]> git.ipfire.org Git - people/ms/linux.git/blob - fs/ocfs2/alloc.c
Merge tag 'usb-6.0-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[people/ms/linux.git] / fs / ocfs2 / alloc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * alloc.c
4 *
5 * Extent allocs and frees
6 *
7 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
8 */
9
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/swap.h>
15 #include <linux/quotaops.h>
16 #include <linux/blkdev.h>
17 #include <linux/sched/signal.h>
18
19 #include <cluster/masklog.h>
20
21 #include "ocfs2.h"
22
23 #include "alloc.h"
24 #include "aops.h"
25 #include "blockcheck.h"
26 #include "dlmglue.h"
27 #include "extent_map.h"
28 #include "inode.h"
29 #include "journal.h"
30 #include "localalloc.h"
31 #include "suballoc.h"
32 #include "sysfile.h"
33 #include "file.h"
34 #include "super.h"
35 #include "uptodate.h"
36 #include "xattr.h"
37 #include "refcounttree.h"
38 #include "ocfs2_trace.h"
39
40 #include "buffer_head_io.h"
41
42 enum ocfs2_contig_type {
43 CONTIG_NONE = 0,
44 CONTIG_LEFT,
45 CONTIG_RIGHT,
46 CONTIG_LEFTRIGHT,
47 };
48
49 static enum ocfs2_contig_type
50 ocfs2_extent_rec_contig(struct super_block *sb,
51 struct ocfs2_extent_rec *ext,
52 struct ocfs2_extent_rec *insert_rec);
53 /*
54 * Operations for a specific extent tree type.
55 *
56 * To implement an on-disk btree (extent tree) type in ocfs2, add
57 * an ocfs2_extent_tree_operations structure and the matching
58 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
59 * for the allocation portion of the extent tree.
60 */
61 struct ocfs2_extent_tree_operations {
62 /*
63 * last_eb_blk is the block number of the right most leaf extent
64 * block. Most on-disk structures containing an extent tree store
65 * this value for fast access. The ->eo_set_last_eb_blk() and
66 * ->eo_get_last_eb_blk() operations access this value. They are
67 * both required.
68 */
69 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
70 u64 blkno);
71 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
72
73 /*
74 * The on-disk structure usually keeps track of how many total
75 * clusters are stored in this extent tree. This function updates
76 * that value. new_clusters is the delta, and must be
77 * added to the total. Required.
78 */
79 void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
80 u32 new_clusters);
81
82 /*
83 * If this extent tree is supported by an extent map, insert
84 * a record into the map.
85 */
86 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
87 struct ocfs2_extent_rec *rec);
88
89 /*
90 * If this extent tree is supported by an extent map, truncate the
91 * map to clusters,
92 */
93 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
94 u32 clusters);
95
96 /*
97 * If ->eo_insert_check() exists, it is called before rec is
98 * inserted into the extent tree. It is optional.
99 */
100 int (*eo_insert_check)(struct ocfs2_extent_tree *et,
101 struct ocfs2_extent_rec *rec);
102 int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
103
104 /*
105 * --------------------------------------------------------------
106 * The remaining are internal to ocfs2_extent_tree and don't have
107 * accessor functions
108 */
109
110 /*
111 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
112 * It is required.
113 */
114 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
115
116 /*
117 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
118 * it exists. If it does not, et->et_max_leaf_clusters is set
119 * to 0 (unlimited). Optional.
120 */
121 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
122
123 /*
124 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
125 * are contiguous or not. Optional. Don't need to set it if use
126 * ocfs2_extent_rec as the tree leaf.
127 */
128 enum ocfs2_contig_type
129 (*eo_extent_contig)(struct ocfs2_extent_tree *et,
130 struct ocfs2_extent_rec *ext,
131 struct ocfs2_extent_rec *insert_rec);
132 };
133
134
135 /*
136 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
137 * in the methods.
138 */
139 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
140 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
141 u64 blkno);
142 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
143 u32 clusters);
144 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
145 struct ocfs2_extent_rec *rec);
146 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
147 u32 clusters);
148 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
149 struct ocfs2_extent_rec *rec);
150 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
151 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
152
153 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
154 struct ocfs2_extent_tree *et,
155 struct buffer_head **new_eb_bh,
156 int blk_wanted, int *blk_given);
157 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et);
158
159 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
160 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk,
161 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk,
162 .eo_update_clusters = ocfs2_dinode_update_clusters,
163 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert,
164 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate,
165 .eo_insert_check = ocfs2_dinode_insert_check,
166 .eo_sanity_check = ocfs2_dinode_sanity_check,
167 .eo_fill_root_el = ocfs2_dinode_fill_root_el,
168 };
169
170 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
171 u64 blkno)
172 {
173 struct ocfs2_dinode *di = et->et_object;
174
175 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
176 di->i_last_eb_blk = cpu_to_le64(blkno);
177 }
178
179 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
180 {
181 struct ocfs2_dinode *di = et->et_object;
182
183 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
184 return le64_to_cpu(di->i_last_eb_blk);
185 }
186
187 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
188 u32 clusters)
189 {
190 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
191 struct ocfs2_dinode *di = et->et_object;
192
193 le32_add_cpu(&di->i_clusters, clusters);
194 spin_lock(&oi->ip_lock);
195 oi->ip_clusters = le32_to_cpu(di->i_clusters);
196 spin_unlock(&oi->ip_lock);
197 }
198
199 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
200 struct ocfs2_extent_rec *rec)
201 {
202 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
203
204 ocfs2_extent_map_insert_rec(inode, rec);
205 }
206
207 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
208 u32 clusters)
209 {
210 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
211
212 ocfs2_extent_map_trunc(inode, clusters);
213 }
214
215 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
216 struct ocfs2_extent_rec *rec)
217 {
218 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
219 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
220
221 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
222 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
223 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
224 "Device %s, asking for sparse allocation: inode %llu, "
225 "cpos %u, clusters %u\n",
226 osb->dev_str,
227 (unsigned long long)oi->ip_blkno,
228 rec->e_cpos, oi->ip_clusters);
229
230 return 0;
231 }
232
233 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
234 {
235 struct ocfs2_dinode *di = et->et_object;
236
237 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
238 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
239
240 return 0;
241 }
242
243 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
244 {
245 struct ocfs2_dinode *di = et->et_object;
246
247 et->et_root_el = &di->id2.i_list;
248 }
249
250
251 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
252 {
253 struct ocfs2_xattr_value_buf *vb = et->et_object;
254
255 et->et_root_el = &vb->vb_xv->xr_list;
256 }
257
258 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
259 u64 blkno)
260 {
261 struct ocfs2_xattr_value_buf *vb = et->et_object;
262
263 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
264 }
265
266 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
267 {
268 struct ocfs2_xattr_value_buf *vb = et->et_object;
269
270 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
271 }
272
273 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
274 u32 clusters)
275 {
276 struct ocfs2_xattr_value_buf *vb = et->et_object;
277
278 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
279 }
280
281 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
282 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk,
283 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk,
284 .eo_update_clusters = ocfs2_xattr_value_update_clusters,
285 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el,
286 };
287
288 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
289 {
290 struct ocfs2_xattr_block *xb = et->et_object;
291
292 et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
293 }
294
295 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
296 {
297 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
298 et->et_max_leaf_clusters =
299 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
300 }
301
302 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
303 u64 blkno)
304 {
305 struct ocfs2_xattr_block *xb = et->et_object;
306 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
307
308 xt->xt_last_eb_blk = cpu_to_le64(blkno);
309 }
310
311 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
312 {
313 struct ocfs2_xattr_block *xb = et->et_object;
314 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
315
316 return le64_to_cpu(xt->xt_last_eb_blk);
317 }
318
319 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
320 u32 clusters)
321 {
322 struct ocfs2_xattr_block *xb = et->et_object;
323
324 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
325 }
326
327 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
328 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk,
329 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk,
330 .eo_update_clusters = ocfs2_xattr_tree_update_clusters,
331 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el,
332 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
333 };
334
335 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
336 u64 blkno)
337 {
338 struct ocfs2_dx_root_block *dx_root = et->et_object;
339
340 dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
341 }
342
343 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
344 {
345 struct ocfs2_dx_root_block *dx_root = et->et_object;
346
347 return le64_to_cpu(dx_root->dr_last_eb_blk);
348 }
349
350 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
351 u32 clusters)
352 {
353 struct ocfs2_dx_root_block *dx_root = et->et_object;
354
355 le32_add_cpu(&dx_root->dr_clusters, clusters);
356 }
357
358 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
359 {
360 struct ocfs2_dx_root_block *dx_root = et->et_object;
361
362 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
363
364 return 0;
365 }
366
367 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
368 {
369 struct ocfs2_dx_root_block *dx_root = et->et_object;
370
371 et->et_root_el = &dx_root->dr_list;
372 }
373
374 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
375 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk,
376 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk,
377 .eo_update_clusters = ocfs2_dx_root_update_clusters,
378 .eo_sanity_check = ocfs2_dx_root_sanity_check,
379 .eo_fill_root_el = ocfs2_dx_root_fill_root_el,
380 };
381
382 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
383 {
384 struct ocfs2_refcount_block *rb = et->et_object;
385
386 et->et_root_el = &rb->rf_list;
387 }
388
389 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
390 u64 blkno)
391 {
392 struct ocfs2_refcount_block *rb = et->et_object;
393
394 rb->rf_last_eb_blk = cpu_to_le64(blkno);
395 }
396
397 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
398 {
399 struct ocfs2_refcount_block *rb = et->et_object;
400
401 return le64_to_cpu(rb->rf_last_eb_blk);
402 }
403
404 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
405 u32 clusters)
406 {
407 struct ocfs2_refcount_block *rb = et->et_object;
408
409 le32_add_cpu(&rb->rf_clusters, clusters);
410 }
411
412 static enum ocfs2_contig_type
413 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
414 struct ocfs2_extent_rec *ext,
415 struct ocfs2_extent_rec *insert_rec)
416 {
417 return CONTIG_NONE;
418 }
419
420 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
421 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk,
422 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk,
423 .eo_update_clusters = ocfs2_refcount_tree_update_clusters,
424 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el,
425 .eo_extent_contig = ocfs2_refcount_tree_extent_contig,
426 };
427
428 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
429 struct ocfs2_caching_info *ci,
430 struct buffer_head *bh,
431 ocfs2_journal_access_func access,
432 void *obj,
433 const struct ocfs2_extent_tree_operations *ops)
434 {
435 et->et_ops = ops;
436 et->et_root_bh = bh;
437 et->et_ci = ci;
438 et->et_root_journal_access = access;
439 if (!obj)
440 obj = (void *)bh->b_data;
441 et->et_object = obj;
442 et->et_dealloc = NULL;
443
444 et->et_ops->eo_fill_root_el(et);
445 if (!et->et_ops->eo_fill_max_leaf_clusters)
446 et->et_max_leaf_clusters = 0;
447 else
448 et->et_ops->eo_fill_max_leaf_clusters(et);
449 }
450
451 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
452 struct ocfs2_caching_info *ci,
453 struct buffer_head *bh)
454 {
455 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
456 NULL, &ocfs2_dinode_et_ops);
457 }
458
459 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
460 struct ocfs2_caching_info *ci,
461 struct buffer_head *bh)
462 {
463 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
464 NULL, &ocfs2_xattr_tree_et_ops);
465 }
466
467 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
468 struct ocfs2_caching_info *ci,
469 struct ocfs2_xattr_value_buf *vb)
470 {
471 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
472 &ocfs2_xattr_value_et_ops);
473 }
474
475 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
476 struct ocfs2_caching_info *ci,
477 struct buffer_head *bh)
478 {
479 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
480 NULL, &ocfs2_dx_root_et_ops);
481 }
482
483 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
484 struct ocfs2_caching_info *ci,
485 struct buffer_head *bh)
486 {
487 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
488 NULL, &ocfs2_refcount_tree_et_ops);
489 }
490
491 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
492 u64 new_last_eb_blk)
493 {
494 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
495 }
496
497 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
498 {
499 return et->et_ops->eo_get_last_eb_blk(et);
500 }
501
502 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
503 u32 clusters)
504 {
505 et->et_ops->eo_update_clusters(et, clusters);
506 }
507
508 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
509 struct ocfs2_extent_rec *rec)
510 {
511 if (et->et_ops->eo_extent_map_insert)
512 et->et_ops->eo_extent_map_insert(et, rec);
513 }
514
515 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
516 u32 clusters)
517 {
518 if (et->et_ops->eo_extent_map_truncate)
519 et->et_ops->eo_extent_map_truncate(et, clusters);
520 }
521
522 static inline int ocfs2_et_root_journal_access(handle_t *handle,
523 struct ocfs2_extent_tree *et,
524 int type)
525 {
526 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
527 type);
528 }
529
530 static inline enum ocfs2_contig_type
531 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
532 struct ocfs2_extent_rec *rec,
533 struct ocfs2_extent_rec *insert_rec)
534 {
535 if (et->et_ops->eo_extent_contig)
536 return et->et_ops->eo_extent_contig(et, rec, insert_rec);
537
538 return ocfs2_extent_rec_contig(
539 ocfs2_metadata_cache_get_super(et->et_ci),
540 rec, insert_rec);
541 }
542
543 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
544 struct ocfs2_extent_rec *rec)
545 {
546 int ret = 0;
547
548 if (et->et_ops->eo_insert_check)
549 ret = et->et_ops->eo_insert_check(et, rec);
550 return ret;
551 }
552
553 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
554 {
555 int ret = 0;
556
557 if (et->et_ops->eo_sanity_check)
558 ret = et->et_ops->eo_sanity_check(et);
559 return ret;
560 }
561
562 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
563 struct ocfs2_extent_block *eb);
564 static void ocfs2_adjust_rightmost_records(handle_t *handle,
565 struct ocfs2_extent_tree *et,
566 struct ocfs2_path *path,
567 struct ocfs2_extent_rec *insert_rec);
568 /*
569 * Reset the actual path elements so that we can re-use the structure
570 * to build another path. Generally, this involves freeing the buffer
571 * heads.
572 */
573 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
574 {
575 int i, start = 0, depth = 0;
576 struct ocfs2_path_item *node;
577
578 if (keep_root)
579 start = 1;
580
581 for(i = start; i < path_num_items(path); i++) {
582 node = &path->p_node[i];
583
584 brelse(node->bh);
585 node->bh = NULL;
586 node->el = NULL;
587 }
588
589 /*
590 * Tree depth may change during truncate, or insert. If we're
591 * keeping the root extent list, then make sure that our path
592 * structure reflects the proper depth.
593 */
594 if (keep_root)
595 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
596 else
597 path_root_access(path) = NULL;
598
599 path->p_tree_depth = depth;
600 }
601
602 void ocfs2_free_path(struct ocfs2_path *path)
603 {
604 if (path) {
605 ocfs2_reinit_path(path, 0);
606 kfree(path);
607 }
608 }
609
610 /*
611 * All the elements of src into dest. After this call, src could be freed
612 * without affecting dest.
613 *
614 * Both paths should have the same root. Any non-root elements of dest
615 * will be freed.
616 */
617 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
618 {
619 int i;
620
621 BUG_ON(path_root_bh(dest) != path_root_bh(src));
622 BUG_ON(path_root_el(dest) != path_root_el(src));
623 BUG_ON(path_root_access(dest) != path_root_access(src));
624
625 ocfs2_reinit_path(dest, 1);
626
627 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
628 dest->p_node[i].bh = src->p_node[i].bh;
629 dest->p_node[i].el = src->p_node[i].el;
630
631 if (dest->p_node[i].bh)
632 get_bh(dest->p_node[i].bh);
633 }
634 }
635
636 /*
637 * Make the *dest path the same as src and re-initialize src path to
638 * have a root only.
639 */
640 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
641 {
642 int i;
643
644 BUG_ON(path_root_bh(dest) != path_root_bh(src));
645 BUG_ON(path_root_access(dest) != path_root_access(src));
646
647 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
648 brelse(dest->p_node[i].bh);
649
650 dest->p_node[i].bh = src->p_node[i].bh;
651 dest->p_node[i].el = src->p_node[i].el;
652
653 src->p_node[i].bh = NULL;
654 src->p_node[i].el = NULL;
655 }
656 }
657
658 /*
659 * Insert an extent block at given index.
660 *
661 * This will not take an additional reference on eb_bh.
662 */
663 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
664 struct buffer_head *eb_bh)
665 {
666 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
667
668 /*
669 * Right now, no root bh is an extent block, so this helps
670 * catch code errors with dinode trees. The assertion can be
671 * safely removed if we ever need to insert extent block
672 * structures at the root.
673 */
674 BUG_ON(index == 0);
675
676 path->p_node[index].bh = eb_bh;
677 path->p_node[index].el = &eb->h_list;
678 }
679
680 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
681 struct ocfs2_extent_list *root_el,
682 ocfs2_journal_access_func access)
683 {
684 struct ocfs2_path *path;
685
686 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
687
688 path = kzalloc(sizeof(*path), GFP_NOFS);
689 if (path) {
690 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
691 get_bh(root_bh);
692 path_root_bh(path) = root_bh;
693 path_root_el(path) = root_el;
694 path_root_access(path) = access;
695 }
696
697 return path;
698 }
699
700 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
701 {
702 return ocfs2_new_path(path_root_bh(path), path_root_el(path),
703 path_root_access(path));
704 }
705
706 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
707 {
708 return ocfs2_new_path(et->et_root_bh, et->et_root_el,
709 et->et_root_journal_access);
710 }
711
712 /*
713 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
714 * otherwise it's the root_access function.
715 *
716 * I don't like the way this function's name looks next to
717 * ocfs2_journal_access_path(), but I don't have a better one.
718 */
719 int ocfs2_path_bh_journal_access(handle_t *handle,
720 struct ocfs2_caching_info *ci,
721 struct ocfs2_path *path,
722 int idx)
723 {
724 ocfs2_journal_access_func access = path_root_access(path);
725
726 if (!access)
727 access = ocfs2_journal_access;
728
729 if (idx)
730 access = ocfs2_journal_access_eb;
731
732 return access(handle, ci, path->p_node[idx].bh,
733 OCFS2_JOURNAL_ACCESS_WRITE);
734 }
735
736 /*
737 * Convenience function to journal all components in a path.
738 */
739 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
740 handle_t *handle,
741 struct ocfs2_path *path)
742 {
743 int i, ret = 0;
744
745 if (!path)
746 goto out;
747
748 for(i = 0; i < path_num_items(path); i++) {
749 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
750 if (ret < 0) {
751 mlog_errno(ret);
752 goto out;
753 }
754 }
755
756 out:
757 return ret;
758 }
759
760 /*
761 * Return the index of the extent record which contains cluster #v_cluster.
762 * -1 is returned if it was not found.
763 *
764 * Should work fine on interior and exterior nodes.
765 */
766 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
767 {
768 int ret = -1;
769 int i;
770 struct ocfs2_extent_rec *rec;
771 u32 rec_end, rec_start, clusters;
772
773 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
774 rec = &el->l_recs[i];
775
776 rec_start = le32_to_cpu(rec->e_cpos);
777 clusters = ocfs2_rec_clusters(el, rec);
778
779 rec_end = rec_start + clusters;
780
781 if (v_cluster >= rec_start && v_cluster < rec_end) {
782 ret = i;
783 break;
784 }
785 }
786
787 return ret;
788 }
789
790 /*
791 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
792 * ocfs2_extent_rec_contig only work properly against leaf nodes!
793 */
794 static int ocfs2_block_extent_contig(struct super_block *sb,
795 struct ocfs2_extent_rec *ext,
796 u64 blkno)
797 {
798 u64 blk_end = le64_to_cpu(ext->e_blkno);
799
800 blk_end += ocfs2_clusters_to_blocks(sb,
801 le16_to_cpu(ext->e_leaf_clusters));
802
803 return blkno == blk_end;
804 }
805
806 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
807 struct ocfs2_extent_rec *right)
808 {
809 u32 left_range;
810
811 left_range = le32_to_cpu(left->e_cpos) +
812 le16_to_cpu(left->e_leaf_clusters);
813
814 return (left_range == le32_to_cpu(right->e_cpos));
815 }
816
817 static enum ocfs2_contig_type
818 ocfs2_extent_rec_contig(struct super_block *sb,
819 struct ocfs2_extent_rec *ext,
820 struct ocfs2_extent_rec *insert_rec)
821 {
822 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
823
824 /*
825 * Refuse to coalesce extent records with different flag
826 * fields - we don't want to mix unwritten extents with user
827 * data.
828 */
829 if (ext->e_flags != insert_rec->e_flags)
830 return CONTIG_NONE;
831
832 if (ocfs2_extents_adjacent(ext, insert_rec) &&
833 ocfs2_block_extent_contig(sb, ext, blkno))
834 return CONTIG_RIGHT;
835
836 blkno = le64_to_cpu(ext->e_blkno);
837 if (ocfs2_extents_adjacent(insert_rec, ext) &&
838 ocfs2_block_extent_contig(sb, insert_rec, blkno))
839 return CONTIG_LEFT;
840
841 return CONTIG_NONE;
842 }
843
844 /*
845 * NOTE: We can have pretty much any combination of contiguousness and
846 * appending.
847 *
848 * The usefulness of APPEND_TAIL is more in that it lets us know that
849 * we'll have to update the path to that leaf.
850 */
851 enum ocfs2_append_type {
852 APPEND_NONE = 0,
853 APPEND_TAIL,
854 };
855
856 enum ocfs2_split_type {
857 SPLIT_NONE = 0,
858 SPLIT_LEFT,
859 SPLIT_RIGHT,
860 };
861
862 struct ocfs2_insert_type {
863 enum ocfs2_split_type ins_split;
864 enum ocfs2_append_type ins_appending;
865 enum ocfs2_contig_type ins_contig;
866 int ins_contig_index;
867 int ins_tree_depth;
868 };
869
870 struct ocfs2_merge_ctxt {
871 enum ocfs2_contig_type c_contig_type;
872 int c_has_empty_extent;
873 int c_split_covers_rec;
874 };
875
876 static int ocfs2_validate_extent_block(struct super_block *sb,
877 struct buffer_head *bh)
878 {
879 int rc;
880 struct ocfs2_extent_block *eb =
881 (struct ocfs2_extent_block *)bh->b_data;
882
883 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
884
885 BUG_ON(!buffer_uptodate(bh));
886
887 /*
888 * If the ecc fails, we return the error but otherwise
889 * leave the filesystem running. We know any error is
890 * local to this block.
891 */
892 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
893 if (rc) {
894 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
895 (unsigned long long)bh->b_blocknr);
896 return rc;
897 }
898
899 /*
900 * Errors after here are fatal.
901 */
902
903 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
904 rc = ocfs2_error(sb,
905 "Extent block #%llu has bad signature %.*s\n",
906 (unsigned long long)bh->b_blocknr, 7,
907 eb->h_signature);
908 goto bail;
909 }
910
911 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
912 rc = ocfs2_error(sb,
913 "Extent block #%llu has an invalid h_blkno of %llu\n",
914 (unsigned long long)bh->b_blocknr,
915 (unsigned long long)le64_to_cpu(eb->h_blkno));
916 goto bail;
917 }
918
919 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation)
920 rc = ocfs2_error(sb,
921 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
922 (unsigned long long)bh->b_blocknr,
923 le32_to_cpu(eb->h_fs_generation));
924 bail:
925 return rc;
926 }
927
928 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
929 struct buffer_head **bh)
930 {
931 int rc;
932 struct buffer_head *tmp = *bh;
933
934 rc = ocfs2_read_block(ci, eb_blkno, &tmp,
935 ocfs2_validate_extent_block);
936
937 /* If ocfs2_read_block() got us a new bh, pass it up. */
938 if (!rc && !*bh)
939 *bh = tmp;
940
941 return rc;
942 }
943
944
945 /*
946 * How many free extents have we got before we need more meta data?
947 */
948 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et)
949 {
950 int retval;
951 struct ocfs2_extent_list *el = NULL;
952 struct ocfs2_extent_block *eb;
953 struct buffer_head *eb_bh = NULL;
954 u64 last_eb_blk = 0;
955
956 el = et->et_root_el;
957 last_eb_blk = ocfs2_et_get_last_eb_blk(et);
958
959 if (last_eb_blk) {
960 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
961 &eb_bh);
962 if (retval < 0) {
963 mlog_errno(retval);
964 goto bail;
965 }
966 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
967 el = &eb->h_list;
968 }
969
970 BUG_ON(el->l_tree_depth != 0);
971
972 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
973 bail:
974 brelse(eb_bh);
975
976 trace_ocfs2_num_free_extents(retval);
977 return retval;
978 }
979
980 /* expects array to already be allocated
981 *
982 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
983 * l_count for you
984 */
985 static int ocfs2_create_new_meta_bhs(handle_t *handle,
986 struct ocfs2_extent_tree *et,
987 int wanted,
988 struct ocfs2_alloc_context *meta_ac,
989 struct buffer_head *bhs[])
990 {
991 int count, status, i;
992 u16 suballoc_bit_start;
993 u32 num_got;
994 u64 suballoc_loc, first_blkno;
995 struct ocfs2_super *osb =
996 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
997 struct ocfs2_extent_block *eb;
998
999 count = 0;
1000 while (count < wanted) {
1001 status = ocfs2_claim_metadata(handle,
1002 meta_ac,
1003 wanted - count,
1004 &suballoc_loc,
1005 &suballoc_bit_start,
1006 &num_got,
1007 &first_blkno);
1008 if (status < 0) {
1009 mlog_errno(status);
1010 goto bail;
1011 }
1012
1013 for(i = count; i < (num_got + count); i++) {
1014 bhs[i] = sb_getblk(osb->sb, first_blkno);
1015 if (bhs[i] == NULL) {
1016 status = -ENOMEM;
1017 mlog_errno(status);
1018 goto bail;
1019 }
1020 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1021
1022 status = ocfs2_journal_access_eb(handle, et->et_ci,
1023 bhs[i],
1024 OCFS2_JOURNAL_ACCESS_CREATE);
1025 if (status < 0) {
1026 mlog_errno(status);
1027 goto bail;
1028 }
1029
1030 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1031 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1032 /* Ok, setup the minimal stuff here. */
1033 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1034 eb->h_blkno = cpu_to_le64(first_blkno);
1035 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1036 eb->h_suballoc_slot =
1037 cpu_to_le16(meta_ac->ac_alloc_slot);
1038 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1039 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1040 eb->h_list.l_count =
1041 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1042
1043 suballoc_bit_start++;
1044 first_blkno++;
1045
1046 /* We'll also be dirtied by the caller, so
1047 * this isn't absolutely necessary. */
1048 ocfs2_journal_dirty(handle, bhs[i]);
1049 }
1050
1051 count += num_got;
1052 }
1053
1054 status = 0;
1055 bail:
1056 if (status < 0) {
1057 for(i = 0; i < wanted; i++) {
1058 brelse(bhs[i]);
1059 bhs[i] = NULL;
1060 }
1061 }
1062 return status;
1063 }
1064
1065 /*
1066 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1067 *
1068 * Returns the sum of the rightmost extent rec logical offset and
1069 * cluster count.
1070 *
1071 * ocfs2_add_branch() uses this to determine what logical cluster
1072 * value should be populated into the leftmost new branch records.
1073 *
1074 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1075 * value for the new topmost tree record.
1076 */
1077 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
1078 {
1079 int i;
1080
1081 i = le16_to_cpu(el->l_next_free_rec) - 1;
1082
1083 return le32_to_cpu(el->l_recs[i].e_cpos) +
1084 ocfs2_rec_clusters(el, &el->l_recs[i]);
1085 }
1086
1087 /*
1088 * Change range of the branches in the right most path according to the leaf
1089 * extent block's rightmost record.
1090 */
1091 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1092 struct ocfs2_extent_tree *et)
1093 {
1094 int status;
1095 struct ocfs2_path *path = NULL;
1096 struct ocfs2_extent_list *el;
1097 struct ocfs2_extent_rec *rec;
1098
1099 path = ocfs2_new_path_from_et(et);
1100 if (!path) {
1101 status = -ENOMEM;
1102 return status;
1103 }
1104
1105 status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1106 if (status < 0) {
1107 mlog_errno(status);
1108 goto out;
1109 }
1110
1111 status = ocfs2_extend_trans(handle, path_num_items(path));
1112 if (status < 0) {
1113 mlog_errno(status);
1114 goto out;
1115 }
1116
1117 status = ocfs2_journal_access_path(et->et_ci, handle, path);
1118 if (status < 0) {
1119 mlog_errno(status);
1120 goto out;
1121 }
1122
1123 el = path_leaf_el(path);
1124 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1125
1126 ocfs2_adjust_rightmost_records(handle, et, path, rec);
1127
1128 out:
1129 ocfs2_free_path(path);
1130 return status;
1131 }
1132
1133 /*
1134 * Add an entire tree branch to our inode. eb_bh is the extent block
1135 * to start at, if we don't want to start the branch at the root
1136 * structure.
1137 *
1138 * last_eb_bh is required as we have to update it's next_leaf pointer
1139 * for the new last extent block.
1140 *
1141 * the new branch will be 'empty' in the sense that every block will
1142 * contain a single record with cluster count == 0.
1143 */
1144 static int ocfs2_add_branch(handle_t *handle,
1145 struct ocfs2_extent_tree *et,
1146 struct buffer_head *eb_bh,
1147 struct buffer_head **last_eb_bh,
1148 struct ocfs2_alloc_context *meta_ac)
1149 {
1150 int status, new_blocks, i, block_given = 0;
1151 u64 next_blkno, new_last_eb_blk;
1152 struct buffer_head *bh;
1153 struct buffer_head **new_eb_bhs = NULL;
1154 struct ocfs2_extent_block *eb;
1155 struct ocfs2_extent_list *eb_el;
1156 struct ocfs2_extent_list *el;
1157 u32 new_cpos, root_end;
1158
1159 BUG_ON(!last_eb_bh || !*last_eb_bh);
1160
1161 if (eb_bh) {
1162 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1163 el = &eb->h_list;
1164 } else
1165 el = et->et_root_el;
1166
1167 /* we never add a branch to a leaf. */
1168 BUG_ON(!el->l_tree_depth);
1169
1170 new_blocks = le16_to_cpu(el->l_tree_depth);
1171
1172 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1173 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1174 root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1175
1176 /*
1177 * If there is a gap before the root end and the real end
1178 * of the righmost leaf block, we need to remove the gap
1179 * between new_cpos and root_end first so that the tree
1180 * is consistent after we add a new branch(it will start
1181 * from new_cpos).
1182 */
1183 if (root_end > new_cpos) {
1184 trace_ocfs2_adjust_rightmost_branch(
1185 (unsigned long long)
1186 ocfs2_metadata_cache_owner(et->et_ci),
1187 root_end, new_cpos);
1188
1189 status = ocfs2_adjust_rightmost_branch(handle, et);
1190 if (status) {
1191 mlog_errno(status);
1192 goto bail;
1193 }
1194 }
1195
1196 /* allocate the number of new eb blocks we need */
1197 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1198 GFP_KERNEL);
1199 if (!new_eb_bhs) {
1200 status = -ENOMEM;
1201 mlog_errno(status);
1202 goto bail;
1203 }
1204
1205 /* Firstyly, try to reuse dealloc since we have already estimated how
1206 * many extent blocks we may use.
1207 */
1208 if (!ocfs2_is_dealloc_empty(et)) {
1209 status = ocfs2_reuse_blk_from_dealloc(handle, et,
1210 new_eb_bhs, new_blocks,
1211 &block_given);
1212 if (status < 0) {
1213 mlog_errno(status);
1214 goto bail;
1215 }
1216 }
1217
1218 BUG_ON(block_given > new_blocks);
1219
1220 if (block_given < new_blocks) {
1221 BUG_ON(!meta_ac);
1222 status = ocfs2_create_new_meta_bhs(handle, et,
1223 new_blocks - block_given,
1224 meta_ac,
1225 &new_eb_bhs[block_given]);
1226 if (status < 0) {
1227 mlog_errno(status);
1228 goto bail;
1229 }
1230 }
1231
1232 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1233 * linked with the rest of the tree.
1234 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1235 *
1236 * when we leave the loop, new_last_eb_blk will point to the
1237 * newest leaf, and next_blkno will point to the topmost extent
1238 * block. */
1239 next_blkno = new_last_eb_blk = 0;
1240 for(i = 0; i < new_blocks; i++) {
1241 bh = new_eb_bhs[i];
1242 eb = (struct ocfs2_extent_block *) bh->b_data;
1243 /* ocfs2_create_new_meta_bhs() should create it right! */
1244 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1245 eb_el = &eb->h_list;
1246
1247 status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1248 OCFS2_JOURNAL_ACCESS_CREATE);
1249 if (status < 0) {
1250 mlog_errno(status);
1251 goto bail;
1252 }
1253
1254 eb->h_next_leaf_blk = 0;
1255 eb_el->l_tree_depth = cpu_to_le16(i);
1256 eb_el->l_next_free_rec = cpu_to_le16(1);
1257 /*
1258 * This actually counts as an empty extent as
1259 * c_clusters == 0
1260 */
1261 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1262 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1263 /*
1264 * eb_el isn't always an interior node, but even leaf
1265 * nodes want a zero'd flags and reserved field so
1266 * this gets the whole 32 bits regardless of use.
1267 */
1268 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1269 if (!eb_el->l_tree_depth)
1270 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1271
1272 ocfs2_journal_dirty(handle, bh);
1273 next_blkno = le64_to_cpu(eb->h_blkno);
1274 }
1275
1276 /* This is a bit hairy. We want to update up to three blocks
1277 * here without leaving any of them in an inconsistent state
1278 * in case of error. We don't have to worry about
1279 * journal_dirty erroring as it won't unless we've aborted the
1280 * handle (in which case we would never be here) so reserving
1281 * the write with journal_access is all we need to do. */
1282 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1283 OCFS2_JOURNAL_ACCESS_WRITE);
1284 if (status < 0) {
1285 mlog_errno(status);
1286 goto bail;
1287 }
1288 status = ocfs2_et_root_journal_access(handle, et,
1289 OCFS2_JOURNAL_ACCESS_WRITE);
1290 if (status < 0) {
1291 mlog_errno(status);
1292 goto bail;
1293 }
1294 if (eb_bh) {
1295 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1296 OCFS2_JOURNAL_ACCESS_WRITE);
1297 if (status < 0) {
1298 mlog_errno(status);
1299 goto bail;
1300 }
1301 }
1302
1303 /* Link the new branch into the rest of the tree (el will
1304 * either be on the root_bh, or the extent block passed in. */
1305 i = le16_to_cpu(el->l_next_free_rec);
1306 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1307 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1308 el->l_recs[i].e_int_clusters = 0;
1309 le16_add_cpu(&el->l_next_free_rec, 1);
1310
1311 /* fe needs a new last extent block pointer, as does the
1312 * next_leaf on the previously last-extent-block. */
1313 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1314
1315 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1316 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1317
1318 ocfs2_journal_dirty(handle, *last_eb_bh);
1319 ocfs2_journal_dirty(handle, et->et_root_bh);
1320 if (eb_bh)
1321 ocfs2_journal_dirty(handle, eb_bh);
1322
1323 /*
1324 * Some callers want to track the rightmost leaf so pass it
1325 * back here.
1326 */
1327 brelse(*last_eb_bh);
1328 get_bh(new_eb_bhs[0]);
1329 *last_eb_bh = new_eb_bhs[0];
1330
1331 status = 0;
1332 bail:
1333 if (new_eb_bhs) {
1334 for (i = 0; i < new_blocks; i++)
1335 brelse(new_eb_bhs[i]);
1336 kfree(new_eb_bhs);
1337 }
1338
1339 return status;
1340 }
1341
1342 /*
1343 * adds another level to the allocation tree.
1344 * returns back the new extent block so you can add a branch to it
1345 * after this call.
1346 */
1347 static int ocfs2_shift_tree_depth(handle_t *handle,
1348 struct ocfs2_extent_tree *et,
1349 struct ocfs2_alloc_context *meta_ac,
1350 struct buffer_head **ret_new_eb_bh)
1351 {
1352 int status, i, block_given = 0;
1353 u32 new_clusters;
1354 struct buffer_head *new_eb_bh = NULL;
1355 struct ocfs2_extent_block *eb;
1356 struct ocfs2_extent_list *root_el;
1357 struct ocfs2_extent_list *eb_el;
1358
1359 if (!ocfs2_is_dealloc_empty(et)) {
1360 status = ocfs2_reuse_blk_from_dealloc(handle, et,
1361 &new_eb_bh, 1,
1362 &block_given);
1363 } else if (meta_ac) {
1364 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1365 &new_eb_bh);
1366
1367 } else {
1368 BUG();
1369 }
1370
1371 if (status < 0) {
1372 mlog_errno(status);
1373 goto bail;
1374 }
1375
1376 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1377 /* ocfs2_create_new_meta_bhs() should create it right! */
1378 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1379
1380 eb_el = &eb->h_list;
1381 root_el = et->et_root_el;
1382
1383 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1384 OCFS2_JOURNAL_ACCESS_CREATE);
1385 if (status < 0) {
1386 mlog_errno(status);
1387 goto bail;
1388 }
1389
1390 /* copy the root extent list data into the new extent block */
1391 eb_el->l_tree_depth = root_el->l_tree_depth;
1392 eb_el->l_next_free_rec = root_el->l_next_free_rec;
1393 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1394 eb_el->l_recs[i] = root_el->l_recs[i];
1395
1396 ocfs2_journal_dirty(handle, new_eb_bh);
1397
1398 status = ocfs2_et_root_journal_access(handle, et,
1399 OCFS2_JOURNAL_ACCESS_WRITE);
1400 if (status < 0) {
1401 mlog_errno(status);
1402 goto bail;
1403 }
1404
1405 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1406
1407 /* update root_bh now */
1408 le16_add_cpu(&root_el->l_tree_depth, 1);
1409 root_el->l_recs[0].e_cpos = 0;
1410 root_el->l_recs[0].e_blkno = eb->h_blkno;
1411 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1412 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1413 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1414 root_el->l_next_free_rec = cpu_to_le16(1);
1415
1416 /* If this is our 1st tree depth shift, then last_eb_blk
1417 * becomes the allocated extent block */
1418 if (root_el->l_tree_depth == cpu_to_le16(1))
1419 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1420
1421 ocfs2_journal_dirty(handle, et->et_root_bh);
1422
1423 *ret_new_eb_bh = new_eb_bh;
1424 new_eb_bh = NULL;
1425 status = 0;
1426 bail:
1427 brelse(new_eb_bh);
1428
1429 return status;
1430 }
1431
1432 /*
1433 * Should only be called when there is no space left in any of the
1434 * leaf nodes. What we want to do is find the lowest tree depth
1435 * non-leaf extent block with room for new records. There are three
1436 * valid results of this search:
1437 *
1438 * 1) a lowest extent block is found, then we pass it back in
1439 * *lowest_eb_bh and return '0'
1440 *
1441 * 2) the search fails to find anything, but the root_el has room. We
1442 * pass NULL back in *lowest_eb_bh, but still return '0'
1443 *
1444 * 3) the search fails to find anything AND the root_el is full, in
1445 * which case we return > 0
1446 *
1447 * return status < 0 indicates an error.
1448 */
1449 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1450 struct buffer_head **target_bh)
1451 {
1452 int status = 0, i;
1453 u64 blkno;
1454 struct ocfs2_extent_block *eb;
1455 struct ocfs2_extent_list *el;
1456 struct buffer_head *bh = NULL;
1457 struct buffer_head *lowest_bh = NULL;
1458
1459 *target_bh = NULL;
1460
1461 el = et->et_root_el;
1462
1463 while(le16_to_cpu(el->l_tree_depth) > 1) {
1464 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1465 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1466 "Owner %llu has empty extent list (next_free_rec == 0)\n",
1467 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1468 goto bail;
1469 }
1470 i = le16_to_cpu(el->l_next_free_rec) - 1;
1471 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1472 if (!blkno) {
1473 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1474 "Owner %llu has extent list where extent # %d has no physical block start\n",
1475 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1476 goto bail;
1477 }
1478
1479 brelse(bh);
1480 bh = NULL;
1481
1482 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1483 if (status < 0) {
1484 mlog_errno(status);
1485 goto bail;
1486 }
1487
1488 eb = (struct ocfs2_extent_block *) bh->b_data;
1489 el = &eb->h_list;
1490
1491 if (le16_to_cpu(el->l_next_free_rec) <
1492 le16_to_cpu(el->l_count)) {
1493 brelse(lowest_bh);
1494 lowest_bh = bh;
1495 get_bh(lowest_bh);
1496 }
1497 }
1498
1499 /* If we didn't find one and the fe doesn't have any room,
1500 * then return '1' */
1501 el = et->et_root_el;
1502 if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1503 status = 1;
1504
1505 *target_bh = lowest_bh;
1506 bail:
1507 brelse(bh);
1508
1509 return status;
1510 }
1511
1512 /*
1513 * Grow a b-tree so that it has more records.
1514 *
1515 * We might shift the tree depth in which case existing paths should
1516 * be considered invalid.
1517 *
1518 * Tree depth after the grow is returned via *final_depth.
1519 *
1520 * *last_eb_bh will be updated by ocfs2_add_branch().
1521 */
1522 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1523 int *final_depth, struct buffer_head **last_eb_bh,
1524 struct ocfs2_alloc_context *meta_ac)
1525 {
1526 int ret, shift;
1527 struct ocfs2_extent_list *el = et->et_root_el;
1528 int depth = le16_to_cpu(el->l_tree_depth);
1529 struct buffer_head *bh = NULL;
1530
1531 BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et));
1532
1533 shift = ocfs2_find_branch_target(et, &bh);
1534 if (shift < 0) {
1535 ret = shift;
1536 mlog_errno(ret);
1537 goto out;
1538 }
1539
1540 /* We traveled all the way to the bottom of the allocation tree
1541 * and didn't find room for any more extents - we need to add
1542 * another tree level */
1543 if (shift) {
1544 BUG_ON(bh);
1545 trace_ocfs2_grow_tree(
1546 (unsigned long long)
1547 ocfs2_metadata_cache_owner(et->et_ci),
1548 depth);
1549
1550 /* ocfs2_shift_tree_depth will return us a buffer with
1551 * the new extent block (so we can pass that to
1552 * ocfs2_add_branch). */
1553 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1554 if (ret < 0) {
1555 mlog_errno(ret);
1556 goto out;
1557 }
1558 depth++;
1559 if (depth == 1) {
1560 /*
1561 * Special case: we have room now if we shifted from
1562 * tree_depth 0, so no more work needs to be done.
1563 *
1564 * We won't be calling add_branch, so pass
1565 * back *last_eb_bh as the new leaf. At depth
1566 * zero, it should always be null so there's
1567 * no reason to brelse.
1568 */
1569 BUG_ON(*last_eb_bh);
1570 get_bh(bh);
1571 *last_eb_bh = bh;
1572 goto out;
1573 }
1574 }
1575
1576 /* call ocfs2_add_branch to add the final part of the tree with
1577 * the new data. */
1578 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1579 meta_ac);
1580 if (ret < 0)
1581 mlog_errno(ret);
1582
1583 out:
1584 if (final_depth)
1585 *final_depth = depth;
1586 brelse(bh);
1587 return ret;
1588 }
1589
1590 /*
1591 * This function will discard the rightmost extent record.
1592 */
1593 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1594 {
1595 int next_free = le16_to_cpu(el->l_next_free_rec);
1596 int count = le16_to_cpu(el->l_count);
1597 unsigned int num_bytes;
1598
1599 BUG_ON(!next_free);
1600 /* This will cause us to go off the end of our extent list. */
1601 BUG_ON(next_free >= count);
1602
1603 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1604
1605 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1606 }
1607
1608 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1609 struct ocfs2_extent_rec *insert_rec)
1610 {
1611 int i, insert_index, next_free, has_empty, num_bytes;
1612 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1613 struct ocfs2_extent_rec *rec;
1614
1615 next_free = le16_to_cpu(el->l_next_free_rec);
1616 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1617
1618 BUG_ON(!next_free);
1619
1620 /* The tree code before us didn't allow enough room in the leaf. */
1621 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1622
1623 /*
1624 * The easiest way to approach this is to just remove the
1625 * empty extent and temporarily decrement next_free.
1626 */
1627 if (has_empty) {
1628 /*
1629 * If next_free was 1 (only an empty extent), this
1630 * loop won't execute, which is fine. We still want
1631 * the decrement above to happen.
1632 */
1633 for(i = 0; i < (next_free - 1); i++)
1634 el->l_recs[i] = el->l_recs[i+1];
1635
1636 next_free--;
1637 }
1638
1639 /*
1640 * Figure out what the new record index should be.
1641 */
1642 for(i = 0; i < next_free; i++) {
1643 rec = &el->l_recs[i];
1644
1645 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1646 break;
1647 }
1648 insert_index = i;
1649
1650 trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1651 has_empty, next_free,
1652 le16_to_cpu(el->l_count));
1653
1654 BUG_ON(insert_index < 0);
1655 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1656 BUG_ON(insert_index > next_free);
1657
1658 /*
1659 * No need to memmove if we're just adding to the tail.
1660 */
1661 if (insert_index != next_free) {
1662 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1663
1664 num_bytes = next_free - insert_index;
1665 num_bytes *= sizeof(struct ocfs2_extent_rec);
1666 memmove(&el->l_recs[insert_index + 1],
1667 &el->l_recs[insert_index],
1668 num_bytes);
1669 }
1670
1671 /*
1672 * Either we had an empty extent, and need to re-increment or
1673 * there was no empty extent on a non full rightmost leaf node,
1674 * in which case we still need to increment.
1675 */
1676 next_free++;
1677 el->l_next_free_rec = cpu_to_le16(next_free);
1678 /*
1679 * Make sure none of the math above just messed up our tree.
1680 */
1681 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1682
1683 el->l_recs[insert_index] = *insert_rec;
1684
1685 }
1686
1687 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1688 {
1689 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1690
1691 BUG_ON(num_recs == 0);
1692
1693 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1694 num_recs--;
1695 size = num_recs * sizeof(struct ocfs2_extent_rec);
1696 memmove(&el->l_recs[0], &el->l_recs[1], size);
1697 memset(&el->l_recs[num_recs], 0,
1698 sizeof(struct ocfs2_extent_rec));
1699 el->l_next_free_rec = cpu_to_le16(num_recs);
1700 }
1701 }
1702
1703 /*
1704 * Create an empty extent record .
1705 *
1706 * l_next_free_rec may be updated.
1707 *
1708 * If an empty extent already exists do nothing.
1709 */
1710 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1711 {
1712 int next_free = le16_to_cpu(el->l_next_free_rec);
1713
1714 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1715
1716 if (next_free == 0)
1717 goto set_and_inc;
1718
1719 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1720 return;
1721
1722 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1723 "Asked to create an empty extent in a full list:\n"
1724 "count = %u, tree depth = %u",
1725 le16_to_cpu(el->l_count),
1726 le16_to_cpu(el->l_tree_depth));
1727
1728 ocfs2_shift_records_right(el);
1729
1730 set_and_inc:
1731 le16_add_cpu(&el->l_next_free_rec, 1);
1732 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1733 }
1734
1735 /*
1736 * For a rotation which involves two leaf nodes, the "root node" is
1737 * the lowest level tree node which contains a path to both leafs. This
1738 * resulting set of information can be used to form a complete "subtree"
1739 *
1740 * This function is passed two full paths from the dinode down to a
1741 * pair of adjacent leaves. It's task is to figure out which path
1742 * index contains the subtree root - this can be the root index itself
1743 * in a worst-case rotation.
1744 *
1745 * The array index of the subtree root is passed back.
1746 */
1747 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1748 struct ocfs2_path *left,
1749 struct ocfs2_path *right)
1750 {
1751 int i = 0;
1752
1753 /*
1754 * Check that the caller passed in two paths from the same tree.
1755 */
1756 BUG_ON(path_root_bh(left) != path_root_bh(right));
1757
1758 do {
1759 i++;
1760
1761 /*
1762 * The caller didn't pass two adjacent paths.
1763 */
1764 mlog_bug_on_msg(i > left->p_tree_depth,
1765 "Owner %llu, left depth %u, right depth %u\n"
1766 "left leaf blk %llu, right leaf blk %llu\n",
1767 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1768 left->p_tree_depth, right->p_tree_depth,
1769 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1770 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1771 } while (left->p_node[i].bh->b_blocknr ==
1772 right->p_node[i].bh->b_blocknr);
1773
1774 return i - 1;
1775 }
1776
1777 typedef void (path_insert_t)(void *, struct buffer_head *);
1778
1779 /*
1780 * Traverse a btree path in search of cpos, starting at root_el.
1781 *
1782 * This code can be called with a cpos larger than the tree, in which
1783 * case it will return the rightmost path.
1784 */
1785 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1786 struct ocfs2_extent_list *root_el, u32 cpos,
1787 path_insert_t *func, void *data)
1788 {
1789 int i, ret = 0;
1790 u32 range;
1791 u64 blkno;
1792 struct buffer_head *bh = NULL;
1793 struct ocfs2_extent_block *eb;
1794 struct ocfs2_extent_list *el;
1795 struct ocfs2_extent_rec *rec;
1796
1797 el = root_el;
1798 while (el->l_tree_depth) {
1799 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1800 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1801 "Owner %llu has empty extent list at depth %u\n",
1802 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1803 le16_to_cpu(el->l_tree_depth));
1804 ret = -EROFS;
1805 goto out;
1806
1807 }
1808
1809 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1810 rec = &el->l_recs[i];
1811
1812 /*
1813 * In the case that cpos is off the allocation
1814 * tree, this should just wind up returning the
1815 * rightmost record.
1816 */
1817 range = le32_to_cpu(rec->e_cpos) +
1818 ocfs2_rec_clusters(el, rec);
1819 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1820 break;
1821 }
1822
1823 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1824 if (blkno == 0) {
1825 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1826 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1827 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1828 le16_to_cpu(el->l_tree_depth), i);
1829 ret = -EROFS;
1830 goto out;
1831 }
1832
1833 brelse(bh);
1834 bh = NULL;
1835 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1836 if (ret) {
1837 mlog_errno(ret);
1838 goto out;
1839 }
1840
1841 eb = (struct ocfs2_extent_block *) bh->b_data;
1842 el = &eb->h_list;
1843
1844 if (le16_to_cpu(el->l_next_free_rec) >
1845 le16_to_cpu(el->l_count)) {
1846 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1847 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1848 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1849 (unsigned long long)bh->b_blocknr,
1850 le16_to_cpu(el->l_next_free_rec),
1851 le16_to_cpu(el->l_count));
1852 ret = -EROFS;
1853 goto out;
1854 }
1855
1856 if (func)
1857 func(data, bh);
1858 }
1859
1860 out:
1861 /*
1862 * Catch any trailing bh that the loop didn't handle.
1863 */
1864 brelse(bh);
1865
1866 return ret;
1867 }
1868
1869 /*
1870 * Given an initialized path (that is, it has a valid root extent
1871 * list), this function will traverse the btree in search of the path
1872 * which would contain cpos.
1873 *
1874 * The path traveled is recorded in the path structure.
1875 *
1876 * Note that this will not do any comparisons on leaf node extent
1877 * records, so it will work fine in the case that we just added a tree
1878 * branch.
1879 */
1880 struct find_path_data {
1881 int index;
1882 struct ocfs2_path *path;
1883 };
1884 static void find_path_ins(void *data, struct buffer_head *bh)
1885 {
1886 struct find_path_data *fp = data;
1887
1888 get_bh(bh);
1889 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1890 fp->index++;
1891 }
1892 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1893 struct ocfs2_path *path, u32 cpos)
1894 {
1895 struct find_path_data data;
1896
1897 data.index = 1;
1898 data.path = path;
1899 return __ocfs2_find_path(ci, path_root_el(path), cpos,
1900 find_path_ins, &data);
1901 }
1902
1903 static void find_leaf_ins(void *data, struct buffer_head *bh)
1904 {
1905 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1906 struct ocfs2_extent_list *el = &eb->h_list;
1907 struct buffer_head **ret = data;
1908
1909 /* We want to retain only the leaf block. */
1910 if (le16_to_cpu(el->l_tree_depth) == 0) {
1911 get_bh(bh);
1912 *ret = bh;
1913 }
1914 }
1915 /*
1916 * Find the leaf block in the tree which would contain cpos. No
1917 * checking of the actual leaf is done.
1918 *
1919 * Some paths want to call this instead of allocating a path structure
1920 * and calling ocfs2_find_path().
1921 *
1922 * This function doesn't handle non btree extent lists.
1923 */
1924 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1925 struct ocfs2_extent_list *root_el, u32 cpos,
1926 struct buffer_head **leaf_bh)
1927 {
1928 int ret;
1929 struct buffer_head *bh = NULL;
1930
1931 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1932 if (ret) {
1933 mlog_errno(ret);
1934 goto out;
1935 }
1936
1937 *leaf_bh = bh;
1938 out:
1939 return ret;
1940 }
1941
1942 /*
1943 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1944 *
1945 * Basically, we've moved stuff around at the bottom of the tree and
1946 * we need to fix up the extent records above the changes to reflect
1947 * the new changes.
1948 *
1949 * left_rec: the record on the left.
1950 * right_rec: the record to the right of left_rec
1951 * right_child_el: is the child list pointed to by right_rec
1952 *
1953 * By definition, this only works on interior nodes.
1954 */
1955 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1956 struct ocfs2_extent_rec *right_rec,
1957 struct ocfs2_extent_list *right_child_el)
1958 {
1959 u32 left_clusters, right_end;
1960
1961 /*
1962 * Interior nodes never have holes. Their cpos is the cpos of
1963 * the leftmost record in their child list. Their cluster
1964 * count covers the full theoretical range of their child list
1965 * - the range between their cpos and the cpos of the record
1966 * immediately to their right.
1967 */
1968 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1969 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1970 BUG_ON(right_child_el->l_tree_depth);
1971 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1972 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1973 }
1974 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1975 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1976
1977 /*
1978 * Calculate the rightmost cluster count boundary before
1979 * moving cpos - we will need to adjust clusters after
1980 * updating e_cpos to keep the same highest cluster count.
1981 */
1982 right_end = le32_to_cpu(right_rec->e_cpos);
1983 right_end += le32_to_cpu(right_rec->e_int_clusters);
1984
1985 right_rec->e_cpos = left_rec->e_cpos;
1986 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1987
1988 right_end -= le32_to_cpu(right_rec->e_cpos);
1989 right_rec->e_int_clusters = cpu_to_le32(right_end);
1990 }
1991
1992 /*
1993 * Adjust the adjacent root node records involved in a
1994 * rotation. left_el_blkno is passed in as a key so that we can easily
1995 * find it's index in the root list.
1996 */
1997 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1998 struct ocfs2_extent_list *left_el,
1999 struct ocfs2_extent_list *right_el,
2000 u64 left_el_blkno)
2001 {
2002 int i;
2003
2004 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2005 le16_to_cpu(left_el->l_tree_depth));
2006
2007 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2008 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2009 break;
2010 }
2011
2012 /*
2013 * The path walking code should have never returned a root and
2014 * two paths which are not adjacent.
2015 */
2016 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2017
2018 ocfs2_adjust_adjacent_records(&root_el->l_recs[i],
2019 &root_el->l_recs[i + 1], right_el);
2020 }
2021
2022 /*
2023 * We've changed a leaf block (in right_path) and need to reflect that
2024 * change back up the subtree.
2025 *
2026 * This happens in multiple places:
2027 * - When we've moved an extent record from the left path leaf to the right
2028 * path leaf to make room for an empty extent in the left path leaf.
2029 * - When our insert into the right path leaf is at the leftmost edge
2030 * and requires an update of the path immediately to it's left. This
2031 * can occur at the end of some types of rotation and appending inserts.
2032 * - When we've adjusted the last extent record in the left path leaf and the
2033 * 1st extent record in the right path leaf during cross extent block merge.
2034 */
2035 static void ocfs2_complete_edge_insert(handle_t *handle,
2036 struct ocfs2_path *left_path,
2037 struct ocfs2_path *right_path,
2038 int subtree_index)
2039 {
2040 int i, idx;
2041 struct ocfs2_extent_list *el, *left_el, *right_el;
2042 struct ocfs2_extent_rec *left_rec, *right_rec;
2043 struct buffer_head *root_bh;
2044
2045 /*
2046 * Update the counts and position values within all the
2047 * interior nodes to reflect the leaf rotation we just did.
2048 *
2049 * The root node is handled below the loop.
2050 *
2051 * We begin the loop with right_el and left_el pointing to the
2052 * leaf lists and work our way up.
2053 *
2054 * NOTE: within this loop, left_el and right_el always refer
2055 * to the *child* lists.
2056 */
2057 left_el = path_leaf_el(left_path);
2058 right_el = path_leaf_el(right_path);
2059 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2060 trace_ocfs2_complete_edge_insert(i);
2061
2062 /*
2063 * One nice property of knowing that all of these
2064 * nodes are below the root is that we only deal with
2065 * the leftmost right node record and the rightmost
2066 * left node record.
2067 */
2068 el = left_path->p_node[i].el;
2069 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2070 left_rec = &el->l_recs[idx];
2071
2072 el = right_path->p_node[i].el;
2073 right_rec = &el->l_recs[0];
2074
2075 ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el);
2076
2077 ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2078 ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2079
2080 /*
2081 * Setup our list pointers now so that the current
2082 * parents become children in the next iteration.
2083 */
2084 left_el = left_path->p_node[i].el;
2085 right_el = right_path->p_node[i].el;
2086 }
2087
2088 /*
2089 * At the root node, adjust the two adjacent records which
2090 * begin our path to the leaves.
2091 */
2092
2093 el = left_path->p_node[subtree_index].el;
2094 left_el = left_path->p_node[subtree_index + 1].el;
2095 right_el = right_path->p_node[subtree_index + 1].el;
2096
2097 ocfs2_adjust_root_records(el, left_el, right_el,
2098 left_path->p_node[subtree_index + 1].bh->b_blocknr);
2099
2100 root_bh = left_path->p_node[subtree_index].bh;
2101
2102 ocfs2_journal_dirty(handle, root_bh);
2103 }
2104
2105 static int ocfs2_rotate_subtree_right(handle_t *handle,
2106 struct ocfs2_extent_tree *et,
2107 struct ocfs2_path *left_path,
2108 struct ocfs2_path *right_path,
2109 int subtree_index)
2110 {
2111 int ret, i;
2112 struct buffer_head *right_leaf_bh;
2113 struct buffer_head *left_leaf_bh = NULL;
2114 struct buffer_head *root_bh;
2115 struct ocfs2_extent_list *right_el, *left_el;
2116 struct ocfs2_extent_rec move_rec;
2117
2118 left_leaf_bh = path_leaf_bh(left_path);
2119 left_el = path_leaf_el(left_path);
2120
2121 if (left_el->l_next_free_rec != left_el->l_count) {
2122 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2123 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2124 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2125 (unsigned long long)left_leaf_bh->b_blocknr,
2126 le16_to_cpu(left_el->l_next_free_rec));
2127 return -EROFS;
2128 }
2129
2130 /*
2131 * This extent block may already have an empty record, so we
2132 * return early if so.
2133 */
2134 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2135 return 0;
2136
2137 root_bh = left_path->p_node[subtree_index].bh;
2138 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2139
2140 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2141 subtree_index);
2142 if (ret) {
2143 mlog_errno(ret);
2144 goto out;
2145 }
2146
2147 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2148 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2149 right_path, i);
2150 if (ret) {
2151 mlog_errno(ret);
2152 goto out;
2153 }
2154
2155 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2156 left_path, i);
2157 if (ret) {
2158 mlog_errno(ret);
2159 goto out;
2160 }
2161 }
2162
2163 right_leaf_bh = path_leaf_bh(right_path);
2164 right_el = path_leaf_el(right_path);
2165
2166 /* This is a code error, not a disk corruption. */
2167 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2168 "because rightmost leaf block %llu is empty\n",
2169 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2170 (unsigned long long)right_leaf_bh->b_blocknr);
2171
2172 ocfs2_create_empty_extent(right_el);
2173
2174 ocfs2_journal_dirty(handle, right_leaf_bh);
2175
2176 /* Do the copy now. */
2177 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2178 move_rec = left_el->l_recs[i];
2179 right_el->l_recs[0] = move_rec;
2180
2181 /*
2182 * Clear out the record we just copied and shift everything
2183 * over, leaving an empty extent in the left leaf.
2184 *
2185 * We temporarily subtract from next_free_rec so that the
2186 * shift will lose the tail record (which is now defunct).
2187 */
2188 le16_add_cpu(&left_el->l_next_free_rec, -1);
2189 ocfs2_shift_records_right(left_el);
2190 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2191 le16_add_cpu(&left_el->l_next_free_rec, 1);
2192
2193 ocfs2_journal_dirty(handle, left_leaf_bh);
2194
2195 ocfs2_complete_edge_insert(handle, left_path, right_path,
2196 subtree_index);
2197
2198 out:
2199 return ret;
2200 }
2201
2202 /*
2203 * Given a full path, determine what cpos value would return us a path
2204 * containing the leaf immediately to the left of the current one.
2205 *
2206 * Will return zero if the path passed in is already the leftmost path.
2207 */
2208 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2209 struct ocfs2_path *path, u32 *cpos)
2210 {
2211 int i, j, ret = 0;
2212 u64 blkno;
2213 struct ocfs2_extent_list *el;
2214
2215 BUG_ON(path->p_tree_depth == 0);
2216
2217 *cpos = 0;
2218
2219 blkno = path_leaf_bh(path)->b_blocknr;
2220
2221 /* Start at the tree node just above the leaf and work our way up. */
2222 i = path->p_tree_depth - 1;
2223 while (i >= 0) {
2224 el = path->p_node[i].el;
2225
2226 /*
2227 * Find the extent record just before the one in our
2228 * path.
2229 */
2230 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2231 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2232 if (j == 0) {
2233 if (i == 0) {
2234 /*
2235 * We've determined that the
2236 * path specified is already
2237 * the leftmost one - return a
2238 * cpos of zero.
2239 */
2240 goto out;
2241 }
2242 /*
2243 * The leftmost record points to our
2244 * leaf - we need to travel up the
2245 * tree one level.
2246 */
2247 goto next_node;
2248 }
2249
2250 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2251 *cpos = *cpos + ocfs2_rec_clusters(el,
2252 &el->l_recs[j - 1]);
2253 *cpos = *cpos - 1;
2254 goto out;
2255 }
2256 }
2257
2258 /*
2259 * If we got here, we never found a valid node where
2260 * the tree indicated one should be.
2261 */
2262 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2263 (unsigned long long)blkno);
2264 ret = -EROFS;
2265 goto out;
2266
2267 next_node:
2268 blkno = path->p_node[i].bh->b_blocknr;
2269 i--;
2270 }
2271
2272 out:
2273 return ret;
2274 }
2275
2276 /*
2277 * Extend the transaction by enough credits to complete the rotation,
2278 * and still leave at least the original number of credits allocated
2279 * to this transaction.
2280 */
2281 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2282 int op_credits,
2283 struct ocfs2_path *path)
2284 {
2285 int ret = 0;
2286 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2287
2288 if (jbd2_handle_buffer_credits(handle) < credits)
2289 ret = ocfs2_extend_trans(handle,
2290 credits - jbd2_handle_buffer_credits(handle));
2291
2292 return ret;
2293 }
2294
2295 /*
2296 * Trap the case where we're inserting into the theoretical range past
2297 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2298 * whose cpos is less than ours into the right leaf.
2299 *
2300 * It's only necessary to look at the rightmost record of the left
2301 * leaf because the logic that calls us should ensure that the
2302 * theoretical ranges in the path components above the leaves are
2303 * correct.
2304 */
2305 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2306 u32 insert_cpos)
2307 {
2308 struct ocfs2_extent_list *left_el;
2309 struct ocfs2_extent_rec *rec;
2310 int next_free;
2311
2312 left_el = path_leaf_el(left_path);
2313 next_free = le16_to_cpu(left_el->l_next_free_rec);
2314 rec = &left_el->l_recs[next_free - 1];
2315
2316 if (insert_cpos > le32_to_cpu(rec->e_cpos))
2317 return 1;
2318 return 0;
2319 }
2320
2321 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2322 {
2323 int next_free = le16_to_cpu(el->l_next_free_rec);
2324 unsigned int range;
2325 struct ocfs2_extent_rec *rec;
2326
2327 if (next_free == 0)
2328 return 0;
2329
2330 rec = &el->l_recs[0];
2331 if (ocfs2_is_empty_extent(rec)) {
2332 /* Empty list. */
2333 if (next_free == 1)
2334 return 0;
2335 rec = &el->l_recs[1];
2336 }
2337
2338 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2339 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2340 return 1;
2341 return 0;
2342 }
2343
2344 /*
2345 * Rotate all the records in a btree right one record, starting at insert_cpos.
2346 *
2347 * The path to the rightmost leaf should be passed in.
2348 *
2349 * The array is assumed to be large enough to hold an entire path (tree depth).
2350 *
2351 * Upon successful return from this function:
2352 *
2353 * - The 'right_path' array will contain a path to the leaf block
2354 * whose range contains e_cpos.
2355 * - That leaf block will have a single empty extent in list index 0.
2356 * - In the case that the rotation requires a post-insert update,
2357 * *ret_left_path will contain a valid path which can be passed to
2358 * ocfs2_insert_path().
2359 */
2360 static int ocfs2_rotate_tree_right(handle_t *handle,
2361 struct ocfs2_extent_tree *et,
2362 enum ocfs2_split_type split,
2363 u32 insert_cpos,
2364 struct ocfs2_path *right_path,
2365 struct ocfs2_path **ret_left_path)
2366 {
2367 int ret, start, orig_credits = jbd2_handle_buffer_credits(handle);
2368 u32 cpos;
2369 struct ocfs2_path *left_path = NULL;
2370 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2371
2372 *ret_left_path = NULL;
2373
2374 left_path = ocfs2_new_path_from_path(right_path);
2375 if (!left_path) {
2376 ret = -ENOMEM;
2377 mlog_errno(ret);
2378 goto out;
2379 }
2380
2381 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2382 if (ret) {
2383 mlog_errno(ret);
2384 goto out;
2385 }
2386
2387 trace_ocfs2_rotate_tree_right(
2388 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2389 insert_cpos, cpos);
2390
2391 /*
2392 * What we want to do here is:
2393 *
2394 * 1) Start with the rightmost path.
2395 *
2396 * 2) Determine a path to the leaf block directly to the left
2397 * of that leaf.
2398 *
2399 * 3) Determine the 'subtree root' - the lowest level tree node
2400 * which contains a path to both leaves.
2401 *
2402 * 4) Rotate the subtree.
2403 *
2404 * 5) Find the next subtree by considering the left path to be
2405 * the new right path.
2406 *
2407 * The check at the top of this while loop also accepts
2408 * insert_cpos == cpos because cpos is only a _theoretical_
2409 * value to get us the left path - insert_cpos might very well
2410 * be filling that hole.
2411 *
2412 * Stop at a cpos of '0' because we either started at the
2413 * leftmost branch (i.e., a tree with one branch and a
2414 * rotation inside of it), or we've gone as far as we can in
2415 * rotating subtrees.
2416 */
2417 while (cpos && insert_cpos <= cpos) {
2418 trace_ocfs2_rotate_tree_right(
2419 (unsigned long long)
2420 ocfs2_metadata_cache_owner(et->et_ci),
2421 insert_cpos, cpos);
2422
2423 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2424 if (ret) {
2425 mlog_errno(ret);
2426 goto out;
2427 }
2428
2429 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2430 path_leaf_bh(right_path),
2431 "Owner %llu: error during insert of %u "
2432 "(left path cpos %u) results in two identical "
2433 "paths ending at %llu\n",
2434 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2435 insert_cpos, cpos,
2436 (unsigned long long)
2437 path_leaf_bh(left_path)->b_blocknr);
2438
2439 if (split == SPLIT_NONE &&
2440 ocfs2_rotate_requires_path_adjustment(left_path,
2441 insert_cpos)) {
2442
2443 /*
2444 * We've rotated the tree as much as we
2445 * should. The rest is up to
2446 * ocfs2_insert_path() to complete, after the
2447 * record insertion. We indicate this
2448 * situation by returning the left path.
2449 *
2450 * The reason we don't adjust the records here
2451 * before the record insert is that an error
2452 * later might break the rule where a parent
2453 * record e_cpos will reflect the actual
2454 * e_cpos of the 1st nonempty record of the
2455 * child list.
2456 */
2457 *ret_left_path = left_path;
2458 goto out_ret_path;
2459 }
2460
2461 start = ocfs2_find_subtree_root(et, left_path, right_path);
2462
2463 trace_ocfs2_rotate_subtree(start,
2464 (unsigned long long)
2465 right_path->p_node[start].bh->b_blocknr,
2466 right_path->p_tree_depth);
2467
2468 ret = ocfs2_extend_rotate_transaction(handle, start,
2469 orig_credits, right_path);
2470 if (ret) {
2471 mlog_errno(ret);
2472 goto out;
2473 }
2474
2475 ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2476 right_path, start);
2477 if (ret) {
2478 mlog_errno(ret);
2479 goto out;
2480 }
2481
2482 if (split != SPLIT_NONE &&
2483 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2484 insert_cpos)) {
2485 /*
2486 * A rotate moves the rightmost left leaf
2487 * record over to the leftmost right leaf
2488 * slot. If we're doing an extent split
2489 * instead of a real insert, then we have to
2490 * check that the extent to be split wasn't
2491 * just moved over. If it was, then we can
2492 * exit here, passing left_path back -
2493 * ocfs2_split_extent() is smart enough to
2494 * search both leaves.
2495 */
2496 *ret_left_path = left_path;
2497 goto out_ret_path;
2498 }
2499
2500 /*
2501 * There is no need to re-read the next right path
2502 * as we know that it'll be our current left
2503 * path. Optimize by copying values instead.
2504 */
2505 ocfs2_mv_path(right_path, left_path);
2506
2507 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2508 if (ret) {
2509 mlog_errno(ret);
2510 goto out;
2511 }
2512 }
2513
2514 out:
2515 ocfs2_free_path(left_path);
2516
2517 out_ret_path:
2518 return ret;
2519 }
2520
2521 static int ocfs2_update_edge_lengths(handle_t *handle,
2522 struct ocfs2_extent_tree *et,
2523 struct ocfs2_path *path)
2524 {
2525 int i, idx, ret;
2526 struct ocfs2_extent_rec *rec;
2527 struct ocfs2_extent_list *el;
2528 struct ocfs2_extent_block *eb;
2529 u32 range;
2530
2531 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2532 if (ret) {
2533 mlog_errno(ret);
2534 goto out;
2535 }
2536
2537 /* Path should always be rightmost. */
2538 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2539 BUG_ON(eb->h_next_leaf_blk != 0ULL);
2540
2541 el = &eb->h_list;
2542 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2543 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2544 rec = &el->l_recs[idx];
2545 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2546
2547 for (i = 0; i < path->p_tree_depth; i++) {
2548 el = path->p_node[i].el;
2549 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2550 rec = &el->l_recs[idx];
2551
2552 rec->e_int_clusters = cpu_to_le32(range);
2553 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2554
2555 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2556 }
2557 out:
2558 return ret;
2559 }
2560
2561 static void ocfs2_unlink_path(handle_t *handle,
2562 struct ocfs2_extent_tree *et,
2563 struct ocfs2_cached_dealloc_ctxt *dealloc,
2564 struct ocfs2_path *path, int unlink_start)
2565 {
2566 int ret, i;
2567 struct ocfs2_extent_block *eb;
2568 struct ocfs2_extent_list *el;
2569 struct buffer_head *bh;
2570
2571 for(i = unlink_start; i < path_num_items(path); i++) {
2572 bh = path->p_node[i].bh;
2573
2574 eb = (struct ocfs2_extent_block *)bh->b_data;
2575 /*
2576 * Not all nodes might have had their final count
2577 * decremented by the caller - handle this here.
2578 */
2579 el = &eb->h_list;
2580 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2581 mlog(ML_ERROR,
2582 "Inode %llu, attempted to remove extent block "
2583 "%llu with %u records\n",
2584 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2585 (unsigned long long)le64_to_cpu(eb->h_blkno),
2586 le16_to_cpu(el->l_next_free_rec));
2587
2588 ocfs2_journal_dirty(handle, bh);
2589 ocfs2_remove_from_cache(et->et_ci, bh);
2590 continue;
2591 }
2592
2593 el->l_next_free_rec = 0;
2594 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2595
2596 ocfs2_journal_dirty(handle, bh);
2597
2598 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2599 if (ret)
2600 mlog_errno(ret);
2601
2602 ocfs2_remove_from_cache(et->et_ci, bh);
2603 }
2604 }
2605
2606 static void ocfs2_unlink_subtree(handle_t *handle,
2607 struct ocfs2_extent_tree *et,
2608 struct ocfs2_path *left_path,
2609 struct ocfs2_path *right_path,
2610 int subtree_index,
2611 struct ocfs2_cached_dealloc_ctxt *dealloc)
2612 {
2613 int i;
2614 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2615 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2616 struct ocfs2_extent_block *eb;
2617
2618 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2619
2620 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2621 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2622 break;
2623
2624 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2625
2626 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2627 le16_add_cpu(&root_el->l_next_free_rec, -1);
2628
2629 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2630 eb->h_next_leaf_blk = 0;
2631
2632 ocfs2_journal_dirty(handle, root_bh);
2633 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2634
2635 ocfs2_unlink_path(handle, et, dealloc, right_path,
2636 subtree_index + 1);
2637 }
2638
2639 static int ocfs2_rotate_subtree_left(handle_t *handle,
2640 struct ocfs2_extent_tree *et,
2641 struct ocfs2_path *left_path,
2642 struct ocfs2_path *right_path,
2643 int subtree_index,
2644 struct ocfs2_cached_dealloc_ctxt *dealloc,
2645 int *deleted)
2646 {
2647 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2648 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2649 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2650 struct ocfs2_extent_block *eb;
2651
2652 *deleted = 0;
2653
2654 right_leaf_el = path_leaf_el(right_path);
2655 left_leaf_el = path_leaf_el(left_path);
2656 root_bh = left_path->p_node[subtree_index].bh;
2657 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2658
2659 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2660 return 0;
2661
2662 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2663 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2664 /*
2665 * It's legal for us to proceed if the right leaf is
2666 * the rightmost one and it has an empty extent. There
2667 * are two cases to handle - whether the leaf will be
2668 * empty after removal or not. If the leaf isn't empty
2669 * then just remove the empty extent up front. The
2670 * next block will handle empty leaves by flagging
2671 * them for unlink.
2672 *
2673 * Non rightmost leaves will throw -EAGAIN and the
2674 * caller can manually move the subtree and retry.
2675 */
2676
2677 if (eb->h_next_leaf_blk != 0ULL)
2678 return -EAGAIN;
2679
2680 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2681 ret = ocfs2_journal_access_eb(handle, et->et_ci,
2682 path_leaf_bh(right_path),
2683 OCFS2_JOURNAL_ACCESS_WRITE);
2684 if (ret) {
2685 mlog_errno(ret);
2686 goto out;
2687 }
2688
2689 ocfs2_remove_empty_extent(right_leaf_el);
2690 } else
2691 right_has_empty = 1;
2692 }
2693
2694 if (eb->h_next_leaf_blk == 0ULL &&
2695 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2696 /*
2697 * We have to update i_last_eb_blk during the meta
2698 * data delete.
2699 */
2700 ret = ocfs2_et_root_journal_access(handle, et,
2701 OCFS2_JOURNAL_ACCESS_WRITE);
2702 if (ret) {
2703 mlog_errno(ret);
2704 goto out;
2705 }
2706
2707 del_right_subtree = 1;
2708 }
2709
2710 /*
2711 * Getting here with an empty extent in the right path implies
2712 * that it's the rightmost path and will be deleted.
2713 */
2714 BUG_ON(right_has_empty && !del_right_subtree);
2715
2716 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2717 subtree_index);
2718 if (ret) {
2719 mlog_errno(ret);
2720 goto out;
2721 }
2722
2723 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2724 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2725 right_path, i);
2726 if (ret) {
2727 mlog_errno(ret);
2728 goto out;
2729 }
2730
2731 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2732 left_path, i);
2733 if (ret) {
2734 mlog_errno(ret);
2735 goto out;
2736 }
2737 }
2738
2739 if (!right_has_empty) {
2740 /*
2741 * Only do this if we're moving a real
2742 * record. Otherwise, the action is delayed until
2743 * after removal of the right path in which case we
2744 * can do a simple shift to remove the empty extent.
2745 */
2746 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2747 memset(&right_leaf_el->l_recs[0], 0,
2748 sizeof(struct ocfs2_extent_rec));
2749 }
2750 if (eb->h_next_leaf_blk == 0ULL) {
2751 /*
2752 * Move recs over to get rid of empty extent, decrease
2753 * next_free. This is allowed to remove the last
2754 * extent in our leaf (setting l_next_free_rec to
2755 * zero) - the delete code below won't care.
2756 */
2757 ocfs2_remove_empty_extent(right_leaf_el);
2758 }
2759
2760 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2761 ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2762
2763 if (del_right_subtree) {
2764 ocfs2_unlink_subtree(handle, et, left_path, right_path,
2765 subtree_index, dealloc);
2766 ret = ocfs2_update_edge_lengths(handle, et, left_path);
2767 if (ret) {
2768 mlog_errno(ret);
2769 goto out;
2770 }
2771
2772 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2773 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2774
2775 /*
2776 * Removal of the extent in the left leaf was skipped
2777 * above so we could delete the right path
2778 * 1st.
2779 */
2780 if (right_has_empty)
2781 ocfs2_remove_empty_extent(left_leaf_el);
2782
2783 ocfs2_journal_dirty(handle, et_root_bh);
2784
2785 *deleted = 1;
2786 } else
2787 ocfs2_complete_edge_insert(handle, left_path, right_path,
2788 subtree_index);
2789
2790 out:
2791 return ret;
2792 }
2793
2794 /*
2795 * Given a full path, determine what cpos value would return us a path
2796 * containing the leaf immediately to the right of the current one.
2797 *
2798 * Will return zero if the path passed in is already the rightmost path.
2799 *
2800 * This looks similar, but is subtly different to
2801 * ocfs2_find_cpos_for_left_leaf().
2802 */
2803 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2804 struct ocfs2_path *path, u32 *cpos)
2805 {
2806 int i, j, ret = 0;
2807 u64 blkno;
2808 struct ocfs2_extent_list *el;
2809
2810 *cpos = 0;
2811
2812 if (path->p_tree_depth == 0)
2813 return 0;
2814
2815 blkno = path_leaf_bh(path)->b_blocknr;
2816
2817 /* Start at the tree node just above the leaf and work our way up. */
2818 i = path->p_tree_depth - 1;
2819 while (i >= 0) {
2820 int next_free;
2821
2822 el = path->p_node[i].el;
2823
2824 /*
2825 * Find the extent record just after the one in our
2826 * path.
2827 */
2828 next_free = le16_to_cpu(el->l_next_free_rec);
2829 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2830 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2831 if (j == (next_free - 1)) {
2832 if (i == 0) {
2833 /*
2834 * We've determined that the
2835 * path specified is already
2836 * the rightmost one - return a
2837 * cpos of zero.
2838 */
2839 goto out;
2840 }
2841 /*
2842 * The rightmost record points to our
2843 * leaf - we need to travel up the
2844 * tree one level.
2845 */
2846 goto next_node;
2847 }
2848
2849 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2850 goto out;
2851 }
2852 }
2853
2854 /*
2855 * If we got here, we never found a valid node where
2856 * the tree indicated one should be.
2857 */
2858 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2859 (unsigned long long)blkno);
2860 ret = -EROFS;
2861 goto out;
2862
2863 next_node:
2864 blkno = path->p_node[i].bh->b_blocknr;
2865 i--;
2866 }
2867
2868 out:
2869 return ret;
2870 }
2871
2872 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2873 struct ocfs2_extent_tree *et,
2874 struct ocfs2_path *path)
2875 {
2876 int ret;
2877 struct buffer_head *bh = path_leaf_bh(path);
2878 struct ocfs2_extent_list *el = path_leaf_el(path);
2879
2880 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2881 return 0;
2882
2883 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2884 path_num_items(path) - 1);
2885 if (ret) {
2886 mlog_errno(ret);
2887 goto out;
2888 }
2889
2890 ocfs2_remove_empty_extent(el);
2891 ocfs2_journal_dirty(handle, bh);
2892
2893 out:
2894 return ret;
2895 }
2896
2897 static int __ocfs2_rotate_tree_left(handle_t *handle,
2898 struct ocfs2_extent_tree *et,
2899 int orig_credits,
2900 struct ocfs2_path *path,
2901 struct ocfs2_cached_dealloc_ctxt *dealloc,
2902 struct ocfs2_path **empty_extent_path)
2903 {
2904 int ret, subtree_root, deleted;
2905 u32 right_cpos;
2906 struct ocfs2_path *left_path = NULL;
2907 struct ocfs2_path *right_path = NULL;
2908 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2909
2910 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])))
2911 return 0;
2912
2913 *empty_extent_path = NULL;
2914
2915 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2916 if (ret) {
2917 mlog_errno(ret);
2918 goto out;
2919 }
2920
2921 left_path = ocfs2_new_path_from_path(path);
2922 if (!left_path) {
2923 ret = -ENOMEM;
2924 mlog_errno(ret);
2925 goto out;
2926 }
2927
2928 ocfs2_cp_path(left_path, path);
2929
2930 right_path = ocfs2_new_path_from_path(path);
2931 if (!right_path) {
2932 ret = -ENOMEM;
2933 mlog_errno(ret);
2934 goto out;
2935 }
2936
2937 while (right_cpos) {
2938 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2939 if (ret) {
2940 mlog_errno(ret);
2941 goto out;
2942 }
2943
2944 subtree_root = ocfs2_find_subtree_root(et, left_path,
2945 right_path);
2946
2947 trace_ocfs2_rotate_subtree(subtree_root,
2948 (unsigned long long)
2949 right_path->p_node[subtree_root].bh->b_blocknr,
2950 right_path->p_tree_depth);
2951
2952 ret = ocfs2_extend_rotate_transaction(handle, 0,
2953 orig_credits, left_path);
2954 if (ret) {
2955 mlog_errno(ret);
2956 goto out;
2957 }
2958
2959 /*
2960 * Caller might still want to make changes to the
2961 * tree root, so re-add it to the journal here.
2962 */
2963 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2964 left_path, 0);
2965 if (ret) {
2966 mlog_errno(ret);
2967 goto out;
2968 }
2969
2970 ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2971 right_path, subtree_root,
2972 dealloc, &deleted);
2973 if (ret == -EAGAIN) {
2974 /*
2975 * The rotation has to temporarily stop due to
2976 * the right subtree having an empty
2977 * extent. Pass it back to the caller for a
2978 * fixup.
2979 */
2980 *empty_extent_path = right_path;
2981 right_path = NULL;
2982 goto out;
2983 }
2984 if (ret) {
2985 mlog_errno(ret);
2986 goto out;
2987 }
2988
2989 /*
2990 * The subtree rotate might have removed records on
2991 * the rightmost edge. If so, then rotation is
2992 * complete.
2993 */
2994 if (deleted)
2995 break;
2996
2997 ocfs2_mv_path(left_path, right_path);
2998
2999 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3000 &right_cpos);
3001 if (ret) {
3002 mlog_errno(ret);
3003 goto out;
3004 }
3005 }
3006
3007 out:
3008 ocfs2_free_path(right_path);
3009 ocfs2_free_path(left_path);
3010
3011 return ret;
3012 }
3013
3014 static int ocfs2_remove_rightmost_path(handle_t *handle,
3015 struct ocfs2_extent_tree *et,
3016 struct ocfs2_path *path,
3017 struct ocfs2_cached_dealloc_ctxt *dealloc)
3018 {
3019 int ret, subtree_index;
3020 u32 cpos;
3021 struct ocfs2_path *left_path = NULL;
3022 struct ocfs2_extent_block *eb;
3023 struct ocfs2_extent_list *el;
3024
3025 ret = ocfs2_et_sanity_check(et);
3026 if (ret)
3027 goto out;
3028
3029 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3030 if (ret) {
3031 mlog_errno(ret);
3032 goto out;
3033 }
3034
3035 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3036 path, &cpos);
3037 if (ret) {
3038 mlog_errno(ret);
3039 goto out;
3040 }
3041
3042 if (cpos) {
3043 /*
3044 * We have a path to the left of this one - it needs
3045 * an update too.
3046 */
3047 left_path = ocfs2_new_path_from_path(path);
3048 if (!left_path) {
3049 ret = -ENOMEM;
3050 mlog_errno(ret);
3051 goto out;
3052 }
3053
3054 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3055 if (ret) {
3056 mlog_errno(ret);
3057 goto out;
3058 }
3059
3060 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3061 if (ret) {
3062 mlog_errno(ret);
3063 goto out;
3064 }
3065
3066 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3067
3068 ocfs2_unlink_subtree(handle, et, left_path, path,
3069 subtree_index, dealloc);
3070 ret = ocfs2_update_edge_lengths(handle, et, left_path);
3071 if (ret) {
3072 mlog_errno(ret);
3073 goto out;
3074 }
3075
3076 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3077 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3078 } else {
3079 /*
3080 * 'path' is also the leftmost path which
3081 * means it must be the only one. This gets
3082 * handled differently because we want to
3083 * revert the root back to having extents
3084 * in-line.
3085 */
3086 ocfs2_unlink_path(handle, et, dealloc, path, 1);
3087
3088 el = et->et_root_el;
3089 el->l_tree_depth = 0;
3090 el->l_next_free_rec = 0;
3091 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3092
3093 ocfs2_et_set_last_eb_blk(et, 0);
3094 }
3095
3096 ocfs2_journal_dirty(handle, path_root_bh(path));
3097
3098 out:
3099 ocfs2_free_path(left_path);
3100 return ret;
3101 }
3102
3103 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb,
3104 struct ocfs2_extent_tree *et,
3105 struct ocfs2_path *path,
3106 struct ocfs2_cached_dealloc_ctxt *dealloc)
3107 {
3108 handle_t *handle;
3109 int ret;
3110 int credits = path->p_tree_depth * 2 + 1;
3111
3112 handle = ocfs2_start_trans(osb, credits);
3113 if (IS_ERR(handle)) {
3114 ret = PTR_ERR(handle);
3115 mlog_errno(ret);
3116 return ret;
3117 }
3118
3119 ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc);
3120 if (ret)
3121 mlog_errno(ret);
3122
3123 ocfs2_commit_trans(osb, handle);
3124 return ret;
3125 }
3126
3127 /*
3128 * Left rotation of btree records.
3129 *
3130 * In many ways, this is (unsurprisingly) the opposite of right
3131 * rotation. We start at some non-rightmost path containing an empty
3132 * extent in the leaf block. The code works its way to the rightmost
3133 * path by rotating records to the left in every subtree.
3134 *
3135 * This is used by any code which reduces the number of extent records
3136 * in a leaf. After removal, an empty record should be placed in the
3137 * leftmost list position.
3138 *
3139 * This won't handle a length update of the rightmost path records if
3140 * the rightmost tree leaf record is removed so the caller is
3141 * responsible for detecting and correcting that.
3142 */
3143 static int ocfs2_rotate_tree_left(handle_t *handle,
3144 struct ocfs2_extent_tree *et,
3145 struct ocfs2_path *path,
3146 struct ocfs2_cached_dealloc_ctxt *dealloc)
3147 {
3148 int ret, orig_credits = jbd2_handle_buffer_credits(handle);
3149 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3150 struct ocfs2_extent_block *eb;
3151 struct ocfs2_extent_list *el;
3152
3153 el = path_leaf_el(path);
3154 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3155 return 0;
3156
3157 if (path->p_tree_depth == 0) {
3158 rightmost_no_delete:
3159 /*
3160 * Inline extents. This is trivially handled, so do
3161 * it up front.
3162 */
3163 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3164 if (ret)
3165 mlog_errno(ret);
3166 goto out;
3167 }
3168
3169 /*
3170 * Handle rightmost branch now. There's several cases:
3171 * 1) simple rotation leaving records in there. That's trivial.
3172 * 2) rotation requiring a branch delete - there's no more
3173 * records left. Two cases of this:
3174 * a) There are branches to the left.
3175 * b) This is also the leftmost (the only) branch.
3176 *
3177 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3178 * 2a) we need the left branch so that we can update it with the unlink
3179 * 2b) we need to bring the root back to inline extents.
3180 */
3181
3182 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3183 el = &eb->h_list;
3184 if (eb->h_next_leaf_blk == 0) {
3185 /*
3186 * This gets a bit tricky if we're going to delete the
3187 * rightmost path. Get the other cases out of the way
3188 * 1st.
3189 */
3190 if (le16_to_cpu(el->l_next_free_rec) > 1)
3191 goto rightmost_no_delete;
3192
3193 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3194 ret = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3195 "Owner %llu has empty extent block at %llu\n",
3196 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3197 (unsigned long long)le64_to_cpu(eb->h_blkno));
3198 goto out;
3199 }
3200
3201 /*
3202 * XXX: The caller can not trust "path" any more after
3203 * this as it will have been deleted. What do we do?
3204 *
3205 * In theory the rotate-for-merge code will never get
3206 * here because it'll always ask for a rotate in a
3207 * nonempty list.
3208 */
3209
3210 ret = ocfs2_remove_rightmost_path(handle, et, path,
3211 dealloc);
3212 if (ret)
3213 mlog_errno(ret);
3214 goto out;
3215 }
3216
3217 /*
3218 * Now we can loop, remembering the path we get from -EAGAIN
3219 * and restarting from there.
3220 */
3221 try_rotate:
3222 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3223 dealloc, &restart_path);
3224 if (ret && ret != -EAGAIN) {
3225 mlog_errno(ret);
3226 goto out;
3227 }
3228
3229 while (ret == -EAGAIN) {
3230 tmp_path = restart_path;
3231 restart_path = NULL;
3232
3233 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3234 tmp_path, dealloc,
3235 &restart_path);
3236 if (ret && ret != -EAGAIN) {
3237 mlog_errno(ret);
3238 goto out;
3239 }
3240
3241 ocfs2_free_path(tmp_path);
3242 tmp_path = NULL;
3243
3244 if (ret == 0)
3245 goto try_rotate;
3246 }
3247
3248 out:
3249 ocfs2_free_path(tmp_path);
3250 ocfs2_free_path(restart_path);
3251 return ret;
3252 }
3253
3254 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3255 int index)
3256 {
3257 struct ocfs2_extent_rec *rec = &el->l_recs[index];
3258 unsigned int size;
3259
3260 if (rec->e_leaf_clusters == 0) {
3261 /*
3262 * We consumed all of the merged-from record. An empty
3263 * extent cannot exist anywhere but the 1st array
3264 * position, so move things over if the merged-from
3265 * record doesn't occupy that position.
3266 *
3267 * This creates a new empty extent so the caller
3268 * should be smart enough to have removed any existing
3269 * ones.
3270 */
3271 if (index > 0) {
3272 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3273 size = index * sizeof(struct ocfs2_extent_rec);
3274 memmove(&el->l_recs[1], &el->l_recs[0], size);
3275 }
3276
3277 /*
3278 * Always memset - the caller doesn't check whether it
3279 * created an empty extent, so there could be junk in
3280 * the other fields.
3281 */
3282 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3283 }
3284 }
3285
3286 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3287 struct ocfs2_path *left_path,
3288 struct ocfs2_path **ret_right_path)
3289 {
3290 int ret;
3291 u32 right_cpos;
3292 struct ocfs2_path *right_path = NULL;
3293 struct ocfs2_extent_list *left_el;
3294
3295 *ret_right_path = NULL;
3296
3297 /* This function shouldn't be called for non-trees. */
3298 BUG_ON(left_path->p_tree_depth == 0);
3299
3300 left_el = path_leaf_el(left_path);
3301 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3302
3303 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3304 left_path, &right_cpos);
3305 if (ret) {
3306 mlog_errno(ret);
3307 goto out;
3308 }
3309
3310 /* This function shouldn't be called for the rightmost leaf. */
3311 BUG_ON(right_cpos == 0);
3312
3313 right_path = ocfs2_new_path_from_path(left_path);
3314 if (!right_path) {
3315 ret = -ENOMEM;
3316 mlog_errno(ret);
3317 goto out;
3318 }
3319
3320 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3321 if (ret) {
3322 mlog_errno(ret);
3323 goto out;
3324 }
3325
3326 *ret_right_path = right_path;
3327 out:
3328 if (ret)
3329 ocfs2_free_path(right_path);
3330 return ret;
3331 }
3332
3333 /*
3334 * Remove split_rec clusters from the record at index and merge them
3335 * onto the beginning of the record "next" to it.
3336 * For index < l_count - 1, the next means the extent rec at index + 1.
3337 * For index == l_count - 1, the "next" means the 1st extent rec of the
3338 * next extent block.
3339 */
3340 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3341 handle_t *handle,
3342 struct ocfs2_extent_tree *et,
3343 struct ocfs2_extent_rec *split_rec,
3344 int index)
3345 {
3346 int ret, next_free, i;
3347 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3348 struct ocfs2_extent_rec *left_rec;
3349 struct ocfs2_extent_rec *right_rec;
3350 struct ocfs2_extent_list *right_el;
3351 struct ocfs2_path *right_path = NULL;
3352 int subtree_index = 0;
3353 struct ocfs2_extent_list *el = path_leaf_el(left_path);
3354 struct buffer_head *bh = path_leaf_bh(left_path);
3355 struct buffer_head *root_bh = NULL;
3356
3357 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3358 left_rec = &el->l_recs[index];
3359
3360 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3361 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3362 /* we meet with a cross extent block merge. */
3363 ret = ocfs2_get_right_path(et, left_path, &right_path);
3364 if (ret) {
3365 mlog_errno(ret);
3366 return ret;
3367 }
3368
3369 right_el = path_leaf_el(right_path);
3370 next_free = le16_to_cpu(right_el->l_next_free_rec);
3371 BUG_ON(next_free <= 0);
3372 right_rec = &right_el->l_recs[0];
3373 if (ocfs2_is_empty_extent(right_rec)) {
3374 BUG_ON(next_free <= 1);
3375 right_rec = &right_el->l_recs[1];
3376 }
3377
3378 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3379 le16_to_cpu(left_rec->e_leaf_clusters) !=
3380 le32_to_cpu(right_rec->e_cpos));
3381
3382 subtree_index = ocfs2_find_subtree_root(et, left_path,
3383 right_path);
3384
3385 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3386 jbd2_handle_buffer_credits(handle),
3387 right_path);
3388 if (ret) {
3389 mlog_errno(ret);
3390 goto out;
3391 }
3392
3393 root_bh = left_path->p_node[subtree_index].bh;
3394 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3395
3396 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3397 subtree_index);
3398 if (ret) {
3399 mlog_errno(ret);
3400 goto out;
3401 }
3402
3403 for (i = subtree_index + 1;
3404 i < path_num_items(right_path); i++) {
3405 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3406 right_path, i);
3407 if (ret) {
3408 mlog_errno(ret);
3409 goto out;
3410 }
3411
3412 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3413 left_path, i);
3414 if (ret) {
3415 mlog_errno(ret);
3416 goto out;
3417 }
3418 }
3419
3420 } else {
3421 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3422 right_rec = &el->l_recs[index + 1];
3423 }
3424
3425 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3426 path_num_items(left_path) - 1);
3427 if (ret) {
3428 mlog_errno(ret);
3429 goto out;
3430 }
3431
3432 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3433
3434 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3435 le64_add_cpu(&right_rec->e_blkno,
3436 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3437 split_clusters));
3438 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3439
3440 ocfs2_cleanup_merge(el, index);
3441
3442 ocfs2_journal_dirty(handle, bh);
3443 if (right_path) {
3444 ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3445 ocfs2_complete_edge_insert(handle, left_path, right_path,
3446 subtree_index);
3447 }
3448 out:
3449 ocfs2_free_path(right_path);
3450 return ret;
3451 }
3452
3453 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3454 struct ocfs2_path *right_path,
3455 struct ocfs2_path **ret_left_path)
3456 {
3457 int ret;
3458 u32 left_cpos;
3459 struct ocfs2_path *left_path = NULL;
3460
3461 *ret_left_path = NULL;
3462
3463 /* This function shouldn't be called for non-trees. */
3464 BUG_ON(right_path->p_tree_depth == 0);
3465
3466 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3467 right_path, &left_cpos);
3468 if (ret) {
3469 mlog_errno(ret);
3470 goto out;
3471 }
3472
3473 /* This function shouldn't be called for the leftmost leaf. */
3474 BUG_ON(left_cpos == 0);
3475
3476 left_path = ocfs2_new_path_from_path(right_path);
3477 if (!left_path) {
3478 ret = -ENOMEM;
3479 mlog_errno(ret);
3480 goto out;
3481 }
3482
3483 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3484 if (ret) {
3485 mlog_errno(ret);
3486 goto out;
3487 }
3488
3489 *ret_left_path = left_path;
3490 out:
3491 if (ret)
3492 ocfs2_free_path(left_path);
3493 return ret;
3494 }
3495
3496 /*
3497 * Remove split_rec clusters from the record at index and merge them
3498 * onto the tail of the record "before" it.
3499 * For index > 0, the "before" means the extent rec at index - 1.
3500 *
3501 * For index == 0, the "before" means the last record of the previous
3502 * extent block. And there is also a situation that we may need to
3503 * remove the rightmost leaf extent block in the right_path and change
3504 * the right path to indicate the new rightmost path.
3505 */
3506 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3507 handle_t *handle,
3508 struct ocfs2_extent_tree *et,
3509 struct ocfs2_extent_rec *split_rec,
3510 struct ocfs2_cached_dealloc_ctxt *dealloc,
3511 int index)
3512 {
3513 int ret, i, subtree_index = 0, has_empty_extent = 0;
3514 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3515 struct ocfs2_extent_rec *left_rec;
3516 struct ocfs2_extent_rec *right_rec;
3517 struct ocfs2_extent_list *el = path_leaf_el(right_path);
3518 struct buffer_head *bh = path_leaf_bh(right_path);
3519 struct buffer_head *root_bh = NULL;
3520 struct ocfs2_path *left_path = NULL;
3521 struct ocfs2_extent_list *left_el;
3522
3523 BUG_ON(index < 0);
3524
3525 right_rec = &el->l_recs[index];
3526 if (index == 0) {
3527 /* we meet with a cross extent block merge. */
3528 ret = ocfs2_get_left_path(et, right_path, &left_path);
3529 if (ret) {
3530 mlog_errno(ret);
3531 return ret;
3532 }
3533
3534 left_el = path_leaf_el(left_path);
3535 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3536 le16_to_cpu(left_el->l_count));
3537
3538 left_rec = &left_el->l_recs[
3539 le16_to_cpu(left_el->l_next_free_rec) - 1];
3540 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3541 le16_to_cpu(left_rec->e_leaf_clusters) !=
3542 le32_to_cpu(split_rec->e_cpos));
3543
3544 subtree_index = ocfs2_find_subtree_root(et, left_path,
3545 right_path);
3546
3547 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3548 jbd2_handle_buffer_credits(handle),
3549 left_path);
3550 if (ret) {
3551 mlog_errno(ret);
3552 goto out;
3553 }
3554
3555 root_bh = left_path->p_node[subtree_index].bh;
3556 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3557
3558 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3559 subtree_index);
3560 if (ret) {
3561 mlog_errno(ret);
3562 goto out;
3563 }
3564
3565 for (i = subtree_index + 1;
3566 i < path_num_items(right_path); i++) {
3567 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3568 right_path, i);
3569 if (ret) {
3570 mlog_errno(ret);
3571 goto out;
3572 }
3573
3574 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3575 left_path, i);
3576 if (ret) {
3577 mlog_errno(ret);
3578 goto out;
3579 }
3580 }
3581 } else {
3582 left_rec = &el->l_recs[index - 1];
3583 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3584 has_empty_extent = 1;
3585 }
3586
3587 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3588 path_num_items(right_path) - 1);
3589 if (ret) {
3590 mlog_errno(ret);
3591 goto out;
3592 }
3593
3594 if (has_empty_extent && index == 1) {
3595 /*
3596 * The easy case - we can just plop the record right in.
3597 */
3598 *left_rec = *split_rec;
3599 } else
3600 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3601
3602 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3603 le64_add_cpu(&right_rec->e_blkno,
3604 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3605 split_clusters));
3606 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3607
3608 ocfs2_cleanup_merge(el, index);
3609
3610 ocfs2_journal_dirty(handle, bh);
3611 if (left_path) {
3612 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3613
3614 /*
3615 * In the situation that the right_rec is empty and the extent
3616 * block is empty also, ocfs2_complete_edge_insert can't handle
3617 * it and we need to delete the right extent block.
3618 */
3619 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3620 le16_to_cpu(el->l_next_free_rec) == 1) {
3621 /* extend credit for ocfs2_remove_rightmost_path */
3622 ret = ocfs2_extend_rotate_transaction(handle, 0,
3623 jbd2_handle_buffer_credits(handle),
3624 right_path);
3625 if (ret) {
3626 mlog_errno(ret);
3627 goto out;
3628 }
3629
3630 ret = ocfs2_remove_rightmost_path(handle, et,
3631 right_path,
3632 dealloc);
3633 if (ret) {
3634 mlog_errno(ret);
3635 goto out;
3636 }
3637
3638 /* Now the rightmost extent block has been deleted.
3639 * So we use the new rightmost path.
3640 */
3641 ocfs2_mv_path(right_path, left_path);
3642 left_path = NULL;
3643 } else
3644 ocfs2_complete_edge_insert(handle, left_path,
3645 right_path, subtree_index);
3646 }
3647 out:
3648 ocfs2_free_path(left_path);
3649 return ret;
3650 }
3651
3652 static int ocfs2_try_to_merge_extent(handle_t *handle,
3653 struct ocfs2_extent_tree *et,
3654 struct ocfs2_path *path,
3655 int split_index,
3656 struct ocfs2_extent_rec *split_rec,
3657 struct ocfs2_cached_dealloc_ctxt *dealloc,
3658 struct ocfs2_merge_ctxt *ctxt)
3659 {
3660 int ret = 0;
3661 struct ocfs2_extent_list *el = path_leaf_el(path);
3662 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3663
3664 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3665
3666 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3667 /* extend credit for ocfs2_remove_rightmost_path */
3668 ret = ocfs2_extend_rotate_transaction(handle, 0,
3669 jbd2_handle_buffer_credits(handle),
3670 path);
3671 if (ret) {
3672 mlog_errno(ret);
3673 goto out;
3674 }
3675 /*
3676 * The merge code will need to create an empty
3677 * extent to take the place of the newly
3678 * emptied slot. Remove any pre-existing empty
3679 * extents - having more than one in a leaf is
3680 * illegal.
3681 */
3682 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3683 if (ret) {
3684 mlog_errno(ret);
3685 goto out;
3686 }
3687 split_index--;
3688 rec = &el->l_recs[split_index];
3689 }
3690
3691 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3692 /*
3693 * Left-right contig implies this.
3694 */
3695 BUG_ON(!ctxt->c_split_covers_rec);
3696
3697 /*
3698 * Since the leftright insert always covers the entire
3699 * extent, this call will delete the insert record
3700 * entirely, resulting in an empty extent record added to
3701 * the extent block.
3702 *
3703 * Since the adding of an empty extent shifts
3704 * everything back to the right, there's no need to
3705 * update split_index here.
3706 *
3707 * When the split_index is zero, we need to merge it to the
3708 * prevoius extent block. It is more efficient and easier
3709 * if we do merge_right first and merge_left later.
3710 */
3711 ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3712 split_index);
3713 if (ret) {
3714 mlog_errno(ret);
3715 goto out;
3716 }
3717
3718 /*
3719 * We can only get this from logic error above.
3720 */
3721 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3722
3723 /* extend credit for ocfs2_remove_rightmost_path */
3724 ret = ocfs2_extend_rotate_transaction(handle, 0,
3725 jbd2_handle_buffer_credits(handle),
3726 path);
3727 if (ret) {
3728 mlog_errno(ret);
3729 goto out;
3730 }
3731
3732 /* The merge left us with an empty extent, remove it. */
3733 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3734 if (ret) {
3735 mlog_errno(ret);
3736 goto out;
3737 }
3738
3739 rec = &el->l_recs[split_index];
3740
3741 /*
3742 * Note that we don't pass split_rec here on purpose -
3743 * we've merged it into the rec already.
3744 */
3745 ret = ocfs2_merge_rec_left(path, handle, et, rec,
3746 dealloc, split_index);
3747
3748 if (ret) {
3749 mlog_errno(ret);
3750 goto out;
3751 }
3752
3753 /* extend credit for ocfs2_remove_rightmost_path */
3754 ret = ocfs2_extend_rotate_transaction(handle, 0,
3755 jbd2_handle_buffer_credits(handle),
3756 path);
3757 if (ret) {
3758 mlog_errno(ret);
3759 goto out;
3760 }
3761
3762 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3763 /*
3764 * Error from this last rotate is not critical, so
3765 * print but don't bubble it up.
3766 */
3767 if (ret)
3768 mlog_errno(ret);
3769 ret = 0;
3770 } else {
3771 /*
3772 * Merge a record to the left or right.
3773 *
3774 * 'contig_type' is relative to the existing record,
3775 * so for example, if we're "right contig", it's to
3776 * the record on the left (hence the left merge).
3777 */
3778 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3779 ret = ocfs2_merge_rec_left(path, handle, et,
3780 split_rec, dealloc,
3781 split_index);
3782 if (ret) {
3783 mlog_errno(ret);
3784 goto out;
3785 }
3786 } else {
3787 ret = ocfs2_merge_rec_right(path, handle,
3788 et, split_rec,
3789 split_index);
3790 if (ret) {
3791 mlog_errno(ret);
3792 goto out;
3793 }
3794 }
3795
3796 if (ctxt->c_split_covers_rec) {
3797 /* extend credit for ocfs2_remove_rightmost_path */
3798 ret = ocfs2_extend_rotate_transaction(handle, 0,
3799 jbd2_handle_buffer_credits(handle),
3800 path);
3801 if (ret) {
3802 mlog_errno(ret);
3803 ret = 0;
3804 goto out;
3805 }
3806
3807 /*
3808 * The merge may have left an empty extent in
3809 * our leaf. Try to rotate it away.
3810 */
3811 ret = ocfs2_rotate_tree_left(handle, et, path,
3812 dealloc);
3813 if (ret)
3814 mlog_errno(ret);
3815 ret = 0;
3816 }
3817 }
3818
3819 out:
3820 return ret;
3821 }
3822
3823 static void ocfs2_subtract_from_rec(struct super_block *sb,
3824 enum ocfs2_split_type split,
3825 struct ocfs2_extent_rec *rec,
3826 struct ocfs2_extent_rec *split_rec)
3827 {
3828 u64 len_blocks;
3829
3830 len_blocks = ocfs2_clusters_to_blocks(sb,
3831 le16_to_cpu(split_rec->e_leaf_clusters));
3832
3833 if (split == SPLIT_LEFT) {
3834 /*
3835 * Region is on the left edge of the existing
3836 * record.
3837 */
3838 le32_add_cpu(&rec->e_cpos,
3839 le16_to_cpu(split_rec->e_leaf_clusters));
3840 le64_add_cpu(&rec->e_blkno, len_blocks);
3841 le16_add_cpu(&rec->e_leaf_clusters,
3842 -le16_to_cpu(split_rec->e_leaf_clusters));
3843 } else {
3844 /*
3845 * Region is on the right edge of the existing
3846 * record.
3847 */
3848 le16_add_cpu(&rec->e_leaf_clusters,
3849 -le16_to_cpu(split_rec->e_leaf_clusters));
3850 }
3851 }
3852
3853 /*
3854 * Do the final bits of extent record insertion at the target leaf
3855 * list. If this leaf is part of an allocation tree, it is assumed
3856 * that the tree above has been prepared.
3857 */
3858 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3859 struct ocfs2_extent_rec *insert_rec,
3860 struct ocfs2_extent_list *el,
3861 struct ocfs2_insert_type *insert)
3862 {
3863 int i = insert->ins_contig_index;
3864 unsigned int range;
3865 struct ocfs2_extent_rec *rec;
3866
3867 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3868
3869 if (insert->ins_split != SPLIT_NONE) {
3870 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3871 BUG_ON(i == -1);
3872 rec = &el->l_recs[i];
3873 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3874 insert->ins_split, rec,
3875 insert_rec);
3876 goto rotate;
3877 }
3878
3879 /*
3880 * Contiguous insert - either left or right.
3881 */
3882 if (insert->ins_contig != CONTIG_NONE) {
3883 rec = &el->l_recs[i];
3884 if (insert->ins_contig == CONTIG_LEFT) {
3885 rec->e_blkno = insert_rec->e_blkno;
3886 rec->e_cpos = insert_rec->e_cpos;
3887 }
3888 le16_add_cpu(&rec->e_leaf_clusters,
3889 le16_to_cpu(insert_rec->e_leaf_clusters));
3890 return;
3891 }
3892
3893 /*
3894 * Handle insert into an empty leaf.
3895 */
3896 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3897 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3898 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3899 el->l_recs[0] = *insert_rec;
3900 el->l_next_free_rec = cpu_to_le16(1);
3901 return;
3902 }
3903
3904 /*
3905 * Appending insert.
3906 */
3907 if (insert->ins_appending == APPEND_TAIL) {
3908 i = le16_to_cpu(el->l_next_free_rec) - 1;
3909 rec = &el->l_recs[i];
3910 range = le32_to_cpu(rec->e_cpos)
3911 + le16_to_cpu(rec->e_leaf_clusters);
3912 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3913
3914 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3915 le16_to_cpu(el->l_count),
3916 "owner %llu, depth %u, count %u, next free %u, "
3917 "rec.cpos %u, rec.clusters %u, "
3918 "insert.cpos %u, insert.clusters %u\n",
3919 ocfs2_metadata_cache_owner(et->et_ci),
3920 le16_to_cpu(el->l_tree_depth),
3921 le16_to_cpu(el->l_count),
3922 le16_to_cpu(el->l_next_free_rec),
3923 le32_to_cpu(el->l_recs[i].e_cpos),
3924 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3925 le32_to_cpu(insert_rec->e_cpos),
3926 le16_to_cpu(insert_rec->e_leaf_clusters));
3927 i++;
3928 el->l_recs[i] = *insert_rec;
3929 le16_add_cpu(&el->l_next_free_rec, 1);
3930 return;
3931 }
3932
3933 rotate:
3934 /*
3935 * Ok, we have to rotate.
3936 *
3937 * At this point, it is safe to assume that inserting into an
3938 * empty leaf and appending to a leaf have both been handled
3939 * above.
3940 *
3941 * This leaf needs to have space, either by the empty 1st
3942 * extent record, or by virtue of an l_next_free_rec < l_count.
3943 */
3944 ocfs2_rotate_leaf(el, insert_rec);
3945 }
3946
3947 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3948 struct ocfs2_extent_tree *et,
3949 struct ocfs2_path *path,
3950 struct ocfs2_extent_rec *insert_rec)
3951 {
3952 int i, next_free;
3953 struct buffer_head *bh;
3954 struct ocfs2_extent_list *el;
3955 struct ocfs2_extent_rec *rec;
3956
3957 /*
3958 * Update everything except the leaf block.
3959 */
3960 for (i = 0; i < path->p_tree_depth; i++) {
3961 bh = path->p_node[i].bh;
3962 el = path->p_node[i].el;
3963
3964 next_free = le16_to_cpu(el->l_next_free_rec);
3965 if (next_free == 0) {
3966 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3967 "Owner %llu has a bad extent list\n",
3968 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3969 return;
3970 }
3971
3972 rec = &el->l_recs[next_free - 1];
3973
3974 rec->e_int_clusters = insert_rec->e_cpos;
3975 le32_add_cpu(&rec->e_int_clusters,
3976 le16_to_cpu(insert_rec->e_leaf_clusters));
3977 le32_add_cpu(&rec->e_int_clusters,
3978 -le32_to_cpu(rec->e_cpos));
3979
3980 ocfs2_journal_dirty(handle, bh);
3981 }
3982 }
3983
3984 static int ocfs2_append_rec_to_path(handle_t *handle,
3985 struct ocfs2_extent_tree *et,
3986 struct ocfs2_extent_rec *insert_rec,
3987 struct ocfs2_path *right_path,
3988 struct ocfs2_path **ret_left_path)
3989 {
3990 int ret, next_free;
3991 struct ocfs2_extent_list *el;
3992 struct ocfs2_path *left_path = NULL;
3993
3994 *ret_left_path = NULL;
3995
3996 /*
3997 * This shouldn't happen for non-trees. The extent rec cluster
3998 * count manipulation below only works for interior nodes.
3999 */
4000 BUG_ON(right_path->p_tree_depth == 0);
4001
4002 /*
4003 * If our appending insert is at the leftmost edge of a leaf,
4004 * then we might need to update the rightmost records of the
4005 * neighboring path.
4006 */
4007 el = path_leaf_el(right_path);
4008 next_free = le16_to_cpu(el->l_next_free_rec);
4009 if (next_free == 0 ||
4010 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
4011 u32 left_cpos;
4012
4013 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
4014 right_path, &left_cpos);
4015 if (ret) {
4016 mlog_errno(ret);
4017 goto out;
4018 }
4019
4020 trace_ocfs2_append_rec_to_path(
4021 (unsigned long long)
4022 ocfs2_metadata_cache_owner(et->et_ci),
4023 le32_to_cpu(insert_rec->e_cpos),
4024 left_cpos);
4025
4026 /*
4027 * No need to worry if the append is already in the
4028 * leftmost leaf.
4029 */
4030 if (left_cpos) {
4031 left_path = ocfs2_new_path_from_path(right_path);
4032 if (!left_path) {
4033 ret = -ENOMEM;
4034 mlog_errno(ret);
4035 goto out;
4036 }
4037
4038 ret = ocfs2_find_path(et->et_ci, left_path,
4039 left_cpos);
4040 if (ret) {
4041 mlog_errno(ret);
4042 goto out;
4043 }
4044
4045 /*
4046 * ocfs2_insert_path() will pass the left_path to the
4047 * journal for us.
4048 */
4049 }
4050 }
4051
4052 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4053 if (ret) {
4054 mlog_errno(ret);
4055 goto out;
4056 }
4057
4058 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4059
4060 *ret_left_path = left_path;
4061 ret = 0;
4062 out:
4063 if (ret != 0)
4064 ocfs2_free_path(left_path);
4065
4066 return ret;
4067 }
4068
4069 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4070 struct ocfs2_path *left_path,
4071 struct ocfs2_path *right_path,
4072 struct ocfs2_extent_rec *split_rec,
4073 enum ocfs2_split_type split)
4074 {
4075 int index;
4076 u32 cpos = le32_to_cpu(split_rec->e_cpos);
4077 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4078 struct ocfs2_extent_rec *rec, *tmprec;
4079
4080 right_el = path_leaf_el(right_path);
4081 if (left_path)
4082 left_el = path_leaf_el(left_path);
4083
4084 el = right_el;
4085 insert_el = right_el;
4086 index = ocfs2_search_extent_list(el, cpos);
4087 if (index != -1) {
4088 if (index == 0 && left_path) {
4089 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4090
4091 /*
4092 * This typically means that the record
4093 * started in the left path but moved to the
4094 * right as a result of rotation. We either
4095 * move the existing record to the left, or we
4096 * do the later insert there.
4097 *
4098 * In this case, the left path should always
4099 * exist as the rotate code will have passed
4100 * it back for a post-insert update.
4101 */
4102
4103 if (split == SPLIT_LEFT) {
4104 /*
4105 * It's a left split. Since we know
4106 * that the rotate code gave us an
4107 * empty extent in the left path, we
4108 * can just do the insert there.
4109 */
4110 insert_el = left_el;
4111 } else {
4112 /*
4113 * Right split - we have to move the
4114 * existing record over to the left
4115 * leaf. The insert will be into the
4116 * newly created empty extent in the
4117 * right leaf.
4118 */
4119 tmprec = &right_el->l_recs[index];
4120 ocfs2_rotate_leaf(left_el, tmprec);
4121 el = left_el;
4122
4123 memset(tmprec, 0, sizeof(*tmprec));
4124 index = ocfs2_search_extent_list(left_el, cpos);
4125 BUG_ON(index == -1);
4126 }
4127 }
4128 } else {
4129 BUG_ON(!left_path);
4130 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4131 /*
4132 * Left path is easy - we can just allow the insert to
4133 * happen.
4134 */
4135 el = left_el;
4136 insert_el = left_el;
4137 index = ocfs2_search_extent_list(el, cpos);
4138 BUG_ON(index == -1);
4139 }
4140
4141 rec = &el->l_recs[index];
4142 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4143 split, rec, split_rec);
4144 ocfs2_rotate_leaf(insert_el, split_rec);
4145 }
4146
4147 /*
4148 * This function only does inserts on an allocation b-tree. For tree
4149 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4150 *
4151 * right_path is the path we want to do the actual insert
4152 * in. left_path should only be passed in if we need to update that
4153 * portion of the tree after an edge insert.
4154 */
4155 static int ocfs2_insert_path(handle_t *handle,
4156 struct ocfs2_extent_tree *et,
4157 struct ocfs2_path *left_path,
4158 struct ocfs2_path *right_path,
4159 struct ocfs2_extent_rec *insert_rec,
4160 struct ocfs2_insert_type *insert)
4161 {
4162 int ret, subtree_index;
4163 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4164
4165 if (left_path) {
4166 /*
4167 * There's a chance that left_path got passed back to
4168 * us without being accounted for in the
4169 * journal. Extend our transaction here to be sure we
4170 * can change those blocks.
4171 */
4172 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4173 if (ret < 0) {
4174 mlog_errno(ret);
4175 goto out;
4176 }
4177
4178 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4179 if (ret < 0) {
4180 mlog_errno(ret);
4181 goto out;
4182 }
4183 }
4184
4185 /*
4186 * Pass both paths to the journal. The majority of inserts
4187 * will be touching all components anyway.
4188 */
4189 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4190 if (ret < 0) {
4191 mlog_errno(ret);
4192 goto out;
4193 }
4194
4195 if (insert->ins_split != SPLIT_NONE) {
4196 /*
4197 * We could call ocfs2_insert_at_leaf() for some types
4198 * of splits, but it's easier to just let one separate
4199 * function sort it all out.
4200 */
4201 ocfs2_split_record(et, left_path, right_path,
4202 insert_rec, insert->ins_split);
4203
4204 /*
4205 * Split might have modified either leaf and we don't
4206 * have a guarantee that the later edge insert will
4207 * dirty this for us.
4208 */
4209 if (left_path)
4210 ocfs2_journal_dirty(handle,
4211 path_leaf_bh(left_path));
4212 } else
4213 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4214 insert);
4215
4216 ocfs2_journal_dirty(handle, leaf_bh);
4217
4218 if (left_path) {
4219 /*
4220 * The rotate code has indicated that we need to fix
4221 * up portions of the tree after the insert.
4222 *
4223 * XXX: Should we extend the transaction here?
4224 */
4225 subtree_index = ocfs2_find_subtree_root(et, left_path,
4226 right_path);
4227 ocfs2_complete_edge_insert(handle, left_path, right_path,
4228 subtree_index);
4229 }
4230
4231 ret = 0;
4232 out:
4233 return ret;
4234 }
4235
4236 static int ocfs2_do_insert_extent(handle_t *handle,
4237 struct ocfs2_extent_tree *et,
4238 struct ocfs2_extent_rec *insert_rec,
4239 struct ocfs2_insert_type *type)
4240 {
4241 int ret, rotate = 0;
4242 u32 cpos;
4243 struct ocfs2_path *right_path = NULL;
4244 struct ocfs2_path *left_path = NULL;
4245 struct ocfs2_extent_list *el;
4246
4247 el = et->et_root_el;
4248
4249 ret = ocfs2_et_root_journal_access(handle, et,
4250 OCFS2_JOURNAL_ACCESS_WRITE);
4251 if (ret) {
4252 mlog_errno(ret);
4253 goto out;
4254 }
4255
4256 if (le16_to_cpu(el->l_tree_depth) == 0) {
4257 ocfs2_insert_at_leaf(et, insert_rec, el, type);
4258 goto out_update_clusters;
4259 }
4260
4261 right_path = ocfs2_new_path_from_et(et);
4262 if (!right_path) {
4263 ret = -ENOMEM;
4264 mlog_errno(ret);
4265 goto out;
4266 }
4267
4268 /*
4269 * Determine the path to start with. Rotations need the
4270 * rightmost path, everything else can go directly to the
4271 * target leaf.
4272 */
4273 cpos = le32_to_cpu(insert_rec->e_cpos);
4274 if (type->ins_appending == APPEND_NONE &&
4275 type->ins_contig == CONTIG_NONE) {
4276 rotate = 1;
4277 cpos = UINT_MAX;
4278 }
4279
4280 ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4281 if (ret) {
4282 mlog_errno(ret);
4283 goto out;
4284 }
4285
4286 /*
4287 * Rotations and appends need special treatment - they modify
4288 * parts of the tree's above them.
4289 *
4290 * Both might pass back a path immediate to the left of the
4291 * one being inserted to. This will be cause
4292 * ocfs2_insert_path() to modify the rightmost records of
4293 * left_path to account for an edge insert.
4294 *
4295 * XXX: When modifying this code, keep in mind that an insert
4296 * can wind up skipping both of these two special cases...
4297 */
4298 if (rotate) {
4299 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4300 le32_to_cpu(insert_rec->e_cpos),
4301 right_path, &left_path);
4302 if (ret) {
4303 mlog_errno(ret);
4304 goto out;
4305 }
4306
4307 /*
4308 * ocfs2_rotate_tree_right() might have extended the
4309 * transaction without re-journaling our tree root.
4310 */
4311 ret = ocfs2_et_root_journal_access(handle, et,
4312 OCFS2_JOURNAL_ACCESS_WRITE);
4313 if (ret) {
4314 mlog_errno(ret);
4315 goto out;
4316 }
4317 } else if (type->ins_appending == APPEND_TAIL
4318 && type->ins_contig != CONTIG_LEFT) {
4319 ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4320 right_path, &left_path);
4321 if (ret) {
4322 mlog_errno(ret);
4323 goto out;
4324 }
4325 }
4326
4327 ret = ocfs2_insert_path(handle, et, left_path, right_path,
4328 insert_rec, type);
4329 if (ret) {
4330 mlog_errno(ret);
4331 goto out;
4332 }
4333
4334 out_update_clusters:
4335 if (type->ins_split == SPLIT_NONE)
4336 ocfs2_et_update_clusters(et,
4337 le16_to_cpu(insert_rec->e_leaf_clusters));
4338
4339 ocfs2_journal_dirty(handle, et->et_root_bh);
4340
4341 out:
4342 ocfs2_free_path(left_path);
4343 ocfs2_free_path(right_path);
4344
4345 return ret;
4346 }
4347
4348 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4349 struct ocfs2_path *path,
4350 struct ocfs2_extent_list *el, int index,
4351 struct ocfs2_extent_rec *split_rec,
4352 struct ocfs2_merge_ctxt *ctxt)
4353 {
4354 int status = 0;
4355 enum ocfs2_contig_type ret = CONTIG_NONE;
4356 u32 left_cpos, right_cpos;
4357 struct ocfs2_extent_rec *rec = NULL;
4358 struct ocfs2_extent_list *new_el;
4359 struct ocfs2_path *left_path = NULL, *right_path = NULL;
4360 struct buffer_head *bh;
4361 struct ocfs2_extent_block *eb;
4362 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4363
4364 if (index > 0) {
4365 rec = &el->l_recs[index - 1];
4366 } else if (path->p_tree_depth > 0) {
4367 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4368 if (status)
4369 goto exit;
4370
4371 if (left_cpos != 0) {
4372 left_path = ocfs2_new_path_from_path(path);
4373 if (!left_path) {
4374 status = -ENOMEM;
4375 mlog_errno(status);
4376 goto exit;
4377 }
4378
4379 status = ocfs2_find_path(et->et_ci, left_path,
4380 left_cpos);
4381 if (status)
4382 goto free_left_path;
4383
4384 new_el = path_leaf_el(left_path);
4385
4386 if (le16_to_cpu(new_el->l_next_free_rec) !=
4387 le16_to_cpu(new_el->l_count)) {
4388 bh = path_leaf_bh(left_path);
4389 eb = (struct ocfs2_extent_block *)bh->b_data;
4390 status = ocfs2_error(sb,
4391 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n",
4392 (unsigned long long)le64_to_cpu(eb->h_blkno),
4393 le16_to_cpu(new_el->l_next_free_rec),
4394 le16_to_cpu(new_el->l_count));
4395 goto free_left_path;
4396 }
4397 rec = &new_el->l_recs[
4398 le16_to_cpu(new_el->l_next_free_rec) - 1];
4399 }
4400 }
4401
4402 /*
4403 * We're careful to check for an empty extent record here -
4404 * the merge code will know what to do if it sees one.
4405 */
4406 if (rec) {
4407 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4408 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4409 ret = CONTIG_RIGHT;
4410 } else {
4411 ret = ocfs2_et_extent_contig(et, rec, split_rec);
4412 }
4413 }
4414
4415 rec = NULL;
4416 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4417 rec = &el->l_recs[index + 1];
4418 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4419 path->p_tree_depth > 0) {
4420 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4421 if (status)
4422 goto free_left_path;
4423
4424 if (right_cpos == 0)
4425 goto free_left_path;
4426
4427 right_path = ocfs2_new_path_from_path(path);
4428 if (!right_path) {
4429 status = -ENOMEM;
4430 mlog_errno(status);
4431 goto free_left_path;
4432 }
4433
4434 status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4435 if (status)
4436 goto free_right_path;
4437
4438 new_el = path_leaf_el(right_path);
4439 rec = &new_el->l_recs[0];
4440 if (ocfs2_is_empty_extent(rec)) {
4441 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4442 bh = path_leaf_bh(right_path);
4443 eb = (struct ocfs2_extent_block *)bh->b_data;
4444 status = ocfs2_error(sb,
4445 "Extent block #%llu has an invalid l_next_free_rec of %d\n",
4446 (unsigned long long)le64_to_cpu(eb->h_blkno),
4447 le16_to_cpu(new_el->l_next_free_rec));
4448 goto free_right_path;
4449 }
4450 rec = &new_el->l_recs[1];
4451 }
4452 }
4453
4454 if (rec) {
4455 enum ocfs2_contig_type contig_type;
4456
4457 contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4458
4459 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4460 ret = CONTIG_LEFTRIGHT;
4461 else if (ret == CONTIG_NONE)
4462 ret = contig_type;
4463 }
4464
4465 free_right_path:
4466 ocfs2_free_path(right_path);
4467 free_left_path:
4468 ocfs2_free_path(left_path);
4469 exit:
4470 if (status == 0)
4471 ctxt->c_contig_type = ret;
4472
4473 return status;
4474 }
4475
4476 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4477 struct ocfs2_insert_type *insert,
4478 struct ocfs2_extent_list *el,
4479 struct ocfs2_extent_rec *insert_rec)
4480 {
4481 int i;
4482 enum ocfs2_contig_type contig_type = CONTIG_NONE;
4483
4484 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4485
4486 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4487 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4488 insert_rec);
4489 if (contig_type != CONTIG_NONE) {
4490 insert->ins_contig_index = i;
4491 break;
4492 }
4493 }
4494 insert->ins_contig = contig_type;
4495
4496 if (insert->ins_contig != CONTIG_NONE) {
4497 struct ocfs2_extent_rec *rec =
4498 &el->l_recs[insert->ins_contig_index];
4499 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4500 le16_to_cpu(insert_rec->e_leaf_clusters);
4501
4502 /*
4503 * Caller might want us to limit the size of extents, don't
4504 * calculate contiguousness if we might exceed that limit.
4505 */
4506 if (et->et_max_leaf_clusters &&
4507 (len > et->et_max_leaf_clusters))
4508 insert->ins_contig = CONTIG_NONE;
4509 }
4510 }
4511
4512 /*
4513 * This should only be called against the righmost leaf extent list.
4514 *
4515 * ocfs2_figure_appending_type() will figure out whether we'll have to
4516 * insert at the tail of the rightmost leaf.
4517 *
4518 * This should also work against the root extent list for tree's with 0
4519 * depth. If we consider the root extent list to be the rightmost leaf node
4520 * then the logic here makes sense.
4521 */
4522 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4523 struct ocfs2_extent_list *el,
4524 struct ocfs2_extent_rec *insert_rec)
4525 {
4526 int i;
4527 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4528 struct ocfs2_extent_rec *rec;
4529
4530 insert->ins_appending = APPEND_NONE;
4531
4532 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4533
4534 if (!el->l_next_free_rec)
4535 goto set_tail_append;
4536
4537 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4538 /* Were all records empty? */
4539 if (le16_to_cpu(el->l_next_free_rec) == 1)
4540 goto set_tail_append;
4541 }
4542
4543 i = le16_to_cpu(el->l_next_free_rec) - 1;
4544 rec = &el->l_recs[i];
4545
4546 if (cpos >=
4547 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4548 goto set_tail_append;
4549
4550 return;
4551
4552 set_tail_append:
4553 insert->ins_appending = APPEND_TAIL;
4554 }
4555
4556 /*
4557 * Helper function called at the beginning of an insert.
4558 *
4559 * This computes a few things that are commonly used in the process of
4560 * inserting into the btree:
4561 * - Whether the new extent is contiguous with an existing one.
4562 * - The current tree depth.
4563 * - Whether the insert is an appending one.
4564 * - The total # of free records in the tree.
4565 *
4566 * All of the information is stored on the ocfs2_insert_type
4567 * structure.
4568 */
4569 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4570 struct buffer_head **last_eb_bh,
4571 struct ocfs2_extent_rec *insert_rec,
4572 int *free_records,
4573 struct ocfs2_insert_type *insert)
4574 {
4575 int ret;
4576 struct ocfs2_extent_block *eb;
4577 struct ocfs2_extent_list *el;
4578 struct ocfs2_path *path = NULL;
4579 struct buffer_head *bh = NULL;
4580
4581 insert->ins_split = SPLIT_NONE;
4582
4583 el = et->et_root_el;
4584 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4585
4586 if (el->l_tree_depth) {
4587 /*
4588 * If we have tree depth, we read in the
4589 * rightmost extent block ahead of time as
4590 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4591 * may want it later.
4592 */
4593 ret = ocfs2_read_extent_block(et->et_ci,
4594 ocfs2_et_get_last_eb_blk(et),
4595 &bh);
4596 if (ret) {
4597 mlog_errno(ret);
4598 goto out;
4599 }
4600 eb = (struct ocfs2_extent_block *) bh->b_data;
4601 el = &eb->h_list;
4602 }
4603
4604 /*
4605 * Unless we have a contiguous insert, we'll need to know if
4606 * there is room left in our allocation tree for another
4607 * extent record.
4608 *
4609 * XXX: This test is simplistic, we can search for empty
4610 * extent records too.
4611 */
4612 *free_records = le16_to_cpu(el->l_count) -
4613 le16_to_cpu(el->l_next_free_rec);
4614
4615 if (!insert->ins_tree_depth) {
4616 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4617 ocfs2_figure_appending_type(insert, el, insert_rec);
4618 return 0;
4619 }
4620
4621 path = ocfs2_new_path_from_et(et);
4622 if (!path) {
4623 ret = -ENOMEM;
4624 mlog_errno(ret);
4625 goto out;
4626 }
4627
4628 /*
4629 * In the case that we're inserting past what the tree
4630 * currently accounts for, ocfs2_find_path() will return for
4631 * us the rightmost tree path. This is accounted for below in
4632 * the appending code.
4633 */
4634 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4635 if (ret) {
4636 mlog_errno(ret);
4637 goto out;
4638 }
4639
4640 el = path_leaf_el(path);
4641
4642 /*
4643 * Now that we have the path, there's two things we want to determine:
4644 * 1) Contiguousness (also set contig_index if this is so)
4645 *
4646 * 2) Are we doing an append? We can trivially break this up
4647 * into two types of appends: simple record append, or a
4648 * rotate inside the tail leaf.
4649 */
4650 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4651
4652 /*
4653 * The insert code isn't quite ready to deal with all cases of
4654 * left contiguousness. Specifically, if it's an insert into
4655 * the 1st record in a leaf, it will require the adjustment of
4656 * cluster count on the last record of the path directly to it's
4657 * left. For now, just catch that case and fool the layers
4658 * above us. This works just fine for tree_depth == 0, which
4659 * is why we allow that above.
4660 */
4661 if (insert->ins_contig == CONTIG_LEFT &&
4662 insert->ins_contig_index == 0)
4663 insert->ins_contig = CONTIG_NONE;
4664
4665 /*
4666 * Ok, so we can simply compare against last_eb to figure out
4667 * whether the path doesn't exist. This will only happen in
4668 * the case that we're doing a tail append, so maybe we can
4669 * take advantage of that information somehow.
4670 */
4671 if (ocfs2_et_get_last_eb_blk(et) ==
4672 path_leaf_bh(path)->b_blocknr) {
4673 /*
4674 * Ok, ocfs2_find_path() returned us the rightmost
4675 * tree path. This might be an appending insert. There are
4676 * two cases:
4677 * 1) We're doing a true append at the tail:
4678 * -This might even be off the end of the leaf
4679 * 2) We're "appending" by rotating in the tail
4680 */
4681 ocfs2_figure_appending_type(insert, el, insert_rec);
4682 }
4683
4684 out:
4685 ocfs2_free_path(path);
4686
4687 if (ret == 0)
4688 *last_eb_bh = bh;
4689 else
4690 brelse(bh);
4691 return ret;
4692 }
4693
4694 /*
4695 * Insert an extent into a btree.
4696 *
4697 * The caller needs to update the owning btree's cluster count.
4698 */
4699 int ocfs2_insert_extent(handle_t *handle,
4700 struct ocfs2_extent_tree *et,
4701 u32 cpos,
4702 u64 start_blk,
4703 u32 new_clusters,
4704 u8 flags,
4705 struct ocfs2_alloc_context *meta_ac)
4706 {
4707 int status;
4708 int free_records;
4709 struct buffer_head *last_eb_bh = NULL;
4710 struct ocfs2_insert_type insert = {0, };
4711 struct ocfs2_extent_rec rec;
4712
4713 trace_ocfs2_insert_extent_start(
4714 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4715 cpos, new_clusters);
4716
4717 memset(&rec, 0, sizeof(rec));
4718 rec.e_cpos = cpu_to_le32(cpos);
4719 rec.e_blkno = cpu_to_le64(start_blk);
4720 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4721 rec.e_flags = flags;
4722 status = ocfs2_et_insert_check(et, &rec);
4723 if (status) {
4724 mlog_errno(status);
4725 goto bail;
4726 }
4727
4728 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4729 &free_records, &insert);
4730 if (status < 0) {
4731 mlog_errno(status);
4732 goto bail;
4733 }
4734
4735 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4736 insert.ins_contig_index, free_records,
4737 insert.ins_tree_depth);
4738
4739 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4740 status = ocfs2_grow_tree(handle, et,
4741 &insert.ins_tree_depth, &last_eb_bh,
4742 meta_ac);
4743 if (status) {
4744 mlog_errno(status);
4745 goto bail;
4746 }
4747 }
4748
4749 /* Finally, we can add clusters. This might rotate the tree for us. */
4750 status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4751 if (status < 0)
4752 mlog_errno(status);
4753 else
4754 ocfs2_et_extent_map_insert(et, &rec);
4755
4756 bail:
4757 brelse(last_eb_bh);
4758
4759 return status;
4760 }
4761
4762 /*
4763 * Allcate and add clusters into the extent b-tree.
4764 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4765 * The extent b-tree's root is specified by et, and
4766 * it is not limited to the file storage. Any extent tree can use this
4767 * function if it implements the proper ocfs2_extent_tree.
4768 */
4769 int ocfs2_add_clusters_in_btree(handle_t *handle,
4770 struct ocfs2_extent_tree *et,
4771 u32 *logical_offset,
4772 u32 clusters_to_add,
4773 int mark_unwritten,
4774 struct ocfs2_alloc_context *data_ac,
4775 struct ocfs2_alloc_context *meta_ac,
4776 enum ocfs2_alloc_restarted *reason_ret)
4777 {
4778 int status = 0, err = 0;
4779 int need_free = 0;
4780 int free_extents;
4781 enum ocfs2_alloc_restarted reason = RESTART_NONE;
4782 u32 bit_off, num_bits;
4783 u64 block;
4784 u8 flags = 0;
4785 struct ocfs2_super *osb =
4786 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4787
4788 BUG_ON(!clusters_to_add);
4789
4790 if (mark_unwritten)
4791 flags = OCFS2_EXT_UNWRITTEN;
4792
4793 free_extents = ocfs2_num_free_extents(et);
4794 if (free_extents < 0) {
4795 status = free_extents;
4796 mlog_errno(status);
4797 goto leave;
4798 }
4799
4800 /* there are two cases which could cause us to EAGAIN in the
4801 * we-need-more-metadata case:
4802 * 1) we haven't reserved *any*
4803 * 2) we are so fragmented, we've needed to add metadata too
4804 * many times. */
4805 if (!free_extents && !meta_ac) {
4806 err = -1;
4807 status = -EAGAIN;
4808 reason = RESTART_META;
4809 goto leave;
4810 } else if ((!free_extents)
4811 && (ocfs2_alloc_context_bits_left(meta_ac)
4812 < ocfs2_extend_meta_needed(et->et_root_el))) {
4813 err = -2;
4814 status = -EAGAIN;
4815 reason = RESTART_META;
4816 goto leave;
4817 }
4818
4819 status = __ocfs2_claim_clusters(handle, data_ac, 1,
4820 clusters_to_add, &bit_off, &num_bits);
4821 if (status < 0) {
4822 if (status != -ENOSPC)
4823 mlog_errno(status);
4824 goto leave;
4825 }
4826
4827 BUG_ON(num_bits > clusters_to_add);
4828
4829 /* reserve our write early -- insert_extent may update the tree root */
4830 status = ocfs2_et_root_journal_access(handle, et,
4831 OCFS2_JOURNAL_ACCESS_WRITE);
4832 if (status < 0) {
4833 mlog_errno(status);
4834 need_free = 1;
4835 goto bail;
4836 }
4837
4838 block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4839 trace_ocfs2_add_clusters_in_btree(
4840 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4841 bit_off, num_bits);
4842 status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4843 num_bits, flags, meta_ac);
4844 if (status < 0) {
4845 mlog_errno(status);
4846 need_free = 1;
4847 goto bail;
4848 }
4849
4850 ocfs2_journal_dirty(handle, et->et_root_bh);
4851
4852 clusters_to_add -= num_bits;
4853 *logical_offset += num_bits;
4854
4855 if (clusters_to_add) {
4856 err = clusters_to_add;
4857 status = -EAGAIN;
4858 reason = RESTART_TRANS;
4859 }
4860
4861 bail:
4862 if (need_free) {
4863 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4864 ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4865 bit_off, num_bits);
4866 else
4867 ocfs2_free_clusters(handle,
4868 data_ac->ac_inode,
4869 data_ac->ac_bh,
4870 ocfs2_clusters_to_blocks(osb->sb, bit_off),
4871 num_bits);
4872 }
4873
4874 leave:
4875 if (reason_ret)
4876 *reason_ret = reason;
4877 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4878 return status;
4879 }
4880
4881 static void ocfs2_make_right_split_rec(struct super_block *sb,
4882 struct ocfs2_extent_rec *split_rec,
4883 u32 cpos,
4884 struct ocfs2_extent_rec *rec)
4885 {
4886 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4887 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4888
4889 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4890
4891 split_rec->e_cpos = cpu_to_le32(cpos);
4892 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4893
4894 split_rec->e_blkno = rec->e_blkno;
4895 le64_add_cpu(&split_rec->e_blkno,
4896 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4897
4898 split_rec->e_flags = rec->e_flags;
4899 }
4900
4901 static int ocfs2_split_and_insert(handle_t *handle,
4902 struct ocfs2_extent_tree *et,
4903 struct ocfs2_path *path,
4904 struct buffer_head **last_eb_bh,
4905 int split_index,
4906 struct ocfs2_extent_rec *orig_split_rec,
4907 struct ocfs2_alloc_context *meta_ac)
4908 {
4909 int ret = 0, depth;
4910 unsigned int insert_range, rec_range, do_leftright = 0;
4911 struct ocfs2_extent_rec tmprec;
4912 struct ocfs2_extent_list *rightmost_el;
4913 struct ocfs2_extent_rec rec;
4914 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4915 struct ocfs2_insert_type insert;
4916 struct ocfs2_extent_block *eb;
4917
4918 leftright:
4919 /*
4920 * Store a copy of the record on the stack - it might move
4921 * around as the tree is manipulated below.
4922 */
4923 rec = path_leaf_el(path)->l_recs[split_index];
4924
4925 rightmost_el = et->et_root_el;
4926
4927 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4928 if (depth) {
4929 BUG_ON(!(*last_eb_bh));
4930 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4931 rightmost_el = &eb->h_list;
4932 }
4933
4934 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4935 le16_to_cpu(rightmost_el->l_count)) {
4936 ret = ocfs2_grow_tree(handle, et,
4937 &depth, last_eb_bh, meta_ac);
4938 if (ret) {
4939 mlog_errno(ret);
4940 goto out;
4941 }
4942 }
4943
4944 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4945 insert.ins_appending = APPEND_NONE;
4946 insert.ins_contig = CONTIG_NONE;
4947 insert.ins_tree_depth = depth;
4948
4949 insert_range = le32_to_cpu(split_rec.e_cpos) +
4950 le16_to_cpu(split_rec.e_leaf_clusters);
4951 rec_range = le32_to_cpu(rec.e_cpos) +
4952 le16_to_cpu(rec.e_leaf_clusters);
4953
4954 if (split_rec.e_cpos == rec.e_cpos) {
4955 insert.ins_split = SPLIT_LEFT;
4956 } else if (insert_range == rec_range) {
4957 insert.ins_split = SPLIT_RIGHT;
4958 } else {
4959 /*
4960 * Left/right split. We fake this as a right split
4961 * first and then make a second pass as a left split.
4962 */
4963 insert.ins_split = SPLIT_RIGHT;
4964
4965 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4966 &tmprec, insert_range, &rec);
4967
4968 split_rec = tmprec;
4969
4970 BUG_ON(do_leftright);
4971 do_leftright = 1;
4972 }
4973
4974 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4975 if (ret) {
4976 mlog_errno(ret);
4977 goto out;
4978 }
4979
4980 if (do_leftright == 1) {
4981 u32 cpos;
4982 struct ocfs2_extent_list *el;
4983
4984 do_leftright++;
4985 split_rec = *orig_split_rec;
4986
4987 ocfs2_reinit_path(path, 1);
4988
4989 cpos = le32_to_cpu(split_rec.e_cpos);
4990 ret = ocfs2_find_path(et->et_ci, path, cpos);
4991 if (ret) {
4992 mlog_errno(ret);
4993 goto out;
4994 }
4995
4996 el = path_leaf_el(path);
4997 split_index = ocfs2_search_extent_list(el, cpos);
4998 if (split_index == -1) {
4999 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5000 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5001 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5002 cpos);
5003 ret = -EROFS;
5004 goto out;
5005 }
5006 goto leftright;
5007 }
5008 out:
5009
5010 return ret;
5011 }
5012
5013 static int ocfs2_replace_extent_rec(handle_t *handle,
5014 struct ocfs2_extent_tree *et,
5015 struct ocfs2_path *path,
5016 struct ocfs2_extent_list *el,
5017 int split_index,
5018 struct ocfs2_extent_rec *split_rec)
5019 {
5020 int ret;
5021
5022 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5023 path_num_items(path) - 1);
5024 if (ret) {
5025 mlog_errno(ret);
5026 goto out;
5027 }
5028
5029 el->l_recs[split_index] = *split_rec;
5030
5031 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5032 out:
5033 return ret;
5034 }
5035
5036 /*
5037 * Split part or all of the extent record at split_index in the leaf
5038 * pointed to by path. Merge with the contiguous extent record if needed.
5039 *
5040 * Care is taken to handle contiguousness so as to not grow the tree.
5041 *
5042 * meta_ac is not strictly necessary - we only truly need it if growth
5043 * of the tree is required. All other cases will degrade into a less
5044 * optimal tree layout.
5045 *
5046 * last_eb_bh should be the rightmost leaf block for any extent
5047 * btree. Since a split may grow the tree or a merge might shrink it,
5048 * the caller cannot trust the contents of that buffer after this call.
5049 *
5050 * This code is optimized for readability - several passes might be
5051 * made over certain portions of the tree. All of those blocks will
5052 * have been brought into cache (and pinned via the journal), so the
5053 * extra overhead is not expressed in terms of disk reads.
5054 */
5055 int ocfs2_split_extent(handle_t *handle,
5056 struct ocfs2_extent_tree *et,
5057 struct ocfs2_path *path,
5058 int split_index,
5059 struct ocfs2_extent_rec *split_rec,
5060 struct ocfs2_alloc_context *meta_ac,
5061 struct ocfs2_cached_dealloc_ctxt *dealloc)
5062 {
5063 int ret = 0;
5064 struct ocfs2_extent_list *el = path_leaf_el(path);
5065 struct buffer_head *last_eb_bh = NULL;
5066 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5067 struct ocfs2_merge_ctxt ctxt;
5068
5069 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5070 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5071 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5072 ret = -EIO;
5073 mlog_errno(ret);
5074 goto out;
5075 }
5076
5077 ret = ocfs2_figure_merge_contig_type(et, path, el,
5078 split_index,
5079 split_rec,
5080 &ctxt);
5081 if (ret) {
5082 mlog_errno(ret);
5083 goto out;
5084 }
5085
5086 /*
5087 * The core merge / split code wants to know how much room is
5088 * left in this allocation tree, so we pass the
5089 * rightmost extent list.
5090 */
5091 if (path->p_tree_depth) {
5092 ret = ocfs2_read_extent_block(et->et_ci,
5093 ocfs2_et_get_last_eb_blk(et),
5094 &last_eb_bh);
5095 if (ret) {
5096 mlog_errno(ret);
5097 goto out;
5098 }
5099 }
5100
5101 if (rec->e_cpos == split_rec->e_cpos &&
5102 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5103 ctxt.c_split_covers_rec = 1;
5104 else
5105 ctxt.c_split_covers_rec = 0;
5106
5107 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5108
5109 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5110 ctxt.c_has_empty_extent,
5111 ctxt.c_split_covers_rec);
5112
5113 if (ctxt.c_contig_type == CONTIG_NONE) {
5114 if (ctxt.c_split_covers_rec)
5115 ret = ocfs2_replace_extent_rec(handle, et, path, el,
5116 split_index, split_rec);
5117 else
5118 ret = ocfs2_split_and_insert(handle, et, path,
5119 &last_eb_bh, split_index,
5120 split_rec, meta_ac);
5121 if (ret)
5122 mlog_errno(ret);
5123 } else {
5124 ret = ocfs2_try_to_merge_extent(handle, et, path,
5125 split_index, split_rec,
5126 dealloc, &ctxt);
5127 if (ret)
5128 mlog_errno(ret);
5129 }
5130
5131 out:
5132 brelse(last_eb_bh);
5133 return ret;
5134 }
5135
5136 /*
5137 * Change the flags of the already-existing extent at cpos for len clusters.
5138 *
5139 * new_flags: the flags we want to set.
5140 * clear_flags: the flags we want to clear.
5141 * phys: the new physical offset we want this new extent starts from.
5142 *
5143 * If the existing extent is larger than the request, initiate a
5144 * split. An attempt will be made at merging with adjacent extents.
5145 *
5146 * The caller is responsible for passing down meta_ac if we'll need it.
5147 */
5148 int ocfs2_change_extent_flag(handle_t *handle,
5149 struct ocfs2_extent_tree *et,
5150 u32 cpos, u32 len, u32 phys,
5151 struct ocfs2_alloc_context *meta_ac,
5152 struct ocfs2_cached_dealloc_ctxt *dealloc,
5153 int new_flags, int clear_flags)
5154 {
5155 int ret, index;
5156 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5157 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5158 struct ocfs2_extent_rec split_rec;
5159 struct ocfs2_path *left_path = NULL;
5160 struct ocfs2_extent_list *el;
5161 struct ocfs2_extent_rec *rec;
5162
5163 left_path = ocfs2_new_path_from_et(et);
5164 if (!left_path) {
5165 ret = -ENOMEM;
5166 mlog_errno(ret);
5167 goto out;
5168 }
5169
5170 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5171 if (ret) {
5172 mlog_errno(ret);
5173 goto out;
5174 }
5175 el = path_leaf_el(left_path);
5176
5177 index = ocfs2_search_extent_list(el, cpos);
5178 if (index == -1) {
5179 ocfs2_error(sb,
5180 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5181 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5182 cpos);
5183 ret = -EROFS;
5184 goto out;
5185 }
5186
5187 ret = -EIO;
5188 rec = &el->l_recs[index];
5189 if (new_flags && (rec->e_flags & new_flags)) {
5190 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5191 "extent that already had them\n",
5192 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5193 new_flags);
5194 goto out;
5195 }
5196
5197 if (clear_flags && !(rec->e_flags & clear_flags)) {
5198 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5199 "extent that didn't have them\n",
5200 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5201 clear_flags);
5202 goto out;
5203 }
5204
5205 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5206 split_rec.e_cpos = cpu_to_le32(cpos);
5207 split_rec.e_leaf_clusters = cpu_to_le16(len);
5208 split_rec.e_blkno = cpu_to_le64(start_blkno);
5209 split_rec.e_flags = rec->e_flags;
5210 if (new_flags)
5211 split_rec.e_flags |= new_flags;
5212 if (clear_flags)
5213 split_rec.e_flags &= ~clear_flags;
5214
5215 ret = ocfs2_split_extent(handle, et, left_path,
5216 index, &split_rec, meta_ac,
5217 dealloc);
5218 if (ret)
5219 mlog_errno(ret);
5220
5221 out:
5222 ocfs2_free_path(left_path);
5223 return ret;
5224
5225 }
5226
5227 /*
5228 * Mark the already-existing extent at cpos as written for len clusters.
5229 * This removes the unwritten extent flag.
5230 *
5231 * If the existing extent is larger than the request, initiate a
5232 * split. An attempt will be made at merging with adjacent extents.
5233 *
5234 * The caller is responsible for passing down meta_ac if we'll need it.
5235 */
5236 int ocfs2_mark_extent_written(struct inode *inode,
5237 struct ocfs2_extent_tree *et,
5238 handle_t *handle, u32 cpos, u32 len, u32 phys,
5239 struct ocfs2_alloc_context *meta_ac,
5240 struct ocfs2_cached_dealloc_ctxt *dealloc)
5241 {
5242 int ret;
5243
5244 trace_ocfs2_mark_extent_written(
5245 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5246 cpos, len, phys);
5247
5248 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5249 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5250 (unsigned long long)OCFS2_I(inode)->ip_blkno);
5251 ret = -EROFS;
5252 goto out;
5253 }
5254
5255 /*
5256 * XXX: This should be fixed up so that we just re-insert the
5257 * next extent records.
5258 */
5259 ocfs2_et_extent_map_truncate(et, 0);
5260
5261 ret = ocfs2_change_extent_flag(handle, et, cpos,
5262 len, phys, meta_ac, dealloc,
5263 0, OCFS2_EXT_UNWRITTEN);
5264 if (ret)
5265 mlog_errno(ret);
5266
5267 out:
5268 return ret;
5269 }
5270
5271 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5272 struct ocfs2_path *path,
5273 int index, u32 new_range,
5274 struct ocfs2_alloc_context *meta_ac)
5275 {
5276 int ret, depth, credits;
5277 struct buffer_head *last_eb_bh = NULL;
5278 struct ocfs2_extent_block *eb;
5279 struct ocfs2_extent_list *rightmost_el, *el;
5280 struct ocfs2_extent_rec split_rec;
5281 struct ocfs2_extent_rec *rec;
5282 struct ocfs2_insert_type insert;
5283
5284 /*
5285 * Setup the record to split before we grow the tree.
5286 */
5287 el = path_leaf_el(path);
5288 rec = &el->l_recs[index];
5289 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5290 &split_rec, new_range, rec);
5291
5292 depth = path->p_tree_depth;
5293 if (depth > 0) {
5294 ret = ocfs2_read_extent_block(et->et_ci,
5295 ocfs2_et_get_last_eb_blk(et),
5296 &last_eb_bh);
5297 if (ret < 0) {
5298 mlog_errno(ret);
5299 goto out;
5300 }
5301
5302 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5303 rightmost_el = &eb->h_list;
5304 } else
5305 rightmost_el = path_leaf_el(path);
5306
5307 credits = path->p_tree_depth +
5308 ocfs2_extend_meta_needed(et->et_root_el);
5309 ret = ocfs2_extend_trans(handle, credits);
5310 if (ret) {
5311 mlog_errno(ret);
5312 goto out;
5313 }
5314
5315 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5316 le16_to_cpu(rightmost_el->l_count)) {
5317 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5318 meta_ac);
5319 if (ret) {
5320 mlog_errno(ret);
5321 goto out;
5322 }
5323 }
5324
5325 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5326 insert.ins_appending = APPEND_NONE;
5327 insert.ins_contig = CONTIG_NONE;
5328 insert.ins_split = SPLIT_RIGHT;
5329 insert.ins_tree_depth = depth;
5330
5331 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5332 if (ret)
5333 mlog_errno(ret);
5334
5335 out:
5336 brelse(last_eb_bh);
5337 return ret;
5338 }
5339
5340 static int ocfs2_truncate_rec(handle_t *handle,
5341 struct ocfs2_extent_tree *et,
5342 struct ocfs2_path *path, int index,
5343 struct ocfs2_cached_dealloc_ctxt *dealloc,
5344 u32 cpos, u32 len)
5345 {
5346 int ret;
5347 u32 left_cpos, rec_range, trunc_range;
5348 int is_rightmost_tree_rec = 0;
5349 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5350 struct ocfs2_path *left_path = NULL;
5351 struct ocfs2_extent_list *el = path_leaf_el(path);
5352 struct ocfs2_extent_rec *rec;
5353 struct ocfs2_extent_block *eb;
5354
5355 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5356 /* extend credit for ocfs2_remove_rightmost_path */
5357 ret = ocfs2_extend_rotate_transaction(handle, 0,
5358 jbd2_handle_buffer_credits(handle),
5359 path);
5360 if (ret) {
5361 mlog_errno(ret);
5362 goto out;
5363 }
5364
5365 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5366 if (ret) {
5367 mlog_errno(ret);
5368 goto out;
5369 }
5370
5371 index--;
5372 }
5373
5374 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5375 path->p_tree_depth) {
5376 /*
5377 * Check whether this is the rightmost tree record. If
5378 * we remove all of this record or part of its right
5379 * edge then an update of the record lengths above it
5380 * will be required.
5381 */
5382 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5383 if (eb->h_next_leaf_blk == 0)
5384 is_rightmost_tree_rec = 1;
5385 }
5386
5387 rec = &el->l_recs[index];
5388 if (index == 0 && path->p_tree_depth &&
5389 le32_to_cpu(rec->e_cpos) == cpos) {
5390 /*
5391 * Changing the leftmost offset (via partial or whole
5392 * record truncate) of an interior (or rightmost) path
5393 * means we have to update the subtree that is formed
5394 * by this leaf and the one to it's left.
5395 *
5396 * There are two cases we can skip:
5397 * 1) Path is the leftmost one in our btree.
5398 * 2) The leaf is rightmost and will be empty after
5399 * we remove the extent record - the rotate code
5400 * knows how to update the newly formed edge.
5401 */
5402
5403 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5404 if (ret) {
5405 mlog_errno(ret);
5406 goto out;
5407 }
5408
5409 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5410 left_path = ocfs2_new_path_from_path(path);
5411 if (!left_path) {
5412 ret = -ENOMEM;
5413 mlog_errno(ret);
5414 goto out;
5415 }
5416
5417 ret = ocfs2_find_path(et->et_ci, left_path,
5418 left_cpos);
5419 if (ret) {
5420 mlog_errno(ret);
5421 goto out;
5422 }
5423 }
5424 }
5425
5426 ret = ocfs2_extend_rotate_transaction(handle, 0,
5427 jbd2_handle_buffer_credits(handle),
5428 path);
5429 if (ret) {
5430 mlog_errno(ret);
5431 goto out;
5432 }
5433
5434 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5435 if (ret) {
5436 mlog_errno(ret);
5437 goto out;
5438 }
5439
5440 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5441 if (ret) {
5442 mlog_errno(ret);
5443 goto out;
5444 }
5445
5446 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5447 trunc_range = cpos + len;
5448
5449 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5450 int next_free;
5451
5452 memset(rec, 0, sizeof(*rec));
5453 ocfs2_cleanup_merge(el, index);
5454
5455 next_free = le16_to_cpu(el->l_next_free_rec);
5456 if (is_rightmost_tree_rec && next_free > 1) {
5457 /*
5458 * We skip the edge update if this path will
5459 * be deleted by the rotate code.
5460 */
5461 rec = &el->l_recs[next_free - 1];
5462 ocfs2_adjust_rightmost_records(handle, et, path,
5463 rec);
5464 }
5465 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5466 /* Remove leftmost portion of the record. */
5467 le32_add_cpu(&rec->e_cpos, len);
5468 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5469 le16_add_cpu(&rec->e_leaf_clusters, -len);
5470 } else if (rec_range == trunc_range) {
5471 /* Remove rightmost portion of the record */
5472 le16_add_cpu(&rec->e_leaf_clusters, -len);
5473 if (is_rightmost_tree_rec)
5474 ocfs2_adjust_rightmost_records(handle, et, path, rec);
5475 } else {
5476 /* Caller should have trapped this. */
5477 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5478 "(%u, %u)\n",
5479 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5480 le32_to_cpu(rec->e_cpos),
5481 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5482 BUG();
5483 }
5484
5485 if (left_path) {
5486 int subtree_index;
5487
5488 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5489 ocfs2_complete_edge_insert(handle, left_path, path,
5490 subtree_index);
5491 }
5492
5493 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5494
5495 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5496 if (ret)
5497 mlog_errno(ret);
5498
5499 out:
5500 ocfs2_free_path(left_path);
5501 return ret;
5502 }
5503
5504 int ocfs2_remove_extent(handle_t *handle,
5505 struct ocfs2_extent_tree *et,
5506 u32 cpos, u32 len,
5507 struct ocfs2_alloc_context *meta_ac,
5508 struct ocfs2_cached_dealloc_ctxt *dealloc)
5509 {
5510 int ret, index;
5511 u32 rec_range, trunc_range;
5512 struct ocfs2_extent_rec *rec;
5513 struct ocfs2_extent_list *el;
5514 struct ocfs2_path *path = NULL;
5515
5516 /*
5517 * XXX: Why are we truncating to 0 instead of wherever this
5518 * affects us?
5519 */
5520 ocfs2_et_extent_map_truncate(et, 0);
5521
5522 path = ocfs2_new_path_from_et(et);
5523 if (!path) {
5524 ret = -ENOMEM;
5525 mlog_errno(ret);
5526 goto out;
5527 }
5528
5529 ret = ocfs2_find_path(et->et_ci, path, cpos);
5530 if (ret) {
5531 mlog_errno(ret);
5532 goto out;
5533 }
5534
5535 el = path_leaf_el(path);
5536 index = ocfs2_search_extent_list(el, cpos);
5537 if (index == -1) {
5538 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5539 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5540 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5541 cpos);
5542 ret = -EROFS;
5543 goto out;
5544 }
5545
5546 /*
5547 * We have 3 cases of extent removal:
5548 * 1) Range covers the entire extent rec
5549 * 2) Range begins or ends on one edge of the extent rec
5550 * 3) Range is in the middle of the extent rec (no shared edges)
5551 *
5552 * For case 1 we remove the extent rec and left rotate to
5553 * fill the hole.
5554 *
5555 * For case 2 we just shrink the existing extent rec, with a
5556 * tree update if the shrinking edge is also the edge of an
5557 * extent block.
5558 *
5559 * For case 3 we do a right split to turn the extent rec into
5560 * something case 2 can handle.
5561 */
5562 rec = &el->l_recs[index];
5563 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5564 trunc_range = cpos + len;
5565
5566 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5567
5568 trace_ocfs2_remove_extent(
5569 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5570 cpos, len, index, le32_to_cpu(rec->e_cpos),
5571 ocfs2_rec_clusters(el, rec));
5572
5573 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5574 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5575 cpos, len);
5576 if (ret) {
5577 mlog_errno(ret);
5578 goto out;
5579 }
5580 } else {
5581 ret = ocfs2_split_tree(handle, et, path, index,
5582 trunc_range, meta_ac);
5583 if (ret) {
5584 mlog_errno(ret);
5585 goto out;
5586 }
5587
5588 /*
5589 * The split could have manipulated the tree enough to
5590 * move the record location, so we have to look for it again.
5591 */
5592 ocfs2_reinit_path(path, 1);
5593
5594 ret = ocfs2_find_path(et->et_ci, path, cpos);
5595 if (ret) {
5596 mlog_errno(ret);
5597 goto out;
5598 }
5599
5600 el = path_leaf_el(path);
5601 index = ocfs2_search_extent_list(el, cpos);
5602 if (index == -1) {
5603 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5604 "Owner %llu: split at cpos %u lost record\n",
5605 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5606 cpos);
5607 ret = -EROFS;
5608 goto out;
5609 }
5610
5611 /*
5612 * Double check our values here. If anything is fishy,
5613 * it's easier to catch it at the top level.
5614 */
5615 rec = &el->l_recs[index];
5616 rec_range = le32_to_cpu(rec->e_cpos) +
5617 ocfs2_rec_clusters(el, rec);
5618 if (rec_range != trunc_range) {
5619 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5620 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5621 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5622 cpos, len, le32_to_cpu(rec->e_cpos),
5623 ocfs2_rec_clusters(el, rec));
5624 ret = -EROFS;
5625 goto out;
5626 }
5627
5628 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5629 cpos, len);
5630 if (ret)
5631 mlog_errno(ret);
5632 }
5633
5634 out:
5635 ocfs2_free_path(path);
5636 return ret;
5637 }
5638
5639 /*
5640 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5641 * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5642 * number to reserve some extra blocks, and it only handles meta
5643 * data allocations.
5644 *
5645 * Currently, only ocfs2_remove_btree_range() uses it for truncating
5646 * and punching holes.
5647 */
5648 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5649 struct ocfs2_extent_tree *et,
5650 u32 extents_to_split,
5651 struct ocfs2_alloc_context **ac,
5652 int extra_blocks)
5653 {
5654 int ret = 0, num_free_extents;
5655 unsigned int max_recs_needed = 2 * extents_to_split;
5656 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5657
5658 *ac = NULL;
5659
5660 num_free_extents = ocfs2_num_free_extents(et);
5661 if (num_free_extents < 0) {
5662 ret = num_free_extents;
5663 mlog_errno(ret);
5664 goto out;
5665 }
5666
5667 if (!num_free_extents ||
5668 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5669 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5670
5671 if (extra_blocks) {
5672 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5673 if (ret < 0) {
5674 if (ret != -ENOSPC)
5675 mlog_errno(ret);
5676 }
5677 }
5678
5679 out:
5680 if (ret) {
5681 if (*ac) {
5682 ocfs2_free_alloc_context(*ac);
5683 *ac = NULL;
5684 }
5685 }
5686
5687 return ret;
5688 }
5689
5690 int ocfs2_remove_btree_range(struct inode *inode,
5691 struct ocfs2_extent_tree *et,
5692 u32 cpos, u32 phys_cpos, u32 len, int flags,
5693 struct ocfs2_cached_dealloc_ctxt *dealloc,
5694 u64 refcount_loc, bool refcount_tree_locked)
5695 {
5696 int ret, credits = 0, extra_blocks = 0;
5697 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5698 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5699 struct inode *tl_inode = osb->osb_tl_inode;
5700 handle_t *handle;
5701 struct ocfs2_alloc_context *meta_ac = NULL;
5702 struct ocfs2_refcount_tree *ref_tree = NULL;
5703
5704 if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5705 BUG_ON(!ocfs2_is_refcount_inode(inode));
5706
5707 if (!refcount_tree_locked) {
5708 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5709 &ref_tree, NULL);
5710 if (ret) {
5711 mlog_errno(ret);
5712 goto bail;
5713 }
5714 }
5715
5716 ret = ocfs2_prepare_refcount_change_for_del(inode,
5717 refcount_loc,
5718 phys_blkno,
5719 len,
5720 &credits,
5721 &extra_blocks);
5722 if (ret < 0) {
5723 mlog_errno(ret);
5724 goto bail;
5725 }
5726 }
5727
5728 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5729 extra_blocks);
5730 if (ret) {
5731 mlog_errno(ret);
5732 goto bail;
5733 }
5734
5735 inode_lock(tl_inode);
5736
5737 if (ocfs2_truncate_log_needs_flush(osb)) {
5738 ret = __ocfs2_flush_truncate_log(osb);
5739 if (ret < 0) {
5740 mlog_errno(ret);
5741 goto out;
5742 }
5743 }
5744
5745 handle = ocfs2_start_trans(osb,
5746 ocfs2_remove_extent_credits(osb->sb) + credits);
5747 if (IS_ERR(handle)) {
5748 ret = PTR_ERR(handle);
5749 mlog_errno(ret);
5750 goto out;
5751 }
5752
5753 ret = ocfs2_et_root_journal_access(handle, et,
5754 OCFS2_JOURNAL_ACCESS_WRITE);
5755 if (ret) {
5756 mlog_errno(ret);
5757 goto out_commit;
5758 }
5759
5760 dquot_free_space_nodirty(inode,
5761 ocfs2_clusters_to_bytes(inode->i_sb, len));
5762
5763 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5764 if (ret) {
5765 mlog_errno(ret);
5766 goto out_commit;
5767 }
5768
5769 ocfs2_et_update_clusters(et, -len);
5770 ocfs2_update_inode_fsync_trans(handle, inode, 1);
5771
5772 ocfs2_journal_dirty(handle, et->et_root_bh);
5773
5774 if (phys_blkno) {
5775 if (flags & OCFS2_EXT_REFCOUNTED)
5776 ret = ocfs2_decrease_refcount(inode, handle,
5777 ocfs2_blocks_to_clusters(osb->sb,
5778 phys_blkno),
5779 len, meta_ac,
5780 dealloc, 1);
5781 else
5782 ret = ocfs2_truncate_log_append(osb, handle,
5783 phys_blkno, len);
5784 if (ret)
5785 mlog_errno(ret);
5786
5787 }
5788
5789 out_commit:
5790 ocfs2_commit_trans(osb, handle);
5791 out:
5792 inode_unlock(tl_inode);
5793 bail:
5794 if (meta_ac)
5795 ocfs2_free_alloc_context(meta_ac);
5796
5797 if (ref_tree)
5798 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5799
5800 return ret;
5801 }
5802
5803 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5804 {
5805 struct buffer_head *tl_bh = osb->osb_tl_bh;
5806 struct ocfs2_dinode *di;
5807 struct ocfs2_truncate_log *tl;
5808
5809 di = (struct ocfs2_dinode *) tl_bh->b_data;
5810 tl = &di->id2.i_dealloc;
5811
5812 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5813 "slot %d, invalid truncate log parameters: used = "
5814 "%u, count = %u\n", osb->slot_num,
5815 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5816 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5817 }
5818
5819 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5820 unsigned int new_start)
5821 {
5822 unsigned int tail_index;
5823 unsigned int current_tail;
5824
5825 /* No records, nothing to coalesce */
5826 if (!le16_to_cpu(tl->tl_used))
5827 return 0;
5828
5829 tail_index = le16_to_cpu(tl->tl_used) - 1;
5830 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5831 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5832
5833 return current_tail == new_start;
5834 }
5835
5836 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5837 handle_t *handle,
5838 u64 start_blk,
5839 unsigned int num_clusters)
5840 {
5841 int status, index;
5842 unsigned int start_cluster, tl_count;
5843 struct inode *tl_inode = osb->osb_tl_inode;
5844 struct buffer_head *tl_bh = osb->osb_tl_bh;
5845 struct ocfs2_dinode *di;
5846 struct ocfs2_truncate_log *tl;
5847
5848 BUG_ON(inode_trylock(tl_inode));
5849
5850 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5851
5852 di = (struct ocfs2_dinode *) tl_bh->b_data;
5853
5854 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5855 * by the underlying call to ocfs2_read_inode_block(), so any
5856 * corruption is a code bug */
5857 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5858
5859 tl = &di->id2.i_dealloc;
5860 tl_count = le16_to_cpu(tl->tl_count);
5861 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5862 tl_count == 0,
5863 "Truncate record count on #%llu invalid "
5864 "wanted %u, actual %u\n",
5865 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5866 ocfs2_truncate_recs_per_inode(osb->sb),
5867 le16_to_cpu(tl->tl_count));
5868
5869 /* Caller should have known to flush before calling us. */
5870 index = le16_to_cpu(tl->tl_used);
5871 if (index >= tl_count) {
5872 status = -ENOSPC;
5873 mlog_errno(status);
5874 goto bail;
5875 }
5876
5877 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5878 OCFS2_JOURNAL_ACCESS_WRITE);
5879 if (status < 0) {
5880 mlog_errno(status);
5881 goto bail;
5882 }
5883
5884 trace_ocfs2_truncate_log_append(
5885 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5886 start_cluster, num_clusters);
5887 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5888 /*
5889 * Move index back to the record we are coalescing with.
5890 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5891 */
5892 index--;
5893
5894 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5895 trace_ocfs2_truncate_log_append(
5896 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5897 index, le32_to_cpu(tl->tl_recs[index].t_start),
5898 num_clusters);
5899 } else {
5900 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5901 tl->tl_used = cpu_to_le16(index + 1);
5902 }
5903 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5904
5905 ocfs2_journal_dirty(handle, tl_bh);
5906
5907 osb->truncated_clusters += num_clusters;
5908 bail:
5909 return status;
5910 }
5911
5912 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5913 struct inode *data_alloc_inode,
5914 struct buffer_head *data_alloc_bh)
5915 {
5916 int status = 0;
5917 int i;
5918 unsigned int num_clusters;
5919 u64 start_blk;
5920 struct ocfs2_truncate_rec rec;
5921 struct ocfs2_dinode *di;
5922 struct ocfs2_truncate_log *tl;
5923 struct inode *tl_inode = osb->osb_tl_inode;
5924 struct buffer_head *tl_bh = osb->osb_tl_bh;
5925 handle_t *handle;
5926
5927 di = (struct ocfs2_dinode *) tl_bh->b_data;
5928 tl = &di->id2.i_dealloc;
5929 i = le16_to_cpu(tl->tl_used) - 1;
5930 while (i >= 0) {
5931 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5932 if (IS_ERR(handle)) {
5933 status = PTR_ERR(handle);
5934 mlog_errno(status);
5935 goto bail;
5936 }
5937
5938 /* Caller has given us at least enough credits to
5939 * update the truncate log dinode */
5940 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5941 OCFS2_JOURNAL_ACCESS_WRITE);
5942 if (status < 0) {
5943 ocfs2_commit_trans(osb, handle);
5944 mlog_errno(status);
5945 goto bail;
5946 }
5947
5948 tl->tl_used = cpu_to_le16(i);
5949
5950 ocfs2_journal_dirty(handle, tl_bh);
5951
5952 rec = tl->tl_recs[i];
5953 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5954 le32_to_cpu(rec.t_start));
5955 num_clusters = le32_to_cpu(rec.t_clusters);
5956
5957 /* if start_blk is not set, we ignore the record as
5958 * invalid. */
5959 if (start_blk) {
5960 trace_ocfs2_replay_truncate_records(
5961 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5962 i, le32_to_cpu(rec.t_start), num_clusters);
5963
5964 status = ocfs2_free_clusters(handle, data_alloc_inode,
5965 data_alloc_bh, start_blk,
5966 num_clusters);
5967 if (status < 0) {
5968 ocfs2_commit_trans(osb, handle);
5969 mlog_errno(status);
5970 goto bail;
5971 }
5972 }
5973
5974 ocfs2_commit_trans(osb, handle);
5975 i--;
5976 }
5977
5978 osb->truncated_clusters = 0;
5979
5980 bail:
5981 return status;
5982 }
5983
5984 /* Expects you to already be holding tl_inode->i_rwsem */
5985 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5986 {
5987 int status;
5988 unsigned int num_to_flush;
5989 struct inode *tl_inode = osb->osb_tl_inode;
5990 struct inode *data_alloc_inode = NULL;
5991 struct buffer_head *tl_bh = osb->osb_tl_bh;
5992 struct buffer_head *data_alloc_bh = NULL;
5993 struct ocfs2_dinode *di;
5994 struct ocfs2_truncate_log *tl;
5995 struct ocfs2_journal *journal = osb->journal;
5996
5997 BUG_ON(inode_trylock(tl_inode));
5998
5999 di = (struct ocfs2_dinode *) tl_bh->b_data;
6000
6001 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
6002 * by the underlying call to ocfs2_read_inode_block(), so any
6003 * corruption is a code bug */
6004 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6005
6006 tl = &di->id2.i_dealloc;
6007 num_to_flush = le16_to_cpu(tl->tl_used);
6008 trace_ocfs2_flush_truncate_log(
6009 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
6010 num_to_flush);
6011 if (!num_to_flush) {
6012 status = 0;
6013 goto out;
6014 }
6015
6016 /* Appending truncate log(TA) and flushing truncate log(TF) are
6017 * two separated transactions. They can be both committed but not
6018 * checkpointed. If crash occurs then, both two transaction will be
6019 * replayed with several already released to global bitmap clusters.
6020 * Then truncate log will be replayed resulting in cluster double free.
6021 */
6022 jbd2_journal_lock_updates(journal->j_journal);
6023 status = jbd2_journal_flush(journal->j_journal, 0);
6024 jbd2_journal_unlock_updates(journal->j_journal);
6025 if (status < 0) {
6026 mlog_errno(status);
6027 goto out;
6028 }
6029
6030 data_alloc_inode = ocfs2_get_system_file_inode(osb,
6031 GLOBAL_BITMAP_SYSTEM_INODE,
6032 OCFS2_INVALID_SLOT);
6033 if (!data_alloc_inode) {
6034 status = -EINVAL;
6035 mlog(ML_ERROR, "Could not get bitmap inode!\n");
6036 goto out;
6037 }
6038
6039 inode_lock(data_alloc_inode);
6040
6041 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6042 if (status < 0) {
6043 mlog_errno(status);
6044 goto out_mutex;
6045 }
6046
6047 status = ocfs2_replay_truncate_records(osb, data_alloc_inode,
6048 data_alloc_bh);
6049 if (status < 0)
6050 mlog_errno(status);
6051
6052 brelse(data_alloc_bh);
6053 ocfs2_inode_unlock(data_alloc_inode, 1);
6054
6055 out_mutex:
6056 inode_unlock(data_alloc_inode);
6057 iput(data_alloc_inode);
6058
6059 out:
6060 return status;
6061 }
6062
6063 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6064 {
6065 int status;
6066 struct inode *tl_inode = osb->osb_tl_inode;
6067
6068 inode_lock(tl_inode);
6069 status = __ocfs2_flush_truncate_log(osb);
6070 inode_unlock(tl_inode);
6071
6072 return status;
6073 }
6074
6075 static void ocfs2_truncate_log_worker(struct work_struct *work)
6076 {
6077 int status;
6078 struct ocfs2_super *osb =
6079 container_of(work, struct ocfs2_super,
6080 osb_truncate_log_wq.work);
6081
6082 status = ocfs2_flush_truncate_log(osb);
6083 if (status < 0)
6084 mlog_errno(status);
6085 else
6086 ocfs2_init_steal_slots(osb);
6087 }
6088
6089 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6090 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6091 int cancel)
6092 {
6093 if (osb->osb_tl_inode &&
6094 atomic_read(&osb->osb_tl_disable) == 0) {
6095 /* We want to push off log flushes while truncates are
6096 * still running. */
6097 if (cancel)
6098 cancel_delayed_work(&osb->osb_truncate_log_wq);
6099
6100 queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq,
6101 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6102 }
6103 }
6104
6105 /*
6106 * Try to flush truncate logs if we can free enough clusters from it.
6107 * As for return value, "< 0" means error, "0" no space and "1" means
6108 * we have freed enough spaces and let the caller try to allocate again.
6109 */
6110 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
6111 unsigned int needed)
6112 {
6113 tid_t target;
6114 int ret = 0;
6115 unsigned int truncated_clusters;
6116
6117 inode_lock(osb->osb_tl_inode);
6118 truncated_clusters = osb->truncated_clusters;
6119 inode_unlock(osb->osb_tl_inode);
6120
6121 /*
6122 * Check whether we can succeed in allocating if we free
6123 * the truncate log.
6124 */
6125 if (truncated_clusters < needed)
6126 goto out;
6127
6128 ret = ocfs2_flush_truncate_log(osb);
6129 if (ret) {
6130 mlog_errno(ret);
6131 goto out;
6132 }
6133
6134 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
6135 jbd2_log_wait_commit(osb->journal->j_journal, target);
6136 ret = 1;
6137 }
6138 out:
6139 return ret;
6140 }
6141
6142 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6143 int slot_num,
6144 struct inode **tl_inode,
6145 struct buffer_head **tl_bh)
6146 {
6147 int status;
6148 struct inode *inode = NULL;
6149 struct buffer_head *bh = NULL;
6150
6151 inode = ocfs2_get_system_file_inode(osb,
6152 TRUNCATE_LOG_SYSTEM_INODE,
6153 slot_num);
6154 if (!inode) {
6155 status = -EINVAL;
6156 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6157 goto bail;
6158 }
6159
6160 status = ocfs2_read_inode_block(inode, &bh);
6161 if (status < 0) {
6162 iput(inode);
6163 mlog_errno(status);
6164 goto bail;
6165 }
6166
6167 *tl_inode = inode;
6168 *tl_bh = bh;
6169 bail:
6170 return status;
6171 }
6172
6173 /* called during the 1st stage of node recovery. we stamp a clean
6174 * truncate log and pass back a copy for processing later. if the
6175 * truncate log does not require processing, a *tl_copy is set to
6176 * NULL. */
6177 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6178 int slot_num,
6179 struct ocfs2_dinode **tl_copy)
6180 {
6181 int status;
6182 struct inode *tl_inode = NULL;
6183 struct buffer_head *tl_bh = NULL;
6184 struct ocfs2_dinode *di;
6185 struct ocfs2_truncate_log *tl;
6186
6187 *tl_copy = NULL;
6188
6189 trace_ocfs2_begin_truncate_log_recovery(slot_num);
6190
6191 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6192 if (status < 0) {
6193 mlog_errno(status);
6194 goto bail;
6195 }
6196
6197 di = (struct ocfs2_dinode *) tl_bh->b_data;
6198
6199 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6200 * validated by the underlying call to ocfs2_read_inode_block(),
6201 * so any corruption is a code bug */
6202 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6203
6204 tl = &di->id2.i_dealloc;
6205 if (le16_to_cpu(tl->tl_used)) {
6206 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6207
6208 /*
6209 * Assuming the write-out below goes well, this copy will be
6210 * passed back to recovery for processing.
6211 */
6212 *tl_copy = kmemdup(tl_bh->b_data, tl_bh->b_size, GFP_KERNEL);
6213 if (!(*tl_copy)) {
6214 status = -ENOMEM;
6215 mlog_errno(status);
6216 goto bail;
6217 }
6218
6219 /* All we need to do to clear the truncate log is set
6220 * tl_used. */
6221 tl->tl_used = 0;
6222
6223 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6224 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6225 if (status < 0) {
6226 mlog_errno(status);
6227 goto bail;
6228 }
6229 }
6230
6231 bail:
6232 iput(tl_inode);
6233 brelse(tl_bh);
6234
6235 if (status < 0) {
6236 kfree(*tl_copy);
6237 *tl_copy = NULL;
6238 mlog_errno(status);
6239 }
6240
6241 return status;
6242 }
6243
6244 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6245 struct ocfs2_dinode *tl_copy)
6246 {
6247 int status = 0;
6248 int i;
6249 unsigned int clusters, num_recs, start_cluster;
6250 u64 start_blk;
6251 handle_t *handle;
6252 struct inode *tl_inode = osb->osb_tl_inode;
6253 struct ocfs2_truncate_log *tl;
6254
6255 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6256 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6257 return -EINVAL;
6258 }
6259
6260 tl = &tl_copy->id2.i_dealloc;
6261 num_recs = le16_to_cpu(tl->tl_used);
6262 trace_ocfs2_complete_truncate_log_recovery(
6263 (unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6264 num_recs);
6265
6266 inode_lock(tl_inode);
6267 for(i = 0; i < num_recs; i++) {
6268 if (ocfs2_truncate_log_needs_flush(osb)) {
6269 status = __ocfs2_flush_truncate_log(osb);
6270 if (status < 0) {
6271 mlog_errno(status);
6272 goto bail_up;
6273 }
6274 }
6275
6276 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6277 if (IS_ERR(handle)) {
6278 status = PTR_ERR(handle);
6279 mlog_errno(status);
6280 goto bail_up;
6281 }
6282
6283 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6284 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6285 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6286
6287 status = ocfs2_truncate_log_append(osb, handle,
6288 start_blk, clusters);
6289 ocfs2_commit_trans(osb, handle);
6290 if (status < 0) {
6291 mlog_errno(status);
6292 goto bail_up;
6293 }
6294 }
6295
6296 bail_up:
6297 inode_unlock(tl_inode);
6298
6299 return status;
6300 }
6301
6302 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6303 {
6304 int status;
6305 struct inode *tl_inode = osb->osb_tl_inode;
6306
6307 atomic_set(&osb->osb_tl_disable, 1);
6308
6309 if (tl_inode) {
6310 cancel_delayed_work(&osb->osb_truncate_log_wq);
6311 flush_workqueue(osb->ocfs2_wq);
6312
6313 status = ocfs2_flush_truncate_log(osb);
6314 if (status < 0)
6315 mlog_errno(status);
6316
6317 brelse(osb->osb_tl_bh);
6318 iput(osb->osb_tl_inode);
6319 }
6320 }
6321
6322 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6323 {
6324 int status;
6325 struct inode *tl_inode = NULL;
6326 struct buffer_head *tl_bh = NULL;
6327
6328 status = ocfs2_get_truncate_log_info(osb,
6329 osb->slot_num,
6330 &tl_inode,
6331 &tl_bh);
6332 if (status < 0)
6333 mlog_errno(status);
6334
6335 /* ocfs2_truncate_log_shutdown keys on the existence of
6336 * osb->osb_tl_inode so we don't set any of the osb variables
6337 * until we're sure all is well. */
6338 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6339 ocfs2_truncate_log_worker);
6340 atomic_set(&osb->osb_tl_disable, 0);
6341 osb->osb_tl_bh = tl_bh;
6342 osb->osb_tl_inode = tl_inode;
6343
6344 return status;
6345 }
6346
6347 /*
6348 * Delayed de-allocation of suballocator blocks.
6349 *
6350 * Some sets of block de-allocations might involve multiple suballocator inodes.
6351 *
6352 * The locking for this can get extremely complicated, especially when
6353 * the suballocator inodes to delete from aren't known until deep
6354 * within an unrelated codepath.
6355 *
6356 * ocfs2_extent_block structures are a good example of this - an inode
6357 * btree could have been grown by any number of nodes each allocating
6358 * out of their own suballoc inode.
6359 *
6360 * These structures allow the delay of block de-allocation until a
6361 * later time, when locking of multiple cluster inodes won't cause
6362 * deadlock.
6363 */
6364
6365 /*
6366 * Describe a single bit freed from a suballocator. For the block
6367 * suballocators, it represents one block. For the global cluster
6368 * allocator, it represents some clusters and free_bit indicates
6369 * clusters number.
6370 */
6371 struct ocfs2_cached_block_free {
6372 struct ocfs2_cached_block_free *free_next;
6373 u64 free_bg;
6374 u64 free_blk;
6375 unsigned int free_bit;
6376 };
6377
6378 struct ocfs2_per_slot_free_list {
6379 struct ocfs2_per_slot_free_list *f_next_suballocator;
6380 int f_inode_type;
6381 int f_slot;
6382 struct ocfs2_cached_block_free *f_first;
6383 };
6384
6385 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6386 int sysfile_type,
6387 int slot,
6388 struct ocfs2_cached_block_free *head)
6389 {
6390 int ret;
6391 u64 bg_blkno;
6392 handle_t *handle;
6393 struct inode *inode;
6394 struct buffer_head *di_bh = NULL;
6395 struct ocfs2_cached_block_free *tmp;
6396
6397 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6398 if (!inode) {
6399 ret = -EINVAL;
6400 mlog_errno(ret);
6401 goto out;
6402 }
6403
6404 inode_lock(inode);
6405
6406 ret = ocfs2_inode_lock(inode, &di_bh, 1);
6407 if (ret) {
6408 mlog_errno(ret);
6409 goto out_mutex;
6410 }
6411
6412 while (head) {
6413 if (head->free_bg)
6414 bg_blkno = head->free_bg;
6415 else
6416 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6417 head->free_bit);
6418 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6419 if (IS_ERR(handle)) {
6420 ret = PTR_ERR(handle);
6421 mlog_errno(ret);
6422 goto out_unlock;
6423 }
6424
6425 trace_ocfs2_free_cached_blocks(
6426 (unsigned long long)head->free_blk, head->free_bit);
6427
6428 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6429 head->free_bit, bg_blkno, 1);
6430 if (ret)
6431 mlog_errno(ret);
6432
6433 ocfs2_commit_trans(osb, handle);
6434
6435 tmp = head;
6436 head = head->free_next;
6437 kfree(tmp);
6438 }
6439
6440 out_unlock:
6441 ocfs2_inode_unlock(inode, 1);
6442 brelse(di_bh);
6443 out_mutex:
6444 inode_unlock(inode);
6445 iput(inode);
6446 out:
6447 while(head) {
6448 /* Premature exit may have left some dangling items. */
6449 tmp = head;
6450 head = head->free_next;
6451 kfree(tmp);
6452 }
6453
6454 return ret;
6455 }
6456
6457 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6458 u64 blkno, unsigned int bit)
6459 {
6460 int ret = 0;
6461 struct ocfs2_cached_block_free *item;
6462
6463 item = kzalloc(sizeof(*item), GFP_NOFS);
6464 if (item == NULL) {
6465 ret = -ENOMEM;
6466 mlog_errno(ret);
6467 return ret;
6468 }
6469
6470 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6471
6472 item->free_blk = blkno;
6473 item->free_bit = bit;
6474 item->free_next = ctxt->c_global_allocator;
6475
6476 ctxt->c_global_allocator = item;
6477 return ret;
6478 }
6479
6480 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6481 struct ocfs2_cached_block_free *head)
6482 {
6483 struct ocfs2_cached_block_free *tmp;
6484 struct inode *tl_inode = osb->osb_tl_inode;
6485 handle_t *handle;
6486 int ret = 0;
6487
6488 inode_lock(tl_inode);
6489
6490 while (head) {
6491 if (ocfs2_truncate_log_needs_flush(osb)) {
6492 ret = __ocfs2_flush_truncate_log(osb);
6493 if (ret < 0) {
6494 mlog_errno(ret);
6495 break;
6496 }
6497 }
6498
6499 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6500 if (IS_ERR(handle)) {
6501 ret = PTR_ERR(handle);
6502 mlog_errno(ret);
6503 break;
6504 }
6505
6506 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6507 head->free_bit);
6508
6509 ocfs2_commit_trans(osb, handle);
6510 tmp = head;
6511 head = head->free_next;
6512 kfree(tmp);
6513
6514 if (ret < 0) {
6515 mlog_errno(ret);
6516 break;
6517 }
6518 }
6519
6520 inode_unlock(tl_inode);
6521
6522 while (head) {
6523 /* Premature exit may have left some dangling items. */
6524 tmp = head;
6525 head = head->free_next;
6526 kfree(tmp);
6527 }
6528
6529 return ret;
6530 }
6531
6532 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6533 struct ocfs2_cached_dealloc_ctxt *ctxt)
6534 {
6535 int ret = 0, ret2;
6536 struct ocfs2_per_slot_free_list *fl;
6537
6538 if (!ctxt)
6539 return 0;
6540
6541 while (ctxt->c_first_suballocator) {
6542 fl = ctxt->c_first_suballocator;
6543
6544 if (fl->f_first) {
6545 trace_ocfs2_run_deallocs(fl->f_inode_type,
6546 fl->f_slot);
6547 ret2 = ocfs2_free_cached_blocks(osb,
6548 fl->f_inode_type,
6549 fl->f_slot,
6550 fl->f_first);
6551 if (ret2)
6552 mlog_errno(ret2);
6553 if (!ret)
6554 ret = ret2;
6555 }
6556
6557 ctxt->c_first_suballocator = fl->f_next_suballocator;
6558 kfree(fl);
6559 }
6560
6561 if (ctxt->c_global_allocator) {
6562 ret2 = ocfs2_free_cached_clusters(osb,
6563 ctxt->c_global_allocator);
6564 if (ret2)
6565 mlog_errno(ret2);
6566 if (!ret)
6567 ret = ret2;
6568
6569 ctxt->c_global_allocator = NULL;
6570 }
6571
6572 return ret;
6573 }
6574
6575 static struct ocfs2_per_slot_free_list *
6576 ocfs2_find_per_slot_free_list(int type,
6577 int slot,
6578 struct ocfs2_cached_dealloc_ctxt *ctxt)
6579 {
6580 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6581
6582 while (fl) {
6583 if (fl->f_inode_type == type && fl->f_slot == slot)
6584 return fl;
6585
6586 fl = fl->f_next_suballocator;
6587 }
6588
6589 fl = kmalloc(sizeof(*fl), GFP_NOFS);
6590 if (fl) {
6591 fl->f_inode_type = type;
6592 fl->f_slot = slot;
6593 fl->f_first = NULL;
6594 fl->f_next_suballocator = ctxt->c_first_suballocator;
6595
6596 ctxt->c_first_suballocator = fl;
6597 }
6598 return fl;
6599 }
6600
6601 static struct ocfs2_per_slot_free_list *
6602 ocfs2_find_preferred_free_list(int type,
6603 int preferred_slot,
6604 int *real_slot,
6605 struct ocfs2_cached_dealloc_ctxt *ctxt)
6606 {
6607 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6608
6609 while (fl) {
6610 if (fl->f_inode_type == type && fl->f_slot == preferred_slot) {
6611 *real_slot = fl->f_slot;
6612 return fl;
6613 }
6614
6615 fl = fl->f_next_suballocator;
6616 }
6617
6618 /* If we can't find any free list matching preferred slot, just use
6619 * the first one.
6620 */
6621 fl = ctxt->c_first_suballocator;
6622 *real_slot = fl->f_slot;
6623
6624 return fl;
6625 }
6626
6627 /* Return Value 1 indicates empty */
6628 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et)
6629 {
6630 struct ocfs2_per_slot_free_list *fl = NULL;
6631
6632 if (!et->et_dealloc)
6633 return 1;
6634
6635 fl = et->et_dealloc->c_first_suballocator;
6636 if (!fl)
6637 return 1;
6638
6639 if (!fl->f_first)
6640 return 1;
6641
6642 return 0;
6643 }
6644
6645 /* If extent was deleted from tree due to extent rotation and merging, and
6646 * no metadata is reserved ahead of time. Try to reuse some extents
6647 * just deleted. This is only used to reuse extent blocks.
6648 * It is supposed to find enough extent blocks in dealloc if our estimation
6649 * on metadata is accurate.
6650 */
6651 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
6652 struct ocfs2_extent_tree *et,
6653 struct buffer_head **new_eb_bh,
6654 int blk_wanted, int *blk_given)
6655 {
6656 int i, status = 0, real_slot;
6657 struct ocfs2_cached_dealloc_ctxt *dealloc;
6658 struct ocfs2_per_slot_free_list *fl;
6659 struct ocfs2_cached_block_free *bf;
6660 struct ocfs2_extent_block *eb;
6661 struct ocfs2_super *osb =
6662 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
6663
6664 *blk_given = 0;
6665
6666 /* If extent tree doesn't have a dealloc, this is not faulty. Just
6667 * tell upper caller dealloc can't provide any block and it should
6668 * ask for alloc to claim more space.
6669 */
6670 dealloc = et->et_dealloc;
6671 if (!dealloc)
6672 goto bail;
6673
6674 for (i = 0; i < blk_wanted; i++) {
6675 /* Prefer to use local slot */
6676 fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE,
6677 osb->slot_num, &real_slot,
6678 dealloc);
6679 /* If no more block can be reused, we should claim more
6680 * from alloc. Just return here normally.
6681 */
6682 if (!fl) {
6683 status = 0;
6684 break;
6685 }
6686
6687 bf = fl->f_first;
6688 fl->f_first = bf->free_next;
6689
6690 new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk);
6691 if (new_eb_bh[i] == NULL) {
6692 status = -ENOMEM;
6693 mlog_errno(status);
6694 goto bail;
6695 }
6696
6697 mlog(0, "Reusing block(%llu) from "
6698 "dealloc(local slot:%d, real slot:%d)\n",
6699 bf->free_blk, osb->slot_num, real_slot);
6700
6701 ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]);
6702
6703 status = ocfs2_journal_access_eb(handle, et->et_ci,
6704 new_eb_bh[i],
6705 OCFS2_JOURNAL_ACCESS_CREATE);
6706 if (status < 0) {
6707 mlog_errno(status);
6708 goto bail;
6709 }
6710
6711 memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize);
6712 eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data;
6713
6714 /* We can't guarantee that buffer head is still cached, so
6715 * polutlate the extent block again.
6716 */
6717 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
6718 eb->h_blkno = cpu_to_le64(bf->free_blk);
6719 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
6720 eb->h_suballoc_slot = cpu_to_le16(real_slot);
6721 eb->h_suballoc_loc = cpu_to_le64(bf->free_bg);
6722 eb->h_suballoc_bit = cpu_to_le16(bf->free_bit);
6723 eb->h_list.l_count =
6724 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
6725
6726 /* We'll also be dirtied by the caller, so
6727 * this isn't absolutely necessary.
6728 */
6729 ocfs2_journal_dirty(handle, new_eb_bh[i]);
6730
6731 if (!fl->f_first) {
6732 dealloc->c_first_suballocator = fl->f_next_suballocator;
6733 kfree(fl);
6734 }
6735 kfree(bf);
6736 }
6737
6738 *blk_given = i;
6739
6740 bail:
6741 if (unlikely(status < 0)) {
6742 for (i = 0; i < blk_wanted; i++)
6743 brelse(new_eb_bh[i]);
6744 }
6745
6746 return status;
6747 }
6748
6749 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6750 int type, int slot, u64 suballoc,
6751 u64 blkno, unsigned int bit)
6752 {
6753 int ret;
6754 struct ocfs2_per_slot_free_list *fl;
6755 struct ocfs2_cached_block_free *item;
6756
6757 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6758 if (fl == NULL) {
6759 ret = -ENOMEM;
6760 mlog_errno(ret);
6761 goto out;
6762 }
6763
6764 item = kzalloc(sizeof(*item), GFP_NOFS);
6765 if (item == NULL) {
6766 ret = -ENOMEM;
6767 mlog_errno(ret);
6768 goto out;
6769 }
6770
6771 trace_ocfs2_cache_block_dealloc(type, slot,
6772 (unsigned long long)suballoc,
6773 (unsigned long long)blkno, bit);
6774
6775 item->free_bg = suballoc;
6776 item->free_blk = blkno;
6777 item->free_bit = bit;
6778 item->free_next = fl->f_first;
6779
6780 fl->f_first = item;
6781
6782 ret = 0;
6783 out:
6784 return ret;
6785 }
6786
6787 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6788 struct ocfs2_extent_block *eb)
6789 {
6790 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6791 le16_to_cpu(eb->h_suballoc_slot),
6792 le64_to_cpu(eb->h_suballoc_loc),
6793 le64_to_cpu(eb->h_blkno),
6794 le16_to_cpu(eb->h_suballoc_bit));
6795 }
6796
6797 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6798 {
6799 set_buffer_uptodate(bh);
6800 mark_buffer_dirty(bh);
6801 return 0;
6802 }
6803
6804 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6805 unsigned int from, unsigned int to,
6806 struct page *page, int zero, u64 *phys)
6807 {
6808 int ret, partial = 0;
6809 loff_t start_byte = ((loff_t)page->index << PAGE_SHIFT) + from;
6810 loff_t length = to - from;
6811
6812 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6813 if (ret)
6814 mlog_errno(ret);
6815
6816 if (zero)
6817 zero_user_segment(page, from, to);
6818
6819 /*
6820 * Need to set the buffers we zero'd into uptodate
6821 * here if they aren't - ocfs2_map_page_blocks()
6822 * might've skipped some
6823 */
6824 ret = walk_page_buffers(handle, page_buffers(page),
6825 from, to, &partial,
6826 ocfs2_zero_func);
6827 if (ret < 0)
6828 mlog_errno(ret);
6829 else if (ocfs2_should_order_data(inode)) {
6830 ret = ocfs2_jbd2_inode_add_write(handle, inode,
6831 start_byte, length);
6832 if (ret < 0)
6833 mlog_errno(ret);
6834 }
6835
6836 if (!partial)
6837 SetPageUptodate(page);
6838
6839 flush_dcache_page(page);
6840 }
6841
6842 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6843 loff_t end, struct page **pages,
6844 int numpages, u64 phys, handle_t *handle)
6845 {
6846 int i;
6847 struct page *page;
6848 unsigned int from, to = PAGE_SIZE;
6849 struct super_block *sb = inode->i_sb;
6850
6851 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6852
6853 if (numpages == 0)
6854 goto out;
6855
6856 to = PAGE_SIZE;
6857 for(i = 0; i < numpages; i++) {
6858 page = pages[i];
6859
6860 from = start & (PAGE_SIZE - 1);
6861 if ((end >> PAGE_SHIFT) == page->index)
6862 to = end & (PAGE_SIZE - 1);
6863
6864 BUG_ON(from > PAGE_SIZE);
6865 BUG_ON(to > PAGE_SIZE);
6866
6867 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6868 &phys);
6869
6870 start = (page->index + 1) << PAGE_SHIFT;
6871 }
6872 out:
6873 if (pages)
6874 ocfs2_unlock_and_free_pages(pages, numpages);
6875 }
6876
6877 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6878 struct page **pages, int *num)
6879 {
6880 int numpages, ret = 0;
6881 struct address_space *mapping = inode->i_mapping;
6882 unsigned long index;
6883 loff_t last_page_bytes;
6884
6885 BUG_ON(start > end);
6886
6887 numpages = 0;
6888 last_page_bytes = PAGE_ALIGN(end);
6889 index = start >> PAGE_SHIFT;
6890 do {
6891 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6892 if (!pages[numpages]) {
6893 ret = -ENOMEM;
6894 mlog_errno(ret);
6895 goto out;
6896 }
6897
6898 numpages++;
6899 index++;
6900 } while (index < (last_page_bytes >> PAGE_SHIFT));
6901
6902 out:
6903 if (ret != 0) {
6904 if (pages)
6905 ocfs2_unlock_and_free_pages(pages, numpages);
6906 numpages = 0;
6907 }
6908
6909 *num = numpages;
6910
6911 return ret;
6912 }
6913
6914 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6915 struct page **pages, int *num)
6916 {
6917 struct super_block *sb = inode->i_sb;
6918
6919 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6920 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6921
6922 return ocfs2_grab_pages(inode, start, end, pages, num);
6923 }
6924
6925 /*
6926 * Zero partial cluster for a hole punch or truncate. This avoids exposing
6927 * nonzero data on subsequent file extends.
6928 *
6929 * We need to call this before i_size is updated on the inode because
6930 * otherwise block_write_full_page() will skip writeout of pages past
6931 * i_size.
6932 */
6933 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6934 u64 range_start, u64 range_end)
6935 {
6936 int ret = 0, numpages;
6937 struct page **pages = NULL;
6938 u64 phys;
6939 unsigned int ext_flags;
6940 struct super_block *sb = inode->i_sb;
6941
6942 /*
6943 * File systems which don't support sparse files zero on every
6944 * extend.
6945 */
6946 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6947 return 0;
6948
6949 /*
6950 * Avoid zeroing pages fully beyond current i_size. It is pointless as
6951 * underlying blocks of those pages should be already zeroed out and
6952 * page writeback will skip them anyway.
6953 */
6954 range_end = min_t(u64, range_end, i_size_read(inode));
6955 if (range_start >= range_end)
6956 return 0;
6957
6958 pages = kcalloc(ocfs2_pages_per_cluster(sb),
6959 sizeof(struct page *), GFP_NOFS);
6960 if (pages == NULL) {
6961 ret = -ENOMEM;
6962 mlog_errno(ret);
6963 goto out;
6964 }
6965
6966 ret = ocfs2_extent_map_get_blocks(inode,
6967 range_start >> sb->s_blocksize_bits,
6968 &phys, NULL, &ext_flags);
6969 if (ret) {
6970 mlog_errno(ret);
6971 goto out;
6972 }
6973
6974 /*
6975 * Tail is a hole, or is marked unwritten. In either case, we
6976 * can count on read and write to return/push zero's.
6977 */
6978 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6979 goto out;
6980
6981 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6982 &numpages);
6983 if (ret) {
6984 mlog_errno(ret);
6985 goto out;
6986 }
6987
6988 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6989 numpages, phys, handle);
6990
6991 /*
6992 * Initiate writeout of the pages we zero'd here. We don't
6993 * wait on them - the truncate_inode_pages() call later will
6994 * do that for us.
6995 */
6996 ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6997 range_end - 1);
6998 if (ret)
6999 mlog_errno(ret);
7000
7001 out:
7002 kfree(pages);
7003
7004 return ret;
7005 }
7006
7007 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7008 struct ocfs2_dinode *di)
7009 {
7010 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7011 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7012
7013 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7014 memset(&di->id2, 0, blocksize -
7015 offsetof(struct ocfs2_dinode, id2) -
7016 xattrsize);
7017 else
7018 memset(&di->id2, 0, blocksize -
7019 offsetof(struct ocfs2_dinode, id2));
7020 }
7021
7022 void ocfs2_dinode_new_extent_list(struct inode *inode,
7023 struct ocfs2_dinode *di)
7024 {
7025 ocfs2_zero_dinode_id2_with_xattr(inode, di);
7026 di->id2.i_list.l_tree_depth = 0;
7027 di->id2.i_list.l_next_free_rec = 0;
7028 di->id2.i_list.l_count = cpu_to_le16(
7029 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7030 }
7031
7032 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7033 {
7034 struct ocfs2_inode_info *oi = OCFS2_I(inode);
7035 struct ocfs2_inline_data *idata = &di->id2.i_data;
7036
7037 spin_lock(&oi->ip_lock);
7038 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7039 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7040 spin_unlock(&oi->ip_lock);
7041
7042 /*
7043 * We clear the entire i_data structure here so that all
7044 * fields can be properly initialized.
7045 */
7046 ocfs2_zero_dinode_id2_with_xattr(inode, di);
7047
7048 idata->id_count = cpu_to_le16(
7049 ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7050 }
7051
7052 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7053 struct buffer_head *di_bh)
7054 {
7055 int ret, has_data, num_pages = 0;
7056 int need_free = 0;
7057 u32 bit_off, num;
7058 handle_t *handle;
7059 u64 block;
7060 struct ocfs2_inode_info *oi = OCFS2_I(inode);
7061 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7062 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7063 struct ocfs2_alloc_context *data_ac = NULL;
7064 struct page *page = NULL;
7065 struct ocfs2_extent_tree et;
7066 int did_quota = 0;
7067
7068 has_data = i_size_read(inode) ? 1 : 0;
7069
7070 if (has_data) {
7071 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7072 if (ret) {
7073 mlog_errno(ret);
7074 goto out;
7075 }
7076 }
7077
7078 handle = ocfs2_start_trans(osb,
7079 ocfs2_inline_to_extents_credits(osb->sb));
7080 if (IS_ERR(handle)) {
7081 ret = PTR_ERR(handle);
7082 mlog_errno(ret);
7083 goto out;
7084 }
7085
7086 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7087 OCFS2_JOURNAL_ACCESS_WRITE);
7088 if (ret) {
7089 mlog_errno(ret);
7090 goto out_commit;
7091 }
7092
7093 if (has_data) {
7094 unsigned int page_end = min_t(unsigned, PAGE_SIZE,
7095 osb->s_clustersize);
7096 u64 phys;
7097
7098 ret = dquot_alloc_space_nodirty(inode,
7099 ocfs2_clusters_to_bytes(osb->sb, 1));
7100 if (ret)
7101 goto out_commit;
7102 did_quota = 1;
7103
7104 data_ac->ac_resv = &oi->ip_la_data_resv;
7105
7106 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
7107 &num);
7108 if (ret) {
7109 mlog_errno(ret);
7110 goto out_commit;
7111 }
7112
7113 /*
7114 * Save two copies, one for insert, and one that can
7115 * be changed by ocfs2_map_and_dirty_page() below.
7116 */
7117 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7118
7119 ret = ocfs2_grab_eof_pages(inode, 0, page_end, &page,
7120 &num_pages);
7121 if (ret) {
7122 mlog_errno(ret);
7123 need_free = 1;
7124 goto out_commit;
7125 }
7126
7127 /*
7128 * This should populate the 1st page for us and mark
7129 * it up to date.
7130 */
7131 ret = ocfs2_read_inline_data(inode, page, di_bh);
7132 if (ret) {
7133 mlog_errno(ret);
7134 need_free = 1;
7135 goto out_unlock;
7136 }
7137
7138 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, page, 0,
7139 &phys);
7140 }
7141
7142 spin_lock(&oi->ip_lock);
7143 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7144 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7145 spin_unlock(&oi->ip_lock);
7146
7147 ocfs2_update_inode_fsync_trans(handle, inode, 1);
7148 ocfs2_dinode_new_extent_list(inode, di);
7149
7150 ocfs2_journal_dirty(handle, di_bh);
7151
7152 if (has_data) {
7153 /*
7154 * An error at this point should be extremely rare. If
7155 * this proves to be false, we could always re-build
7156 * the in-inode data from our pages.
7157 */
7158 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7159 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
7160 if (ret) {
7161 mlog_errno(ret);
7162 need_free = 1;
7163 goto out_unlock;
7164 }
7165
7166 inode->i_blocks = ocfs2_inode_sector_count(inode);
7167 }
7168
7169 out_unlock:
7170 if (page)
7171 ocfs2_unlock_and_free_pages(&page, num_pages);
7172
7173 out_commit:
7174 if (ret < 0 && did_quota)
7175 dquot_free_space_nodirty(inode,
7176 ocfs2_clusters_to_bytes(osb->sb, 1));
7177
7178 if (need_free) {
7179 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
7180 ocfs2_free_local_alloc_bits(osb, handle, data_ac,
7181 bit_off, num);
7182 else
7183 ocfs2_free_clusters(handle,
7184 data_ac->ac_inode,
7185 data_ac->ac_bh,
7186 ocfs2_clusters_to_blocks(osb->sb, bit_off),
7187 num);
7188 }
7189
7190 ocfs2_commit_trans(osb, handle);
7191
7192 out:
7193 if (data_ac)
7194 ocfs2_free_alloc_context(data_ac);
7195 return ret;
7196 }
7197
7198 /*
7199 * It is expected, that by the time you call this function,
7200 * inode->i_size and fe->i_size have been adjusted.
7201 *
7202 * WARNING: This will kfree the truncate context
7203 */
7204 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7205 struct inode *inode,
7206 struct buffer_head *di_bh)
7207 {
7208 int status = 0, i, flags = 0;
7209 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7210 u64 blkno = 0;
7211 struct ocfs2_extent_list *el;
7212 struct ocfs2_extent_rec *rec;
7213 struct ocfs2_path *path = NULL;
7214 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7215 struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7216 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7217 struct ocfs2_extent_tree et;
7218 struct ocfs2_cached_dealloc_ctxt dealloc;
7219 struct ocfs2_refcount_tree *ref_tree = NULL;
7220
7221 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7222 ocfs2_init_dealloc_ctxt(&dealloc);
7223
7224 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7225 i_size_read(inode));
7226
7227 path = ocfs2_new_path(di_bh, &di->id2.i_list,
7228 ocfs2_journal_access_di);
7229 if (!path) {
7230 status = -ENOMEM;
7231 mlog_errno(status);
7232 goto bail;
7233 }
7234
7235 ocfs2_extent_map_trunc(inode, new_highest_cpos);
7236
7237 start:
7238 /*
7239 * Check that we still have allocation to delete.
7240 */
7241 if (OCFS2_I(inode)->ip_clusters == 0) {
7242 status = 0;
7243 goto bail;
7244 }
7245
7246 /*
7247 * Truncate always works against the rightmost tree branch.
7248 */
7249 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7250 if (status) {
7251 mlog_errno(status);
7252 goto bail;
7253 }
7254
7255 trace_ocfs2_commit_truncate(
7256 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7257 new_highest_cpos,
7258 OCFS2_I(inode)->ip_clusters,
7259 path->p_tree_depth);
7260
7261 /*
7262 * By now, el will point to the extent list on the bottom most
7263 * portion of this tree. Only the tail record is considered in
7264 * each pass.
7265 *
7266 * We handle the following cases, in order:
7267 * - empty extent: delete the remaining branch
7268 * - remove the entire record
7269 * - remove a partial record
7270 * - no record needs to be removed (truncate has completed)
7271 */
7272 el = path_leaf_el(path);
7273 if (le16_to_cpu(el->l_next_free_rec) == 0) {
7274 ocfs2_error(inode->i_sb,
7275 "Inode %llu has empty extent block at %llu\n",
7276 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7277 (unsigned long long)path_leaf_bh(path)->b_blocknr);
7278 status = -EROFS;
7279 goto bail;
7280 }
7281
7282 i = le16_to_cpu(el->l_next_free_rec) - 1;
7283 rec = &el->l_recs[i];
7284 flags = rec->e_flags;
7285 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7286
7287 if (i == 0 && ocfs2_is_empty_extent(rec)) {
7288 /*
7289 * Lower levels depend on this never happening, but it's best
7290 * to check it up here before changing the tree.
7291 */
7292 if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7293 mlog(ML_ERROR, "Inode %lu has an empty "
7294 "extent record, depth %u\n", inode->i_ino,
7295 le16_to_cpu(root_el->l_tree_depth));
7296 status = ocfs2_remove_rightmost_empty_extent(osb,
7297 &et, path, &dealloc);
7298 if (status) {
7299 mlog_errno(status);
7300 goto bail;
7301 }
7302
7303 ocfs2_reinit_path(path, 1);
7304 goto start;
7305 } else {
7306 trunc_cpos = le32_to_cpu(rec->e_cpos);
7307 trunc_len = 0;
7308 blkno = 0;
7309 }
7310 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7311 /*
7312 * Truncate entire record.
7313 */
7314 trunc_cpos = le32_to_cpu(rec->e_cpos);
7315 trunc_len = ocfs2_rec_clusters(el, rec);
7316 blkno = le64_to_cpu(rec->e_blkno);
7317 } else if (range > new_highest_cpos) {
7318 /*
7319 * Partial truncate. it also should be
7320 * the last truncate we're doing.
7321 */
7322 trunc_cpos = new_highest_cpos;
7323 trunc_len = range - new_highest_cpos;
7324 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7325 blkno = le64_to_cpu(rec->e_blkno) +
7326 ocfs2_clusters_to_blocks(inode->i_sb, coff);
7327 } else {
7328 /*
7329 * Truncate completed, leave happily.
7330 */
7331 status = 0;
7332 goto bail;
7333 }
7334
7335 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7336
7337 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7338 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7339 &ref_tree, NULL);
7340 if (status) {
7341 mlog_errno(status);
7342 goto bail;
7343 }
7344 }
7345
7346 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7347 phys_cpos, trunc_len, flags, &dealloc,
7348 refcount_loc, true);
7349 if (status < 0) {
7350 mlog_errno(status);
7351 goto bail;
7352 }
7353
7354 ocfs2_reinit_path(path, 1);
7355
7356 /*
7357 * The check above will catch the case where we've truncated
7358 * away all allocation.
7359 */
7360 goto start;
7361
7362 bail:
7363 if (ref_tree)
7364 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7365
7366 ocfs2_schedule_truncate_log_flush(osb, 1);
7367
7368 ocfs2_run_deallocs(osb, &dealloc);
7369
7370 ocfs2_free_path(path);
7371
7372 return status;
7373 }
7374
7375 /*
7376 * 'start' is inclusive, 'end' is not.
7377 */
7378 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7379 unsigned int start, unsigned int end, int trunc)
7380 {
7381 int ret;
7382 unsigned int numbytes;
7383 handle_t *handle;
7384 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7385 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7386 struct ocfs2_inline_data *idata = &di->id2.i_data;
7387
7388 /* No need to punch hole beyond i_size. */
7389 if (start >= i_size_read(inode))
7390 return 0;
7391
7392 if (end > i_size_read(inode))
7393 end = i_size_read(inode);
7394
7395 BUG_ON(start > end);
7396
7397 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7398 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7399 !ocfs2_supports_inline_data(osb)) {
7400 ocfs2_error(inode->i_sb,
7401 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7402 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7403 le16_to_cpu(di->i_dyn_features),
7404 OCFS2_I(inode)->ip_dyn_features,
7405 osb->s_feature_incompat);
7406 ret = -EROFS;
7407 goto out;
7408 }
7409
7410 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7411 if (IS_ERR(handle)) {
7412 ret = PTR_ERR(handle);
7413 mlog_errno(ret);
7414 goto out;
7415 }
7416
7417 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7418 OCFS2_JOURNAL_ACCESS_WRITE);
7419 if (ret) {
7420 mlog_errno(ret);
7421 goto out_commit;
7422 }
7423
7424 numbytes = end - start;
7425 memset(idata->id_data + start, 0, numbytes);
7426
7427 /*
7428 * No need to worry about the data page here - it's been
7429 * truncated already and inline data doesn't need it for
7430 * pushing zero's to disk, so we'll let read_folio pick it up
7431 * later.
7432 */
7433 if (trunc) {
7434 i_size_write(inode, start);
7435 di->i_size = cpu_to_le64(start);
7436 }
7437
7438 inode->i_blocks = ocfs2_inode_sector_count(inode);
7439 inode->i_ctime = inode->i_mtime = current_time(inode);
7440
7441 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7442 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7443
7444 ocfs2_update_inode_fsync_trans(handle, inode, 1);
7445 ocfs2_journal_dirty(handle, di_bh);
7446
7447 out_commit:
7448 ocfs2_commit_trans(osb, handle);
7449
7450 out:
7451 return ret;
7452 }
7453
7454 static int ocfs2_trim_extent(struct super_block *sb,
7455 struct ocfs2_group_desc *gd,
7456 u64 group, u32 start, u32 count)
7457 {
7458 u64 discard, bcount;
7459 struct ocfs2_super *osb = OCFS2_SB(sb);
7460
7461 bcount = ocfs2_clusters_to_blocks(sb, count);
7462 discard = ocfs2_clusters_to_blocks(sb, start);
7463
7464 /*
7465 * For the first cluster group, the gd->bg_blkno is not at the start
7466 * of the group, but at an offset from the start. If we add it while
7467 * calculating discard for first group, we will wrongly start fstrim a
7468 * few blocks after the desried start block and the range can cross
7469 * over into the next cluster group. So, add it only if this is not
7470 * the first cluster group.
7471 */
7472 if (group != osb->first_cluster_group_blkno)
7473 discard += le64_to_cpu(gd->bg_blkno);
7474
7475 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7476
7477 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7478 }
7479
7480 static int ocfs2_trim_group(struct super_block *sb,
7481 struct ocfs2_group_desc *gd, u64 group,
7482 u32 start, u32 max, u32 minbits)
7483 {
7484 int ret = 0, count = 0, next;
7485 void *bitmap = gd->bg_bitmap;
7486
7487 if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7488 return 0;
7489
7490 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7491 start, max, minbits);
7492
7493 while (start < max) {
7494 start = ocfs2_find_next_zero_bit(bitmap, max, start);
7495 if (start >= max)
7496 break;
7497 next = ocfs2_find_next_bit(bitmap, max, start);
7498
7499 if ((next - start) >= minbits) {
7500 ret = ocfs2_trim_extent(sb, gd, group,
7501 start, next - start);
7502 if (ret < 0) {
7503 mlog_errno(ret);
7504 break;
7505 }
7506 count += next - start;
7507 }
7508 start = next + 1;
7509
7510 if (fatal_signal_pending(current)) {
7511 count = -ERESTARTSYS;
7512 break;
7513 }
7514
7515 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7516 break;
7517 }
7518
7519 if (ret < 0)
7520 count = ret;
7521
7522 return count;
7523 }
7524
7525 static
7526 int ocfs2_trim_mainbm(struct super_block *sb, struct fstrim_range *range)
7527 {
7528 struct ocfs2_super *osb = OCFS2_SB(sb);
7529 u64 start, len, trimmed = 0, first_group, last_group = 0, group = 0;
7530 int ret, cnt;
7531 u32 first_bit, last_bit, minlen;
7532 struct buffer_head *main_bm_bh = NULL;
7533 struct inode *main_bm_inode = NULL;
7534 struct buffer_head *gd_bh = NULL;
7535 struct ocfs2_dinode *main_bm;
7536 struct ocfs2_group_desc *gd = NULL;
7537
7538 start = range->start >> osb->s_clustersize_bits;
7539 len = range->len >> osb->s_clustersize_bits;
7540 minlen = range->minlen >> osb->s_clustersize_bits;
7541
7542 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7543 return -EINVAL;
7544
7545 trace_ocfs2_trim_mainbm(start, len, minlen);
7546
7547 next_group:
7548 main_bm_inode = ocfs2_get_system_file_inode(osb,
7549 GLOBAL_BITMAP_SYSTEM_INODE,
7550 OCFS2_INVALID_SLOT);
7551 if (!main_bm_inode) {
7552 ret = -EIO;
7553 mlog_errno(ret);
7554 goto out;
7555 }
7556
7557 inode_lock(main_bm_inode);
7558
7559 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7560 if (ret < 0) {
7561 mlog_errno(ret);
7562 goto out_mutex;
7563 }
7564 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7565
7566 /*
7567 * Do some check before trim the first group.
7568 */
7569 if (!group) {
7570 if (start >= le32_to_cpu(main_bm->i_clusters)) {
7571 ret = -EINVAL;
7572 goto out_unlock;
7573 }
7574
7575 if (start + len > le32_to_cpu(main_bm->i_clusters))
7576 len = le32_to_cpu(main_bm->i_clusters) - start;
7577
7578 /*
7579 * Determine first and last group to examine based on
7580 * start and len
7581 */
7582 first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7583 if (first_group == osb->first_cluster_group_blkno)
7584 first_bit = start;
7585 else
7586 first_bit = start - ocfs2_blocks_to_clusters(sb,
7587 first_group);
7588 last_group = ocfs2_which_cluster_group(main_bm_inode,
7589 start + len - 1);
7590 group = first_group;
7591 }
7592
7593 do {
7594 if (first_bit + len >= osb->bitmap_cpg)
7595 last_bit = osb->bitmap_cpg;
7596 else
7597 last_bit = first_bit + len;
7598
7599 ret = ocfs2_read_group_descriptor(main_bm_inode,
7600 main_bm, group,
7601 &gd_bh);
7602 if (ret < 0) {
7603 mlog_errno(ret);
7604 break;
7605 }
7606
7607 gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7608 cnt = ocfs2_trim_group(sb, gd, group,
7609 first_bit, last_bit, minlen);
7610 brelse(gd_bh);
7611 gd_bh = NULL;
7612 if (cnt < 0) {
7613 ret = cnt;
7614 mlog_errno(ret);
7615 break;
7616 }
7617
7618 trimmed += cnt;
7619 len -= osb->bitmap_cpg - first_bit;
7620 first_bit = 0;
7621 if (group == osb->first_cluster_group_blkno)
7622 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7623 else
7624 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7625 } while (0);
7626
7627 out_unlock:
7628 ocfs2_inode_unlock(main_bm_inode, 0);
7629 brelse(main_bm_bh);
7630 main_bm_bh = NULL;
7631 out_mutex:
7632 inode_unlock(main_bm_inode);
7633 iput(main_bm_inode);
7634
7635 /*
7636 * If all the groups trim are not done or failed, but we should release
7637 * main_bm related locks for avoiding the current IO starve, then go to
7638 * trim the next group
7639 */
7640 if (ret >= 0 && group <= last_group) {
7641 cond_resched();
7642 goto next_group;
7643 }
7644 out:
7645 range->len = trimmed * sb->s_blocksize;
7646 return ret;
7647 }
7648
7649 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7650 {
7651 int ret;
7652 struct ocfs2_super *osb = OCFS2_SB(sb);
7653 struct ocfs2_trim_fs_info info, *pinfo = NULL;
7654
7655 ocfs2_trim_fs_lock_res_init(osb);
7656
7657 trace_ocfs2_trim_fs(range->start, range->len, range->minlen);
7658
7659 ret = ocfs2_trim_fs_lock(osb, NULL, 1);
7660 if (ret < 0) {
7661 if (ret != -EAGAIN) {
7662 mlog_errno(ret);
7663 ocfs2_trim_fs_lock_res_uninit(osb);
7664 return ret;
7665 }
7666
7667 mlog(ML_NOTICE, "Wait for trim on device (%s) to "
7668 "finish, which is running from another node.\n",
7669 osb->dev_str);
7670 ret = ocfs2_trim_fs_lock(osb, &info, 0);
7671 if (ret < 0) {
7672 mlog_errno(ret);
7673 ocfs2_trim_fs_lock_res_uninit(osb);
7674 return ret;
7675 }
7676
7677 if (info.tf_valid && info.tf_success &&
7678 info.tf_start == range->start &&
7679 info.tf_len == range->len &&
7680 info.tf_minlen == range->minlen) {
7681 /* Avoid sending duplicated trim to a shared device */
7682 mlog(ML_NOTICE, "The same trim on device (%s) was "
7683 "just done from node (%u), return.\n",
7684 osb->dev_str, info.tf_nodenum);
7685 range->len = info.tf_trimlen;
7686 goto out;
7687 }
7688 }
7689
7690 info.tf_nodenum = osb->node_num;
7691 info.tf_start = range->start;
7692 info.tf_len = range->len;
7693 info.tf_minlen = range->minlen;
7694
7695 ret = ocfs2_trim_mainbm(sb, range);
7696
7697 info.tf_trimlen = range->len;
7698 info.tf_success = (ret < 0 ? 0 : 1);
7699 pinfo = &info;
7700 out:
7701 ocfs2_trim_fs_unlock(osb, pinfo);
7702 ocfs2_trim_fs_lock_res_uninit(osb);
7703 return ret;
7704 }