]> git.ipfire.org Git - people/ms/linux.git/blob - fs/proc/base.c
vfs: take /proc/*/mounts and friends to fs/proc_namespace.c
[people/ms/linux.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/fs_struct.h>
85 #include <linux/slab.h>
86 #ifdef CONFIG_HARDWALL
87 #include <asm/hardwall.h>
88 #endif
89 #include "internal.h"
90
91 /* NOTE:
92 * Implementing inode permission operations in /proc is almost
93 * certainly an error. Permission checks need to happen during
94 * each system call not at open time. The reason is that most of
95 * what we wish to check for permissions in /proc varies at runtime.
96 *
97 * The classic example of a problem is opening file descriptors
98 * in /proc for a task before it execs a suid executable.
99 */
100
101 struct pid_entry {
102 char *name;
103 int len;
104 mode_t mode;
105 const struct inode_operations *iop;
106 const struct file_operations *fop;
107 union proc_op op;
108 };
109
110 #define NOD(NAME, MODE, IOP, FOP, OP) { \
111 .name = (NAME), \
112 .len = sizeof(NAME) - 1, \
113 .mode = MODE, \
114 .iop = IOP, \
115 .fop = FOP, \
116 .op = OP, \
117 }
118
119 #define DIR(NAME, MODE, iops, fops) \
120 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
121 #define LNK(NAME, get_link) \
122 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
123 &proc_pid_link_inode_operations, NULL, \
124 { .proc_get_link = get_link } )
125 #define REG(NAME, MODE, fops) \
126 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
127 #define INF(NAME, MODE, read) \
128 NOD(NAME, (S_IFREG|(MODE)), \
129 NULL, &proc_info_file_operations, \
130 { .proc_read = read } )
131 #define ONE(NAME, MODE, show) \
132 NOD(NAME, (S_IFREG|(MODE)), \
133 NULL, &proc_single_file_operations, \
134 { .proc_show = show } )
135
136 /*
137 * Count the number of hardlinks for the pid_entry table, excluding the .
138 * and .. links.
139 */
140 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
141 unsigned int n)
142 {
143 unsigned int i;
144 unsigned int count;
145
146 count = 0;
147 for (i = 0; i < n; ++i) {
148 if (S_ISDIR(entries[i].mode))
149 ++count;
150 }
151
152 return count;
153 }
154
155 static int get_task_root(struct task_struct *task, struct path *root)
156 {
157 int result = -ENOENT;
158
159 task_lock(task);
160 if (task->fs) {
161 get_fs_root(task->fs, root);
162 result = 0;
163 }
164 task_unlock(task);
165 return result;
166 }
167
168 static int proc_cwd_link(struct inode *inode, struct path *path)
169 {
170 struct task_struct *task = get_proc_task(inode);
171 int result = -ENOENT;
172
173 if (task) {
174 task_lock(task);
175 if (task->fs) {
176 get_fs_pwd(task->fs, path);
177 result = 0;
178 }
179 task_unlock(task);
180 put_task_struct(task);
181 }
182 return result;
183 }
184
185 static int proc_root_link(struct inode *inode, struct path *path)
186 {
187 struct task_struct *task = get_proc_task(inode);
188 int result = -ENOENT;
189
190 if (task) {
191 result = get_task_root(task, path);
192 put_task_struct(task);
193 }
194 return result;
195 }
196
197 static struct mm_struct *__check_mem_permission(struct task_struct *task)
198 {
199 struct mm_struct *mm;
200
201 mm = get_task_mm(task);
202 if (!mm)
203 return ERR_PTR(-EINVAL);
204
205 /*
206 * A task can always look at itself, in case it chooses
207 * to use system calls instead of load instructions.
208 */
209 if (task == current)
210 return mm;
211
212 /*
213 * If current is actively ptrace'ing, and would also be
214 * permitted to freshly attach with ptrace now, permit it.
215 */
216 if (task_is_stopped_or_traced(task)) {
217 int match;
218 rcu_read_lock();
219 match = (ptrace_parent(task) == current);
220 rcu_read_unlock();
221 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
222 return mm;
223 }
224
225 /*
226 * No one else is allowed.
227 */
228 mmput(mm);
229 return ERR_PTR(-EPERM);
230 }
231
232 /*
233 * If current may access user memory in @task return a reference to the
234 * corresponding mm, otherwise ERR_PTR.
235 */
236 static struct mm_struct *check_mem_permission(struct task_struct *task)
237 {
238 struct mm_struct *mm;
239 int err;
240
241 /*
242 * Avoid racing if task exec's as we might get a new mm but validate
243 * against old credentials.
244 */
245 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
246 if (err)
247 return ERR_PTR(err);
248
249 mm = __check_mem_permission(task);
250 mutex_unlock(&task->signal->cred_guard_mutex);
251
252 return mm;
253 }
254
255 struct mm_struct *mm_for_maps(struct task_struct *task)
256 {
257 struct mm_struct *mm;
258 int err;
259
260 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
261 if (err)
262 return ERR_PTR(err);
263
264 mm = get_task_mm(task);
265 if (mm && mm != current->mm &&
266 !ptrace_may_access(task, PTRACE_MODE_READ)) {
267 mmput(mm);
268 mm = ERR_PTR(-EACCES);
269 }
270 mutex_unlock(&task->signal->cred_guard_mutex);
271
272 return mm;
273 }
274
275 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
276 {
277 int res = 0;
278 unsigned int len;
279 struct mm_struct *mm = get_task_mm(task);
280 if (!mm)
281 goto out;
282 if (!mm->arg_end)
283 goto out_mm; /* Shh! No looking before we're done */
284
285 len = mm->arg_end - mm->arg_start;
286
287 if (len > PAGE_SIZE)
288 len = PAGE_SIZE;
289
290 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
291
292 // If the nul at the end of args has been overwritten, then
293 // assume application is using setproctitle(3).
294 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
295 len = strnlen(buffer, res);
296 if (len < res) {
297 res = len;
298 } else {
299 len = mm->env_end - mm->env_start;
300 if (len > PAGE_SIZE - res)
301 len = PAGE_SIZE - res;
302 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
303 res = strnlen(buffer, res);
304 }
305 }
306 out_mm:
307 mmput(mm);
308 out:
309 return res;
310 }
311
312 static int proc_pid_auxv(struct task_struct *task, char *buffer)
313 {
314 struct mm_struct *mm = mm_for_maps(task);
315 int res = PTR_ERR(mm);
316 if (mm && !IS_ERR(mm)) {
317 unsigned int nwords = 0;
318 do {
319 nwords += 2;
320 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
321 res = nwords * sizeof(mm->saved_auxv[0]);
322 if (res > PAGE_SIZE)
323 res = PAGE_SIZE;
324 memcpy(buffer, mm->saved_auxv, res);
325 mmput(mm);
326 }
327 return res;
328 }
329
330
331 #ifdef CONFIG_KALLSYMS
332 /*
333 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
334 * Returns the resolved symbol. If that fails, simply return the address.
335 */
336 static int proc_pid_wchan(struct task_struct *task, char *buffer)
337 {
338 unsigned long wchan;
339 char symname[KSYM_NAME_LEN];
340
341 wchan = get_wchan(task);
342
343 if (lookup_symbol_name(wchan, symname) < 0)
344 if (!ptrace_may_access(task, PTRACE_MODE_READ))
345 return 0;
346 else
347 return sprintf(buffer, "%lu", wchan);
348 else
349 return sprintf(buffer, "%s", symname);
350 }
351 #endif /* CONFIG_KALLSYMS */
352
353 static int lock_trace(struct task_struct *task)
354 {
355 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
356 if (err)
357 return err;
358 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
359 mutex_unlock(&task->signal->cred_guard_mutex);
360 return -EPERM;
361 }
362 return 0;
363 }
364
365 static void unlock_trace(struct task_struct *task)
366 {
367 mutex_unlock(&task->signal->cred_guard_mutex);
368 }
369
370 #ifdef CONFIG_STACKTRACE
371
372 #define MAX_STACK_TRACE_DEPTH 64
373
374 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
375 struct pid *pid, struct task_struct *task)
376 {
377 struct stack_trace trace;
378 unsigned long *entries;
379 int err;
380 int i;
381
382 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
383 if (!entries)
384 return -ENOMEM;
385
386 trace.nr_entries = 0;
387 trace.max_entries = MAX_STACK_TRACE_DEPTH;
388 trace.entries = entries;
389 trace.skip = 0;
390
391 err = lock_trace(task);
392 if (!err) {
393 save_stack_trace_tsk(task, &trace);
394
395 for (i = 0; i < trace.nr_entries; i++) {
396 seq_printf(m, "[<%pK>] %pS\n",
397 (void *)entries[i], (void *)entries[i]);
398 }
399 unlock_trace(task);
400 }
401 kfree(entries);
402
403 return err;
404 }
405 #endif
406
407 #ifdef CONFIG_SCHEDSTATS
408 /*
409 * Provides /proc/PID/schedstat
410 */
411 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
412 {
413 return sprintf(buffer, "%llu %llu %lu\n",
414 (unsigned long long)task->se.sum_exec_runtime,
415 (unsigned long long)task->sched_info.run_delay,
416 task->sched_info.pcount);
417 }
418 #endif
419
420 #ifdef CONFIG_LATENCYTOP
421 static int lstats_show_proc(struct seq_file *m, void *v)
422 {
423 int i;
424 struct inode *inode = m->private;
425 struct task_struct *task = get_proc_task(inode);
426
427 if (!task)
428 return -ESRCH;
429 seq_puts(m, "Latency Top version : v0.1\n");
430 for (i = 0; i < 32; i++) {
431 struct latency_record *lr = &task->latency_record[i];
432 if (lr->backtrace[0]) {
433 int q;
434 seq_printf(m, "%i %li %li",
435 lr->count, lr->time, lr->max);
436 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
437 unsigned long bt = lr->backtrace[q];
438 if (!bt)
439 break;
440 if (bt == ULONG_MAX)
441 break;
442 seq_printf(m, " %ps", (void *)bt);
443 }
444 seq_putc(m, '\n');
445 }
446
447 }
448 put_task_struct(task);
449 return 0;
450 }
451
452 static int lstats_open(struct inode *inode, struct file *file)
453 {
454 return single_open(file, lstats_show_proc, inode);
455 }
456
457 static ssize_t lstats_write(struct file *file, const char __user *buf,
458 size_t count, loff_t *offs)
459 {
460 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
461
462 if (!task)
463 return -ESRCH;
464 clear_all_latency_tracing(task);
465 put_task_struct(task);
466
467 return count;
468 }
469
470 static const struct file_operations proc_lstats_operations = {
471 .open = lstats_open,
472 .read = seq_read,
473 .write = lstats_write,
474 .llseek = seq_lseek,
475 .release = single_release,
476 };
477
478 #endif
479
480 static int proc_oom_score(struct task_struct *task, char *buffer)
481 {
482 unsigned long points = 0;
483
484 read_lock(&tasklist_lock);
485 if (pid_alive(task))
486 points = oom_badness(task, NULL, NULL,
487 totalram_pages + total_swap_pages);
488 read_unlock(&tasklist_lock);
489 return sprintf(buffer, "%lu\n", points);
490 }
491
492 struct limit_names {
493 char *name;
494 char *unit;
495 };
496
497 static const struct limit_names lnames[RLIM_NLIMITS] = {
498 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
499 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
500 [RLIMIT_DATA] = {"Max data size", "bytes"},
501 [RLIMIT_STACK] = {"Max stack size", "bytes"},
502 [RLIMIT_CORE] = {"Max core file size", "bytes"},
503 [RLIMIT_RSS] = {"Max resident set", "bytes"},
504 [RLIMIT_NPROC] = {"Max processes", "processes"},
505 [RLIMIT_NOFILE] = {"Max open files", "files"},
506 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
507 [RLIMIT_AS] = {"Max address space", "bytes"},
508 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
509 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
510 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
511 [RLIMIT_NICE] = {"Max nice priority", NULL},
512 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
513 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
514 };
515
516 /* Display limits for a process */
517 static int proc_pid_limits(struct task_struct *task, char *buffer)
518 {
519 unsigned int i;
520 int count = 0;
521 unsigned long flags;
522 char *bufptr = buffer;
523
524 struct rlimit rlim[RLIM_NLIMITS];
525
526 if (!lock_task_sighand(task, &flags))
527 return 0;
528 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
529 unlock_task_sighand(task, &flags);
530
531 /*
532 * print the file header
533 */
534 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
535 "Limit", "Soft Limit", "Hard Limit", "Units");
536
537 for (i = 0; i < RLIM_NLIMITS; i++) {
538 if (rlim[i].rlim_cur == RLIM_INFINITY)
539 count += sprintf(&bufptr[count], "%-25s %-20s ",
540 lnames[i].name, "unlimited");
541 else
542 count += sprintf(&bufptr[count], "%-25s %-20lu ",
543 lnames[i].name, rlim[i].rlim_cur);
544
545 if (rlim[i].rlim_max == RLIM_INFINITY)
546 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
547 else
548 count += sprintf(&bufptr[count], "%-20lu ",
549 rlim[i].rlim_max);
550
551 if (lnames[i].unit)
552 count += sprintf(&bufptr[count], "%-10s\n",
553 lnames[i].unit);
554 else
555 count += sprintf(&bufptr[count], "\n");
556 }
557
558 return count;
559 }
560
561 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
562 static int proc_pid_syscall(struct task_struct *task, char *buffer)
563 {
564 long nr;
565 unsigned long args[6], sp, pc;
566 int res = lock_trace(task);
567 if (res)
568 return res;
569
570 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
571 res = sprintf(buffer, "running\n");
572 else if (nr < 0)
573 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
574 else
575 res = sprintf(buffer,
576 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
577 nr,
578 args[0], args[1], args[2], args[3], args[4], args[5],
579 sp, pc);
580 unlock_trace(task);
581 return res;
582 }
583 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
584
585 /************************************************************************/
586 /* Here the fs part begins */
587 /************************************************************************/
588
589 /* permission checks */
590 static int proc_fd_access_allowed(struct inode *inode)
591 {
592 struct task_struct *task;
593 int allowed = 0;
594 /* Allow access to a task's file descriptors if it is us or we
595 * may use ptrace attach to the process and find out that
596 * information.
597 */
598 task = get_proc_task(inode);
599 if (task) {
600 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
601 put_task_struct(task);
602 }
603 return allowed;
604 }
605
606 int proc_setattr(struct dentry *dentry, struct iattr *attr)
607 {
608 int error;
609 struct inode *inode = dentry->d_inode;
610
611 if (attr->ia_valid & ATTR_MODE)
612 return -EPERM;
613
614 error = inode_change_ok(inode, attr);
615 if (error)
616 return error;
617
618 if ((attr->ia_valid & ATTR_SIZE) &&
619 attr->ia_size != i_size_read(inode)) {
620 error = vmtruncate(inode, attr->ia_size);
621 if (error)
622 return error;
623 }
624
625 setattr_copy(inode, attr);
626 mark_inode_dirty(inode);
627 return 0;
628 }
629
630 static const struct inode_operations proc_def_inode_operations = {
631 .setattr = proc_setattr,
632 };
633
634 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
635
636 static ssize_t proc_info_read(struct file * file, char __user * buf,
637 size_t count, loff_t *ppos)
638 {
639 struct inode * inode = file->f_path.dentry->d_inode;
640 unsigned long page;
641 ssize_t length;
642 struct task_struct *task = get_proc_task(inode);
643
644 length = -ESRCH;
645 if (!task)
646 goto out_no_task;
647
648 if (count > PROC_BLOCK_SIZE)
649 count = PROC_BLOCK_SIZE;
650
651 length = -ENOMEM;
652 if (!(page = __get_free_page(GFP_TEMPORARY)))
653 goto out;
654
655 length = PROC_I(inode)->op.proc_read(task, (char*)page);
656
657 if (length >= 0)
658 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
659 free_page(page);
660 out:
661 put_task_struct(task);
662 out_no_task:
663 return length;
664 }
665
666 static const struct file_operations proc_info_file_operations = {
667 .read = proc_info_read,
668 .llseek = generic_file_llseek,
669 };
670
671 static int proc_single_show(struct seq_file *m, void *v)
672 {
673 struct inode *inode = m->private;
674 struct pid_namespace *ns;
675 struct pid *pid;
676 struct task_struct *task;
677 int ret;
678
679 ns = inode->i_sb->s_fs_info;
680 pid = proc_pid(inode);
681 task = get_pid_task(pid, PIDTYPE_PID);
682 if (!task)
683 return -ESRCH;
684
685 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
686
687 put_task_struct(task);
688 return ret;
689 }
690
691 static int proc_single_open(struct inode *inode, struct file *filp)
692 {
693 return single_open(filp, proc_single_show, inode);
694 }
695
696 static const struct file_operations proc_single_file_operations = {
697 .open = proc_single_open,
698 .read = seq_read,
699 .llseek = seq_lseek,
700 .release = single_release,
701 };
702
703 static int mem_open(struct inode* inode, struct file* file)
704 {
705 file->private_data = (void*)((long)current->self_exec_id);
706 /* OK to pass negative loff_t, we can catch out-of-range */
707 file->f_mode |= FMODE_UNSIGNED_OFFSET;
708 return 0;
709 }
710
711 static ssize_t mem_read(struct file * file, char __user * buf,
712 size_t count, loff_t *ppos)
713 {
714 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
715 char *page;
716 unsigned long src = *ppos;
717 int ret = -ESRCH;
718 struct mm_struct *mm;
719
720 if (!task)
721 goto out_no_task;
722
723 ret = -ENOMEM;
724 page = (char *)__get_free_page(GFP_TEMPORARY);
725 if (!page)
726 goto out;
727
728 mm = check_mem_permission(task);
729 ret = PTR_ERR(mm);
730 if (IS_ERR(mm))
731 goto out_free;
732
733 ret = -EIO;
734
735 if (file->private_data != (void*)((long)current->self_exec_id))
736 goto out_put;
737
738 ret = 0;
739
740 while (count > 0) {
741 int this_len, retval;
742
743 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
744 retval = access_remote_vm(mm, src, page, this_len, 0);
745 if (!retval) {
746 if (!ret)
747 ret = -EIO;
748 break;
749 }
750
751 if (copy_to_user(buf, page, retval)) {
752 ret = -EFAULT;
753 break;
754 }
755
756 ret += retval;
757 src += retval;
758 buf += retval;
759 count -= retval;
760 }
761 *ppos = src;
762
763 out_put:
764 mmput(mm);
765 out_free:
766 free_page((unsigned long) page);
767 out:
768 put_task_struct(task);
769 out_no_task:
770 return ret;
771 }
772
773 static ssize_t mem_write(struct file * file, const char __user *buf,
774 size_t count, loff_t *ppos)
775 {
776 int copied;
777 char *page;
778 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
779 unsigned long dst = *ppos;
780 struct mm_struct *mm;
781
782 copied = -ESRCH;
783 if (!task)
784 goto out_no_task;
785
786 copied = -ENOMEM;
787 page = (char *)__get_free_page(GFP_TEMPORARY);
788 if (!page)
789 goto out_task;
790
791 mm = check_mem_permission(task);
792 copied = PTR_ERR(mm);
793 if (IS_ERR(mm))
794 goto out_free;
795
796 copied = -EIO;
797 if (file->private_data != (void *)((long)current->self_exec_id))
798 goto out_mm;
799
800 copied = 0;
801 while (count > 0) {
802 int this_len, retval;
803
804 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
805 if (copy_from_user(page, buf, this_len)) {
806 copied = -EFAULT;
807 break;
808 }
809 retval = access_remote_vm(mm, dst, page, this_len, 1);
810 if (!retval) {
811 if (!copied)
812 copied = -EIO;
813 break;
814 }
815 copied += retval;
816 buf += retval;
817 dst += retval;
818 count -= retval;
819 }
820 *ppos = dst;
821
822 out_mm:
823 mmput(mm);
824 out_free:
825 free_page((unsigned long) page);
826 out_task:
827 put_task_struct(task);
828 out_no_task:
829 return copied;
830 }
831
832 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
833 {
834 switch (orig) {
835 case 0:
836 file->f_pos = offset;
837 break;
838 case 1:
839 file->f_pos += offset;
840 break;
841 default:
842 return -EINVAL;
843 }
844 force_successful_syscall_return();
845 return file->f_pos;
846 }
847
848 static const struct file_operations proc_mem_operations = {
849 .llseek = mem_lseek,
850 .read = mem_read,
851 .write = mem_write,
852 .open = mem_open,
853 };
854
855 static ssize_t environ_read(struct file *file, char __user *buf,
856 size_t count, loff_t *ppos)
857 {
858 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
859 char *page;
860 unsigned long src = *ppos;
861 int ret = -ESRCH;
862 struct mm_struct *mm;
863
864 if (!task)
865 goto out_no_task;
866
867 ret = -ENOMEM;
868 page = (char *)__get_free_page(GFP_TEMPORARY);
869 if (!page)
870 goto out;
871
872
873 mm = mm_for_maps(task);
874 ret = PTR_ERR(mm);
875 if (!mm || IS_ERR(mm))
876 goto out_free;
877
878 ret = 0;
879 while (count > 0) {
880 int this_len, retval, max_len;
881
882 this_len = mm->env_end - (mm->env_start + src);
883
884 if (this_len <= 0)
885 break;
886
887 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
888 this_len = (this_len > max_len) ? max_len : this_len;
889
890 retval = access_process_vm(task, (mm->env_start + src),
891 page, this_len, 0);
892
893 if (retval <= 0) {
894 ret = retval;
895 break;
896 }
897
898 if (copy_to_user(buf, page, retval)) {
899 ret = -EFAULT;
900 break;
901 }
902
903 ret += retval;
904 src += retval;
905 buf += retval;
906 count -= retval;
907 }
908 *ppos = src;
909
910 mmput(mm);
911 out_free:
912 free_page((unsigned long) page);
913 out:
914 put_task_struct(task);
915 out_no_task:
916 return ret;
917 }
918
919 static const struct file_operations proc_environ_operations = {
920 .read = environ_read,
921 .llseek = generic_file_llseek,
922 };
923
924 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
925 size_t count, loff_t *ppos)
926 {
927 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
928 char buffer[PROC_NUMBUF];
929 size_t len;
930 int oom_adjust = OOM_DISABLE;
931 unsigned long flags;
932
933 if (!task)
934 return -ESRCH;
935
936 if (lock_task_sighand(task, &flags)) {
937 oom_adjust = task->signal->oom_adj;
938 unlock_task_sighand(task, &flags);
939 }
940
941 put_task_struct(task);
942
943 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
944
945 return simple_read_from_buffer(buf, count, ppos, buffer, len);
946 }
947
948 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
949 size_t count, loff_t *ppos)
950 {
951 struct task_struct *task;
952 char buffer[PROC_NUMBUF];
953 int oom_adjust;
954 unsigned long flags;
955 int err;
956
957 memset(buffer, 0, sizeof(buffer));
958 if (count > sizeof(buffer) - 1)
959 count = sizeof(buffer) - 1;
960 if (copy_from_user(buffer, buf, count)) {
961 err = -EFAULT;
962 goto out;
963 }
964
965 err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
966 if (err)
967 goto out;
968 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
969 oom_adjust != OOM_DISABLE) {
970 err = -EINVAL;
971 goto out;
972 }
973
974 task = get_proc_task(file->f_path.dentry->d_inode);
975 if (!task) {
976 err = -ESRCH;
977 goto out;
978 }
979
980 task_lock(task);
981 if (!task->mm) {
982 err = -EINVAL;
983 goto err_task_lock;
984 }
985
986 if (!lock_task_sighand(task, &flags)) {
987 err = -ESRCH;
988 goto err_task_lock;
989 }
990
991 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
992 err = -EACCES;
993 goto err_sighand;
994 }
995
996 /*
997 * Warn that /proc/pid/oom_adj is deprecated, see
998 * Documentation/feature-removal-schedule.txt.
999 */
1000 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1001 current->comm, task_pid_nr(current), task_pid_nr(task),
1002 task_pid_nr(task));
1003 task->signal->oom_adj = oom_adjust;
1004 /*
1005 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1006 * value is always attainable.
1007 */
1008 if (task->signal->oom_adj == OOM_ADJUST_MAX)
1009 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
1010 else
1011 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
1012 -OOM_DISABLE;
1013 err_sighand:
1014 unlock_task_sighand(task, &flags);
1015 err_task_lock:
1016 task_unlock(task);
1017 put_task_struct(task);
1018 out:
1019 return err < 0 ? err : count;
1020 }
1021
1022 static const struct file_operations proc_oom_adjust_operations = {
1023 .read = oom_adjust_read,
1024 .write = oom_adjust_write,
1025 .llseek = generic_file_llseek,
1026 };
1027
1028 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1029 size_t count, loff_t *ppos)
1030 {
1031 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
1032 char buffer[PROC_NUMBUF];
1033 int oom_score_adj = OOM_SCORE_ADJ_MIN;
1034 unsigned long flags;
1035 size_t len;
1036
1037 if (!task)
1038 return -ESRCH;
1039 if (lock_task_sighand(task, &flags)) {
1040 oom_score_adj = task->signal->oom_score_adj;
1041 unlock_task_sighand(task, &flags);
1042 }
1043 put_task_struct(task);
1044 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1045 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1046 }
1047
1048 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1049 size_t count, loff_t *ppos)
1050 {
1051 struct task_struct *task;
1052 char buffer[PROC_NUMBUF];
1053 unsigned long flags;
1054 int oom_score_adj;
1055 int err;
1056
1057 memset(buffer, 0, sizeof(buffer));
1058 if (count > sizeof(buffer) - 1)
1059 count = sizeof(buffer) - 1;
1060 if (copy_from_user(buffer, buf, count)) {
1061 err = -EFAULT;
1062 goto out;
1063 }
1064
1065 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1066 if (err)
1067 goto out;
1068 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1069 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1070 err = -EINVAL;
1071 goto out;
1072 }
1073
1074 task = get_proc_task(file->f_path.dentry->d_inode);
1075 if (!task) {
1076 err = -ESRCH;
1077 goto out;
1078 }
1079
1080 task_lock(task);
1081 if (!task->mm) {
1082 err = -EINVAL;
1083 goto err_task_lock;
1084 }
1085
1086 if (!lock_task_sighand(task, &flags)) {
1087 err = -ESRCH;
1088 goto err_task_lock;
1089 }
1090
1091 if (oom_score_adj < task->signal->oom_score_adj_min &&
1092 !capable(CAP_SYS_RESOURCE)) {
1093 err = -EACCES;
1094 goto err_sighand;
1095 }
1096
1097 task->signal->oom_score_adj = oom_score_adj;
1098 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1099 task->signal->oom_score_adj_min = oom_score_adj;
1100 /*
1101 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1102 * always attainable.
1103 */
1104 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1105 task->signal->oom_adj = OOM_DISABLE;
1106 else
1107 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1108 OOM_SCORE_ADJ_MAX;
1109 err_sighand:
1110 unlock_task_sighand(task, &flags);
1111 err_task_lock:
1112 task_unlock(task);
1113 put_task_struct(task);
1114 out:
1115 return err < 0 ? err : count;
1116 }
1117
1118 static const struct file_operations proc_oom_score_adj_operations = {
1119 .read = oom_score_adj_read,
1120 .write = oom_score_adj_write,
1121 .llseek = default_llseek,
1122 };
1123
1124 #ifdef CONFIG_AUDITSYSCALL
1125 #define TMPBUFLEN 21
1126 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1127 size_t count, loff_t *ppos)
1128 {
1129 struct inode * inode = file->f_path.dentry->d_inode;
1130 struct task_struct *task = get_proc_task(inode);
1131 ssize_t length;
1132 char tmpbuf[TMPBUFLEN];
1133
1134 if (!task)
1135 return -ESRCH;
1136 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1137 audit_get_loginuid(task));
1138 put_task_struct(task);
1139 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1140 }
1141
1142 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1143 size_t count, loff_t *ppos)
1144 {
1145 struct inode * inode = file->f_path.dentry->d_inode;
1146 char *page, *tmp;
1147 ssize_t length;
1148 uid_t loginuid;
1149
1150 if (!capable(CAP_AUDIT_CONTROL))
1151 return -EPERM;
1152
1153 rcu_read_lock();
1154 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1155 rcu_read_unlock();
1156 return -EPERM;
1157 }
1158 rcu_read_unlock();
1159
1160 if (count >= PAGE_SIZE)
1161 count = PAGE_SIZE - 1;
1162
1163 if (*ppos != 0) {
1164 /* No partial writes. */
1165 return -EINVAL;
1166 }
1167 page = (char*)__get_free_page(GFP_TEMPORARY);
1168 if (!page)
1169 return -ENOMEM;
1170 length = -EFAULT;
1171 if (copy_from_user(page, buf, count))
1172 goto out_free_page;
1173
1174 page[count] = '\0';
1175 loginuid = simple_strtoul(page, &tmp, 10);
1176 if (tmp == page) {
1177 length = -EINVAL;
1178 goto out_free_page;
1179
1180 }
1181 length = audit_set_loginuid(current, loginuid);
1182 if (likely(length == 0))
1183 length = count;
1184
1185 out_free_page:
1186 free_page((unsigned long) page);
1187 return length;
1188 }
1189
1190 static const struct file_operations proc_loginuid_operations = {
1191 .read = proc_loginuid_read,
1192 .write = proc_loginuid_write,
1193 .llseek = generic_file_llseek,
1194 };
1195
1196 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1197 size_t count, loff_t *ppos)
1198 {
1199 struct inode * inode = file->f_path.dentry->d_inode;
1200 struct task_struct *task = get_proc_task(inode);
1201 ssize_t length;
1202 char tmpbuf[TMPBUFLEN];
1203
1204 if (!task)
1205 return -ESRCH;
1206 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1207 audit_get_sessionid(task));
1208 put_task_struct(task);
1209 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1210 }
1211
1212 static const struct file_operations proc_sessionid_operations = {
1213 .read = proc_sessionid_read,
1214 .llseek = generic_file_llseek,
1215 };
1216 #endif
1217
1218 #ifdef CONFIG_FAULT_INJECTION
1219 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1220 size_t count, loff_t *ppos)
1221 {
1222 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1223 char buffer[PROC_NUMBUF];
1224 size_t len;
1225 int make_it_fail;
1226
1227 if (!task)
1228 return -ESRCH;
1229 make_it_fail = task->make_it_fail;
1230 put_task_struct(task);
1231
1232 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1233
1234 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1235 }
1236
1237 static ssize_t proc_fault_inject_write(struct file * file,
1238 const char __user * buf, size_t count, loff_t *ppos)
1239 {
1240 struct task_struct *task;
1241 char buffer[PROC_NUMBUF], *end;
1242 int make_it_fail;
1243
1244 if (!capable(CAP_SYS_RESOURCE))
1245 return -EPERM;
1246 memset(buffer, 0, sizeof(buffer));
1247 if (count > sizeof(buffer) - 1)
1248 count = sizeof(buffer) - 1;
1249 if (copy_from_user(buffer, buf, count))
1250 return -EFAULT;
1251 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1252 if (*end)
1253 return -EINVAL;
1254 task = get_proc_task(file->f_dentry->d_inode);
1255 if (!task)
1256 return -ESRCH;
1257 task->make_it_fail = make_it_fail;
1258 put_task_struct(task);
1259
1260 return count;
1261 }
1262
1263 static const struct file_operations proc_fault_inject_operations = {
1264 .read = proc_fault_inject_read,
1265 .write = proc_fault_inject_write,
1266 .llseek = generic_file_llseek,
1267 };
1268 #endif
1269
1270
1271 #ifdef CONFIG_SCHED_DEBUG
1272 /*
1273 * Print out various scheduling related per-task fields:
1274 */
1275 static int sched_show(struct seq_file *m, void *v)
1276 {
1277 struct inode *inode = m->private;
1278 struct task_struct *p;
1279
1280 p = get_proc_task(inode);
1281 if (!p)
1282 return -ESRCH;
1283 proc_sched_show_task(p, m);
1284
1285 put_task_struct(p);
1286
1287 return 0;
1288 }
1289
1290 static ssize_t
1291 sched_write(struct file *file, const char __user *buf,
1292 size_t count, loff_t *offset)
1293 {
1294 struct inode *inode = file->f_path.dentry->d_inode;
1295 struct task_struct *p;
1296
1297 p = get_proc_task(inode);
1298 if (!p)
1299 return -ESRCH;
1300 proc_sched_set_task(p);
1301
1302 put_task_struct(p);
1303
1304 return count;
1305 }
1306
1307 static int sched_open(struct inode *inode, struct file *filp)
1308 {
1309 return single_open(filp, sched_show, inode);
1310 }
1311
1312 static const struct file_operations proc_pid_sched_operations = {
1313 .open = sched_open,
1314 .read = seq_read,
1315 .write = sched_write,
1316 .llseek = seq_lseek,
1317 .release = single_release,
1318 };
1319
1320 #endif
1321
1322 #ifdef CONFIG_SCHED_AUTOGROUP
1323 /*
1324 * Print out autogroup related information:
1325 */
1326 static int sched_autogroup_show(struct seq_file *m, void *v)
1327 {
1328 struct inode *inode = m->private;
1329 struct task_struct *p;
1330
1331 p = get_proc_task(inode);
1332 if (!p)
1333 return -ESRCH;
1334 proc_sched_autogroup_show_task(p, m);
1335
1336 put_task_struct(p);
1337
1338 return 0;
1339 }
1340
1341 static ssize_t
1342 sched_autogroup_write(struct file *file, const char __user *buf,
1343 size_t count, loff_t *offset)
1344 {
1345 struct inode *inode = file->f_path.dentry->d_inode;
1346 struct task_struct *p;
1347 char buffer[PROC_NUMBUF];
1348 int nice;
1349 int err;
1350
1351 memset(buffer, 0, sizeof(buffer));
1352 if (count > sizeof(buffer) - 1)
1353 count = sizeof(buffer) - 1;
1354 if (copy_from_user(buffer, buf, count))
1355 return -EFAULT;
1356
1357 err = kstrtoint(strstrip(buffer), 0, &nice);
1358 if (err < 0)
1359 return err;
1360
1361 p = get_proc_task(inode);
1362 if (!p)
1363 return -ESRCH;
1364
1365 err = nice;
1366 err = proc_sched_autogroup_set_nice(p, &err);
1367 if (err)
1368 count = err;
1369
1370 put_task_struct(p);
1371
1372 return count;
1373 }
1374
1375 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1376 {
1377 int ret;
1378
1379 ret = single_open(filp, sched_autogroup_show, NULL);
1380 if (!ret) {
1381 struct seq_file *m = filp->private_data;
1382
1383 m->private = inode;
1384 }
1385 return ret;
1386 }
1387
1388 static const struct file_operations proc_pid_sched_autogroup_operations = {
1389 .open = sched_autogroup_open,
1390 .read = seq_read,
1391 .write = sched_autogroup_write,
1392 .llseek = seq_lseek,
1393 .release = single_release,
1394 };
1395
1396 #endif /* CONFIG_SCHED_AUTOGROUP */
1397
1398 static ssize_t comm_write(struct file *file, const char __user *buf,
1399 size_t count, loff_t *offset)
1400 {
1401 struct inode *inode = file->f_path.dentry->d_inode;
1402 struct task_struct *p;
1403 char buffer[TASK_COMM_LEN];
1404
1405 memset(buffer, 0, sizeof(buffer));
1406 if (count > sizeof(buffer) - 1)
1407 count = sizeof(buffer) - 1;
1408 if (copy_from_user(buffer, buf, count))
1409 return -EFAULT;
1410
1411 p = get_proc_task(inode);
1412 if (!p)
1413 return -ESRCH;
1414
1415 if (same_thread_group(current, p))
1416 set_task_comm(p, buffer);
1417 else
1418 count = -EINVAL;
1419
1420 put_task_struct(p);
1421
1422 return count;
1423 }
1424
1425 static int comm_show(struct seq_file *m, void *v)
1426 {
1427 struct inode *inode = m->private;
1428 struct task_struct *p;
1429
1430 p = get_proc_task(inode);
1431 if (!p)
1432 return -ESRCH;
1433
1434 task_lock(p);
1435 seq_printf(m, "%s\n", p->comm);
1436 task_unlock(p);
1437
1438 put_task_struct(p);
1439
1440 return 0;
1441 }
1442
1443 static int comm_open(struct inode *inode, struct file *filp)
1444 {
1445 return single_open(filp, comm_show, inode);
1446 }
1447
1448 static const struct file_operations proc_pid_set_comm_operations = {
1449 .open = comm_open,
1450 .read = seq_read,
1451 .write = comm_write,
1452 .llseek = seq_lseek,
1453 .release = single_release,
1454 };
1455
1456 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1457 {
1458 struct task_struct *task;
1459 struct mm_struct *mm;
1460 struct file *exe_file;
1461
1462 task = get_proc_task(inode);
1463 if (!task)
1464 return -ENOENT;
1465 mm = get_task_mm(task);
1466 put_task_struct(task);
1467 if (!mm)
1468 return -ENOENT;
1469 exe_file = get_mm_exe_file(mm);
1470 mmput(mm);
1471 if (exe_file) {
1472 *exe_path = exe_file->f_path;
1473 path_get(&exe_file->f_path);
1474 fput(exe_file);
1475 return 0;
1476 } else
1477 return -ENOENT;
1478 }
1479
1480 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1481 {
1482 struct inode *inode = dentry->d_inode;
1483 int error = -EACCES;
1484
1485 /* We don't need a base pointer in the /proc filesystem */
1486 path_put(&nd->path);
1487
1488 /* Are we allowed to snoop on the tasks file descriptors? */
1489 if (!proc_fd_access_allowed(inode))
1490 goto out;
1491
1492 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1493 out:
1494 return ERR_PTR(error);
1495 }
1496
1497 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1498 {
1499 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1500 char *pathname;
1501 int len;
1502
1503 if (!tmp)
1504 return -ENOMEM;
1505
1506 pathname = d_path(path, tmp, PAGE_SIZE);
1507 len = PTR_ERR(pathname);
1508 if (IS_ERR(pathname))
1509 goto out;
1510 len = tmp + PAGE_SIZE - 1 - pathname;
1511
1512 if (len > buflen)
1513 len = buflen;
1514 if (copy_to_user(buffer, pathname, len))
1515 len = -EFAULT;
1516 out:
1517 free_page((unsigned long)tmp);
1518 return len;
1519 }
1520
1521 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1522 {
1523 int error = -EACCES;
1524 struct inode *inode = dentry->d_inode;
1525 struct path path;
1526
1527 /* Are we allowed to snoop on the tasks file descriptors? */
1528 if (!proc_fd_access_allowed(inode))
1529 goto out;
1530
1531 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1532 if (error)
1533 goto out;
1534
1535 error = do_proc_readlink(&path, buffer, buflen);
1536 path_put(&path);
1537 out:
1538 return error;
1539 }
1540
1541 static const struct inode_operations proc_pid_link_inode_operations = {
1542 .readlink = proc_pid_readlink,
1543 .follow_link = proc_pid_follow_link,
1544 .setattr = proc_setattr,
1545 };
1546
1547
1548 /* building an inode */
1549
1550 static int task_dumpable(struct task_struct *task)
1551 {
1552 int dumpable = 0;
1553 struct mm_struct *mm;
1554
1555 task_lock(task);
1556 mm = task->mm;
1557 if (mm)
1558 dumpable = get_dumpable(mm);
1559 task_unlock(task);
1560 if(dumpable == 1)
1561 return 1;
1562 return 0;
1563 }
1564
1565 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1566 {
1567 struct inode * inode;
1568 struct proc_inode *ei;
1569 const struct cred *cred;
1570
1571 /* We need a new inode */
1572
1573 inode = new_inode(sb);
1574 if (!inode)
1575 goto out;
1576
1577 /* Common stuff */
1578 ei = PROC_I(inode);
1579 inode->i_ino = get_next_ino();
1580 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1581 inode->i_op = &proc_def_inode_operations;
1582
1583 /*
1584 * grab the reference to task.
1585 */
1586 ei->pid = get_task_pid(task, PIDTYPE_PID);
1587 if (!ei->pid)
1588 goto out_unlock;
1589
1590 if (task_dumpable(task)) {
1591 rcu_read_lock();
1592 cred = __task_cred(task);
1593 inode->i_uid = cred->euid;
1594 inode->i_gid = cred->egid;
1595 rcu_read_unlock();
1596 }
1597 security_task_to_inode(task, inode);
1598
1599 out:
1600 return inode;
1601
1602 out_unlock:
1603 iput(inode);
1604 return NULL;
1605 }
1606
1607 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1608 {
1609 struct inode *inode = dentry->d_inode;
1610 struct task_struct *task;
1611 const struct cred *cred;
1612
1613 generic_fillattr(inode, stat);
1614
1615 rcu_read_lock();
1616 stat->uid = 0;
1617 stat->gid = 0;
1618 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1619 if (task) {
1620 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1621 task_dumpable(task)) {
1622 cred = __task_cred(task);
1623 stat->uid = cred->euid;
1624 stat->gid = cred->egid;
1625 }
1626 }
1627 rcu_read_unlock();
1628 return 0;
1629 }
1630
1631 /* dentry stuff */
1632
1633 /*
1634 * Exceptional case: normally we are not allowed to unhash a busy
1635 * directory. In this case, however, we can do it - no aliasing problems
1636 * due to the way we treat inodes.
1637 *
1638 * Rewrite the inode's ownerships here because the owning task may have
1639 * performed a setuid(), etc.
1640 *
1641 * Before the /proc/pid/status file was created the only way to read
1642 * the effective uid of a /process was to stat /proc/pid. Reading
1643 * /proc/pid/status is slow enough that procps and other packages
1644 * kept stating /proc/pid. To keep the rules in /proc simple I have
1645 * made this apply to all per process world readable and executable
1646 * directories.
1647 */
1648 int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1649 {
1650 struct inode *inode;
1651 struct task_struct *task;
1652 const struct cred *cred;
1653
1654 if (nd && nd->flags & LOOKUP_RCU)
1655 return -ECHILD;
1656
1657 inode = dentry->d_inode;
1658 task = get_proc_task(inode);
1659
1660 if (task) {
1661 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1662 task_dumpable(task)) {
1663 rcu_read_lock();
1664 cred = __task_cred(task);
1665 inode->i_uid = cred->euid;
1666 inode->i_gid = cred->egid;
1667 rcu_read_unlock();
1668 } else {
1669 inode->i_uid = 0;
1670 inode->i_gid = 0;
1671 }
1672 inode->i_mode &= ~(S_ISUID | S_ISGID);
1673 security_task_to_inode(task, inode);
1674 put_task_struct(task);
1675 return 1;
1676 }
1677 d_drop(dentry);
1678 return 0;
1679 }
1680
1681 static int pid_delete_dentry(const struct dentry * dentry)
1682 {
1683 /* Is the task we represent dead?
1684 * If so, then don't put the dentry on the lru list,
1685 * kill it immediately.
1686 */
1687 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1688 }
1689
1690 const struct dentry_operations pid_dentry_operations =
1691 {
1692 .d_revalidate = pid_revalidate,
1693 .d_delete = pid_delete_dentry,
1694 };
1695
1696 /* Lookups */
1697
1698 /*
1699 * Fill a directory entry.
1700 *
1701 * If possible create the dcache entry and derive our inode number and
1702 * file type from dcache entry.
1703 *
1704 * Since all of the proc inode numbers are dynamically generated, the inode
1705 * numbers do not exist until the inode is cache. This means creating the
1706 * the dcache entry in readdir is necessary to keep the inode numbers
1707 * reported by readdir in sync with the inode numbers reported
1708 * by stat.
1709 */
1710 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1711 const char *name, int len,
1712 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1713 {
1714 struct dentry *child, *dir = filp->f_path.dentry;
1715 struct inode *inode;
1716 struct qstr qname;
1717 ino_t ino = 0;
1718 unsigned type = DT_UNKNOWN;
1719
1720 qname.name = name;
1721 qname.len = len;
1722 qname.hash = full_name_hash(name, len);
1723
1724 child = d_lookup(dir, &qname);
1725 if (!child) {
1726 struct dentry *new;
1727 new = d_alloc(dir, &qname);
1728 if (new) {
1729 child = instantiate(dir->d_inode, new, task, ptr);
1730 if (child)
1731 dput(new);
1732 else
1733 child = new;
1734 }
1735 }
1736 if (!child || IS_ERR(child) || !child->d_inode)
1737 goto end_instantiate;
1738 inode = child->d_inode;
1739 if (inode) {
1740 ino = inode->i_ino;
1741 type = inode->i_mode >> 12;
1742 }
1743 dput(child);
1744 end_instantiate:
1745 if (!ino)
1746 ino = find_inode_number(dir, &qname);
1747 if (!ino)
1748 ino = 1;
1749 return filldir(dirent, name, len, filp->f_pos, ino, type);
1750 }
1751
1752 static unsigned name_to_int(struct dentry *dentry)
1753 {
1754 const char *name = dentry->d_name.name;
1755 int len = dentry->d_name.len;
1756 unsigned n = 0;
1757
1758 if (len > 1 && *name == '0')
1759 goto out;
1760 while (len-- > 0) {
1761 unsigned c = *name++ - '0';
1762 if (c > 9)
1763 goto out;
1764 if (n >= (~0U-9)/10)
1765 goto out;
1766 n *= 10;
1767 n += c;
1768 }
1769 return n;
1770 out:
1771 return ~0U;
1772 }
1773
1774 #define PROC_FDINFO_MAX 64
1775
1776 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1777 {
1778 struct task_struct *task = get_proc_task(inode);
1779 struct files_struct *files = NULL;
1780 struct file *file;
1781 int fd = proc_fd(inode);
1782
1783 if (task) {
1784 files = get_files_struct(task);
1785 put_task_struct(task);
1786 }
1787 if (files) {
1788 /*
1789 * We are not taking a ref to the file structure, so we must
1790 * hold ->file_lock.
1791 */
1792 spin_lock(&files->file_lock);
1793 file = fcheck_files(files, fd);
1794 if (file) {
1795 unsigned int f_flags;
1796 struct fdtable *fdt;
1797
1798 fdt = files_fdtable(files);
1799 f_flags = file->f_flags & ~O_CLOEXEC;
1800 if (FD_ISSET(fd, fdt->close_on_exec))
1801 f_flags |= O_CLOEXEC;
1802
1803 if (path) {
1804 *path = file->f_path;
1805 path_get(&file->f_path);
1806 }
1807 if (info)
1808 snprintf(info, PROC_FDINFO_MAX,
1809 "pos:\t%lli\n"
1810 "flags:\t0%o\n",
1811 (long long) file->f_pos,
1812 f_flags);
1813 spin_unlock(&files->file_lock);
1814 put_files_struct(files);
1815 return 0;
1816 }
1817 spin_unlock(&files->file_lock);
1818 put_files_struct(files);
1819 }
1820 return -ENOENT;
1821 }
1822
1823 static int proc_fd_link(struct inode *inode, struct path *path)
1824 {
1825 return proc_fd_info(inode, path, NULL);
1826 }
1827
1828 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1829 {
1830 struct inode *inode;
1831 struct task_struct *task;
1832 int fd;
1833 struct files_struct *files;
1834 const struct cred *cred;
1835
1836 if (nd && nd->flags & LOOKUP_RCU)
1837 return -ECHILD;
1838
1839 inode = dentry->d_inode;
1840 task = get_proc_task(inode);
1841 fd = proc_fd(inode);
1842
1843 if (task) {
1844 files = get_files_struct(task);
1845 if (files) {
1846 rcu_read_lock();
1847 if (fcheck_files(files, fd)) {
1848 rcu_read_unlock();
1849 put_files_struct(files);
1850 if (task_dumpable(task)) {
1851 rcu_read_lock();
1852 cred = __task_cred(task);
1853 inode->i_uid = cred->euid;
1854 inode->i_gid = cred->egid;
1855 rcu_read_unlock();
1856 } else {
1857 inode->i_uid = 0;
1858 inode->i_gid = 0;
1859 }
1860 inode->i_mode &= ~(S_ISUID | S_ISGID);
1861 security_task_to_inode(task, inode);
1862 put_task_struct(task);
1863 return 1;
1864 }
1865 rcu_read_unlock();
1866 put_files_struct(files);
1867 }
1868 put_task_struct(task);
1869 }
1870 d_drop(dentry);
1871 return 0;
1872 }
1873
1874 static const struct dentry_operations tid_fd_dentry_operations =
1875 {
1876 .d_revalidate = tid_fd_revalidate,
1877 .d_delete = pid_delete_dentry,
1878 };
1879
1880 static struct dentry *proc_fd_instantiate(struct inode *dir,
1881 struct dentry *dentry, struct task_struct *task, const void *ptr)
1882 {
1883 unsigned fd = *(const unsigned *)ptr;
1884 struct file *file;
1885 struct files_struct *files;
1886 struct inode *inode;
1887 struct proc_inode *ei;
1888 struct dentry *error = ERR_PTR(-ENOENT);
1889
1890 inode = proc_pid_make_inode(dir->i_sb, task);
1891 if (!inode)
1892 goto out;
1893 ei = PROC_I(inode);
1894 ei->fd = fd;
1895 files = get_files_struct(task);
1896 if (!files)
1897 goto out_iput;
1898 inode->i_mode = S_IFLNK;
1899
1900 /*
1901 * We are not taking a ref to the file structure, so we must
1902 * hold ->file_lock.
1903 */
1904 spin_lock(&files->file_lock);
1905 file = fcheck_files(files, fd);
1906 if (!file)
1907 goto out_unlock;
1908 if (file->f_mode & FMODE_READ)
1909 inode->i_mode |= S_IRUSR | S_IXUSR;
1910 if (file->f_mode & FMODE_WRITE)
1911 inode->i_mode |= S_IWUSR | S_IXUSR;
1912 spin_unlock(&files->file_lock);
1913 put_files_struct(files);
1914
1915 inode->i_op = &proc_pid_link_inode_operations;
1916 inode->i_size = 64;
1917 ei->op.proc_get_link = proc_fd_link;
1918 d_set_d_op(dentry, &tid_fd_dentry_operations);
1919 d_add(dentry, inode);
1920 /* Close the race of the process dying before we return the dentry */
1921 if (tid_fd_revalidate(dentry, NULL))
1922 error = NULL;
1923
1924 out:
1925 return error;
1926 out_unlock:
1927 spin_unlock(&files->file_lock);
1928 put_files_struct(files);
1929 out_iput:
1930 iput(inode);
1931 goto out;
1932 }
1933
1934 static struct dentry *proc_lookupfd_common(struct inode *dir,
1935 struct dentry *dentry,
1936 instantiate_t instantiate)
1937 {
1938 struct task_struct *task = get_proc_task(dir);
1939 unsigned fd = name_to_int(dentry);
1940 struct dentry *result = ERR_PTR(-ENOENT);
1941
1942 if (!task)
1943 goto out_no_task;
1944 if (fd == ~0U)
1945 goto out;
1946
1947 result = instantiate(dir, dentry, task, &fd);
1948 out:
1949 put_task_struct(task);
1950 out_no_task:
1951 return result;
1952 }
1953
1954 static int proc_readfd_common(struct file * filp, void * dirent,
1955 filldir_t filldir, instantiate_t instantiate)
1956 {
1957 struct dentry *dentry = filp->f_path.dentry;
1958 struct inode *inode = dentry->d_inode;
1959 struct task_struct *p = get_proc_task(inode);
1960 unsigned int fd, ino;
1961 int retval;
1962 struct files_struct * files;
1963
1964 retval = -ENOENT;
1965 if (!p)
1966 goto out_no_task;
1967 retval = 0;
1968
1969 fd = filp->f_pos;
1970 switch (fd) {
1971 case 0:
1972 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1973 goto out;
1974 filp->f_pos++;
1975 case 1:
1976 ino = parent_ino(dentry);
1977 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1978 goto out;
1979 filp->f_pos++;
1980 default:
1981 files = get_files_struct(p);
1982 if (!files)
1983 goto out;
1984 rcu_read_lock();
1985 for (fd = filp->f_pos-2;
1986 fd < files_fdtable(files)->max_fds;
1987 fd++, filp->f_pos++) {
1988 char name[PROC_NUMBUF];
1989 int len;
1990
1991 if (!fcheck_files(files, fd))
1992 continue;
1993 rcu_read_unlock();
1994
1995 len = snprintf(name, sizeof(name), "%d", fd);
1996 if (proc_fill_cache(filp, dirent, filldir,
1997 name, len, instantiate,
1998 p, &fd) < 0) {
1999 rcu_read_lock();
2000 break;
2001 }
2002 rcu_read_lock();
2003 }
2004 rcu_read_unlock();
2005 put_files_struct(files);
2006 }
2007 out:
2008 put_task_struct(p);
2009 out_no_task:
2010 return retval;
2011 }
2012
2013 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
2014 struct nameidata *nd)
2015 {
2016 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
2017 }
2018
2019 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
2020 {
2021 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
2022 }
2023
2024 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
2025 size_t len, loff_t *ppos)
2026 {
2027 char tmp[PROC_FDINFO_MAX];
2028 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
2029 if (!err)
2030 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
2031 return err;
2032 }
2033
2034 static const struct file_operations proc_fdinfo_file_operations = {
2035 .open = nonseekable_open,
2036 .read = proc_fdinfo_read,
2037 .llseek = no_llseek,
2038 };
2039
2040 static const struct file_operations proc_fd_operations = {
2041 .read = generic_read_dir,
2042 .readdir = proc_readfd,
2043 .llseek = default_llseek,
2044 };
2045
2046 /*
2047 * /proc/pid/fd needs a special permission handler so that a process can still
2048 * access /proc/self/fd after it has executed a setuid().
2049 */
2050 static int proc_fd_permission(struct inode *inode, int mask)
2051 {
2052 int rv = generic_permission(inode, mask);
2053 if (rv == 0)
2054 return 0;
2055 if (task_pid(current) == proc_pid(inode))
2056 rv = 0;
2057 return rv;
2058 }
2059
2060 /*
2061 * proc directories can do almost nothing..
2062 */
2063 static const struct inode_operations proc_fd_inode_operations = {
2064 .lookup = proc_lookupfd,
2065 .permission = proc_fd_permission,
2066 .setattr = proc_setattr,
2067 };
2068
2069 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2070 struct dentry *dentry, struct task_struct *task, const void *ptr)
2071 {
2072 unsigned fd = *(unsigned *)ptr;
2073 struct inode *inode;
2074 struct proc_inode *ei;
2075 struct dentry *error = ERR_PTR(-ENOENT);
2076
2077 inode = proc_pid_make_inode(dir->i_sb, task);
2078 if (!inode)
2079 goto out;
2080 ei = PROC_I(inode);
2081 ei->fd = fd;
2082 inode->i_mode = S_IFREG | S_IRUSR;
2083 inode->i_fop = &proc_fdinfo_file_operations;
2084 d_set_d_op(dentry, &tid_fd_dentry_operations);
2085 d_add(dentry, inode);
2086 /* Close the race of the process dying before we return the dentry */
2087 if (tid_fd_revalidate(dentry, NULL))
2088 error = NULL;
2089
2090 out:
2091 return error;
2092 }
2093
2094 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2095 struct dentry *dentry,
2096 struct nameidata *nd)
2097 {
2098 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2099 }
2100
2101 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2102 {
2103 return proc_readfd_common(filp, dirent, filldir,
2104 proc_fdinfo_instantiate);
2105 }
2106
2107 static const struct file_operations proc_fdinfo_operations = {
2108 .read = generic_read_dir,
2109 .readdir = proc_readfdinfo,
2110 .llseek = default_llseek,
2111 };
2112
2113 /*
2114 * proc directories can do almost nothing..
2115 */
2116 static const struct inode_operations proc_fdinfo_inode_operations = {
2117 .lookup = proc_lookupfdinfo,
2118 .setattr = proc_setattr,
2119 };
2120
2121
2122 static struct dentry *proc_pident_instantiate(struct inode *dir,
2123 struct dentry *dentry, struct task_struct *task, const void *ptr)
2124 {
2125 const struct pid_entry *p = ptr;
2126 struct inode *inode;
2127 struct proc_inode *ei;
2128 struct dentry *error = ERR_PTR(-ENOENT);
2129
2130 inode = proc_pid_make_inode(dir->i_sb, task);
2131 if (!inode)
2132 goto out;
2133
2134 ei = PROC_I(inode);
2135 inode->i_mode = p->mode;
2136 if (S_ISDIR(inode->i_mode))
2137 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2138 if (p->iop)
2139 inode->i_op = p->iop;
2140 if (p->fop)
2141 inode->i_fop = p->fop;
2142 ei->op = p->op;
2143 d_set_d_op(dentry, &pid_dentry_operations);
2144 d_add(dentry, inode);
2145 /* Close the race of the process dying before we return the dentry */
2146 if (pid_revalidate(dentry, NULL))
2147 error = NULL;
2148 out:
2149 return error;
2150 }
2151
2152 static struct dentry *proc_pident_lookup(struct inode *dir,
2153 struct dentry *dentry,
2154 const struct pid_entry *ents,
2155 unsigned int nents)
2156 {
2157 struct dentry *error;
2158 struct task_struct *task = get_proc_task(dir);
2159 const struct pid_entry *p, *last;
2160
2161 error = ERR_PTR(-ENOENT);
2162
2163 if (!task)
2164 goto out_no_task;
2165
2166 /*
2167 * Yes, it does not scale. And it should not. Don't add
2168 * new entries into /proc/<tgid>/ without very good reasons.
2169 */
2170 last = &ents[nents - 1];
2171 for (p = ents; p <= last; p++) {
2172 if (p->len != dentry->d_name.len)
2173 continue;
2174 if (!memcmp(dentry->d_name.name, p->name, p->len))
2175 break;
2176 }
2177 if (p > last)
2178 goto out;
2179
2180 error = proc_pident_instantiate(dir, dentry, task, p);
2181 out:
2182 put_task_struct(task);
2183 out_no_task:
2184 return error;
2185 }
2186
2187 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2188 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2189 {
2190 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2191 proc_pident_instantiate, task, p);
2192 }
2193
2194 static int proc_pident_readdir(struct file *filp,
2195 void *dirent, filldir_t filldir,
2196 const struct pid_entry *ents, unsigned int nents)
2197 {
2198 int i;
2199 struct dentry *dentry = filp->f_path.dentry;
2200 struct inode *inode = dentry->d_inode;
2201 struct task_struct *task = get_proc_task(inode);
2202 const struct pid_entry *p, *last;
2203 ino_t ino;
2204 int ret;
2205
2206 ret = -ENOENT;
2207 if (!task)
2208 goto out_no_task;
2209
2210 ret = 0;
2211 i = filp->f_pos;
2212 switch (i) {
2213 case 0:
2214 ino = inode->i_ino;
2215 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2216 goto out;
2217 i++;
2218 filp->f_pos++;
2219 /* fall through */
2220 case 1:
2221 ino = parent_ino(dentry);
2222 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2223 goto out;
2224 i++;
2225 filp->f_pos++;
2226 /* fall through */
2227 default:
2228 i -= 2;
2229 if (i >= nents) {
2230 ret = 1;
2231 goto out;
2232 }
2233 p = ents + i;
2234 last = &ents[nents - 1];
2235 while (p <= last) {
2236 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2237 goto out;
2238 filp->f_pos++;
2239 p++;
2240 }
2241 }
2242
2243 ret = 1;
2244 out:
2245 put_task_struct(task);
2246 out_no_task:
2247 return ret;
2248 }
2249
2250 #ifdef CONFIG_SECURITY
2251 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2252 size_t count, loff_t *ppos)
2253 {
2254 struct inode * inode = file->f_path.dentry->d_inode;
2255 char *p = NULL;
2256 ssize_t length;
2257 struct task_struct *task = get_proc_task(inode);
2258
2259 if (!task)
2260 return -ESRCH;
2261
2262 length = security_getprocattr(task,
2263 (char*)file->f_path.dentry->d_name.name,
2264 &p);
2265 put_task_struct(task);
2266 if (length > 0)
2267 length = simple_read_from_buffer(buf, count, ppos, p, length);
2268 kfree(p);
2269 return length;
2270 }
2271
2272 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2273 size_t count, loff_t *ppos)
2274 {
2275 struct inode * inode = file->f_path.dentry->d_inode;
2276 char *page;
2277 ssize_t length;
2278 struct task_struct *task = get_proc_task(inode);
2279
2280 length = -ESRCH;
2281 if (!task)
2282 goto out_no_task;
2283 if (count > PAGE_SIZE)
2284 count = PAGE_SIZE;
2285
2286 /* No partial writes. */
2287 length = -EINVAL;
2288 if (*ppos != 0)
2289 goto out;
2290
2291 length = -ENOMEM;
2292 page = (char*)__get_free_page(GFP_TEMPORARY);
2293 if (!page)
2294 goto out;
2295
2296 length = -EFAULT;
2297 if (copy_from_user(page, buf, count))
2298 goto out_free;
2299
2300 /* Guard against adverse ptrace interaction */
2301 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2302 if (length < 0)
2303 goto out_free;
2304
2305 length = security_setprocattr(task,
2306 (char*)file->f_path.dentry->d_name.name,
2307 (void*)page, count);
2308 mutex_unlock(&task->signal->cred_guard_mutex);
2309 out_free:
2310 free_page((unsigned long) page);
2311 out:
2312 put_task_struct(task);
2313 out_no_task:
2314 return length;
2315 }
2316
2317 static const struct file_operations proc_pid_attr_operations = {
2318 .read = proc_pid_attr_read,
2319 .write = proc_pid_attr_write,
2320 .llseek = generic_file_llseek,
2321 };
2322
2323 static const struct pid_entry attr_dir_stuff[] = {
2324 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2325 REG("prev", S_IRUGO, proc_pid_attr_operations),
2326 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2327 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2328 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2329 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2330 };
2331
2332 static int proc_attr_dir_readdir(struct file * filp,
2333 void * dirent, filldir_t filldir)
2334 {
2335 return proc_pident_readdir(filp,dirent,filldir,
2336 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2337 }
2338
2339 static const struct file_operations proc_attr_dir_operations = {
2340 .read = generic_read_dir,
2341 .readdir = proc_attr_dir_readdir,
2342 .llseek = default_llseek,
2343 };
2344
2345 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2346 struct dentry *dentry, struct nameidata *nd)
2347 {
2348 return proc_pident_lookup(dir, dentry,
2349 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2350 }
2351
2352 static const struct inode_operations proc_attr_dir_inode_operations = {
2353 .lookup = proc_attr_dir_lookup,
2354 .getattr = pid_getattr,
2355 .setattr = proc_setattr,
2356 };
2357
2358 #endif
2359
2360 #ifdef CONFIG_ELF_CORE
2361 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2362 size_t count, loff_t *ppos)
2363 {
2364 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2365 struct mm_struct *mm;
2366 char buffer[PROC_NUMBUF];
2367 size_t len;
2368 int ret;
2369
2370 if (!task)
2371 return -ESRCH;
2372
2373 ret = 0;
2374 mm = get_task_mm(task);
2375 if (mm) {
2376 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2377 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2378 MMF_DUMP_FILTER_SHIFT));
2379 mmput(mm);
2380 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2381 }
2382
2383 put_task_struct(task);
2384
2385 return ret;
2386 }
2387
2388 static ssize_t proc_coredump_filter_write(struct file *file,
2389 const char __user *buf,
2390 size_t count,
2391 loff_t *ppos)
2392 {
2393 struct task_struct *task;
2394 struct mm_struct *mm;
2395 char buffer[PROC_NUMBUF], *end;
2396 unsigned int val;
2397 int ret;
2398 int i;
2399 unsigned long mask;
2400
2401 ret = -EFAULT;
2402 memset(buffer, 0, sizeof(buffer));
2403 if (count > sizeof(buffer) - 1)
2404 count = sizeof(buffer) - 1;
2405 if (copy_from_user(buffer, buf, count))
2406 goto out_no_task;
2407
2408 ret = -EINVAL;
2409 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2410 if (*end == '\n')
2411 end++;
2412 if (end - buffer == 0)
2413 goto out_no_task;
2414
2415 ret = -ESRCH;
2416 task = get_proc_task(file->f_dentry->d_inode);
2417 if (!task)
2418 goto out_no_task;
2419
2420 ret = end - buffer;
2421 mm = get_task_mm(task);
2422 if (!mm)
2423 goto out_no_mm;
2424
2425 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2426 if (val & mask)
2427 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2428 else
2429 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2430 }
2431
2432 mmput(mm);
2433 out_no_mm:
2434 put_task_struct(task);
2435 out_no_task:
2436 return ret;
2437 }
2438
2439 static const struct file_operations proc_coredump_filter_operations = {
2440 .read = proc_coredump_filter_read,
2441 .write = proc_coredump_filter_write,
2442 .llseek = generic_file_llseek,
2443 };
2444 #endif
2445
2446 /*
2447 * /proc/self:
2448 */
2449 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2450 int buflen)
2451 {
2452 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2453 pid_t tgid = task_tgid_nr_ns(current, ns);
2454 char tmp[PROC_NUMBUF];
2455 if (!tgid)
2456 return -ENOENT;
2457 sprintf(tmp, "%d", tgid);
2458 return vfs_readlink(dentry,buffer,buflen,tmp);
2459 }
2460
2461 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2462 {
2463 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2464 pid_t tgid = task_tgid_nr_ns(current, ns);
2465 char *name = ERR_PTR(-ENOENT);
2466 if (tgid) {
2467 name = __getname();
2468 if (!name)
2469 name = ERR_PTR(-ENOMEM);
2470 else
2471 sprintf(name, "%d", tgid);
2472 }
2473 nd_set_link(nd, name);
2474 return NULL;
2475 }
2476
2477 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2478 void *cookie)
2479 {
2480 char *s = nd_get_link(nd);
2481 if (!IS_ERR(s))
2482 __putname(s);
2483 }
2484
2485 static const struct inode_operations proc_self_inode_operations = {
2486 .readlink = proc_self_readlink,
2487 .follow_link = proc_self_follow_link,
2488 .put_link = proc_self_put_link,
2489 };
2490
2491 /*
2492 * proc base
2493 *
2494 * These are the directory entries in the root directory of /proc
2495 * that properly belong to the /proc filesystem, as they describe
2496 * describe something that is process related.
2497 */
2498 static const struct pid_entry proc_base_stuff[] = {
2499 NOD("self", S_IFLNK|S_IRWXUGO,
2500 &proc_self_inode_operations, NULL, {}),
2501 };
2502
2503 static struct dentry *proc_base_instantiate(struct inode *dir,
2504 struct dentry *dentry, struct task_struct *task, const void *ptr)
2505 {
2506 const struct pid_entry *p = ptr;
2507 struct inode *inode;
2508 struct proc_inode *ei;
2509 struct dentry *error;
2510
2511 /* Allocate the inode */
2512 error = ERR_PTR(-ENOMEM);
2513 inode = new_inode(dir->i_sb);
2514 if (!inode)
2515 goto out;
2516
2517 /* Initialize the inode */
2518 ei = PROC_I(inode);
2519 inode->i_ino = get_next_ino();
2520 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2521
2522 /*
2523 * grab the reference to the task.
2524 */
2525 ei->pid = get_task_pid(task, PIDTYPE_PID);
2526 if (!ei->pid)
2527 goto out_iput;
2528
2529 inode->i_mode = p->mode;
2530 if (S_ISDIR(inode->i_mode))
2531 set_nlink(inode, 2);
2532 if (S_ISLNK(inode->i_mode))
2533 inode->i_size = 64;
2534 if (p->iop)
2535 inode->i_op = p->iop;
2536 if (p->fop)
2537 inode->i_fop = p->fop;
2538 ei->op = p->op;
2539 d_add(dentry, inode);
2540 error = NULL;
2541 out:
2542 return error;
2543 out_iput:
2544 iput(inode);
2545 goto out;
2546 }
2547
2548 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2549 {
2550 struct dentry *error;
2551 struct task_struct *task = get_proc_task(dir);
2552 const struct pid_entry *p, *last;
2553
2554 error = ERR_PTR(-ENOENT);
2555
2556 if (!task)
2557 goto out_no_task;
2558
2559 /* Lookup the directory entry */
2560 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2561 for (p = proc_base_stuff; p <= last; p++) {
2562 if (p->len != dentry->d_name.len)
2563 continue;
2564 if (!memcmp(dentry->d_name.name, p->name, p->len))
2565 break;
2566 }
2567 if (p > last)
2568 goto out;
2569
2570 error = proc_base_instantiate(dir, dentry, task, p);
2571
2572 out:
2573 put_task_struct(task);
2574 out_no_task:
2575 return error;
2576 }
2577
2578 static int proc_base_fill_cache(struct file *filp, void *dirent,
2579 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2580 {
2581 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2582 proc_base_instantiate, task, p);
2583 }
2584
2585 #ifdef CONFIG_TASK_IO_ACCOUNTING
2586 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2587 {
2588 struct task_io_accounting acct = task->ioac;
2589 unsigned long flags;
2590 int result;
2591
2592 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2593 if (result)
2594 return result;
2595
2596 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2597 result = -EACCES;
2598 goto out_unlock;
2599 }
2600
2601 if (whole && lock_task_sighand(task, &flags)) {
2602 struct task_struct *t = task;
2603
2604 task_io_accounting_add(&acct, &task->signal->ioac);
2605 while_each_thread(task, t)
2606 task_io_accounting_add(&acct, &t->ioac);
2607
2608 unlock_task_sighand(task, &flags);
2609 }
2610 result = sprintf(buffer,
2611 "rchar: %llu\n"
2612 "wchar: %llu\n"
2613 "syscr: %llu\n"
2614 "syscw: %llu\n"
2615 "read_bytes: %llu\n"
2616 "write_bytes: %llu\n"
2617 "cancelled_write_bytes: %llu\n",
2618 (unsigned long long)acct.rchar,
2619 (unsigned long long)acct.wchar,
2620 (unsigned long long)acct.syscr,
2621 (unsigned long long)acct.syscw,
2622 (unsigned long long)acct.read_bytes,
2623 (unsigned long long)acct.write_bytes,
2624 (unsigned long long)acct.cancelled_write_bytes);
2625 out_unlock:
2626 mutex_unlock(&task->signal->cred_guard_mutex);
2627 return result;
2628 }
2629
2630 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2631 {
2632 return do_io_accounting(task, buffer, 0);
2633 }
2634
2635 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2636 {
2637 return do_io_accounting(task, buffer, 1);
2638 }
2639 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2640
2641 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2642 struct pid *pid, struct task_struct *task)
2643 {
2644 int err = lock_trace(task);
2645 if (!err) {
2646 seq_printf(m, "%08x\n", task->personality);
2647 unlock_trace(task);
2648 }
2649 return err;
2650 }
2651
2652 /*
2653 * Thread groups
2654 */
2655 static const struct file_operations proc_task_operations;
2656 static const struct inode_operations proc_task_inode_operations;
2657
2658 static const struct pid_entry tgid_base_stuff[] = {
2659 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2660 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2661 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2662 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2663 #ifdef CONFIG_NET
2664 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2665 #endif
2666 REG("environ", S_IRUSR, proc_environ_operations),
2667 INF("auxv", S_IRUSR, proc_pid_auxv),
2668 ONE("status", S_IRUGO, proc_pid_status),
2669 ONE("personality", S_IRUGO, proc_pid_personality),
2670 INF("limits", S_IRUGO, proc_pid_limits),
2671 #ifdef CONFIG_SCHED_DEBUG
2672 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2673 #endif
2674 #ifdef CONFIG_SCHED_AUTOGROUP
2675 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2676 #endif
2677 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2678 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2679 INF("syscall", S_IRUGO, proc_pid_syscall),
2680 #endif
2681 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2682 ONE("stat", S_IRUGO, proc_tgid_stat),
2683 ONE("statm", S_IRUGO, proc_pid_statm),
2684 REG("maps", S_IRUGO, proc_maps_operations),
2685 #ifdef CONFIG_NUMA
2686 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2687 #endif
2688 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2689 LNK("cwd", proc_cwd_link),
2690 LNK("root", proc_root_link),
2691 LNK("exe", proc_exe_link),
2692 REG("mounts", S_IRUGO, proc_mounts_operations),
2693 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2694 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2695 #ifdef CONFIG_PROC_PAGE_MONITOR
2696 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2697 REG("smaps", S_IRUGO, proc_smaps_operations),
2698 REG("pagemap", S_IRUGO, proc_pagemap_operations),
2699 #endif
2700 #ifdef CONFIG_SECURITY
2701 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2702 #endif
2703 #ifdef CONFIG_KALLSYMS
2704 INF("wchan", S_IRUGO, proc_pid_wchan),
2705 #endif
2706 #ifdef CONFIG_STACKTRACE
2707 ONE("stack", S_IRUGO, proc_pid_stack),
2708 #endif
2709 #ifdef CONFIG_SCHEDSTATS
2710 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2711 #endif
2712 #ifdef CONFIG_LATENCYTOP
2713 REG("latency", S_IRUGO, proc_lstats_operations),
2714 #endif
2715 #ifdef CONFIG_PROC_PID_CPUSET
2716 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2717 #endif
2718 #ifdef CONFIG_CGROUPS
2719 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2720 #endif
2721 INF("oom_score", S_IRUGO, proc_oom_score),
2722 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2723 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2724 #ifdef CONFIG_AUDITSYSCALL
2725 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2726 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2727 #endif
2728 #ifdef CONFIG_FAULT_INJECTION
2729 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2730 #endif
2731 #ifdef CONFIG_ELF_CORE
2732 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2733 #endif
2734 #ifdef CONFIG_TASK_IO_ACCOUNTING
2735 INF("io", S_IRUSR, proc_tgid_io_accounting),
2736 #endif
2737 #ifdef CONFIG_HARDWALL
2738 INF("hardwall", S_IRUGO, proc_pid_hardwall),
2739 #endif
2740 };
2741
2742 static int proc_tgid_base_readdir(struct file * filp,
2743 void * dirent, filldir_t filldir)
2744 {
2745 return proc_pident_readdir(filp,dirent,filldir,
2746 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2747 }
2748
2749 static const struct file_operations proc_tgid_base_operations = {
2750 .read = generic_read_dir,
2751 .readdir = proc_tgid_base_readdir,
2752 .llseek = default_llseek,
2753 };
2754
2755 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2756 return proc_pident_lookup(dir, dentry,
2757 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2758 }
2759
2760 static const struct inode_operations proc_tgid_base_inode_operations = {
2761 .lookup = proc_tgid_base_lookup,
2762 .getattr = pid_getattr,
2763 .setattr = proc_setattr,
2764 };
2765
2766 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2767 {
2768 struct dentry *dentry, *leader, *dir;
2769 char buf[PROC_NUMBUF];
2770 struct qstr name;
2771
2772 name.name = buf;
2773 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2774 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2775 if (dentry) {
2776 shrink_dcache_parent(dentry);
2777 d_drop(dentry);
2778 dput(dentry);
2779 }
2780
2781 name.name = buf;
2782 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2783 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2784 if (!leader)
2785 goto out;
2786
2787 name.name = "task";
2788 name.len = strlen(name.name);
2789 dir = d_hash_and_lookup(leader, &name);
2790 if (!dir)
2791 goto out_put_leader;
2792
2793 name.name = buf;
2794 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2795 dentry = d_hash_and_lookup(dir, &name);
2796 if (dentry) {
2797 shrink_dcache_parent(dentry);
2798 d_drop(dentry);
2799 dput(dentry);
2800 }
2801
2802 dput(dir);
2803 out_put_leader:
2804 dput(leader);
2805 out:
2806 return;
2807 }
2808
2809 /**
2810 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2811 * @task: task that should be flushed.
2812 *
2813 * When flushing dentries from proc, one needs to flush them from global
2814 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2815 * in. This call is supposed to do all of this job.
2816 *
2817 * Looks in the dcache for
2818 * /proc/@pid
2819 * /proc/@tgid/task/@pid
2820 * if either directory is present flushes it and all of it'ts children
2821 * from the dcache.
2822 *
2823 * It is safe and reasonable to cache /proc entries for a task until
2824 * that task exits. After that they just clog up the dcache with
2825 * useless entries, possibly causing useful dcache entries to be
2826 * flushed instead. This routine is proved to flush those useless
2827 * dcache entries at process exit time.
2828 *
2829 * NOTE: This routine is just an optimization so it does not guarantee
2830 * that no dcache entries will exist at process exit time it
2831 * just makes it very unlikely that any will persist.
2832 */
2833
2834 void proc_flush_task(struct task_struct *task)
2835 {
2836 int i;
2837 struct pid *pid, *tgid;
2838 struct upid *upid;
2839
2840 pid = task_pid(task);
2841 tgid = task_tgid(task);
2842
2843 for (i = 0; i <= pid->level; i++) {
2844 upid = &pid->numbers[i];
2845 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2846 tgid->numbers[i].nr);
2847 }
2848
2849 upid = &pid->numbers[pid->level];
2850 if (upid->nr == 1)
2851 pid_ns_release_proc(upid->ns);
2852 }
2853
2854 static struct dentry *proc_pid_instantiate(struct inode *dir,
2855 struct dentry * dentry,
2856 struct task_struct *task, const void *ptr)
2857 {
2858 struct dentry *error = ERR_PTR(-ENOENT);
2859 struct inode *inode;
2860
2861 inode = proc_pid_make_inode(dir->i_sb, task);
2862 if (!inode)
2863 goto out;
2864
2865 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2866 inode->i_op = &proc_tgid_base_inode_operations;
2867 inode->i_fop = &proc_tgid_base_operations;
2868 inode->i_flags|=S_IMMUTABLE;
2869
2870 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2871 ARRAY_SIZE(tgid_base_stuff)));
2872
2873 d_set_d_op(dentry, &pid_dentry_operations);
2874
2875 d_add(dentry, inode);
2876 /* Close the race of the process dying before we return the dentry */
2877 if (pid_revalidate(dentry, NULL))
2878 error = NULL;
2879 out:
2880 return error;
2881 }
2882
2883 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2884 {
2885 struct dentry *result;
2886 struct task_struct *task;
2887 unsigned tgid;
2888 struct pid_namespace *ns;
2889
2890 result = proc_base_lookup(dir, dentry);
2891 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2892 goto out;
2893
2894 tgid = name_to_int(dentry);
2895 if (tgid == ~0U)
2896 goto out;
2897
2898 ns = dentry->d_sb->s_fs_info;
2899 rcu_read_lock();
2900 task = find_task_by_pid_ns(tgid, ns);
2901 if (task)
2902 get_task_struct(task);
2903 rcu_read_unlock();
2904 if (!task)
2905 goto out;
2906
2907 result = proc_pid_instantiate(dir, dentry, task, NULL);
2908 put_task_struct(task);
2909 out:
2910 return result;
2911 }
2912
2913 /*
2914 * Find the first task with tgid >= tgid
2915 *
2916 */
2917 struct tgid_iter {
2918 unsigned int tgid;
2919 struct task_struct *task;
2920 };
2921 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2922 {
2923 struct pid *pid;
2924
2925 if (iter.task)
2926 put_task_struct(iter.task);
2927 rcu_read_lock();
2928 retry:
2929 iter.task = NULL;
2930 pid = find_ge_pid(iter.tgid, ns);
2931 if (pid) {
2932 iter.tgid = pid_nr_ns(pid, ns);
2933 iter.task = pid_task(pid, PIDTYPE_PID);
2934 /* What we to know is if the pid we have find is the
2935 * pid of a thread_group_leader. Testing for task
2936 * being a thread_group_leader is the obvious thing
2937 * todo but there is a window when it fails, due to
2938 * the pid transfer logic in de_thread.
2939 *
2940 * So we perform the straight forward test of seeing
2941 * if the pid we have found is the pid of a thread
2942 * group leader, and don't worry if the task we have
2943 * found doesn't happen to be a thread group leader.
2944 * As we don't care in the case of readdir.
2945 */
2946 if (!iter.task || !has_group_leader_pid(iter.task)) {
2947 iter.tgid += 1;
2948 goto retry;
2949 }
2950 get_task_struct(iter.task);
2951 }
2952 rcu_read_unlock();
2953 return iter;
2954 }
2955
2956 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2957
2958 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2959 struct tgid_iter iter)
2960 {
2961 char name[PROC_NUMBUF];
2962 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2963 return proc_fill_cache(filp, dirent, filldir, name, len,
2964 proc_pid_instantiate, iter.task, NULL);
2965 }
2966
2967 /* for the /proc/ directory itself, after non-process stuff has been done */
2968 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2969 {
2970 unsigned int nr;
2971 struct task_struct *reaper;
2972 struct tgid_iter iter;
2973 struct pid_namespace *ns;
2974
2975 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
2976 goto out_no_task;
2977 nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2978
2979 reaper = get_proc_task(filp->f_path.dentry->d_inode);
2980 if (!reaper)
2981 goto out_no_task;
2982
2983 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2984 const struct pid_entry *p = &proc_base_stuff[nr];
2985 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2986 goto out;
2987 }
2988
2989 ns = filp->f_dentry->d_sb->s_fs_info;
2990 iter.task = NULL;
2991 iter.tgid = filp->f_pos - TGID_OFFSET;
2992 for (iter = next_tgid(ns, iter);
2993 iter.task;
2994 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2995 filp->f_pos = iter.tgid + TGID_OFFSET;
2996 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2997 put_task_struct(iter.task);
2998 goto out;
2999 }
3000 }
3001 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3002 out:
3003 put_task_struct(reaper);
3004 out_no_task:
3005 return 0;
3006 }
3007
3008 /*
3009 * Tasks
3010 */
3011 static const struct pid_entry tid_base_stuff[] = {
3012 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3013 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3014 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3015 REG("environ", S_IRUSR, proc_environ_operations),
3016 INF("auxv", S_IRUSR, proc_pid_auxv),
3017 ONE("status", S_IRUGO, proc_pid_status),
3018 ONE("personality", S_IRUGO, proc_pid_personality),
3019 INF("limits", S_IRUGO, proc_pid_limits),
3020 #ifdef CONFIG_SCHED_DEBUG
3021 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3022 #endif
3023 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3024 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3025 INF("syscall", S_IRUGO, proc_pid_syscall),
3026 #endif
3027 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3028 ONE("stat", S_IRUGO, proc_tid_stat),
3029 ONE("statm", S_IRUGO, proc_pid_statm),
3030 REG("maps", S_IRUGO, proc_maps_operations),
3031 #ifdef CONFIG_NUMA
3032 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
3033 #endif
3034 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3035 LNK("cwd", proc_cwd_link),
3036 LNK("root", proc_root_link),
3037 LNK("exe", proc_exe_link),
3038 REG("mounts", S_IRUGO, proc_mounts_operations),
3039 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3040 #ifdef CONFIG_PROC_PAGE_MONITOR
3041 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3042 REG("smaps", S_IRUGO, proc_smaps_operations),
3043 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3044 #endif
3045 #ifdef CONFIG_SECURITY
3046 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3047 #endif
3048 #ifdef CONFIG_KALLSYMS
3049 INF("wchan", S_IRUGO, proc_pid_wchan),
3050 #endif
3051 #ifdef CONFIG_STACKTRACE
3052 ONE("stack", S_IRUGO, proc_pid_stack),
3053 #endif
3054 #ifdef CONFIG_SCHEDSTATS
3055 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3056 #endif
3057 #ifdef CONFIG_LATENCYTOP
3058 REG("latency", S_IRUGO, proc_lstats_operations),
3059 #endif
3060 #ifdef CONFIG_PROC_PID_CPUSET
3061 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3062 #endif
3063 #ifdef CONFIG_CGROUPS
3064 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3065 #endif
3066 INF("oom_score", S_IRUGO, proc_oom_score),
3067 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3068 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3069 #ifdef CONFIG_AUDITSYSCALL
3070 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3071 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3072 #endif
3073 #ifdef CONFIG_FAULT_INJECTION
3074 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3075 #endif
3076 #ifdef CONFIG_TASK_IO_ACCOUNTING
3077 INF("io", S_IRUSR, proc_tid_io_accounting),
3078 #endif
3079 #ifdef CONFIG_HARDWALL
3080 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3081 #endif
3082 };
3083
3084 static int proc_tid_base_readdir(struct file * filp,
3085 void * dirent, filldir_t filldir)
3086 {
3087 return proc_pident_readdir(filp,dirent,filldir,
3088 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3089 }
3090
3091 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
3092 return proc_pident_lookup(dir, dentry,
3093 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3094 }
3095
3096 static const struct file_operations proc_tid_base_operations = {
3097 .read = generic_read_dir,
3098 .readdir = proc_tid_base_readdir,
3099 .llseek = default_llseek,
3100 };
3101
3102 static const struct inode_operations proc_tid_base_inode_operations = {
3103 .lookup = proc_tid_base_lookup,
3104 .getattr = pid_getattr,
3105 .setattr = proc_setattr,
3106 };
3107
3108 static struct dentry *proc_task_instantiate(struct inode *dir,
3109 struct dentry *dentry, struct task_struct *task, const void *ptr)
3110 {
3111 struct dentry *error = ERR_PTR(-ENOENT);
3112 struct inode *inode;
3113 inode = proc_pid_make_inode(dir->i_sb, task);
3114
3115 if (!inode)
3116 goto out;
3117 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3118 inode->i_op = &proc_tid_base_inode_operations;
3119 inode->i_fop = &proc_tid_base_operations;
3120 inode->i_flags|=S_IMMUTABLE;
3121
3122 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3123 ARRAY_SIZE(tid_base_stuff)));
3124
3125 d_set_d_op(dentry, &pid_dentry_operations);
3126
3127 d_add(dentry, inode);
3128 /* Close the race of the process dying before we return the dentry */
3129 if (pid_revalidate(dentry, NULL))
3130 error = NULL;
3131 out:
3132 return error;
3133 }
3134
3135 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3136 {
3137 struct dentry *result = ERR_PTR(-ENOENT);
3138 struct task_struct *task;
3139 struct task_struct *leader = get_proc_task(dir);
3140 unsigned tid;
3141 struct pid_namespace *ns;
3142
3143 if (!leader)
3144 goto out_no_task;
3145
3146 tid = name_to_int(dentry);
3147 if (tid == ~0U)
3148 goto out;
3149
3150 ns = dentry->d_sb->s_fs_info;
3151 rcu_read_lock();
3152 task = find_task_by_pid_ns(tid, ns);
3153 if (task)
3154 get_task_struct(task);
3155 rcu_read_unlock();
3156 if (!task)
3157 goto out;
3158 if (!same_thread_group(leader, task))
3159 goto out_drop_task;
3160
3161 result = proc_task_instantiate(dir, dentry, task, NULL);
3162 out_drop_task:
3163 put_task_struct(task);
3164 out:
3165 put_task_struct(leader);
3166 out_no_task:
3167 return result;
3168 }
3169
3170 /*
3171 * Find the first tid of a thread group to return to user space.
3172 *
3173 * Usually this is just the thread group leader, but if the users
3174 * buffer was too small or there was a seek into the middle of the
3175 * directory we have more work todo.
3176 *
3177 * In the case of a short read we start with find_task_by_pid.
3178 *
3179 * In the case of a seek we start with the leader and walk nr
3180 * threads past it.
3181 */
3182 static struct task_struct *first_tid(struct task_struct *leader,
3183 int tid, int nr, struct pid_namespace *ns)
3184 {
3185 struct task_struct *pos;
3186
3187 rcu_read_lock();
3188 /* Attempt to start with the pid of a thread */
3189 if (tid && (nr > 0)) {
3190 pos = find_task_by_pid_ns(tid, ns);
3191 if (pos && (pos->group_leader == leader))
3192 goto found;
3193 }
3194
3195 /* If nr exceeds the number of threads there is nothing todo */
3196 pos = NULL;
3197 if (nr && nr >= get_nr_threads(leader))
3198 goto out;
3199
3200 /* If we haven't found our starting place yet start
3201 * with the leader and walk nr threads forward.
3202 */
3203 for (pos = leader; nr > 0; --nr) {
3204 pos = next_thread(pos);
3205 if (pos == leader) {
3206 pos = NULL;
3207 goto out;
3208 }
3209 }
3210 found:
3211 get_task_struct(pos);
3212 out:
3213 rcu_read_unlock();
3214 return pos;
3215 }
3216
3217 /*
3218 * Find the next thread in the thread list.
3219 * Return NULL if there is an error or no next thread.
3220 *
3221 * The reference to the input task_struct is released.
3222 */
3223 static struct task_struct *next_tid(struct task_struct *start)
3224 {
3225 struct task_struct *pos = NULL;
3226 rcu_read_lock();
3227 if (pid_alive(start)) {
3228 pos = next_thread(start);
3229 if (thread_group_leader(pos))
3230 pos = NULL;
3231 else
3232 get_task_struct(pos);
3233 }
3234 rcu_read_unlock();
3235 put_task_struct(start);
3236 return pos;
3237 }
3238
3239 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3240 struct task_struct *task, int tid)
3241 {
3242 char name[PROC_NUMBUF];
3243 int len = snprintf(name, sizeof(name), "%d", tid);
3244 return proc_fill_cache(filp, dirent, filldir, name, len,
3245 proc_task_instantiate, task, NULL);
3246 }
3247
3248 /* for the /proc/TGID/task/ directories */
3249 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3250 {
3251 struct dentry *dentry = filp->f_path.dentry;
3252 struct inode *inode = dentry->d_inode;
3253 struct task_struct *leader = NULL;
3254 struct task_struct *task;
3255 int retval = -ENOENT;
3256 ino_t ino;
3257 int tid;
3258 struct pid_namespace *ns;
3259
3260 task = get_proc_task(inode);
3261 if (!task)
3262 goto out_no_task;
3263 rcu_read_lock();
3264 if (pid_alive(task)) {
3265 leader = task->group_leader;
3266 get_task_struct(leader);
3267 }
3268 rcu_read_unlock();
3269 put_task_struct(task);
3270 if (!leader)
3271 goto out_no_task;
3272 retval = 0;
3273
3274 switch ((unsigned long)filp->f_pos) {
3275 case 0:
3276 ino = inode->i_ino;
3277 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3278 goto out;
3279 filp->f_pos++;
3280 /* fall through */
3281 case 1:
3282 ino = parent_ino(dentry);
3283 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3284 goto out;
3285 filp->f_pos++;
3286 /* fall through */
3287 }
3288
3289 /* f_version caches the tgid value that the last readdir call couldn't
3290 * return. lseek aka telldir automagically resets f_version to 0.
3291 */
3292 ns = filp->f_dentry->d_sb->s_fs_info;
3293 tid = (int)filp->f_version;
3294 filp->f_version = 0;
3295 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3296 task;
3297 task = next_tid(task), filp->f_pos++) {
3298 tid = task_pid_nr_ns(task, ns);
3299 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3300 /* returning this tgid failed, save it as the first
3301 * pid for the next readir call */
3302 filp->f_version = (u64)tid;
3303 put_task_struct(task);
3304 break;
3305 }
3306 }
3307 out:
3308 put_task_struct(leader);
3309 out_no_task:
3310 return retval;
3311 }
3312
3313 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3314 {
3315 struct inode *inode = dentry->d_inode;
3316 struct task_struct *p = get_proc_task(inode);
3317 generic_fillattr(inode, stat);
3318
3319 if (p) {
3320 stat->nlink += get_nr_threads(p);
3321 put_task_struct(p);
3322 }
3323
3324 return 0;
3325 }
3326
3327 static const struct inode_operations proc_task_inode_operations = {
3328 .lookup = proc_task_lookup,
3329 .getattr = proc_task_getattr,
3330 .setattr = proc_setattr,
3331 };
3332
3333 static const struct file_operations proc_task_operations = {
3334 .read = generic_read_dir,
3335 .readdir = proc_task_readdir,
3336 .llseek = default_llseek,
3337 };