]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/namespace.c
f2fs: move dir data flush to write checkpoint process
[thirdparty/kernel/stable.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29
30 #include "pnode.h"
31 #include "internal.h"
32
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
43 {
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
53 {
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 static DEFINE_SPINLOCK(mnt_id_lock);
65 static int mnt_id_start = 0;
66 static int mnt_group_start = 1;
67
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76
77 /*
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * up the tree.
81 *
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
84 */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
93 }
94
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101
102 static int mnt_alloc_id(struct mount *mnt)
103 {
104 int res;
105
106 retry:
107 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
108 spin_lock(&mnt_id_lock);
109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
110 if (!res)
111 mnt_id_start = mnt->mnt_id + 1;
112 spin_unlock(&mnt_id_lock);
113 if (res == -EAGAIN)
114 goto retry;
115
116 return res;
117 }
118
119 static void mnt_free_id(struct mount *mnt)
120 {
121 int id = mnt->mnt_id;
122 spin_lock(&mnt_id_lock);
123 ida_remove(&mnt_id_ida, id);
124 if (mnt_id_start > id)
125 mnt_id_start = id;
126 spin_unlock(&mnt_id_lock);
127 }
128
129 /*
130 * Allocate a new peer group ID
131 *
132 * mnt_group_ida is protected by namespace_sem
133 */
134 static int mnt_alloc_group_id(struct mount *mnt)
135 {
136 int res;
137
138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 return -ENOMEM;
140
141 res = ida_get_new_above(&mnt_group_ida,
142 mnt_group_start,
143 &mnt->mnt_group_id);
144 if (!res)
145 mnt_group_start = mnt->mnt_group_id + 1;
146
147 return res;
148 }
149
150 /*
151 * Release a peer group ID
152 */
153 void mnt_release_group_id(struct mount *mnt)
154 {
155 int id = mnt->mnt_group_id;
156 ida_remove(&mnt_group_ida, id);
157 if (mnt_group_start > id)
158 mnt_group_start = id;
159 mnt->mnt_group_id = 0;
160 }
161
162 /*
163 * vfsmount lock must be held for read
164 */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 preempt_disable();
171 mnt->mnt_count += n;
172 preempt_enable();
173 #endif
174 }
175
176 /*
177 * vfsmount lock must be held for write
178 */
179 unsigned int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 unsigned int count = 0;
183 int cpu;
184
185 for_each_possible_cpu(cpu) {
186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 }
188
189 return count;
190 #else
191 return mnt->mnt_count;
192 #endif
193 }
194
195 static void drop_mountpoint(struct fs_pin *p)
196 {
197 struct mount *m = container_of(p, struct mount, mnt_umount);
198 dput(m->mnt_ex_mountpoint);
199 pin_remove(p);
200 mntput(&m->mnt);
201 }
202
203 static struct mount *alloc_vfsmnt(const char *name)
204 {
205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 if (mnt) {
207 int err;
208
209 err = mnt_alloc_id(mnt);
210 if (err)
211 goto out_free_cache;
212
213 if (name) {
214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
215 if (!mnt->mnt_devname)
216 goto out_free_id;
217 }
218
219 #ifdef CONFIG_SMP
220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 if (!mnt->mnt_pcp)
222 goto out_free_devname;
223
224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 #else
226 mnt->mnt_count = 1;
227 mnt->mnt_writers = 0;
228 #endif
229
230 INIT_HLIST_NODE(&mnt->mnt_hash);
231 INIT_LIST_HEAD(&mnt->mnt_child);
232 INIT_LIST_HEAD(&mnt->mnt_mounts);
233 INIT_LIST_HEAD(&mnt->mnt_list);
234 INIT_LIST_HEAD(&mnt->mnt_expire);
235 INIT_LIST_HEAD(&mnt->mnt_share);
236 INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 INIT_LIST_HEAD(&mnt->mnt_slave);
238 INIT_HLIST_NODE(&mnt->mnt_mp_list);
239 INIT_LIST_HEAD(&mnt->mnt_umounting);
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 }
242 return mnt;
243
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 mnt_free_id(mnt);
250 out_free_cache:
251 kmem_cache_free(mnt_cache, mnt);
252 return NULL;
253 }
254
255 /*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263 /*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (sb_rdonly(mnt->mnt_sb))
279 return 1;
280 return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers++;
290 #endif
291 }
292
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 mnt->mnt_writers--;
299 #endif
300 }
301
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 unsigned int count = 0;
306 int cpu;
307
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 }
311
312 return count;
313 #else
314 return mnt->mnt_writers;
315 #endif
316 }
317
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325 }
326
327 /*
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
332 */
333 /**
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
342 */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 struct mount *mnt = real_mount(m);
346 int ret = 0;
347
348 preempt_disable();
349 mnt_inc_writers(mnt);
350 /*
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
366 ret = -EROFS;
367 }
368 preempt_enable();
369
370 return ret;
371 }
372
373 /**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
390 return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393
394 /**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
412 mnt_inc_writers(real_mount(mnt));
413 preempt_enable();
414 return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418 /**
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
421 *
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
424 */
425 int __mnt_want_write_file(struct file *file)
426 {
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
429 else
430 return mnt_clone_write(file->f_path.mnt);
431 }
432
433 /**
434 * mnt_want_write_file_path - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 *
440 * Called by the vfs for cases when we have an open file at hand, but will do an
441 * inode operation on it (important distinction for files opened on overlayfs,
442 * since the file operations will come from the real underlying file, while
443 * inode operations come from the overlay).
444 */
445 int mnt_want_write_file_path(struct file *file)
446 {
447 int ret;
448
449 sb_start_write(file->f_path.mnt->mnt_sb);
450 ret = __mnt_want_write_file(file);
451 if (ret)
452 sb_end_write(file->f_path.mnt->mnt_sb);
453 return ret;
454 }
455
456 static inline int may_write_real(struct file *file)
457 {
458 struct dentry *dentry = file->f_path.dentry;
459 struct dentry *upperdentry;
460
461 /* Writable file? */
462 if (file->f_mode & FMODE_WRITER)
463 return 0;
464
465 /* Not overlayfs? */
466 if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
467 return 0;
468
469 /* File refers to upper, writable layer? */
470 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
471 if (upperdentry &&
472 (file_inode(file) == d_inode(upperdentry) ||
473 file_inode(file) == d_inode(dentry)))
474 return 0;
475
476 /* Lower layer: can't write to real file, sorry... */
477 return -EPERM;
478 }
479
480 /**
481 * mnt_want_write_file - get write access to a file's mount
482 * @file: the file who's mount on which to take a write
483 *
484 * This is like mnt_want_write, but it takes a file and can
485 * do some optimisations if the file is open for write already
486 *
487 * Mostly called by filesystems from their ioctl operation before performing
488 * modification. On overlayfs this needs to check if the file is on a read-only
489 * lower layer and deny access in that case.
490 */
491 int mnt_want_write_file(struct file *file)
492 {
493 int ret;
494
495 ret = may_write_real(file);
496 if (!ret) {
497 sb_start_write(file_inode(file)->i_sb);
498 ret = __mnt_want_write_file(file);
499 if (ret)
500 sb_end_write(file_inode(file)->i_sb);
501 }
502 return ret;
503 }
504 EXPORT_SYMBOL_GPL(mnt_want_write_file);
505
506 /**
507 * __mnt_drop_write - give up write access to a mount
508 * @mnt: the mount on which to give up write access
509 *
510 * Tells the low-level filesystem that we are done
511 * performing writes to it. Must be matched with
512 * __mnt_want_write() call above.
513 */
514 void __mnt_drop_write(struct vfsmount *mnt)
515 {
516 preempt_disable();
517 mnt_dec_writers(real_mount(mnt));
518 preempt_enable();
519 }
520
521 /**
522 * mnt_drop_write - give up write access to a mount
523 * @mnt: the mount on which to give up write access
524 *
525 * Tells the low-level filesystem that we are done performing writes to it and
526 * also allows filesystem to be frozen again. Must be matched with
527 * mnt_want_write() call above.
528 */
529 void mnt_drop_write(struct vfsmount *mnt)
530 {
531 __mnt_drop_write(mnt);
532 sb_end_write(mnt->mnt_sb);
533 }
534 EXPORT_SYMBOL_GPL(mnt_drop_write);
535
536 void __mnt_drop_write_file(struct file *file)
537 {
538 __mnt_drop_write(file->f_path.mnt);
539 }
540
541 void mnt_drop_write_file_path(struct file *file)
542 {
543 mnt_drop_write(file->f_path.mnt);
544 }
545
546 void mnt_drop_write_file(struct file *file)
547 {
548 __mnt_drop_write(file->f_path.mnt);
549 sb_end_write(file_inode(file)->i_sb);
550 }
551 EXPORT_SYMBOL(mnt_drop_write_file);
552
553 static int mnt_make_readonly(struct mount *mnt)
554 {
555 int ret = 0;
556
557 lock_mount_hash();
558 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
559 /*
560 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
561 * should be visible before we do.
562 */
563 smp_mb();
564
565 /*
566 * With writers on hold, if this value is zero, then there are
567 * definitely no active writers (although held writers may subsequently
568 * increment the count, they'll have to wait, and decrement it after
569 * seeing MNT_READONLY).
570 *
571 * It is OK to have counter incremented on one CPU and decremented on
572 * another: the sum will add up correctly. The danger would be when we
573 * sum up each counter, if we read a counter before it is incremented,
574 * but then read another CPU's count which it has been subsequently
575 * decremented from -- we would see more decrements than we should.
576 * MNT_WRITE_HOLD protects against this scenario, because
577 * mnt_want_write first increments count, then smp_mb, then spins on
578 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
579 * we're counting up here.
580 */
581 if (mnt_get_writers(mnt) > 0)
582 ret = -EBUSY;
583 else
584 mnt->mnt.mnt_flags |= MNT_READONLY;
585 /*
586 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
587 * that become unheld will see MNT_READONLY.
588 */
589 smp_wmb();
590 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
591 unlock_mount_hash();
592 return ret;
593 }
594
595 static void __mnt_unmake_readonly(struct mount *mnt)
596 {
597 lock_mount_hash();
598 mnt->mnt.mnt_flags &= ~MNT_READONLY;
599 unlock_mount_hash();
600 }
601
602 int sb_prepare_remount_readonly(struct super_block *sb)
603 {
604 struct mount *mnt;
605 int err = 0;
606
607 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
608 if (atomic_long_read(&sb->s_remove_count))
609 return -EBUSY;
610
611 lock_mount_hash();
612 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
613 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
614 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
615 smp_mb();
616 if (mnt_get_writers(mnt) > 0) {
617 err = -EBUSY;
618 break;
619 }
620 }
621 }
622 if (!err && atomic_long_read(&sb->s_remove_count))
623 err = -EBUSY;
624
625 if (!err) {
626 sb->s_readonly_remount = 1;
627 smp_wmb();
628 }
629 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
630 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
631 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
632 }
633 unlock_mount_hash();
634
635 return err;
636 }
637
638 static void free_vfsmnt(struct mount *mnt)
639 {
640 kfree_const(mnt->mnt_devname);
641 #ifdef CONFIG_SMP
642 free_percpu(mnt->mnt_pcp);
643 #endif
644 kmem_cache_free(mnt_cache, mnt);
645 }
646
647 static void delayed_free_vfsmnt(struct rcu_head *head)
648 {
649 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
650 }
651
652 /* call under rcu_read_lock */
653 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
654 {
655 struct mount *mnt;
656 if (read_seqretry(&mount_lock, seq))
657 return 1;
658 if (bastard == NULL)
659 return 0;
660 mnt = real_mount(bastard);
661 mnt_add_count(mnt, 1);
662 smp_mb(); // see mntput_no_expire()
663 if (likely(!read_seqretry(&mount_lock, seq)))
664 return 0;
665 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
666 mnt_add_count(mnt, -1);
667 return 1;
668 }
669 lock_mount_hash();
670 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
671 mnt_add_count(mnt, -1);
672 unlock_mount_hash();
673 return 1;
674 }
675 unlock_mount_hash();
676 /* caller will mntput() */
677 return -1;
678 }
679
680 /* call under rcu_read_lock */
681 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
682 {
683 int res = __legitimize_mnt(bastard, seq);
684 if (likely(!res))
685 return true;
686 if (unlikely(res < 0)) {
687 rcu_read_unlock();
688 mntput(bastard);
689 rcu_read_lock();
690 }
691 return false;
692 }
693
694 /*
695 * find the first mount at @dentry on vfsmount @mnt.
696 * call under rcu_read_lock()
697 */
698 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
699 {
700 struct hlist_head *head = m_hash(mnt, dentry);
701 struct mount *p;
702
703 hlist_for_each_entry_rcu(p, head, mnt_hash)
704 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
705 return p;
706 return NULL;
707 }
708
709 /*
710 * lookup_mnt - Return the first child mount mounted at path
711 *
712 * "First" means first mounted chronologically. If you create the
713 * following mounts:
714 *
715 * mount /dev/sda1 /mnt
716 * mount /dev/sda2 /mnt
717 * mount /dev/sda3 /mnt
718 *
719 * Then lookup_mnt() on the base /mnt dentry in the root mount will
720 * return successively the root dentry and vfsmount of /dev/sda1, then
721 * /dev/sda2, then /dev/sda3, then NULL.
722 *
723 * lookup_mnt takes a reference to the found vfsmount.
724 */
725 struct vfsmount *lookup_mnt(const struct path *path)
726 {
727 struct mount *child_mnt;
728 struct vfsmount *m;
729 unsigned seq;
730
731 rcu_read_lock();
732 do {
733 seq = read_seqbegin(&mount_lock);
734 child_mnt = __lookup_mnt(path->mnt, path->dentry);
735 m = child_mnt ? &child_mnt->mnt : NULL;
736 } while (!legitimize_mnt(m, seq));
737 rcu_read_unlock();
738 return m;
739 }
740
741 /*
742 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
743 * current mount namespace.
744 *
745 * The common case is dentries are not mountpoints at all and that
746 * test is handled inline. For the slow case when we are actually
747 * dealing with a mountpoint of some kind, walk through all of the
748 * mounts in the current mount namespace and test to see if the dentry
749 * is a mountpoint.
750 *
751 * The mount_hashtable is not usable in the context because we
752 * need to identify all mounts that may be in the current mount
753 * namespace not just a mount that happens to have some specified
754 * parent mount.
755 */
756 bool __is_local_mountpoint(struct dentry *dentry)
757 {
758 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
759 struct mount *mnt;
760 bool is_covered = false;
761
762 if (!d_mountpoint(dentry))
763 goto out;
764
765 down_read(&namespace_sem);
766 list_for_each_entry(mnt, &ns->list, mnt_list) {
767 is_covered = (mnt->mnt_mountpoint == dentry);
768 if (is_covered)
769 break;
770 }
771 up_read(&namespace_sem);
772 out:
773 return is_covered;
774 }
775
776 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
777 {
778 struct hlist_head *chain = mp_hash(dentry);
779 struct mountpoint *mp;
780
781 hlist_for_each_entry(mp, chain, m_hash) {
782 if (mp->m_dentry == dentry) {
783 /* might be worth a WARN_ON() */
784 if (d_unlinked(dentry))
785 return ERR_PTR(-ENOENT);
786 mp->m_count++;
787 return mp;
788 }
789 }
790 return NULL;
791 }
792
793 static struct mountpoint *get_mountpoint(struct dentry *dentry)
794 {
795 struct mountpoint *mp, *new = NULL;
796 int ret;
797
798 if (d_mountpoint(dentry)) {
799 mountpoint:
800 read_seqlock_excl(&mount_lock);
801 mp = lookup_mountpoint(dentry);
802 read_sequnlock_excl(&mount_lock);
803 if (mp)
804 goto done;
805 }
806
807 if (!new)
808 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
809 if (!new)
810 return ERR_PTR(-ENOMEM);
811
812
813 /* Exactly one processes may set d_mounted */
814 ret = d_set_mounted(dentry);
815
816 /* Someone else set d_mounted? */
817 if (ret == -EBUSY)
818 goto mountpoint;
819
820 /* The dentry is not available as a mountpoint? */
821 mp = ERR_PTR(ret);
822 if (ret)
823 goto done;
824
825 /* Add the new mountpoint to the hash table */
826 read_seqlock_excl(&mount_lock);
827 new->m_dentry = dentry;
828 new->m_count = 1;
829 hlist_add_head(&new->m_hash, mp_hash(dentry));
830 INIT_HLIST_HEAD(&new->m_list);
831 read_sequnlock_excl(&mount_lock);
832
833 mp = new;
834 new = NULL;
835 done:
836 kfree(new);
837 return mp;
838 }
839
840 static void put_mountpoint(struct mountpoint *mp)
841 {
842 if (!--mp->m_count) {
843 struct dentry *dentry = mp->m_dentry;
844 BUG_ON(!hlist_empty(&mp->m_list));
845 spin_lock(&dentry->d_lock);
846 dentry->d_flags &= ~DCACHE_MOUNTED;
847 spin_unlock(&dentry->d_lock);
848 hlist_del(&mp->m_hash);
849 kfree(mp);
850 }
851 }
852
853 static inline int check_mnt(struct mount *mnt)
854 {
855 return mnt->mnt_ns == current->nsproxy->mnt_ns;
856 }
857
858 /*
859 * vfsmount lock must be held for write
860 */
861 static void touch_mnt_namespace(struct mnt_namespace *ns)
862 {
863 if (ns) {
864 ns->event = ++event;
865 wake_up_interruptible(&ns->poll);
866 }
867 }
868
869 /*
870 * vfsmount lock must be held for write
871 */
872 static void __touch_mnt_namespace(struct mnt_namespace *ns)
873 {
874 if (ns && ns->event != event) {
875 ns->event = event;
876 wake_up_interruptible(&ns->poll);
877 }
878 }
879
880 /*
881 * vfsmount lock must be held for write
882 */
883 static void unhash_mnt(struct mount *mnt)
884 {
885 mnt->mnt_parent = mnt;
886 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
887 list_del_init(&mnt->mnt_child);
888 hlist_del_init_rcu(&mnt->mnt_hash);
889 hlist_del_init(&mnt->mnt_mp_list);
890 put_mountpoint(mnt->mnt_mp);
891 mnt->mnt_mp = NULL;
892 }
893
894 /*
895 * vfsmount lock must be held for write
896 */
897 static void detach_mnt(struct mount *mnt, struct path *old_path)
898 {
899 old_path->dentry = mnt->mnt_mountpoint;
900 old_path->mnt = &mnt->mnt_parent->mnt;
901 unhash_mnt(mnt);
902 }
903
904 /*
905 * vfsmount lock must be held for write
906 */
907 static void umount_mnt(struct mount *mnt)
908 {
909 /* old mountpoint will be dropped when we can do that */
910 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
911 unhash_mnt(mnt);
912 }
913
914 /*
915 * vfsmount lock must be held for write
916 */
917 void mnt_set_mountpoint(struct mount *mnt,
918 struct mountpoint *mp,
919 struct mount *child_mnt)
920 {
921 mp->m_count++;
922 mnt_add_count(mnt, 1); /* essentially, that's mntget */
923 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
924 child_mnt->mnt_parent = mnt;
925 child_mnt->mnt_mp = mp;
926 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
927 }
928
929 static void __attach_mnt(struct mount *mnt, struct mount *parent)
930 {
931 hlist_add_head_rcu(&mnt->mnt_hash,
932 m_hash(&parent->mnt, mnt->mnt_mountpoint));
933 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
934 }
935
936 /*
937 * vfsmount lock must be held for write
938 */
939 static void attach_mnt(struct mount *mnt,
940 struct mount *parent,
941 struct mountpoint *mp)
942 {
943 mnt_set_mountpoint(parent, mp, mnt);
944 __attach_mnt(mnt, parent);
945 }
946
947 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
948 {
949 struct mountpoint *old_mp = mnt->mnt_mp;
950 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
951 struct mount *old_parent = mnt->mnt_parent;
952
953 list_del_init(&mnt->mnt_child);
954 hlist_del_init(&mnt->mnt_mp_list);
955 hlist_del_init_rcu(&mnt->mnt_hash);
956
957 attach_mnt(mnt, parent, mp);
958
959 put_mountpoint(old_mp);
960
961 /*
962 * Safely avoid even the suggestion this code might sleep or
963 * lock the mount hash by taking advantage of the knowledge that
964 * mnt_change_mountpoint will not release the final reference
965 * to a mountpoint.
966 *
967 * During mounting, the mount passed in as the parent mount will
968 * continue to use the old mountpoint and during unmounting, the
969 * old mountpoint will continue to exist until namespace_unlock,
970 * which happens well after mnt_change_mountpoint.
971 */
972 spin_lock(&old_mountpoint->d_lock);
973 old_mountpoint->d_lockref.count--;
974 spin_unlock(&old_mountpoint->d_lock);
975
976 mnt_add_count(old_parent, -1);
977 }
978
979 /*
980 * vfsmount lock must be held for write
981 */
982 static void commit_tree(struct mount *mnt)
983 {
984 struct mount *parent = mnt->mnt_parent;
985 struct mount *m;
986 LIST_HEAD(head);
987 struct mnt_namespace *n = parent->mnt_ns;
988
989 BUG_ON(parent == mnt);
990
991 list_add_tail(&head, &mnt->mnt_list);
992 list_for_each_entry(m, &head, mnt_list)
993 m->mnt_ns = n;
994
995 list_splice(&head, n->list.prev);
996
997 n->mounts += n->pending_mounts;
998 n->pending_mounts = 0;
999
1000 __attach_mnt(mnt, parent);
1001 touch_mnt_namespace(n);
1002 }
1003
1004 static struct mount *next_mnt(struct mount *p, struct mount *root)
1005 {
1006 struct list_head *next = p->mnt_mounts.next;
1007 if (next == &p->mnt_mounts) {
1008 while (1) {
1009 if (p == root)
1010 return NULL;
1011 next = p->mnt_child.next;
1012 if (next != &p->mnt_parent->mnt_mounts)
1013 break;
1014 p = p->mnt_parent;
1015 }
1016 }
1017 return list_entry(next, struct mount, mnt_child);
1018 }
1019
1020 static struct mount *skip_mnt_tree(struct mount *p)
1021 {
1022 struct list_head *prev = p->mnt_mounts.prev;
1023 while (prev != &p->mnt_mounts) {
1024 p = list_entry(prev, struct mount, mnt_child);
1025 prev = p->mnt_mounts.prev;
1026 }
1027 return p;
1028 }
1029
1030 struct vfsmount *
1031 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1032 {
1033 struct mount *mnt;
1034 struct dentry *root;
1035
1036 if (!type)
1037 return ERR_PTR(-ENODEV);
1038
1039 mnt = alloc_vfsmnt(name);
1040 if (!mnt)
1041 return ERR_PTR(-ENOMEM);
1042
1043 if (flags & SB_KERNMOUNT)
1044 mnt->mnt.mnt_flags = MNT_INTERNAL;
1045
1046 root = mount_fs(type, flags, name, data);
1047 if (IS_ERR(root)) {
1048 mnt_free_id(mnt);
1049 free_vfsmnt(mnt);
1050 return ERR_CAST(root);
1051 }
1052
1053 mnt->mnt.mnt_root = root;
1054 mnt->mnt.mnt_sb = root->d_sb;
1055 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1056 mnt->mnt_parent = mnt;
1057 lock_mount_hash();
1058 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1059 unlock_mount_hash();
1060 return &mnt->mnt;
1061 }
1062 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1063
1064 struct vfsmount *
1065 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1066 const char *name, void *data)
1067 {
1068 /* Until it is worked out how to pass the user namespace
1069 * through from the parent mount to the submount don't support
1070 * unprivileged mounts with submounts.
1071 */
1072 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1073 return ERR_PTR(-EPERM);
1074
1075 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1076 }
1077 EXPORT_SYMBOL_GPL(vfs_submount);
1078
1079 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1080 int flag)
1081 {
1082 struct super_block *sb = old->mnt.mnt_sb;
1083 struct mount *mnt;
1084 int err;
1085
1086 mnt = alloc_vfsmnt(old->mnt_devname);
1087 if (!mnt)
1088 return ERR_PTR(-ENOMEM);
1089
1090 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1091 mnt->mnt_group_id = 0; /* not a peer of original */
1092 else
1093 mnt->mnt_group_id = old->mnt_group_id;
1094
1095 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1096 err = mnt_alloc_group_id(mnt);
1097 if (err)
1098 goto out_free;
1099 }
1100
1101 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1102 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1103 /* Don't allow unprivileged users to change mount flags */
1104 if (flag & CL_UNPRIVILEGED) {
1105 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1106
1107 if (mnt->mnt.mnt_flags & MNT_READONLY)
1108 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1109
1110 if (mnt->mnt.mnt_flags & MNT_NODEV)
1111 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1112
1113 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1114 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1115
1116 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1117 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1118 }
1119
1120 /* Don't allow unprivileged users to reveal what is under a mount */
1121 if ((flag & CL_UNPRIVILEGED) &&
1122 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1123 mnt->mnt.mnt_flags |= MNT_LOCKED;
1124
1125 atomic_inc(&sb->s_active);
1126 mnt->mnt.mnt_sb = sb;
1127 mnt->mnt.mnt_root = dget(root);
1128 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1129 mnt->mnt_parent = mnt;
1130 lock_mount_hash();
1131 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1132 unlock_mount_hash();
1133
1134 if ((flag & CL_SLAVE) ||
1135 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1136 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1137 mnt->mnt_master = old;
1138 CLEAR_MNT_SHARED(mnt);
1139 } else if (!(flag & CL_PRIVATE)) {
1140 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1141 list_add(&mnt->mnt_share, &old->mnt_share);
1142 if (IS_MNT_SLAVE(old))
1143 list_add(&mnt->mnt_slave, &old->mnt_slave);
1144 mnt->mnt_master = old->mnt_master;
1145 } else {
1146 CLEAR_MNT_SHARED(mnt);
1147 }
1148 if (flag & CL_MAKE_SHARED)
1149 set_mnt_shared(mnt);
1150
1151 /* stick the duplicate mount on the same expiry list
1152 * as the original if that was on one */
1153 if (flag & CL_EXPIRE) {
1154 if (!list_empty(&old->mnt_expire))
1155 list_add(&mnt->mnt_expire, &old->mnt_expire);
1156 }
1157
1158 return mnt;
1159
1160 out_free:
1161 mnt_free_id(mnt);
1162 free_vfsmnt(mnt);
1163 return ERR_PTR(err);
1164 }
1165
1166 static void cleanup_mnt(struct mount *mnt)
1167 {
1168 /*
1169 * This probably indicates that somebody messed
1170 * up a mnt_want/drop_write() pair. If this
1171 * happens, the filesystem was probably unable
1172 * to make r/w->r/o transitions.
1173 */
1174 /*
1175 * The locking used to deal with mnt_count decrement provides barriers,
1176 * so mnt_get_writers() below is safe.
1177 */
1178 WARN_ON(mnt_get_writers(mnt));
1179 if (unlikely(mnt->mnt_pins.first))
1180 mnt_pin_kill(mnt);
1181 fsnotify_vfsmount_delete(&mnt->mnt);
1182 dput(mnt->mnt.mnt_root);
1183 deactivate_super(mnt->mnt.mnt_sb);
1184 mnt_free_id(mnt);
1185 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1186 }
1187
1188 static void __cleanup_mnt(struct rcu_head *head)
1189 {
1190 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1191 }
1192
1193 static LLIST_HEAD(delayed_mntput_list);
1194 static void delayed_mntput(struct work_struct *unused)
1195 {
1196 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1197 struct mount *m, *t;
1198
1199 llist_for_each_entry_safe(m, t, node, mnt_llist)
1200 cleanup_mnt(m);
1201 }
1202 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1203
1204 static void mntput_no_expire(struct mount *mnt)
1205 {
1206 rcu_read_lock();
1207 if (likely(READ_ONCE(mnt->mnt_ns))) {
1208 /*
1209 * Since we don't do lock_mount_hash() here,
1210 * ->mnt_ns can change under us. However, if it's
1211 * non-NULL, then there's a reference that won't
1212 * be dropped until after an RCU delay done after
1213 * turning ->mnt_ns NULL. So if we observe it
1214 * non-NULL under rcu_read_lock(), the reference
1215 * we are dropping is not the final one.
1216 */
1217 mnt_add_count(mnt, -1);
1218 rcu_read_unlock();
1219 return;
1220 }
1221 lock_mount_hash();
1222 /*
1223 * make sure that if __legitimize_mnt() has not seen us grab
1224 * mount_lock, we'll see their refcount increment here.
1225 */
1226 smp_mb();
1227 mnt_add_count(mnt, -1);
1228 if (mnt_get_count(mnt)) {
1229 rcu_read_unlock();
1230 unlock_mount_hash();
1231 return;
1232 }
1233 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1234 rcu_read_unlock();
1235 unlock_mount_hash();
1236 return;
1237 }
1238 mnt->mnt.mnt_flags |= MNT_DOOMED;
1239 rcu_read_unlock();
1240
1241 list_del(&mnt->mnt_instance);
1242
1243 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1244 struct mount *p, *tmp;
1245 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1246 umount_mnt(p);
1247 }
1248 }
1249 unlock_mount_hash();
1250
1251 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1252 struct task_struct *task = current;
1253 if (likely(!(task->flags & PF_KTHREAD))) {
1254 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1255 if (!task_work_add(task, &mnt->mnt_rcu, true))
1256 return;
1257 }
1258 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1259 schedule_delayed_work(&delayed_mntput_work, 1);
1260 return;
1261 }
1262 cleanup_mnt(mnt);
1263 }
1264
1265 void mntput(struct vfsmount *mnt)
1266 {
1267 if (mnt) {
1268 struct mount *m = real_mount(mnt);
1269 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1270 if (unlikely(m->mnt_expiry_mark))
1271 m->mnt_expiry_mark = 0;
1272 mntput_no_expire(m);
1273 }
1274 }
1275 EXPORT_SYMBOL(mntput);
1276
1277 struct vfsmount *mntget(struct vfsmount *mnt)
1278 {
1279 if (mnt)
1280 mnt_add_count(real_mount(mnt), 1);
1281 return mnt;
1282 }
1283 EXPORT_SYMBOL(mntget);
1284
1285 /* path_is_mountpoint() - Check if path is a mount in the current
1286 * namespace.
1287 *
1288 * d_mountpoint() can only be used reliably to establish if a dentry is
1289 * not mounted in any namespace and that common case is handled inline.
1290 * d_mountpoint() isn't aware of the possibility there may be multiple
1291 * mounts using a given dentry in a different namespace. This function
1292 * checks if the passed in path is a mountpoint rather than the dentry
1293 * alone.
1294 */
1295 bool path_is_mountpoint(const struct path *path)
1296 {
1297 unsigned seq;
1298 bool res;
1299
1300 if (!d_mountpoint(path->dentry))
1301 return false;
1302
1303 rcu_read_lock();
1304 do {
1305 seq = read_seqbegin(&mount_lock);
1306 res = __path_is_mountpoint(path);
1307 } while (read_seqretry(&mount_lock, seq));
1308 rcu_read_unlock();
1309
1310 return res;
1311 }
1312 EXPORT_SYMBOL(path_is_mountpoint);
1313
1314 struct vfsmount *mnt_clone_internal(const struct path *path)
1315 {
1316 struct mount *p;
1317 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1318 if (IS_ERR(p))
1319 return ERR_CAST(p);
1320 p->mnt.mnt_flags |= MNT_INTERNAL;
1321 return &p->mnt;
1322 }
1323
1324 #ifdef CONFIG_PROC_FS
1325 /* iterator; we want it to have access to namespace_sem, thus here... */
1326 static void *m_start(struct seq_file *m, loff_t *pos)
1327 {
1328 struct proc_mounts *p = m->private;
1329
1330 down_read(&namespace_sem);
1331 if (p->cached_event == p->ns->event) {
1332 void *v = p->cached_mount;
1333 if (*pos == p->cached_index)
1334 return v;
1335 if (*pos == p->cached_index + 1) {
1336 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1337 return p->cached_mount = v;
1338 }
1339 }
1340
1341 p->cached_event = p->ns->event;
1342 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1343 p->cached_index = *pos;
1344 return p->cached_mount;
1345 }
1346
1347 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1348 {
1349 struct proc_mounts *p = m->private;
1350
1351 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1352 p->cached_index = *pos;
1353 return p->cached_mount;
1354 }
1355
1356 static void m_stop(struct seq_file *m, void *v)
1357 {
1358 up_read(&namespace_sem);
1359 }
1360
1361 static int m_show(struct seq_file *m, void *v)
1362 {
1363 struct proc_mounts *p = m->private;
1364 struct mount *r = list_entry(v, struct mount, mnt_list);
1365 return p->show(m, &r->mnt);
1366 }
1367
1368 const struct seq_operations mounts_op = {
1369 .start = m_start,
1370 .next = m_next,
1371 .stop = m_stop,
1372 .show = m_show,
1373 };
1374 #endif /* CONFIG_PROC_FS */
1375
1376 /**
1377 * may_umount_tree - check if a mount tree is busy
1378 * @mnt: root of mount tree
1379 *
1380 * This is called to check if a tree of mounts has any
1381 * open files, pwds, chroots or sub mounts that are
1382 * busy.
1383 */
1384 int may_umount_tree(struct vfsmount *m)
1385 {
1386 struct mount *mnt = real_mount(m);
1387 int actual_refs = 0;
1388 int minimum_refs = 0;
1389 struct mount *p;
1390 BUG_ON(!m);
1391
1392 /* write lock needed for mnt_get_count */
1393 lock_mount_hash();
1394 for (p = mnt; p; p = next_mnt(p, mnt)) {
1395 actual_refs += mnt_get_count(p);
1396 minimum_refs += 2;
1397 }
1398 unlock_mount_hash();
1399
1400 if (actual_refs > minimum_refs)
1401 return 0;
1402
1403 return 1;
1404 }
1405
1406 EXPORT_SYMBOL(may_umount_tree);
1407
1408 /**
1409 * may_umount - check if a mount point is busy
1410 * @mnt: root of mount
1411 *
1412 * This is called to check if a mount point has any
1413 * open files, pwds, chroots or sub mounts. If the
1414 * mount has sub mounts this will return busy
1415 * regardless of whether the sub mounts are busy.
1416 *
1417 * Doesn't take quota and stuff into account. IOW, in some cases it will
1418 * give false negatives. The main reason why it's here is that we need
1419 * a non-destructive way to look for easily umountable filesystems.
1420 */
1421 int may_umount(struct vfsmount *mnt)
1422 {
1423 int ret = 1;
1424 down_read(&namespace_sem);
1425 lock_mount_hash();
1426 if (propagate_mount_busy(real_mount(mnt), 2))
1427 ret = 0;
1428 unlock_mount_hash();
1429 up_read(&namespace_sem);
1430 return ret;
1431 }
1432
1433 EXPORT_SYMBOL(may_umount);
1434
1435 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1436
1437 static void namespace_unlock(void)
1438 {
1439 struct hlist_head head;
1440
1441 hlist_move_list(&unmounted, &head);
1442
1443 up_write(&namespace_sem);
1444
1445 if (likely(hlist_empty(&head)))
1446 return;
1447
1448 synchronize_rcu();
1449
1450 group_pin_kill(&head);
1451 }
1452
1453 static inline void namespace_lock(void)
1454 {
1455 down_write(&namespace_sem);
1456 }
1457
1458 enum umount_tree_flags {
1459 UMOUNT_SYNC = 1,
1460 UMOUNT_PROPAGATE = 2,
1461 UMOUNT_CONNECTED = 4,
1462 };
1463
1464 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1465 {
1466 /* Leaving mounts connected is only valid for lazy umounts */
1467 if (how & UMOUNT_SYNC)
1468 return true;
1469
1470 /* A mount without a parent has nothing to be connected to */
1471 if (!mnt_has_parent(mnt))
1472 return true;
1473
1474 /* Because the reference counting rules change when mounts are
1475 * unmounted and connected, umounted mounts may not be
1476 * connected to mounted mounts.
1477 */
1478 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1479 return true;
1480
1481 /* Has it been requested that the mount remain connected? */
1482 if (how & UMOUNT_CONNECTED)
1483 return false;
1484
1485 /* Is the mount locked such that it needs to remain connected? */
1486 if (IS_MNT_LOCKED(mnt))
1487 return false;
1488
1489 /* By default disconnect the mount */
1490 return true;
1491 }
1492
1493 /*
1494 * mount_lock must be held
1495 * namespace_sem must be held for write
1496 */
1497 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1498 {
1499 LIST_HEAD(tmp_list);
1500 struct mount *p;
1501
1502 if (how & UMOUNT_PROPAGATE)
1503 propagate_mount_unlock(mnt);
1504
1505 /* Gather the mounts to umount */
1506 for (p = mnt; p; p = next_mnt(p, mnt)) {
1507 p->mnt.mnt_flags |= MNT_UMOUNT;
1508 list_move(&p->mnt_list, &tmp_list);
1509 }
1510
1511 /* Hide the mounts from mnt_mounts */
1512 list_for_each_entry(p, &tmp_list, mnt_list) {
1513 list_del_init(&p->mnt_child);
1514 }
1515
1516 /* Add propogated mounts to the tmp_list */
1517 if (how & UMOUNT_PROPAGATE)
1518 propagate_umount(&tmp_list);
1519
1520 while (!list_empty(&tmp_list)) {
1521 struct mnt_namespace *ns;
1522 bool disconnect;
1523 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1524 list_del_init(&p->mnt_expire);
1525 list_del_init(&p->mnt_list);
1526 ns = p->mnt_ns;
1527 if (ns) {
1528 ns->mounts--;
1529 __touch_mnt_namespace(ns);
1530 }
1531 p->mnt_ns = NULL;
1532 if (how & UMOUNT_SYNC)
1533 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1534
1535 disconnect = disconnect_mount(p, how);
1536
1537 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1538 disconnect ? &unmounted : NULL);
1539 if (mnt_has_parent(p)) {
1540 mnt_add_count(p->mnt_parent, -1);
1541 if (!disconnect) {
1542 /* Don't forget about p */
1543 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1544 } else {
1545 umount_mnt(p);
1546 }
1547 }
1548 change_mnt_propagation(p, MS_PRIVATE);
1549 }
1550 }
1551
1552 static void shrink_submounts(struct mount *mnt);
1553
1554 static int do_umount(struct mount *mnt, int flags)
1555 {
1556 struct super_block *sb = mnt->mnt.mnt_sb;
1557 int retval;
1558
1559 retval = security_sb_umount(&mnt->mnt, flags);
1560 if (retval)
1561 return retval;
1562
1563 /*
1564 * Allow userspace to request a mountpoint be expired rather than
1565 * unmounting unconditionally. Unmount only happens if:
1566 * (1) the mark is already set (the mark is cleared by mntput())
1567 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1568 */
1569 if (flags & MNT_EXPIRE) {
1570 if (&mnt->mnt == current->fs->root.mnt ||
1571 flags & (MNT_FORCE | MNT_DETACH))
1572 return -EINVAL;
1573
1574 /*
1575 * probably don't strictly need the lock here if we examined
1576 * all race cases, but it's a slowpath.
1577 */
1578 lock_mount_hash();
1579 if (mnt_get_count(mnt) != 2) {
1580 unlock_mount_hash();
1581 return -EBUSY;
1582 }
1583 unlock_mount_hash();
1584
1585 if (!xchg(&mnt->mnt_expiry_mark, 1))
1586 return -EAGAIN;
1587 }
1588
1589 /*
1590 * If we may have to abort operations to get out of this
1591 * mount, and they will themselves hold resources we must
1592 * allow the fs to do things. In the Unix tradition of
1593 * 'Gee thats tricky lets do it in userspace' the umount_begin
1594 * might fail to complete on the first run through as other tasks
1595 * must return, and the like. Thats for the mount program to worry
1596 * about for the moment.
1597 */
1598
1599 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1600 sb->s_op->umount_begin(sb);
1601 }
1602
1603 /*
1604 * No sense to grab the lock for this test, but test itself looks
1605 * somewhat bogus. Suggestions for better replacement?
1606 * Ho-hum... In principle, we might treat that as umount + switch
1607 * to rootfs. GC would eventually take care of the old vfsmount.
1608 * Actually it makes sense, especially if rootfs would contain a
1609 * /reboot - static binary that would close all descriptors and
1610 * call reboot(9). Then init(8) could umount root and exec /reboot.
1611 */
1612 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1613 /*
1614 * Special case for "unmounting" root ...
1615 * we just try to remount it readonly.
1616 */
1617 if (!capable(CAP_SYS_ADMIN))
1618 return -EPERM;
1619 down_write(&sb->s_umount);
1620 if (!sb_rdonly(sb))
1621 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1622 up_write(&sb->s_umount);
1623 return retval;
1624 }
1625
1626 namespace_lock();
1627 lock_mount_hash();
1628
1629 /* Recheck MNT_LOCKED with the locks held */
1630 retval = -EINVAL;
1631 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1632 goto out;
1633
1634 event++;
1635 if (flags & MNT_DETACH) {
1636 if (!list_empty(&mnt->mnt_list))
1637 umount_tree(mnt, UMOUNT_PROPAGATE);
1638 retval = 0;
1639 } else {
1640 shrink_submounts(mnt);
1641 retval = -EBUSY;
1642 if (!propagate_mount_busy(mnt, 2)) {
1643 if (!list_empty(&mnt->mnt_list))
1644 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1645 retval = 0;
1646 }
1647 }
1648 out:
1649 unlock_mount_hash();
1650 namespace_unlock();
1651 return retval;
1652 }
1653
1654 /*
1655 * __detach_mounts - lazily unmount all mounts on the specified dentry
1656 *
1657 * During unlink, rmdir, and d_drop it is possible to loose the path
1658 * to an existing mountpoint, and wind up leaking the mount.
1659 * detach_mounts allows lazily unmounting those mounts instead of
1660 * leaking them.
1661 *
1662 * The caller may hold dentry->d_inode->i_mutex.
1663 */
1664 void __detach_mounts(struct dentry *dentry)
1665 {
1666 struct mountpoint *mp;
1667 struct mount *mnt;
1668
1669 namespace_lock();
1670 lock_mount_hash();
1671 mp = lookup_mountpoint(dentry);
1672 if (IS_ERR_OR_NULL(mp))
1673 goto out_unlock;
1674
1675 event++;
1676 while (!hlist_empty(&mp->m_list)) {
1677 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1678 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1679 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1680 umount_mnt(mnt);
1681 }
1682 else umount_tree(mnt, UMOUNT_CONNECTED);
1683 }
1684 put_mountpoint(mp);
1685 out_unlock:
1686 unlock_mount_hash();
1687 namespace_unlock();
1688 }
1689
1690 /*
1691 * Is the caller allowed to modify his namespace?
1692 */
1693 static inline bool may_mount(void)
1694 {
1695 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1696 }
1697
1698 static inline bool may_mandlock(void)
1699 {
1700 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1701 return false;
1702 #endif
1703 return capable(CAP_SYS_ADMIN);
1704 }
1705
1706 /*
1707 * Now umount can handle mount points as well as block devices.
1708 * This is important for filesystems which use unnamed block devices.
1709 *
1710 * We now support a flag for forced unmount like the other 'big iron'
1711 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1712 */
1713
1714 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1715 {
1716 struct path path;
1717 struct mount *mnt;
1718 int retval;
1719 int lookup_flags = 0;
1720
1721 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1722 return -EINVAL;
1723
1724 if (!may_mount())
1725 return -EPERM;
1726
1727 if (!(flags & UMOUNT_NOFOLLOW))
1728 lookup_flags |= LOOKUP_FOLLOW;
1729
1730 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1731 if (retval)
1732 goto out;
1733 mnt = real_mount(path.mnt);
1734 retval = -EINVAL;
1735 if (path.dentry != path.mnt->mnt_root)
1736 goto dput_and_out;
1737 if (!check_mnt(mnt))
1738 goto dput_and_out;
1739 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1740 goto dput_and_out;
1741 retval = -EPERM;
1742 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1743 goto dput_and_out;
1744
1745 retval = do_umount(mnt, flags);
1746 dput_and_out:
1747 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1748 dput(path.dentry);
1749 mntput_no_expire(mnt);
1750 out:
1751 return retval;
1752 }
1753
1754 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1755
1756 /*
1757 * The 2.0 compatible umount. No flags.
1758 */
1759 SYSCALL_DEFINE1(oldumount, char __user *, name)
1760 {
1761 return sys_umount(name, 0);
1762 }
1763
1764 #endif
1765
1766 static bool is_mnt_ns_file(struct dentry *dentry)
1767 {
1768 /* Is this a proxy for a mount namespace? */
1769 return dentry->d_op == &ns_dentry_operations &&
1770 dentry->d_fsdata == &mntns_operations;
1771 }
1772
1773 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1774 {
1775 return container_of(ns, struct mnt_namespace, ns);
1776 }
1777
1778 static bool mnt_ns_loop(struct dentry *dentry)
1779 {
1780 /* Could bind mounting the mount namespace inode cause a
1781 * mount namespace loop?
1782 */
1783 struct mnt_namespace *mnt_ns;
1784 if (!is_mnt_ns_file(dentry))
1785 return false;
1786
1787 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1788 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1789 }
1790
1791 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1792 int flag)
1793 {
1794 struct mount *res, *p, *q, *r, *parent;
1795
1796 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1797 return ERR_PTR(-EINVAL);
1798
1799 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1800 return ERR_PTR(-EINVAL);
1801
1802 res = q = clone_mnt(mnt, dentry, flag);
1803 if (IS_ERR(q))
1804 return q;
1805
1806 q->mnt_mountpoint = mnt->mnt_mountpoint;
1807
1808 p = mnt;
1809 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1810 struct mount *s;
1811 if (!is_subdir(r->mnt_mountpoint, dentry))
1812 continue;
1813
1814 for (s = r; s; s = next_mnt(s, r)) {
1815 if (!(flag & CL_COPY_UNBINDABLE) &&
1816 IS_MNT_UNBINDABLE(s)) {
1817 if (s->mnt.mnt_flags & MNT_LOCKED) {
1818 /* Both unbindable and locked. */
1819 q = ERR_PTR(-EPERM);
1820 goto out;
1821 } else {
1822 s = skip_mnt_tree(s);
1823 continue;
1824 }
1825 }
1826 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1827 is_mnt_ns_file(s->mnt.mnt_root)) {
1828 s = skip_mnt_tree(s);
1829 continue;
1830 }
1831 while (p != s->mnt_parent) {
1832 p = p->mnt_parent;
1833 q = q->mnt_parent;
1834 }
1835 p = s;
1836 parent = q;
1837 q = clone_mnt(p, p->mnt.mnt_root, flag);
1838 if (IS_ERR(q))
1839 goto out;
1840 lock_mount_hash();
1841 list_add_tail(&q->mnt_list, &res->mnt_list);
1842 attach_mnt(q, parent, p->mnt_mp);
1843 unlock_mount_hash();
1844 }
1845 }
1846 return res;
1847 out:
1848 if (res) {
1849 lock_mount_hash();
1850 umount_tree(res, UMOUNT_SYNC);
1851 unlock_mount_hash();
1852 }
1853 return q;
1854 }
1855
1856 /* Caller should check returned pointer for errors */
1857
1858 struct vfsmount *collect_mounts(const struct path *path)
1859 {
1860 struct mount *tree;
1861 namespace_lock();
1862 if (!check_mnt(real_mount(path->mnt)))
1863 tree = ERR_PTR(-EINVAL);
1864 else
1865 tree = copy_tree(real_mount(path->mnt), path->dentry,
1866 CL_COPY_ALL | CL_PRIVATE);
1867 namespace_unlock();
1868 if (IS_ERR(tree))
1869 return ERR_CAST(tree);
1870 return &tree->mnt;
1871 }
1872
1873 void drop_collected_mounts(struct vfsmount *mnt)
1874 {
1875 namespace_lock();
1876 lock_mount_hash();
1877 umount_tree(real_mount(mnt), 0);
1878 unlock_mount_hash();
1879 namespace_unlock();
1880 }
1881
1882 /**
1883 * clone_private_mount - create a private clone of a path
1884 *
1885 * This creates a new vfsmount, which will be the clone of @path. The new will
1886 * not be attached anywhere in the namespace and will be private (i.e. changes
1887 * to the originating mount won't be propagated into this).
1888 *
1889 * Release with mntput().
1890 */
1891 struct vfsmount *clone_private_mount(const struct path *path)
1892 {
1893 struct mount *old_mnt = real_mount(path->mnt);
1894 struct mount *new_mnt;
1895
1896 if (IS_MNT_UNBINDABLE(old_mnt))
1897 return ERR_PTR(-EINVAL);
1898
1899 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1900 if (IS_ERR(new_mnt))
1901 return ERR_CAST(new_mnt);
1902
1903 return &new_mnt->mnt;
1904 }
1905 EXPORT_SYMBOL_GPL(clone_private_mount);
1906
1907 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1908 struct vfsmount *root)
1909 {
1910 struct mount *mnt;
1911 int res = f(root, arg);
1912 if (res)
1913 return res;
1914 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1915 res = f(&mnt->mnt, arg);
1916 if (res)
1917 return res;
1918 }
1919 return 0;
1920 }
1921
1922 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1923 {
1924 struct mount *p;
1925
1926 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1927 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1928 mnt_release_group_id(p);
1929 }
1930 }
1931
1932 static int invent_group_ids(struct mount *mnt, bool recurse)
1933 {
1934 struct mount *p;
1935
1936 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1937 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1938 int err = mnt_alloc_group_id(p);
1939 if (err) {
1940 cleanup_group_ids(mnt, p);
1941 return err;
1942 }
1943 }
1944 }
1945
1946 return 0;
1947 }
1948
1949 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1950 {
1951 unsigned int max = READ_ONCE(sysctl_mount_max);
1952 unsigned int mounts = 0, old, pending, sum;
1953 struct mount *p;
1954
1955 for (p = mnt; p; p = next_mnt(p, mnt))
1956 mounts++;
1957
1958 old = ns->mounts;
1959 pending = ns->pending_mounts;
1960 sum = old + pending;
1961 if ((old > sum) ||
1962 (pending > sum) ||
1963 (max < sum) ||
1964 (mounts > (max - sum)))
1965 return -ENOSPC;
1966
1967 ns->pending_mounts = pending + mounts;
1968 return 0;
1969 }
1970
1971 /*
1972 * @source_mnt : mount tree to be attached
1973 * @nd : place the mount tree @source_mnt is attached
1974 * @parent_nd : if non-null, detach the source_mnt from its parent and
1975 * store the parent mount and mountpoint dentry.
1976 * (done when source_mnt is moved)
1977 *
1978 * NOTE: in the table below explains the semantics when a source mount
1979 * of a given type is attached to a destination mount of a given type.
1980 * ---------------------------------------------------------------------------
1981 * | BIND MOUNT OPERATION |
1982 * |**************************************************************************
1983 * | source-->| shared | private | slave | unbindable |
1984 * | dest | | | | |
1985 * | | | | | | |
1986 * | v | | | | |
1987 * |**************************************************************************
1988 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1989 * | | | | | |
1990 * |non-shared| shared (+) | private | slave (*) | invalid |
1991 * ***************************************************************************
1992 * A bind operation clones the source mount and mounts the clone on the
1993 * destination mount.
1994 *
1995 * (++) the cloned mount is propagated to all the mounts in the propagation
1996 * tree of the destination mount and the cloned mount is added to
1997 * the peer group of the source mount.
1998 * (+) the cloned mount is created under the destination mount and is marked
1999 * as shared. The cloned mount is added to the peer group of the source
2000 * mount.
2001 * (+++) the mount is propagated to all the mounts in the propagation tree
2002 * of the destination mount and the cloned mount is made slave
2003 * of the same master as that of the source mount. The cloned mount
2004 * is marked as 'shared and slave'.
2005 * (*) the cloned mount is made a slave of the same master as that of the
2006 * source mount.
2007 *
2008 * ---------------------------------------------------------------------------
2009 * | MOVE MOUNT OPERATION |
2010 * |**************************************************************************
2011 * | source-->| shared | private | slave | unbindable |
2012 * | dest | | | | |
2013 * | | | | | | |
2014 * | v | | | | |
2015 * |**************************************************************************
2016 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2017 * | | | | | |
2018 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2019 * ***************************************************************************
2020 *
2021 * (+) the mount is moved to the destination. And is then propagated to
2022 * all the mounts in the propagation tree of the destination mount.
2023 * (+*) the mount is moved to the destination.
2024 * (+++) the mount is moved to the destination and is then propagated to
2025 * all the mounts belonging to the destination mount's propagation tree.
2026 * the mount is marked as 'shared and slave'.
2027 * (*) the mount continues to be a slave at the new location.
2028 *
2029 * if the source mount is a tree, the operations explained above is
2030 * applied to each mount in the tree.
2031 * Must be called without spinlocks held, since this function can sleep
2032 * in allocations.
2033 */
2034 static int attach_recursive_mnt(struct mount *source_mnt,
2035 struct mount *dest_mnt,
2036 struct mountpoint *dest_mp,
2037 struct path *parent_path)
2038 {
2039 HLIST_HEAD(tree_list);
2040 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2041 struct mountpoint *smp;
2042 struct mount *child, *p;
2043 struct hlist_node *n;
2044 int err;
2045
2046 /* Preallocate a mountpoint in case the new mounts need
2047 * to be tucked under other mounts.
2048 */
2049 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2050 if (IS_ERR(smp))
2051 return PTR_ERR(smp);
2052
2053 /* Is there space to add these mounts to the mount namespace? */
2054 if (!parent_path) {
2055 err = count_mounts(ns, source_mnt);
2056 if (err)
2057 goto out;
2058 }
2059
2060 if (IS_MNT_SHARED(dest_mnt)) {
2061 err = invent_group_ids(source_mnt, true);
2062 if (err)
2063 goto out;
2064 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2065 lock_mount_hash();
2066 if (err)
2067 goto out_cleanup_ids;
2068 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2069 set_mnt_shared(p);
2070 } else {
2071 lock_mount_hash();
2072 }
2073 if (parent_path) {
2074 detach_mnt(source_mnt, parent_path);
2075 attach_mnt(source_mnt, dest_mnt, dest_mp);
2076 touch_mnt_namespace(source_mnt->mnt_ns);
2077 } else {
2078 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2079 commit_tree(source_mnt);
2080 }
2081
2082 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2083 struct mount *q;
2084 hlist_del_init(&child->mnt_hash);
2085 q = __lookup_mnt(&child->mnt_parent->mnt,
2086 child->mnt_mountpoint);
2087 if (q)
2088 mnt_change_mountpoint(child, smp, q);
2089 commit_tree(child);
2090 }
2091 put_mountpoint(smp);
2092 unlock_mount_hash();
2093
2094 return 0;
2095
2096 out_cleanup_ids:
2097 while (!hlist_empty(&tree_list)) {
2098 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2099 child->mnt_parent->mnt_ns->pending_mounts = 0;
2100 umount_tree(child, UMOUNT_SYNC);
2101 }
2102 unlock_mount_hash();
2103 cleanup_group_ids(source_mnt, NULL);
2104 out:
2105 ns->pending_mounts = 0;
2106
2107 read_seqlock_excl(&mount_lock);
2108 put_mountpoint(smp);
2109 read_sequnlock_excl(&mount_lock);
2110
2111 return err;
2112 }
2113
2114 static struct mountpoint *lock_mount(struct path *path)
2115 {
2116 struct vfsmount *mnt;
2117 struct dentry *dentry = path->dentry;
2118 retry:
2119 inode_lock(dentry->d_inode);
2120 if (unlikely(cant_mount(dentry))) {
2121 inode_unlock(dentry->d_inode);
2122 return ERR_PTR(-ENOENT);
2123 }
2124 namespace_lock();
2125 mnt = lookup_mnt(path);
2126 if (likely(!mnt)) {
2127 struct mountpoint *mp = get_mountpoint(dentry);
2128 if (IS_ERR(mp)) {
2129 namespace_unlock();
2130 inode_unlock(dentry->d_inode);
2131 return mp;
2132 }
2133 return mp;
2134 }
2135 namespace_unlock();
2136 inode_unlock(path->dentry->d_inode);
2137 path_put(path);
2138 path->mnt = mnt;
2139 dentry = path->dentry = dget(mnt->mnt_root);
2140 goto retry;
2141 }
2142
2143 static void unlock_mount(struct mountpoint *where)
2144 {
2145 struct dentry *dentry = where->m_dentry;
2146
2147 read_seqlock_excl(&mount_lock);
2148 put_mountpoint(where);
2149 read_sequnlock_excl(&mount_lock);
2150
2151 namespace_unlock();
2152 inode_unlock(dentry->d_inode);
2153 }
2154
2155 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2156 {
2157 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2158 return -EINVAL;
2159
2160 if (d_is_dir(mp->m_dentry) !=
2161 d_is_dir(mnt->mnt.mnt_root))
2162 return -ENOTDIR;
2163
2164 return attach_recursive_mnt(mnt, p, mp, NULL);
2165 }
2166
2167 /*
2168 * Sanity check the flags to change_mnt_propagation.
2169 */
2170
2171 static int flags_to_propagation_type(int ms_flags)
2172 {
2173 int type = ms_flags & ~(MS_REC | MS_SILENT);
2174
2175 /* Fail if any non-propagation flags are set */
2176 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2177 return 0;
2178 /* Only one propagation flag should be set */
2179 if (!is_power_of_2(type))
2180 return 0;
2181 return type;
2182 }
2183
2184 /*
2185 * recursively change the type of the mountpoint.
2186 */
2187 static int do_change_type(struct path *path, int ms_flags)
2188 {
2189 struct mount *m;
2190 struct mount *mnt = real_mount(path->mnt);
2191 int recurse = ms_flags & MS_REC;
2192 int type;
2193 int err = 0;
2194
2195 if (path->dentry != path->mnt->mnt_root)
2196 return -EINVAL;
2197
2198 type = flags_to_propagation_type(ms_flags);
2199 if (!type)
2200 return -EINVAL;
2201
2202 namespace_lock();
2203 if (type == MS_SHARED) {
2204 err = invent_group_ids(mnt, recurse);
2205 if (err)
2206 goto out_unlock;
2207 }
2208
2209 lock_mount_hash();
2210 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2211 change_mnt_propagation(m, type);
2212 unlock_mount_hash();
2213
2214 out_unlock:
2215 namespace_unlock();
2216 return err;
2217 }
2218
2219 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2220 {
2221 struct mount *child;
2222 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2223 if (!is_subdir(child->mnt_mountpoint, dentry))
2224 continue;
2225
2226 if (child->mnt.mnt_flags & MNT_LOCKED)
2227 return true;
2228 }
2229 return false;
2230 }
2231
2232 /*
2233 * do loopback mount.
2234 */
2235 static int do_loopback(struct path *path, const char *old_name,
2236 int recurse)
2237 {
2238 struct path old_path;
2239 struct mount *mnt = NULL, *old, *parent;
2240 struct mountpoint *mp;
2241 int err;
2242 if (!old_name || !*old_name)
2243 return -EINVAL;
2244 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2245 if (err)
2246 return err;
2247
2248 err = -EINVAL;
2249 if (mnt_ns_loop(old_path.dentry))
2250 goto out;
2251
2252 mp = lock_mount(path);
2253 err = PTR_ERR(mp);
2254 if (IS_ERR(mp))
2255 goto out;
2256
2257 old = real_mount(old_path.mnt);
2258 parent = real_mount(path->mnt);
2259
2260 err = -EINVAL;
2261 if (IS_MNT_UNBINDABLE(old))
2262 goto out2;
2263
2264 if (!check_mnt(parent))
2265 goto out2;
2266
2267 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2268 goto out2;
2269
2270 if (!recurse && has_locked_children(old, old_path.dentry))
2271 goto out2;
2272
2273 if (recurse)
2274 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2275 else
2276 mnt = clone_mnt(old, old_path.dentry, 0);
2277
2278 if (IS_ERR(mnt)) {
2279 err = PTR_ERR(mnt);
2280 goto out2;
2281 }
2282
2283 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2284
2285 err = graft_tree(mnt, parent, mp);
2286 if (err) {
2287 lock_mount_hash();
2288 umount_tree(mnt, UMOUNT_SYNC);
2289 unlock_mount_hash();
2290 }
2291 out2:
2292 unlock_mount(mp);
2293 out:
2294 path_put(&old_path);
2295 return err;
2296 }
2297
2298 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2299 {
2300 int error = 0;
2301 int readonly_request = 0;
2302
2303 if (ms_flags & MS_RDONLY)
2304 readonly_request = 1;
2305 if (readonly_request == __mnt_is_readonly(mnt))
2306 return 0;
2307
2308 if (readonly_request)
2309 error = mnt_make_readonly(real_mount(mnt));
2310 else
2311 __mnt_unmake_readonly(real_mount(mnt));
2312 return error;
2313 }
2314
2315 /*
2316 * change filesystem flags. dir should be a physical root of filesystem.
2317 * If you've mounted a non-root directory somewhere and want to do remount
2318 * on it - tough luck.
2319 */
2320 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2321 int mnt_flags, void *data)
2322 {
2323 int err;
2324 struct super_block *sb = path->mnt->mnt_sb;
2325 struct mount *mnt = real_mount(path->mnt);
2326
2327 if (!check_mnt(mnt))
2328 return -EINVAL;
2329
2330 if (path->dentry != path->mnt->mnt_root)
2331 return -EINVAL;
2332
2333 /* Don't allow changing of locked mnt flags.
2334 *
2335 * No locks need to be held here while testing the various
2336 * MNT_LOCK flags because those flags can never be cleared
2337 * once they are set.
2338 */
2339 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2340 !(mnt_flags & MNT_READONLY)) {
2341 return -EPERM;
2342 }
2343 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2344 !(mnt_flags & MNT_NODEV)) {
2345 return -EPERM;
2346 }
2347 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2348 !(mnt_flags & MNT_NOSUID)) {
2349 return -EPERM;
2350 }
2351 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2352 !(mnt_flags & MNT_NOEXEC)) {
2353 return -EPERM;
2354 }
2355 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2356 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2357 return -EPERM;
2358 }
2359
2360 err = security_sb_remount(sb, data);
2361 if (err)
2362 return err;
2363
2364 down_write(&sb->s_umount);
2365 if (ms_flags & MS_BIND)
2366 err = change_mount_flags(path->mnt, ms_flags);
2367 else if (!capable(CAP_SYS_ADMIN))
2368 err = -EPERM;
2369 else
2370 err = do_remount_sb(sb, sb_flags, data, 0);
2371 if (!err) {
2372 lock_mount_hash();
2373 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2374 mnt->mnt.mnt_flags = mnt_flags;
2375 touch_mnt_namespace(mnt->mnt_ns);
2376 unlock_mount_hash();
2377 }
2378 up_write(&sb->s_umount);
2379 return err;
2380 }
2381
2382 static inline int tree_contains_unbindable(struct mount *mnt)
2383 {
2384 struct mount *p;
2385 for (p = mnt; p; p = next_mnt(p, mnt)) {
2386 if (IS_MNT_UNBINDABLE(p))
2387 return 1;
2388 }
2389 return 0;
2390 }
2391
2392 static int do_move_mount(struct path *path, const char *old_name)
2393 {
2394 struct path old_path, parent_path;
2395 struct mount *p;
2396 struct mount *old;
2397 struct mountpoint *mp;
2398 int err;
2399 if (!old_name || !*old_name)
2400 return -EINVAL;
2401 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2402 if (err)
2403 return err;
2404
2405 mp = lock_mount(path);
2406 err = PTR_ERR(mp);
2407 if (IS_ERR(mp))
2408 goto out;
2409
2410 old = real_mount(old_path.mnt);
2411 p = real_mount(path->mnt);
2412
2413 err = -EINVAL;
2414 if (!check_mnt(p) || !check_mnt(old))
2415 goto out1;
2416
2417 if (old->mnt.mnt_flags & MNT_LOCKED)
2418 goto out1;
2419
2420 err = -EINVAL;
2421 if (old_path.dentry != old_path.mnt->mnt_root)
2422 goto out1;
2423
2424 if (!mnt_has_parent(old))
2425 goto out1;
2426
2427 if (d_is_dir(path->dentry) !=
2428 d_is_dir(old_path.dentry))
2429 goto out1;
2430 /*
2431 * Don't move a mount residing in a shared parent.
2432 */
2433 if (IS_MNT_SHARED(old->mnt_parent))
2434 goto out1;
2435 /*
2436 * Don't move a mount tree containing unbindable mounts to a destination
2437 * mount which is shared.
2438 */
2439 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2440 goto out1;
2441 err = -ELOOP;
2442 for (; mnt_has_parent(p); p = p->mnt_parent)
2443 if (p == old)
2444 goto out1;
2445
2446 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2447 if (err)
2448 goto out1;
2449
2450 /* if the mount is moved, it should no longer be expire
2451 * automatically */
2452 list_del_init(&old->mnt_expire);
2453 out1:
2454 unlock_mount(mp);
2455 out:
2456 if (!err)
2457 path_put(&parent_path);
2458 path_put(&old_path);
2459 return err;
2460 }
2461
2462 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2463 {
2464 int err;
2465 const char *subtype = strchr(fstype, '.');
2466 if (subtype) {
2467 subtype++;
2468 err = -EINVAL;
2469 if (!subtype[0])
2470 goto err;
2471 } else
2472 subtype = "";
2473
2474 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2475 err = -ENOMEM;
2476 if (!mnt->mnt_sb->s_subtype)
2477 goto err;
2478 return mnt;
2479
2480 err:
2481 mntput(mnt);
2482 return ERR_PTR(err);
2483 }
2484
2485 /*
2486 * add a mount into a namespace's mount tree
2487 */
2488 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2489 {
2490 struct mountpoint *mp;
2491 struct mount *parent;
2492 int err;
2493
2494 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2495
2496 mp = lock_mount(path);
2497 if (IS_ERR(mp))
2498 return PTR_ERR(mp);
2499
2500 parent = real_mount(path->mnt);
2501 err = -EINVAL;
2502 if (unlikely(!check_mnt(parent))) {
2503 /* that's acceptable only for automounts done in private ns */
2504 if (!(mnt_flags & MNT_SHRINKABLE))
2505 goto unlock;
2506 /* ... and for those we'd better have mountpoint still alive */
2507 if (!parent->mnt_ns)
2508 goto unlock;
2509 }
2510
2511 /* Refuse the same filesystem on the same mount point */
2512 err = -EBUSY;
2513 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2514 path->mnt->mnt_root == path->dentry)
2515 goto unlock;
2516
2517 err = -EINVAL;
2518 if (d_is_symlink(newmnt->mnt.mnt_root))
2519 goto unlock;
2520
2521 newmnt->mnt.mnt_flags = mnt_flags;
2522 err = graft_tree(newmnt, parent, mp);
2523
2524 unlock:
2525 unlock_mount(mp);
2526 return err;
2527 }
2528
2529 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2530
2531 /*
2532 * create a new mount for userspace and request it to be added into the
2533 * namespace's tree
2534 */
2535 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2536 int mnt_flags, const char *name, void *data)
2537 {
2538 struct file_system_type *type;
2539 struct vfsmount *mnt;
2540 int err;
2541
2542 if (!fstype)
2543 return -EINVAL;
2544
2545 type = get_fs_type(fstype);
2546 if (!type)
2547 return -ENODEV;
2548
2549 mnt = vfs_kern_mount(type, sb_flags, name, data);
2550 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2551 !mnt->mnt_sb->s_subtype)
2552 mnt = fs_set_subtype(mnt, fstype);
2553
2554 put_filesystem(type);
2555 if (IS_ERR(mnt))
2556 return PTR_ERR(mnt);
2557
2558 if (mount_too_revealing(mnt, &mnt_flags)) {
2559 mntput(mnt);
2560 return -EPERM;
2561 }
2562
2563 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2564 if (err)
2565 mntput(mnt);
2566 return err;
2567 }
2568
2569 int finish_automount(struct vfsmount *m, struct path *path)
2570 {
2571 struct mount *mnt = real_mount(m);
2572 int err;
2573 /* The new mount record should have at least 2 refs to prevent it being
2574 * expired before we get a chance to add it
2575 */
2576 BUG_ON(mnt_get_count(mnt) < 2);
2577
2578 if (m->mnt_sb == path->mnt->mnt_sb &&
2579 m->mnt_root == path->dentry) {
2580 err = -ELOOP;
2581 goto fail;
2582 }
2583
2584 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2585 if (!err)
2586 return 0;
2587 fail:
2588 /* remove m from any expiration list it may be on */
2589 if (!list_empty(&mnt->mnt_expire)) {
2590 namespace_lock();
2591 list_del_init(&mnt->mnt_expire);
2592 namespace_unlock();
2593 }
2594 mntput(m);
2595 mntput(m);
2596 return err;
2597 }
2598
2599 /**
2600 * mnt_set_expiry - Put a mount on an expiration list
2601 * @mnt: The mount to list.
2602 * @expiry_list: The list to add the mount to.
2603 */
2604 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2605 {
2606 namespace_lock();
2607
2608 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2609
2610 namespace_unlock();
2611 }
2612 EXPORT_SYMBOL(mnt_set_expiry);
2613
2614 /*
2615 * process a list of expirable mountpoints with the intent of discarding any
2616 * mountpoints that aren't in use and haven't been touched since last we came
2617 * here
2618 */
2619 void mark_mounts_for_expiry(struct list_head *mounts)
2620 {
2621 struct mount *mnt, *next;
2622 LIST_HEAD(graveyard);
2623
2624 if (list_empty(mounts))
2625 return;
2626
2627 namespace_lock();
2628 lock_mount_hash();
2629
2630 /* extract from the expiration list every vfsmount that matches the
2631 * following criteria:
2632 * - only referenced by its parent vfsmount
2633 * - still marked for expiry (marked on the last call here; marks are
2634 * cleared by mntput())
2635 */
2636 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2637 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2638 propagate_mount_busy(mnt, 1))
2639 continue;
2640 list_move(&mnt->mnt_expire, &graveyard);
2641 }
2642 while (!list_empty(&graveyard)) {
2643 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2644 touch_mnt_namespace(mnt->mnt_ns);
2645 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2646 }
2647 unlock_mount_hash();
2648 namespace_unlock();
2649 }
2650
2651 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2652
2653 /*
2654 * Ripoff of 'select_parent()'
2655 *
2656 * search the list of submounts for a given mountpoint, and move any
2657 * shrinkable submounts to the 'graveyard' list.
2658 */
2659 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2660 {
2661 struct mount *this_parent = parent;
2662 struct list_head *next;
2663 int found = 0;
2664
2665 repeat:
2666 next = this_parent->mnt_mounts.next;
2667 resume:
2668 while (next != &this_parent->mnt_mounts) {
2669 struct list_head *tmp = next;
2670 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2671
2672 next = tmp->next;
2673 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2674 continue;
2675 /*
2676 * Descend a level if the d_mounts list is non-empty.
2677 */
2678 if (!list_empty(&mnt->mnt_mounts)) {
2679 this_parent = mnt;
2680 goto repeat;
2681 }
2682
2683 if (!propagate_mount_busy(mnt, 1)) {
2684 list_move_tail(&mnt->mnt_expire, graveyard);
2685 found++;
2686 }
2687 }
2688 /*
2689 * All done at this level ... ascend and resume the search
2690 */
2691 if (this_parent != parent) {
2692 next = this_parent->mnt_child.next;
2693 this_parent = this_parent->mnt_parent;
2694 goto resume;
2695 }
2696 return found;
2697 }
2698
2699 /*
2700 * process a list of expirable mountpoints with the intent of discarding any
2701 * submounts of a specific parent mountpoint
2702 *
2703 * mount_lock must be held for write
2704 */
2705 static void shrink_submounts(struct mount *mnt)
2706 {
2707 LIST_HEAD(graveyard);
2708 struct mount *m;
2709
2710 /* extract submounts of 'mountpoint' from the expiration list */
2711 while (select_submounts(mnt, &graveyard)) {
2712 while (!list_empty(&graveyard)) {
2713 m = list_first_entry(&graveyard, struct mount,
2714 mnt_expire);
2715 touch_mnt_namespace(m->mnt_ns);
2716 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2717 }
2718 }
2719 }
2720
2721 /*
2722 * Some copy_from_user() implementations do not return the exact number of
2723 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2724 * Note that this function differs from copy_from_user() in that it will oops
2725 * on bad values of `to', rather than returning a short copy.
2726 */
2727 static long exact_copy_from_user(void *to, const void __user * from,
2728 unsigned long n)
2729 {
2730 char *t = to;
2731 const char __user *f = from;
2732 char c;
2733
2734 if (!access_ok(VERIFY_READ, from, n))
2735 return n;
2736
2737 while (n) {
2738 if (__get_user(c, f)) {
2739 memset(t, 0, n);
2740 break;
2741 }
2742 *t++ = c;
2743 f++;
2744 n--;
2745 }
2746 return n;
2747 }
2748
2749 void *copy_mount_options(const void __user * data)
2750 {
2751 int i;
2752 unsigned long size;
2753 char *copy;
2754
2755 if (!data)
2756 return NULL;
2757
2758 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2759 if (!copy)
2760 return ERR_PTR(-ENOMEM);
2761
2762 /* We only care that *some* data at the address the user
2763 * gave us is valid. Just in case, we'll zero
2764 * the remainder of the page.
2765 */
2766 /* copy_from_user cannot cross TASK_SIZE ! */
2767 size = TASK_SIZE - (unsigned long)data;
2768 if (size > PAGE_SIZE)
2769 size = PAGE_SIZE;
2770
2771 i = size - exact_copy_from_user(copy, data, size);
2772 if (!i) {
2773 kfree(copy);
2774 return ERR_PTR(-EFAULT);
2775 }
2776 if (i != PAGE_SIZE)
2777 memset(copy + i, 0, PAGE_SIZE - i);
2778 return copy;
2779 }
2780
2781 char *copy_mount_string(const void __user *data)
2782 {
2783 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2784 }
2785
2786 /*
2787 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2788 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2789 *
2790 * data is a (void *) that can point to any structure up to
2791 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2792 * information (or be NULL).
2793 *
2794 * Pre-0.97 versions of mount() didn't have a flags word.
2795 * When the flags word was introduced its top half was required
2796 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2797 * Therefore, if this magic number is present, it carries no information
2798 * and must be discarded.
2799 */
2800 long do_mount(const char *dev_name, const char __user *dir_name,
2801 const char *type_page, unsigned long flags, void *data_page)
2802 {
2803 struct path path;
2804 unsigned int mnt_flags = 0, sb_flags;
2805 int retval = 0;
2806
2807 /* Discard magic */
2808 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2809 flags &= ~MS_MGC_MSK;
2810
2811 /* Basic sanity checks */
2812 if (data_page)
2813 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2814
2815 if (flags & MS_NOUSER)
2816 return -EINVAL;
2817
2818 /* ... and get the mountpoint */
2819 retval = user_path(dir_name, &path);
2820 if (retval)
2821 return retval;
2822
2823 retval = security_sb_mount(dev_name, &path,
2824 type_page, flags, data_page);
2825 if (!retval && !may_mount())
2826 retval = -EPERM;
2827 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2828 retval = -EPERM;
2829 if (retval)
2830 goto dput_out;
2831
2832 /* Default to relatime unless overriden */
2833 if (!(flags & MS_NOATIME))
2834 mnt_flags |= MNT_RELATIME;
2835
2836 /* Separate the per-mountpoint flags */
2837 if (flags & MS_NOSUID)
2838 mnt_flags |= MNT_NOSUID;
2839 if (flags & MS_NODEV)
2840 mnt_flags |= MNT_NODEV;
2841 if (flags & MS_NOEXEC)
2842 mnt_flags |= MNT_NOEXEC;
2843 if (flags & MS_NOATIME)
2844 mnt_flags |= MNT_NOATIME;
2845 if (flags & MS_NODIRATIME)
2846 mnt_flags |= MNT_NODIRATIME;
2847 if (flags & MS_STRICTATIME)
2848 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2849 if (flags & MS_RDONLY)
2850 mnt_flags |= MNT_READONLY;
2851
2852 /* The default atime for remount is preservation */
2853 if ((flags & MS_REMOUNT) &&
2854 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2855 MS_STRICTATIME)) == 0)) {
2856 mnt_flags &= ~MNT_ATIME_MASK;
2857 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2858 }
2859
2860 sb_flags = flags & (SB_RDONLY |
2861 SB_SYNCHRONOUS |
2862 SB_MANDLOCK |
2863 SB_DIRSYNC |
2864 SB_SILENT |
2865 SB_POSIXACL |
2866 SB_LAZYTIME |
2867 SB_I_VERSION);
2868
2869 if (flags & MS_REMOUNT)
2870 retval = do_remount(&path, flags, sb_flags, mnt_flags,
2871 data_page);
2872 else if (flags & MS_BIND)
2873 retval = do_loopback(&path, dev_name, flags & MS_REC);
2874 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2875 retval = do_change_type(&path, flags);
2876 else if (flags & MS_MOVE)
2877 retval = do_move_mount(&path, dev_name);
2878 else
2879 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2880 dev_name, data_page);
2881 dput_out:
2882 path_put(&path);
2883 return retval;
2884 }
2885
2886 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2887 {
2888 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2889 }
2890
2891 static void dec_mnt_namespaces(struct ucounts *ucounts)
2892 {
2893 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2894 }
2895
2896 static void free_mnt_ns(struct mnt_namespace *ns)
2897 {
2898 ns_free_inum(&ns->ns);
2899 dec_mnt_namespaces(ns->ucounts);
2900 put_user_ns(ns->user_ns);
2901 kfree(ns);
2902 }
2903
2904 /*
2905 * Assign a sequence number so we can detect when we attempt to bind
2906 * mount a reference to an older mount namespace into the current
2907 * mount namespace, preventing reference counting loops. A 64bit
2908 * number incrementing at 10Ghz will take 12,427 years to wrap which
2909 * is effectively never, so we can ignore the possibility.
2910 */
2911 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2912
2913 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2914 {
2915 struct mnt_namespace *new_ns;
2916 struct ucounts *ucounts;
2917 int ret;
2918
2919 ucounts = inc_mnt_namespaces(user_ns);
2920 if (!ucounts)
2921 return ERR_PTR(-ENOSPC);
2922
2923 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2924 if (!new_ns) {
2925 dec_mnt_namespaces(ucounts);
2926 return ERR_PTR(-ENOMEM);
2927 }
2928 ret = ns_alloc_inum(&new_ns->ns);
2929 if (ret) {
2930 kfree(new_ns);
2931 dec_mnt_namespaces(ucounts);
2932 return ERR_PTR(ret);
2933 }
2934 new_ns->ns.ops = &mntns_operations;
2935 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2936 atomic_set(&new_ns->count, 1);
2937 new_ns->root = NULL;
2938 INIT_LIST_HEAD(&new_ns->list);
2939 init_waitqueue_head(&new_ns->poll);
2940 new_ns->event = 0;
2941 new_ns->user_ns = get_user_ns(user_ns);
2942 new_ns->ucounts = ucounts;
2943 new_ns->mounts = 0;
2944 new_ns->pending_mounts = 0;
2945 return new_ns;
2946 }
2947
2948 __latent_entropy
2949 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2950 struct user_namespace *user_ns, struct fs_struct *new_fs)
2951 {
2952 struct mnt_namespace *new_ns;
2953 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2954 struct mount *p, *q;
2955 struct mount *old;
2956 struct mount *new;
2957 int copy_flags;
2958
2959 BUG_ON(!ns);
2960
2961 if (likely(!(flags & CLONE_NEWNS))) {
2962 get_mnt_ns(ns);
2963 return ns;
2964 }
2965
2966 old = ns->root;
2967
2968 new_ns = alloc_mnt_ns(user_ns);
2969 if (IS_ERR(new_ns))
2970 return new_ns;
2971
2972 namespace_lock();
2973 /* First pass: copy the tree topology */
2974 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2975 if (user_ns != ns->user_ns)
2976 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2977 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2978 if (IS_ERR(new)) {
2979 namespace_unlock();
2980 free_mnt_ns(new_ns);
2981 return ERR_CAST(new);
2982 }
2983 new_ns->root = new;
2984 list_add_tail(&new_ns->list, &new->mnt_list);
2985
2986 /*
2987 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2988 * as belonging to new namespace. We have already acquired a private
2989 * fs_struct, so tsk->fs->lock is not needed.
2990 */
2991 p = old;
2992 q = new;
2993 while (p) {
2994 q->mnt_ns = new_ns;
2995 new_ns->mounts++;
2996 if (new_fs) {
2997 if (&p->mnt == new_fs->root.mnt) {
2998 new_fs->root.mnt = mntget(&q->mnt);
2999 rootmnt = &p->mnt;
3000 }
3001 if (&p->mnt == new_fs->pwd.mnt) {
3002 new_fs->pwd.mnt = mntget(&q->mnt);
3003 pwdmnt = &p->mnt;
3004 }
3005 }
3006 p = next_mnt(p, old);
3007 q = next_mnt(q, new);
3008 if (!q)
3009 break;
3010 while (p->mnt.mnt_root != q->mnt.mnt_root)
3011 p = next_mnt(p, old);
3012 }
3013 namespace_unlock();
3014
3015 if (rootmnt)
3016 mntput(rootmnt);
3017 if (pwdmnt)
3018 mntput(pwdmnt);
3019
3020 return new_ns;
3021 }
3022
3023 /**
3024 * create_mnt_ns - creates a private namespace and adds a root filesystem
3025 * @mnt: pointer to the new root filesystem mountpoint
3026 */
3027 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
3028 {
3029 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
3030 if (!IS_ERR(new_ns)) {
3031 struct mount *mnt = real_mount(m);
3032 mnt->mnt_ns = new_ns;
3033 new_ns->root = mnt;
3034 new_ns->mounts++;
3035 list_add(&mnt->mnt_list, &new_ns->list);
3036 } else {
3037 mntput(m);
3038 }
3039 return new_ns;
3040 }
3041
3042 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3043 {
3044 struct mnt_namespace *ns;
3045 struct super_block *s;
3046 struct path path;
3047 int err;
3048
3049 ns = create_mnt_ns(mnt);
3050 if (IS_ERR(ns))
3051 return ERR_CAST(ns);
3052
3053 err = vfs_path_lookup(mnt->mnt_root, mnt,
3054 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3055
3056 put_mnt_ns(ns);
3057
3058 if (err)
3059 return ERR_PTR(err);
3060
3061 /* trade a vfsmount reference for active sb one */
3062 s = path.mnt->mnt_sb;
3063 atomic_inc(&s->s_active);
3064 mntput(path.mnt);
3065 /* lock the sucker */
3066 down_write(&s->s_umount);
3067 /* ... and return the root of (sub)tree on it */
3068 return path.dentry;
3069 }
3070 EXPORT_SYMBOL(mount_subtree);
3071
3072 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3073 char __user *, type, unsigned long, flags, void __user *, data)
3074 {
3075 int ret;
3076 char *kernel_type;
3077 char *kernel_dev;
3078 void *options;
3079
3080 kernel_type = copy_mount_string(type);
3081 ret = PTR_ERR(kernel_type);
3082 if (IS_ERR(kernel_type))
3083 goto out_type;
3084
3085 kernel_dev = copy_mount_string(dev_name);
3086 ret = PTR_ERR(kernel_dev);
3087 if (IS_ERR(kernel_dev))
3088 goto out_dev;
3089
3090 options = copy_mount_options(data);
3091 ret = PTR_ERR(options);
3092 if (IS_ERR(options))
3093 goto out_data;
3094
3095 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3096
3097 kfree(options);
3098 out_data:
3099 kfree(kernel_dev);
3100 out_dev:
3101 kfree(kernel_type);
3102 out_type:
3103 return ret;
3104 }
3105
3106 /*
3107 * Return true if path is reachable from root
3108 *
3109 * namespace_sem or mount_lock is held
3110 */
3111 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3112 const struct path *root)
3113 {
3114 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3115 dentry = mnt->mnt_mountpoint;
3116 mnt = mnt->mnt_parent;
3117 }
3118 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3119 }
3120
3121 bool path_is_under(const struct path *path1, const struct path *path2)
3122 {
3123 bool res;
3124 read_seqlock_excl(&mount_lock);
3125 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3126 read_sequnlock_excl(&mount_lock);
3127 return res;
3128 }
3129 EXPORT_SYMBOL(path_is_under);
3130
3131 /*
3132 * pivot_root Semantics:
3133 * Moves the root file system of the current process to the directory put_old,
3134 * makes new_root as the new root file system of the current process, and sets
3135 * root/cwd of all processes which had them on the current root to new_root.
3136 *
3137 * Restrictions:
3138 * The new_root and put_old must be directories, and must not be on the
3139 * same file system as the current process root. The put_old must be
3140 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3141 * pointed to by put_old must yield the same directory as new_root. No other
3142 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3143 *
3144 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3145 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3146 * in this situation.
3147 *
3148 * Notes:
3149 * - we don't move root/cwd if they are not at the root (reason: if something
3150 * cared enough to change them, it's probably wrong to force them elsewhere)
3151 * - it's okay to pick a root that isn't the root of a file system, e.g.
3152 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3153 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3154 * first.
3155 */
3156 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3157 const char __user *, put_old)
3158 {
3159 struct path new, old, parent_path, root_parent, root;
3160 struct mount *new_mnt, *root_mnt, *old_mnt;
3161 struct mountpoint *old_mp, *root_mp;
3162 int error;
3163
3164 if (!may_mount())
3165 return -EPERM;
3166
3167 error = user_path_dir(new_root, &new);
3168 if (error)
3169 goto out0;
3170
3171 error = user_path_dir(put_old, &old);
3172 if (error)
3173 goto out1;
3174
3175 error = security_sb_pivotroot(&old, &new);
3176 if (error)
3177 goto out2;
3178
3179 get_fs_root(current->fs, &root);
3180 old_mp = lock_mount(&old);
3181 error = PTR_ERR(old_mp);
3182 if (IS_ERR(old_mp))
3183 goto out3;
3184
3185 error = -EINVAL;
3186 new_mnt = real_mount(new.mnt);
3187 root_mnt = real_mount(root.mnt);
3188 old_mnt = real_mount(old.mnt);
3189 if (IS_MNT_SHARED(old_mnt) ||
3190 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3191 IS_MNT_SHARED(root_mnt->mnt_parent))
3192 goto out4;
3193 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3194 goto out4;
3195 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3196 goto out4;
3197 error = -ENOENT;
3198 if (d_unlinked(new.dentry))
3199 goto out4;
3200 error = -EBUSY;
3201 if (new_mnt == root_mnt || old_mnt == root_mnt)
3202 goto out4; /* loop, on the same file system */
3203 error = -EINVAL;
3204 if (root.mnt->mnt_root != root.dentry)
3205 goto out4; /* not a mountpoint */
3206 if (!mnt_has_parent(root_mnt))
3207 goto out4; /* not attached */
3208 root_mp = root_mnt->mnt_mp;
3209 if (new.mnt->mnt_root != new.dentry)
3210 goto out4; /* not a mountpoint */
3211 if (!mnt_has_parent(new_mnt))
3212 goto out4; /* not attached */
3213 /* make sure we can reach put_old from new_root */
3214 if (!is_path_reachable(old_mnt, old.dentry, &new))
3215 goto out4;
3216 /* make certain new is below the root */
3217 if (!is_path_reachable(new_mnt, new.dentry, &root))
3218 goto out4;
3219 root_mp->m_count++; /* pin it so it won't go away */
3220 lock_mount_hash();
3221 detach_mnt(new_mnt, &parent_path);
3222 detach_mnt(root_mnt, &root_parent);
3223 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3224 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3225 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3226 }
3227 /* mount old root on put_old */
3228 attach_mnt(root_mnt, old_mnt, old_mp);
3229 /* mount new_root on / */
3230 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3231 touch_mnt_namespace(current->nsproxy->mnt_ns);
3232 /* A moved mount should not expire automatically */
3233 list_del_init(&new_mnt->mnt_expire);
3234 put_mountpoint(root_mp);
3235 unlock_mount_hash();
3236 chroot_fs_refs(&root, &new);
3237 error = 0;
3238 out4:
3239 unlock_mount(old_mp);
3240 if (!error) {
3241 path_put(&root_parent);
3242 path_put(&parent_path);
3243 }
3244 out3:
3245 path_put(&root);
3246 out2:
3247 path_put(&old);
3248 out1:
3249 path_put(&new);
3250 out0:
3251 return error;
3252 }
3253
3254 static void __init init_mount_tree(void)
3255 {
3256 struct vfsmount *mnt;
3257 struct mnt_namespace *ns;
3258 struct path root;
3259 struct file_system_type *type;
3260
3261 type = get_fs_type("rootfs");
3262 if (!type)
3263 panic("Can't find rootfs type");
3264 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3265 put_filesystem(type);
3266 if (IS_ERR(mnt))
3267 panic("Can't create rootfs");
3268
3269 ns = create_mnt_ns(mnt);
3270 if (IS_ERR(ns))
3271 panic("Can't allocate initial namespace");
3272
3273 init_task.nsproxy->mnt_ns = ns;
3274 get_mnt_ns(ns);
3275
3276 root.mnt = mnt;
3277 root.dentry = mnt->mnt_root;
3278 mnt->mnt_flags |= MNT_LOCKED;
3279
3280 set_fs_pwd(current->fs, &root);
3281 set_fs_root(current->fs, &root);
3282 }
3283
3284 void __init mnt_init(void)
3285 {
3286 int err;
3287
3288 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3289 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3290
3291 mount_hashtable = alloc_large_system_hash("Mount-cache",
3292 sizeof(struct hlist_head),
3293 mhash_entries, 19,
3294 HASH_ZERO,
3295 &m_hash_shift, &m_hash_mask, 0, 0);
3296 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3297 sizeof(struct hlist_head),
3298 mphash_entries, 19,
3299 HASH_ZERO,
3300 &mp_hash_shift, &mp_hash_mask, 0, 0);
3301
3302 if (!mount_hashtable || !mountpoint_hashtable)
3303 panic("Failed to allocate mount hash table\n");
3304
3305 kernfs_init();
3306
3307 err = sysfs_init();
3308 if (err)
3309 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3310 __func__, err);
3311 fs_kobj = kobject_create_and_add("fs", NULL);
3312 if (!fs_kobj)
3313 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3314 init_rootfs();
3315 init_mount_tree();
3316 }
3317
3318 void put_mnt_ns(struct mnt_namespace *ns)
3319 {
3320 if (!atomic_dec_and_test(&ns->count))
3321 return;
3322 drop_collected_mounts(&ns->root->mnt);
3323 free_mnt_ns(ns);
3324 }
3325
3326 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3327 {
3328 struct vfsmount *mnt;
3329 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3330 if (!IS_ERR(mnt)) {
3331 /*
3332 * it is a longterm mount, don't release mnt until
3333 * we unmount before file sys is unregistered
3334 */
3335 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3336 }
3337 return mnt;
3338 }
3339 EXPORT_SYMBOL_GPL(kern_mount_data);
3340
3341 void kern_unmount(struct vfsmount *mnt)
3342 {
3343 /* release long term mount so mount point can be released */
3344 if (!IS_ERR_OR_NULL(mnt)) {
3345 real_mount(mnt)->mnt_ns = NULL;
3346 synchronize_rcu(); /* yecchhh... */
3347 mntput(mnt);
3348 }
3349 }
3350 EXPORT_SYMBOL(kern_unmount);
3351
3352 bool our_mnt(struct vfsmount *mnt)
3353 {
3354 return check_mnt(real_mount(mnt));
3355 }
3356
3357 bool current_chrooted(void)
3358 {
3359 /* Does the current process have a non-standard root */
3360 struct path ns_root;
3361 struct path fs_root;
3362 bool chrooted;
3363
3364 /* Find the namespace root */
3365 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3366 ns_root.dentry = ns_root.mnt->mnt_root;
3367 path_get(&ns_root);
3368 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3369 ;
3370
3371 get_fs_root(current->fs, &fs_root);
3372
3373 chrooted = !path_equal(&fs_root, &ns_root);
3374
3375 path_put(&fs_root);
3376 path_put(&ns_root);
3377
3378 return chrooted;
3379 }
3380
3381 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3382 int *new_mnt_flags)
3383 {
3384 int new_flags = *new_mnt_flags;
3385 struct mount *mnt;
3386 bool visible = false;
3387
3388 down_read(&namespace_sem);
3389 list_for_each_entry(mnt, &ns->list, mnt_list) {
3390 struct mount *child;
3391 int mnt_flags;
3392
3393 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3394 continue;
3395
3396 /* This mount is not fully visible if it's root directory
3397 * is not the root directory of the filesystem.
3398 */
3399 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3400 continue;
3401
3402 /* A local view of the mount flags */
3403 mnt_flags = mnt->mnt.mnt_flags;
3404
3405 /* Don't miss readonly hidden in the superblock flags */
3406 if (sb_rdonly(mnt->mnt.mnt_sb))
3407 mnt_flags |= MNT_LOCK_READONLY;
3408
3409 /* Verify the mount flags are equal to or more permissive
3410 * than the proposed new mount.
3411 */
3412 if ((mnt_flags & MNT_LOCK_READONLY) &&
3413 !(new_flags & MNT_READONLY))
3414 continue;
3415 if ((mnt_flags & MNT_LOCK_ATIME) &&
3416 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3417 continue;
3418
3419 /* This mount is not fully visible if there are any
3420 * locked child mounts that cover anything except for
3421 * empty directories.
3422 */
3423 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3424 struct inode *inode = child->mnt_mountpoint->d_inode;
3425 /* Only worry about locked mounts */
3426 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3427 continue;
3428 /* Is the directory permanetly empty? */
3429 if (!is_empty_dir_inode(inode))
3430 goto next;
3431 }
3432 /* Preserve the locked attributes */
3433 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3434 MNT_LOCK_ATIME);
3435 visible = true;
3436 goto found;
3437 next: ;
3438 }
3439 found:
3440 up_read(&namespace_sem);
3441 return visible;
3442 }
3443
3444 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3445 {
3446 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3447 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3448 unsigned long s_iflags;
3449
3450 if (ns->user_ns == &init_user_ns)
3451 return false;
3452
3453 /* Can this filesystem be too revealing? */
3454 s_iflags = mnt->mnt_sb->s_iflags;
3455 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3456 return false;
3457
3458 if ((s_iflags & required_iflags) != required_iflags) {
3459 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3460 required_iflags);
3461 return true;
3462 }
3463
3464 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3465 }
3466
3467 bool mnt_may_suid(struct vfsmount *mnt)
3468 {
3469 /*
3470 * Foreign mounts (accessed via fchdir or through /proc
3471 * symlinks) are always treated as if they are nosuid. This
3472 * prevents namespaces from trusting potentially unsafe
3473 * suid/sgid bits, file caps, or security labels that originate
3474 * in other namespaces.
3475 */
3476 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3477 current_in_userns(mnt->mnt_sb->s_user_ns);
3478 }
3479
3480 static struct ns_common *mntns_get(struct task_struct *task)
3481 {
3482 struct ns_common *ns = NULL;
3483 struct nsproxy *nsproxy;
3484
3485 task_lock(task);
3486 nsproxy = task->nsproxy;
3487 if (nsproxy) {
3488 ns = &nsproxy->mnt_ns->ns;
3489 get_mnt_ns(to_mnt_ns(ns));
3490 }
3491 task_unlock(task);
3492
3493 return ns;
3494 }
3495
3496 static void mntns_put(struct ns_common *ns)
3497 {
3498 put_mnt_ns(to_mnt_ns(ns));
3499 }
3500
3501 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3502 {
3503 struct fs_struct *fs = current->fs;
3504 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3505 struct path root;
3506 int err;
3507
3508 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3509 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3510 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3511 return -EPERM;
3512
3513 if (fs->users != 1)
3514 return -EINVAL;
3515
3516 get_mnt_ns(mnt_ns);
3517 old_mnt_ns = nsproxy->mnt_ns;
3518 nsproxy->mnt_ns = mnt_ns;
3519
3520 /* Find the root */
3521 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3522 "/", LOOKUP_DOWN, &root);
3523 if (err) {
3524 /* revert to old namespace */
3525 nsproxy->mnt_ns = old_mnt_ns;
3526 put_mnt_ns(mnt_ns);
3527 return err;
3528 }
3529
3530 put_mnt_ns(old_mnt_ns);
3531
3532 /* Update the pwd and root */
3533 set_fs_pwd(fs, &root);
3534 set_fs_root(fs, &root);
3535
3536 path_put(&root);
3537 return 0;
3538 }
3539
3540 static struct user_namespace *mntns_owner(struct ns_common *ns)
3541 {
3542 return to_mnt_ns(ns)->user_ns;
3543 }
3544
3545 const struct proc_ns_operations mntns_operations = {
3546 .name = "mnt",
3547 .type = CLONE_NEWNS,
3548 .get = mntns_get,
3549 .put = mntns_put,
3550 .install = mntns_install,
3551 .owner = mntns_owner,
3552 };