]> git.ipfire.org Git - people/ms/linux.git/blob - fs/namespace.c
constify ksys_mount() string arguments
[people/ms/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32
33 #include "pnode.h"
34 #include "internal.h"
35
36 /* Maximum number of mounts in a mount namespace */
37 unsigned int sysctl_mount_max __read_mostly = 100000;
38
39 static unsigned int m_hash_mask __read_mostly;
40 static unsigned int m_hash_shift __read_mostly;
41 static unsigned int mp_hash_mask __read_mostly;
42 static unsigned int mp_hash_shift __read_mostly;
43
44 static __initdata unsigned long mhash_entries;
45 static int __init set_mhash_entries(char *str)
46 {
47 if (!str)
48 return 0;
49 mhash_entries = simple_strtoul(str, &str, 0);
50 return 1;
51 }
52 __setup("mhash_entries=", set_mhash_entries);
53
54 static __initdata unsigned long mphash_entries;
55 static int __init set_mphash_entries(char *str)
56 {
57 if (!str)
58 return 0;
59 mphash_entries = simple_strtoul(str, &str, 0);
60 return 1;
61 }
62 __setup("mphash_entries=", set_mphash_entries);
63
64 static u64 event;
65 static DEFINE_IDA(mnt_id_ida);
66 static DEFINE_IDA(mnt_group_ida);
67
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76
77 /*
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * up the tree.
81 *
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
84 */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
93 }
94
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101
102 static int mnt_alloc_id(struct mount *mnt)
103 {
104 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
105
106 if (res < 0)
107 return res;
108 mnt->mnt_id = res;
109 return 0;
110 }
111
112 static void mnt_free_id(struct mount *mnt)
113 {
114 ida_free(&mnt_id_ida, mnt->mnt_id);
115 }
116
117 /*
118 * Allocate a new peer group ID
119 */
120 static int mnt_alloc_group_id(struct mount *mnt)
121 {
122 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
123
124 if (res < 0)
125 return res;
126 mnt->mnt_group_id = res;
127 return 0;
128 }
129
130 /*
131 * Release a peer group ID
132 */
133 void mnt_release_group_id(struct mount *mnt)
134 {
135 ida_free(&mnt_group_ida, mnt->mnt_group_id);
136 mnt->mnt_group_id = 0;
137 }
138
139 /*
140 * vfsmount lock must be held for read
141 */
142 static inline void mnt_add_count(struct mount *mnt, int n)
143 {
144 #ifdef CONFIG_SMP
145 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
146 #else
147 preempt_disable();
148 mnt->mnt_count += n;
149 preempt_enable();
150 #endif
151 }
152
153 /*
154 * vfsmount lock must be held for write
155 */
156 unsigned int mnt_get_count(struct mount *mnt)
157 {
158 #ifdef CONFIG_SMP
159 unsigned int count = 0;
160 int cpu;
161
162 for_each_possible_cpu(cpu) {
163 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
164 }
165
166 return count;
167 #else
168 return mnt->mnt_count;
169 #endif
170 }
171
172 static void drop_mountpoint(struct fs_pin *p)
173 {
174 struct mount *m = container_of(p, struct mount, mnt_umount);
175 dput(m->mnt_ex_mountpoint);
176 pin_remove(p);
177 mntput(&m->mnt);
178 }
179
180 static struct mount *alloc_vfsmnt(const char *name)
181 {
182 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
183 if (mnt) {
184 int err;
185
186 err = mnt_alloc_id(mnt);
187 if (err)
188 goto out_free_cache;
189
190 if (name) {
191 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
192 if (!mnt->mnt_devname)
193 goto out_free_id;
194 }
195
196 #ifdef CONFIG_SMP
197 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
198 if (!mnt->mnt_pcp)
199 goto out_free_devname;
200
201 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
202 #else
203 mnt->mnt_count = 1;
204 mnt->mnt_writers = 0;
205 #endif
206
207 INIT_HLIST_NODE(&mnt->mnt_hash);
208 INIT_LIST_HEAD(&mnt->mnt_child);
209 INIT_LIST_HEAD(&mnt->mnt_mounts);
210 INIT_LIST_HEAD(&mnt->mnt_list);
211 INIT_LIST_HEAD(&mnt->mnt_expire);
212 INIT_LIST_HEAD(&mnt->mnt_share);
213 INIT_LIST_HEAD(&mnt->mnt_slave_list);
214 INIT_LIST_HEAD(&mnt->mnt_slave);
215 INIT_HLIST_NODE(&mnt->mnt_mp_list);
216 INIT_LIST_HEAD(&mnt->mnt_umounting);
217 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
218 }
219 return mnt;
220
221 #ifdef CONFIG_SMP
222 out_free_devname:
223 kfree_const(mnt->mnt_devname);
224 #endif
225 out_free_id:
226 mnt_free_id(mnt);
227 out_free_cache:
228 kmem_cache_free(mnt_cache, mnt);
229 return NULL;
230 }
231
232 /*
233 * Most r/o checks on a fs are for operations that take
234 * discrete amounts of time, like a write() or unlink().
235 * We must keep track of when those operations start
236 * (for permission checks) and when they end, so that
237 * we can determine when writes are able to occur to
238 * a filesystem.
239 */
240 /*
241 * __mnt_is_readonly: check whether a mount is read-only
242 * @mnt: the mount to check for its write status
243 *
244 * This shouldn't be used directly ouside of the VFS.
245 * It does not guarantee that the filesystem will stay
246 * r/w, just that it is right *now*. This can not and
247 * should not be used in place of IS_RDONLY(inode).
248 * mnt_want/drop_write() will _keep_ the filesystem
249 * r/w.
250 */
251 bool __mnt_is_readonly(struct vfsmount *mnt)
252 {
253 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
254 }
255 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
256
257 static inline void mnt_inc_writers(struct mount *mnt)
258 {
259 #ifdef CONFIG_SMP
260 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
261 #else
262 mnt->mnt_writers++;
263 #endif
264 }
265
266 static inline void mnt_dec_writers(struct mount *mnt)
267 {
268 #ifdef CONFIG_SMP
269 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
270 #else
271 mnt->mnt_writers--;
272 #endif
273 }
274
275 static unsigned int mnt_get_writers(struct mount *mnt)
276 {
277 #ifdef CONFIG_SMP
278 unsigned int count = 0;
279 int cpu;
280
281 for_each_possible_cpu(cpu) {
282 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
283 }
284
285 return count;
286 #else
287 return mnt->mnt_writers;
288 #endif
289 }
290
291 static int mnt_is_readonly(struct vfsmount *mnt)
292 {
293 if (mnt->mnt_sb->s_readonly_remount)
294 return 1;
295 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
296 smp_rmb();
297 return __mnt_is_readonly(mnt);
298 }
299
300 /*
301 * Most r/o & frozen checks on a fs are for operations that take discrete
302 * amounts of time, like a write() or unlink(). We must keep track of when
303 * those operations start (for permission checks) and when they end, so that we
304 * can determine when writes are able to occur to a filesystem.
305 */
306 /**
307 * __mnt_want_write - get write access to a mount without freeze protection
308 * @m: the mount on which to take a write
309 *
310 * This tells the low-level filesystem that a write is about to be performed to
311 * it, and makes sure that writes are allowed (mnt it read-write) before
312 * returning success. This operation does not protect against filesystem being
313 * frozen. When the write operation is finished, __mnt_drop_write() must be
314 * called. This is effectively a refcount.
315 */
316 int __mnt_want_write(struct vfsmount *m)
317 {
318 struct mount *mnt = real_mount(m);
319 int ret = 0;
320
321 preempt_disable();
322 mnt_inc_writers(mnt);
323 /*
324 * The store to mnt_inc_writers must be visible before we pass
325 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
326 * incremented count after it has set MNT_WRITE_HOLD.
327 */
328 smp_mb();
329 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
330 cpu_relax();
331 /*
332 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
333 * be set to match its requirements. So we must not load that until
334 * MNT_WRITE_HOLD is cleared.
335 */
336 smp_rmb();
337 if (mnt_is_readonly(m)) {
338 mnt_dec_writers(mnt);
339 ret = -EROFS;
340 }
341 preempt_enable();
342
343 return ret;
344 }
345
346 /**
347 * mnt_want_write - get write access to a mount
348 * @m: the mount on which to take a write
349 *
350 * This tells the low-level filesystem that a write is about to be performed to
351 * it, and makes sure that writes are allowed (mount is read-write, filesystem
352 * is not frozen) before returning success. When the write operation is
353 * finished, mnt_drop_write() must be called. This is effectively a refcount.
354 */
355 int mnt_want_write(struct vfsmount *m)
356 {
357 int ret;
358
359 sb_start_write(m->mnt_sb);
360 ret = __mnt_want_write(m);
361 if (ret)
362 sb_end_write(m->mnt_sb);
363 return ret;
364 }
365 EXPORT_SYMBOL_GPL(mnt_want_write);
366
367 /**
368 * mnt_clone_write - get write access to a mount
369 * @mnt: the mount on which to take a write
370 *
371 * This is effectively like mnt_want_write, except
372 * it must only be used to take an extra write reference
373 * on a mountpoint that we already know has a write reference
374 * on it. This allows some optimisation.
375 *
376 * After finished, mnt_drop_write must be called as usual to
377 * drop the reference.
378 */
379 int mnt_clone_write(struct vfsmount *mnt)
380 {
381 /* superblock may be r/o */
382 if (__mnt_is_readonly(mnt))
383 return -EROFS;
384 preempt_disable();
385 mnt_inc_writers(real_mount(mnt));
386 preempt_enable();
387 return 0;
388 }
389 EXPORT_SYMBOL_GPL(mnt_clone_write);
390
391 /**
392 * __mnt_want_write_file - get write access to a file's mount
393 * @file: the file who's mount on which to take a write
394 *
395 * This is like __mnt_want_write, but it takes a file and can
396 * do some optimisations if the file is open for write already
397 */
398 int __mnt_want_write_file(struct file *file)
399 {
400 if (!(file->f_mode & FMODE_WRITER))
401 return __mnt_want_write(file->f_path.mnt);
402 else
403 return mnt_clone_write(file->f_path.mnt);
404 }
405
406 /**
407 * mnt_want_write_file - get write access to a file's mount
408 * @file: the file who's mount on which to take a write
409 *
410 * This is like mnt_want_write, but it takes a file and can
411 * do some optimisations if the file is open for write already
412 */
413 int mnt_want_write_file(struct file *file)
414 {
415 int ret;
416
417 sb_start_write(file_inode(file)->i_sb);
418 ret = __mnt_want_write_file(file);
419 if (ret)
420 sb_end_write(file_inode(file)->i_sb);
421 return ret;
422 }
423 EXPORT_SYMBOL_GPL(mnt_want_write_file);
424
425 /**
426 * __mnt_drop_write - give up write access to a mount
427 * @mnt: the mount on which to give up write access
428 *
429 * Tells the low-level filesystem that we are done
430 * performing writes to it. Must be matched with
431 * __mnt_want_write() call above.
432 */
433 void __mnt_drop_write(struct vfsmount *mnt)
434 {
435 preempt_disable();
436 mnt_dec_writers(real_mount(mnt));
437 preempt_enable();
438 }
439
440 /**
441 * mnt_drop_write - give up write access to a mount
442 * @mnt: the mount on which to give up write access
443 *
444 * Tells the low-level filesystem that we are done performing writes to it and
445 * also allows filesystem to be frozen again. Must be matched with
446 * mnt_want_write() call above.
447 */
448 void mnt_drop_write(struct vfsmount *mnt)
449 {
450 __mnt_drop_write(mnt);
451 sb_end_write(mnt->mnt_sb);
452 }
453 EXPORT_SYMBOL_GPL(mnt_drop_write);
454
455 void __mnt_drop_write_file(struct file *file)
456 {
457 __mnt_drop_write(file->f_path.mnt);
458 }
459
460 void mnt_drop_write_file(struct file *file)
461 {
462 __mnt_drop_write_file(file);
463 sb_end_write(file_inode(file)->i_sb);
464 }
465 EXPORT_SYMBOL(mnt_drop_write_file);
466
467 static int mnt_make_readonly(struct mount *mnt)
468 {
469 int ret = 0;
470
471 lock_mount_hash();
472 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
473 /*
474 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
475 * should be visible before we do.
476 */
477 smp_mb();
478
479 /*
480 * With writers on hold, if this value is zero, then there are
481 * definitely no active writers (although held writers may subsequently
482 * increment the count, they'll have to wait, and decrement it after
483 * seeing MNT_READONLY).
484 *
485 * It is OK to have counter incremented on one CPU and decremented on
486 * another: the sum will add up correctly. The danger would be when we
487 * sum up each counter, if we read a counter before it is incremented,
488 * but then read another CPU's count which it has been subsequently
489 * decremented from -- we would see more decrements than we should.
490 * MNT_WRITE_HOLD protects against this scenario, because
491 * mnt_want_write first increments count, then smp_mb, then spins on
492 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
493 * we're counting up here.
494 */
495 if (mnt_get_writers(mnt) > 0)
496 ret = -EBUSY;
497 else
498 mnt->mnt.mnt_flags |= MNT_READONLY;
499 /*
500 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
501 * that become unheld will see MNT_READONLY.
502 */
503 smp_wmb();
504 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
505 unlock_mount_hash();
506 return ret;
507 }
508
509 static int __mnt_unmake_readonly(struct mount *mnt)
510 {
511 lock_mount_hash();
512 mnt->mnt.mnt_flags &= ~MNT_READONLY;
513 unlock_mount_hash();
514 return 0;
515 }
516
517 int sb_prepare_remount_readonly(struct super_block *sb)
518 {
519 struct mount *mnt;
520 int err = 0;
521
522 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
523 if (atomic_long_read(&sb->s_remove_count))
524 return -EBUSY;
525
526 lock_mount_hash();
527 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
528 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
529 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
530 smp_mb();
531 if (mnt_get_writers(mnt) > 0) {
532 err = -EBUSY;
533 break;
534 }
535 }
536 }
537 if (!err && atomic_long_read(&sb->s_remove_count))
538 err = -EBUSY;
539
540 if (!err) {
541 sb->s_readonly_remount = 1;
542 smp_wmb();
543 }
544 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
545 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
546 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
547 }
548 unlock_mount_hash();
549
550 return err;
551 }
552
553 static void free_vfsmnt(struct mount *mnt)
554 {
555 kfree_const(mnt->mnt_devname);
556 #ifdef CONFIG_SMP
557 free_percpu(mnt->mnt_pcp);
558 #endif
559 kmem_cache_free(mnt_cache, mnt);
560 }
561
562 static void delayed_free_vfsmnt(struct rcu_head *head)
563 {
564 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
565 }
566
567 /* call under rcu_read_lock */
568 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
569 {
570 struct mount *mnt;
571 if (read_seqretry(&mount_lock, seq))
572 return 1;
573 if (bastard == NULL)
574 return 0;
575 mnt = real_mount(bastard);
576 mnt_add_count(mnt, 1);
577 smp_mb(); // see mntput_no_expire()
578 if (likely(!read_seqretry(&mount_lock, seq)))
579 return 0;
580 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
581 mnt_add_count(mnt, -1);
582 return 1;
583 }
584 lock_mount_hash();
585 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
586 mnt_add_count(mnt, -1);
587 unlock_mount_hash();
588 return 1;
589 }
590 unlock_mount_hash();
591 /* caller will mntput() */
592 return -1;
593 }
594
595 /* call under rcu_read_lock */
596 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
597 {
598 int res = __legitimize_mnt(bastard, seq);
599 if (likely(!res))
600 return true;
601 if (unlikely(res < 0)) {
602 rcu_read_unlock();
603 mntput(bastard);
604 rcu_read_lock();
605 }
606 return false;
607 }
608
609 /*
610 * find the first mount at @dentry on vfsmount @mnt.
611 * call under rcu_read_lock()
612 */
613 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
614 {
615 struct hlist_head *head = m_hash(mnt, dentry);
616 struct mount *p;
617
618 hlist_for_each_entry_rcu(p, head, mnt_hash)
619 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
620 return p;
621 return NULL;
622 }
623
624 /*
625 * lookup_mnt - Return the first child mount mounted at path
626 *
627 * "First" means first mounted chronologically. If you create the
628 * following mounts:
629 *
630 * mount /dev/sda1 /mnt
631 * mount /dev/sda2 /mnt
632 * mount /dev/sda3 /mnt
633 *
634 * Then lookup_mnt() on the base /mnt dentry in the root mount will
635 * return successively the root dentry and vfsmount of /dev/sda1, then
636 * /dev/sda2, then /dev/sda3, then NULL.
637 *
638 * lookup_mnt takes a reference to the found vfsmount.
639 */
640 struct vfsmount *lookup_mnt(const struct path *path)
641 {
642 struct mount *child_mnt;
643 struct vfsmount *m;
644 unsigned seq;
645
646 rcu_read_lock();
647 do {
648 seq = read_seqbegin(&mount_lock);
649 child_mnt = __lookup_mnt(path->mnt, path->dentry);
650 m = child_mnt ? &child_mnt->mnt : NULL;
651 } while (!legitimize_mnt(m, seq));
652 rcu_read_unlock();
653 return m;
654 }
655
656 /*
657 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
658 * current mount namespace.
659 *
660 * The common case is dentries are not mountpoints at all and that
661 * test is handled inline. For the slow case when we are actually
662 * dealing with a mountpoint of some kind, walk through all of the
663 * mounts in the current mount namespace and test to see if the dentry
664 * is a mountpoint.
665 *
666 * The mount_hashtable is not usable in the context because we
667 * need to identify all mounts that may be in the current mount
668 * namespace not just a mount that happens to have some specified
669 * parent mount.
670 */
671 bool __is_local_mountpoint(struct dentry *dentry)
672 {
673 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
674 struct mount *mnt;
675 bool is_covered = false;
676
677 if (!d_mountpoint(dentry))
678 goto out;
679
680 down_read(&namespace_sem);
681 list_for_each_entry(mnt, &ns->list, mnt_list) {
682 is_covered = (mnt->mnt_mountpoint == dentry);
683 if (is_covered)
684 break;
685 }
686 up_read(&namespace_sem);
687 out:
688 return is_covered;
689 }
690
691 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
692 {
693 struct hlist_head *chain = mp_hash(dentry);
694 struct mountpoint *mp;
695
696 hlist_for_each_entry(mp, chain, m_hash) {
697 if (mp->m_dentry == dentry) {
698 mp->m_count++;
699 return mp;
700 }
701 }
702 return NULL;
703 }
704
705 static struct mountpoint *get_mountpoint(struct dentry *dentry)
706 {
707 struct mountpoint *mp, *new = NULL;
708 int ret;
709
710 if (d_mountpoint(dentry)) {
711 /* might be worth a WARN_ON() */
712 if (d_unlinked(dentry))
713 return ERR_PTR(-ENOENT);
714 mountpoint:
715 read_seqlock_excl(&mount_lock);
716 mp = lookup_mountpoint(dentry);
717 read_sequnlock_excl(&mount_lock);
718 if (mp)
719 goto done;
720 }
721
722 if (!new)
723 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
724 if (!new)
725 return ERR_PTR(-ENOMEM);
726
727
728 /* Exactly one processes may set d_mounted */
729 ret = d_set_mounted(dentry);
730
731 /* Someone else set d_mounted? */
732 if (ret == -EBUSY)
733 goto mountpoint;
734
735 /* The dentry is not available as a mountpoint? */
736 mp = ERR_PTR(ret);
737 if (ret)
738 goto done;
739
740 /* Add the new mountpoint to the hash table */
741 read_seqlock_excl(&mount_lock);
742 new->m_dentry = dentry;
743 new->m_count = 1;
744 hlist_add_head(&new->m_hash, mp_hash(dentry));
745 INIT_HLIST_HEAD(&new->m_list);
746 read_sequnlock_excl(&mount_lock);
747
748 mp = new;
749 new = NULL;
750 done:
751 kfree(new);
752 return mp;
753 }
754
755 static void put_mountpoint(struct mountpoint *mp)
756 {
757 if (!--mp->m_count) {
758 struct dentry *dentry = mp->m_dentry;
759 BUG_ON(!hlist_empty(&mp->m_list));
760 spin_lock(&dentry->d_lock);
761 dentry->d_flags &= ~DCACHE_MOUNTED;
762 spin_unlock(&dentry->d_lock);
763 hlist_del(&mp->m_hash);
764 kfree(mp);
765 }
766 }
767
768 static inline int check_mnt(struct mount *mnt)
769 {
770 return mnt->mnt_ns == current->nsproxy->mnt_ns;
771 }
772
773 /*
774 * vfsmount lock must be held for write
775 */
776 static void touch_mnt_namespace(struct mnt_namespace *ns)
777 {
778 if (ns) {
779 ns->event = ++event;
780 wake_up_interruptible(&ns->poll);
781 }
782 }
783
784 /*
785 * vfsmount lock must be held for write
786 */
787 static void __touch_mnt_namespace(struct mnt_namespace *ns)
788 {
789 if (ns && ns->event != event) {
790 ns->event = event;
791 wake_up_interruptible(&ns->poll);
792 }
793 }
794
795 /*
796 * vfsmount lock must be held for write
797 */
798 static void unhash_mnt(struct mount *mnt)
799 {
800 mnt->mnt_parent = mnt;
801 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
802 list_del_init(&mnt->mnt_child);
803 hlist_del_init_rcu(&mnt->mnt_hash);
804 hlist_del_init(&mnt->mnt_mp_list);
805 put_mountpoint(mnt->mnt_mp);
806 mnt->mnt_mp = NULL;
807 }
808
809 /*
810 * vfsmount lock must be held for write
811 */
812 static void detach_mnt(struct mount *mnt, struct path *old_path)
813 {
814 old_path->dentry = mnt->mnt_mountpoint;
815 old_path->mnt = &mnt->mnt_parent->mnt;
816 unhash_mnt(mnt);
817 }
818
819 /*
820 * vfsmount lock must be held for write
821 */
822 static void umount_mnt(struct mount *mnt)
823 {
824 /* old mountpoint will be dropped when we can do that */
825 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
826 unhash_mnt(mnt);
827 }
828
829 /*
830 * vfsmount lock must be held for write
831 */
832 void mnt_set_mountpoint(struct mount *mnt,
833 struct mountpoint *mp,
834 struct mount *child_mnt)
835 {
836 mp->m_count++;
837 mnt_add_count(mnt, 1); /* essentially, that's mntget */
838 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
839 child_mnt->mnt_parent = mnt;
840 child_mnt->mnt_mp = mp;
841 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
842 }
843
844 static void __attach_mnt(struct mount *mnt, struct mount *parent)
845 {
846 hlist_add_head_rcu(&mnt->mnt_hash,
847 m_hash(&parent->mnt, mnt->mnt_mountpoint));
848 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
849 }
850
851 /*
852 * vfsmount lock must be held for write
853 */
854 static void attach_mnt(struct mount *mnt,
855 struct mount *parent,
856 struct mountpoint *mp)
857 {
858 mnt_set_mountpoint(parent, mp, mnt);
859 __attach_mnt(mnt, parent);
860 }
861
862 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
863 {
864 struct mountpoint *old_mp = mnt->mnt_mp;
865 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
866 struct mount *old_parent = mnt->mnt_parent;
867
868 list_del_init(&mnt->mnt_child);
869 hlist_del_init(&mnt->mnt_mp_list);
870 hlist_del_init_rcu(&mnt->mnt_hash);
871
872 attach_mnt(mnt, parent, mp);
873
874 put_mountpoint(old_mp);
875
876 /*
877 * Safely avoid even the suggestion this code might sleep or
878 * lock the mount hash by taking advantage of the knowledge that
879 * mnt_change_mountpoint will not release the final reference
880 * to a mountpoint.
881 *
882 * During mounting, the mount passed in as the parent mount will
883 * continue to use the old mountpoint and during unmounting, the
884 * old mountpoint will continue to exist until namespace_unlock,
885 * which happens well after mnt_change_mountpoint.
886 */
887 spin_lock(&old_mountpoint->d_lock);
888 old_mountpoint->d_lockref.count--;
889 spin_unlock(&old_mountpoint->d_lock);
890
891 mnt_add_count(old_parent, -1);
892 }
893
894 /*
895 * vfsmount lock must be held for write
896 */
897 static void commit_tree(struct mount *mnt)
898 {
899 struct mount *parent = mnt->mnt_parent;
900 struct mount *m;
901 LIST_HEAD(head);
902 struct mnt_namespace *n = parent->mnt_ns;
903
904 BUG_ON(parent == mnt);
905
906 list_add_tail(&head, &mnt->mnt_list);
907 list_for_each_entry(m, &head, mnt_list)
908 m->mnt_ns = n;
909
910 list_splice(&head, n->list.prev);
911
912 n->mounts += n->pending_mounts;
913 n->pending_mounts = 0;
914
915 __attach_mnt(mnt, parent);
916 touch_mnt_namespace(n);
917 }
918
919 static struct mount *next_mnt(struct mount *p, struct mount *root)
920 {
921 struct list_head *next = p->mnt_mounts.next;
922 if (next == &p->mnt_mounts) {
923 while (1) {
924 if (p == root)
925 return NULL;
926 next = p->mnt_child.next;
927 if (next != &p->mnt_parent->mnt_mounts)
928 break;
929 p = p->mnt_parent;
930 }
931 }
932 return list_entry(next, struct mount, mnt_child);
933 }
934
935 static struct mount *skip_mnt_tree(struct mount *p)
936 {
937 struct list_head *prev = p->mnt_mounts.prev;
938 while (prev != &p->mnt_mounts) {
939 p = list_entry(prev, struct mount, mnt_child);
940 prev = p->mnt_mounts.prev;
941 }
942 return p;
943 }
944
945 /**
946 * vfs_create_mount - Create a mount for a configured superblock
947 * @fc: The configuration context with the superblock attached
948 *
949 * Create a mount to an already configured superblock. If necessary, the
950 * caller should invoke vfs_get_tree() before calling this.
951 *
952 * Note that this does not attach the mount to anything.
953 */
954 struct vfsmount *vfs_create_mount(struct fs_context *fc)
955 {
956 struct mount *mnt;
957
958 if (!fc->root)
959 return ERR_PTR(-EINVAL);
960
961 mnt = alloc_vfsmnt(fc->source ?: "none");
962 if (!mnt)
963 return ERR_PTR(-ENOMEM);
964
965 if (fc->sb_flags & SB_KERNMOUNT)
966 mnt->mnt.mnt_flags = MNT_INTERNAL;
967
968 atomic_inc(&fc->root->d_sb->s_active);
969 mnt->mnt.mnt_sb = fc->root->d_sb;
970 mnt->mnt.mnt_root = dget(fc->root);
971 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
972 mnt->mnt_parent = mnt;
973
974 lock_mount_hash();
975 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
976 unlock_mount_hash();
977 return &mnt->mnt;
978 }
979 EXPORT_SYMBOL(vfs_create_mount);
980
981 struct vfsmount *fc_mount(struct fs_context *fc)
982 {
983 int err = vfs_get_tree(fc);
984 if (!err) {
985 up_write(&fc->root->d_sb->s_umount);
986 return vfs_create_mount(fc);
987 }
988 return ERR_PTR(err);
989 }
990 EXPORT_SYMBOL(fc_mount);
991
992 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
993 int flags, const char *name,
994 void *data)
995 {
996 struct fs_context *fc;
997 struct vfsmount *mnt;
998 int ret = 0;
999
1000 if (!type)
1001 return ERR_PTR(-EINVAL);
1002
1003 fc = fs_context_for_mount(type, flags);
1004 if (IS_ERR(fc))
1005 return ERR_CAST(fc);
1006
1007 if (name)
1008 ret = vfs_parse_fs_string(fc, "source",
1009 name, strlen(name));
1010 if (!ret)
1011 ret = parse_monolithic_mount_data(fc, data);
1012 if (!ret)
1013 mnt = fc_mount(fc);
1014 else
1015 mnt = ERR_PTR(ret);
1016
1017 put_fs_context(fc);
1018 return mnt;
1019 }
1020 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1021
1022 struct vfsmount *
1023 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1024 const char *name, void *data)
1025 {
1026 /* Until it is worked out how to pass the user namespace
1027 * through from the parent mount to the submount don't support
1028 * unprivileged mounts with submounts.
1029 */
1030 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1031 return ERR_PTR(-EPERM);
1032
1033 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1034 }
1035 EXPORT_SYMBOL_GPL(vfs_submount);
1036
1037 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1038 int flag)
1039 {
1040 struct super_block *sb = old->mnt.mnt_sb;
1041 struct mount *mnt;
1042 int err;
1043
1044 mnt = alloc_vfsmnt(old->mnt_devname);
1045 if (!mnt)
1046 return ERR_PTR(-ENOMEM);
1047
1048 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1049 mnt->mnt_group_id = 0; /* not a peer of original */
1050 else
1051 mnt->mnt_group_id = old->mnt_group_id;
1052
1053 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1054 err = mnt_alloc_group_id(mnt);
1055 if (err)
1056 goto out_free;
1057 }
1058
1059 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1060 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1061
1062 atomic_inc(&sb->s_active);
1063 mnt->mnt.mnt_sb = sb;
1064 mnt->mnt.mnt_root = dget(root);
1065 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1066 mnt->mnt_parent = mnt;
1067 lock_mount_hash();
1068 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1069 unlock_mount_hash();
1070
1071 if ((flag & CL_SLAVE) ||
1072 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1073 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1074 mnt->mnt_master = old;
1075 CLEAR_MNT_SHARED(mnt);
1076 } else if (!(flag & CL_PRIVATE)) {
1077 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1078 list_add(&mnt->mnt_share, &old->mnt_share);
1079 if (IS_MNT_SLAVE(old))
1080 list_add(&mnt->mnt_slave, &old->mnt_slave);
1081 mnt->mnt_master = old->mnt_master;
1082 } else {
1083 CLEAR_MNT_SHARED(mnt);
1084 }
1085 if (flag & CL_MAKE_SHARED)
1086 set_mnt_shared(mnt);
1087
1088 /* stick the duplicate mount on the same expiry list
1089 * as the original if that was on one */
1090 if (flag & CL_EXPIRE) {
1091 if (!list_empty(&old->mnt_expire))
1092 list_add(&mnt->mnt_expire, &old->mnt_expire);
1093 }
1094
1095 return mnt;
1096
1097 out_free:
1098 mnt_free_id(mnt);
1099 free_vfsmnt(mnt);
1100 return ERR_PTR(err);
1101 }
1102
1103 static void cleanup_mnt(struct mount *mnt)
1104 {
1105 /*
1106 * This probably indicates that somebody messed
1107 * up a mnt_want/drop_write() pair. If this
1108 * happens, the filesystem was probably unable
1109 * to make r/w->r/o transitions.
1110 */
1111 /*
1112 * The locking used to deal with mnt_count decrement provides barriers,
1113 * so mnt_get_writers() below is safe.
1114 */
1115 WARN_ON(mnt_get_writers(mnt));
1116 if (unlikely(mnt->mnt_pins.first))
1117 mnt_pin_kill(mnt);
1118 fsnotify_vfsmount_delete(&mnt->mnt);
1119 dput(mnt->mnt.mnt_root);
1120 deactivate_super(mnt->mnt.mnt_sb);
1121 mnt_free_id(mnt);
1122 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1123 }
1124
1125 static void __cleanup_mnt(struct rcu_head *head)
1126 {
1127 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1128 }
1129
1130 static LLIST_HEAD(delayed_mntput_list);
1131 static void delayed_mntput(struct work_struct *unused)
1132 {
1133 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1134 struct mount *m, *t;
1135
1136 llist_for_each_entry_safe(m, t, node, mnt_llist)
1137 cleanup_mnt(m);
1138 }
1139 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1140
1141 static void mntput_no_expire(struct mount *mnt)
1142 {
1143 rcu_read_lock();
1144 if (likely(READ_ONCE(mnt->mnt_ns))) {
1145 /*
1146 * Since we don't do lock_mount_hash() here,
1147 * ->mnt_ns can change under us. However, if it's
1148 * non-NULL, then there's a reference that won't
1149 * be dropped until after an RCU delay done after
1150 * turning ->mnt_ns NULL. So if we observe it
1151 * non-NULL under rcu_read_lock(), the reference
1152 * we are dropping is not the final one.
1153 */
1154 mnt_add_count(mnt, -1);
1155 rcu_read_unlock();
1156 return;
1157 }
1158 lock_mount_hash();
1159 /*
1160 * make sure that if __legitimize_mnt() has not seen us grab
1161 * mount_lock, we'll see their refcount increment here.
1162 */
1163 smp_mb();
1164 mnt_add_count(mnt, -1);
1165 if (mnt_get_count(mnt)) {
1166 rcu_read_unlock();
1167 unlock_mount_hash();
1168 return;
1169 }
1170 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1171 rcu_read_unlock();
1172 unlock_mount_hash();
1173 return;
1174 }
1175 mnt->mnt.mnt_flags |= MNT_DOOMED;
1176 rcu_read_unlock();
1177
1178 list_del(&mnt->mnt_instance);
1179
1180 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1181 struct mount *p, *tmp;
1182 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1183 umount_mnt(p);
1184 }
1185 }
1186 unlock_mount_hash();
1187
1188 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1189 struct task_struct *task = current;
1190 if (likely(!(task->flags & PF_KTHREAD))) {
1191 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1192 if (!task_work_add(task, &mnt->mnt_rcu, true))
1193 return;
1194 }
1195 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1196 schedule_delayed_work(&delayed_mntput_work, 1);
1197 return;
1198 }
1199 cleanup_mnt(mnt);
1200 }
1201
1202 void mntput(struct vfsmount *mnt)
1203 {
1204 if (mnt) {
1205 struct mount *m = real_mount(mnt);
1206 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1207 if (unlikely(m->mnt_expiry_mark))
1208 m->mnt_expiry_mark = 0;
1209 mntput_no_expire(m);
1210 }
1211 }
1212 EXPORT_SYMBOL(mntput);
1213
1214 struct vfsmount *mntget(struct vfsmount *mnt)
1215 {
1216 if (mnt)
1217 mnt_add_count(real_mount(mnt), 1);
1218 return mnt;
1219 }
1220 EXPORT_SYMBOL(mntget);
1221
1222 /* path_is_mountpoint() - Check if path is a mount in the current
1223 * namespace.
1224 *
1225 * d_mountpoint() can only be used reliably to establish if a dentry is
1226 * not mounted in any namespace and that common case is handled inline.
1227 * d_mountpoint() isn't aware of the possibility there may be multiple
1228 * mounts using a given dentry in a different namespace. This function
1229 * checks if the passed in path is a mountpoint rather than the dentry
1230 * alone.
1231 */
1232 bool path_is_mountpoint(const struct path *path)
1233 {
1234 unsigned seq;
1235 bool res;
1236
1237 if (!d_mountpoint(path->dentry))
1238 return false;
1239
1240 rcu_read_lock();
1241 do {
1242 seq = read_seqbegin(&mount_lock);
1243 res = __path_is_mountpoint(path);
1244 } while (read_seqretry(&mount_lock, seq));
1245 rcu_read_unlock();
1246
1247 return res;
1248 }
1249 EXPORT_SYMBOL(path_is_mountpoint);
1250
1251 struct vfsmount *mnt_clone_internal(const struct path *path)
1252 {
1253 struct mount *p;
1254 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1255 if (IS_ERR(p))
1256 return ERR_CAST(p);
1257 p->mnt.mnt_flags |= MNT_INTERNAL;
1258 return &p->mnt;
1259 }
1260
1261 #ifdef CONFIG_PROC_FS
1262 /* iterator; we want it to have access to namespace_sem, thus here... */
1263 static void *m_start(struct seq_file *m, loff_t *pos)
1264 {
1265 struct proc_mounts *p = m->private;
1266
1267 down_read(&namespace_sem);
1268 if (p->cached_event == p->ns->event) {
1269 void *v = p->cached_mount;
1270 if (*pos == p->cached_index)
1271 return v;
1272 if (*pos == p->cached_index + 1) {
1273 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1274 return p->cached_mount = v;
1275 }
1276 }
1277
1278 p->cached_event = p->ns->event;
1279 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1280 p->cached_index = *pos;
1281 return p->cached_mount;
1282 }
1283
1284 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1285 {
1286 struct proc_mounts *p = m->private;
1287
1288 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1289 p->cached_index = *pos;
1290 return p->cached_mount;
1291 }
1292
1293 static void m_stop(struct seq_file *m, void *v)
1294 {
1295 up_read(&namespace_sem);
1296 }
1297
1298 static int m_show(struct seq_file *m, void *v)
1299 {
1300 struct proc_mounts *p = m->private;
1301 struct mount *r = list_entry(v, struct mount, mnt_list);
1302 return p->show(m, &r->mnt);
1303 }
1304
1305 const struct seq_operations mounts_op = {
1306 .start = m_start,
1307 .next = m_next,
1308 .stop = m_stop,
1309 .show = m_show,
1310 };
1311 #endif /* CONFIG_PROC_FS */
1312
1313 /**
1314 * may_umount_tree - check if a mount tree is busy
1315 * @mnt: root of mount tree
1316 *
1317 * This is called to check if a tree of mounts has any
1318 * open files, pwds, chroots or sub mounts that are
1319 * busy.
1320 */
1321 int may_umount_tree(struct vfsmount *m)
1322 {
1323 struct mount *mnt = real_mount(m);
1324 int actual_refs = 0;
1325 int minimum_refs = 0;
1326 struct mount *p;
1327 BUG_ON(!m);
1328
1329 /* write lock needed for mnt_get_count */
1330 lock_mount_hash();
1331 for (p = mnt; p; p = next_mnt(p, mnt)) {
1332 actual_refs += mnt_get_count(p);
1333 minimum_refs += 2;
1334 }
1335 unlock_mount_hash();
1336
1337 if (actual_refs > minimum_refs)
1338 return 0;
1339
1340 return 1;
1341 }
1342
1343 EXPORT_SYMBOL(may_umount_tree);
1344
1345 /**
1346 * may_umount - check if a mount point is busy
1347 * @mnt: root of mount
1348 *
1349 * This is called to check if a mount point has any
1350 * open files, pwds, chroots or sub mounts. If the
1351 * mount has sub mounts this will return busy
1352 * regardless of whether the sub mounts are busy.
1353 *
1354 * Doesn't take quota and stuff into account. IOW, in some cases it will
1355 * give false negatives. The main reason why it's here is that we need
1356 * a non-destructive way to look for easily umountable filesystems.
1357 */
1358 int may_umount(struct vfsmount *mnt)
1359 {
1360 int ret = 1;
1361 down_read(&namespace_sem);
1362 lock_mount_hash();
1363 if (propagate_mount_busy(real_mount(mnt), 2))
1364 ret = 0;
1365 unlock_mount_hash();
1366 up_read(&namespace_sem);
1367 return ret;
1368 }
1369
1370 EXPORT_SYMBOL(may_umount);
1371
1372 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1373
1374 static void namespace_unlock(void)
1375 {
1376 struct hlist_head head;
1377
1378 hlist_move_list(&unmounted, &head);
1379
1380 up_write(&namespace_sem);
1381
1382 if (likely(hlist_empty(&head)))
1383 return;
1384
1385 synchronize_rcu_expedited();
1386
1387 group_pin_kill(&head);
1388 }
1389
1390 static inline void namespace_lock(void)
1391 {
1392 down_write(&namespace_sem);
1393 }
1394
1395 enum umount_tree_flags {
1396 UMOUNT_SYNC = 1,
1397 UMOUNT_PROPAGATE = 2,
1398 UMOUNT_CONNECTED = 4,
1399 };
1400
1401 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1402 {
1403 /* Leaving mounts connected is only valid for lazy umounts */
1404 if (how & UMOUNT_SYNC)
1405 return true;
1406
1407 /* A mount without a parent has nothing to be connected to */
1408 if (!mnt_has_parent(mnt))
1409 return true;
1410
1411 /* Because the reference counting rules change when mounts are
1412 * unmounted and connected, umounted mounts may not be
1413 * connected to mounted mounts.
1414 */
1415 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1416 return true;
1417
1418 /* Has it been requested that the mount remain connected? */
1419 if (how & UMOUNT_CONNECTED)
1420 return false;
1421
1422 /* Is the mount locked such that it needs to remain connected? */
1423 if (IS_MNT_LOCKED(mnt))
1424 return false;
1425
1426 /* By default disconnect the mount */
1427 return true;
1428 }
1429
1430 /*
1431 * mount_lock must be held
1432 * namespace_sem must be held for write
1433 */
1434 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1435 {
1436 LIST_HEAD(tmp_list);
1437 struct mount *p;
1438
1439 if (how & UMOUNT_PROPAGATE)
1440 propagate_mount_unlock(mnt);
1441
1442 /* Gather the mounts to umount */
1443 for (p = mnt; p; p = next_mnt(p, mnt)) {
1444 p->mnt.mnt_flags |= MNT_UMOUNT;
1445 list_move(&p->mnt_list, &tmp_list);
1446 }
1447
1448 /* Hide the mounts from mnt_mounts */
1449 list_for_each_entry(p, &tmp_list, mnt_list) {
1450 list_del_init(&p->mnt_child);
1451 }
1452
1453 /* Add propogated mounts to the tmp_list */
1454 if (how & UMOUNT_PROPAGATE)
1455 propagate_umount(&tmp_list);
1456
1457 while (!list_empty(&tmp_list)) {
1458 struct mnt_namespace *ns;
1459 bool disconnect;
1460 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1461 list_del_init(&p->mnt_expire);
1462 list_del_init(&p->mnt_list);
1463 ns = p->mnt_ns;
1464 if (ns) {
1465 ns->mounts--;
1466 __touch_mnt_namespace(ns);
1467 }
1468 p->mnt_ns = NULL;
1469 if (how & UMOUNT_SYNC)
1470 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1471
1472 disconnect = disconnect_mount(p, how);
1473
1474 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1475 disconnect ? &unmounted : NULL);
1476 if (mnt_has_parent(p)) {
1477 mnt_add_count(p->mnt_parent, -1);
1478 if (!disconnect) {
1479 /* Don't forget about p */
1480 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1481 } else {
1482 umount_mnt(p);
1483 }
1484 }
1485 change_mnt_propagation(p, MS_PRIVATE);
1486 }
1487 }
1488
1489 static void shrink_submounts(struct mount *mnt);
1490
1491 static int do_umount_root(struct super_block *sb)
1492 {
1493 int ret = 0;
1494
1495 down_write(&sb->s_umount);
1496 if (!sb_rdonly(sb)) {
1497 struct fs_context *fc;
1498
1499 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1500 SB_RDONLY);
1501 if (IS_ERR(fc)) {
1502 ret = PTR_ERR(fc);
1503 } else {
1504 ret = parse_monolithic_mount_data(fc, NULL);
1505 if (!ret)
1506 ret = reconfigure_super(fc);
1507 put_fs_context(fc);
1508 }
1509 }
1510 up_write(&sb->s_umount);
1511 return ret;
1512 }
1513
1514 static int do_umount(struct mount *mnt, int flags)
1515 {
1516 struct super_block *sb = mnt->mnt.mnt_sb;
1517 int retval;
1518
1519 retval = security_sb_umount(&mnt->mnt, flags);
1520 if (retval)
1521 return retval;
1522
1523 /*
1524 * Allow userspace to request a mountpoint be expired rather than
1525 * unmounting unconditionally. Unmount only happens if:
1526 * (1) the mark is already set (the mark is cleared by mntput())
1527 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1528 */
1529 if (flags & MNT_EXPIRE) {
1530 if (&mnt->mnt == current->fs->root.mnt ||
1531 flags & (MNT_FORCE | MNT_DETACH))
1532 return -EINVAL;
1533
1534 /*
1535 * probably don't strictly need the lock here if we examined
1536 * all race cases, but it's a slowpath.
1537 */
1538 lock_mount_hash();
1539 if (mnt_get_count(mnt) != 2) {
1540 unlock_mount_hash();
1541 return -EBUSY;
1542 }
1543 unlock_mount_hash();
1544
1545 if (!xchg(&mnt->mnt_expiry_mark, 1))
1546 return -EAGAIN;
1547 }
1548
1549 /*
1550 * If we may have to abort operations to get out of this
1551 * mount, and they will themselves hold resources we must
1552 * allow the fs to do things. In the Unix tradition of
1553 * 'Gee thats tricky lets do it in userspace' the umount_begin
1554 * might fail to complete on the first run through as other tasks
1555 * must return, and the like. Thats for the mount program to worry
1556 * about for the moment.
1557 */
1558
1559 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1560 sb->s_op->umount_begin(sb);
1561 }
1562
1563 /*
1564 * No sense to grab the lock for this test, but test itself looks
1565 * somewhat bogus. Suggestions for better replacement?
1566 * Ho-hum... In principle, we might treat that as umount + switch
1567 * to rootfs. GC would eventually take care of the old vfsmount.
1568 * Actually it makes sense, especially if rootfs would contain a
1569 * /reboot - static binary that would close all descriptors and
1570 * call reboot(9). Then init(8) could umount root and exec /reboot.
1571 */
1572 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1573 /*
1574 * Special case for "unmounting" root ...
1575 * we just try to remount it readonly.
1576 */
1577 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1578 return -EPERM;
1579 return do_umount_root(sb);
1580 }
1581
1582 namespace_lock();
1583 lock_mount_hash();
1584
1585 /* Recheck MNT_LOCKED with the locks held */
1586 retval = -EINVAL;
1587 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1588 goto out;
1589
1590 event++;
1591 if (flags & MNT_DETACH) {
1592 if (!list_empty(&mnt->mnt_list))
1593 umount_tree(mnt, UMOUNT_PROPAGATE);
1594 retval = 0;
1595 } else {
1596 shrink_submounts(mnt);
1597 retval = -EBUSY;
1598 if (!propagate_mount_busy(mnt, 2)) {
1599 if (!list_empty(&mnt->mnt_list))
1600 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1601 retval = 0;
1602 }
1603 }
1604 out:
1605 unlock_mount_hash();
1606 namespace_unlock();
1607 return retval;
1608 }
1609
1610 /*
1611 * __detach_mounts - lazily unmount all mounts on the specified dentry
1612 *
1613 * During unlink, rmdir, and d_drop it is possible to loose the path
1614 * to an existing mountpoint, and wind up leaking the mount.
1615 * detach_mounts allows lazily unmounting those mounts instead of
1616 * leaking them.
1617 *
1618 * The caller may hold dentry->d_inode->i_mutex.
1619 */
1620 void __detach_mounts(struct dentry *dentry)
1621 {
1622 struct mountpoint *mp;
1623 struct mount *mnt;
1624
1625 namespace_lock();
1626 lock_mount_hash();
1627 mp = lookup_mountpoint(dentry);
1628 if (IS_ERR_OR_NULL(mp))
1629 goto out_unlock;
1630
1631 event++;
1632 while (!hlist_empty(&mp->m_list)) {
1633 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1634 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1635 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1636 umount_mnt(mnt);
1637 }
1638 else umount_tree(mnt, UMOUNT_CONNECTED);
1639 }
1640 put_mountpoint(mp);
1641 out_unlock:
1642 unlock_mount_hash();
1643 namespace_unlock();
1644 }
1645
1646 /*
1647 * Is the caller allowed to modify his namespace?
1648 */
1649 static inline bool may_mount(void)
1650 {
1651 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1652 }
1653
1654 static inline bool may_mandlock(void)
1655 {
1656 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1657 return false;
1658 #endif
1659 return capable(CAP_SYS_ADMIN);
1660 }
1661
1662 /*
1663 * Now umount can handle mount points as well as block devices.
1664 * This is important for filesystems which use unnamed block devices.
1665 *
1666 * We now support a flag for forced unmount like the other 'big iron'
1667 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1668 */
1669
1670 int ksys_umount(char __user *name, int flags)
1671 {
1672 struct path path;
1673 struct mount *mnt;
1674 int retval;
1675 int lookup_flags = 0;
1676
1677 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1678 return -EINVAL;
1679
1680 if (!may_mount())
1681 return -EPERM;
1682
1683 if (!(flags & UMOUNT_NOFOLLOW))
1684 lookup_flags |= LOOKUP_FOLLOW;
1685
1686 lookup_flags |= LOOKUP_NO_EVAL;
1687
1688 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1689 if (retval)
1690 goto out;
1691 mnt = real_mount(path.mnt);
1692 retval = -EINVAL;
1693 if (path.dentry != path.mnt->mnt_root)
1694 goto dput_and_out;
1695 if (!check_mnt(mnt))
1696 goto dput_and_out;
1697 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1698 goto dput_and_out;
1699 retval = -EPERM;
1700 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1701 goto dput_and_out;
1702
1703 retval = do_umount(mnt, flags);
1704 dput_and_out:
1705 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1706 dput(path.dentry);
1707 mntput_no_expire(mnt);
1708 out:
1709 return retval;
1710 }
1711
1712 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1713 {
1714 return ksys_umount(name, flags);
1715 }
1716
1717 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1718
1719 /*
1720 * The 2.0 compatible umount. No flags.
1721 */
1722 SYSCALL_DEFINE1(oldumount, char __user *, name)
1723 {
1724 return ksys_umount(name, 0);
1725 }
1726
1727 #endif
1728
1729 static bool is_mnt_ns_file(struct dentry *dentry)
1730 {
1731 /* Is this a proxy for a mount namespace? */
1732 return dentry->d_op == &ns_dentry_operations &&
1733 dentry->d_fsdata == &mntns_operations;
1734 }
1735
1736 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1737 {
1738 return container_of(ns, struct mnt_namespace, ns);
1739 }
1740
1741 static bool mnt_ns_loop(struct dentry *dentry)
1742 {
1743 /* Could bind mounting the mount namespace inode cause a
1744 * mount namespace loop?
1745 */
1746 struct mnt_namespace *mnt_ns;
1747 if (!is_mnt_ns_file(dentry))
1748 return false;
1749
1750 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1751 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1752 }
1753
1754 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1755 int flag)
1756 {
1757 struct mount *res, *p, *q, *r, *parent;
1758
1759 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1760 return ERR_PTR(-EINVAL);
1761
1762 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1763 return ERR_PTR(-EINVAL);
1764
1765 res = q = clone_mnt(mnt, dentry, flag);
1766 if (IS_ERR(q))
1767 return q;
1768
1769 q->mnt_mountpoint = mnt->mnt_mountpoint;
1770
1771 p = mnt;
1772 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1773 struct mount *s;
1774 if (!is_subdir(r->mnt_mountpoint, dentry))
1775 continue;
1776
1777 for (s = r; s; s = next_mnt(s, r)) {
1778 if (!(flag & CL_COPY_UNBINDABLE) &&
1779 IS_MNT_UNBINDABLE(s)) {
1780 if (s->mnt.mnt_flags & MNT_LOCKED) {
1781 /* Both unbindable and locked. */
1782 q = ERR_PTR(-EPERM);
1783 goto out;
1784 } else {
1785 s = skip_mnt_tree(s);
1786 continue;
1787 }
1788 }
1789 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1790 is_mnt_ns_file(s->mnt.mnt_root)) {
1791 s = skip_mnt_tree(s);
1792 continue;
1793 }
1794 while (p != s->mnt_parent) {
1795 p = p->mnt_parent;
1796 q = q->mnt_parent;
1797 }
1798 p = s;
1799 parent = q;
1800 q = clone_mnt(p, p->mnt.mnt_root, flag);
1801 if (IS_ERR(q))
1802 goto out;
1803 lock_mount_hash();
1804 list_add_tail(&q->mnt_list, &res->mnt_list);
1805 attach_mnt(q, parent, p->mnt_mp);
1806 unlock_mount_hash();
1807 }
1808 }
1809 return res;
1810 out:
1811 if (res) {
1812 lock_mount_hash();
1813 umount_tree(res, UMOUNT_SYNC);
1814 unlock_mount_hash();
1815 }
1816 return q;
1817 }
1818
1819 /* Caller should check returned pointer for errors */
1820
1821 struct vfsmount *collect_mounts(const struct path *path)
1822 {
1823 struct mount *tree;
1824 namespace_lock();
1825 if (!check_mnt(real_mount(path->mnt)))
1826 tree = ERR_PTR(-EINVAL);
1827 else
1828 tree = copy_tree(real_mount(path->mnt), path->dentry,
1829 CL_COPY_ALL | CL_PRIVATE);
1830 namespace_unlock();
1831 if (IS_ERR(tree))
1832 return ERR_CAST(tree);
1833 return &tree->mnt;
1834 }
1835
1836 static void free_mnt_ns(struct mnt_namespace *);
1837 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1838
1839 void dissolve_on_fput(struct vfsmount *mnt)
1840 {
1841 struct mnt_namespace *ns;
1842 namespace_lock();
1843 lock_mount_hash();
1844 ns = real_mount(mnt)->mnt_ns;
1845 if (ns) {
1846 if (is_anon_ns(ns))
1847 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1848 else
1849 ns = NULL;
1850 }
1851 unlock_mount_hash();
1852 namespace_unlock();
1853 if (ns)
1854 free_mnt_ns(ns);
1855 }
1856
1857 void drop_collected_mounts(struct vfsmount *mnt)
1858 {
1859 namespace_lock();
1860 lock_mount_hash();
1861 umount_tree(real_mount(mnt), 0);
1862 unlock_mount_hash();
1863 namespace_unlock();
1864 }
1865
1866 /**
1867 * clone_private_mount - create a private clone of a path
1868 *
1869 * This creates a new vfsmount, which will be the clone of @path. The new will
1870 * not be attached anywhere in the namespace and will be private (i.e. changes
1871 * to the originating mount won't be propagated into this).
1872 *
1873 * Release with mntput().
1874 */
1875 struct vfsmount *clone_private_mount(const struct path *path)
1876 {
1877 struct mount *old_mnt = real_mount(path->mnt);
1878 struct mount *new_mnt;
1879
1880 if (IS_MNT_UNBINDABLE(old_mnt))
1881 return ERR_PTR(-EINVAL);
1882
1883 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1884 if (IS_ERR(new_mnt))
1885 return ERR_CAST(new_mnt);
1886
1887 return &new_mnt->mnt;
1888 }
1889 EXPORT_SYMBOL_GPL(clone_private_mount);
1890
1891 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1892 struct vfsmount *root)
1893 {
1894 struct mount *mnt;
1895 int res = f(root, arg);
1896 if (res)
1897 return res;
1898 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1899 res = f(&mnt->mnt, arg);
1900 if (res)
1901 return res;
1902 }
1903 return 0;
1904 }
1905
1906 static void lock_mnt_tree(struct mount *mnt)
1907 {
1908 struct mount *p;
1909
1910 for (p = mnt; p; p = next_mnt(p, mnt)) {
1911 int flags = p->mnt.mnt_flags;
1912 /* Don't allow unprivileged users to change mount flags */
1913 flags |= MNT_LOCK_ATIME;
1914
1915 if (flags & MNT_READONLY)
1916 flags |= MNT_LOCK_READONLY;
1917
1918 if (flags & MNT_NODEV)
1919 flags |= MNT_LOCK_NODEV;
1920
1921 if (flags & MNT_NOSUID)
1922 flags |= MNT_LOCK_NOSUID;
1923
1924 if (flags & MNT_NOEXEC)
1925 flags |= MNT_LOCK_NOEXEC;
1926 /* Don't allow unprivileged users to reveal what is under a mount */
1927 if (list_empty(&p->mnt_expire))
1928 flags |= MNT_LOCKED;
1929 p->mnt.mnt_flags = flags;
1930 }
1931 }
1932
1933 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1934 {
1935 struct mount *p;
1936
1937 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1938 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1939 mnt_release_group_id(p);
1940 }
1941 }
1942
1943 static int invent_group_ids(struct mount *mnt, bool recurse)
1944 {
1945 struct mount *p;
1946
1947 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1948 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1949 int err = mnt_alloc_group_id(p);
1950 if (err) {
1951 cleanup_group_ids(mnt, p);
1952 return err;
1953 }
1954 }
1955 }
1956
1957 return 0;
1958 }
1959
1960 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1961 {
1962 unsigned int max = READ_ONCE(sysctl_mount_max);
1963 unsigned int mounts = 0, old, pending, sum;
1964 struct mount *p;
1965
1966 for (p = mnt; p; p = next_mnt(p, mnt))
1967 mounts++;
1968
1969 old = ns->mounts;
1970 pending = ns->pending_mounts;
1971 sum = old + pending;
1972 if ((old > sum) ||
1973 (pending > sum) ||
1974 (max < sum) ||
1975 (mounts > (max - sum)))
1976 return -ENOSPC;
1977
1978 ns->pending_mounts = pending + mounts;
1979 return 0;
1980 }
1981
1982 /*
1983 * @source_mnt : mount tree to be attached
1984 * @nd : place the mount tree @source_mnt is attached
1985 * @parent_nd : if non-null, detach the source_mnt from its parent and
1986 * store the parent mount and mountpoint dentry.
1987 * (done when source_mnt is moved)
1988 *
1989 * NOTE: in the table below explains the semantics when a source mount
1990 * of a given type is attached to a destination mount of a given type.
1991 * ---------------------------------------------------------------------------
1992 * | BIND MOUNT OPERATION |
1993 * |**************************************************************************
1994 * | source-->| shared | private | slave | unbindable |
1995 * | dest | | | | |
1996 * | | | | | | |
1997 * | v | | | | |
1998 * |**************************************************************************
1999 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2000 * | | | | | |
2001 * |non-shared| shared (+) | private | slave (*) | invalid |
2002 * ***************************************************************************
2003 * A bind operation clones the source mount and mounts the clone on the
2004 * destination mount.
2005 *
2006 * (++) the cloned mount is propagated to all the mounts in the propagation
2007 * tree of the destination mount and the cloned mount is added to
2008 * the peer group of the source mount.
2009 * (+) the cloned mount is created under the destination mount and is marked
2010 * as shared. The cloned mount is added to the peer group of the source
2011 * mount.
2012 * (+++) the mount is propagated to all the mounts in the propagation tree
2013 * of the destination mount and the cloned mount is made slave
2014 * of the same master as that of the source mount. The cloned mount
2015 * is marked as 'shared and slave'.
2016 * (*) the cloned mount is made a slave of the same master as that of the
2017 * source mount.
2018 *
2019 * ---------------------------------------------------------------------------
2020 * | MOVE MOUNT OPERATION |
2021 * |**************************************************************************
2022 * | source-->| shared | private | slave | unbindable |
2023 * | dest | | | | |
2024 * | | | | | | |
2025 * | v | | | | |
2026 * |**************************************************************************
2027 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2028 * | | | | | |
2029 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2030 * ***************************************************************************
2031 *
2032 * (+) the mount is moved to the destination. And is then propagated to
2033 * all the mounts in the propagation tree of the destination mount.
2034 * (+*) the mount is moved to the destination.
2035 * (+++) the mount is moved to the destination and is then propagated to
2036 * all the mounts belonging to the destination mount's propagation tree.
2037 * the mount is marked as 'shared and slave'.
2038 * (*) the mount continues to be a slave at the new location.
2039 *
2040 * if the source mount is a tree, the operations explained above is
2041 * applied to each mount in the tree.
2042 * Must be called without spinlocks held, since this function can sleep
2043 * in allocations.
2044 */
2045 static int attach_recursive_mnt(struct mount *source_mnt,
2046 struct mount *dest_mnt,
2047 struct mountpoint *dest_mp,
2048 struct path *parent_path)
2049 {
2050 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2051 HLIST_HEAD(tree_list);
2052 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2053 struct mountpoint *smp;
2054 struct mount *child, *p;
2055 struct hlist_node *n;
2056 int err;
2057
2058 /* Preallocate a mountpoint in case the new mounts need
2059 * to be tucked under other mounts.
2060 */
2061 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2062 if (IS_ERR(smp))
2063 return PTR_ERR(smp);
2064
2065 /* Is there space to add these mounts to the mount namespace? */
2066 if (!parent_path) {
2067 err = count_mounts(ns, source_mnt);
2068 if (err)
2069 goto out;
2070 }
2071
2072 if (IS_MNT_SHARED(dest_mnt)) {
2073 err = invent_group_ids(source_mnt, true);
2074 if (err)
2075 goto out;
2076 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2077 lock_mount_hash();
2078 if (err)
2079 goto out_cleanup_ids;
2080 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2081 set_mnt_shared(p);
2082 } else {
2083 lock_mount_hash();
2084 }
2085 if (parent_path) {
2086 detach_mnt(source_mnt, parent_path);
2087 attach_mnt(source_mnt, dest_mnt, dest_mp);
2088 touch_mnt_namespace(source_mnt->mnt_ns);
2089 } else {
2090 if (source_mnt->mnt_ns) {
2091 /* move from anon - the caller will destroy */
2092 list_del_init(&source_mnt->mnt_ns->list);
2093 }
2094 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2095 commit_tree(source_mnt);
2096 }
2097
2098 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2099 struct mount *q;
2100 hlist_del_init(&child->mnt_hash);
2101 q = __lookup_mnt(&child->mnt_parent->mnt,
2102 child->mnt_mountpoint);
2103 if (q)
2104 mnt_change_mountpoint(child, smp, q);
2105 /* Notice when we are propagating across user namespaces */
2106 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2107 lock_mnt_tree(child);
2108 commit_tree(child);
2109 }
2110 put_mountpoint(smp);
2111 unlock_mount_hash();
2112
2113 return 0;
2114
2115 out_cleanup_ids:
2116 while (!hlist_empty(&tree_list)) {
2117 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2118 child->mnt_parent->mnt_ns->pending_mounts = 0;
2119 umount_tree(child, UMOUNT_SYNC);
2120 }
2121 unlock_mount_hash();
2122 cleanup_group_ids(source_mnt, NULL);
2123 out:
2124 ns->pending_mounts = 0;
2125
2126 read_seqlock_excl(&mount_lock);
2127 put_mountpoint(smp);
2128 read_sequnlock_excl(&mount_lock);
2129
2130 return err;
2131 }
2132
2133 static struct mountpoint *lock_mount(struct path *path)
2134 {
2135 struct vfsmount *mnt;
2136 struct dentry *dentry = path->dentry;
2137 retry:
2138 inode_lock(dentry->d_inode);
2139 if (unlikely(cant_mount(dentry))) {
2140 inode_unlock(dentry->d_inode);
2141 return ERR_PTR(-ENOENT);
2142 }
2143 namespace_lock();
2144 mnt = lookup_mnt(path);
2145 if (likely(!mnt)) {
2146 struct mountpoint *mp = get_mountpoint(dentry);
2147 if (IS_ERR(mp)) {
2148 namespace_unlock();
2149 inode_unlock(dentry->d_inode);
2150 return mp;
2151 }
2152 return mp;
2153 }
2154 namespace_unlock();
2155 inode_unlock(path->dentry->d_inode);
2156 path_put(path);
2157 path->mnt = mnt;
2158 dentry = path->dentry = dget(mnt->mnt_root);
2159 goto retry;
2160 }
2161
2162 static void unlock_mount(struct mountpoint *where)
2163 {
2164 struct dentry *dentry = where->m_dentry;
2165
2166 read_seqlock_excl(&mount_lock);
2167 put_mountpoint(where);
2168 read_sequnlock_excl(&mount_lock);
2169
2170 namespace_unlock();
2171 inode_unlock(dentry->d_inode);
2172 }
2173
2174 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2175 {
2176 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2177 return -EINVAL;
2178
2179 if (d_is_dir(mp->m_dentry) !=
2180 d_is_dir(mnt->mnt.mnt_root))
2181 return -ENOTDIR;
2182
2183 return attach_recursive_mnt(mnt, p, mp, NULL);
2184 }
2185
2186 /*
2187 * Sanity check the flags to change_mnt_propagation.
2188 */
2189
2190 static int flags_to_propagation_type(int ms_flags)
2191 {
2192 int type = ms_flags & ~(MS_REC | MS_SILENT);
2193
2194 /* Fail if any non-propagation flags are set */
2195 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2196 return 0;
2197 /* Only one propagation flag should be set */
2198 if (!is_power_of_2(type))
2199 return 0;
2200 return type;
2201 }
2202
2203 /*
2204 * recursively change the type of the mountpoint.
2205 */
2206 static int do_change_type(struct path *path, int ms_flags)
2207 {
2208 struct mount *m;
2209 struct mount *mnt = real_mount(path->mnt);
2210 int recurse = ms_flags & MS_REC;
2211 int type;
2212 int err = 0;
2213
2214 if (path->dentry != path->mnt->mnt_root)
2215 return -EINVAL;
2216
2217 type = flags_to_propagation_type(ms_flags);
2218 if (!type)
2219 return -EINVAL;
2220
2221 namespace_lock();
2222 if (type == MS_SHARED) {
2223 err = invent_group_ids(mnt, recurse);
2224 if (err)
2225 goto out_unlock;
2226 }
2227
2228 lock_mount_hash();
2229 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2230 change_mnt_propagation(m, type);
2231 unlock_mount_hash();
2232
2233 out_unlock:
2234 namespace_unlock();
2235 return err;
2236 }
2237
2238 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2239 {
2240 struct mount *child;
2241 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2242 if (!is_subdir(child->mnt_mountpoint, dentry))
2243 continue;
2244
2245 if (child->mnt.mnt_flags & MNT_LOCKED)
2246 return true;
2247 }
2248 return false;
2249 }
2250
2251 static struct mount *__do_loopback(struct path *old_path, int recurse)
2252 {
2253 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2254
2255 if (IS_MNT_UNBINDABLE(old))
2256 return mnt;
2257
2258 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2259 return mnt;
2260
2261 if (!recurse && has_locked_children(old, old_path->dentry))
2262 return mnt;
2263
2264 if (recurse)
2265 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2266 else
2267 mnt = clone_mnt(old, old_path->dentry, 0);
2268
2269 if (!IS_ERR(mnt))
2270 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2271
2272 return mnt;
2273 }
2274
2275 /*
2276 * do loopback mount.
2277 */
2278 static int do_loopback(struct path *path, const char *old_name,
2279 int recurse)
2280 {
2281 struct path old_path;
2282 struct mount *mnt = NULL, *parent;
2283 struct mountpoint *mp;
2284 int err;
2285 if (!old_name || !*old_name)
2286 return -EINVAL;
2287 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2288 if (err)
2289 return err;
2290
2291 err = -EINVAL;
2292 if (mnt_ns_loop(old_path.dentry))
2293 goto out;
2294
2295 mp = lock_mount(path);
2296 if (IS_ERR(mp)) {
2297 err = PTR_ERR(mp);
2298 goto out;
2299 }
2300
2301 parent = real_mount(path->mnt);
2302 if (!check_mnt(parent))
2303 goto out2;
2304
2305 mnt = __do_loopback(&old_path, recurse);
2306 if (IS_ERR(mnt)) {
2307 err = PTR_ERR(mnt);
2308 goto out2;
2309 }
2310
2311 err = graft_tree(mnt, parent, mp);
2312 if (err) {
2313 lock_mount_hash();
2314 umount_tree(mnt, UMOUNT_SYNC);
2315 unlock_mount_hash();
2316 }
2317 out2:
2318 unlock_mount(mp);
2319 out:
2320 path_put(&old_path);
2321 return err;
2322 }
2323
2324 static struct file *open_detached_copy(struct path *path, bool recursive)
2325 {
2326 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2327 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2328 struct mount *mnt, *p;
2329 struct file *file;
2330
2331 if (IS_ERR(ns))
2332 return ERR_CAST(ns);
2333
2334 namespace_lock();
2335 mnt = __do_loopback(path, recursive);
2336 if (IS_ERR(mnt)) {
2337 namespace_unlock();
2338 free_mnt_ns(ns);
2339 return ERR_CAST(mnt);
2340 }
2341
2342 lock_mount_hash();
2343 for (p = mnt; p; p = next_mnt(p, mnt)) {
2344 p->mnt_ns = ns;
2345 ns->mounts++;
2346 }
2347 ns->root = mnt;
2348 list_add_tail(&ns->list, &mnt->mnt_list);
2349 mntget(&mnt->mnt);
2350 unlock_mount_hash();
2351 namespace_unlock();
2352
2353 mntput(path->mnt);
2354 path->mnt = &mnt->mnt;
2355 file = dentry_open(path, O_PATH, current_cred());
2356 if (IS_ERR(file))
2357 dissolve_on_fput(path->mnt);
2358 else
2359 file->f_mode |= FMODE_NEED_UNMOUNT;
2360 return file;
2361 }
2362
2363 SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2364 {
2365 struct file *file;
2366 struct path path;
2367 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2368 bool detached = flags & OPEN_TREE_CLONE;
2369 int error;
2370 int fd;
2371
2372 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2373
2374 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2375 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2376 OPEN_TREE_CLOEXEC))
2377 return -EINVAL;
2378
2379 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2380 return -EINVAL;
2381
2382 if (flags & AT_NO_AUTOMOUNT)
2383 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2384 if (flags & AT_SYMLINK_NOFOLLOW)
2385 lookup_flags &= ~LOOKUP_FOLLOW;
2386 if (flags & AT_EMPTY_PATH)
2387 lookup_flags |= LOOKUP_EMPTY;
2388
2389 if (detached && !may_mount())
2390 return -EPERM;
2391
2392 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2393 if (fd < 0)
2394 return fd;
2395
2396 error = user_path_at(dfd, filename, lookup_flags, &path);
2397 if (unlikely(error)) {
2398 file = ERR_PTR(error);
2399 } else {
2400 if (detached)
2401 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2402 else
2403 file = dentry_open(&path, O_PATH, current_cred());
2404 path_put(&path);
2405 }
2406 if (IS_ERR(file)) {
2407 put_unused_fd(fd);
2408 return PTR_ERR(file);
2409 }
2410 fd_install(fd, file);
2411 return fd;
2412 }
2413
2414 /*
2415 * Don't allow locked mount flags to be cleared.
2416 *
2417 * No locks need to be held here while testing the various MNT_LOCK
2418 * flags because those flags can never be cleared once they are set.
2419 */
2420 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2421 {
2422 unsigned int fl = mnt->mnt.mnt_flags;
2423
2424 if ((fl & MNT_LOCK_READONLY) &&
2425 !(mnt_flags & MNT_READONLY))
2426 return false;
2427
2428 if ((fl & MNT_LOCK_NODEV) &&
2429 !(mnt_flags & MNT_NODEV))
2430 return false;
2431
2432 if ((fl & MNT_LOCK_NOSUID) &&
2433 !(mnt_flags & MNT_NOSUID))
2434 return false;
2435
2436 if ((fl & MNT_LOCK_NOEXEC) &&
2437 !(mnt_flags & MNT_NOEXEC))
2438 return false;
2439
2440 if ((fl & MNT_LOCK_ATIME) &&
2441 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2442 return false;
2443
2444 return true;
2445 }
2446
2447 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2448 {
2449 bool readonly_request = (mnt_flags & MNT_READONLY);
2450
2451 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2452 return 0;
2453
2454 if (readonly_request)
2455 return mnt_make_readonly(mnt);
2456
2457 return __mnt_unmake_readonly(mnt);
2458 }
2459
2460 /*
2461 * Update the user-settable attributes on a mount. The caller must hold
2462 * sb->s_umount for writing.
2463 */
2464 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2465 {
2466 lock_mount_hash();
2467 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2468 mnt->mnt.mnt_flags = mnt_flags;
2469 touch_mnt_namespace(mnt->mnt_ns);
2470 unlock_mount_hash();
2471 }
2472
2473 /*
2474 * Handle reconfiguration of the mountpoint only without alteration of the
2475 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2476 * to mount(2).
2477 */
2478 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2479 {
2480 struct super_block *sb = path->mnt->mnt_sb;
2481 struct mount *mnt = real_mount(path->mnt);
2482 int ret;
2483
2484 if (!check_mnt(mnt))
2485 return -EINVAL;
2486
2487 if (path->dentry != mnt->mnt.mnt_root)
2488 return -EINVAL;
2489
2490 if (!can_change_locked_flags(mnt, mnt_flags))
2491 return -EPERM;
2492
2493 down_write(&sb->s_umount);
2494 ret = change_mount_ro_state(mnt, mnt_flags);
2495 if (ret == 0)
2496 set_mount_attributes(mnt, mnt_flags);
2497 up_write(&sb->s_umount);
2498 return ret;
2499 }
2500
2501 /*
2502 * change filesystem flags. dir should be a physical root of filesystem.
2503 * If you've mounted a non-root directory somewhere and want to do remount
2504 * on it - tough luck.
2505 */
2506 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2507 int mnt_flags, void *data)
2508 {
2509 int err;
2510 struct super_block *sb = path->mnt->mnt_sb;
2511 struct mount *mnt = real_mount(path->mnt);
2512 struct fs_context *fc;
2513
2514 if (!check_mnt(mnt))
2515 return -EINVAL;
2516
2517 if (path->dentry != path->mnt->mnt_root)
2518 return -EINVAL;
2519
2520 if (!can_change_locked_flags(mnt, mnt_flags))
2521 return -EPERM;
2522
2523 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2524 if (IS_ERR(fc))
2525 return PTR_ERR(fc);
2526
2527 err = parse_monolithic_mount_data(fc, data);
2528 if (!err) {
2529 down_write(&sb->s_umount);
2530 err = -EPERM;
2531 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2532 err = reconfigure_super(fc);
2533 if (!err)
2534 set_mount_attributes(mnt, mnt_flags);
2535 }
2536 up_write(&sb->s_umount);
2537 }
2538 put_fs_context(fc);
2539 return err;
2540 }
2541
2542 static inline int tree_contains_unbindable(struct mount *mnt)
2543 {
2544 struct mount *p;
2545 for (p = mnt; p; p = next_mnt(p, mnt)) {
2546 if (IS_MNT_UNBINDABLE(p))
2547 return 1;
2548 }
2549 return 0;
2550 }
2551
2552 /*
2553 * Check that there aren't references to earlier/same mount namespaces in the
2554 * specified subtree. Such references can act as pins for mount namespaces
2555 * that aren't checked by the mount-cycle checking code, thereby allowing
2556 * cycles to be made.
2557 */
2558 static bool check_for_nsfs_mounts(struct mount *subtree)
2559 {
2560 struct mount *p;
2561 bool ret = false;
2562
2563 lock_mount_hash();
2564 for (p = subtree; p; p = next_mnt(p, subtree))
2565 if (mnt_ns_loop(p->mnt.mnt_root))
2566 goto out;
2567
2568 ret = true;
2569 out:
2570 unlock_mount_hash();
2571 return ret;
2572 }
2573
2574 static int do_move_mount(struct path *old_path, struct path *new_path)
2575 {
2576 struct path parent_path = {.mnt = NULL, .dentry = NULL};
2577 struct mnt_namespace *ns;
2578 struct mount *p;
2579 struct mount *old;
2580 struct mountpoint *mp;
2581 int err;
2582 bool attached;
2583
2584 mp = lock_mount(new_path);
2585 if (IS_ERR(mp))
2586 return PTR_ERR(mp);
2587
2588 old = real_mount(old_path->mnt);
2589 p = real_mount(new_path->mnt);
2590 attached = mnt_has_parent(old);
2591 ns = old->mnt_ns;
2592
2593 err = -EINVAL;
2594 /* The mountpoint must be in our namespace. */
2595 if (!check_mnt(p))
2596 goto out;
2597
2598 /* The thing moved should be either ours or completely unattached. */
2599 if (attached && !check_mnt(old))
2600 goto out;
2601
2602 if (!attached && !(ns && is_anon_ns(ns)))
2603 goto out;
2604
2605 if (old->mnt.mnt_flags & MNT_LOCKED)
2606 goto out;
2607
2608 if (old_path->dentry != old_path->mnt->mnt_root)
2609 goto out;
2610
2611 if (d_is_dir(new_path->dentry) !=
2612 d_is_dir(old_path->dentry))
2613 goto out;
2614 /*
2615 * Don't move a mount residing in a shared parent.
2616 */
2617 if (attached && IS_MNT_SHARED(old->mnt_parent))
2618 goto out;
2619 /*
2620 * Don't move a mount tree containing unbindable mounts to a destination
2621 * mount which is shared.
2622 */
2623 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2624 goto out;
2625 err = -ELOOP;
2626 if (!check_for_nsfs_mounts(old))
2627 goto out;
2628 for (; mnt_has_parent(p); p = p->mnt_parent)
2629 if (p == old)
2630 goto out;
2631
2632 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2633 attached ? &parent_path : NULL);
2634 if (err)
2635 goto out;
2636
2637 /* if the mount is moved, it should no longer be expire
2638 * automatically */
2639 list_del_init(&old->mnt_expire);
2640 out:
2641 unlock_mount(mp);
2642 if (!err) {
2643 path_put(&parent_path);
2644 if (!attached)
2645 free_mnt_ns(ns);
2646 }
2647 return err;
2648 }
2649
2650 static int do_move_mount_old(struct path *path, const char *old_name)
2651 {
2652 struct path old_path;
2653 int err;
2654
2655 if (!old_name || !*old_name)
2656 return -EINVAL;
2657
2658 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2659 if (err)
2660 return err;
2661
2662 err = do_move_mount(&old_path, path);
2663 path_put(&old_path);
2664 return err;
2665 }
2666
2667 /*
2668 * add a mount into a namespace's mount tree
2669 */
2670 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2671 {
2672 struct mountpoint *mp;
2673 struct mount *parent;
2674 int err;
2675
2676 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2677
2678 mp = lock_mount(path);
2679 if (IS_ERR(mp))
2680 return PTR_ERR(mp);
2681
2682 parent = real_mount(path->mnt);
2683 err = -EINVAL;
2684 if (unlikely(!check_mnt(parent))) {
2685 /* that's acceptable only for automounts done in private ns */
2686 if (!(mnt_flags & MNT_SHRINKABLE))
2687 goto unlock;
2688 /* ... and for those we'd better have mountpoint still alive */
2689 if (!parent->mnt_ns)
2690 goto unlock;
2691 }
2692
2693 /* Refuse the same filesystem on the same mount point */
2694 err = -EBUSY;
2695 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2696 path->mnt->mnt_root == path->dentry)
2697 goto unlock;
2698
2699 err = -EINVAL;
2700 if (d_is_symlink(newmnt->mnt.mnt_root))
2701 goto unlock;
2702
2703 newmnt->mnt.mnt_flags = mnt_flags;
2704 err = graft_tree(newmnt, parent, mp);
2705
2706 unlock:
2707 unlock_mount(mp);
2708 return err;
2709 }
2710
2711 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2712
2713 /*
2714 * Create a new mount using a superblock configuration and request it
2715 * be added to the namespace tree.
2716 */
2717 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2718 unsigned int mnt_flags)
2719 {
2720 struct vfsmount *mnt;
2721 struct super_block *sb = fc->root->d_sb;
2722 int error;
2723
2724 error = security_sb_kern_mount(sb);
2725 if (!error && mount_too_revealing(sb, &mnt_flags))
2726 error = -EPERM;
2727
2728 if (unlikely(error)) {
2729 fc_drop_locked(fc);
2730 return error;
2731 }
2732
2733 up_write(&sb->s_umount);
2734
2735 mnt = vfs_create_mount(fc);
2736 if (IS_ERR(mnt))
2737 return PTR_ERR(mnt);
2738
2739 error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2740 if (error < 0)
2741 mntput(mnt);
2742 return error;
2743 }
2744
2745 /*
2746 * create a new mount for userspace and request it to be added into the
2747 * namespace's tree
2748 */
2749 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2750 int mnt_flags, const char *name, void *data)
2751 {
2752 struct file_system_type *type;
2753 struct fs_context *fc;
2754 const char *subtype = NULL;
2755 int err = 0;
2756
2757 if (!fstype)
2758 return -EINVAL;
2759
2760 type = get_fs_type(fstype);
2761 if (!type)
2762 return -ENODEV;
2763
2764 if (type->fs_flags & FS_HAS_SUBTYPE) {
2765 subtype = strchr(fstype, '.');
2766 if (subtype) {
2767 subtype++;
2768 if (!*subtype) {
2769 put_filesystem(type);
2770 return -EINVAL;
2771 }
2772 } else {
2773 subtype = "";
2774 }
2775 }
2776
2777 fc = fs_context_for_mount(type, sb_flags);
2778 put_filesystem(type);
2779 if (IS_ERR(fc))
2780 return PTR_ERR(fc);
2781
2782 if (subtype)
2783 err = vfs_parse_fs_string(fc, "subtype",
2784 subtype, strlen(subtype));
2785 if (!err && name)
2786 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2787 if (!err)
2788 err = parse_monolithic_mount_data(fc, data);
2789 if (!err && !mount_capable(fc))
2790 err = -EPERM;
2791 if (!err)
2792 err = vfs_get_tree(fc);
2793 if (!err)
2794 err = do_new_mount_fc(fc, path, mnt_flags);
2795
2796 put_fs_context(fc);
2797 return err;
2798 }
2799
2800 int finish_automount(struct vfsmount *m, struct path *path)
2801 {
2802 struct mount *mnt = real_mount(m);
2803 int err;
2804 /* The new mount record should have at least 2 refs to prevent it being
2805 * expired before we get a chance to add it
2806 */
2807 BUG_ON(mnt_get_count(mnt) < 2);
2808
2809 if (m->mnt_sb == path->mnt->mnt_sb &&
2810 m->mnt_root == path->dentry) {
2811 err = -ELOOP;
2812 goto fail;
2813 }
2814
2815 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2816 if (!err)
2817 return 0;
2818 fail:
2819 /* remove m from any expiration list it may be on */
2820 if (!list_empty(&mnt->mnt_expire)) {
2821 namespace_lock();
2822 list_del_init(&mnt->mnt_expire);
2823 namespace_unlock();
2824 }
2825 mntput(m);
2826 mntput(m);
2827 return err;
2828 }
2829
2830 /**
2831 * mnt_set_expiry - Put a mount on an expiration list
2832 * @mnt: The mount to list.
2833 * @expiry_list: The list to add the mount to.
2834 */
2835 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2836 {
2837 namespace_lock();
2838
2839 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2840
2841 namespace_unlock();
2842 }
2843 EXPORT_SYMBOL(mnt_set_expiry);
2844
2845 /*
2846 * process a list of expirable mountpoints with the intent of discarding any
2847 * mountpoints that aren't in use and haven't been touched since last we came
2848 * here
2849 */
2850 void mark_mounts_for_expiry(struct list_head *mounts)
2851 {
2852 struct mount *mnt, *next;
2853 LIST_HEAD(graveyard);
2854
2855 if (list_empty(mounts))
2856 return;
2857
2858 namespace_lock();
2859 lock_mount_hash();
2860
2861 /* extract from the expiration list every vfsmount that matches the
2862 * following criteria:
2863 * - only referenced by its parent vfsmount
2864 * - still marked for expiry (marked on the last call here; marks are
2865 * cleared by mntput())
2866 */
2867 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2868 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2869 propagate_mount_busy(mnt, 1))
2870 continue;
2871 list_move(&mnt->mnt_expire, &graveyard);
2872 }
2873 while (!list_empty(&graveyard)) {
2874 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2875 touch_mnt_namespace(mnt->mnt_ns);
2876 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2877 }
2878 unlock_mount_hash();
2879 namespace_unlock();
2880 }
2881
2882 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2883
2884 /*
2885 * Ripoff of 'select_parent()'
2886 *
2887 * search the list of submounts for a given mountpoint, and move any
2888 * shrinkable submounts to the 'graveyard' list.
2889 */
2890 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2891 {
2892 struct mount *this_parent = parent;
2893 struct list_head *next;
2894 int found = 0;
2895
2896 repeat:
2897 next = this_parent->mnt_mounts.next;
2898 resume:
2899 while (next != &this_parent->mnt_mounts) {
2900 struct list_head *tmp = next;
2901 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2902
2903 next = tmp->next;
2904 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2905 continue;
2906 /*
2907 * Descend a level if the d_mounts list is non-empty.
2908 */
2909 if (!list_empty(&mnt->mnt_mounts)) {
2910 this_parent = mnt;
2911 goto repeat;
2912 }
2913
2914 if (!propagate_mount_busy(mnt, 1)) {
2915 list_move_tail(&mnt->mnt_expire, graveyard);
2916 found++;
2917 }
2918 }
2919 /*
2920 * All done at this level ... ascend and resume the search
2921 */
2922 if (this_parent != parent) {
2923 next = this_parent->mnt_child.next;
2924 this_parent = this_parent->mnt_parent;
2925 goto resume;
2926 }
2927 return found;
2928 }
2929
2930 /*
2931 * process a list of expirable mountpoints with the intent of discarding any
2932 * submounts of a specific parent mountpoint
2933 *
2934 * mount_lock must be held for write
2935 */
2936 static void shrink_submounts(struct mount *mnt)
2937 {
2938 LIST_HEAD(graveyard);
2939 struct mount *m;
2940
2941 /* extract submounts of 'mountpoint' from the expiration list */
2942 while (select_submounts(mnt, &graveyard)) {
2943 while (!list_empty(&graveyard)) {
2944 m = list_first_entry(&graveyard, struct mount,
2945 mnt_expire);
2946 touch_mnt_namespace(m->mnt_ns);
2947 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2948 }
2949 }
2950 }
2951
2952 /*
2953 * Some copy_from_user() implementations do not return the exact number of
2954 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2955 * Note that this function differs from copy_from_user() in that it will oops
2956 * on bad values of `to', rather than returning a short copy.
2957 */
2958 static long exact_copy_from_user(void *to, const void __user * from,
2959 unsigned long n)
2960 {
2961 char *t = to;
2962 const char __user *f = from;
2963 char c;
2964
2965 if (!access_ok(from, n))
2966 return n;
2967
2968 while (n) {
2969 if (__get_user(c, f)) {
2970 memset(t, 0, n);
2971 break;
2972 }
2973 *t++ = c;
2974 f++;
2975 n--;
2976 }
2977 return n;
2978 }
2979
2980 void *copy_mount_options(const void __user * data)
2981 {
2982 int i;
2983 unsigned long size;
2984 char *copy;
2985
2986 if (!data)
2987 return NULL;
2988
2989 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2990 if (!copy)
2991 return ERR_PTR(-ENOMEM);
2992
2993 /* We only care that *some* data at the address the user
2994 * gave us is valid. Just in case, we'll zero
2995 * the remainder of the page.
2996 */
2997 /* copy_from_user cannot cross TASK_SIZE ! */
2998 size = TASK_SIZE - (unsigned long)data;
2999 if (size > PAGE_SIZE)
3000 size = PAGE_SIZE;
3001
3002 i = size - exact_copy_from_user(copy, data, size);
3003 if (!i) {
3004 kfree(copy);
3005 return ERR_PTR(-EFAULT);
3006 }
3007 if (i != PAGE_SIZE)
3008 memset(copy + i, 0, PAGE_SIZE - i);
3009 return copy;
3010 }
3011
3012 char *copy_mount_string(const void __user *data)
3013 {
3014 return data ? strndup_user(data, PATH_MAX) : NULL;
3015 }
3016
3017 /*
3018 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3019 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3020 *
3021 * data is a (void *) that can point to any structure up to
3022 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3023 * information (or be NULL).
3024 *
3025 * Pre-0.97 versions of mount() didn't have a flags word.
3026 * When the flags word was introduced its top half was required
3027 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3028 * Therefore, if this magic number is present, it carries no information
3029 * and must be discarded.
3030 */
3031 long do_mount(const char *dev_name, const char __user *dir_name,
3032 const char *type_page, unsigned long flags, void *data_page)
3033 {
3034 struct path path;
3035 unsigned int mnt_flags = 0, sb_flags;
3036 int retval = 0;
3037
3038 /* Discard magic */
3039 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3040 flags &= ~MS_MGC_MSK;
3041
3042 /* Basic sanity checks */
3043 if (data_page)
3044 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3045
3046 if (flags & MS_NOUSER)
3047 return -EINVAL;
3048
3049 /* ... and get the mountpoint */
3050 retval = user_path(dir_name, &path);
3051 if (retval)
3052 return retval;
3053
3054 retval = security_sb_mount(dev_name, &path,
3055 type_page, flags, data_page);
3056 if (!retval && !may_mount())
3057 retval = -EPERM;
3058 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
3059 retval = -EPERM;
3060 if (retval)
3061 goto dput_out;
3062
3063 /* Default to relatime unless overriden */
3064 if (!(flags & MS_NOATIME))
3065 mnt_flags |= MNT_RELATIME;
3066
3067 /* Separate the per-mountpoint flags */
3068 if (flags & MS_NOSUID)
3069 mnt_flags |= MNT_NOSUID;
3070 if (flags & MS_NODEV)
3071 mnt_flags |= MNT_NODEV;
3072 if (flags & MS_NOEXEC)
3073 mnt_flags |= MNT_NOEXEC;
3074 if (flags & MS_NOATIME)
3075 mnt_flags |= MNT_NOATIME;
3076 if (flags & MS_NODIRATIME)
3077 mnt_flags |= MNT_NODIRATIME;
3078 if (flags & MS_STRICTATIME)
3079 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3080 if (flags & MS_RDONLY)
3081 mnt_flags |= MNT_READONLY;
3082
3083 /* The default atime for remount is preservation */
3084 if ((flags & MS_REMOUNT) &&
3085 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3086 MS_STRICTATIME)) == 0)) {
3087 mnt_flags &= ~MNT_ATIME_MASK;
3088 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3089 }
3090
3091 sb_flags = flags & (SB_RDONLY |
3092 SB_SYNCHRONOUS |
3093 SB_MANDLOCK |
3094 SB_DIRSYNC |
3095 SB_SILENT |
3096 SB_POSIXACL |
3097 SB_LAZYTIME |
3098 SB_I_VERSION);
3099
3100 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3101 retval = do_reconfigure_mnt(&path, mnt_flags);
3102 else if (flags & MS_REMOUNT)
3103 retval = do_remount(&path, flags, sb_flags, mnt_flags,
3104 data_page);
3105 else if (flags & MS_BIND)
3106 retval = do_loopback(&path, dev_name, flags & MS_REC);
3107 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3108 retval = do_change_type(&path, flags);
3109 else if (flags & MS_MOVE)
3110 retval = do_move_mount_old(&path, dev_name);
3111 else
3112 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
3113 dev_name, data_page);
3114 dput_out:
3115 path_put(&path);
3116 return retval;
3117 }
3118
3119 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3120 {
3121 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3122 }
3123
3124 static void dec_mnt_namespaces(struct ucounts *ucounts)
3125 {
3126 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3127 }
3128
3129 static void free_mnt_ns(struct mnt_namespace *ns)
3130 {
3131 if (!is_anon_ns(ns))
3132 ns_free_inum(&ns->ns);
3133 dec_mnt_namespaces(ns->ucounts);
3134 put_user_ns(ns->user_ns);
3135 kfree(ns);
3136 }
3137
3138 /*
3139 * Assign a sequence number so we can detect when we attempt to bind
3140 * mount a reference to an older mount namespace into the current
3141 * mount namespace, preventing reference counting loops. A 64bit
3142 * number incrementing at 10Ghz will take 12,427 years to wrap which
3143 * is effectively never, so we can ignore the possibility.
3144 */
3145 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3146
3147 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3148 {
3149 struct mnt_namespace *new_ns;
3150 struct ucounts *ucounts;
3151 int ret;
3152
3153 ucounts = inc_mnt_namespaces(user_ns);
3154 if (!ucounts)
3155 return ERR_PTR(-ENOSPC);
3156
3157 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3158 if (!new_ns) {
3159 dec_mnt_namespaces(ucounts);
3160 return ERR_PTR(-ENOMEM);
3161 }
3162 if (!anon) {
3163 ret = ns_alloc_inum(&new_ns->ns);
3164 if (ret) {
3165 kfree(new_ns);
3166 dec_mnt_namespaces(ucounts);
3167 return ERR_PTR(ret);
3168 }
3169 }
3170 new_ns->ns.ops = &mntns_operations;
3171 if (!anon)
3172 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3173 atomic_set(&new_ns->count, 1);
3174 INIT_LIST_HEAD(&new_ns->list);
3175 init_waitqueue_head(&new_ns->poll);
3176 new_ns->user_ns = get_user_ns(user_ns);
3177 new_ns->ucounts = ucounts;
3178 return new_ns;
3179 }
3180
3181 __latent_entropy
3182 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3183 struct user_namespace *user_ns, struct fs_struct *new_fs)
3184 {
3185 struct mnt_namespace *new_ns;
3186 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3187 struct mount *p, *q;
3188 struct mount *old;
3189 struct mount *new;
3190 int copy_flags;
3191
3192 BUG_ON(!ns);
3193
3194 if (likely(!(flags & CLONE_NEWNS))) {
3195 get_mnt_ns(ns);
3196 return ns;
3197 }
3198
3199 old = ns->root;
3200
3201 new_ns = alloc_mnt_ns(user_ns, false);
3202 if (IS_ERR(new_ns))
3203 return new_ns;
3204
3205 namespace_lock();
3206 /* First pass: copy the tree topology */
3207 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3208 if (user_ns != ns->user_ns)
3209 copy_flags |= CL_SHARED_TO_SLAVE;
3210 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3211 if (IS_ERR(new)) {
3212 namespace_unlock();
3213 free_mnt_ns(new_ns);
3214 return ERR_CAST(new);
3215 }
3216 if (user_ns != ns->user_ns) {
3217 lock_mount_hash();
3218 lock_mnt_tree(new);
3219 unlock_mount_hash();
3220 }
3221 new_ns->root = new;
3222 list_add_tail(&new_ns->list, &new->mnt_list);
3223
3224 /*
3225 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3226 * as belonging to new namespace. We have already acquired a private
3227 * fs_struct, so tsk->fs->lock is not needed.
3228 */
3229 p = old;
3230 q = new;
3231 while (p) {
3232 q->mnt_ns = new_ns;
3233 new_ns->mounts++;
3234 if (new_fs) {
3235 if (&p->mnt == new_fs->root.mnt) {
3236 new_fs->root.mnt = mntget(&q->mnt);
3237 rootmnt = &p->mnt;
3238 }
3239 if (&p->mnt == new_fs->pwd.mnt) {
3240 new_fs->pwd.mnt = mntget(&q->mnt);
3241 pwdmnt = &p->mnt;
3242 }
3243 }
3244 p = next_mnt(p, old);
3245 q = next_mnt(q, new);
3246 if (!q)
3247 break;
3248 while (p->mnt.mnt_root != q->mnt.mnt_root)
3249 p = next_mnt(p, old);
3250 }
3251 namespace_unlock();
3252
3253 if (rootmnt)
3254 mntput(rootmnt);
3255 if (pwdmnt)
3256 mntput(pwdmnt);
3257
3258 return new_ns;
3259 }
3260
3261 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3262 {
3263 struct mount *mnt = real_mount(m);
3264 struct mnt_namespace *ns;
3265 struct super_block *s;
3266 struct path path;
3267 int err;
3268
3269 ns = alloc_mnt_ns(&init_user_ns, true);
3270 if (IS_ERR(ns)) {
3271 mntput(m);
3272 return ERR_CAST(ns);
3273 }
3274 mnt->mnt_ns = ns;
3275 ns->root = mnt;
3276 ns->mounts++;
3277 list_add(&mnt->mnt_list, &ns->list);
3278
3279 err = vfs_path_lookup(m->mnt_root, m,
3280 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3281
3282 put_mnt_ns(ns);
3283
3284 if (err)
3285 return ERR_PTR(err);
3286
3287 /* trade a vfsmount reference for active sb one */
3288 s = path.mnt->mnt_sb;
3289 atomic_inc(&s->s_active);
3290 mntput(path.mnt);
3291 /* lock the sucker */
3292 down_write(&s->s_umount);
3293 /* ... and return the root of (sub)tree on it */
3294 return path.dentry;
3295 }
3296 EXPORT_SYMBOL(mount_subtree);
3297
3298 int ksys_mount(const char __user *dev_name, const char __user *dir_name,
3299 const char __user *type, unsigned long flags, void __user *data)
3300 {
3301 int ret;
3302 char *kernel_type;
3303 char *kernel_dev;
3304 void *options;
3305
3306 kernel_type = copy_mount_string(type);
3307 ret = PTR_ERR(kernel_type);
3308 if (IS_ERR(kernel_type))
3309 goto out_type;
3310
3311 kernel_dev = copy_mount_string(dev_name);
3312 ret = PTR_ERR(kernel_dev);
3313 if (IS_ERR(kernel_dev))
3314 goto out_dev;
3315
3316 options = copy_mount_options(data);
3317 ret = PTR_ERR(options);
3318 if (IS_ERR(options))
3319 goto out_data;
3320
3321 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3322
3323 kfree(options);
3324 out_data:
3325 kfree(kernel_dev);
3326 out_dev:
3327 kfree(kernel_type);
3328 out_type:
3329 return ret;
3330 }
3331
3332 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3333 char __user *, type, unsigned long, flags, void __user *, data)
3334 {
3335 return ksys_mount(dev_name, dir_name, type, flags, data);
3336 }
3337
3338 /*
3339 * Create a kernel mount representation for a new, prepared superblock
3340 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3341 */
3342 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3343 unsigned int, attr_flags)
3344 {
3345 struct mnt_namespace *ns;
3346 struct fs_context *fc;
3347 struct file *file;
3348 struct path newmount;
3349 struct mount *mnt;
3350 struct fd f;
3351 unsigned int mnt_flags = 0;
3352 long ret;
3353
3354 if (!may_mount())
3355 return -EPERM;
3356
3357 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3358 return -EINVAL;
3359
3360 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3361 MOUNT_ATTR_NOSUID |
3362 MOUNT_ATTR_NODEV |
3363 MOUNT_ATTR_NOEXEC |
3364 MOUNT_ATTR__ATIME |
3365 MOUNT_ATTR_NODIRATIME))
3366 return -EINVAL;
3367
3368 if (attr_flags & MOUNT_ATTR_RDONLY)
3369 mnt_flags |= MNT_READONLY;
3370 if (attr_flags & MOUNT_ATTR_NOSUID)
3371 mnt_flags |= MNT_NOSUID;
3372 if (attr_flags & MOUNT_ATTR_NODEV)
3373 mnt_flags |= MNT_NODEV;
3374 if (attr_flags & MOUNT_ATTR_NOEXEC)
3375 mnt_flags |= MNT_NOEXEC;
3376 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3377 mnt_flags |= MNT_NODIRATIME;
3378
3379 switch (attr_flags & MOUNT_ATTR__ATIME) {
3380 case MOUNT_ATTR_STRICTATIME:
3381 break;
3382 case MOUNT_ATTR_NOATIME:
3383 mnt_flags |= MNT_NOATIME;
3384 break;
3385 case MOUNT_ATTR_RELATIME:
3386 mnt_flags |= MNT_RELATIME;
3387 break;
3388 default:
3389 return -EINVAL;
3390 }
3391
3392 f = fdget(fs_fd);
3393 if (!f.file)
3394 return -EBADF;
3395
3396 ret = -EINVAL;
3397 if (f.file->f_op != &fscontext_fops)
3398 goto err_fsfd;
3399
3400 fc = f.file->private_data;
3401
3402 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3403 if (ret < 0)
3404 goto err_fsfd;
3405
3406 /* There must be a valid superblock or we can't mount it */
3407 ret = -EINVAL;
3408 if (!fc->root)
3409 goto err_unlock;
3410
3411 ret = -EPERM;
3412 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3413 pr_warn("VFS: Mount too revealing\n");
3414 goto err_unlock;
3415 }
3416
3417 ret = -EBUSY;
3418 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3419 goto err_unlock;
3420
3421 ret = -EPERM;
3422 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3423 goto err_unlock;
3424
3425 newmount.mnt = vfs_create_mount(fc);
3426 if (IS_ERR(newmount.mnt)) {
3427 ret = PTR_ERR(newmount.mnt);
3428 goto err_unlock;
3429 }
3430 newmount.dentry = dget(fc->root);
3431 newmount.mnt->mnt_flags = mnt_flags;
3432
3433 /* We've done the mount bit - now move the file context into more or
3434 * less the same state as if we'd done an fspick(). We don't want to
3435 * do any memory allocation or anything like that at this point as we
3436 * don't want to have to handle any errors incurred.
3437 */
3438 vfs_clean_context(fc);
3439
3440 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3441 if (IS_ERR(ns)) {
3442 ret = PTR_ERR(ns);
3443 goto err_path;
3444 }
3445 mnt = real_mount(newmount.mnt);
3446 mnt->mnt_ns = ns;
3447 ns->root = mnt;
3448 ns->mounts = 1;
3449 list_add(&mnt->mnt_list, &ns->list);
3450
3451 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3452 * it, not just simply put it.
3453 */
3454 file = dentry_open(&newmount, O_PATH, fc->cred);
3455 if (IS_ERR(file)) {
3456 dissolve_on_fput(newmount.mnt);
3457 ret = PTR_ERR(file);
3458 goto err_path;
3459 }
3460 file->f_mode |= FMODE_NEED_UNMOUNT;
3461
3462 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3463 if (ret >= 0)
3464 fd_install(ret, file);
3465 else
3466 fput(file);
3467
3468 err_path:
3469 path_put(&newmount);
3470 err_unlock:
3471 mutex_unlock(&fc->uapi_mutex);
3472 err_fsfd:
3473 fdput(f);
3474 return ret;
3475 }
3476
3477 /*
3478 * Move a mount from one place to another. In combination with
3479 * fsopen()/fsmount() this is used to install a new mount and in combination
3480 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3481 * a mount subtree.
3482 *
3483 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3484 */
3485 SYSCALL_DEFINE5(move_mount,
3486 int, from_dfd, const char *, from_pathname,
3487 int, to_dfd, const char *, to_pathname,
3488 unsigned int, flags)
3489 {
3490 struct path from_path, to_path;
3491 unsigned int lflags;
3492 int ret = 0;
3493
3494 if (!may_mount())
3495 return -EPERM;
3496
3497 if (flags & ~MOVE_MOUNT__MASK)
3498 return -EINVAL;
3499
3500 /* If someone gives a pathname, they aren't permitted to move
3501 * from an fd that requires unmount as we can't get at the flag
3502 * to clear it afterwards.
3503 */
3504 lflags = 0;
3505 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3506 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3507 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3508
3509 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3510 if (ret < 0)
3511 return ret;
3512
3513 lflags = 0;
3514 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3515 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3516 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3517
3518 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3519 if (ret < 0)
3520 goto out_from;
3521
3522 ret = security_move_mount(&from_path, &to_path);
3523 if (ret < 0)
3524 goto out_to;
3525
3526 ret = do_move_mount(&from_path, &to_path);
3527
3528 out_to:
3529 path_put(&to_path);
3530 out_from:
3531 path_put(&from_path);
3532 return ret;
3533 }
3534
3535 /*
3536 * Return true if path is reachable from root
3537 *
3538 * namespace_sem or mount_lock is held
3539 */
3540 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3541 const struct path *root)
3542 {
3543 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3544 dentry = mnt->mnt_mountpoint;
3545 mnt = mnt->mnt_parent;
3546 }
3547 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3548 }
3549
3550 bool path_is_under(const struct path *path1, const struct path *path2)
3551 {
3552 bool res;
3553 read_seqlock_excl(&mount_lock);
3554 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3555 read_sequnlock_excl(&mount_lock);
3556 return res;
3557 }
3558 EXPORT_SYMBOL(path_is_under);
3559
3560 /*
3561 * pivot_root Semantics:
3562 * Moves the root file system of the current process to the directory put_old,
3563 * makes new_root as the new root file system of the current process, and sets
3564 * root/cwd of all processes which had them on the current root to new_root.
3565 *
3566 * Restrictions:
3567 * The new_root and put_old must be directories, and must not be on the
3568 * same file system as the current process root. The put_old must be
3569 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3570 * pointed to by put_old must yield the same directory as new_root. No other
3571 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3572 *
3573 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3574 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3575 * in this situation.
3576 *
3577 * Notes:
3578 * - we don't move root/cwd if they are not at the root (reason: if something
3579 * cared enough to change them, it's probably wrong to force them elsewhere)
3580 * - it's okay to pick a root that isn't the root of a file system, e.g.
3581 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3582 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3583 * first.
3584 */
3585 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3586 const char __user *, put_old)
3587 {
3588 struct path new, old, parent_path, root_parent, root;
3589 struct mount *new_mnt, *root_mnt, *old_mnt;
3590 struct mountpoint *old_mp, *root_mp;
3591 int error;
3592
3593 if (!may_mount())
3594 return -EPERM;
3595
3596 error = user_path_dir(new_root, &new);
3597 if (error)
3598 goto out0;
3599
3600 error = user_path_dir(put_old, &old);
3601 if (error)
3602 goto out1;
3603
3604 error = security_sb_pivotroot(&old, &new);
3605 if (error)
3606 goto out2;
3607
3608 get_fs_root(current->fs, &root);
3609 old_mp = lock_mount(&old);
3610 error = PTR_ERR(old_mp);
3611 if (IS_ERR(old_mp))
3612 goto out3;
3613
3614 error = -EINVAL;
3615 new_mnt = real_mount(new.mnt);
3616 root_mnt = real_mount(root.mnt);
3617 old_mnt = real_mount(old.mnt);
3618 if (IS_MNT_SHARED(old_mnt) ||
3619 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3620 IS_MNT_SHARED(root_mnt->mnt_parent))
3621 goto out4;
3622 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3623 goto out4;
3624 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3625 goto out4;
3626 error = -ENOENT;
3627 if (d_unlinked(new.dentry))
3628 goto out4;
3629 error = -EBUSY;
3630 if (new_mnt == root_mnt || old_mnt == root_mnt)
3631 goto out4; /* loop, on the same file system */
3632 error = -EINVAL;
3633 if (root.mnt->mnt_root != root.dentry)
3634 goto out4; /* not a mountpoint */
3635 if (!mnt_has_parent(root_mnt))
3636 goto out4; /* not attached */
3637 root_mp = root_mnt->mnt_mp;
3638 if (new.mnt->mnt_root != new.dentry)
3639 goto out4; /* not a mountpoint */
3640 if (!mnt_has_parent(new_mnt))
3641 goto out4; /* not attached */
3642 /* make sure we can reach put_old from new_root */
3643 if (!is_path_reachable(old_mnt, old.dentry, &new))
3644 goto out4;
3645 /* make certain new is below the root */
3646 if (!is_path_reachable(new_mnt, new.dentry, &root))
3647 goto out4;
3648 root_mp->m_count++; /* pin it so it won't go away */
3649 lock_mount_hash();
3650 detach_mnt(new_mnt, &parent_path);
3651 detach_mnt(root_mnt, &root_parent);
3652 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3653 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3654 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3655 }
3656 /* mount old root on put_old */
3657 attach_mnt(root_mnt, old_mnt, old_mp);
3658 /* mount new_root on / */
3659 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3660 touch_mnt_namespace(current->nsproxy->mnt_ns);
3661 /* A moved mount should not expire automatically */
3662 list_del_init(&new_mnt->mnt_expire);
3663 put_mountpoint(root_mp);
3664 unlock_mount_hash();
3665 chroot_fs_refs(&root, &new);
3666 error = 0;
3667 out4:
3668 unlock_mount(old_mp);
3669 if (!error) {
3670 path_put(&root_parent);
3671 path_put(&parent_path);
3672 }
3673 out3:
3674 path_put(&root);
3675 out2:
3676 path_put(&old);
3677 out1:
3678 path_put(&new);
3679 out0:
3680 return error;
3681 }
3682
3683 static void __init init_mount_tree(void)
3684 {
3685 struct vfsmount *mnt;
3686 struct mount *m;
3687 struct mnt_namespace *ns;
3688 struct path root;
3689
3690 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3691 if (IS_ERR(mnt))
3692 panic("Can't create rootfs");
3693
3694 ns = alloc_mnt_ns(&init_user_ns, false);
3695 if (IS_ERR(ns))
3696 panic("Can't allocate initial namespace");
3697 m = real_mount(mnt);
3698 m->mnt_ns = ns;
3699 ns->root = m;
3700 ns->mounts = 1;
3701 list_add(&m->mnt_list, &ns->list);
3702 init_task.nsproxy->mnt_ns = ns;
3703 get_mnt_ns(ns);
3704
3705 root.mnt = mnt;
3706 root.dentry = mnt->mnt_root;
3707 mnt->mnt_flags |= MNT_LOCKED;
3708
3709 set_fs_pwd(current->fs, &root);
3710 set_fs_root(current->fs, &root);
3711 }
3712
3713 void __init mnt_init(void)
3714 {
3715 int err;
3716
3717 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3718 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3719
3720 mount_hashtable = alloc_large_system_hash("Mount-cache",
3721 sizeof(struct hlist_head),
3722 mhash_entries, 19,
3723 HASH_ZERO,
3724 &m_hash_shift, &m_hash_mask, 0, 0);
3725 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3726 sizeof(struct hlist_head),
3727 mphash_entries, 19,
3728 HASH_ZERO,
3729 &mp_hash_shift, &mp_hash_mask, 0, 0);
3730
3731 if (!mount_hashtable || !mountpoint_hashtable)
3732 panic("Failed to allocate mount hash table\n");
3733
3734 kernfs_init();
3735
3736 err = sysfs_init();
3737 if (err)
3738 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3739 __func__, err);
3740 fs_kobj = kobject_create_and_add("fs", NULL);
3741 if (!fs_kobj)
3742 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3743 init_rootfs();
3744 init_mount_tree();
3745 }
3746
3747 void put_mnt_ns(struct mnt_namespace *ns)
3748 {
3749 if (!atomic_dec_and_test(&ns->count))
3750 return;
3751 drop_collected_mounts(&ns->root->mnt);
3752 free_mnt_ns(ns);
3753 }
3754
3755 struct vfsmount *kern_mount(struct file_system_type *type)
3756 {
3757 struct vfsmount *mnt;
3758 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3759 if (!IS_ERR(mnt)) {
3760 /*
3761 * it is a longterm mount, don't release mnt until
3762 * we unmount before file sys is unregistered
3763 */
3764 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3765 }
3766 return mnt;
3767 }
3768 EXPORT_SYMBOL_GPL(kern_mount);
3769
3770 void kern_unmount(struct vfsmount *mnt)
3771 {
3772 /* release long term mount so mount point can be released */
3773 if (!IS_ERR_OR_NULL(mnt)) {
3774 real_mount(mnt)->mnt_ns = NULL;
3775 synchronize_rcu(); /* yecchhh... */
3776 mntput(mnt);
3777 }
3778 }
3779 EXPORT_SYMBOL(kern_unmount);
3780
3781 bool our_mnt(struct vfsmount *mnt)
3782 {
3783 return check_mnt(real_mount(mnt));
3784 }
3785
3786 bool current_chrooted(void)
3787 {
3788 /* Does the current process have a non-standard root */
3789 struct path ns_root;
3790 struct path fs_root;
3791 bool chrooted;
3792
3793 /* Find the namespace root */
3794 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3795 ns_root.dentry = ns_root.mnt->mnt_root;
3796 path_get(&ns_root);
3797 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3798 ;
3799
3800 get_fs_root(current->fs, &fs_root);
3801
3802 chrooted = !path_equal(&fs_root, &ns_root);
3803
3804 path_put(&fs_root);
3805 path_put(&ns_root);
3806
3807 return chrooted;
3808 }
3809
3810 static bool mnt_already_visible(struct mnt_namespace *ns,
3811 const struct super_block *sb,
3812 int *new_mnt_flags)
3813 {
3814 int new_flags = *new_mnt_flags;
3815 struct mount *mnt;
3816 bool visible = false;
3817
3818 down_read(&namespace_sem);
3819 list_for_each_entry(mnt, &ns->list, mnt_list) {
3820 struct mount *child;
3821 int mnt_flags;
3822
3823 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3824 continue;
3825
3826 /* This mount is not fully visible if it's root directory
3827 * is not the root directory of the filesystem.
3828 */
3829 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3830 continue;
3831
3832 /* A local view of the mount flags */
3833 mnt_flags = mnt->mnt.mnt_flags;
3834
3835 /* Don't miss readonly hidden in the superblock flags */
3836 if (sb_rdonly(mnt->mnt.mnt_sb))
3837 mnt_flags |= MNT_LOCK_READONLY;
3838
3839 /* Verify the mount flags are equal to or more permissive
3840 * than the proposed new mount.
3841 */
3842 if ((mnt_flags & MNT_LOCK_READONLY) &&
3843 !(new_flags & MNT_READONLY))
3844 continue;
3845 if ((mnt_flags & MNT_LOCK_ATIME) &&
3846 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3847 continue;
3848
3849 /* This mount is not fully visible if there are any
3850 * locked child mounts that cover anything except for
3851 * empty directories.
3852 */
3853 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3854 struct inode *inode = child->mnt_mountpoint->d_inode;
3855 /* Only worry about locked mounts */
3856 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3857 continue;
3858 /* Is the directory permanetly empty? */
3859 if (!is_empty_dir_inode(inode))
3860 goto next;
3861 }
3862 /* Preserve the locked attributes */
3863 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3864 MNT_LOCK_ATIME);
3865 visible = true;
3866 goto found;
3867 next: ;
3868 }
3869 found:
3870 up_read(&namespace_sem);
3871 return visible;
3872 }
3873
3874 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3875 {
3876 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3877 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3878 unsigned long s_iflags;
3879
3880 if (ns->user_ns == &init_user_ns)
3881 return false;
3882
3883 /* Can this filesystem be too revealing? */
3884 s_iflags = sb->s_iflags;
3885 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3886 return false;
3887
3888 if ((s_iflags & required_iflags) != required_iflags) {
3889 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3890 required_iflags);
3891 return true;
3892 }
3893
3894 return !mnt_already_visible(ns, sb, new_mnt_flags);
3895 }
3896
3897 bool mnt_may_suid(struct vfsmount *mnt)
3898 {
3899 /*
3900 * Foreign mounts (accessed via fchdir or through /proc
3901 * symlinks) are always treated as if they are nosuid. This
3902 * prevents namespaces from trusting potentially unsafe
3903 * suid/sgid bits, file caps, or security labels that originate
3904 * in other namespaces.
3905 */
3906 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3907 current_in_userns(mnt->mnt_sb->s_user_ns);
3908 }
3909
3910 static struct ns_common *mntns_get(struct task_struct *task)
3911 {
3912 struct ns_common *ns = NULL;
3913 struct nsproxy *nsproxy;
3914
3915 task_lock(task);
3916 nsproxy = task->nsproxy;
3917 if (nsproxy) {
3918 ns = &nsproxy->mnt_ns->ns;
3919 get_mnt_ns(to_mnt_ns(ns));
3920 }
3921 task_unlock(task);
3922
3923 return ns;
3924 }
3925
3926 static void mntns_put(struct ns_common *ns)
3927 {
3928 put_mnt_ns(to_mnt_ns(ns));
3929 }
3930
3931 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3932 {
3933 struct fs_struct *fs = current->fs;
3934 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3935 struct path root;
3936 int err;
3937
3938 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3939 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3940 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3941 return -EPERM;
3942
3943 if (is_anon_ns(mnt_ns))
3944 return -EINVAL;
3945
3946 if (fs->users != 1)
3947 return -EINVAL;
3948
3949 get_mnt_ns(mnt_ns);
3950 old_mnt_ns = nsproxy->mnt_ns;
3951 nsproxy->mnt_ns = mnt_ns;
3952
3953 /* Find the root */
3954 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3955 "/", LOOKUP_DOWN, &root);
3956 if (err) {
3957 /* revert to old namespace */
3958 nsproxy->mnt_ns = old_mnt_ns;
3959 put_mnt_ns(mnt_ns);
3960 return err;
3961 }
3962
3963 put_mnt_ns(old_mnt_ns);
3964
3965 /* Update the pwd and root */
3966 set_fs_pwd(fs, &root);
3967 set_fs_root(fs, &root);
3968
3969 path_put(&root);
3970 return 0;
3971 }
3972
3973 static struct user_namespace *mntns_owner(struct ns_common *ns)
3974 {
3975 return to_mnt_ns(ns)->user_ns;
3976 }
3977
3978 const struct proc_ns_operations mntns_operations = {
3979 .name = "mnt",
3980 .type = CLONE_NEWNS,
3981 .get = mntns_get,
3982 .put = mntns_put,
3983 .install = mntns_install,
3984 .owner = mntns_owner,
3985 };