]> git.ipfire.org Git - people/ms/linux.git/blob - fs/namespace.c
Linux 5.11-rc1
[people/ms/linux.git] / fs / namespace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 #include <linux/shmem_fs.h>
33
34 #include "pnode.h"
35 #include "internal.h"
36
37 /* Maximum number of mounts in a mount namespace */
38 unsigned int sysctl_mount_max __read_mostly = 100000;
39
40 static unsigned int m_hash_mask __read_mostly;
41 static unsigned int m_hash_shift __read_mostly;
42 static unsigned int mp_hash_mask __read_mostly;
43 static unsigned int mp_hash_shift __read_mostly;
44
45 static __initdata unsigned long mhash_entries;
46 static int __init set_mhash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mhash_entries=", set_mhash_entries);
54
55 static __initdata unsigned long mphash_entries;
56 static int __init set_mphash_entries(char *str)
57 {
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62 }
63 __setup("mphash_entries=", set_mphash_entries);
64
65 static u64 event;
66 static DEFINE_IDA(mnt_id_ida);
67 static DEFINE_IDA(mnt_group_ida);
68
69 static struct hlist_head *mount_hashtable __read_mostly;
70 static struct hlist_head *mountpoint_hashtable __read_mostly;
71 static struct kmem_cache *mnt_cache __read_mostly;
72 static DECLARE_RWSEM(namespace_sem);
73 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
75
76 /* /sys/fs */
77 struct kobject *fs_kobj;
78 EXPORT_SYMBOL_GPL(fs_kobj);
79
80 /*
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
83 * up the tree.
84 *
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
87 */
88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
89
90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
91 {
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
96 }
97
98 static inline struct hlist_head *mp_hash(struct dentry *dentry)
99 {
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
103 }
104
105 static int mnt_alloc_id(struct mount *mnt)
106 {
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108
109 if (res < 0)
110 return res;
111 mnt->mnt_id = res;
112 return 0;
113 }
114
115 static void mnt_free_id(struct mount *mnt)
116 {
117 ida_free(&mnt_id_ida, mnt->mnt_id);
118 }
119
120 /*
121 * Allocate a new peer group ID
122 */
123 static int mnt_alloc_group_id(struct mount *mnt)
124 {
125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
126
127 if (res < 0)
128 return res;
129 mnt->mnt_group_id = res;
130 return 0;
131 }
132
133 /*
134 * Release a peer group ID
135 */
136 void mnt_release_group_id(struct mount *mnt)
137 {
138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 mnt->mnt_group_id = 0;
140 }
141
142 /*
143 * vfsmount lock must be held for read
144 */
145 static inline void mnt_add_count(struct mount *mnt, int n)
146 {
147 #ifdef CONFIG_SMP
148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
149 #else
150 preempt_disable();
151 mnt->mnt_count += n;
152 preempt_enable();
153 #endif
154 }
155
156 /*
157 * vfsmount lock must be held for write
158 */
159 int mnt_get_count(struct mount *mnt)
160 {
161 #ifdef CONFIG_SMP
162 int count = 0;
163 int cpu;
164
165 for_each_possible_cpu(cpu) {
166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
167 }
168
169 return count;
170 #else
171 return mnt->mnt_count;
172 #endif
173 }
174
175 static struct mount *alloc_vfsmnt(const char *name)
176 {
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 if (mnt) {
179 int err;
180
181 err = mnt_alloc_id(mnt);
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
188 goto out_free_id;
189 }
190
191 #ifdef CONFIG_SMP
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
194 goto out_free_devname;
195
196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197 #else
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
200 #endif
201
202 INIT_HLIST_NODE(&mnt->mnt_hash);
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
210 INIT_HLIST_NODE(&mnt->mnt_mp_list);
211 INIT_LIST_HEAD(&mnt->mnt_umounting);
212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
213 }
214 return mnt;
215
216 #ifdef CONFIG_SMP
217 out_free_devname:
218 kfree_const(mnt->mnt_devname);
219 #endif
220 out_free_id:
221 mnt_free_id(mnt);
222 out_free_cache:
223 kmem_cache_free(mnt_cache, mnt);
224 return NULL;
225 }
226
227 /*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235 /*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
246 bool __mnt_is_readonly(struct vfsmount *mnt)
247 {
248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
249 }
250 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251
252 static inline void mnt_inc_writers(struct mount *mnt)
253 {
254 #ifdef CONFIG_SMP
255 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
256 #else
257 mnt->mnt_writers++;
258 #endif
259 }
260
261 static inline void mnt_dec_writers(struct mount *mnt)
262 {
263 #ifdef CONFIG_SMP
264 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
265 #else
266 mnt->mnt_writers--;
267 #endif
268 }
269
270 static unsigned int mnt_get_writers(struct mount *mnt)
271 {
272 #ifdef CONFIG_SMP
273 unsigned int count = 0;
274 int cpu;
275
276 for_each_possible_cpu(cpu) {
277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
278 }
279
280 return count;
281 #else
282 return mnt->mnt_writers;
283 #endif
284 }
285
286 static int mnt_is_readonly(struct vfsmount *mnt)
287 {
288 if (mnt->mnt_sb->s_readonly_remount)
289 return 1;
290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 smp_rmb();
292 return __mnt_is_readonly(mnt);
293 }
294
295 /*
296 * Most r/o & frozen checks on a fs are for operations that take discrete
297 * amounts of time, like a write() or unlink(). We must keep track of when
298 * those operations start (for permission checks) and when they end, so that we
299 * can determine when writes are able to occur to a filesystem.
300 */
301 /**
302 * __mnt_want_write - get write access to a mount without freeze protection
303 * @m: the mount on which to take a write
304 *
305 * This tells the low-level filesystem that a write is about to be performed to
306 * it, and makes sure that writes are allowed (mnt it read-write) before
307 * returning success. This operation does not protect against filesystem being
308 * frozen. When the write operation is finished, __mnt_drop_write() must be
309 * called. This is effectively a refcount.
310 */
311 int __mnt_want_write(struct vfsmount *m)
312 {
313 struct mount *mnt = real_mount(m);
314 int ret = 0;
315
316 preempt_disable();
317 mnt_inc_writers(mnt);
318 /*
319 * The store to mnt_inc_writers must be visible before we pass
320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 * incremented count after it has set MNT_WRITE_HOLD.
322 */
323 smp_mb();
324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
325 cpu_relax();
326 /*
327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 * be set to match its requirements. So we must not load that until
329 * MNT_WRITE_HOLD is cleared.
330 */
331 smp_rmb();
332 if (mnt_is_readonly(m)) {
333 mnt_dec_writers(mnt);
334 ret = -EROFS;
335 }
336 preempt_enable();
337
338 return ret;
339 }
340
341 /**
342 * mnt_want_write - get write access to a mount
343 * @m: the mount on which to take a write
344 *
345 * This tells the low-level filesystem that a write is about to be performed to
346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
347 * is not frozen) before returning success. When the write operation is
348 * finished, mnt_drop_write() must be called. This is effectively a refcount.
349 */
350 int mnt_want_write(struct vfsmount *m)
351 {
352 int ret;
353
354 sb_start_write(m->mnt_sb);
355 ret = __mnt_want_write(m);
356 if (ret)
357 sb_end_write(m->mnt_sb);
358 return ret;
359 }
360 EXPORT_SYMBOL_GPL(mnt_want_write);
361
362 /**
363 * mnt_clone_write - get write access to a mount
364 * @mnt: the mount on which to take a write
365 *
366 * This is effectively like mnt_want_write, except
367 * it must only be used to take an extra write reference
368 * on a mountpoint that we already know has a write reference
369 * on it. This allows some optimisation.
370 *
371 * After finished, mnt_drop_write must be called as usual to
372 * drop the reference.
373 */
374 int mnt_clone_write(struct vfsmount *mnt)
375 {
376 /* superblock may be r/o */
377 if (__mnt_is_readonly(mnt))
378 return -EROFS;
379 preempt_disable();
380 mnt_inc_writers(real_mount(mnt));
381 preempt_enable();
382 return 0;
383 }
384 EXPORT_SYMBOL_GPL(mnt_clone_write);
385
386 /**
387 * __mnt_want_write_file - get write access to a file's mount
388 * @file: the file who's mount on which to take a write
389 *
390 * This is like __mnt_want_write, but it takes a file and can
391 * do some optimisations if the file is open for write already
392 */
393 int __mnt_want_write_file(struct file *file)
394 {
395 if (!(file->f_mode & FMODE_WRITER))
396 return __mnt_want_write(file->f_path.mnt);
397 else
398 return mnt_clone_write(file->f_path.mnt);
399 }
400
401 /**
402 * mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
404 *
405 * This is like mnt_want_write, but it takes a file and can
406 * do some optimisations if the file is open for write already
407 */
408 int mnt_want_write_file(struct file *file)
409 {
410 int ret;
411
412 sb_start_write(file_inode(file)->i_sb);
413 ret = __mnt_want_write_file(file);
414 if (ret)
415 sb_end_write(file_inode(file)->i_sb);
416 return ret;
417 }
418 EXPORT_SYMBOL_GPL(mnt_want_write_file);
419
420 /**
421 * __mnt_drop_write - give up write access to a mount
422 * @mnt: the mount on which to give up write access
423 *
424 * Tells the low-level filesystem that we are done
425 * performing writes to it. Must be matched with
426 * __mnt_want_write() call above.
427 */
428 void __mnt_drop_write(struct vfsmount *mnt)
429 {
430 preempt_disable();
431 mnt_dec_writers(real_mount(mnt));
432 preempt_enable();
433 }
434
435 /**
436 * mnt_drop_write - give up write access to a mount
437 * @mnt: the mount on which to give up write access
438 *
439 * Tells the low-level filesystem that we are done performing writes to it and
440 * also allows filesystem to be frozen again. Must be matched with
441 * mnt_want_write() call above.
442 */
443 void mnt_drop_write(struct vfsmount *mnt)
444 {
445 __mnt_drop_write(mnt);
446 sb_end_write(mnt->mnt_sb);
447 }
448 EXPORT_SYMBOL_GPL(mnt_drop_write);
449
450 void __mnt_drop_write_file(struct file *file)
451 {
452 __mnt_drop_write(file->f_path.mnt);
453 }
454
455 void mnt_drop_write_file(struct file *file)
456 {
457 __mnt_drop_write_file(file);
458 sb_end_write(file_inode(file)->i_sb);
459 }
460 EXPORT_SYMBOL(mnt_drop_write_file);
461
462 static int mnt_make_readonly(struct mount *mnt)
463 {
464 int ret = 0;
465
466 lock_mount_hash();
467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
468 /*
469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 * should be visible before we do.
471 */
472 smp_mb();
473
474 /*
475 * With writers on hold, if this value is zero, then there are
476 * definitely no active writers (although held writers may subsequently
477 * increment the count, they'll have to wait, and decrement it after
478 * seeing MNT_READONLY).
479 *
480 * It is OK to have counter incremented on one CPU and decremented on
481 * another: the sum will add up correctly. The danger would be when we
482 * sum up each counter, if we read a counter before it is incremented,
483 * but then read another CPU's count which it has been subsequently
484 * decremented from -- we would see more decrements than we should.
485 * MNT_WRITE_HOLD protects against this scenario, because
486 * mnt_want_write first increments count, then smp_mb, then spins on
487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 * we're counting up here.
489 */
490 if (mnt_get_writers(mnt) > 0)
491 ret = -EBUSY;
492 else
493 mnt->mnt.mnt_flags |= MNT_READONLY;
494 /*
495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 * that become unheld will see MNT_READONLY.
497 */
498 smp_wmb();
499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
500 unlock_mount_hash();
501 return ret;
502 }
503
504 static int __mnt_unmake_readonly(struct mount *mnt)
505 {
506 lock_mount_hash();
507 mnt->mnt.mnt_flags &= ~MNT_READONLY;
508 unlock_mount_hash();
509 return 0;
510 }
511
512 int sb_prepare_remount_readonly(struct super_block *sb)
513 {
514 struct mount *mnt;
515 int err = 0;
516
517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
518 if (atomic_long_read(&sb->s_remove_count))
519 return -EBUSY;
520
521 lock_mount_hash();
522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
525 smp_mb();
526 if (mnt_get_writers(mnt) > 0) {
527 err = -EBUSY;
528 break;
529 }
530 }
531 }
532 if (!err && atomic_long_read(&sb->s_remove_count))
533 err = -EBUSY;
534
535 if (!err) {
536 sb->s_readonly_remount = 1;
537 smp_wmb();
538 }
539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
542 }
543 unlock_mount_hash();
544
545 return err;
546 }
547
548 static void free_vfsmnt(struct mount *mnt)
549 {
550 kfree_const(mnt->mnt_devname);
551 #ifdef CONFIG_SMP
552 free_percpu(mnt->mnt_pcp);
553 #endif
554 kmem_cache_free(mnt_cache, mnt);
555 }
556
557 static void delayed_free_vfsmnt(struct rcu_head *head)
558 {
559 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
560 }
561
562 /* call under rcu_read_lock */
563 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
564 {
565 struct mount *mnt;
566 if (read_seqretry(&mount_lock, seq))
567 return 1;
568 if (bastard == NULL)
569 return 0;
570 mnt = real_mount(bastard);
571 mnt_add_count(mnt, 1);
572 smp_mb(); // see mntput_no_expire()
573 if (likely(!read_seqretry(&mount_lock, seq)))
574 return 0;
575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
576 mnt_add_count(mnt, -1);
577 return 1;
578 }
579 lock_mount_hash();
580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
581 mnt_add_count(mnt, -1);
582 unlock_mount_hash();
583 return 1;
584 }
585 unlock_mount_hash();
586 /* caller will mntput() */
587 return -1;
588 }
589
590 /* call under rcu_read_lock */
591 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
592 {
593 int res = __legitimize_mnt(bastard, seq);
594 if (likely(!res))
595 return true;
596 if (unlikely(res < 0)) {
597 rcu_read_unlock();
598 mntput(bastard);
599 rcu_read_lock();
600 }
601 return false;
602 }
603
604 /*
605 * find the first mount at @dentry on vfsmount @mnt.
606 * call under rcu_read_lock()
607 */
608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
609 {
610 struct hlist_head *head = m_hash(mnt, dentry);
611 struct mount *p;
612
613 hlist_for_each_entry_rcu(p, head, mnt_hash)
614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 return p;
616 return NULL;
617 }
618
619 /*
620 * lookup_mnt - Return the first child mount mounted at path
621 *
622 * "First" means first mounted chronologically. If you create the
623 * following mounts:
624 *
625 * mount /dev/sda1 /mnt
626 * mount /dev/sda2 /mnt
627 * mount /dev/sda3 /mnt
628 *
629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
630 * return successively the root dentry and vfsmount of /dev/sda1, then
631 * /dev/sda2, then /dev/sda3, then NULL.
632 *
633 * lookup_mnt takes a reference to the found vfsmount.
634 */
635 struct vfsmount *lookup_mnt(const struct path *path)
636 {
637 struct mount *child_mnt;
638 struct vfsmount *m;
639 unsigned seq;
640
641 rcu_read_lock();
642 do {
643 seq = read_seqbegin(&mount_lock);
644 child_mnt = __lookup_mnt(path->mnt, path->dentry);
645 m = child_mnt ? &child_mnt->mnt : NULL;
646 } while (!legitimize_mnt(m, seq));
647 rcu_read_unlock();
648 return m;
649 }
650
651 static inline void lock_ns_list(struct mnt_namespace *ns)
652 {
653 spin_lock(&ns->ns_lock);
654 }
655
656 static inline void unlock_ns_list(struct mnt_namespace *ns)
657 {
658 spin_unlock(&ns->ns_lock);
659 }
660
661 static inline bool mnt_is_cursor(struct mount *mnt)
662 {
663 return mnt->mnt.mnt_flags & MNT_CURSOR;
664 }
665
666 /*
667 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
668 * current mount namespace.
669 *
670 * The common case is dentries are not mountpoints at all and that
671 * test is handled inline. For the slow case when we are actually
672 * dealing with a mountpoint of some kind, walk through all of the
673 * mounts in the current mount namespace and test to see if the dentry
674 * is a mountpoint.
675 *
676 * The mount_hashtable is not usable in the context because we
677 * need to identify all mounts that may be in the current mount
678 * namespace not just a mount that happens to have some specified
679 * parent mount.
680 */
681 bool __is_local_mountpoint(struct dentry *dentry)
682 {
683 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
684 struct mount *mnt;
685 bool is_covered = false;
686
687 down_read(&namespace_sem);
688 lock_ns_list(ns);
689 list_for_each_entry(mnt, &ns->list, mnt_list) {
690 if (mnt_is_cursor(mnt))
691 continue;
692 is_covered = (mnt->mnt_mountpoint == dentry);
693 if (is_covered)
694 break;
695 }
696 unlock_ns_list(ns);
697 up_read(&namespace_sem);
698
699 return is_covered;
700 }
701
702 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
703 {
704 struct hlist_head *chain = mp_hash(dentry);
705 struct mountpoint *mp;
706
707 hlist_for_each_entry(mp, chain, m_hash) {
708 if (mp->m_dentry == dentry) {
709 mp->m_count++;
710 return mp;
711 }
712 }
713 return NULL;
714 }
715
716 static struct mountpoint *get_mountpoint(struct dentry *dentry)
717 {
718 struct mountpoint *mp, *new = NULL;
719 int ret;
720
721 if (d_mountpoint(dentry)) {
722 /* might be worth a WARN_ON() */
723 if (d_unlinked(dentry))
724 return ERR_PTR(-ENOENT);
725 mountpoint:
726 read_seqlock_excl(&mount_lock);
727 mp = lookup_mountpoint(dentry);
728 read_sequnlock_excl(&mount_lock);
729 if (mp)
730 goto done;
731 }
732
733 if (!new)
734 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
735 if (!new)
736 return ERR_PTR(-ENOMEM);
737
738
739 /* Exactly one processes may set d_mounted */
740 ret = d_set_mounted(dentry);
741
742 /* Someone else set d_mounted? */
743 if (ret == -EBUSY)
744 goto mountpoint;
745
746 /* The dentry is not available as a mountpoint? */
747 mp = ERR_PTR(ret);
748 if (ret)
749 goto done;
750
751 /* Add the new mountpoint to the hash table */
752 read_seqlock_excl(&mount_lock);
753 new->m_dentry = dget(dentry);
754 new->m_count = 1;
755 hlist_add_head(&new->m_hash, mp_hash(dentry));
756 INIT_HLIST_HEAD(&new->m_list);
757 read_sequnlock_excl(&mount_lock);
758
759 mp = new;
760 new = NULL;
761 done:
762 kfree(new);
763 return mp;
764 }
765
766 /*
767 * vfsmount lock must be held. Additionally, the caller is responsible
768 * for serializing calls for given disposal list.
769 */
770 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
771 {
772 if (!--mp->m_count) {
773 struct dentry *dentry = mp->m_dentry;
774 BUG_ON(!hlist_empty(&mp->m_list));
775 spin_lock(&dentry->d_lock);
776 dentry->d_flags &= ~DCACHE_MOUNTED;
777 spin_unlock(&dentry->d_lock);
778 dput_to_list(dentry, list);
779 hlist_del(&mp->m_hash);
780 kfree(mp);
781 }
782 }
783
784 /* called with namespace_lock and vfsmount lock */
785 static void put_mountpoint(struct mountpoint *mp)
786 {
787 __put_mountpoint(mp, &ex_mountpoints);
788 }
789
790 static inline int check_mnt(struct mount *mnt)
791 {
792 return mnt->mnt_ns == current->nsproxy->mnt_ns;
793 }
794
795 /*
796 * vfsmount lock must be held for write
797 */
798 static void touch_mnt_namespace(struct mnt_namespace *ns)
799 {
800 if (ns) {
801 ns->event = ++event;
802 wake_up_interruptible(&ns->poll);
803 }
804 }
805
806 /*
807 * vfsmount lock must be held for write
808 */
809 static void __touch_mnt_namespace(struct mnt_namespace *ns)
810 {
811 if (ns && ns->event != event) {
812 ns->event = event;
813 wake_up_interruptible(&ns->poll);
814 }
815 }
816
817 /*
818 * vfsmount lock must be held for write
819 */
820 static struct mountpoint *unhash_mnt(struct mount *mnt)
821 {
822 struct mountpoint *mp;
823 mnt->mnt_parent = mnt;
824 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
825 list_del_init(&mnt->mnt_child);
826 hlist_del_init_rcu(&mnt->mnt_hash);
827 hlist_del_init(&mnt->mnt_mp_list);
828 mp = mnt->mnt_mp;
829 mnt->mnt_mp = NULL;
830 return mp;
831 }
832
833 /*
834 * vfsmount lock must be held for write
835 */
836 static void umount_mnt(struct mount *mnt)
837 {
838 put_mountpoint(unhash_mnt(mnt));
839 }
840
841 /*
842 * vfsmount lock must be held for write
843 */
844 void mnt_set_mountpoint(struct mount *mnt,
845 struct mountpoint *mp,
846 struct mount *child_mnt)
847 {
848 mp->m_count++;
849 mnt_add_count(mnt, 1); /* essentially, that's mntget */
850 child_mnt->mnt_mountpoint = mp->m_dentry;
851 child_mnt->mnt_parent = mnt;
852 child_mnt->mnt_mp = mp;
853 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
854 }
855
856 static void __attach_mnt(struct mount *mnt, struct mount *parent)
857 {
858 hlist_add_head_rcu(&mnt->mnt_hash,
859 m_hash(&parent->mnt, mnt->mnt_mountpoint));
860 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
861 }
862
863 /*
864 * vfsmount lock must be held for write
865 */
866 static void attach_mnt(struct mount *mnt,
867 struct mount *parent,
868 struct mountpoint *mp)
869 {
870 mnt_set_mountpoint(parent, mp, mnt);
871 __attach_mnt(mnt, parent);
872 }
873
874 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
875 {
876 struct mountpoint *old_mp = mnt->mnt_mp;
877 struct mount *old_parent = mnt->mnt_parent;
878
879 list_del_init(&mnt->mnt_child);
880 hlist_del_init(&mnt->mnt_mp_list);
881 hlist_del_init_rcu(&mnt->mnt_hash);
882
883 attach_mnt(mnt, parent, mp);
884
885 put_mountpoint(old_mp);
886 mnt_add_count(old_parent, -1);
887 }
888
889 /*
890 * vfsmount lock must be held for write
891 */
892 static void commit_tree(struct mount *mnt)
893 {
894 struct mount *parent = mnt->mnt_parent;
895 struct mount *m;
896 LIST_HEAD(head);
897 struct mnt_namespace *n = parent->mnt_ns;
898
899 BUG_ON(parent == mnt);
900
901 list_add_tail(&head, &mnt->mnt_list);
902 list_for_each_entry(m, &head, mnt_list)
903 m->mnt_ns = n;
904
905 list_splice(&head, n->list.prev);
906
907 n->mounts += n->pending_mounts;
908 n->pending_mounts = 0;
909
910 __attach_mnt(mnt, parent);
911 touch_mnt_namespace(n);
912 }
913
914 static struct mount *next_mnt(struct mount *p, struct mount *root)
915 {
916 struct list_head *next = p->mnt_mounts.next;
917 if (next == &p->mnt_mounts) {
918 while (1) {
919 if (p == root)
920 return NULL;
921 next = p->mnt_child.next;
922 if (next != &p->mnt_parent->mnt_mounts)
923 break;
924 p = p->mnt_parent;
925 }
926 }
927 return list_entry(next, struct mount, mnt_child);
928 }
929
930 static struct mount *skip_mnt_tree(struct mount *p)
931 {
932 struct list_head *prev = p->mnt_mounts.prev;
933 while (prev != &p->mnt_mounts) {
934 p = list_entry(prev, struct mount, mnt_child);
935 prev = p->mnt_mounts.prev;
936 }
937 return p;
938 }
939
940 /**
941 * vfs_create_mount - Create a mount for a configured superblock
942 * @fc: The configuration context with the superblock attached
943 *
944 * Create a mount to an already configured superblock. If necessary, the
945 * caller should invoke vfs_get_tree() before calling this.
946 *
947 * Note that this does not attach the mount to anything.
948 */
949 struct vfsmount *vfs_create_mount(struct fs_context *fc)
950 {
951 struct mount *mnt;
952
953 if (!fc->root)
954 return ERR_PTR(-EINVAL);
955
956 mnt = alloc_vfsmnt(fc->source ?: "none");
957 if (!mnt)
958 return ERR_PTR(-ENOMEM);
959
960 if (fc->sb_flags & SB_KERNMOUNT)
961 mnt->mnt.mnt_flags = MNT_INTERNAL;
962
963 atomic_inc(&fc->root->d_sb->s_active);
964 mnt->mnt.mnt_sb = fc->root->d_sb;
965 mnt->mnt.mnt_root = dget(fc->root);
966 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
967 mnt->mnt_parent = mnt;
968
969 lock_mount_hash();
970 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
971 unlock_mount_hash();
972 return &mnt->mnt;
973 }
974 EXPORT_SYMBOL(vfs_create_mount);
975
976 struct vfsmount *fc_mount(struct fs_context *fc)
977 {
978 int err = vfs_get_tree(fc);
979 if (!err) {
980 up_write(&fc->root->d_sb->s_umount);
981 return vfs_create_mount(fc);
982 }
983 return ERR_PTR(err);
984 }
985 EXPORT_SYMBOL(fc_mount);
986
987 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
988 int flags, const char *name,
989 void *data)
990 {
991 struct fs_context *fc;
992 struct vfsmount *mnt;
993 int ret = 0;
994
995 if (!type)
996 return ERR_PTR(-EINVAL);
997
998 fc = fs_context_for_mount(type, flags);
999 if (IS_ERR(fc))
1000 return ERR_CAST(fc);
1001
1002 if (name)
1003 ret = vfs_parse_fs_string(fc, "source",
1004 name, strlen(name));
1005 if (!ret)
1006 ret = parse_monolithic_mount_data(fc, data);
1007 if (!ret)
1008 mnt = fc_mount(fc);
1009 else
1010 mnt = ERR_PTR(ret);
1011
1012 put_fs_context(fc);
1013 return mnt;
1014 }
1015 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1016
1017 struct vfsmount *
1018 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1019 const char *name, void *data)
1020 {
1021 /* Until it is worked out how to pass the user namespace
1022 * through from the parent mount to the submount don't support
1023 * unprivileged mounts with submounts.
1024 */
1025 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1026 return ERR_PTR(-EPERM);
1027
1028 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1029 }
1030 EXPORT_SYMBOL_GPL(vfs_submount);
1031
1032 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1033 int flag)
1034 {
1035 struct super_block *sb = old->mnt.mnt_sb;
1036 struct mount *mnt;
1037 int err;
1038
1039 mnt = alloc_vfsmnt(old->mnt_devname);
1040 if (!mnt)
1041 return ERR_PTR(-ENOMEM);
1042
1043 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1044 mnt->mnt_group_id = 0; /* not a peer of original */
1045 else
1046 mnt->mnt_group_id = old->mnt_group_id;
1047
1048 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1049 err = mnt_alloc_group_id(mnt);
1050 if (err)
1051 goto out_free;
1052 }
1053
1054 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1055 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1056
1057 atomic_inc(&sb->s_active);
1058 mnt->mnt.mnt_sb = sb;
1059 mnt->mnt.mnt_root = dget(root);
1060 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1061 mnt->mnt_parent = mnt;
1062 lock_mount_hash();
1063 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1064 unlock_mount_hash();
1065
1066 if ((flag & CL_SLAVE) ||
1067 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1068 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1069 mnt->mnt_master = old;
1070 CLEAR_MNT_SHARED(mnt);
1071 } else if (!(flag & CL_PRIVATE)) {
1072 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1073 list_add(&mnt->mnt_share, &old->mnt_share);
1074 if (IS_MNT_SLAVE(old))
1075 list_add(&mnt->mnt_slave, &old->mnt_slave);
1076 mnt->mnt_master = old->mnt_master;
1077 } else {
1078 CLEAR_MNT_SHARED(mnt);
1079 }
1080 if (flag & CL_MAKE_SHARED)
1081 set_mnt_shared(mnt);
1082
1083 /* stick the duplicate mount on the same expiry list
1084 * as the original if that was on one */
1085 if (flag & CL_EXPIRE) {
1086 if (!list_empty(&old->mnt_expire))
1087 list_add(&mnt->mnt_expire, &old->mnt_expire);
1088 }
1089
1090 return mnt;
1091
1092 out_free:
1093 mnt_free_id(mnt);
1094 free_vfsmnt(mnt);
1095 return ERR_PTR(err);
1096 }
1097
1098 static void cleanup_mnt(struct mount *mnt)
1099 {
1100 struct hlist_node *p;
1101 struct mount *m;
1102 /*
1103 * The warning here probably indicates that somebody messed
1104 * up a mnt_want/drop_write() pair. If this happens, the
1105 * filesystem was probably unable to make r/w->r/o transitions.
1106 * The locking used to deal with mnt_count decrement provides barriers,
1107 * so mnt_get_writers() below is safe.
1108 */
1109 WARN_ON(mnt_get_writers(mnt));
1110 if (unlikely(mnt->mnt_pins.first))
1111 mnt_pin_kill(mnt);
1112 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1113 hlist_del(&m->mnt_umount);
1114 mntput(&m->mnt);
1115 }
1116 fsnotify_vfsmount_delete(&mnt->mnt);
1117 dput(mnt->mnt.mnt_root);
1118 deactivate_super(mnt->mnt.mnt_sb);
1119 mnt_free_id(mnt);
1120 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1121 }
1122
1123 static void __cleanup_mnt(struct rcu_head *head)
1124 {
1125 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1126 }
1127
1128 static LLIST_HEAD(delayed_mntput_list);
1129 static void delayed_mntput(struct work_struct *unused)
1130 {
1131 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1132 struct mount *m, *t;
1133
1134 llist_for_each_entry_safe(m, t, node, mnt_llist)
1135 cleanup_mnt(m);
1136 }
1137 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1138
1139 static void mntput_no_expire(struct mount *mnt)
1140 {
1141 LIST_HEAD(list);
1142 int count;
1143
1144 rcu_read_lock();
1145 if (likely(READ_ONCE(mnt->mnt_ns))) {
1146 /*
1147 * Since we don't do lock_mount_hash() here,
1148 * ->mnt_ns can change under us. However, if it's
1149 * non-NULL, then there's a reference that won't
1150 * be dropped until after an RCU delay done after
1151 * turning ->mnt_ns NULL. So if we observe it
1152 * non-NULL under rcu_read_lock(), the reference
1153 * we are dropping is not the final one.
1154 */
1155 mnt_add_count(mnt, -1);
1156 rcu_read_unlock();
1157 return;
1158 }
1159 lock_mount_hash();
1160 /*
1161 * make sure that if __legitimize_mnt() has not seen us grab
1162 * mount_lock, we'll see their refcount increment here.
1163 */
1164 smp_mb();
1165 mnt_add_count(mnt, -1);
1166 count = mnt_get_count(mnt);
1167 if (count != 0) {
1168 WARN_ON(count < 0);
1169 rcu_read_unlock();
1170 unlock_mount_hash();
1171 return;
1172 }
1173 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1174 rcu_read_unlock();
1175 unlock_mount_hash();
1176 return;
1177 }
1178 mnt->mnt.mnt_flags |= MNT_DOOMED;
1179 rcu_read_unlock();
1180
1181 list_del(&mnt->mnt_instance);
1182
1183 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1184 struct mount *p, *tmp;
1185 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1186 __put_mountpoint(unhash_mnt(p), &list);
1187 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1188 }
1189 }
1190 unlock_mount_hash();
1191 shrink_dentry_list(&list);
1192
1193 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1194 struct task_struct *task = current;
1195 if (likely(!(task->flags & PF_KTHREAD))) {
1196 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1197 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1198 return;
1199 }
1200 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1201 schedule_delayed_work(&delayed_mntput_work, 1);
1202 return;
1203 }
1204 cleanup_mnt(mnt);
1205 }
1206
1207 void mntput(struct vfsmount *mnt)
1208 {
1209 if (mnt) {
1210 struct mount *m = real_mount(mnt);
1211 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1212 if (unlikely(m->mnt_expiry_mark))
1213 m->mnt_expiry_mark = 0;
1214 mntput_no_expire(m);
1215 }
1216 }
1217 EXPORT_SYMBOL(mntput);
1218
1219 struct vfsmount *mntget(struct vfsmount *mnt)
1220 {
1221 if (mnt)
1222 mnt_add_count(real_mount(mnt), 1);
1223 return mnt;
1224 }
1225 EXPORT_SYMBOL(mntget);
1226
1227 /* path_is_mountpoint() - Check if path is a mount in the current
1228 * namespace.
1229 *
1230 * d_mountpoint() can only be used reliably to establish if a dentry is
1231 * not mounted in any namespace and that common case is handled inline.
1232 * d_mountpoint() isn't aware of the possibility there may be multiple
1233 * mounts using a given dentry in a different namespace. This function
1234 * checks if the passed in path is a mountpoint rather than the dentry
1235 * alone.
1236 */
1237 bool path_is_mountpoint(const struct path *path)
1238 {
1239 unsigned seq;
1240 bool res;
1241
1242 if (!d_mountpoint(path->dentry))
1243 return false;
1244
1245 rcu_read_lock();
1246 do {
1247 seq = read_seqbegin(&mount_lock);
1248 res = __path_is_mountpoint(path);
1249 } while (read_seqretry(&mount_lock, seq));
1250 rcu_read_unlock();
1251
1252 return res;
1253 }
1254 EXPORT_SYMBOL(path_is_mountpoint);
1255
1256 struct vfsmount *mnt_clone_internal(const struct path *path)
1257 {
1258 struct mount *p;
1259 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1260 if (IS_ERR(p))
1261 return ERR_CAST(p);
1262 p->mnt.mnt_flags |= MNT_INTERNAL;
1263 return &p->mnt;
1264 }
1265
1266 #ifdef CONFIG_PROC_FS
1267 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1268 struct list_head *p)
1269 {
1270 struct mount *mnt, *ret = NULL;
1271
1272 lock_ns_list(ns);
1273 list_for_each_continue(p, &ns->list) {
1274 mnt = list_entry(p, typeof(*mnt), mnt_list);
1275 if (!mnt_is_cursor(mnt)) {
1276 ret = mnt;
1277 break;
1278 }
1279 }
1280 unlock_ns_list(ns);
1281
1282 return ret;
1283 }
1284
1285 /* iterator; we want it to have access to namespace_sem, thus here... */
1286 static void *m_start(struct seq_file *m, loff_t *pos)
1287 {
1288 struct proc_mounts *p = m->private;
1289 struct list_head *prev;
1290
1291 down_read(&namespace_sem);
1292 if (!*pos) {
1293 prev = &p->ns->list;
1294 } else {
1295 prev = &p->cursor.mnt_list;
1296
1297 /* Read after we'd reached the end? */
1298 if (list_empty(prev))
1299 return NULL;
1300 }
1301
1302 return mnt_list_next(p->ns, prev);
1303 }
1304
1305 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1306 {
1307 struct proc_mounts *p = m->private;
1308 struct mount *mnt = v;
1309
1310 ++*pos;
1311 return mnt_list_next(p->ns, &mnt->mnt_list);
1312 }
1313
1314 static void m_stop(struct seq_file *m, void *v)
1315 {
1316 struct proc_mounts *p = m->private;
1317 struct mount *mnt = v;
1318
1319 lock_ns_list(p->ns);
1320 if (mnt)
1321 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1322 else
1323 list_del_init(&p->cursor.mnt_list);
1324 unlock_ns_list(p->ns);
1325 up_read(&namespace_sem);
1326 }
1327
1328 static int m_show(struct seq_file *m, void *v)
1329 {
1330 struct proc_mounts *p = m->private;
1331 struct mount *r = v;
1332 return p->show(m, &r->mnt);
1333 }
1334
1335 const struct seq_operations mounts_op = {
1336 .start = m_start,
1337 .next = m_next,
1338 .stop = m_stop,
1339 .show = m_show,
1340 };
1341
1342 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1343 {
1344 down_read(&namespace_sem);
1345 lock_ns_list(ns);
1346 list_del(&cursor->mnt_list);
1347 unlock_ns_list(ns);
1348 up_read(&namespace_sem);
1349 }
1350 #endif /* CONFIG_PROC_FS */
1351
1352 /**
1353 * may_umount_tree - check if a mount tree is busy
1354 * @mnt: root of mount tree
1355 *
1356 * This is called to check if a tree of mounts has any
1357 * open files, pwds, chroots or sub mounts that are
1358 * busy.
1359 */
1360 int may_umount_tree(struct vfsmount *m)
1361 {
1362 struct mount *mnt = real_mount(m);
1363 int actual_refs = 0;
1364 int minimum_refs = 0;
1365 struct mount *p;
1366 BUG_ON(!m);
1367
1368 /* write lock needed for mnt_get_count */
1369 lock_mount_hash();
1370 for (p = mnt; p; p = next_mnt(p, mnt)) {
1371 actual_refs += mnt_get_count(p);
1372 minimum_refs += 2;
1373 }
1374 unlock_mount_hash();
1375
1376 if (actual_refs > minimum_refs)
1377 return 0;
1378
1379 return 1;
1380 }
1381
1382 EXPORT_SYMBOL(may_umount_tree);
1383
1384 /**
1385 * may_umount - check if a mount point is busy
1386 * @mnt: root of mount
1387 *
1388 * This is called to check if a mount point has any
1389 * open files, pwds, chroots or sub mounts. If the
1390 * mount has sub mounts this will return busy
1391 * regardless of whether the sub mounts are busy.
1392 *
1393 * Doesn't take quota and stuff into account. IOW, in some cases it will
1394 * give false negatives. The main reason why it's here is that we need
1395 * a non-destructive way to look for easily umountable filesystems.
1396 */
1397 int may_umount(struct vfsmount *mnt)
1398 {
1399 int ret = 1;
1400 down_read(&namespace_sem);
1401 lock_mount_hash();
1402 if (propagate_mount_busy(real_mount(mnt), 2))
1403 ret = 0;
1404 unlock_mount_hash();
1405 up_read(&namespace_sem);
1406 return ret;
1407 }
1408
1409 EXPORT_SYMBOL(may_umount);
1410
1411 static void namespace_unlock(void)
1412 {
1413 struct hlist_head head;
1414 struct hlist_node *p;
1415 struct mount *m;
1416 LIST_HEAD(list);
1417
1418 hlist_move_list(&unmounted, &head);
1419 list_splice_init(&ex_mountpoints, &list);
1420
1421 up_write(&namespace_sem);
1422
1423 shrink_dentry_list(&list);
1424
1425 if (likely(hlist_empty(&head)))
1426 return;
1427
1428 synchronize_rcu_expedited();
1429
1430 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1431 hlist_del(&m->mnt_umount);
1432 mntput(&m->mnt);
1433 }
1434 }
1435
1436 static inline void namespace_lock(void)
1437 {
1438 down_write(&namespace_sem);
1439 }
1440
1441 enum umount_tree_flags {
1442 UMOUNT_SYNC = 1,
1443 UMOUNT_PROPAGATE = 2,
1444 UMOUNT_CONNECTED = 4,
1445 };
1446
1447 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1448 {
1449 /* Leaving mounts connected is only valid for lazy umounts */
1450 if (how & UMOUNT_SYNC)
1451 return true;
1452
1453 /* A mount without a parent has nothing to be connected to */
1454 if (!mnt_has_parent(mnt))
1455 return true;
1456
1457 /* Because the reference counting rules change when mounts are
1458 * unmounted and connected, umounted mounts may not be
1459 * connected to mounted mounts.
1460 */
1461 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1462 return true;
1463
1464 /* Has it been requested that the mount remain connected? */
1465 if (how & UMOUNT_CONNECTED)
1466 return false;
1467
1468 /* Is the mount locked such that it needs to remain connected? */
1469 if (IS_MNT_LOCKED(mnt))
1470 return false;
1471
1472 /* By default disconnect the mount */
1473 return true;
1474 }
1475
1476 /*
1477 * mount_lock must be held
1478 * namespace_sem must be held for write
1479 */
1480 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1481 {
1482 LIST_HEAD(tmp_list);
1483 struct mount *p;
1484
1485 if (how & UMOUNT_PROPAGATE)
1486 propagate_mount_unlock(mnt);
1487
1488 /* Gather the mounts to umount */
1489 for (p = mnt; p; p = next_mnt(p, mnt)) {
1490 p->mnt.mnt_flags |= MNT_UMOUNT;
1491 list_move(&p->mnt_list, &tmp_list);
1492 }
1493
1494 /* Hide the mounts from mnt_mounts */
1495 list_for_each_entry(p, &tmp_list, mnt_list) {
1496 list_del_init(&p->mnt_child);
1497 }
1498
1499 /* Add propogated mounts to the tmp_list */
1500 if (how & UMOUNT_PROPAGATE)
1501 propagate_umount(&tmp_list);
1502
1503 while (!list_empty(&tmp_list)) {
1504 struct mnt_namespace *ns;
1505 bool disconnect;
1506 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1507 list_del_init(&p->mnt_expire);
1508 list_del_init(&p->mnt_list);
1509 ns = p->mnt_ns;
1510 if (ns) {
1511 ns->mounts--;
1512 __touch_mnt_namespace(ns);
1513 }
1514 p->mnt_ns = NULL;
1515 if (how & UMOUNT_SYNC)
1516 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1517
1518 disconnect = disconnect_mount(p, how);
1519 if (mnt_has_parent(p)) {
1520 mnt_add_count(p->mnt_parent, -1);
1521 if (!disconnect) {
1522 /* Don't forget about p */
1523 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1524 } else {
1525 umount_mnt(p);
1526 }
1527 }
1528 change_mnt_propagation(p, MS_PRIVATE);
1529 if (disconnect)
1530 hlist_add_head(&p->mnt_umount, &unmounted);
1531 }
1532 }
1533
1534 static void shrink_submounts(struct mount *mnt);
1535
1536 static int do_umount_root(struct super_block *sb)
1537 {
1538 int ret = 0;
1539
1540 down_write(&sb->s_umount);
1541 if (!sb_rdonly(sb)) {
1542 struct fs_context *fc;
1543
1544 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1545 SB_RDONLY);
1546 if (IS_ERR(fc)) {
1547 ret = PTR_ERR(fc);
1548 } else {
1549 ret = parse_monolithic_mount_data(fc, NULL);
1550 if (!ret)
1551 ret = reconfigure_super(fc);
1552 put_fs_context(fc);
1553 }
1554 }
1555 up_write(&sb->s_umount);
1556 return ret;
1557 }
1558
1559 static int do_umount(struct mount *mnt, int flags)
1560 {
1561 struct super_block *sb = mnt->mnt.mnt_sb;
1562 int retval;
1563
1564 retval = security_sb_umount(&mnt->mnt, flags);
1565 if (retval)
1566 return retval;
1567
1568 /*
1569 * Allow userspace to request a mountpoint be expired rather than
1570 * unmounting unconditionally. Unmount only happens if:
1571 * (1) the mark is already set (the mark is cleared by mntput())
1572 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1573 */
1574 if (flags & MNT_EXPIRE) {
1575 if (&mnt->mnt == current->fs->root.mnt ||
1576 flags & (MNT_FORCE | MNT_DETACH))
1577 return -EINVAL;
1578
1579 /*
1580 * probably don't strictly need the lock here if we examined
1581 * all race cases, but it's a slowpath.
1582 */
1583 lock_mount_hash();
1584 if (mnt_get_count(mnt) != 2) {
1585 unlock_mount_hash();
1586 return -EBUSY;
1587 }
1588 unlock_mount_hash();
1589
1590 if (!xchg(&mnt->mnt_expiry_mark, 1))
1591 return -EAGAIN;
1592 }
1593
1594 /*
1595 * If we may have to abort operations to get out of this
1596 * mount, and they will themselves hold resources we must
1597 * allow the fs to do things. In the Unix tradition of
1598 * 'Gee thats tricky lets do it in userspace' the umount_begin
1599 * might fail to complete on the first run through as other tasks
1600 * must return, and the like. Thats for the mount program to worry
1601 * about for the moment.
1602 */
1603
1604 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1605 sb->s_op->umount_begin(sb);
1606 }
1607
1608 /*
1609 * No sense to grab the lock for this test, but test itself looks
1610 * somewhat bogus. Suggestions for better replacement?
1611 * Ho-hum... In principle, we might treat that as umount + switch
1612 * to rootfs. GC would eventually take care of the old vfsmount.
1613 * Actually it makes sense, especially if rootfs would contain a
1614 * /reboot - static binary that would close all descriptors and
1615 * call reboot(9). Then init(8) could umount root and exec /reboot.
1616 */
1617 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1618 /*
1619 * Special case for "unmounting" root ...
1620 * we just try to remount it readonly.
1621 */
1622 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1623 return -EPERM;
1624 return do_umount_root(sb);
1625 }
1626
1627 namespace_lock();
1628 lock_mount_hash();
1629
1630 /* Recheck MNT_LOCKED with the locks held */
1631 retval = -EINVAL;
1632 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1633 goto out;
1634
1635 event++;
1636 if (flags & MNT_DETACH) {
1637 if (!list_empty(&mnt->mnt_list))
1638 umount_tree(mnt, UMOUNT_PROPAGATE);
1639 retval = 0;
1640 } else {
1641 shrink_submounts(mnt);
1642 retval = -EBUSY;
1643 if (!propagate_mount_busy(mnt, 2)) {
1644 if (!list_empty(&mnt->mnt_list))
1645 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1646 retval = 0;
1647 }
1648 }
1649 out:
1650 unlock_mount_hash();
1651 namespace_unlock();
1652 return retval;
1653 }
1654
1655 /*
1656 * __detach_mounts - lazily unmount all mounts on the specified dentry
1657 *
1658 * During unlink, rmdir, and d_drop it is possible to loose the path
1659 * to an existing mountpoint, and wind up leaking the mount.
1660 * detach_mounts allows lazily unmounting those mounts instead of
1661 * leaking them.
1662 *
1663 * The caller may hold dentry->d_inode->i_mutex.
1664 */
1665 void __detach_mounts(struct dentry *dentry)
1666 {
1667 struct mountpoint *mp;
1668 struct mount *mnt;
1669
1670 namespace_lock();
1671 lock_mount_hash();
1672 mp = lookup_mountpoint(dentry);
1673 if (!mp)
1674 goto out_unlock;
1675
1676 event++;
1677 while (!hlist_empty(&mp->m_list)) {
1678 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1679 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1680 umount_mnt(mnt);
1681 hlist_add_head(&mnt->mnt_umount, &unmounted);
1682 }
1683 else umount_tree(mnt, UMOUNT_CONNECTED);
1684 }
1685 put_mountpoint(mp);
1686 out_unlock:
1687 unlock_mount_hash();
1688 namespace_unlock();
1689 }
1690
1691 /*
1692 * Is the caller allowed to modify his namespace?
1693 */
1694 static inline bool may_mount(void)
1695 {
1696 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1697 }
1698
1699 #ifdef CONFIG_MANDATORY_FILE_LOCKING
1700 static inline bool may_mandlock(void)
1701 {
1702 return capable(CAP_SYS_ADMIN);
1703 }
1704 #else
1705 static inline bool may_mandlock(void)
1706 {
1707 pr_warn("VFS: \"mand\" mount option not supported");
1708 return false;
1709 }
1710 #endif
1711
1712 static int can_umount(const struct path *path, int flags)
1713 {
1714 struct mount *mnt = real_mount(path->mnt);
1715
1716 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1717 return -EINVAL;
1718 if (!may_mount())
1719 return -EPERM;
1720 if (path->dentry != path->mnt->mnt_root)
1721 return -EINVAL;
1722 if (!check_mnt(mnt))
1723 return -EINVAL;
1724 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1725 return -EINVAL;
1726 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1727 return -EPERM;
1728 return 0;
1729 }
1730
1731 int path_umount(struct path *path, int flags)
1732 {
1733 struct mount *mnt = real_mount(path->mnt);
1734 int ret;
1735
1736 ret = can_umount(path, flags);
1737 if (!ret)
1738 ret = do_umount(mnt, flags);
1739
1740 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1741 dput(path->dentry);
1742 mntput_no_expire(mnt);
1743 return ret;
1744 }
1745
1746 static int ksys_umount(char __user *name, int flags)
1747 {
1748 int lookup_flags = LOOKUP_MOUNTPOINT;
1749 struct path path;
1750 int ret;
1751
1752 if (!(flags & UMOUNT_NOFOLLOW))
1753 lookup_flags |= LOOKUP_FOLLOW;
1754 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1755 if (ret)
1756 return ret;
1757 return path_umount(&path, flags);
1758 }
1759
1760 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1761 {
1762 return ksys_umount(name, flags);
1763 }
1764
1765 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1766
1767 /*
1768 * The 2.0 compatible umount. No flags.
1769 */
1770 SYSCALL_DEFINE1(oldumount, char __user *, name)
1771 {
1772 return ksys_umount(name, 0);
1773 }
1774
1775 #endif
1776
1777 static bool is_mnt_ns_file(struct dentry *dentry)
1778 {
1779 /* Is this a proxy for a mount namespace? */
1780 return dentry->d_op == &ns_dentry_operations &&
1781 dentry->d_fsdata == &mntns_operations;
1782 }
1783
1784 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1785 {
1786 return container_of(ns, struct mnt_namespace, ns);
1787 }
1788
1789 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1790 {
1791 return &mnt->ns;
1792 }
1793
1794 static bool mnt_ns_loop(struct dentry *dentry)
1795 {
1796 /* Could bind mounting the mount namespace inode cause a
1797 * mount namespace loop?
1798 */
1799 struct mnt_namespace *mnt_ns;
1800 if (!is_mnt_ns_file(dentry))
1801 return false;
1802
1803 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1804 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1805 }
1806
1807 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1808 int flag)
1809 {
1810 struct mount *res, *p, *q, *r, *parent;
1811
1812 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1813 return ERR_PTR(-EINVAL);
1814
1815 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1816 return ERR_PTR(-EINVAL);
1817
1818 res = q = clone_mnt(mnt, dentry, flag);
1819 if (IS_ERR(q))
1820 return q;
1821
1822 q->mnt_mountpoint = mnt->mnt_mountpoint;
1823
1824 p = mnt;
1825 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1826 struct mount *s;
1827 if (!is_subdir(r->mnt_mountpoint, dentry))
1828 continue;
1829
1830 for (s = r; s; s = next_mnt(s, r)) {
1831 if (!(flag & CL_COPY_UNBINDABLE) &&
1832 IS_MNT_UNBINDABLE(s)) {
1833 if (s->mnt.mnt_flags & MNT_LOCKED) {
1834 /* Both unbindable and locked. */
1835 q = ERR_PTR(-EPERM);
1836 goto out;
1837 } else {
1838 s = skip_mnt_tree(s);
1839 continue;
1840 }
1841 }
1842 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1843 is_mnt_ns_file(s->mnt.mnt_root)) {
1844 s = skip_mnt_tree(s);
1845 continue;
1846 }
1847 while (p != s->mnt_parent) {
1848 p = p->mnt_parent;
1849 q = q->mnt_parent;
1850 }
1851 p = s;
1852 parent = q;
1853 q = clone_mnt(p, p->mnt.mnt_root, flag);
1854 if (IS_ERR(q))
1855 goto out;
1856 lock_mount_hash();
1857 list_add_tail(&q->mnt_list, &res->mnt_list);
1858 attach_mnt(q, parent, p->mnt_mp);
1859 unlock_mount_hash();
1860 }
1861 }
1862 return res;
1863 out:
1864 if (res) {
1865 lock_mount_hash();
1866 umount_tree(res, UMOUNT_SYNC);
1867 unlock_mount_hash();
1868 }
1869 return q;
1870 }
1871
1872 /* Caller should check returned pointer for errors */
1873
1874 struct vfsmount *collect_mounts(const struct path *path)
1875 {
1876 struct mount *tree;
1877 namespace_lock();
1878 if (!check_mnt(real_mount(path->mnt)))
1879 tree = ERR_PTR(-EINVAL);
1880 else
1881 tree = copy_tree(real_mount(path->mnt), path->dentry,
1882 CL_COPY_ALL | CL_PRIVATE);
1883 namespace_unlock();
1884 if (IS_ERR(tree))
1885 return ERR_CAST(tree);
1886 return &tree->mnt;
1887 }
1888
1889 static void free_mnt_ns(struct mnt_namespace *);
1890 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1891
1892 void dissolve_on_fput(struct vfsmount *mnt)
1893 {
1894 struct mnt_namespace *ns;
1895 namespace_lock();
1896 lock_mount_hash();
1897 ns = real_mount(mnt)->mnt_ns;
1898 if (ns) {
1899 if (is_anon_ns(ns))
1900 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1901 else
1902 ns = NULL;
1903 }
1904 unlock_mount_hash();
1905 namespace_unlock();
1906 if (ns)
1907 free_mnt_ns(ns);
1908 }
1909
1910 void drop_collected_mounts(struct vfsmount *mnt)
1911 {
1912 namespace_lock();
1913 lock_mount_hash();
1914 umount_tree(real_mount(mnt), 0);
1915 unlock_mount_hash();
1916 namespace_unlock();
1917 }
1918
1919 /**
1920 * clone_private_mount - create a private clone of a path
1921 *
1922 * This creates a new vfsmount, which will be the clone of @path. The new will
1923 * not be attached anywhere in the namespace and will be private (i.e. changes
1924 * to the originating mount won't be propagated into this).
1925 *
1926 * Release with mntput().
1927 */
1928 struct vfsmount *clone_private_mount(const struct path *path)
1929 {
1930 struct mount *old_mnt = real_mount(path->mnt);
1931 struct mount *new_mnt;
1932
1933 if (IS_MNT_UNBINDABLE(old_mnt))
1934 return ERR_PTR(-EINVAL);
1935
1936 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1937 if (IS_ERR(new_mnt))
1938 return ERR_CAST(new_mnt);
1939
1940 /* Longterm mount to be removed by kern_unmount*() */
1941 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1942
1943 return &new_mnt->mnt;
1944 }
1945 EXPORT_SYMBOL_GPL(clone_private_mount);
1946
1947 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1948 struct vfsmount *root)
1949 {
1950 struct mount *mnt;
1951 int res = f(root, arg);
1952 if (res)
1953 return res;
1954 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1955 res = f(&mnt->mnt, arg);
1956 if (res)
1957 return res;
1958 }
1959 return 0;
1960 }
1961
1962 static void lock_mnt_tree(struct mount *mnt)
1963 {
1964 struct mount *p;
1965
1966 for (p = mnt; p; p = next_mnt(p, mnt)) {
1967 int flags = p->mnt.mnt_flags;
1968 /* Don't allow unprivileged users to change mount flags */
1969 flags |= MNT_LOCK_ATIME;
1970
1971 if (flags & MNT_READONLY)
1972 flags |= MNT_LOCK_READONLY;
1973
1974 if (flags & MNT_NODEV)
1975 flags |= MNT_LOCK_NODEV;
1976
1977 if (flags & MNT_NOSUID)
1978 flags |= MNT_LOCK_NOSUID;
1979
1980 if (flags & MNT_NOEXEC)
1981 flags |= MNT_LOCK_NOEXEC;
1982 /* Don't allow unprivileged users to reveal what is under a mount */
1983 if (list_empty(&p->mnt_expire))
1984 flags |= MNT_LOCKED;
1985 p->mnt.mnt_flags = flags;
1986 }
1987 }
1988
1989 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1990 {
1991 struct mount *p;
1992
1993 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1994 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1995 mnt_release_group_id(p);
1996 }
1997 }
1998
1999 static int invent_group_ids(struct mount *mnt, bool recurse)
2000 {
2001 struct mount *p;
2002
2003 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2004 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2005 int err = mnt_alloc_group_id(p);
2006 if (err) {
2007 cleanup_group_ids(mnt, p);
2008 return err;
2009 }
2010 }
2011 }
2012
2013 return 0;
2014 }
2015
2016 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2017 {
2018 unsigned int max = READ_ONCE(sysctl_mount_max);
2019 unsigned int mounts = 0, old, pending, sum;
2020 struct mount *p;
2021
2022 for (p = mnt; p; p = next_mnt(p, mnt))
2023 mounts++;
2024
2025 old = ns->mounts;
2026 pending = ns->pending_mounts;
2027 sum = old + pending;
2028 if ((old > sum) ||
2029 (pending > sum) ||
2030 (max < sum) ||
2031 (mounts > (max - sum)))
2032 return -ENOSPC;
2033
2034 ns->pending_mounts = pending + mounts;
2035 return 0;
2036 }
2037
2038 /*
2039 * @source_mnt : mount tree to be attached
2040 * @nd : place the mount tree @source_mnt is attached
2041 * @parent_nd : if non-null, detach the source_mnt from its parent and
2042 * store the parent mount and mountpoint dentry.
2043 * (done when source_mnt is moved)
2044 *
2045 * NOTE: in the table below explains the semantics when a source mount
2046 * of a given type is attached to a destination mount of a given type.
2047 * ---------------------------------------------------------------------------
2048 * | BIND MOUNT OPERATION |
2049 * |**************************************************************************
2050 * | source-->| shared | private | slave | unbindable |
2051 * | dest | | | | |
2052 * | | | | | | |
2053 * | v | | | | |
2054 * |**************************************************************************
2055 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2056 * | | | | | |
2057 * |non-shared| shared (+) | private | slave (*) | invalid |
2058 * ***************************************************************************
2059 * A bind operation clones the source mount and mounts the clone on the
2060 * destination mount.
2061 *
2062 * (++) the cloned mount is propagated to all the mounts in the propagation
2063 * tree of the destination mount and the cloned mount is added to
2064 * the peer group of the source mount.
2065 * (+) the cloned mount is created under the destination mount and is marked
2066 * as shared. The cloned mount is added to the peer group of the source
2067 * mount.
2068 * (+++) the mount is propagated to all the mounts in the propagation tree
2069 * of the destination mount and the cloned mount is made slave
2070 * of the same master as that of the source mount. The cloned mount
2071 * is marked as 'shared and slave'.
2072 * (*) the cloned mount is made a slave of the same master as that of the
2073 * source mount.
2074 *
2075 * ---------------------------------------------------------------------------
2076 * | MOVE MOUNT OPERATION |
2077 * |**************************************************************************
2078 * | source-->| shared | private | slave | unbindable |
2079 * | dest | | | | |
2080 * | | | | | | |
2081 * | v | | | | |
2082 * |**************************************************************************
2083 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2084 * | | | | | |
2085 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2086 * ***************************************************************************
2087 *
2088 * (+) the mount is moved to the destination. And is then propagated to
2089 * all the mounts in the propagation tree of the destination mount.
2090 * (+*) the mount is moved to the destination.
2091 * (+++) the mount is moved to the destination and is then propagated to
2092 * all the mounts belonging to the destination mount's propagation tree.
2093 * the mount is marked as 'shared and slave'.
2094 * (*) the mount continues to be a slave at the new location.
2095 *
2096 * if the source mount is a tree, the operations explained above is
2097 * applied to each mount in the tree.
2098 * Must be called without spinlocks held, since this function can sleep
2099 * in allocations.
2100 */
2101 static int attach_recursive_mnt(struct mount *source_mnt,
2102 struct mount *dest_mnt,
2103 struct mountpoint *dest_mp,
2104 bool moving)
2105 {
2106 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2107 HLIST_HEAD(tree_list);
2108 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2109 struct mountpoint *smp;
2110 struct mount *child, *p;
2111 struct hlist_node *n;
2112 int err;
2113
2114 /* Preallocate a mountpoint in case the new mounts need
2115 * to be tucked under other mounts.
2116 */
2117 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2118 if (IS_ERR(smp))
2119 return PTR_ERR(smp);
2120
2121 /* Is there space to add these mounts to the mount namespace? */
2122 if (!moving) {
2123 err = count_mounts(ns, source_mnt);
2124 if (err)
2125 goto out;
2126 }
2127
2128 if (IS_MNT_SHARED(dest_mnt)) {
2129 err = invent_group_ids(source_mnt, true);
2130 if (err)
2131 goto out;
2132 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2133 lock_mount_hash();
2134 if (err)
2135 goto out_cleanup_ids;
2136 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2137 set_mnt_shared(p);
2138 } else {
2139 lock_mount_hash();
2140 }
2141 if (moving) {
2142 unhash_mnt(source_mnt);
2143 attach_mnt(source_mnt, dest_mnt, dest_mp);
2144 touch_mnt_namespace(source_mnt->mnt_ns);
2145 } else {
2146 if (source_mnt->mnt_ns) {
2147 /* move from anon - the caller will destroy */
2148 list_del_init(&source_mnt->mnt_ns->list);
2149 }
2150 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2151 commit_tree(source_mnt);
2152 }
2153
2154 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2155 struct mount *q;
2156 hlist_del_init(&child->mnt_hash);
2157 q = __lookup_mnt(&child->mnt_parent->mnt,
2158 child->mnt_mountpoint);
2159 if (q)
2160 mnt_change_mountpoint(child, smp, q);
2161 /* Notice when we are propagating across user namespaces */
2162 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2163 lock_mnt_tree(child);
2164 child->mnt.mnt_flags &= ~MNT_LOCKED;
2165 commit_tree(child);
2166 }
2167 put_mountpoint(smp);
2168 unlock_mount_hash();
2169
2170 return 0;
2171
2172 out_cleanup_ids:
2173 while (!hlist_empty(&tree_list)) {
2174 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2175 child->mnt_parent->mnt_ns->pending_mounts = 0;
2176 umount_tree(child, UMOUNT_SYNC);
2177 }
2178 unlock_mount_hash();
2179 cleanup_group_ids(source_mnt, NULL);
2180 out:
2181 ns->pending_mounts = 0;
2182
2183 read_seqlock_excl(&mount_lock);
2184 put_mountpoint(smp);
2185 read_sequnlock_excl(&mount_lock);
2186
2187 return err;
2188 }
2189
2190 static struct mountpoint *lock_mount(struct path *path)
2191 {
2192 struct vfsmount *mnt;
2193 struct dentry *dentry = path->dentry;
2194 retry:
2195 inode_lock(dentry->d_inode);
2196 if (unlikely(cant_mount(dentry))) {
2197 inode_unlock(dentry->d_inode);
2198 return ERR_PTR(-ENOENT);
2199 }
2200 namespace_lock();
2201 mnt = lookup_mnt(path);
2202 if (likely(!mnt)) {
2203 struct mountpoint *mp = get_mountpoint(dentry);
2204 if (IS_ERR(mp)) {
2205 namespace_unlock();
2206 inode_unlock(dentry->d_inode);
2207 return mp;
2208 }
2209 return mp;
2210 }
2211 namespace_unlock();
2212 inode_unlock(path->dentry->d_inode);
2213 path_put(path);
2214 path->mnt = mnt;
2215 dentry = path->dentry = dget(mnt->mnt_root);
2216 goto retry;
2217 }
2218
2219 static void unlock_mount(struct mountpoint *where)
2220 {
2221 struct dentry *dentry = where->m_dentry;
2222
2223 read_seqlock_excl(&mount_lock);
2224 put_mountpoint(where);
2225 read_sequnlock_excl(&mount_lock);
2226
2227 namespace_unlock();
2228 inode_unlock(dentry->d_inode);
2229 }
2230
2231 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2232 {
2233 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2234 return -EINVAL;
2235
2236 if (d_is_dir(mp->m_dentry) !=
2237 d_is_dir(mnt->mnt.mnt_root))
2238 return -ENOTDIR;
2239
2240 return attach_recursive_mnt(mnt, p, mp, false);
2241 }
2242
2243 /*
2244 * Sanity check the flags to change_mnt_propagation.
2245 */
2246
2247 static int flags_to_propagation_type(int ms_flags)
2248 {
2249 int type = ms_flags & ~(MS_REC | MS_SILENT);
2250
2251 /* Fail if any non-propagation flags are set */
2252 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2253 return 0;
2254 /* Only one propagation flag should be set */
2255 if (!is_power_of_2(type))
2256 return 0;
2257 return type;
2258 }
2259
2260 /*
2261 * recursively change the type of the mountpoint.
2262 */
2263 static int do_change_type(struct path *path, int ms_flags)
2264 {
2265 struct mount *m;
2266 struct mount *mnt = real_mount(path->mnt);
2267 int recurse = ms_flags & MS_REC;
2268 int type;
2269 int err = 0;
2270
2271 if (path->dentry != path->mnt->mnt_root)
2272 return -EINVAL;
2273
2274 type = flags_to_propagation_type(ms_flags);
2275 if (!type)
2276 return -EINVAL;
2277
2278 namespace_lock();
2279 if (type == MS_SHARED) {
2280 err = invent_group_ids(mnt, recurse);
2281 if (err)
2282 goto out_unlock;
2283 }
2284
2285 lock_mount_hash();
2286 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2287 change_mnt_propagation(m, type);
2288 unlock_mount_hash();
2289
2290 out_unlock:
2291 namespace_unlock();
2292 return err;
2293 }
2294
2295 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2296 {
2297 struct mount *child;
2298 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2299 if (!is_subdir(child->mnt_mountpoint, dentry))
2300 continue;
2301
2302 if (child->mnt.mnt_flags & MNT_LOCKED)
2303 return true;
2304 }
2305 return false;
2306 }
2307
2308 static struct mount *__do_loopback(struct path *old_path, int recurse)
2309 {
2310 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2311
2312 if (IS_MNT_UNBINDABLE(old))
2313 return mnt;
2314
2315 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2316 return mnt;
2317
2318 if (!recurse && has_locked_children(old, old_path->dentry))
2319 return mnt;
2320
2321 if (recurse)
2322 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2323 else
2324 mnt = clone_mnt(old, old_path->dentry, 0);
2325
2326 if (!IS_ERR(mnt))
2327 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2328
2329 return mnt;
2330 }
2331
2332 /*
2333 * do loopback mount.
2334 */
2335 static int do_loopback(struct path *path, const char *old_name,
2336 int recurse)
2337 {
2338 struct path old_path;
2339 struct mount *mnt = NULL, *parent;
2340 struct mountpoint *mp;
2341 int err;
2342 if (!old_name || !*old_name)
2343 return -EINVAL;
2344 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2345 if (err)
2346 return err;
2347
2348 err = -EINVAL;
2349 if (mnt_ns_loop(old_path.dentry))
2350 goto out;
2351
2352 mp = lock_mount(path);
2353 if (IS_ERR(mp)) {
2354 err = PTR_ERR(mp);
2355 goto out;
2356 }
2357
2358 parent = real_mount(path->mnt);
2359 if (!check_mnt(parent))
2360 goto out2;
2361
2362 mnt = __do_loopback(&old_path, recurse);
2363 if (IS_ERR(mnt)) {
2364 err = PTR_ERR(mnt);
2365 goto out2;
2366 }
2367
2368 err = graft_tree(mnt, parent, mp);
2369 if (err) {
2370 lock_mount_hash();
2371 umount_tree(mnt, UMOUNT_SYNC);
2372 unlock_mount_hash();
2373 }
2374 out2:
2375 unlock_mount(mp);
2376 out:
2377 path_put(&old_path);
2378 return err;
2379 }
2380
2381 static struct file *open_detached_copy(struct path *path, bool recursive)
2382 {
2383 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2384 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2385 struct mount *mnt, *p;
2386 struct file *file;
2387
2388 if (IS_ERR(ns))
2389 return ERR_CAST(ns);
2390
2391 namespace_lock();
2392 mnt = __do_loopback(path, recursive);
2393 if (IS_ERR(mnt)) {
2394 namespace_unlock();
2395 free_mnt_ns(ns);
2396 return ERR_CAST(mnt);
2397 }
2398
2399 lock_mount_hash();
2400 for (p = mnt; p; p = next_mnt(p, mnt)) {
2401 p->mnt_ns = ns;
2402 ns->mounts++;
2403 }
2404 ns->root = mnt;
2405 list_add_tail(&ns->list, &mnt->mnt_list);
2406 mntget(&mnt->mnt);
2407 unlock_mount_hash();
2408 namespace_unlock();
2409
2410 mntput(path->mnt);
2411 path->mnt = &mnt->mnt;
2412 file = dentry_open(path, O_PATH, current_cred());
2413 if (IS_ERR(file))
2414 dissolve_on_fput(path->mnt);
2415 else
2416 file->f_mode |= FMODE_NEED_UNMOUNT;
2417 return file;
2418 }
2419
2420 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2421 {
2422 struct file *file;
2423 struct path path;
2424 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2425 bool detached = flags & OPEN_TREE_CLONE;
2426 int error;
2427 int fd;
2428
2429 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2430
2431 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2432 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2433 OPEN_TREE_CLOEXEC))
2434 return -EINVAL;
2435
2436 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2437 return -EINVAL;
2438
2439 if (flags & AT_NO_AUTOMOUNT)
2440 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2441 if (flags & AT_SYMLINK_NOFOLLOW)
2442 lookup_flags &= ~LOOKUP_FOLLOW;
2443 if (flags & AT_EMPTY_PATH)
2444 lookup_flags |= LOOKUP_EMPTY;
2445
2446 if (detached && !may_mount())
2447 return -EPERM;
2448
2449 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2450 if (fd < 0)
2451 return fd;
2452
2453 error = user_path_at(dfd, filename, lookup_flags, &path);
2454 if (unlikely(error)) {
2455 file = ERR_PTR(error);
2456 } else {
2457 if (detached)
2458 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2459 else
2460 file = dentry_open(&path, O_PATH, current_cred());
2461 path_put(&path);
2462 }
2463 if (IS_ERR(file)) {
2464 put_unused_fd(fd);
2465 return PTR_ERR(file);
2466 }
2467 fd_install(fd, file);
2468 return fd;
2469 }
2470
2471 /*
2472 * Don't allow locked mount flags to be cleared.
2473 *
2474 * No locks need to be held here while testing the various MNT_LOCK
2475 * flags because those flags can never be cleared once they are set.
2476 */
2477 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2478 {
2479 unsigned int fl = mnt->mnt.mnt_flags;
2480
2481 if ((fl & MNT_LOCK_READONLY) &&
2482 !(mnt_flags & MNT_READONLY))
2483 return false;
2484
2485 if ((fl & MNT_LOCK_NODEV) &&
2486 !(mnt_flags & MNT_NODEV))
2487 return false;
2488
2489 if ((fl & MNT_LOCK_NOSUID) &&
2490 !(mnt_flags & MNT_NOSUID))
2491 return false;
2492
2493 if ((fl & MNT_LOCK_NOEXEC) &&
2494 !(mnt_flags & MNT_NOEXEC))
2495 return false;
2496
2497 if ((fl & MNT_LOCK_ATIME) &&
2498 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2499 return false;
2500
2501 return true;
2502 }
2503
2504 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2505 {
2506 bool readonly_request = (mnt_flags & MNT_READONLY);
2507
2508 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2509 return 0;
2510
2511 if (readonly_request)
2512 return mnt_make_readonly(mnt);
2513
2514 return __mnt_unmake_readonly(mnt);
2515 }
2516
2517 /*
2518 * Update the user-settable attributes on a mount. The caller must hold
2519 * sb->s_umount for writing.
2520 */
2521 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2522 {
2523 lock_mount_hash();
2524 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2525 mnt->mnt.mnt_flags = mnt_flags;
2526 touch_mnt_namespace(mnt->mnt_ns);
2527 unlock_mount_hash();
2528 }
2529
2530 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2531 {
2532 struct super_block *sb = mnt->mnt_sb;
2533
2534 if (!__mnt_is_readonly(mnt) &&
2535 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2536 char *buf = (char *)__get_free_page(GFP_KERNEL);
2537 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2538 struct tm tm;
2539
2540 time64_to_tm(sb->s_time_max, 0, &tm);
2541
2542 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2543 sb->s_type->name,
2544 is_mounted(mnt) ? "remounted" : "mounted",
2545 mntpath,
2546 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2547
2548 free_page((unsigned long)buf);
2549 }
2550 }
2551
2552 /*
2553 * Handle reconfiguration of the mountpoint only without alteration of the
2554 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2555 * to mount(2).
2556 */
2557 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2558 {
2559 struct super_block *sb = path->mnt->mnt_sb;
2560 struct mount *mnt = real_mount(path->mnt);
2561 int ret;
2562
2563 if (!check_mnt(mnt))
2564 return -EINVAL;
2565
2566 if (path->dentry != mnt->mnt.mnt_root)
2567 return -EINVAL;
2568
2569 if (!can_change_locked_flags(mnt, mnt_flags))
2570 return -EPERM;
2571
2572 down_write(&sb->s_umount);
2573 ret = change_mount_ro_state(mnt, mnt_flags);
2574 if (ret == 0)
2575 set_mount_attributes(mnt, mnt_flags);
2576 up_write(&sb->s_umount);
2577
2578 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2579
2580 return ret;
2581 }
2582
2583 /*
2584 * change filesystem flags. dir should be a physical root of filesystem.
2585 * If you've mounted a non-root directory somewhere and want to do remount
2586 * on it - tough luck.
2587 */
2588 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2589 int mnt_flags, void *data)
2590 {
2591 int err;
2592 struct super_block *sb = path->mnt->mnt_sb;
2593 struct mount *mnt = real_mount(path->mnt);
2594 struct fs_context *fc;
2595
2596 if (!check_mnt(mnt))
2597 return -EINVAL;
2598
2599 if (path->dentry != path->mnt->mnt_root)
2600 return -EINVAL;
2601
2602 if (!can_change_locked_flags(mnt, mnt_flags))
2603 return -EPERM;
2604
2605 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2606 if (IS_ERR(fc))
2607 return PTR_ERR(fc);
2608
2609 fc->oldapi = true;
2610 err = parse_monolithic_mount_data(fc, data);
2611 if (!err) {
2612 down_write(&sb->s_umount);
2613 err = -EPERM;
2614 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2615 err = reconfigure_super(fc);
2616 if (!err)
2617 set_mount_attributes(mnt, mnt_flags);
2618 }
2619 up_write(&sb->s_umount);
2620 }
2621
2622 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2623
2624 put_fs_context(fc);
2625 return err;
2626 }
2627
2628 static inline int tree_contains_unbindable(struct mount *mnt)
2629 {
2630 struct mount *p;
2631 for (p = mnt; p; p = next_mnt(p, mnt)) {
2632 if (IS_MNT_UNBINDABLE(p))
2633 return 1;
2634 }
2635 return 0;
2636 }
2637
2638 /*
2639 * Check that there aren't references to earlier/same mount namespaces in the
2640 * specified subtree. Such references can act as pins for mount namespaces
2641 * that aren't checked by the mount-cycle checking code, thereby allowing
2642 * cycles to be made.
2643 */
2644 static bool check_for_nsfs_mounts(struct mount *subtree)
2645 {
2646 struct mount *p;
2647 bool ret = false;
2648
2649 lock_mount_hash();
2650 for (p = subtree; p; p = next_mnt(p, subtree))
2651 if (mnt_ns_loop(p->mnt.mnt_root))
2652 goto out;
2653
2654 ret = true;
2655 out:
2656 unlock_mount_hash();
2657 return ret;
2658 }
2659
2660 static int do_move_mount(struct path *old_path, struct path *new_path)
2661 {
2662 struct mnt_namespace *ns;
2663 struct mount *p;
2664 struct mount *old;
2665 struct mount *parent;
2666 struct mountpoint *mp, *old_mp;
2667 int err;
2668 bool attached;
2669
2670 mp = lock_mount(new_path);
2671 if (IS_ERR(mp))
2672 return PTR_ERR(mp);
2673
2674 old = real_mount(old_path->mnt);
2675 p = real_mount(new_path->mnt);
2676 parent = old->mnt_parent;
2677 attached = mnt_has_parent(old);
2678 old_mp = old->mnt_mp;
2679 ns = old->mnt_ns;
2680
2681 err = -EINVAL;
2682 /* The mountpoint must be in our namespace. */
2683 if (!check_mnt(p))
2684 goto out;
2685
2686 /* The thing moved must be mounted... */
2687 if (!is_mounted(&old->mnt))
2688 goto out;
2689
2690 /* ... and either ours or the root of anon namespace */
2691 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2692 goto out;
2693
2694 if (old->mnt.mnt_flags & MNT_LOCKED)
2695 goto out;
2696
2697 if (old_path->dentry != old_path->mnt->mnt_root)
2698 goto out;
2699
2700 if (d_is_dir(new_path->dentry) !=
2701 d_is_dir(old_path->dentry))
2702 goto out;
2703 /*
2704 * Don't move a mount residing in a shared parent.
2705 */
2706 if (attached && IS_MNT_SHARED(parent))
2707 goto out;
2708 /*
2709 * Don't move a mount tree containing unbindable mounts to a destination
2710 * mount which is shared.
2711 */
2712 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2713 goto out;
2714 err = -ELOOP;
2715 if (!check_for_nsfs_mounts(old))
2716 goto out;
2717 for (; mnt_has_parent(p); p = p->mnt_parent)
2718 if (p == old)
2719 goto out;
2720
2721 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2722 attached);
2723 if (err)
2724 goto out;
2725
2726 /* if the mount is moved, it should no longer be expire
2727 * automatically */
2728 list_del_init(&old->mnt_expire);
2729 if (attached)
2730 put_mountpoint(old_mp);
2731 out:
2732 unlock_mount(mp);
2733 if (!err) {
2734 if (attached)
2735 mntput_no_expire(parent);
2736 else
2737 free_mnt_ns(ns);
2738 }
2739 return err;
2740 }
2741
2742 static int do_move_mount_old(struct path *path, const char *old_name)
2743 {
2744 struct path old_path;
2745 int err;
2746
2747 if (!old_name || !*old_name)
2748 return -EINVAL;
2749
2750 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2751 if (err)
2752 return err;
2753
2754 err = do_move_mount(&old_path, path);
2755 path_put(&old_path);
2756 return err;
2757 }
2758
2759 /*
2760 * add a mount into a namespace's mount tree
2761 */
2762 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2763 struct path *path, int mnt_flags)
2764 {
2765 struct mount *parent = real_mount(path->mnt);
2766
2767 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2768
2769 if (unlikely(!check_mnt(parent))) {
2770 /* that's acceptable only for automounts done in private ns */
2771 if (!(mnt_flags & MNT_SHRINKABLE))
2772 return -EINVAL;
2773 /* ... and for those we'd better have mountpoint still alive */
2774 if (!parent->mnt_ns)
2775 return -EINVAL;
2776 }
2777
2778 /* Refuse the same filesystem on the same mount point */
2779 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2780 path->mnt->mnt_root == path->dentry)
2781 return -EBUSY;
2782
2783 if (d_is_symlink(newmnt->mnt.mnt_root))
2784 return -EINVAL;
2785
2786 newmnt->mnt.mnt_flags = mnt_flags;
2787 return graft_tree(newmnt, parent, mp);
2788 }
2789
2790 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2791
2792 /*
2793 * Create a new mount using a superblock configuration and request it
2794 * be added to the namespace tree.
2795 */
2796 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2797 unsigned int mnt_flags)
2798 {
2799 struct vfsmount *mnt;
2800 struct mountpoint *mp;
2801 struct super_block *sb = fc->root->d_sb;
2802 int error;
2803
2804 error = security_sb_kern_mount(sb);
2805 if (!error && mount_too_revealing(sb, &mnt_flags))
2806 error = -EPERM;
2807
2808 if (unlikely(error)) {
2809 fc_drop_locked(fc);
2810 return error;
2811 }
2812
2813 up_write(&sb->s_umount);
2814
2815 mnt = vfs_create_mount(fc);
2816 if (IS_ERR(mnt))
2817 return PTR_ERR(mnt);
2818
2819 mnt_warn_timestamp_expiry(mountpoint, mnt);
2820
2821 mp = lock_mount(mountpoint);
2822 if (IS_ERR(mp)) {
2823 mntput(mnt);
2824 return PTR_ERR(mp);
2825 }
2826 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2827 unlock_mount(mp);
2828 if (error < 0)
2829 mntput(mnt);
2830 return error;
2831 }
2832
2833 /*
2834 * create a new mount for userspace and request it to be added into the
2835 * namespace's tree
2836 */
2837 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2838 int mnt_flags, const char *name, void *data)
2839 {
2840 struct file_system_type *type;
2841 struct fs_context *fc;
2842 const char *subtype = NULL;
2843 int err = 0;
2844
2845 if (!fstype)
2846 return -EINVAL;
2847
2848 type = get_fs_type(fstype);
2849 if (!type)
2850 return -ENODEV;
2851
2852 if (type->fs_flags & FS_HAS_SUBTYPE) {
2853 subtype = strchr(fstype, '.');
2854 if (subtype) {
2855 subtype++;
2856 if (!*subtype) {
2857 put_filesystem(type);
2858 return -EINVAL;
2859 }
2860 }
2861 }
2862
2863 fc = fs_context_for_mount(type, sb_flags);
2864 put_filesystem(type);
2865 if (IS_ERR(fc))
2866 return PTR_ERR(fc);
2867
2868 if (subtype)
2869 err = vfs_parse_fs_string(fc, "subtype",
2870 subtype, strlen(subtype));
2871 if (!err && name)
2872 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2873 if (!err)
2874 err = parse_monolithic_mount_data(fc, data);
2875 if (!err && !mount_capable(fc))
2876 err = -EPERM;
2877 if (!err)
2878 err = vfs_get_tree(fc);
2879 if (!err)
2880 err = do_new_mount_fc(fc, path, mnt_flags);
2881
2882 put_fs_context(fc);
2883 return err;
2884 }
2885
2886 int finish_automount(struct vfsmount *m, struct path *path)
2887 {
2888 struct dentry *dentry = path->dentry;
2889 struct mountpoint *mp;
2890 struct mount *mnt;
2891 int err;
2892
2893 if (!m)
2894 return 0;
2895 if (IS_ERR(m))
2896 return PTR_ERR(m);
2897
2898 mnt = real_mount(m);
2899 /* The new mount record should have at least 2 refs to prevent it being
2900 * expired before we get a chance to add it
2901 */
2902 BUG_ON(mnt_get_count(mnt) < 2);
2903
2904 if (m->mnt_sb == path->mnt->mnt_sb &&
2905 m->mnt_root == dentry) {
2906 err = -ELOOP;
2907 goto discard;
2908 }
2909
2910 /*
2911 * we don't want to use lock_mount() - in this case finding something
2912 * that overmounts our mountpoint to be means "quitely drop what we've
2913 * got", not "try to mount it on top".
2914 */
2915 inode_lock(dentry->d_inode);
2916 namespace_lock();
2917 if (unlikely(cant_mount(dentry))) {
2918 err = -ENOENT;
2919 goto discard_locked;
2920 }
2921 rcu_read_lock();
2922 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2923 rcu_read_unlock();
2924 err = 0;
2925 goto discard_locked;
2926 }
2927 rcu_read_unlock();
2928 mp = get_mountpoint(dentry);
2929 if (IS_ERR(mp)) {
2930 err = PTR_ERR(mp);
2931 goto discard_locked;
2932 }
2933
2934 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2935 unlock_mount(mp);
2936 if (unlikely(err))
2937 goto discard;
2938 mntput(m);
2939 return 0;
2940
2941 discard_locked:
2942 namespace_unlock();
2943 inode_unlock(dentry->d_inode);
2944 discard:
2945 /* remove m from any expiration list it may be on */
2946 if (!list_empty(&mnt->mnt_expire)) {
2947 namespace_lock();
2948 list_del_init(&mnt->mnt_expire);
2949 namespace_unlock();
2950 }
2951 mntput(m);
2952 mntput(m);
2953 return err;
2954 }
2955
2956 /**
2957 * mnt_set_expiry - Put a mount on an expiration list
2958 * @mnt: The mount to list.
2959 * @expiry_list: The list to add the mount to.
2960 */
2961 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2962 {
2963 namespace_lock();
2964
2965 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2966
2967 namespace_unlock();
2968 }
2969 EXPORT_SYMBOL(mnt_set_expiry);
2970
2971 /*
2972 * process a list of expirable mountpoints with the intent of discarding any
2973 * mountpoints that aren't in use and haven't been touched since last we came
2974 * here
2975 */
2976 void mark_mounts_for_expiry(struct list_head *mounts)
2977 {
2978 struct mount *mnt, *next;
2979 LIST_HEAD(graveyard);
2980
2981 if (list_empty(mounts))
2982 return;
2983
2984 namespace_lock();
2985 lock_mount_hash();
2986
2987 /* extract from the expiration list every vfsmount that matches the
2988 * following criteria:
2989 * - only referenced by its parent vfsmount
2990 * - still marked for expiry (marked on the last call here; marks are
2991 * cleared by mntput())
2992 */
2993 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2994 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2995 propagate_mount_busy(mnt, 1))
2996 continue;
2997 list_move(&mnt->mnt_expire, &graveyard);
2998 }
2999 while (!list_empty(&graveyard)) {
3000 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3001 touch_mnt_namespace(mnt->mnt_ns);
3002 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3003 }
3004 unlock_mount_hash();
3005 namespace_unlock();
3006 }
3007
3008 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3009
3010 /*
3011 * Ripoff of 'select_parent()'
3012 *
3013 * search the list of submounts for a given mountpoint, and move any
3014 * shrinkable submounts to the 'graveyard' list.
3015 */
3016 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3017 {
3018 struct mount *this_parent = parent;
3019 struct list_head *next;
3020 int found = 0;
3021
3022 repeat:
3023 next = this_parent->mnt_mounts.next;
3024 resume:
3025 while (next != &this_parent->mnt_mounts) {
3026 struct list_head *tmp = next;
3027 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3028
3029 next = tmp->next;
3030 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3031 continue;
3032 /*
3033 * Descend a level if the d_mounts list is non-empty.
3034 */
3035 if (!list_empty(&mnt->mnt_mounts)) {
3036 this_parent = mnt;
3037 goto repeat;
3038 }
3039
3040 if (!propagate_mount_busy(mnt, 1)) {
3041 list_move_tail(&mnt->mnt_expire, graveyard);
3042 found++;
3043 }
3044 }
3045 /*
3046 * All done at this level ... ascend and resume the search
3047 */
3048 if (this_parent != parent) {
3049 next = this_parent->mnt_child.next;
3050 this_parent = this_parent->mnt_parent;
3051 goto resume;
3052 }
3053 return found;
3054 }
3055
3056 /*
3057 * process a list of expirable mountpoints with the intent of discarding any
3058 * submounts of a specific parent mountpoint
3059 *
3060 * mount_lock must be held for write
3061 */
3062 static void shrink_submounts(struct mount *mnt)
3063 {
3064 LIST_HEAD(graveyard);
3065 struct mount *m;
3066
3067 /* extract submounts of 'mountpoint' from the expiration list */
3068 while (select_submounts(mnt, &graveyard)) {
3069 while (!list_empty(&graveyard)) {
3070 m = list_first_entry(&graveyard, struct mount,
3071 mnt_expire);
3072 touch_mnt_namespace(m->mnt_ns);
3073 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3074 }
3075 }
3076 }
3077
3078 static void *copy_mount_options(const void __user * data)
3079 {
3080 char *copy;
3081 unsigned left, offset;
3082
3083 if (!data)
3084 return NULL;
3085
3086 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3087 if (!copy)
3088 return ERR_PTR(-ENOMEM);
3089
3090 left = copy_from_user(copy, data, PAGE_SIZE);
3091
3092 /*
3093 * Not all architectures have an exact copy_from_user(). Resort to
3094 * byte at a time.
3095 */
3096 offset = PAGE_SIZE - left;
3097 while (left) {
3098 char c;
3099 if (get_user(c, (const char __user *)data + offset))
3100 break;
3101 copy[offset] = c;
3102 left--;
3103 offset++;
3104 }
3105
3106 if (left == PAGE_SIZE) {
3107 kfree(copy);
3108 return ERR_PTR(-EFAULT);
3109 }
3110
3111 return copy;
3112 }
3113
3114 static char *copy_mount_string(const void __user *data)
3115 {
3116 return data ? strndup_user(data, PATH_MAX) : NULL;
3117 }
3118
3119 /*
3120 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3121 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3122 *
3123 * data is a (void *) that can point to any structure up to
3124 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3125 * information (or be NULL).
3126 *
3127 * Pre-0.97 versions of mount() didn't have a flags word.
3128 * When the flags word was introduced its top half was required
3129 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3130 * Therefore, if this magic number is present, it carries no information
3131 * and must be discarded.
3132 */
3133 int path_mount(const char *dev_name, struct path *path,
3134 const char *type_page, unsigned long flags, void *data_page)
3135 {
3136 unsigned int mnt_flags = 0, sb_flags;
3137 int ret;
3138
3139 /* Discard magic */
3140 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3141 flags &= ~MS_MGC_MSK;
3142
3143 /* Basic sanity checks */
3144 if (data_page)
3145 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3146
3147 if (flags & MS_NOUSER)
3148 return -EINVAL;
3149
3150 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3151 if (ret)
3152 return ret;
3153 if (!may_mount())
3154 return -EPERM;
3155 if ((flags & SB_MANDLOCK) && !may_mandlock())
3156 return -EPERM;
3157
3158 /* Default to relatime unless overriden */
3159 if (!(flags & MS_NOATIME))
3160 mnt_flags |= MNT_RELATIME;
3161
3162 /* Separate the per-mountpoint flags */
3163 if (flags & MS_NOSUID)
3164 mnt_flags |= MNT_NOSUID;
3165 if (flags & MS_NODEV)
3166 mnt_flags |= MNT_NODEV;
3167 if (flags & MS_NOEXEC)
3168 mnt_flags |= MNT_NOEXEC;
3169 if (flags & MS_NOATIME)
3170 mnt_flags |= MNT_NOATIME;
3171 if (flags & MS_NODIRATIME)
3172 mnt_flags |= MNT_NODIRATIME;
3173 if (flags & MS_STRICTATIME)
3174 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3175 if (flags & MS_RDONLY)
3176 mnt_flags |= MNT_READONLY;
3177 if (flags & MS_NOSYMFOLLOW)
3178 mnt_flags |= MNT_NOSYMFOLLOW;
3179
3180 /* The default atime for remount is preservation */
3181 if ((flags & MS_REMOUNT) &&
3182 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3183 MS_STRICTATIME)) == 0)) {
3184 mnt_flags &= ~MNT_ATIME_MASK;
3185 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3186 }
3187
3188 sb_flags = flags & (SB_RDONLY |
3189 SB_SYNCHRONOUS |
3190 SB_MANDLOCK |
3191 SB_DIRSYNC |
3192 SB_SILENT |
3193 SB_POSIXACL |
3194 SB_LAZYTIME |
3195 SB_I_VERSION);
3196
3197 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3198 return do_reconfigure_mnt(path, mnt_flags);
3199 if (flags & MS_REMOUNT)
3200 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3201 if (flags & MS_BIND)
3202 return do_loopback(path, dev_name, flags & MS_REC);
3203 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3204 return do_change_type(path, flags);
3205 if (flags & MS_MOVE)
3206 return do_move_mount_old(path, dev_name);
3207
3208 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3209 data_page);
3210 }
3211
3212 long do_mount(const char *dev_name, const char __user *dir_name,
3213 const char *type_page, unsigned long flags, void *data_page)
3214 {
3215 struct path path;
3216 int ret;
3217
3218 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3219 if (ret)
3220 return ret;
3221 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3222 path_put(&path);
3223 return ret;
3224 }
3225
3226 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3227 {
3228 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3229 }
3230
3231 static void dec_mnt_namespaces(struct ucounts *ucounts)
3232 {
3233 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3234 }
3235
3236 static void free_mnt_ns(struct mnt_namespace *ns)
3237 {
3238 if (!is_anon_ns(ns))
3239 ns_free_inum(&ns->ns);
3240 dec_mnt_namespaces(ns->ucounts);
3241 put_user_ns(ns->user_ns);
3242 kfree(ns);
3243 }
3244
3245 /*
3246 * Assign a sequence number so we can detect when we attempt to bind
3247 * mount a reference to an older mount namespace into the current
3248 * mount namespace, preventing reference counting loops. A 64bit
3249 * number incrementing at 10Ghz will take 12,427 years to wrap which
3250 * is effectively never, so we can ignore the possibility.
3251 */
3252 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3253
3254 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3255 {
3256 struct mnt_namespace *new_ns;
3257 struct ucounts *ucounts;
3258 int ret;
3259
3260 ucounts = inc_mnt_namespaces(user_ns);
3261 if (!ucounts)
3262 return ERR_PTR(-ENOSPC);
3263
3264 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3265 if (!new_ns) {
3266 dec_mnt_namespaces(ucounts);
3267 return ERR_PTR(-ENOMEM);
3268 }
3269 if (!anon) {
3270 ret = ns_alloc_inum(&new_ns->ns);
3271 if (ret) {
3272 kfree(new_ns);
3273 dec_mnt_namespaces(ucounts);
3274 return ERR_PTR(ret);
3275 }
3276 }
3277 new_ns->ns.ops = &mntns_operations;
3278 if (!anon)
3279 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3280 refcount_set(&new_ns->ns.count, 1);
3281 INIT_LIST_HEAD(&new_ns->list);
3282 init_waitqueue_head(&new_ns->poll);
3283 spin_lock_init(&new_ns->ns_lock);
3284 new_ns->user_ns = get_user_ns(user_ns);
3285 new_ns->ucounts = ucounts;
3286 return new_ns;
3287 }
3288
3289 __latent_entropy
3290 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3291 struct user_namespace *user_ns, struct fs_struct *new_fs)
3292 {
3293 struct mnt_namespace *new_ns;
3294 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3295 struct mount *p, *q;
3296 struct mount *old;
3297 struct mount *new;
3298 int copy_flags;
3299
3300 BUG_ON(!ns);
3301
3302 if (likely(!(flags & CLONE_NEWNS))) {
3303 get_mnt_ns(ns);
3304 return ns;
3305 }
3306
3307 old = ns->root;
3308
3309 new_ns = alloc_mnt_ns(user_ns, false);
3310 if (IS_ERR(new_ns))
3311 return new_ns;
3312
3313 namespace_lock();
3314 /* First pass: copy the tree topology */
3315 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3316 if (user_ns != ns->user_ns)
3317 copy_flags |= CL_SHARED_TO_SLAVE;
3318 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3319 if (IS_ERR(new)) {
3320 namespace_unlock();
3321 free_mnt_ns(new_ns);
3322 return ERR_CAST(new);
3323 }
3324 if (user_ns != ns->user_ns) {
3325 lock_mount_hash();
3326 lock_mnt_tree(new);
3327 unlock_mount_hash();
3328 }
3329 new_ns->root = new;
3330 list_add_tail(&new_ns->list, &new->mnt_list);
3331
3332 /*
3333 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3334 * as belonging to new namespace. We have already acquired a private
3335 * fs_struct, so tsk->fs->lock is not needed.
3336 */
3337 p = old;
3338 q = new;
3339 while (p) {
3340 q->mnt_ns = new_ns;
3341 new_ns->mounts++;
3342 if (new_fs) {
3343 if (&p->mnt == new_fs->root.mnt) {
3344 new_fs->root.mnt = mntget(&q->mnt);
3345 rootmnt = &p->mnt;
3346 }
3347 if (&p->mnt == new_fs->pwd.mnt) {
3348 new_fs->pwd.mnt = mntget(&q->mnt);
3349 pwdmnt = &p->mnt;
3350 }
3351 }
3352 p = next_mnt(p, old);
3353 q = next_mnt(q, new);
3354 if (!q)
3355 break;
3356 while (p->mnt.mnt_root != q->mnt.mnt_root)
3357 p = next_mnt(p, old);
3358 }
3359 namespace_unlock();
3360
3361 if (rootmnt)
3362 mntput(rootmnt);
3363 if (pwdmnt)
3364 mntput(pwdmnt);
3365
3366 return new_ns;
3367 }
3368
3369 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3370 {
3371 struct mount *mnt = real_mount(m);
3372 struct mnt_namespace *ns;
3373 struct super_block *s;
3374 struct path path;
3375 int err;
3376
3377 ns = alloc_mnt_ns(&init_user_ns, true);
3378 if (IS_ERR(ns)) {
3379 mntput(m);
3380 return ERR_CAST(ns);
3381 }
3382 mnt->mnt_ns = ns;
3383 ns->root = mnt;
3384 ns->mounts++;
3385 list_add(&mnt->mnt_list, &ns->list);
3386
3387 err = vfs_path_lookup(m->mnt_root, m,
3388 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3389
3390 put_mnt_ns(ns);
3391
3392 if (err)
3393 return ERR_PTR(err);
3394
3395 /* trade a vfsmount reference for active sb one */
3396 s = path.mnt->mnt_sb;
3397 atomic_inc(&s->s_active);
3398 mntput(path.mnt);
3399 /* lock the sucker */
3400 down_write(&s->s_umount);
3401 /* ... and return the root of (sub)tree on it */
3402 return path.dentry;
3403 }
3404 EXPORT_SYMBOL(mount_subtree);
3405
3406 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3407 char __user *, type, unsigned long, flags, void __user *, data)
3408 {
3409 int ret;
3410 char *kernel_type;
3411 char *kernel_dev;
3412 void *options;
3413
3414 kernel_type = copy_mount_string(type);
3415 ret = PTR_ERR(kernel_type);
3416 if (IS_ERR(kernel_type))
3417 goto out_type;
3418
3419 kernel_dev = copy_mount_string(dev_name);
3420 ret = PTR_ERR(kernel_dev);
3421 if (IS_ERR(kernel_dev))
3422 goto out_dev;
3423
3424 options = copy_mount_options(data);
3425 ret = PTR_ERR(options);
3426 if (IS_ERR(options))
3427 goto out_data;
3428
3429 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3430
3431 kfree(options);
3432 out_data:
3433 kfree(kernel_dev);
3434 out_dev:
3435 kfree(kernel_type);
3436 out_type:
3437 return ret;
3438 }
3439
3440 /*
3441 * Create a kernel mount representation for a new, prepared superblock
3442 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3443 */
3444 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3445 unsigned int, attr_flags)
3446 {
3447 struct mnt_namespace *ns;
3448 struct fs_context *fc;
3449 struct file *file;
3450 struct path newmount;
3451 struct mount *mnt;
3452 struct fd f;
3453 unsigned int mnt_flags = 0;
3454 long ret;
3455
3456 if (!may_mount())
3457 return -EPERM;
3458
3459 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3460 return -EINVAL;
3461
3462 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3463 MOUNT_ATTR_NOSUID |
3464 MOUNT_ATTR_NODEV |
3465 MOUNT_ATTR_NOEXEC |
3466 MOUNT_ATTR__ATIME |
3467 MOUNT_ATTR_NODIRATIME))
3468 return -EINVAL;
3469
3470 if (attr_flags & MOUNT_ATTR_RDONLY)
3471 mnt_flags |= MNT_READONLY;
3472 if (attr_flags & MOUNT_ATTR_NOSUID)
3473 mnt_flags |= MNT_NOSUID;
3474 if (attr_flags & MOUNT_ATTR_NODEV)
3475 mnt_flags |= MNT_NODEV;
3476 if (attr_flags & MOUNT_ATTR_NOEXEC)
3477 mnt_flags |= MNT_NOEXEC;
3478 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3479 mnt_flags |= MNT_NODIRATIME;
3480
3481 switch (attr_flags & MOUNT_ATTR__ATIME) {
3482 case MOUNT_ATTR_STRICTATIME:
3483 break;
3484 case MOUNT_ATTR_NOATIME:
3485 mnt_flags |= MNT_NOATIME;
3486 break;
3487 case MOUNT_ATTR_RELATIME:
3488 mnt_flags |= MNT_RELATIME;
3489 break;
3490 default:
3491 return -EINVAL;
3492 }
3493
3494 f = fdget(fs_fd);
3495 if (!f.file)
3496 return -EBADF;
3497
3498 ret = -EINVAL;
3499 if (f.file->f_op != &fscontext_fops)
3500 goto err_fsfd;
3501
3502 fc = f.file->private_data;
3503
3504 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3505 if (ret < 0)
3506 goto err_fsfd;
3507
3508 /* There must be a valid superblock or we can't mount it */
3509 ret = -EINVAL;
3510 if (!fc->root)
3511 goto err_unlock;
3512
3513 ret = -EPERM;
3514 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3515 pr_warn("VFS: Mount too revealing\n");
3516 goto err_unlock;
3517 }
3518
3519 ret = -EBUSY;
3520 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3521 goto err_unlock;
3522
3523 ret = -EPERM;
3524 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3525 goto err_unlock;
3526
3527 newmount.mnt = vfs_create_mount(fc);
3528 if (IS_ERR(newmount.mnt)) {
3529 ret = PTR_ERR(newmount.mnt);
3530 goto err_unlock;
3531 }
3532 newmount.dentry = dget(fc->root);
3533 newmount.mnt->mnt_flags = mnt_flags;
3534
3535 /* We've done the mount bit - now move the file context into more or
3536 * less the same state as if we'd done an fspick(). We don't want to
3537 * do any memory allocation or anything like that at this point as we
3538 * don't want to have to handle any errors incurred.
3539 */
3540 vfs_clean_context(fc);
3541
3542 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3543 if (IS_ERR(ns)) {
3544 ret = PTR_ERR(ns);
3545 goto err_path;
3546 }
3547 mnt = real_mount(newmount.mnt);
3548 mnt->mnt_ns = ns;
3549 ns->root = mnt;
3550 ns->mounts = 1;
3551 list_add(&mnt->mnt_list, &ns->list);
3552 mntget(newmount.mnt);
3553
3554 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3555 * it, not just simply put it.
3556 */
3557 file = dentry_open(&newmount, O_PATH, fc->cred);
3558 if (IS_ERR(file)) {
3559 dissolve_on_fput(newmount.mnt);
3560 ret = PTR_ERR(file);
3561 goto err_path;
3562 }
3563 file->f_mode |= FMODE_NEED_UNMOUNT;
3564
3565 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3566 if (ret >= 0)
3567 fd_install(ret, file);
3568 else
3569 fput(file);
3570
3571 err_path:
3572 path_put(&newmount);
3573 err_unlock:
3574 mutex_unlock(&fc->uapi_mutex);
3575 err_fsfd:
3576 fdput(f);
3577 return ret;
3578 }
3579
3580 /*
3581 * Move a mount from one place to another. In combination with
3582 * fsopen()/fsmount() this is used to install a new mount and in combination
3583 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3584 * a mount subtree.
3585 *
3586 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3587 */
3588 SYSCALL_DEFINE5(move_mount,
3589 int, from_dfd, const char __user *, from_pathname,
3590 int, to_dfd, const char __user *, to_pathname,
3591 unsigned int, flags)
3592 {
3593 struct path from_path, to_path;
3594 unsigned int lflags;
3595 int ret = 0;
3596
3597 if (!may_mount())
3598 return -EPERM;
3599
3600 if (flags & ~MOVE_MOUNT__MASK)
3601 return -EINVAL;
3602
3603 /* If someone gives a pathname, they aren't permitted to move
3604 * from an fd that requires unmount as we can't get at the flag
3605 * to clear it afterwards.
3606 */
3607 lflags = 0;
3608 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3609 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3610 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3611
3612 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3613 if (ret < 0)
3614 return ret;
3615
3616 lflags = 0;
3617 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3618 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3619 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3620
3621 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3622 if (ret < 0)
3623 goto out_from;
3624
3625 ret = security_move_mount(&from_path, &to_path);
3626 if (ret < 0)
3627 goto out_to;
3628
3629 ret = do_move_mount(&from_path, &to_path);
3630
3631 out_to:
3632 path_put(&to_path);
3633 out_from:
3634 path_put(&from_path);
3635 return ret;
3636 }
3637
3638 /*
3639 * Return true if path is reachable from root
3640 *
3641 * namespace_sem or mount_lock is held
3642 */
3643 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3644 const struct path *root)
3645 {
3646 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3647 dentry = mnt->mnt_mountpoint;
3648 mnt = mnt->mnt_parent;
3649 }
3650 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3651 }
3652
3653 bool path_is_under(const struct path *path1, const struct path *path2)
3654 {
3655 bool res;
3656 read_seqlock_excl(&mount_lock);
3657 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3658 read_sequnlock_excl(&mount_lock);
3659 return res;
3660 }
3661 EXPORT_SYMBOL(path_is_under);
3662
3663 /*
3664 * pivot_root Semantics:
3665 * Moves the root file system of the current process to the directory put_old,
3666 * makes new_root as the new root file system of the current process, and sets
3667 * root/cwd of all processes which had them on the current root to new_root.
3668 *
3669 * Restrictions:
3670 * The new_root and put_old must be directories, and must not be on the
3671 * same file system as the current process root. The put_old must be
3672 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3673 * pointed to by put_old must yield the same directory as new_root. No other
3674 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3675 *
3676 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3677 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3678 * in this situation.
3679 *
3680 * Notes:
3681 * - we don't move root/cwd if they are not at the root (reason: if something
3682 * cared enough to change them, it's probably wrong to force them elsewhere)
3683 * - it's okay to pick a root that isn't the root of a file system, e.g.
3684 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3685 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3686 * first.
3687 */
3688 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3689 const char __user *, put_old)
3690 {
3691 struct path new, old, root;
3692 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3693 struct mountpoint *old_mp, *root_mp;
3694 int error;
3695
3696 if (!may_mount())
3697 return -EPERM;
3698
3699 error = user_path_at(AT_FDCWD, new_root,
3700 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3701 if (error)
3702 goto out0;
3703
3704 error = user_path_at(AT_FDCWD, put_old,
3705 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3706 if (error)
3707 goto out1;
3708
3709 error = security_sb_pivotroot(&old, &new);
3710 if (error)
3711 goto out2;
3712
3713 get_fs_root(current->fs, &root);
3714 old_mp = lock_mount(&old);
3715 error = PTR_ERR(old_mp);
3716 if (IS_ERR(old_mp))
3717 goto out3;
3718
3719 error = -EINVAL;
3720 new_mnt = real_mount(new.mnt);
3721 root_mnt = real_mount(root.mnt);
3722 old_mnt = real_mount(old.mnt);
3723 ex_parent = new_mnt->mnt_parent;
3724 root_parent = root_mnt->mnt_parent;
3725 if (IS_MNT_SHARED(old_mnt) ||
3726 IS_MNT_SHARED(ex_parent) ||
3727 IS_MNT_SHARED(root_parent))
3728 goto out4;
3729 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3730 goto out4;
3731 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3732 goto out4;
3733 error = -ENOENT;
3734 if (d_unlinked(new.dentry))
3735 goto out4;
3736 error = -EBUSY;
3737 if (new_mnt == root_mnt || old_mnt == root_mnt)
3738 goto out4; /* loop, on the same file system */
3739 error = -EINVAL;
3740 if (root.mnt->mnt_root != root.dentry)
3741 goto out4; /* not a mountpoint */
3742 if (!mnt_has_parent(root_mnt))
3743 goto out4; /* not attached */
3744 if (new.mnt->mnt_root != new.dentry)
3745 goto out4; /* not a mountpoint */
3746 if (!mnt_has_parent(new_mnt))
3747 goto out4; /* not attached */
3748 /* make sure we can reach put_old from new_root */
3749 if (!is_path_reachable(old_mnt, old.dentry, &new))
3750 goto out4;
3751 /* make certain new is below the root */
3752 if (!is_path_reachable(new_mnt, new.dentry, &root))
3753 goto out4;
3754 lock_mount_hash();
3755 umount_mnt(new_mnt);
3756 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3757 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3758 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3759 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3760 }
3761 /* mount old root on put_old */
3762 attach_mnt(root_mnt, old_mnt, old_mp);
3763 /* mount new_root on / */
3764 attach_mnt(new_mnt, root_parent, root_mp);
3765 mnt_add_count(root_parent, -1);
3766 touch_mnt_namespace(current->nsproxy->mnt_ns);
3767 /* A moved mount should not expire automatically */
3768 list_del_init(&new_mnt->mnt_expire);
3769 put_mountpoint(root_mp);
3770 unlock_mount_hash();
3771 chroot_fs_refs(&root, &new);
3772 error = 0;
3773 out4:
3774 unlock_mount(old_mp);
3775 if (!error)
3776 mntput_no_expire(ex_parent);
3777 out3:
3778 path_put(&root);
3779 out2:
3780 path_put(&old);
3781 out1:
3782 path_put(&new);
3783 out0:
3784 return error;
3785 }
3786
3787 static void __init init_mount_tree(void)
3788 {
3789 struct vfsmount *mnt;
3790 struct mount *m;
3791 struct mnt_namespace *ns;
3792 struct path root;
3793
3794 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3795 if (IS_ERR(mnt))
3796 panic("Can't create rootfs");
3797
3798 ns = alloc_mnt_ns(&init_user_ns, false);
3799 if (IS_ERR(ns))
3800 panic("Can't allocate initial namespace");
3801 m = real_mount(mnt);
3802 m->mnt_ns = ns;
3803 ns->root = m;
3804 ns->mounts = 1;
3805 list_add(&m->mnt_list, &ns->list);
3806 init_task.nsproxy->mnt_ns = ns;
3807 get_mnt_ns(ns);
3808
3809 root.mnt = mnt;
3810 root.dentry = mnt->mnt_root;
3811 mnt->mnt_flags |= MNT_LOCKED;
3812
3813 set_fs_pwd(current->fs, &root);
3814 set_fs_root(current->fs, &root);
3815 }
3816
3817 void __init mnt_init(void)
3818 {
3819 int err;
3820
3821 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3822 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3823
3824 mount_hashtable = alloc_large_system_hash("Mount-cache",
3825 sizeof(struct hlist_head),
3826 mhash_entries, 19,
3827 HASH_ZERO,
3828 &m_hash_shift, &m_hash_mask, 0, 0);
3829 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3830 sizeof(struct hlist_head),
3831 mphash_entries, 19,
3832 HASH_ZERO,
3833 &mp_hash_shift, &mp_hash_mask, 0, 0);
3834
3835 if (!mount_hashtable || !mountpoint_hashtable)
3836 panic("Failed to allocate mount hash table\n");
3837
3838 kernfs_init();
3839
3840 err = sysfs_init();
3841 if (err)
3842 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3843 __func__, err);
3844 fs_kobj = kobject_create_and_add("fs", NULL);
3845 if (!fs_kobj)
3846 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3847 shmem_init();
3848 init_rootfs();
3849 init_mount_tree();
3850 }
3851
3852 void put_mnt_ns(struct mnt_namespace *ns)
3853 {
3854 if (!refcount_dec_and_test(&ns->ns.count))
3855 return;
3856 drop_collected_mounts(&ns->root->mnt);
3857 free_mnt_ns(ns);
3858 }
3859
3860 struct vfsmount *kern_mount(struct file_system_type *type)
3861 {
3862 struct vfsmount *mnt;
3863 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3864 if (!IS_ERR(mnt)) {
3865 /*
3866 * it is a longterm mount, don't release mnt until
3867 * we unmount before file sys is unregistered
3868 */
3869 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3870 }
3871 return mnt;
3872 }
3873 EXPORT_SYMBOL_GPL(kern_mount);
3874
3875 void kern_unmount(struct vfsmount *mnt)
3876 {
3877 /* release long term mount so mount point can be released */
3878 if (!IS_ERR_OR_NULL(mnt)) {
3879 real_mount(mnt)->mnt_ns = NULL;
3880 synchronize_rcu(); /* yecchhh... */
3881 mntput(mnt);
3882 }
3883 }
3884 EXPORT_SYMBOL(kern_unmount);
3885
3886 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
3887 {
3888 unsigned int i;
3889
3890 for (i = 0; i < num; i++)
3891 if (mnt[i])
3892 real_mount(mnt[i])->mnt_ns = NULL;
3893 synchronize_rcu_expedited();
3894 for (i = 0; i < num; i++)
3895 mntput(mnt[i]);
3896 }
3897 EXPORT_SYMBOL(kern_unmount_array);
3898
3899 bool our_mnt(struct vfsmount *mnt)
3900 {
3901 return check_mnt(real_mount(mnt));
3902 }
3903
3904 bool current_chrooted(void)
3905 {
3906 /* Does the current process have a non-standard root */
3907 struct path ns_root;
3908 struct path fs_root;
3909 bool chrooted;
3910
3911 /* Find the namespace root */
3912 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3913 ns_root.dentry = ns_root.mnt->mnt_root;
3914 path_get(&ns_root);
3915 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3916 ;
3917
3918 get_fs_root(current->fs, &fs_root);
3919
3920 chrooted = !path_equal(&fs_root, &ns_root);
3921
3922 path_put(&fs_root);
3923 path_put(&ns_root);
3924
3925 return chrooted;
3926 }
3927
3928 static bool mnt_already_visible(struct mnt_namespace *ns,
3929 const struct super_block *sb,
3930 int *new_mnt_flags)
3931 {
3932 int new_flags = *new_mnt_flags;
3933 struct mount *mnt;
3934 bool visible = false;
3935
3936 down_read(&namespace_sem);
3937 lock_ns_list(ns);
3938 list_for_each_entry(mnt, &ns->list, mnt_list) {
3939 struct mount *child;
3940 int mnt_flags;
3941
3942 if (mnt_is_cursor(mnt))
3943 continue;
3944
3945 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3946 continue;
3947
3948 /* This mount is not fully visible if it's root directory
3949 * is not the root directory of the filesystem.
3950 */
3951 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3952 continue;
3953
3954 /* A local view of the mount flags */
3955 mnt_flags = mnt->mnt.mnt_flags;
3956
3957 /* Don't miss readonly hidden in the superblock flags */
3958 if (sb_rdonly(mnt->mnt.mnt_sb))
3959 mnt_flags |= MNT_LOCK_READONLY;
3960
3961 /* Verify the mount flags are equal to or more permissive
3962 * than the proposed new mount.
3963 */
3964 if ((mnt_flags & MNT_LOCK_READONLY) &&
3965 !(new_flags & MNT_READONLY))
3966 continue;
3967 if ((mnt_flags & MNT_LOCK_ATIME) &&
3968 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3969 continue;
3970
3971 /* This mount is not fully visible if there are any
3972 * locked child mounts that cover anything except for
3973 * empty directories.
3974 */
3975 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3976 struct inode *inode = child->mnt_mountpoint->d_inode;
3977 /* Only worry about locked mounts */
3978 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3979 continue;
3980 /* Is the directory permanetly empty? */
3981 if (!is_empty_dir_inode(inode))
3982 goto next;
3983 }
3984 /* Preserve the locked attributes */
3985 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3986 MNT_LOCK_ATIME);
3987 visible = true;
3988 goto found;
3989 next: ;
3990 }
3991 found:
3992 unlock_ns_list(ns);
3993 up_read(&namespace_sem);
3994 return visible;
3995 }
3996
3997 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3998 {
3999 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4000 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4001 unsigned long s_iflags;
4002
4003 if (ns->user_ns == &init_user_ns)
4004 return false;
4005
4006 /* Can this filesystem be too revealing? */
4007 s_iflags = sb->s_iflags;
4008 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4009 return false;
4010
4011 if ((s_iflags & required_iflags) != required_iflags) {
4012 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4013 required_iflags);
4014 return true;
4015 }
4016
4017 return !mnt_already_visible(ns, sb, new_mnt_flags);
4018 }
4019
4020 bool mnt_may_suid(struct vfsmount *mnt)
4021 {
4022 /*
4023 * Foreign mounts (accessed via fchdir or through /proc
4024 * symlinks) are always treated as if they are nosuid. This
4025 * prevents namespaces from trusting potentially unsafe
4026 * suid/sgid bits, file caps, or security labels that originate
4027 * in other namespaces.
4028 */
4029 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4030 current_in_userns(mnt->mnt_sb->s_user_ns);
4031 }
4032
4033 static struct ns_common *mntns_get(struct task_struct *task)
4034 {
4035 struct ns_common *ns = NULL;
4036 struct nsproxy *nsproxy;
4037
4038 task_lock(task);
4039 nsproxy = task->nsproxy;
4040 if (nsproxy) {
4041 ns = &nsproxy->mnt_ns->ns;
4042 get_mnt_ns(to_mnt_ns(ns));
4043 }
4044 task_unlock(task);
4045
4046 return ns;
4047 }
4048
4049 static void mntns_put(struct ns_common *ns)
4050 {
4051 put_mnt_ns(to_mnt_ns(ns));
4052 }
4053
4054 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4055 {
4056 struct nsproxy *nsproxy = nsset->nsproxy;
4057 struct fs_struct *fs = nsset->fs;
4058 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4059 struct user_namespace *user_ns = nsset->cred->user_ns;
4060 struct path root;
4061 int err;
4062
4063 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4064 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4065 !ns_capable(user_ns, CAP_SYS_ADMIN))
4066 return -EPERM;
4067
4068 if (is_anon_ns(mnt_ns))
4069 return -EINVAL;
4070
4071 if (fs->users != 1)
4072 return -EINVAL;
4073
4074 get_mnt_ns(mnt_ns);
4075 old_mnt_ns = nsproxy->mnt_ns;
4076 nsproxy->mnt_ns = mnt_ns;
4077
4078 /* Find the root */
4079 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4080 "/", LOOKUP_DOWN, &root);
4081 if (err) {
4082 /* revert to old namespace */
4083 nsproxy->mnt_ns = old_mnt_ns;
4084 put_mnt_ns(mnt_ns);
4085 return err;
4086 }
4087
4088 put_mnt_ns(old_mnt_ns);
4089
4090 /* Update the pwd and root */
4091 set_fs_pwd(fs, &root);
4092 set_fs_root(fs, &root);
4093
4094 path_put(&root);
4095 return 0;
4096 }
4097
4098 static struct user_namespace *mntns_owner(struct ns_common *ns)
4099 {
4100 return to_mnt_ns(ns)->user_ns;
4101 }
4102
4103 const struct proc_ns_operations mntns_operations = {
4104 .name = "mnt",
4105 .type = CLONE_NEWNS,
4106 .get = mntns_get,
4107 .put = mntns_put,
4108 .install = mntns_install,
4109 .owner = mntns_owner,
4110 };