]> git.ipfire.org Git - people/arne_f/kernel.git/blob - fs/nilfs2/super.c
cls_matchall: use tcf_exts_get_net() before call_rcu()
[people/arne_f/kernel.git] / fs / nilfs2 / super.c
1 /*
2 * super.c - NILFS module and super block management.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * Written by Ryusuke Konishi.
17 */
18 /*
19 * linux/fs/ext2/super.c
20 *
21 * Copyright (C) 1992, 1993, 1994, 1995
22 * Remy Card (card@masi.ibp.fr)
23 * Laboratoire MASI - Institut Blaise Pascal
24 * Universite Pierre et Marie Curie (Paris VI)
25 *
26 * from
27 *
28 * linux/fs/minix/inode.c
29 *
30 * Copyright (C) 1991, 1992 Linus Torvalds
31 *
32 * Big-endian to little-endian byte-swapping/bitmaps by
33 * David S. Miller (davem@caip.rutgers.edu), 1995
34 */
35
36 #include <linux/module.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/blkdev.h>
41 #include <linux/parser.h>
42 #include <linux/crc32.h>
43 #include <linux/vfs.h>
44 #include <linux/writeback.h>
45 #include <linux/seq_file.h>
46 #include <linux/mount.h>
47 #include "nilfs.h"
48 #include "export.h"
49 #include "mdt.h"
50 #include "alloc.h"
51 #include "btree.h"
52 #include "btnode.h"
53 #include "page.h"
54 #include "cpfile.h"
55 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
56 #include "ifile.h"
57 #include "dat.h"
58 #include "segment.h"
59 #include "segbuf.h"
60
61 MODULE_AUTHOR("NTT Corp.");
62 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
63 "(NILFS)");
64 MODULE_LICENSE("GPL");
65
66 static struct kmem_cache *nilfs_inode_cachep;
67 struct kmem_cache *nilfs_transaction_cachep;
68 struct kmem_cache *nilfs_segbuf_cachep;
69 struct kmem_cache *nilfs_btree_path_cache;
70
71 static int nilfs_setup_super(struct super_block *sb, int is_mount);
72 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
73
74 void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
75 ...)
76 {
77 struct va_format vaf;
78 va_list args;
79
80 va_start(args, fmt);
81 vaf.fmt = fmt;
82 vaf.va = &args;
83 if (sb)
84 printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
85 else
86 printk("%sNILFS: %pV\n", level, &vaf);
87 va_end(args);
88 }
89
90 static void nilfs_set_error(struct super_block *sb)
91 {
92 struct the_nilfs *nilfs = sb->s_fs_info;
93 struct nilfs_super_block **sbp;
94
95 down_write(&nilfs->ns_sem);
96 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
97 nilfs->ns_mount_state |= NILFS_ERROR_FS;
98 sbp = nilfs_prepare_super(sb, 0);
99 if (likely(sbp)) {
100 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
101 if (sbp[1])
102 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
103 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
104 }
105 }
106 up_write(&nilfs->ns_sem);
107 }
108
109 /**
110 * __nilfs_error() - report failure condition on a filesystem
111 *
112 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
113 * reporting an error message. This function should be called when
114 * NILFS detects incoherences or defects of meta data on disk.
115 *
116 * This implements the body of nilfs_error() macro. Normally,
117 * nilfs_error() should be used. As for sustainable errors such as a
118 * single-shot I/O error, nilfs_msg() should be used instead.
119 *
120 * Callers should not add a trailing newline since this will do it.
121 */
122 void __nilfs_error(struct super_block *sb, const char *function,
123 const char *fmt, ...)
124 {
125 struct the_nilfs *nilfs = sb->s_fs_info;
126 struct va_format vaf;
127 va_list args;
128
129 va_start(args, fmt);
130
131 vaf.fmt = fmt;
132 vaf.va = &args;
133
134 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
135 sb->s_id, function, &vaf);
136
137 va_end(args);
138
139 if (!sb_rdonly(sb)) {
140 nilfs_set_error(sb);
141
142 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
143 printk(KERN_CRIT "Remounting filesystem read-only\n");
144 sb->s_flags |= MS_RDONLY;
145 }
146 }
147
148 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
149 panic("NILFS (device %s): panic forced after error\n",
150 sb->s_id);
151 }
152
153 struct inode *nilfs_alloc_inode(struct super_block *sb)
154 {
155 struct nilfs_inode_info *ii;
156
157 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
158 if (!ii)
159 return NULL;
160 ii->i_bh = NULL;
161 ii->i_state = 0;
162 ii->i_cno = 0;
163 ii->vfs_inode.i_version = 1;
164 nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
165 return &ii->vfs_inode;
166 }
167
168 static void nilfs_i_callback(struct rcu_head *head)
169 {
170 struct inode *inode = container_of(head, struct inode, i_rcu);
171
172 if (nilfs_is_metadata_file_inode(inode))
173 nilfs_mdt_destroy(inode);
174
175 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
176 }
177
178 void nilfs_destroy_inode(struct inode *inode)
179 {
180 call_rcu(&inode->i_rcu, nilfs_i_callback);
181 }
182
183 static int nilfs_sync_super(struct super_block *sb, int flag)
184 {
185 struct the_nilfs *nilfs = sb->s_fs_info;
186 int err;
187
188 retry:
189 set_buffer_dirty(nilfs->ns_sbh[0]);
190 if (nilfs_test_opt(nilfs, BARRIER)) {
191 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
192 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
193 } else {
194 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
195 }
196
197 if (unlikely(err)) {
198 nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
199 err);
200 if (err == -EIO && nilfs->ns_sbh[1]) {
201 /*
202 * sbp[0] points to newer log than sbp[1],
203 * so copy sbp[0] to sbp[1] to take over sbp[0].
204 */
205 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
206 nilfs->ns_sbsize);
207 nilfs_fall_back_super_block(nilfs);
208 goto retry;
209 }
210 } else {
211 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
212
213 nilfs->ns_sbwcount++;
214
215 /*
216 * The latest segment becomes trailable from the position
217 * written in superblock.
218 */
219 clear_nilfs_discontinued(nilfs);
220
221 /* update GC protection for recent segments */
222 if (nilfs->ns_sbh[1]) {
223 if (flag == NILFS_SB_COMMIT_ALL) {
224 set_buffer_dirty(nilfs->ns_sbh[1]);
225 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
226 goto out;
227 }
228 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
229 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
230 sbp = nilfs->ns_sbp[1];
231 }
232
233 spin_lock(&nilfs->ns_last_segment_lock);
234 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
235 spin_unlock(&nilfs->ns_last_segment_lock);
236 }
237 out:
238 return err;
239 }
240
241 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
242 struct the_nilfs *nilfs)
243 {
244 sector_t nfreeblocks;
245
246 /* nilfs->ns_sem must be locked by the caller. */
247 nilfs_count_free_blocks(nilfs, &nfreeblocks);
248 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
249
250 spin_lock(&nilfs->ns_last_segment_lock);
251 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
252 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
253 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
254 spin_unlock(&nilfs->ns_last_segment_lock);
255 }
256
257 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
258 int flip)
259 {
260 struct the_nilfs *nilfs = sb->s_fs_info;
261 struct nilfs_super_block **sbp = nilfs->ns_sbp;
262
263 /* nilfs->ns_sem must be locked by the caller. */
264 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
265 if (sbp[1] &&
266 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
267 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
268 } else {
269 nilfs_msg(sb, KERN_CRIT, "superblock broke");
270 return NULL;
271 }
272 } else if (sbp[1] &&
273 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
274 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
275 }
276
277 if (flip && sbp[1])
278 nilfs_swap_super_block(nilfs);
279
280 return sbp;
281 }
282
283 int nilfs_commit_super(struct super_block *sb, int flag)
284 {
285 struct the_nilfs *nilfs = sb->s_fs_info;
286 struct nilfs_super_block **sbp = nilfs->ns_sbp;
287 time_t t;
288
289 /* nilfs->ns_sem must be locked by the caller. */
290 t = get_seconds();
291 nilfs->ns_sbwtime = t;
292 sbp[0]->s_wtime = cpu_to_le64(t);
293 sbp[0]->s_sum = 0;
294 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
295 (unsigned char *)sbp[0],
296 nilfs->ns_sbsize));
297 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
298 sbp[1]->s_wtime = sbp[0]->s_wtime;
299 sbp[1]->s_sum = 0;
300 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
301 (unsigned char *)sbp[1],
302 nilfs->ns_sbsize));
303 }
304 clear_nilfs_sb_dirty(nilfs);
305 nilfs->ns_flushed_device = 1;
306 /* make sure store to ns_flushed_device cannot be reordered */
307 smp_wmb();
308 return nilfs_sync_super(sb, flag);
309 }
310
311 /**
312 * nilfs_cleanup_super() - write filesystem state for cleanup
313 * @sb: super block instance to be unmounted or degraded to read-only
314 *
315 * This function restores state flags in the on-disk super block.
316 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
317 * filesystem was not clean previously.
318 */
319 int nilfs_cleanup_super(struct super_block *sb)
320 {
321 struct the_nilfs *nilfs = sb->s_fs_info;
322 struct nilfs_super_block **sbp;
323 int flag = NILFS_SB_COMMIT;
324 int ret = -EIO;
325
326 sbp = nilfs_prepare_super(sb, 0);
327 if (sbp) {
328 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
329 nilfs_set_log_cursor(sbp[0], nilfs);
330 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
331 /*
332 * make the "clean" flag also to the opposite
333 * super block if both super blocks point to
334 * the same checkpoint.
335 */
336 sbp[1]->s_state = sbp[0]->s_state;
337 flag = NILFS_SB_COMMIT_ALL;
338 }
339 ret = nilfs_commit_super(sb, flag);
340 }
341 return ret;
342 }
343
344 /**
345 * nilfs_move_2nd_super - relocate secondary super block
346 * @sb: super block instance
347 * @sb2off: new offset of the secondary super block (in bytes)
348 */
349 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
350 {
351 struct the_nilfs *nilfs = sb->s_fs_info;
352 struct buffer_head *nsbh;
353 struct nilfs_super_block *nsbp;
354 sector_t blocknr, newblocknr;
355 unsigned long offset;
356 int sb2i; /* array index of the secondary superblock */
357 int ret = 0;
358
359 /* nilfs->ns_sem must be locked by the caller. */
360 if (nilfs->ns_sbh[1] &&
361 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
362 sb2i = 1;
363 blocknr = nilfs->ns_sbh[1]->b_blocknr;
364 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
365 sb2i = 0;
366 blocknr = nilfs->ns_sbh[0]->b_blocknr;
367 } else {
368 sb2i = -1;
369 blocknr = 0;
370 }
371 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
372 goto out; /* super block location is unchanged */
373
374 /* Get new super block buffer */
375 newblocknr = sb2off >> nilfs->ns_blocksize_bits;
376 offset = sb2off & (nilfs->ns_blocksize - 1);
377 nsbh = sb_getblk(sb, newblocknr);
378 if (!nsbh) {
379 nilfs_msg(sb, KERN_WARNING,
380 "unable to move secondary superblock to block %llu",
381 (unsigned long long)newblocknr);
382 ret = -EIO;
383 goto out;
384 }
385 nsbp = (void *)nsbh->b_data + offset;
386 memset(nsbp, 0, nilfs->ns_blocksize);
387
388 if (sb2i >= 0) {
389 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
390 brelse(nilfs->ns_sbh[sb2i]);
391 nilfs->ns_sbh[sb2i] = nsbh;
392 nilfs->ns_sbp[sb2i] = nsbp;
393 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
394 /* secondary super block will be restored to index 1 */
395 nilfs->ns_sbh[1] = nsbh;
396 nilfs->ns_sbp[1] = nsbp;
397 } else {
398 brelse(nsbh);
399 }
400 out:
401 return ret;
402 }
403
404 /**
405 * nilfs_resize_fs - resize the filesystem
406 * @sb: super block instance
407 * @newsize: new size of the filesystem (in bytes)
408 */
409 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
410 {
411 struct the_nilfs *nilfs = sb->s_fs_info;
412 struct nilfs_super_block **sbp;
413 __u64 devsize, newnsegs;
414 loff_t sb2off;
415 int ret;
416
417 ret = -ERANGE;
418 devsize = i_size_read(sb->s_bdev->bd_inode);
419 if (newsize > devsize)
420 goto out;
421
422 /*
423 * Write lock is required to protect some functions depending
424 * on the number of segments, the number of reserved segments,
425 * and so forth.
426 */
427 down_write(&nilfs->ns_segctor_sem);
428
429 sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
430 newnsegs = sb2off >> nilfs->ns_blocksize_bits;
431 do_div(newnsegs, nilfs->ns_blocks_per_segment);
432
433 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
434 up_write(&nilfs->ns_segctor_sem);
435 if (ret < 0)
436 goto out;
437
438 ret = nilfs_construct_segment(sb);
439 if (ret < 0)
440 goto out;
441
442 down_write(&nilfs->ns_sem);
443 nilfs_move_2nd_super(sb, sb2off);
444 ret = -EIO;
445 sbp = nilfs_prepare_super(sb, 0);
446 if (likely(sbp)) {
447 nilfs_set_log_cursor(sbp[0], nilfs);
448 /*
449 * Drop NILFS_RESIZE_FS flag for compatibility with
450 * mount-time resize which may be implemented in a
451 * future release.
452 */
453 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
454 ~NILFS_RESIZE_FS);
455 sbp[0]->s_dev_size = cpu_to_le64(newsize);
456 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
457 if (sbp[1])
458 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
459 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
460 }
461 up_write(&nilfs->ns_sem);
462
463 /*
464 * Reset the range of allocatable segments last. This order
465 * is important in the case of expansion because the secondary
466 * superblock must be protected from log write until migration
467 * completes.
468 */
469 if (!ret)
470 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
471 out:
472 return ret;
473 }
474
475 static void nilfs_put_super(struct super_block *sb)
476 {
477 struct the_nilfs *nilfs = sb->s_fs_info;
478
479 nilfs_detach_log_writer(sb);
480
481 if (!sb_rdonly(sb)) {
482 down_write(&nilfs->ns_sem);
483 nilfs_cleanup_super(sb);
484 up_write(&nilfs->ns_sem);
485 }
486
487 iput(nilfs->ns_sufile);
488 iput(nilfs->ns_cpfile);
489 iput(nilfs->ns_dat);
490
491 destroy_nilfs(nilfs);
492 sb->s_fs_info = NULL;
493 }
494
495 static int nilfs_sync_fs(struct super_block *sb, int wait)
496 {
497 struct the_nilfs *nilfs = sb->s_fs_info;
498 struct nilfs_super_block **sbp;
499 int err = 0;
500
501 /* This function is called when super block should be written back */
502 if (wait)
503 err = nilfs_construct_segment(sb);
504
505 down_write(&nilfs->ns_sem);
506 if (nilfs_sb_dirty(nilfs)) {
507 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
508 if (likely(sbp)) {
509 nilfs_set_log_cursor(sbp[0], nilfs);
510 nilfs_commit_super(sb, NILFS_SB_COMMIT);
511 }
512 }
513 up_write(&nilfs->ns_sem);
514
515 if (!err)
516 err = nilfs_flush_device(nilfs);
517
518 return err;
519 }
520
521 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
522 struct nilfs_root **rootp)
523 {
524 struct the_nilfs *nilfs = sb->s_fs_info;
525 struct nilfs_root *root;
526 struct nilfs_checkpoint *raw_cp;
527 struct buffer_head *bh_cp;
528 int err = -ENOMEM;
529
530 root = nilfs_find_or_create_root(
531 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
532 if (!root)
533 return err;
534
535 if (root->ifile)
536 goto reuse; /* already attached checkpoint */
537
538 down_read(&nilfs->ns_segctor_sem);
539 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
540 &bh_cp);
541 up_read(&nilfs->ns_segctor_sem);
542 if (unlikely(err)) {
543 if (err == -ENOENT || err == -EINVAL) {
544 nilfs_msg(sb, KERN_ERR,
545 "Invalid checkpoint (checkpoint number=%llu)",
546 (unsigned long long)cno);
547 err = -EINVAL;
548 }
549 goto failed;
550 }
551
552 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
553 &raw_cp->cp_ifile_inode, &root->ifile);
554 if (err)
555 goto failed_bh;
556
557 atomic64_set(&root->inodes_count,
558 le64_to_cpu(raw_cp->cp_inodes_count));
559 atomic64_set(&root->blocks_count,
560 le64_to_cpu(raw_cp->cp_blocks_count));
561
562 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
563
564 reuse:
565 *rootp = root;
566 return 0;
567
568 failed_bh:
569 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
570 failed:
571 nilfs_put_root(root);
572
573 return err;
574 }
575
576 static int nilfs_freeze(struct super_block *sb)
577 {
578 struct the_nilfs *nilfs = sb->s_fs_info;
579 int err;
580
581 if (sb_rdonly(sb))
582 return 0;
583
584 /* Mark super block clean */
585 down_write(&nilfs->ns_sem);
586 err = nilfs_cleanup_super(sb);
587 up_write(&nilfs->ns_sem);
588 return err;
589 }
590
591 static int nilfs_unfreeze(struct super_block *sb)
592 {
593 struct the_nilfs *nilfs = sb->s_fs_info;
594
595 if (sb_rdonly(sb))
596 return 0;
597
598 down_write(&nilfs->ns_sem);
599 nilfs_setup_super(sb, false);
600 up_write(&nilfs->ns_sem);
601 return 0;
602 }
603
604 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
605 {
606 struct super_block *sb = dentry->d_sb;
607 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
608 struct the_nilfs *nilfs = root->nilfs;
609 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
610 unsigned long long blocks;
611 unsigned long overhead;
612 unsigned long nrsvblocks;
613 sector_t nfreeblocks;
614 u64 nmaxinodes, nfreeinodes;
615 int err;
616
617 /*
618 * Compute all of the segment blocks
619 *
620 * The blocks before first segment and after last segment
621 * are excluded.
622 */
623 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
624 - nilfs->ns_first_data_block;
625 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
626
627 /*
628 * Compute the overhead
629 *
630 * When distributing meta data blocks outside segment structure,
631 * We must count them as the overhead.
632 */
633 overhead = 0;
634
635 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
636 if (unlikely(err))
637 return err;
638
639 err = nilfs_ifile_count_free_inodes(root->ifile,
640 &nmaxinodes, &nfreeinodes);
641 if (unlikely(err)) {
642 nilfs_msg(sb, KERN_WARNING,
643 "failed to count free inodes: err=%d", err);
644 if (err == -ERANGE) {
645 /*
646 * If nilfs_palloc_count_max_entries() returns
647 * -ERANGE error code then we simply treat
648 * curent inodes count as maximum possible and
649 * zero as free inodes value.
650 */
651 nmaxinodes = atomic64_read(&root->inodes_count);
652 nfreeinodes = 0;
653 err = 0;
654 } else
655 return err;
656 }
657
658 buf->f_type = NILFS_SUPER_MAGIC;
659 buf->f_bsize = sb->s_blocksize;
660 buf->f_blocks = blocks - overhead;
661 buf->f_bfree = nfreeblocks;
662 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
663 (buf->f_bfree - nrsvblocks) : 0;
664 buf->f_files = nmaxinodes;
665 buf->f_ffree = nfreeinodes;
666 buf->f_namelen = NILFS_NAME_LEN;
667 buf->f_fsid.val[0] = (u32)id;
668 buf->f_fsid.val[1] = (u32)(id >> 32);
669
670 return 0;
671 }
672
673 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
674 {
675 struct super_block *sb = dentry->d_sb;
676 struct the_nilfs *nilfs = sb->s_fs_info;
677 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
678
679 if (!nilfs_test_opt(nilfs, BARRIER))
680 seq_puts(seq, ",nobarrier");
681 if (root->cno != NILFS_CPTREE_CURRENT_CNO)
682 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
683 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
684 seq_puts(seq, ",errors=panic");
685 if (nilfs_test_opt(nilfs, ERRORS_CONT))
686 seq_puts(seq, ",errors=continue");
687 if (nilfs_test_opt(nilfs, STRICT_ORDER))
688 seq_puts(seq, ",order=strict");
689 if (nilfs_test_opt(nilfs, NORECOVERY))
690 seq_puts(seq, ",norecovery");
691 if (nilfs_test_opt(nilfs, DISCARD))
692 seq_puts(seq, ",discard");
693
694 return 0;
695 }
696
697 static const struct super_operations nilfs_sops = {
698 .alloc_inode = nilfs_alloc_inode,
699 .destroy_inode = nilfs_destroy_inode,
700 .dirty_inode = nilfs_dirty_inode,
701 .evict_inode = nilfs_evict_inode,
702 .put_super = nilfs_put_super,
703 .sync_fs = nilfs_sync_fs,
704 .freeze_fs = nilfs_freeze,
705 .unfreeze_fs = nilfs_unfreeze,
706 .statfs = nilfs_statfs,
707 .remount_fs = nilfs_remount,
708 .show_options = nilfs_show_options
709 };
710
711 enum {
712 Opt_err_cont, Opt_err_panic, Opt_err_ro,
713 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
714 Opt_discard, Opt_nodiscard, Opt_err,
715 };
716
717 static match_table_t tokens = {
718 {Opt_err_cont, "errors=continue"},
719 {Opt_err_panic, "errors=panic"},
720 {Opt_err_ro, "errors=remount-ro"},
721 {Opt_barrier, "barrier"},
722 {Opt_nobarrier, "nobarrier"},
723 {Opt_snapshot, "cp=%u"},
724 {Opt_order, "order=%s"},
725 {Opt_norecovery, "norecovery"},
726 {Opt_discard, "discard"},
727 {Opt_nodiscard, "nodiscard"},
728 {Opt_err, NULL}
729 };
730
731 static int parse_options(char *options, struct super_block *sb, int is_remount)
732 {
733 struct the_nilfs *nilfs = sb->s_fs_info;
734 char *p;
735 substring_t args[MAX_OPT_ARGS];
736
737 if (!options)
738 return 1;
739
740 while ((p = strsep(&options, ",")) != NULL) {
741 int token;
742
743 if (!*p)
744 continue;
745
746 token = match_token(p, tokens, args);
747 switch (token) {
748 case Opt_barrier:
749 nilfs_set_opt(nilfs, BARRIER);
750 break;
751 case Opt_nobarrier:
752 nilfs_clear_opt(nilfs, BARRIER);
753 break;
754 case Opt_order:
755 if (strcmp(args[0].from, "relaxed") == 0)
756 /* Ordered data semantics */
757 nilfs_clear_opt(nilfs, STRICT_ORDER);
758 else if (strcmp(args[0].from, "strict") == 0)
759 /* Strict in-order semantics */
760 nilfs_set_opt(nilfs, STRICT_ORDER);
761 else
762 return 0;
763 break;
764 case Opt_err_panic:
765 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
766 break;
767 case Opt_err_ro:
768 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
769 break;
770 case Opt_err_cont:
771 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
772 break;
773 case Opt_snapshot:
774 if (is_remount) {
775 nilfs_msg(sb, KERN_ERR,
776 "\"%s\" option is invalid for remount",
777 p);
778 return 0;
779 }
780 break;
781 case Opt_norecovery:
782 nilfs_set_opt(nilfs, NORECOVERY);
783 break;
784 case Opt_discard:
785 nilfs_set_opt(nilfs, DISCARD);
786 break;
787 case Opt_nodiscard:
788 nilfs_clear_opt(nilfs, DISCARD);
789 break;
790 default:
791 nilfs_msg(sb, KERN_ERR,
792 "unrecognized mount option \"%s\"", p);
793 return 0;
794 }
795 }
796 return 1;
797 }
798
799 static inline void
800 nilfs_set_default_options(struct super_block *sb,
801 struct nilfs_super_block *sbp)
802 {
803 struct the_nilfs *nilfs = sb->s_fs_info;
804
805 nilfs->ns_mount_opt =
806 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
807 }
808
809 static int nilfs_setup_super(struct super_block *sb, int is_mount)
810 {
811 struct the_nilfs *nilfs = sb->s_fs_info;
812 struct nilfs_super_block **sbp;
813 int max_mnt_count;
814 int mnt_count;
815
816 /* nilfs->ns_sem must be locked by the caller. */
817 sbp = nilfs_prepare_super(sb, 0);
818 if (!sbp)
819 return -EIO;
820
821 if (!is_mount)
822 goto skip_mount_setup;
823
824 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
825 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
826
827 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
828 nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
829 #if 0
830 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
831 nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
832 #endif
833 }
834 if (!max_mnt_count)
835 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
836
837 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
838 sbp[0]->s_mtime = cpu_to_le64(get_seconds());
839
840 skip_mount_setup:
841 sbp[0]->s_state =
842 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
843 /* synchronize sbp[1] with sbp[0] */
844 if (sbp[1])
845 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
846 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
847 }
848
849 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
850 u64 pos, int blocksize,
851 struct buffer_head **pbh)
852 {
853 unsigned long long sb_index = pos;
854 unsigned long offset;
855
856 offset = do_div(sb_index, blocksize);
857 *pbh = sb_bread(sb, sb_index);
858 if (!*pbh)
859 return NULL;
860 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
861 }
862
863 int nilfs_store_magic_and_option(struct super_block *sb,
864 struct nilfs_super_block *sbp,
865 char *data)
866 {
867 struct the_nilfs *nilfs = sb->s_fs_info;
868
869 sb->s_magic = le16_to_cpu(sbp->s_magic);
870
871 /* FS independent flags */
872 #ifdef NILFS_ATIME_DISABLE
873 sb->s_flags |= MS_NOATIME;
874 #endif
875
876 nilfs_set_default_options(sb, sbp);
877
878 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
879 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
880 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
881 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
882
883 return !parse_options(data, sb, 0) ? -EINVAL : 0;
884 }
885
886 int nilfs_check_feature_compatibility(struct super_block *sb,
887 struct nilfs_super_block *sbp)
888 {
889 __u64 features;
890
891 features = le64_to_cpu(sbp->s_feature_incompat) &
892 ~NILFS_FEATURE_INCOMPAT_SUPP;
893 if (features) {
894 nilfs_msg(sb, KERN_ERR,
895 "couldn't mount because of unsupported optional features (%llx)",
896 (unsigned long long)features);
897 return -EINVAL;
898 }
899 features = le64_to_cpu(sbp->s_feature_compat_ro) &
900 ~NILFS_FEATURE_COMPAT_RO_SUPP;
901 if (!sb_rdonly(sb) && features) {
902 nilfs_msg(sb, KERN_ERR,
903 "couldn't mount RDWR because of unsupported optional features (%llx)",
904 (unsigned long long)features);
905 return -EINVAL;
906 }
907 return 0;
908 }
909
910 static int nilfs_get_root_dentry(struct super_block *sb,
911 struct nilfs_root *root,
912 struct dentry **root_dentry)
913 {
914 struct inode *inode;
915 struct dentry *dentry;
916 int ret = 0;
917
918 inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
919 if (IS_ERR(inode)) {
920 ret = PTR_ERR(inode);
921 nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
922 goto out;
923 }
924 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
925 iput(inode);
926 nilfs_msg(sb, KERN_ERR, "corrupt root inode");
927 ret = -EINVAL;
928 goto out;
929 }
930
931 if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
932 dentry = d_find_alias(inode);
933 if (!dentry) {
934 dentry = d_make_root(inode);
935 if (!dentry) {
936 ret = -ENOMEM;
937 goto failed_dentry;
938 }
939 } else {
940 iput(inode);
941 }
942 } else {
943 dentry = d_obtain_root(inode);
944 if (IS_ERR(dentry)) {
945 ret = PTR_ERR(dentry);
946 goto failed_dentry;
947 }
948 }
949 *root_dentry = dentry;
950 out:
951 return ret;
952
953 failed_dentry:
954 nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
955 goto out;
956 }
957
958 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
959 struct dentry **root_dentry)
960 {
961 struct the_nilfs *nilfs = s->s_fs_info;
962 struct nilfs_root *root;
963 int ret;
964
965 mutex_lock(&nilfs->ns_snapshot_mount_mutex);
966
967 down_read(&nilfs->ns_segctor_sem);
968 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
969 up_read(&nilfs->ns_segctor_sem);
970 if (ret < 0) {
971 ret = (ret == -ENOENT) ? -EINVAL : ret;
972 goto out;
973 } else if (!ret) {
974 nilfs_msg(s, KERN_ERR,
975 "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
976 (unsigned long long)cno);
977 ret = -EINVAL;
978 goto out;
979 }
980
981 ret = nilfs_attach_checkpoint(s, cno, false, &root);
982 if (ret) {
983 nilfs_msg(s, KERN_ERR,
984 "error %d while loading snapshot (checkpoint number=%llu)",
985 ret, (unsigned long long)cno);
986 goto out;
987 }
988 ret = nilfs_get_root_dentry(s, root, root_dentry);
989 nilfs_put_root(root);
990 out:
991 mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
992 return ret;
993 }
994
995 /**
996 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
997 * @root_dentry: root dentry of the tree to be shrunk
998 *
999 * This function returns true if the tree was in-use.
1000 */
1001 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1002 {
1003 shrink_dcache_parent(root_dentry);
1004 return d_count(root_dentry) > 1;
1005 }
1006
1007 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1008 {
1009 struct the_nilfs *nilfs = sb->s_fs_info;
1010 struct nilfs_root *root;
1011 struct inode *inode;
1012 struct dentry *dentry;
1013 int ret;
1014
1015 if (cno > nilfs->ns_cno)
1016 return false;
1017
1018 if (cno >= nilfs_last_cno(nilfs))
1019 return true; /* protect recent checkpoints */
1020
1021 ret = false;
1022 root = nilfs_lookup_root(nilfs, cno);
1023 if (root) {
1024 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1025 if (inode) {
1026 dentry = d_find_alias(inode);
1027 if (dentry) {
1028 ret = nilfs_tree_is_busy(dentry);
1029 dput(dentry);
1030 }
1031 iput(inode);
1032 }
1033 nilfs_put_root(root);
1034 }
1035 return ret;
1036 }
1037
1038 /**
1039 * nilfs_fill_super() - initialize a super block instance
1040 * @sb: super_block
1041 * @data: mount options
1042 * @silent: silent mode flag
1043 *
1044 * This function is called exclusively by nilfs->ns_mount_mutex.
1045 * So, the recovery process is protected from other simultaneous mounts.
1046 */
1047 static int
1048 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1049 {
1050 struct the_nilfs *nilfs;
1051 struct nilfs_root *fsroot;
1052 __u64 cno;
1053 int err;
1054
1055 nilfs = alloc_nilfs(sb);
1056 if (!nilfs)
1057 return -ENOMEM;
1058
1059 sb->s_fs_info = nilfs;
1060
1061 err = init_nilfs(nilfs, sb, (char *)data);
1062 if (err)
1063 goto failed_nilfs;
1064
1065 sb->s_op = &nilfs_sops;
1066 sb->s_export_op = &nilfs_export_ops;
1067 sb->s_root = NULL;
1068 sb->s_time_gran = 1;
1069 sb->s_max_links = NILFS_LINK_MAX;
1070
1071 sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1072
1073 err = load_nilfs(nilfs, sb);
1074 if (err)
1075 goto failed_nilfs;
1076
1077 cno = nilfs_last_cno(nilfs);
1078 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1079 if (err) {
1080 nilfs_msg(sb, KERN_ERR,
1081 "error %d while loading last checkpoint (checkpoint number=%llu)",
1082 err, (unsigned long long)cno);
1083 goto failed_unload;
1084 }
1085
1086 if (!sb_rdonly(sb)) {
1087 err = nilfs_attach_log_writer(sb, fsroot);
1088 if (err)
1089 goto failed_checkpoint;
1090 }
1091
1092 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1093 if (err)
1094 goto failed_segctor;
1095
1096 nilfs_put_root(fsroot);
1097
1098 if (!sb_rdonly(sb)) {
1099 down_write(&nilfs->ns_sem);
1100 nilfs_setup_super(sb, true);
1101 up_write(&nilfs->ns_sem);
1102 }
1103
1104 return 0;
1105
1106 failed_segctor:
1107 nilfs_detach_log_writer(sb);
1108
1109 failed_checkpoint:
1110 nilfs_put_root(fsroot);
1111
1112 failed_unload:
1113 iput(nilfs->ns_sufile);
1114 iput(nilfs->ns_cpfile);
1115 iput(nilfs->ns_dat);
1116
1117 failed_nilfs:
1118 destroy_nilfs(nilfs);
1119 return err;
1120 }
1121
1122 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1123 {
1124 struct the_nilfs *nilfs = sb->s_fs_info;
1125 unsigned long old_sb_flags;
1126 unsigned long old_mount_opt;
1127 int err;
1128
1129 sync_filesystem(sb);
1130 old_sb_flags = sb->s_flags;
1131 old_mount_opt = nilfs->ns_mount_opt;
1132
1133 if (!parse_options(data, sb, 1)) {
1134 err = -EINVAL;
1135 goto restore_opts;
1136 }
1137 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1138
1139 err = -EINVAL;
1140
1141 if (!nilfs_valid_fs(nilfs)) {
1142 nilfs_msg(sb, KERN_WARNING,
1143 "couldn't remount because the filesystem is in an incomplete recovery state");
1144 goto restore_opts;
1145 }
1146
1147 if ((bool)(*flags & MS_RDONLY) == sb_rdonly(sb))
1148 goto out;
1149 if (*flags & MS_RDONLY) {
1150 /* Shutting down log writer */
1151 nilfs_detach_log_writer(sb);
1152 sb->s_flags |= MS_RDONLY;
1153
1154 /*
1155 * Remounting a valid RW partition RDONLY, so set
1156 * the RDONLY flag and then mark the partition as valid again.
1157 */
1158 down_write(&nilfs->ns_sem);
1159 nilfs_cleanup_super(sb);
1160 up_write(&nilfs->ns_sem);
1161 } else {
1162 __u64 features;
1163 struct nilfs_root *root;
1164
1165 /*
1166 * Mounting a RDONLY partition read-write, so reread and
1167 * store the current valid flag. (It may have been changed
1168 * by fsck since we originally mounted the partition.)
1169 */
1170 down_read(&nilfs->ns_sem);
1171 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1172 ~NILFS_FEATURE_COMPAT_RO_SUPP;
1173 up_read(&nilfs->ns_sem);
1174 if (features) {
1175 nilfs_msg(sb, KERN_WARNING,
1176 "couldn't remount RDWR because of unsupported optional features (%llx)",
1177 (unsigned long long)features);
1178 err = -EROFS;
1179 goto restore_opts;
1180 }
1181
1182 sb->s_flags &= ~MS_RDONLY;
1183
1184 root = NILFS_I(d_inode(sb->s_root))->i_root;
1185 err = nilfs_attach_log_writer(sb, root);
1186 if (err)
1187 goto restore_opts;
1188
1189 down_write(&nilfs->ns_sem);
1190 nilfs_setup_super(sb, true);
1191 up_write(&nilfs->ns_sem);
1192 }
1193 out:
1194 return 0;
1195
1196 restore_opts:
1197 sb->s_flags = old_sb_flags;
1198 nilfs->ns_mount_opt = old_mount_opt;
1199 return err;
1200 }
1201
1202 struct nilfs_super_data {
1203 struct block_device *bdev;
1204 __u64 cno;
1205 int flags;
1206 };
1207
1208 static int nilfs_parse_snapshot_option(const char *option,
1209 const substring_t *arg,
1210 struct nilfs_super_data *sd)
1211 {
1212 unsigned long long val;
1213 const char *msg = NULL;
1214 int err;
1215
1216 if (!(sd->flags & MS_RDONLY)) {
1217 msg = "read-only option is not specified";
1218 goto parse_error;
1219 }
1220
1221 err = kstrtoull(arg->from, 0, &val);
1222 if (err) {
1223 if (err == -ERANGE)
1224 msg = "too large checkpoint number";
1225 else
1226 msg = "malformed argument";
1227 goto parse_error;
1228 } else if (val == 0) {
1229 msg = "invalid checkpoint number 0";
1230 goto parse_error;
1231 }
1232 sd->cno = val;
1233 return 0;
1234
1235 parse_error:
1236 nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1237 return 1;
1238 }
1239
1240 /**
1241 * nilfs_identify - pre-read mount options needed to identify mount instance
1242 * @data: mount options
1243 * @sd: nilfs_super_data
1244 */
1245 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1246 {
1247 char *p, *options = data;
1248 substring_t args[MAX_OPT_ARGS];
1249 int token;
1250 int ret = 0;
1251
1252 do {
1253 p = strsep(&options, ",");
1254 if (p != NULL && *p) {
1255 token = match_token(p, tokens, args);
1256 if (token == Opt_snapshot)
1257 ret = nilfs_parse_snapshot_option(p, &args[0],
1258 sd);
1259 }
1260 if (!options)
1261 break;
1262 BUG_ON(options == data);
1263 *(options - 1) = ',';
1264 } while (!ret);
1265 return ret;
1266 }
1267
1268 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1269 {
1270 s->s_bdev = data;
1271 s->s_dev = s->s_bdev->bd_dev;
1272 return 0;
1273 }
1274
1275 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1276 {
1277 return (void *)s->s_bdev == data;
1278 }
1279
1280 static struct dentry *
1281 nilfs_mount(struct file_system_type *fs_type, int flags,
1282 const char *dev_name, void *data)
1283 {
1284 struct nilfs_super_data sd;
1285 struct super_block *s;
1286 fmode_t mode = FMODE_READ | FMODE_EXCL;
1287 struct dentry *root_dentry;
1288 int err, s_new = false;
1289
1290 if (!(flags & MS_RDONLY))
1291 mode |= FMODE_WRITE;
1292
1293 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1294 if (IS_ERR(sd.bdev))
1295 return ERR_CAST(sd.bdev);
1296
1297 sd.cno = 0;
1298 sd.flags = flags;
1299 if (nilfs_identify((char *)data, &sd)) {
1300 err = -EINVAL;
1301 goto failed;
1302 }
1303
1304 /*
1305 * once the super is inserted into the list by sget, s_umount
1306 * will protect the lockfs code from trying to start a snapshot
1307 * while we are mounting
1308 */
1309 mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1310 if (sd.bdev->bd_fsfreeze_count > 0) {
1311 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1312 err = -EBUSY;
1313 goto failed;
1314 }
1315 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1316 sd.bdev);
1317 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1318 if (IS_ERR(s)) {
1319 err = PTR_ERR(s);
1320 goto failed;
1321 }
1322
1323 if (!s->s_root) {
1324 s_new = true;
1325
1326 /* New superblock instance created */
1327 s->s_mode = mode;
1328 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1329 sb_set_blocksize(s, block_size(sd.bdev));
1330
1331 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1332 if (err)
1333 goto failed_super;
1334
1335 s->s_flags |= MS_ACTIVE;
1336 } else if (!sd.cno) {
1337 if (nilfs_tree_is_busy(s->s_root)) {
1338 if ((flags ^ s->s_flags) & MS_RDONLY) {
1339 nilfs_msg(s, KERN_ERR,
1340 "the device already has a %s mount.",
1341 sb_rdonly(s) ? "read-only" : "read/write");
1342 err = -EBUSY;
1343 goto failed_super;
1344 }
1345 } else {
1346 /*
1347 * Try remount to setup mount states if the current
1348 * tree is not mounted and only snapshots use this sb.
1349 */
1350 err = nilfs_remount(s, &flags, data);
1351 if (err)
1352 goto failed_super;
1353 }
1354 }
1355
1356 if (sd.cno) {
1357 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1358 if (err)
1359 goto failed_super;
1360 } else {
1361 root_dentry = dget(s->s_root);
1362 }
1363
1364 if (!s_new)
1365 blkdev_put(sd.bdev, mode);
1366
1367 return root_dentry;
1368
1369 failed_super:
1370 deactivate_locked_super(s);
1371
1372 failed:
1373 if (!s_new)
1374 blkdev_put(sd.bdev, mode);
1375 return ERR_PTR(err);
1376 }
1377
1378 struct file_system_type nilfs_fs_type = {
1379 .owner = THIS_MODULE,
1380 .name = "nilfs2",
1381 .mount = nilfs_mount,
1382 .kill_sb = kill_block_super,
1383 .fs_flags = FS_REQUIRES_DEV,
1384 };
1385 MODULE_ALIAS_FS("nilfs2");
1386
1387 static void nilfs_inode_init_once(void *obj)
1388 {
1389 struct nilfs_inode_info *ii = obj;
1390
1391 INIT_LIST_HEAD(&ii->i_dirty);
1392 #ifdef CONFIG_NILFS_XATTR
1393 init_rwsem(&ii->xattr_sem);
1394 #endif
1395 address_space_init_once(&ii->i_btnode_cache);
1396 ii->i_bmap = &ii->i_bmap_data;
1397 inode_init_once(&ii->vfs_inode);
1398 }
1399
1400 static void nilfs_segbuf_init_once(void *obj)
1401 {
1402 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1403 }
1404
1405 static void nilfs_destroy_cachep(void)
1406 {
1407 /*
1408 * Make sure all delayed rcu free inodes are flushed before we
1409 * destroy cache.
1410 */
1411 rcu_barrier();
1412
1413 kmem_cache_destroy(nilfs_inode_cachep);
1414 kmem_cache_destroy(nilfs_transaction_cachep);
1415 kmem_cache_destroy(nilfs_segbuf_cachep);
1416 kmem_cache_destroy(nilfs_btree_path_cache);
1417 }
1418
1419 static int __init nilfs_init_cachep(void)
1420 {
1421 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1422 sizeof(struct nilfs_inode_info), 0,
1423 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1424 nilfs_inode_init_once);
1425 if (!nilfs_inode_cachep)
1426 goto fail;
1427
1428 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1429 sizeof(struct nilfs_transaction_info), 0,
1430 SLAB_RECLAIM_ACCOUNT, NULL);
1431 if (!nilfs_transaction_cachep)
1432 goto fail;
1433
1434 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1435 sizeof(struct nilfs_segment_buffer), 0,
1436 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1437 if (!nilfs_segbuf_cachep)
1438 goto fail;
1439
1440 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1441 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1442 0, 0, NULL);
1443 if (!nilfs_btree_path_cache)
1444 goto fail;
1445
1446 return 0;
1447
1448 fail:
1449 nilfs_destroy_cachep();
1450 return -ENOMEM;
1451 }
1452
1453 static int __init init_nilfs_fs(void)
1454 {
1455 int err;
1456
1457 err = nilfs_init_cachep();
1458 if (err)
1459 goto fail;
1460
1461 err = nilfs_sysfs_init();
1462 if (err)
1463 goto free_cachep;
1464
1465 err = register_filesystem(&nilfs_fs_type);
1466 if (err)
1467 goto deinit_sysfs_entry;
1468
1469 printk(KERN_INFO "NILFS version 2 loaded\n");
1470 return 0;
1471
1472 deinit_sysfs_entry:
1473 nilfs_sysfs_exit();
1474 free_cachep:
1475 nilfs_destroy_cachep();
1476 fail:
1477 return err;
1478 }
1479
1480 static void __exit exit_nilfs_fs(void)
1481 {
1482 nilfs_destroy_cachep();
1483 nilfs_sysfs_exit();
1484 unregister_filesystem(&nilfs_fs_type);
1485 }
1486
1487 module_init(init_nilfs_fs)
1488 module_exit(exit_nilfs_fs)