path.dentry != path.mnt->mnt_root)
1545 goto dput_and_out;
1546 if (!check_mnt(mnt))
1547 goto dput_and_out;
1548 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1549 goto dput_and_out;
1550 retval = -EPERM;
1551 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1552 goto dput_and_out;
1553
1554 retval = do_umount(mnt, flags);
1555 dput_and_out:
1556 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1557 dput(path.dentry);
1558 mntput_no_expire(mnt);
1559 out:
1560 return retval;
1561 }
1562
1563 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1564
1565 /*
1566 * The 2.0 compatible umount. No flags.
1567 */
1568 SYSCALL_DEFINE1(oldumount, char __user *, name)
1569 {
1570 return sys_umount(name, 0);
1571 }
1572
1573 #endif
1574
1575 static bool is_mnt_ns_file(struct dentry *dentry)
1576 {
1577 /* Is this a proxy for a mount namespace? */
1578 return dentry->d_op == &ns_dentry_operations &&
1579 dentry->d_fsdata == &mntns_operations;
1580 }
1581
1582 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1583 {
1584 return container_of(ns, struct mnt_namespace, ns);
1585 }
1586
1587 static bool mnt_ns_loop(struct dentry *dentry)
1588 {
1589 /* Could bind mounting the mount namespace inode cause a
1590 * mount namespace loop?
1591 */
1592 struct mnt_namespace *mnt_ns;
1593 if (!is_mnt_ns_file(dentry))
1594 return false;
1595
1596 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1597 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1598 }
1599
1600 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1601 int flag)
1602 {
1603 struct mount *res, *p, *q, *r, *parent;
1604
1605 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1606 return ERR_PTR(-EINVAL);
1607
1608 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1609 return ERR_PTR(-EINVAL);
1610
1611 res = q = clone_mnt(mnt, dentry, flag);
1612 if (IS_ERR(q))
1613 return q;
1614
1615 q->mnt_mountpoint = mnt->mnt_mountpoint;
1616
1617 p = mnt;
1618 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1619 struct mount *s;
1620 if (!is_subdir(r->mnt_mountpoint, dentry))
1621 continue;
1622
1623 for (s = r; s; s = next_mnt(s, r)) {
1624 struct mount *t = NULL;
1625 if (!(flag & CL_COPY_UNBINDABLE) &&
1626 IS_MNT_UNBINDABLE(s)) {
1627 s = skip_mnt_tree(s);
1628 continue;
1629 }
1630 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1631 is_mnt_ns_file(s->mnt.mnt_root)) {
1632 s = skip_mnt_tree(s);
1633 continue;
1634 }
1635 while (p != s->mnt_parent) {
1636 p = p->mnt_parent;
1637 q = q->mnt_parent;
1638 }
1639 p = s;
1640 parent = q;
1641 q = clone_mnt(p, p->mnt.mnt_root, flag);
1642 if (IS_ERR(q))
1643 goto out;
1644 lock_mount_hash();
1645 list_add_tail(&q->mnt_list, &res->mnt_list);
1646 mnt_set_mountpoint(parent, p->mnt_mp, q);
1647 if (!list_empty(&parent->mnt_mounts)) {
1648 t = list_last_entry(&parent->mnt_mounts,
1649 struct mount, mnt_child);
1650 if (t->mnt_mp != p->mnt_mp)
1651 t = NULL;
1652 }
1653 attach_shadowed(q, parent, t);
1654 unlock_mount_hash();
1655 }
1656 }
1657 return res;
1658 out:
1659 if (res) {
1660 lock_mount_hash();
1661 umount_tree(res, 0);
1662 unlock_mount_hash();
1663 }
1664 return q;
1665 }
1666
1667 /* Caller should check returned pointer for errors */
1668
1669 struct vfsmount *collect_mounts(struct path *path)
1670 {
1671 struct mount *tree;
1672 namespace_lock();
1673 tree = copy_tree(real_mount(path->mnt), path->dentry,
1674 CL_COPY_ALL | CL_PRIVATE);
1675 namespace_unlock();
1676 if (IS_ERR(tree))
1677 return ERR_CAST(tree);
1678 return &tree->mnt;
1679 }
1680
1681 void drop_collected_mounts(struct vfsmount *mnt)
1682 {
1683 namespace_lock();
1684 lock_mount_hash();
1685 umount_tree(real_mount(mnt), 0);
1686 unlock_mount_hash();
1687 namespace_unlock();
1688 }
1689
1690 /**
1691 * clone_private_mount - create a private clone of a path
1692 *
1693 * This creates a new vfsmount, which will be the clone of @path. The new will
1694 * not be attached anywhere in the namespace and will be private (i.e. changes
1695 * to the originating mount won't be propagated into this).
1696 *
1697 * Release with mntput().
1698 */
1699 struct vfsmount *clone_private_mount(struct path *path)
1700 {
1701 struct mount *old_mnt = real_mount(path->mnt);
1702 struct mount *new_mnt;
1703
1704 if (IS_MNT_UNBINDABLE(old_mnt))
1705 return ERR_PTR(-EINVAL);
1706
1707 down_read(&namespace_sem);
1708 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1709 up_read(&namespace_sem);
1710 if (IS_ERR(new_mnt))
1711 return ERR_CAST(new_mnt);
1712
1713 return &new_mnt->mnt;
1714 }
1715 EXPORT_SYMBOL_GPL(clone_private_mount);
1716
1717 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1718 struct vfsmount *root)
1719 {
1720 struct mount *mnt;
1721 int res = f(root, arg);
1722 if (res)
1723 return res;
1724 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1725 res = f(&mnt->mnt, arg);
1726 if (res)
1727 return res;
1728 }
1729 return 0;
1730 }
1731
1732 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1733 {
1734 struct mount *p;
1735
1736 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1737 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1738 mnt_release_group_id(p);
1739 }
1740 }
1741
1742 static int invent_group_ids(struct mount *mnt, bool recurse)
1743 {
1744 struct mount *p;
1745
1746 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1747 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1748 int err = mnt_alloc_group_id(p);
1749 if (err) {
1750 cleanup_group_ids(mnt, p);
1751 return err;
1752 }
1753 }
1754 }
1755
1756 return 0;
1757 }
1758
1759 /*
1760 * @source_mnt : mount tree to be attached
1761 * @nd : place the mount tree @source_mnt is attached
1762 * @parent_nd : if non-null, detach the source_mnt from its parent and
1763 * store the parent mount and mountpoint dentry.
1764 * (done when source_mnt is moved)
1765 *
1766 * NOTE: in the table below explains the semantics when a source mount
1767 * of a given type is attached to a destination mount of a given type.
1768 * ---------------------------------------------------------------------------
1769 * | BIND MOUNT OPERATION |
1770 * |**************************************************************************
1771 * | source-->| shared | private | slave | unbindable |
1772 * | dest | | | | |
1773 * | | | | | | |
1774 * | v | | | | |
1775 * |**************************************************************************
1776 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1777 * | | | | | |
1778 * |non-shared| shared (+) | private | slave (*) | invalid |
1779 * ***************************************************************************
1780 * A bind operation clones the source mount and mounts the clone on the
1781 * destination mount.
1782 *
1783 * (++) the cloned mount is propagated to all the mounts in the propagation
1784 * tree of the destination mount and the cloned mount is added to
1785 * the peer group of the source mount.
1786 * (+) the cloned mount is created under the destination mount and is marked
1787 * as shared. The cloned mount is added to the peer group of the source
1788 * mount.
1789 * (+++) the mount is propagated to all the mounts in the propagation tree
1790 * of the destination mount and the cloned mount is made slave
1791 * of the same master as that of the source mount. The cloned mount
1792 * is marked as 'shared and slave'.
1793 * (*) the cloned mount is made a slave of the same master as that of the
1794 * source mount.
1795 *
1796 * ---------------------------------------------------------------------------
1797 * | MOVE MOUNT OPERATION |
1798 * |**************************************************************************
1799 * | source-->| shared | private | slave | unbindable |
1800 * | dest | | | | |
1801 * | | | | | | |
1802 * | v | | | | |
1803 * |**************************************************************************
1804 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1805 * | | | | | |
1806 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1807 * ***************************************************************************
1808 *
1809 * (+) the mount is moved to the destination. And is then propagated to
1810 * all the mounts in the propagation tree of the destination mount.
1811 * (+*) the mount is moved to the destination.
1812 * (+++) the mount is moved to the destination and is then propagated to
1813 * all the mounts belonging to the destination mount's propagation tree.
1814 * the mount is marked as 'shared and slave'.
1815 * (*) the mount continues to be a slave at the new location.
1816 *
1817 * if the source mount is a tree, the operations explained above is
1818 * applied to each mount in the tree.
1819 * Must be called without spinlocks held, since this function can sleep
1820 * in allocations.
1821 */
1822 static int attach_recursive_mnt(struct mount *source_mnt,
1823 struct mount *dest_mnt,
1824 struct mountpoint *dest_mp,
1825 struct path *parent_path)
1826 {
1827 HLIST_HEAD(tree_list);
1828 struct mount *child, *p;
1829 struct hlist_node *n;
1830 int err;
1831
1832 if (IS_MNT_SHARED(dest_mnt)) {
1833 err = invent_group_ids(source_mnt, true);
1834 if (err)
1835 goto out;
1836 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1837 lock_mount_hash();
1838 if (err)
1839 goto out_cleanup_ids;
1840 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1841 set_mnt_shared(p);
1842 } else {
1843 lock_mount_hash();
1844 }
1845 if (parent_path) {
1846 detach_mnt(source_mnt, parent_path);
1847 attach_mnt(source_mnt, dest_mnt, dest_mp);
1848 touch_mnt_namespace(source_mnt->mnt_ns);
1849 } else {
1850 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1851 commit_tree(source_mnt, NULL);
1852 }
1853
1854 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1855 struct mount *q;
1856 hlist_del_init(&child->mnt_hash);
1857 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1858 child->mnt_mountpoint);
1859 commit_tree(child, q);
1860 }
1861 unlock_mount_hash();
1862
1863 return 0;
1864
1865 out_cleanup_ids:
1866 while (!hlist_empty(&tree_list)) {
1867 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1868 umount_tree(child, 0);
1869 }
1870 unlock_mount_hash();
1871 cleanup_group_ids(source_mnt, NULL);
1872 out:
1873 return err;
1874 }
1875
1876 static struct mountpoint *lock_mount(struct path *path)
1877 {
1878 struct vfsmount *mnt;
1879 struct dentry *dentry = path->dentry;
1880 retry:
1881 mutex_lock(&dentry->d_inode->i_mutex);
1882 if (unlikely(cant_mount(dentry))) {
1883 mutex_unlock(&dentry->d_inode->i_mutex);
1884 return ERR_PTR(-ENOENT);
1885 }
1886 namespace_lock();
1887 mnt = lookup_mnt(path);
1888 if (likely(!mnt)) {
1889 struct mountpoint *mp = lookup_mountpoint(dentry);
1890 if (!mp)
1891 mp = new_mountpoint(dentry);
1892 if (IS_ERR(mp)) {
1893 namespace_unlock();
1894 mutex_unlock(&dentry->d_inode->i_mutex);
1895 return mp;
1896 }
1897 return mp;
1898 }
1899 namespace_unlock();
1900 mutex_unlock(&path->dentry->d_inode->i_mutex);
1901 path_put(path);
1902 path->mnt = mnt;
1903 dentry = path->dentry = dget(mnt->mnt_root);
1904 goto retry;
1905 }
1906
1907 static void unlock_mount(struct mountpoint *where)
1908 {
1909 struct dentry *dentry = where->m_dentry;
1910 put_mountpoint(where);
1911 namespace_unlock();
1912 mutex_unlock(&dentry->d_inode->i_mutex);
1913 }
1914
1915 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1916 {
1917 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1918 return -EINVAL;
1919
1920 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1921 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1922 return -ENOTDIR;
1923
1924 return attach_recursive_mnt(mnt, p, mp, NULL);
1925 }
1926
1927 /*
1928 * Sanity check the flags to change_mnt_propagation.
1929 */
1930
1931 static int flags_to_propagation_type(int flags)
1932 {
1933 int type = flags & ~(MS_REC | MS_SILENT);
1934
1935 /* Fail if any non-propagation flags are set */
1936 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1937 return 0;
1938 /* Only one propagation flag should be set */
1939 if (!is_power_of_2(type))
1940 return 0;
1941 return type;
1942 }
1943
1944 /*
1945 * recursively change the type of the mountpoint.
1946 */
1947 static int do_change_type(struct path *path, int flag)
1948 {
1949 struct mount *m;
1950 struct mount *mnt = real_mount(path->mnt);
1951 int recurse = flag & MS_REC;
1952 int type;
1953 int err = 0;
1954
1955 if (path->dentry != path->mnt->mnt_root)
1956 return -EINVAL;
1957
1958 type = flags_to_propagation_type(flag);
1959 if (!type)
1960 return -EINVAL;
1961
1962 namespace_lock();
1963 if (type == MS_SHARED) {
1964 err = invent_group_ids(mnt, recurse);
1965 if (err)
1966 goto out_unlock;
1967 }
1968
1969 lock_mount_hash();
1970 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1971 change_mnt_propagation(m, type);
1972 unlock_mount_hash();
1973
1974 out_unlock:
1975 namespace_unlock();
1976 return err;
1977 }
1978
1979 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1980 {
1981 struct mount *child;
1982 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1983 if (!is_subdir(child->mnt_mountpoint, dentry))
1984 continue;
1985
1986 if (child->mnt.mnt_flags & MNT_LOCKED)
1987 return true;
1988 }
1989 return false;
1990 }
1991
1992 /*
1993 * do loopback mount.
1994 */
1995 static int do_loopback(struct path *path, const char *old_name,
1996 int recurse)
1997 {
1998 struct path old_path;
1999 struct mount *mnt = NULL, *old, *parent;
2000 struct mountpoint *mp;
2001 int err;
2002 if (!old_name || !*old_name)
2003 return -EINVAL;
2004 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2005 if (err)
2006 return err;
2007
2008 err = -EINVAL;
2009 if (mnt_ns_loop(old_path.dentry))
2010 goto out;
2011
2012 mp = lock_mount(path);
2013 err = PTR_ERR(mp);
2014 if (IS_ERR(mp))
2015 goto out;
2016
2017 old = real_mount(old_path.mnt);
2018 parent = real_mount(path->mnt);
2019
2020 err = -EINVAL;
2021 if (IS_MNT_UNBINDABLE(old))
2022 goto out2;
2023
2024 if (!check_mnt(parent))
2025 goto out2;
2026
2027 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2028 goto out2;
2029
2030 if (!recurse && has_locked_children(old, old_path.dentry))
2031 goto out2;
2032
2033 if (recurse)
2034 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2035 else
2036 mnt = clone_mnt(old, old_path.dentry, 0);
2037
2038 if (IS_ERR(mnt)) {
2039 err = PTR_ERR(mnt);
2040 goto out2;
2041 }
2042
2043 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2044
2045 err = graft_tree(mnt, parent, mp);
2046 if (err) {
2047 lock_mount_hash();
2048 umount_tree(mnt, 0);
2049 unlock_mount_hash();
2050 }
2051 out2:
2052 unlock_mount(mp);
2053 out:
2054 path_put(&old_path);
2055 return err;
2056 }
2057
2058 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2059 {
2060 int error = 0;
2061 int readonly_request = 0;
2062
2063 if (ms_flags & MS_RDONLY)
2064 readonly_request = 1;
2065 if (readonly_request == __mnt_is_readonly(mnt))
2066 return 0;
2067
2068 if (readonly_request)
2069 error = mnt_make_readonly(real_mount(mnt));
2070 else
2071 __mnt_unmake_readonly(real_mount(mnt));
2072 return error;
2073 }
2074
2075 /*
2076 * change filesystem flags. dir should be a physical root of filesystem.
2077 * If you've mounted a non-root directory somewhere and want to do remount
2078 * on it - tough luck.
2079 */
2080 static int do_remount(struct path *path, int flags, int mnt_flags,
2081 void *data)
2082 {
2083 int err;
2084 struct super_block *sb = path->mnt->mnt_sb;
2085 struct mount *mnt = real_mount(path->mnt);
2086
2087 if (!check_mnt(mnt))
2088 return -EINVAL;
2089
2090 if (path->dentry != path->mnt->mnt_root)
2091 return -EINVAL;
2092
2093 /* Don't allow changing of locked mnt flags.
2094 *
2095 * No locks need to be held here while testing the various
2096 * MNT_LOCK flags because those flags can never be cleared
2097 * once they are set.
2098 */
2099 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2100 !(mnt_flags & MNT_READONLY)) {
2101 return -EPERM;
2102 }
2103 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2104 !(mnt_flags & MNT_NODEV)) {
2105 /* Was the nodev implicitly added in mount? */
2106 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2107 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2108 mnt_flags |= MNT_NODEV;
2109 } else {
2110 return -EPERM;
2111 }
2112 }
2113 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2114 !(mnt_flags & MNT_NOSUID)) {
2115 return -EPERM;
2116 }
2117 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2118 !(mnt_flags & MNT_NOEXEC)) {
2119 return -EPERM;
2120 }
2121 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2122 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2123 return -EPERM;
2124 }
2125
2126 err = security_sb_remount(sb, data);
2127 if (err)
2128 return err;
2129
2130 down_write(&sb->s_umount);
2131 if (flags & MS_BIND)
2132 err = change_mount_flags(path->mnt, flags);
2133 else if (!capable(CAP_SYS_ADMIN))
2134 err = -EPERM;
2135 else
2136 err = do_remount_sb(sb, flags, data, 0);
2137 if (!err) {
2138 lock_mount_hash();
2139 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2140 mnt->mnt.mnt_flags = mnt_flags;
2141 touch_mnt_namespace(mnt->mnt_ns);
2142 unlock_mount_hash();
2143 }
2144 up_write(&sb->s_umount);
2145 return err;
2146 }
2147
2148 static inline int tree_contains_unbindable(struct mount *mnt)
2149 {
2150 struct mount *p;
2151 for (p = mnt; p; p = next_mnt(p, mnt)) {
2152 if (IS_MNT_UNBINDABLE(p))
2153 return 1;
2154 }
2155 return 0;
2156 }
2157
2158 static int do_move_mount(struct path *path, const char *old_name)
2159 {
2160 struct path old_path, parent_path;
2161 struct mount *p;
2162 struct mount *old;
2163 struct mountpoint *mp;
2164 int err;
2165 if (!old_name || !*old_name)
2166 return -EINVAL;
2167 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2168 if (err)
2169 return err;
2170
2171 mp = lock_mount(path);
2172 err = PTR_ERR(mp);
2173 if (IS_ERR(mp))
2174 goto out;
2175
2176 old = real_mount(old_path.mnt);
2177 p = real_mount(path->mnt);
2178
2179 err = -EINVAL;
2180 if (!check_mnt(p) || !check_mnt(old))
2181 goto out1;
2182
2183 if (old->mnt.mnt_flags & MNT_LOCKED)
2184 goto out1;
2185
2186 err = -EINVAL;
2187 if (old_path.dentry != old_path.mnt->mnt_root)
2188 goto out1;
2189
2190 if (!mnt_has_parent(old))
2191 goto out1;
2192
2193 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2194 S_ISDIR(old_path.dentry->d_inode->i_mode))
2195 goto out1;
2196 /*
2197 * Don't move a mount residing in a shared parent.
2198 */
2199 if (IS_MNT_SHARED(old->mnt_parent))
2200 goto out1;
2201 /*
2202 * Don't move a mount tree containing unbindable mounts to a destination
2203 * mount which is shared.
2204 */
2205 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2206 goto out1;
2207 err = -ELOOP;
2208 for (; mnt_has_parent(p); p = p->mnt_parent)
2209 if (p == old)
2210 goto out1;
2211
2212 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2213 if (err)
2214 goto out1;
2215
2216 /* if the mount is moved, it should no longer be expire
2217 * automatically */
2218 list_del_init(&old->mnt_expire);
2219 out1:
2220 unlock_mount(mp);
2221 out:
2222 if (!err)
2223 path_put(&parent_path);
2224 path_put(&old_path);
2225 return err;
2226 }
2227
2228 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2229 {
2230 int err;
2231 const char *subtype = strchr(fstype, '.');
2232 if (subtype) {
2233 subtype++;
2234 err = -EINVAL;
2235 if (!subtype[0])
2236 goto err;
2237 } else
2238 subtype = "";
2239
2240 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2241 err = -ENOMEM;
2242 if (!mnt->mnt_sb->s_subtype)
2243 goto err;
2244 return mnt;
2245
2246 err:
2247 mntput(mnt);
2248 return ERR_PTR(err);
2249 }
2250
2251 /*
2252 * add a mount into a namespace's mount tree
2253 */
2254 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2255 {
2256 struct mountpoint *mp;
2257 struct mount *parent;
2258 int err;
2259
2260 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2261
2262 mp = lock_mount(path);
2263 if (IS_ERR(mp))
2264 return PTR_ERR(mp);
2265
2266 parent = real_mount(path->mnt);
2267 err = -EINVAL;
2268 if (unlikely(!check_mnt(parent))) {
2269 /* that's acceptable only for automounts done in private ns */
2270 if (!(mnt_flags & MNT_SHRINKABLE))
2271 goto unlock;
2272 /* ... and for those we'd better have mountpoint still alive */
2273 if (!parent->mnt_ns)
2274 goto unlock;
2275 }
2276
2277 /* Refuse the same filesystem on the same mount point */
2278 err = -EBUSY;
2279 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2280 path->mnt->mnt_root == path->dentry)
2281 goto unlock;
2282
2283 err = -EINVAL;
2284 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2285 goto unlock;
2286
2287 newmnt->mnt.mnt_flags = mnt_flags;
2288 err = graft_tree(newmnt, parent, mp);
2289
2290 unlock:
2291 unlock_mount(mp);
2292 return err;
2293 }
2294
2295 /*
2296 * create a new mount for userspace and request it to be added into the
2297 * namespace's tree
2298 */
2299 static int do_new_mount(struct path *path, const char *fstype, int flags,
2300 int mnt_flags, const char *name, void *data)
2301 {
2302 struct file_system_type *type;
2303 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2304 struct vfsmount *mnt;
2305 int err;
2306
2307 if (!fstype)
2308 return -EINVAL;
2309
2310 type = get_fs_type(fstype);
2311 if (!type)
2312 return -ENODEV;
2313
2314 if (user_ns != &init_user_ns) {
2315 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2316 put_filesystem(type);
2317 return -EPERM;
2318 }
2319 /* Only in special cases allow devices from mounts
2320 * created outside the initial user namespace.
2321 */
2322 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2323 flags |= MS_NODEV;
2324 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2325 }
2326 }
2327
2328 mnt = vfs_kern_mount(type, flags, name, data);
2329 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2330 !mnt->mnt_sb->s_subtype)
2331 mnt = fs_set_subtype(mnt, fstype);
2332
2333 put_filesystem(type);
2334 if (IS_ERR(mnt))
2335 return PTR_ERR(mnt);
2336
2337 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2338 if (err)
2339 mntput(mnt);
2340 return err;
2341 }
2342
2343 int finish_automount(struct vfsmount *m, struct path *path)
2344 {
2345 struct mount *mnt = real_mount(m);
2346 int err;
2347 /* The new mount record should have at least 2 refs to prevent it being
2348 * expired before we get a chance to add it
2349 */
2350 BUG_ON(mnt_get_count(mnt) < 2);
2351
2352 if (m->mnt_sb == path->mnt->mnt_sb &&
2353 m->mnt_root == path->dentry) {
2354 err = -ELOOP;
2355 goto fail;
2356 }
2357
2358 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2359 if (!err)
2360 return 0;
2361 fail:
2362 /* remove m from any expiration list it may be on */
2363 if (!list_empty(&mnt->mnt_expire)) {
2364 namespace_lock();
2365 list_del_init(&mnt->mnt_expire);
2366 namespace_unlock();
2367 }
2368 mntput(m);
2369 mntput(m);
2370 return err;
2371 }
2372
2373 /**
2374 * mnt_set_expiry - Put a mount on an expiration list
2375 * @mnt: The mount to list.
2376 * @expiry_list: The list to add the mount to.
2377 */
2378 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2379 {
2380 namespace_lock();
2381
2382 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2383
2384 namespace_unlock();
2385 }
2386 EXPORT_SYMBOL(mnt_set_expiry);
2387
2388 /*
2389 * process a list of expirable mountpoints with the intent of discarding any
2390 * mountpoints that aren't in use and haven't been touched since last we came
2391 * here
2392 */
2393 void mark_mounts_for_expiry(struct list_head *mounts)
2394 {
2395 struct mount *mnt, *next;
2396 LIST_HEAD(graveyard);
2397
2398 if (list_empty(mounts))
2399 return;
2400
2401 namespace_lock();
2402 lock_mount_hash();
2403
2404 /* extract from the expiration list every vfsmount that matches the
2405 * following criteria:
2406 * - only referenced by its parent vfsmount
2407 * - still marked for expiry (marked on the last call here; marks are
2408 * cleared by mntput())
2409 */
2410 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2411 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2412 propagate_mount_busy(mnt, 1))
2413 continue;
2414 list_move(&mnt->mnt_expire, &graveyard);
2415 }
2416 while (!list_empty(&graveyard)) {
2417 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2418 touch_mnt_namespace(mnt->mnt_ns);
2419 umount_tree(mnt, 1);
2420 }
2421 unlock_mount_hash();
2422 namespace_unlock();
2423 }
2424
2425 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2426
2427 /*
2428 * Ripoff of 'select_parent()'
2429 *
2430 * search the list of submounts for a given mountpoint, and move any
2431 * shrinkable submounts to the 'graveyard' list.
2432 */
2433 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2434 {
2435 struct mount *this_parent = parent;
2436 struct list_head *next;
2437 int found = 0;
2438
2439 repeat:
2440 next = this_parent->mnt_mounts.next;
2441 resume:
2442 while (next != &this_parent->mnt_mounts) {
2443 struct list_head *tmp = next;
2444 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2445
2446 next = tmp->next;
2447 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2448 continue;
2449 /*
2450 * Descend a level if the d_mounts list is non-empty.
2451 */
2452 if (!list_empty(&mnt->mnt_mounts)) {
2453 this_parent = mnt;
2454 goto repeat;
2455 }
2456
2457 if (!propagate_mount_busy(mnt, 1)) {
2458 list_move_tail(&mnt->mnt_expire, graveyard);
2459 found++;
2460 }
2461 }
2462 /*
2463 * All done at this level ... ascend and resume the search
2464 */
2465 if (this_parent != parent) {
2466 next = this_parent->mnt_child.next;
2467 this_parent = this_parent->mnt_parent;
2468 goto resume;
2469 }
2470 return found;
2471 }
2472
2473 /*
2474 * process a list of expirable mountpoints with the intent of discarding any
2475 * submounts of a specific parent mountpoint
2476 *
2477 * mount_lock must be held for write
2478 */
2479 static void shrink_submounts(struct mount *mnt)
2480 {
2481 LIST_HEAD(graveyard);
2482 struct mount *m;
2483
2484 /* extract submounts of 'mountpoint' from the expiration list */
2485 while (select_submounts(mnt, &graveyard)) {
2486 while (!list_empty(&graveyard)) {
2487 m = list_first_entry(&graveyard, struct mount,
2488 mnt_expire);
2489 touch_mnt_namespace(m->mnt_ns);
2490 umount_tree(m, 1);
2491 }
2492 }
2493 }
2494
2495 /*
2496 * Some copy_from_user() implementations do not return the exact number of
2497 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2498 * Note that this function differs from copy_from_user() in that it will oops
2499 * on bad values of `to', rather than returning a short copy.
2500 */
2501 static long exact_copy_from_user(void *to, const void __user * from,
2502 unsigned long n)
2503 {
2504 char *t = to;
2505 const char __user *f = from;
2506 char c;
2507
2508 if (!access_ok(VERIFY_READ, from, n))
2509 return n;
2510
2511 while (n) {
2512 if (__get_user(c, f)) {
2513 memset(t, 0, n);
2514 break;
2515 }
2516 *t++ = c;
2517 f++;
2518 n--;
2519 }
2520 return n;
2521 }
2522
2523 int copy_mount_options(const void __user * data, unsigned long *where)
2524 {
2525 int i;
2526 unsigned long page;
2527 unsigned long size;
2528
2529 *where = 0;
2530 if (!data)
2531 return 0;
2532
2533 if (!(page = __get_free_page(GFP_KERNEL)))
2534 return -ENOMEM;
2535
2536 /* We only care that *some* data at the address the user
2537 * gave us is valid. Just in case, we'll zero
2538 * the remainder of the page.
2539 */
2540 /* copy_from_user cannot cross TASK_SIZE ! */
2541 size = TASK_SIZE - (unsigned long)data;
2542 if (size > PAGE_SIZE)
2543 size = PAGE_SIZE;
2544
2545 i = size - exact_copy_from_user((void *)page, data, size);
2546 if (!i) {
2547 free_page(page);
2548 return -EFAULT;
2549 }
2550 if (i != PAGE_SIZE)
2551 memset((char *)page + i, 0, PAGE_SIZE - i);
2552 *where = page;
2553 return 0;
2554 }
2555
2556 char *copy_mount_string(const void __user *data)
2557 {
2558 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2559 }
2560
2561 /*
2562 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2563 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2564 *
2565 * data is a (void *) that can point to any structure up to
2566 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2567 * information (or be NULL).
2568 *
2569 * Pre-0.97 versions of mount() didn't have a flags word.
2570 * When the flags word was introduced its top half was required
2571 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2572 * Therefore, if this magic number is present, it carries no information
2573 * and must be discarded.
2574 */
2575 long do_mount(const char *dev_name, const char __user *dir_name,
2576 const char *type_page, unsigned long flags, void *data_page)
2577 {
2578 struct path path;
2579 int retval = 0;
2580 int mnt_flags = 0;
2581
2582 /* Discard magic */
2583 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2584 flags &= ~MS_MGC_MSK;
2585
2586 /* Basic sanity checks */
2587 if (data_page)
2588 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2589
2590 /* ... and get the mountpoint */
2591 retval = user_path(dir_name, &path);
2592 if (retval)
2593 return retval;
2594
2595 retval = security_sb_mount(dev_name, &path,
2596 type_page, flags, data_page);
2597 if (!retval && !may_mount())
2598 retval = -EPERM;
2599 if (retval)
2600 goto dput_out;
2601
2602 /* Default to relatime unless overriden */
2603 if (!(flags & MS_NOATIME))
2604 mnt_flags |= MNT_RELATIME;
2605
2606 /* Separate the per-mountpoint flags */
2607 if (flags & MS_NOSUID)
2608 mnt_flags |= MNT_NOSUID;
2609 if (flags & MS_NODEV)
2610 mnt_flags |= MNT_NODEV;
2611 if (flags & MS_NOEXEC)
2612 mnt_flags |= MNT_NOEXEC;
2613 if (flags & MS_NOATIME)
2614 mnt_flags |= MNT_NOATIME;
2615 if (flags & MS_NODIRATIME)
2616 mnt_flags |= MNT_NODIRATIME;
2617 if (flags & MS_STRICTATIME)
2618 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2619 if (flags & MS_RDONLY)
2620 mnt_flags |= MNT_READONLY;
2621
2622 /* The default atime for remount is preservation */
2623 if ((flags & MS_REMOUNT) &&
2624 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2625 MS_STRICTATIME)) == 0)) {
2626 mnt_flags &= ~MNT_ATIME_MASK;
2627 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2628 }
2629
2630 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2631 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2632 MS_STRICTATIME);
2633
2634 if (flags & MS_REMOUNT)
2635 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2636 data_page);
2637 else if (flags & MS_BIND)
2638 retval = do_loopback(&path, dev_name, flags & MS_REC);
2639 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2640 retval = do_change_type(&path, flags);
2641 else if (flags & MS_MOVE)
2642 retval = do_move_mount(&path, dev_name);
2643 else
2644 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2645 dev_name, data_page);
2646 dput_out:
2647 path_put(&path);
2648 return retval;
2649 }
2650
2651 static void free_mnt_ns(struct mnt_namespace *ns)
2652 {
2653 ns_free_inum(&ns->ns);
2654 put_user_ns(ns->user_ns);
2655 kfree(ns);
2656 }
2657
2658 /*
2659 * Assign a sequence number so we can detect when we attempt to bind
2660 * mount a reference to an older mount namespace into the current
2661 * mount namespace, preventing reference counting loops. A 64bit
2662 * number incrementing at 10Ghz will take 12,427 years to wrap which
2663 * is effectively never, so we can ignore the possibility.
2664 */
2665 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2666
2667 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2668 {
2669 struct mnt_namespace *new_ns;
2670 int ret;
2671
2672 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2673 if (!new_ns)
2674 return ERR_PTR(-ENOMEM);
2675 ret = ns_alloc_inum(&new_ns->ns);
2676 if (ret) {
2677 kfree(new_ns);
2678 return ERR_PTR(ret);
2679 }
2680 new_ns->ns.ops = &mntns_operations;
2681 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2682 atomic_set(&new_ns->count, 1);
2683 new_ns->root = NULL;
2684 INIT_LIST_HEAD(&new_ns->list);
2685 init_waitqueue_head(&new_ns->poll);
2686 new_ns->event = 0;
2687 new_ns->user_ns = get_user_ns(user_ns);
2688 return new_ns;
2689 }
2690
2691 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2692 struct user_namespace *user_ns, struct fs_struct *new_fs)
2693 {
2694 struct mnt_namespace *new_ns;
2695 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2696 struct mount *p, *q;
2697 struct mount *old;
2698 struct mount *new;
2699 int copy_flags;
2700
2701 BUG_ON(!ns);
2702
2703 if (likely(!(flags & CLONE_NEWNS))) {
2704 get_mnt_ns(ns);
2705 return ns;
2706 }
2707
2708 old = ns->root;
2709
2710 new_ns = alloc_mnt_ns(user_ns);
2711 if (IS_ERR(new_ns))
2712 return new_ns;
2713
2714 namespace_lock();
2715 /* First pass: copy the tree topology */
2716 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2717 if (user_ns != ns->user_ns)
2718 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2719 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2720 if (IS_ERR(new)) {
2721 namespace_unlock();
2722 free_mnt_ns(new_ns);
2723 return ERR_CAST(new);
2724 }
2725 new_ns->root = new;
2726 list_add_tail(&new_ns->list, &new->mnt_list);
2727
2728 /*
2729 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2730 * as belonging to new namespace. We have already acquired a private
2731 * fs_struct, so tsk->fs->lock is not needed.
2732 */
2733 p = old;
2734 q = new;
2735 while (p) {
2736 q->mnt_ns = new_ns;
2737 if (new_fs) {
2738 if (&p->mnt == new_fs->root.mnt) {
2739 new_fs->root.mnt = mntget(&q->mnt);
2740 rootmnt = &p->mnt;
2741 }
2742 if (&p->mnt == new_fs->pwd.mnt) {
2743 new_fs->pwd.mnt = mntget(&q->mnt);
2744 pwdmnt = &p->mnt;
2745 }
2746 }
2747 p = next_mnt(p, old);
2748 q = next_mnt(q, new);
2749 if (!q)
2750 break;
2751 while (p->mnt.mnt_root != q->mnt.mnt_root)
2752 p = next_mnt(p, old);
2753 }
2754 namespace_unlock();
2755
2756 if (rootmnt)
2757 mntput(rootmnt);
2758 if (pwdmnt)
2759 mntput(pwdmnt);
2760
2761 return new_ns;
2762 }
2763
2764 /**
2765 * create_mnt_ns - creates a private namespace and adds a root filesystem
2766 * @mnt: pointer to the new root filesystem mountpoint
2767 */
2768 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2769 {
2770 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2771 if (!IS_ERR(new_ns)) {
2772 struct mount *mnt = real_mount(m);
2773 mnt->mnt_ns = new_ns;
2774 new_ns->root = mnt;
2775 list_add(&mnt->mnt_list, &new_ns->list);
2776 } else {
2777 mntput(m);
2778 }
2779 return new_ns;
2780 }
2781
2782 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2783 {
2784 struct mnt_namespace *ns;
2785 struct super_block *s;
2786 struct path path;
2787 int err;
2788
2789 ns = create_mnt_ns(mnt);
2790 if (IS_ERR(ns))
2791 return ERR_CAST(ns);
2792
2793 err = vfs_path_lookup(mnt->mnt_root, mnt,
2794 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2795
2796 put_mnt_ns(ns);
2797
2798 if (err)
2799 return ERR_PTR(err);
2800
2801 /* trade a vfsmount reference for active sb one */
2802 s = path.mnt->mnt_sb;
2803 atomic_inc(&s->s_active);
2804 mntput(path.mnt);
2805 /* lock the sucker */
2806 down_write(&s->s_umount);
2807 /* ... and return the root of (sub)tree on it */
2808 return path.dentry;
2809 }
2810 EXPORT_SYMBOL(mount_subtree);
2811
2812 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2813 char __user *, type, unsigned long, flags, void __user *, data)
2814 {
2815 int ret;
2816 char *kernel_type;
2817 char *kernel_dev;
2818 unsigned long data_page;
2819
2820 kernel_type = copy_mount_string(type);
2821 ret = PTR_ERR(kernel_type);
2822 if (IS_ERR(kernel_type))
2823 goto out_type;
2824
2825 kernel_dev = copy_mount_string(dev_name);
2826 ret = PTR_ERR(kernel_dev);
2827 if (IS_ERR(kernel_dev))
2828 goto out_dev;
2829
2830 ret = copy_mount_options(data, &data_page);
2831 if (ret < 0)
2832 goto out_data;
2833
2834 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2835 (void *) data_page);
2836
2837 free_page(data_page);
2838 out_data:
2839 kfree(kernel_dev);
2840 out_dev:
2841 kfree(kernel_type);
2842 out_type:
2843 return ret;
2844 }
2845
2846 /*
2847 * Return true if path is reachable from root
2848 *
2849 * namespace_sem or mount_lock is held
2850 */
2851 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2852 const struct path *root)
2853 {
2854 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2855 dentry = mnt->mnt_mountpoint;
2856 mnt = mnt->mnt_parent;
2857 }
2858 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2859 }
2860
2861 int path_is_under(struct path *path1, struct path *path2)
2862 {
2863 int res;
2864 read_seqlock_excl(&mount_lock);
2865 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2866 read_sequnlock_excl(&mount_lock);
2867 return res;
2868 }
2869 EXPORT_SYMBOL(path_is_under);
2870
2871 /*
2872 * pivot_root Semantics:
2873 * Moves the root file system of the current process to the directory put_old,
2874 * makes new_root as the new root file system of the current process, and sets
2875 * root/cwd of all processes which had them on the current root to new_root.
2876 *
2877 * Restrictions:
2878 * The new_root and put_old must be directories, and must not be on the
2879 * same file system as the current process root. The put_old must be
2880 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2881 * pointed to by put_old must yield the same directory as new_root. No other
2882 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2883 *
2884 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2885 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2886 * in this situation.
2887 *
2888 * Notes:
2889 * - we don't move root/cwd if they are not at the root (reason: if something
2890 * cared enough to change them, it's probably wrong to force them elsewhere)
2891 * - it's okay to pick a root that isn't the root of a file system, e.g.
2892 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2893 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2894 * first.
2895 */
2896 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2897 const char __user *, put_old)
2898 {
2899 struct path new, old, parent_path, root_parent, root;
2900 struct mount *new_mnt, *root_mnt, *old_mnt;
2901 struct mountpoint *old_mp, *root_mp;
2902 int error;
2903
2904 if (!may_mount())
2905 return -EPERM;
2906
2907 error = user_path_dir(new_root, &new);
2908 if (error)
2909 goto out0;
2910
2911 error = user_path_dir(put_old, &old);
2912 if (error)
2913 goto out1;
2914
2915 error = security_sb_pivotroot(&old, &new);
2916 if (error)
2917 goto out2;
2918
2919 get_fs_root(current->fs, &root);
2920 old_mp = lock_mount(&old);
2921 error = PTR_ERR(old_mp);
2922 if (IS_ERR(old_mp))
2923 goto out3;
2924
2925 error = -EINVAL;
2926 new_mnt = real_mount(new.mnt);
2927 root_mnt = real_mount(root.mnt);
2928 old_mnt = real_mount(old.mnt);
2929 if (IS_MNT_SHARED(old_mnt) ||
2930 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2931 IS_MNT_SHARED(root_mnt->mnt_parent))
2932 goto out4;
2933 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2934 goto out4;
2935 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2936 goto out4;
2937 error = -ENOENT;
2938 if (d_unlinked(new.dentry))
2939 goto out4;
2940 error = -EBUSY;
2941 if (new_mnt == root_mnt || old_mnt == root_mnt)
2942 goto out4; /* loop, on the same file system */
2943 error = -EINVAL;
2944 if (root.mnt->mnt_root != root.dentry)
2945 goto out4; /* not a mountpoint */
2946 if (!mnt_has_parent(root_mnt))
2947 goto out4; /* not attached */
2948 root_mp = root_mnt->mnt_mp;
2949 if (new.mnt->mnt_root != new.dentry)
2950 goto out4; /* not a mountpoint */
2951 if (!mnt_has_parent(new_mnt))
2952 goto out4; /* not attached */
2953 /* make sure we can reach put_old from new_root */
2954 if (!is_path_reachable(old_mnt, old.dentry, &new))
2955 goto out4;
2956 /* make certain new is below the root */
2957 if (!is_path_reachable(new_mnt, new.dentry, &root))
2958 goto out4;
2959 root_mp->m_count++; /* pin it so it won't go away */
2960 lock_mount_hash();
2961 detach_mnt(new_mnt, &parent_path);
2962 detach_mnt(root_mnt, &root_parent);
2963 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2964 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2965 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2966 }
2967 /* mount old root on put_old */
2968 attach_mnt(root_mnt, old_mnt, old_mp);
2969 /* mount new_root on / */
2970 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2971 touch_mnt_namespace(current->nsproxy->mnt_ns);
2972 /* A moved mount should not expire automatically */
2973 list_del_init(&new_mnt->mnt_expire);
2974 unlock_mount_hash();
2975 chroot_fs_refs(&root, &new);
2976 put_mountpoint(root_mp);
2977 error = 0;
2978 out4:
2979 unlock_mount(old_mp);
2980 if (!error) {
2981 path_put(&root_parent);
2982 path_put(&parent_path);
2983 }
2984 out3:
2985 path_put(&root);
2986 out2:
2987 path_put(&old);
2988 out1:
2989 path_put(&new);
2990 out0:
2991 return error;
2992 }
2993
2994 static void __init init_mount_tree(void)
2995 {
2996 struct vfsmount *mnt;
2997 struct mnt_namespace *ns;
2998 struct path root;
2999 struct file_system_type *type;
3000
3001 type = get_fs_type("rootfs");
3002 if (!type)
3003 panic("Can't find rootfs type");
3004 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3005 put_filesystem(type);
3006 if (IS_ERR(mnt))
3007 panic("Can't create rootfs");
3008
3009 ns = create_mnt_ns(mnt);
3010 if (IS_ERR(ns))
3011 panic("Can't allocate initial namespace");
3012
3013 init_task.nsproxy->mnt_ns = ns;
3014 get_mnt_ns(ns);
3015
3016 root.mnt = mnt;
3017 root.dentry = mnt->mnt_root;
3018 mnt->mnt_flags |= MNT_LOCKED;
3019
3020 set_fs_pwd(current->fs, &root);
3021 set_fs_root(current->fs, &root);
3022 }
3023
3024 void __init mnt_init(void)
3025 {
3026 unsigned u;
3027 int err;
3028
3029 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3030 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3031
3032 mount_hashtable = alloc_large_system_hash("Mount-cache",
3033 sizeof(struct hlist_head),
3034 mhash_entries, 19,
3035 0,
3036 &m_hash_shift, &m_hash_mask, 0, 0);
3037 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3038 sizeof(struct hlist_head),
3039 mphash_entries, 19,
3040 0,
3041 &mp_hash_shift, &mp_hash_mask, 0, 0);
3042
3043 if (!mount_hashtable || !mountpoint_hashtable)
3044 panic("Failed to allocate mount hash table\n");
3045
3046 for (u = 0; u <= m_hash_mask; u++)
3047 INIT_HLIST_HEAD(&mount_hashtable[u]);
3048 for (u = 0; u <= mp_hash_mask; u++)
3049 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3050
3051 kernfs_init();
3052
3053 err = sysfs_init();
3054 if (err)
3055 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3056 __func__, err);
3057 fs_kobj = kobject_create_and_add("fs", NULL);
3058 if (!fs_kobj)
3059 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3060 init_rootfs();
3061 init_mount_tree();
3062 }
3063
3064 void put_mnt_ns(struct mnt_namespace *ns)
3065 {
3066 if (!atomic_dec_and_test(&ns->count))
3067 return;
3068 drop_collected_mounts(&ns->root->mnt);
3069 free_mnt_ns(ns);
3070 }
3071
3072 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3073 {
3074 struct vfsmount *mnt;
3075 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3076 if (!IS_ERR(mnt)) {
3077 /*
3078 * it is a longterm mount, don't release mnt until
3079 * we unmount before file sys is unregistered
3080 */
3081 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3082 }
3083 return mnt;
3084 }
3085 EXPORT_SYMBOL_GPL(kern_mount_data);
3086
3087 void kern_unmount(struct vfsmount *mnt)
3088 {
3089 /* release long term mount so mount point can be released */
3090 if (!IS_ERR_OR_NULL(mnt)) {
3091 real_mount(mnt)->mnt_ns = NULL;
3092 synchronize_rcu(); /* yecchhh... */
3093 mntput(mnt);
3094 }
3095 }
3096 EXPORT_SYMBOL(kern_unmount);
3097
3098 bool our_mnt(struct vfsmount *mnt)
3099 {
3100 return check_mnt(real_mount(mnt));
3101 }
3102
3103 bool current_chrooted(void)
3104 {
3105 /* Does the current process have a non-standard root */
3106 struct path ns_root;
3107 struct path fs_root;
3108 bool chrooted;
3109
3110 /* Find the namespace root */
3111 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3112 ns_root.dentry = ns_root.mnt->mnt_root;
3113 path_get(&ns_root);
3114 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3115 ;
3116
3117 get_fs_root(current->fs, &fs_root);
3118
3119 chrooted = !path_equal(&fs_root, &ns_root);
3120
3121 path_put(&fs_root);
3122 path_put(&ns_root);
3123
3124 return chrooted;
3125 }
3126
3127 bool fs_fully_visible(struct file_system_type *type)
3128 {
3129 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3130 struct mount *mnt;
3131 bool visible = false;
3132
3133 if (unlikely(!ns))
3134 return false;
3135
3136 down_read(&namespace_sem);
3137 list_for_each_entry(mnt, &ns->list, mnt_list) {
3138 struct mount *child;
3139 if (mnt->mnt.mnt_sb->s_type != type)
3140 continue;
3141
3142 /* This mount is not fully visible if there are any child mounts
3143 * that cover anything except for empty directories.
3144 */
3145 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3146 struct inode *inode = child->mnt_mountpoint->d_inode;
3147 if (!S_ISDIR(inode->i_mode))
3148 goto next;
3149 if (inode->i_nlink > 2)
3150 goto next;
3151 }
3152 visible = true;
3153 goto found;
3154 next: ;
3155 }
3156 found:
3157 up_read(&namespace_sem);
3158 return visible;
3159 }
3160
3161 static struct ns_common *mntns_get(struct task_struct *task)
3162 {
3163 struct ns_common *ns = NULL;
3164 struct nsproxy *nsproxy;
3165
3166 task_lock(task);
3167 nsproxy = task->nsproxy;
3168 if (nsproxy) {
3169 ns = &nsproxy->mnt_ns->ns;
3170 get_mnt_ns(to_mnt_ns(ns));
3171 }
3172 task_unlock(task);
3173
3174 return ns;
3175 }
3176
3177 static void mntns_put(struct ns_common *ns)
3178 {
3179 put_mnt_ns(to_mnt_ns(ns));
3180 }
3181
3182 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3183 {
3184 struct fs_struct *fs = current->fs;
3185 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3186 struct path root;
3187
3188 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3189 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3190 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3191 return -EPERM;
3192
3193 if (fs->users != 1)
3194 return -EINVAL;
3195
3196 get_mnt_ns(mnt_ns);
3197 put_mnt_ns(nsproxy->mnt_ns);
3198 nsproxy->mnt_ns = mnt_ns;
3199
3200 /* Find the root */
3201 root.mnt = &mnt_ns->root->mnt;
3202 root.dentry = mnt_ns->root->mnt.mnt_root;
3203 path_get(&root);
3204 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3205 ;
3206
3207 /* Update the pwd and root */
3208 set_fs_pwd(fs, &root);
3209 set_fs_root(fs, &root);
3210
3211 path_put(&root);
3212 return 0;
3213 }
3214
3215 const struct proc_ns_operations mntns_operations = {
3216 .name = "mnt",
3217 .type = CLONE_NEWNS,
3218 .get = mntns_get,
3219 .put = mntns_put,
3220 .install = mntns_install,
3221 };