]> git.ipfire.org Git - people/ms/linux.git/blob - fs/reiserfs/inode.c
Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[people/ms/linux.git] / fs / reiserfs / inode.c
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <linux/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23
24 int reiserfs_commit_write(struct file *f, struct page *page,
25 unsigned from, unsigned to);
26
27 void reiserfs_evict_inode(struct inode *inode)
28 {
29 /*
30 * We need blocks for transaction + (user+group) quota
31 * update (possibly delete)
32 */
33 int jbegin_count =
34 JOURNAL_PER_BALANCE_CNT * 2 +
35 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
36 struct reiserfs_transaction_handle th;
37 int err;
38
39 if (!inode->i_nlink && !is_bad_inode(inode))
40 dquot_initialize(inode);
41
42 truncate_inode_pages_final(&inode->i_data);
43 if (inode->i_nlink)
44 goto no_delete;
45
46 /*
47 * The = 0 happens when we abort creating a new inode
48 * for some reason like lack of space..
49 * also handles bad_inode case
50 */
51 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
52
53 reiserfs_delete_xattrs(inode);
54
55 reiserfs_write_lock(inode->i_sb);
56
57 if (journal_begin(&th, inode->i_sb, jbegin_count))
58 goto out;
59 reiserfs_update_inode_transaction(inode);
60
61 reiserfs_discard_prealloc(&th, inode);
62
63 err = reiserfs_delete_object(&th, inode);
64
65 /*
66 * Do quota update inside a transaction for journaled quotas.
67 * We must do that after delete_object so that quota updates
68 * go into the same transaction as stat data deletion
69 */
70 if (!err) {
71 int depth = reiserfs_write_unlock_nested(inode->i_sb);
72 dquot_free_inode(inode);
73 reiserfs_write_lock_nested(inode->i_sb, depth);
74 }
75
76 if (journal_end(&th))
77 goto out;
78
79 /*
80 * check return value from reiserfs_delete_object after
81 * ending the transaction
82 */
83 if (err)
84 goto out;
85
86 /*
87 * all items of file are deleted, so we can remove
88 * "save" link
89 * we can't do anything about an error here
90 */
91 remove_save_link(inode, 0 /* not truncate */);
92 out:
93 reiserfs_write_unlock(inode->i_sb);
94 } else {
95 /* no object items are in the tree */
96 ;
97 }
98
99 /* note this must go after the journal_end to prevent deadlock */
100 clear_inode(inode);
101
102 dquot_drop(inode);
103 inode->i_blocks = 0;
104 return;
105
106 no_delete:
107 clear_inode(inode);
108 dquot_drop(inode);
109 }
110
111 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
112 __u32 objectid, loff_t offset, int type, int length)
113 {
114 key->version = version;
115
116 key->on_disk_key.k_dir_id = dirid;
117 key->on_disk_key.k_objectid = objectid;
118 set_cpu_key_k_offset(key, offset);
119 set_cpu_key_k_type(key, type);
120 key->key_length = length;
121 }
122
123 /*
124 * take base of inode_key (it comes from inode always) (dirid, objectid)
125 * and version from an inode, set offset and type of key
126 */
127 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
128 int type, int length)
129 {
130 _make_cpu_key(key, get_inode_item_key_version(inode),
131 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
132 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
133 length);
134 }
135
136 /* when key is 0, do not set version and short key */
137 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
138 int version,
139 loff_t offset, int type, int length,
140 int entry_count /*or ih_free_space */ )
141 {
142 if (key) {
143 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
144 ih->ih_key.k_objectid =
145 cpu_to_le32(key->on_disk_key.k_objectid);
146 }
147 put_ih_version(ih, version);
148 set_le_ih_k_offset(ih, offset);
149 set_le_ih_k_type(ih, type);
150 put_ih_item_len(ih, length);
151 /* set_ih_free_space (ih, 0); */
152 /*
153 * for directory items it is entry count, for directs and stat
154 * datas - 0xffff, for indirects - 0
155 */
156 put_ih_entry_count(ih, entry_count);
157 }
158
159 /*
160 * FIXME: we might cache recently accessed indirect item
161 * Ugh. Not too eager for that....
162 * I cut the code until such time as I see a convincing argument (benchmark).
163 * I don't want a bloated inode struct..., and I don't like code complexity....
164 */
165
166 /*
167 * cutting the code is fine, since it really isn't in use yet and is easy
168 * to add back in. But, Vladimir has a really good idea here. Think
169 * about what happens for reading a file. For each page,
170 * The VFS layer calls reiserfs_read_folio, who searches the tree to find
171 * an indirect item. This indirect item has X number of pointers, where
172 * X is a big number if we've done the block allocation right. But,
173 * we only use one or two of these pointers during each call to read_folio,
174 * needlessly researching again later on.
175 *
176 * The size of the cache could be dynamic based on the size of the file.
177 *
178 * I'd also like to see us cache the location the stat data item, since
179 * we are needlessly researching for that frequently.
180 *
181 * --chris
182 */
183
184 /*
185 * If this page has a file tail in it, and
186 * it was read in by get_block_create_0, the page data is valid,
187 * but tail is still sitting in a direct item, and we can't write to
188 * it. So, look through this page, and check all the mapped buffers
189 * to make sure they have valid block numbers. Any that don't need
190 * to be unmapped, so that __block_write_begin will correctly call
191 * reiserfs_get_block to convert the tail into an unformatted node
192 */
193 static inline void fix_tail_page_for_writing(struct page *page)
194 {
195 struct buffer_head *head, *next, *bh;
196
197 if (page && page_has_buffers(page)) {
198 head = page_buffers(page);
199 bh = head;
200 do {
201 next = bh->b_this_page;
202 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
203 reiserfs_unmap_buffer(bh);
204 }
205 bh = next;
206 } while (bh != head);
207 }
208 }
209
210 /*
211 * reiserfs_get_block does not need to allocate a block only if it has been
212 * done already or non-hole position has been found in the indirect item
213 */
214 static inline int allocation_needed(int retval, b_blocknr_t allocated,
215 struct item_head *ih,
216 __le32 * item, int pos_in_item)
217 {
218 if (allocated)
219 return 0;
220 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
221 get_block_num(item, pos_in_item))
222 return 0;
223 return 1;
224 }
225
226 static inline int indirect_item_found(int retval, struct item_head *ih)
227 {
228 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
229 }
230
231 static inline void set_block_dev_mapped(struct buffer_head *bh,
232 b_blocknr_t block, struct inode *inode)
233 {
234 map_bh(bh, inode->i_sb, block);
235 }
236
237 /*
238 * files which were created in the earlier version can not be longer,
239 * than 2 gb
240 */
241 static int file_capable(struct inode *inode, sector_t block)
242 {
243 /* it is new file. */
244 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
245 /* old file, but 'block' is inside of 2gb */
246 block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
247 return 1;
248
249 return 0;
250 }
251
252 static int restart_transaction(struct reiserfs_transaction_handle *th,
253 struct inode *inode, struct treepath *path)
254 {
255 struct super_block *s = th->t_super;
256 int err;
257
258 BUG_ON(!th->t_trans_id);
259 BUG_ON(!th->t_refcount);
260
261 pathrelse(path);
262
263 /* we cannot restart while nested */
264 if (th->t_refcount > 1) {
265 return 0;
266 }
267 reiserfs_update_sd(th, inode);
268 err = journal_end(th);
269 if (!err) {
270 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
271 if (!err)
272 reiserfs_update_inode_transaction(inode);
273 }
274 return err;
275 }
276
277 /*
278 * it is called by get_block when create == 0. Returns block number
279 * for 'block'-th logical block of file. When it hits direct item it
280 * returns 0 (being called from bmap) or read direct item into piece
281 * of page (bh_result)
282 * Please improve the english/clarity in the comment above, as it is
283 * hard to understand.
284 */
285 static int _get_block_create_0(struct inode *inode, sector_t block,
286 struct buffer_head *bh_result, int args)
287 {
288 INITIALIZE_PATH(path);
289 struct cpu_key key;
290 struct buffer_head *bh;
291 struct item_head *ih, tmp_ih;
292 b_blocknr_t blocknr;
293 char *p;
294 int chars;
295 int ret;
296 int result;
297 int done = 0;
298 unsigned long offset;
299
300 /* prepare the key to look for the 'block'-th block of file */
301 make_cpu_key(&key, inode,
302 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
303 3);
304
305 result = search_for_position_by_key(inode->i_sb, &key, &path);
306 if (result != POSITION_FOUND) {
307 pathrelse(&path);
308 if (result == IO_ERROR)
309 return -EIO;
310 /*
311 * We do not return -ENOENT if there is a hole but page is
312 * uptodate, because it means that there is some MMAPED data
313 * associated with it that is yet to be written to disk.
314 */
315 if ((args & GET_BLOCK_NO_HOLE)
316 && !PageUptodate(bh_result->b_page)) {
317 return -ENOENT;
318 }
319 return 0;
320 }
321
322 bh = get_last_bh(&path);
323 ih = tp_item_head(&path);
324 if (is_indirect_le_ih(ih)) {
325 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
326
327 /*
328 * FIXME: here we could cache indirect item or part of it in
329 * the inode to avoid search_by_key in case of subsequent
330 * access to file
331 */
332 blocknr = get_block_num(ind_item, path.pos_in_item);
333 ret = 0;
334 if (blocknr) {
335 map_bh(bh_result, inode->i_sb, blocknr);
336 if (path.pos_in_item ==
337 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
338 set_buffer_boundary(bh_result);
339 }
340 } else
341 /*
342 * We do not return -ENOENT if there is a hole but
343 * page is uptodate, because it means that there is
344 * some MMAPED data associated with it that is
345 * yet to be written to disk.
346 */
347 if ((args & GET_BLOCK_NO_HOLE)
348 && !PageUptodate(bh_result->b_page)) {
349 ret = -ENOENT;
350 }
351
352 pathrelse(&path);
353 return ret;
354 }
355 /* requested data are in direct item(s) */
356 if (!(args & GET_BLOCK_READ_DIRECT)) {
357 /*
358 * we are called by bmap. FIXME: we can not map block of file
359 * when it is stored in direct item(s)
360 */
361 pathrelse(&path);
362 return -ENOENT;
363 }
364
365 /*
366 * if we've got a direct item, and the buffer or page was uptodate,
367 * we don't want to pull data off disk again. skip to the
368 * end, where we map the buffer and return
369 */
370 if (buffer_uptodate(bh_result)) {
371 goto finished;
372 } else
373 /*
374 * grab_tail_page can trigger calls to reiserfs_get_block on
375 * up to date pages without any buffers. If the page is up
376 * to date, we don't want read old data off disk. Set the up
377 * to date bit on the buffer instead and jump to the end
378 */
379 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
380 set_buffer_uptodate(bh_result);
381 goto finished;
382 }
383 /* read file tail into part of page */
384 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
385 copy_item_head(&tmp_ih, ih);
386
387 /*
388 * we only want to kmap if we are reading the tail into the page.
389 * this is not the common case, so we don't kmap until we are
390 * sure we need to. But, this means the item might move if
391 * kmap schedules
392 */
393 p = (char *)kmap(bh_result->b_page);
394 p += offset;
395 memset(p, 0, inode->i_sb->s_blocksize);
396 do {
397 if (!is_direct_le_ih(ih)) {
398 BUG();
399 }
400 /*
401 * make sure we don't read more bytes than actually exist in
402 * the file. This can happen in odd cases where i_size isn't
403 * correct, and when direct item padding results in a few
404 * extra bytes at the end of the direct item
405 */
406 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
407 break;
408 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
409 chars =
410 inode->i_size - (le_ih_k_offset(ih) - 1) -
411 path.pos_in_item;
412 done = 1;
413 } else {
414 chars = ih_item_len(ih) - path.pos_in_item;
415 }
416 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
417
418 if (done)
419 break;
420
421 p += chars;
422
423 /*
424 * we done, if read direct item is not the last item of
425 * node FIXME: we could try to check right delimiting key
426 * to see whether direct item continues in the right
427 * neighbor or rely on i_size
428 */
429 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
430 break;
431
432 /* update key to look for the next piece */
433 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
434 result = search_for_position_by_key(inode->i_sb, &key, &path);
435 if (result != POSITION_FOUND)
436 /* i/o error most likely */
437 break;
438 bh = get_last_bh(&path);
439 ih = tp_item_head(&path);
440 } while (1);
441
442 flush_dcache_page(bh_result->b_page);
443 kunmap(bh_result->b_page);
444
445 finished:
446 pathrelse(&path);
447
448 if (result == IO_ERROR)
449 return -EIO;
450
451 /*
452 * this buffer has valid data, but isn't valid for io. mapping it to
453 * block #0 tells the rest of reiserfs it just has a tail in it
454 */
455 map_bh(bh_result, inode->i_sb, 0);
456 set_buffer_uptodate(bh_result);
457 return 0;
458 }
459
460 /*
461 * this is called to create file map. So, _get_block_create_0 will not
462 * read direct item
463 */
464 static int reiserfs_bmap(struct inode *inode, sector_t block,
465 struct buffer_head *bh_result, int create)
466 {
467 if (!file_capable(inode, block))
468 return -EFBIG;
469
470 reiserfs_write_lock(inode->i_sb);
471 /* do not read the direct item */
472 _get_block_create_0(inode, block, bh_result, 0);
473 reiserfs_write_unlock(inode->i_sb);
474 return 0;
475 }
476
477 /*
478 * special version of get_block that is only used by grab_tail_page right
479 * now. It is sent to __block_write_begin, and when you try to get a
480 * block past the end of the file (or a block from a hole) it returns
481 * -ENOENT instead of a valid buffer. __block_write_begin expects to
482 * be able to do i/o on the buffers returned, unless an error value
483 * is also returned.
484 *
485 * So, this allows __block_write_begin to be used for reading a single block
486 * in a page. Where it does not produce a valid page for holes, or past the
487 * end of the file. This turns out to be exactly what we need for reading
488 * tails for conversion.
489 *
490 * The point of the wrapper is forcing a certain value for create, even
491 * though the VFS layer is calling this function with create==1. If you
492 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
493 * don't use this function.
494 */
495 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
496 struct buffer_head *bh_result,
497 int create)
498 {
499 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
500 }
501
502 /*
503 * This is special helper for reiserfs_get_block in case we are executing
504 * direct_IO request.
505 */
506 static int reiserfs_get_blocks_direct_io(struct inode *inode,
507 sector_t iblock,
508 struct buffer_head *bh_result,
509 int create)
510 {
511 int ret;
512
513 bh_result->b_page = NULL;
514
515 /*
516 * We set the b_size before reiserfs_get_block call since it is
517 * referenced in convert_tail_for_hole() that may be called from
518 * reiserfs_get_block()
519 */
520 bh_result->b_size = i_blocksize(inode);
521
522 ret = reiserfs_get_block(inode, iblock, bh_result,
523 create | GET_BLOCK_NO_DANGLE);
524 if (ret)
525 goto out;
526
527 /* don't allow direct io onto tail pages */
528 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
529 /*
530 * make sure future calls to the direct io funcs for this
531 * offset in the file fail by unmapping the buffer
532 */
533 clear_buffer_mapped(bh_result);
534 ret = -EINVAL;
535 }
536
537 /*
538 * Possible unpacked tail. Flush the data before pages have
539 * disappeared
540 */
541 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
542 int err;
543
544 reiserfs_write_lock(inode->i_sb);
545
546 err = reiserfs_commit_for_inode(inode);
547 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
548
549 reiserfs_write_unlock(inode->i_sb);
550
551 if (err < 0)
552 ret = err;
553 }
554 out:
555 return ret;
556 }
557
558 /*
559 * helper function for when reiserfs_get_block is called for a hole
560 * but the file tail is still in a direct item
561 * bh_result is the buffer head for the hole
562 * tail_offset is the offset of the start of the tail in the file
563 *
564 * This calls prepare_write, which will start a new transaction
565 * you should not be in a transaction, or have any paths held when you
566 * call this.
567 */
568 static int convert_tail_for_hole(struct inode *inode,
569 struct buffer_head *bh_result,
570 loff_t tail_offset)
571 {
572 unsigned long index;
573 unsigned long tail_end;
574 unsigned long tail_start;
575 struct page *tail_page;
576 struct page *hole_page = bh_result->b_page;
577 int retval = 0;
578
579 if ((tail_offset & (bh_result->b_size - 1)) != 1)
580 return -EIO;
581
582 /* always try to read until the end of the block */
583 tail_start = tail_offset & (PAGE_SIZE - 1);
584 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
585
586 index = tail_offset >> PAGE_SHIFT;
587 /*
588 * hole_page can be zero in case of direct_io, we are sure
589 * that we cannot get here if we write with O_DIRECT into tail page
590 */
591 if (!hole_page || index != hole_page->index) {
592 tail_page = grab_cache_page(inode->i_mapping, index);
593 retval = -ENOMEM;
594 if (!tail_page) {
595 goto out;
596 }
597 } else {
598 tail_page = hole_page;
599 }
600
601 /*
602 * we don't have to make sure the conversion did not happen while
603 * we were locking the page because anyone that could convert
604 * must first take i_mutex.
605 *
606 * We must fix the tail page for writing because it might have buffers
607 * that are mapped, but have a block number of 0. This indicates tail
608 * data that has been read directly into the page, and
609 * __block_write_begin won't trigger a get_block in this case.
610 */
611 fix_tail_page_for_writing(tail_page);
612 retval = __reiserfs_write_begin(tail_page, tail_start,
613 tail_end - tail_start);
614 if (retval)
615 goto unlock;
616
617 /* tail conversion might change the data in the page */
618 flush_dcache_page(tail_page);
619
620 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
621
622 unlock:
623 if (tail_page != hole_page) {
624 unlock_page(tail_page);
625 put_page(tail_page);
626 }
627 out:
628 return retval;
629 }
630
631 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
632 sector_t block,
633 struct inode *inode,
634 b_blocknr_t * allocated_block_nr,
635 struct treepath *path, int flags)
636 {
637 BUG_ON(!th->t_trans_id);
638
639 #ifdef REISERFS_PREALLOCATE
640 if (!(flags & GET_BLOCK_NO_IMUX)) {
641 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
642 path, block);
643 }
644 #endif
645 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
646 block);
647 }
648
649 int reiserfs_get_block(struct inode *inode, sector_t block,
650 struct buffer_head *bh_result, int create)
651 {
652 int repeat, retval = 0;
653 /* b_blocknr_t is (unsigned) 32 bit int*/
654 b_blocknr_t allocated_block_nr = 0;
655 INITIALIZE_PATH(path);
656 int pos_in_item;
657 struct cpu_key key;
658 struct buffer_head *bh, *unbh = NULL;
659 struct item_head *ih, tmp_ih;
660 __le32 *item;
661 int done;
662 int fs_gen;
663 struct reiserfs_transaction_handle *th = NULL;
664 /*
665 * space reserved in transaction batch:
666 * . 3 balancings in direct->indirect conversion
667 * . 1 block involved into reiserfs_update_sd()
668 * XXX in practically impossible worst case direct2indirect()
669 * can incur (much) more than 3 balancings.
670 * quota update for user, group
671 */
672 int jbegin_count =
673 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
674 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
675 int version;
676 int dangle = 1;
677 loff_t new_offset =
678 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
679
680 reiserfs_write_lock(inode->i_sb);
681 version = get_inode_item_key_version(inode);
682
683 if (!file_capable(inode, block)) {
684 reiserfs_write_unlock(inode->i_sb);
685 return -EFBIG;
686 }
687
688 /*
689 * if !create, we aren't changing the FS, so we don't need to
690 * log anything, so we don't need to start a transaction
691 */
692 if (!(create & GET_BLOCK_CREATE)) {
693 int ret;
694 /* find number of block-th logical block of the file */
695 ret = _get_block_create_0(inode, block, bh_result,
696 create | GET_BLOCK_READ_DIRECT);
697 reiserfs_write_unlock(inode->i_sb);
698 return ret;
699 }
700
701 /*
702 * if we're already in a transaction, make sure to close
703 * any new transactions we start in this func
704 */
705 if ((create & GET_BLOCK_NO_DANGLE) ||
706 reiserfs_transaction_running(inode->i_sb))
707 dangle = 0;
708
709 /*
710 * If file is of such a size, that it might have a tail and
711 * tails are enabled we should mark it as possibly needing
712 * tail packing on close
713 */
714 if ((have_large_tails(inode->i_sb)
715 && inode->i_size < i_block_size(inode) * 4)
716 || (have_small_tails(inode->i_sb)
717 && inode->i_size < i_block_size(inode)))
718 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
719
720 /* set the key of the first byte in the 'block'-th block of file */
721 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
722 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
723 start_trans:
724 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
725 if (!th) {
726 retval = -ENOMEM;
727 goto failure;
728 }
729 reiserfs_update_inode_transaction(inode);
730 }
731 research:
732
733 retval = search_for_position_by_key(inode->i_sb, &key, &path);
734 if (retval == IO_ERROR) {
735 retval = -EIO;
736 goto failure;
737 }
738
739 bh = get_last_bh(&path);
740 ih = tp_item_head(&path);
741 item = tp_item_body(&path);
742 pos_in_item = path.pos_in_item;
743
744 fs_gen = get_generation(inode->i_sb);
745 copy_item_head(&tmp_ih, ih);
746
747 if (allocation_needed
748 (retval, allocated_block_nr, ih, item, pos_in_item)) {
749 /* we have to allocate block for the unformatted node */
750 if (!th) {
751 pathrelse(&path);
752 goto start_trans;
753 }
754
755 repeat =
756 _allocate_block(th, block, inode, &allocated_block_nr,
757 &path, create);
758
759 /*
760 * restart the transaction to give the journal a chance to free
761 * some blocks. releases the path, so we have to go back to
762 * research if we succeed on the second try
763 */
764 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
765 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
766 retval = restart_transaction(th, inode, &path);
767 if (retval)
768 goto failure;
769 repeat =
770 _allocate_block(th, block, inode,
771 &allocated_block_nr, NULL, create);
772
773 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
774 goto research;
775 }
776 if (repeat == QUOTA_EXCEEDED)
777 retval = -EDQUOT;
778 else
779 retval = -ENOSPC;
780 goto failure;
781 }
782
783 if (fs_changed(fs_gen, inode->i_sb)
784 && item_moved(&tmp_ih, &path)) {
785 goto research;
786 }
787 }
788
789 if (indirect_item_found(retval, ih)) {
790 b_blocknr_t unfm_ptr;
791 /*
792 * 'block'-th block is in the file already (there is
793 * corresponding cell in some indirect item). But it may be
794 * zero unformatted node pointer (hole)
795 */
796 unfm_ptr = get_block_num(item, pos_in_item);
797 if (unfm_ptr == 0) {
798 /* use allocated block to plug the hole */
799 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
800 if (fs_changed(fs_gen, inode->i_sb)
801 && item_moved(&tmp_ih, &path)) {
802 reiserfs_restore_prepared_buffer(inode->i_sb,
803 bh);
804 goto research;
805 }
806 set_buffer_new(bh_result);
807 if (buffer_dirty(bh_result)
808 && reiserfs_data_ordered(inode->i_sb))
809 reiserfs_add_ordered_list(inode, bh_result);
810 put_block_num(item, pos_in_item, allocated_block_nr);
811 unfm_ptr = allocated_block_nr;
812 journal_mark_dirty(th, bh);
813 reiserfs_update_sd(th, inode);
814 }
815 set_block_dev_mapped(bh_result, unfm_ptr, inode);
816 pathrelse(&path);
817 retval = 0;
818 if (!dangle && th)
819 retval = reiserfs_end_persistent_transaction(th);
820
821 reiserfs_write_unlock(inode->i_sb);
822
823 /*
824 * the item was found, so new blocks were not added to the file
825 * there is no need to make sure the inode is updated with this
826 * transaction
827 */
828 return retval;
829 }
830
831 if (!th) {
832 pathrelse(&path);
833 goto start_trans;
834 }
835
836 /*
837 * desired position is not found or is in the direct item. We have
838 * to append file with holes up to 'block'-th block converting
839 * direct items to indirect one if necessary
840 */
841 done = 0;
842 do {
843 if (is_statdata_le_ih(ih)) {
844 __le32 unp = 0;
845 struct cpu_key tmp_key;
846
847 /* indirect item has to be inserted */
848 make_le_item_head(&tmp_ih, &key, version, 1,
849 TYPE_INDIRECT, UNFM_P_SIZE,
850 0 /* free_space */ );
851
852 /*
853 * we are going to add 'block'-th block to the file.
854 * Use allocated block for that
855 */
856 if (cpu_key_k_offset(&key) == 1) {
857 unp = cpu_to_le32(allocated_block_nr);
858 set_block_dev_mapped(bh_result,
859 allocated_block_nr, inode);
860 set_buffer_new(bh_result);
861 done = 1;
862 }
863 tmp_key = key; /* ;) */
864 set_cpu_key_k_offset(&tmp_key, 1);
865 PATH_LAST_POSITION(&path)++;
866
867 retval =
868 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
869 inode, (char *)&unp);
870 if (retval) {
871 reiserfs_free_block(th, inode,
872 allocated_block_nr, 1);
873 /*
874 * retval == -ENOSPC, -EDQUOT or -EIO
875 * or -EEXIST
876 */
877 goto failure;
878 }
879 } else if (is_direct_le_ih(ih)) {
880 /* direct item has to be converted */
881 loff_t tail_offset;
882
883 tail_offset =
884 ((le_ih_k_offset(ih) -
885 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
886
887 /*
888 * direct item we just found fits into block we have
889 * to map. Convert it into unformatted node: use
890 * bh_result for the conversion
891 */
892 if (tail_offset == cpu_key_k_offset(&key)) {
893 set_block_dev_mapped(bh_result,
894 allocated_block_nr, inode);
895 unbh = bh_result;
896 done = 1;
897 } else {
898 /*
899 * we have to pad file tail stored in direct
900 * item(s) up to block size and convert it
901 * to unformatted node. FIXME: this should
902 * also get into page cache
903 */
904
905 pathrelse(&path);
906 /*
907 * ugly, but we can only end the transaction if
908 * we aren't nested
909 */
910 BUG_ON(!th->t_refcount);
911 if (th->t_refcount == 1) {
912 retval =
913 reiserfs_end_persistent_transaction
914 (th);
915 th = NULL;
916 if (retval)
917 goto failure;
918 }
919
920 retval =
921 convert_tail_for_hole(inode, bh_result,
922 tail_offset);
923 if (retval) {
924 if (retval != -ENOSPC)
925 reiserfs_error(inode->i_sb,
926 "clm-6004",
927 "convert tail failed "
928 "inode %lu, error %d",
929 inode->i_ino,
930 retval);
931 if (allocated_block_nr) {
932 /*
933 * the bitmap, the super,
934 * and the stat data == 3
935 */
936 if (!th)
937 th = reiserfs_persistent_transaction(inode->i_sb, 3);
938 if (th)
939 reiserfs_free_block(th,
940 inode,
941 allocated_block_nr,
942 1);
943 }
944 goto failure;
945 }
946 goto research;
947 }
948 retval =
949 direct2indirect(th, inode, &path, unbh,
950 tail_offset);
951 if (retval) {
952 reiserfs_unmap_buffer(unbh);
953 reiserfs_free_block(th, inode,
954 allocated_block_nr, 1);
955 goto failure;
956 }
957 /*
958 * it is important the set_buffer_uptodate is done
959 * after the direct2indirect. The buffer might
960 * contain valid data newer than the data on disk
961 * (read by read_folio, changed, and then sent here by
962 * writepage). direct2indirect needs to know if unbh
963 * was already up to date, so it can decide if the
964 * data in unbh needs to be replaced with data from
965 * the disk
966 */
967 set_buffer_uptodate(unbh);
968
969 /*
970 * unbh->b_page == NULL in case of DIRECT_IO request,
971 * this means buffer will disappear shortly, so it
972 * should not be added to
973 */
974 if (unbh->b_page) {
975 /*
976 * we've converted the tail, so we must
977 * flush unbh before the transaction commits
978 */
979 reiserfs_add_tail_list(inode, unbh);
980
981 /*
982 * mark it dirty now to prevent commit_write
983 * from adding this buffer to the inode's
984 * dirty buffer list
985 */
986 /*
987 * AKPM: changed __mark_buffer_dirty to
988 * mark_buffer_dirty(). It's still atomic,
989 * but it sets the page dirty too, which makes
990 * it eligible for writeback at any time by the
991 * VM (which was also the case with
992 * __mark_buffer_dirty())
993 */
994 mark_buffer_dirty(unbh);
995 }
996 } else {
997 /*
998 * append indirect item with holes if needed, when
999 * appending pointer to 'block'-th block use block,
1000 * which is already allocated
1001 */
1002 struct cpu_key tmp_key;
1003 /*
1004 * We use this in case we need to allocate
1005 * only one block which is a fastpath
1006 */
1007 unp_t unf_single = 0;
1008 unp_t *un;
1009 __u64 max_to_insert =
1010 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1011 UNFM_P_SIZE;
1012 __u64 blocks_needed;
1013
1014 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1015 "vs-804: invalid position for append");
1016 /*
1017 * indirect item has to be appended,
1018 * set up key of that position
1019 * (key type is unimportant)
1020 */
1021 make_cpu_key(&tmp_key, inode,
1022 le_key_k_offset(version,
1023 &ih->ih_key) +
1024 op_bytes_number(ih,
1025 inode->i_sb->s_blocksize),
1026 TYPE_INDIRECT, 3);
1027
1028 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1029 "green-805: invalid offset");
1030 blocks_needed =
1031 1 +
1032 ((cpu_key_k_offset(&key) -
1033 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1034 s_blocksize_bits);
1035
1036 if (blocks_needed == 1) {
1037 un = &unf_single;
1038 } else {
1039 un = kcalloc(min(blocks_needed, max_to_insert),
1040 UNFM_P_SIZE, GFP_NOFS);
1041 if (!un) {
1042 un = &unf_single;
1043 blocks_needed = 1;
1044 max_to_insert = 0;
1045 }
1046 }
1047 if (blocks_needed <= max_to_insert) {
1048 /*
1049 * we are going to add target block to
1050 * the file. Use allocated block for that
1051 */
1052 un[blocks_needed - 1] =
1053 cpu_to_le32(allocated_block_nr);
1054 set_block_dev_mapped(bh_result,
1055 allocated_block_nr, inode);
1056 set_buffer_new(bh_result);
1057 done = 1;
1058 } else {
1059 /* paste hole to the indirect item */
1060 /*
1061 * If kcalloc failed, max_to_insert becomes
1062 * zero and it means we only have space for
1063 * one block
1064 */
1065 blocks_needed =
1066 max_to_insert ? max_to_insert : 1;
1067 }
1068 retval =
1069 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1070 (char *)un,
1071 UNFM_P_SIZE *
1072 blocks_needed);
1073
1074 if (blocks_needed != 1)
1075 kfree(un);
1076
1077 if (retval) {
1078 reiserfs_free_block(th, inode,
1079 allocated_block_nr, 1);
1080 goto failure;
1081 }
1082 if (!done) {
1083 /*
1084 * We need to mark new file size in case
1085 * this function will be interrupted/aborted
1086 * later on. And we may do this only for
1087 * holes.
1088 */
1089 inode->i_size +=
1090 inode->i_sb->s_blocksize * blocks_needed;
1091 }
1092 }
1093
1094 if (done == 1)
1095 break;
1096
1097 /*
1098 * this loop could log more blocks than we had originally
1099 * asked for. So, we have to allow the transaction to end
1100 * if it is too big or too full. Update the inode so things
1101 * are consistent if we crash before the function returns
1102 * release the path so that anybody waiting on the path before
1103 * ending their transaction will be able to continue.
1104 */
1105 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1106 retval = restart_transaction(th, inode, &path);
1107 if (retval)
1108 goto failure;
1109 }
1110 /*
1111 * inserting indirect pointers for a hole can take a
1112 * long time. reschedule if needed and also release the write
1113 * lock for others.
1114 */
1115 reiserfs_cond_resched(inode->i_sb);
1116
1117 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1118 if (retval == IO_ERROR) {
1119 retval = -EIO;
1120 goto failure;
1121 }
1122 if (retval == POSITION_FOUND) {
1123 reiserfs_warning(inode->i_sb, "vs-825",
1124 "%K should not be found", &key);
1125 retval = -EEXIST;
1126 if (allocated_block_nr)
1127 reiserfs_free_block(th, inode,
1128 allocated_block_nr, 1);
1129 pathrelse(&path);
1130 goto failure;
1131 }
1132 bh = get_last_bh(&path);
1133 ih = tp_item_head(&path);
1134 item = tp_item_body(&path);
1135 pos_in_item = path.pos_in_item;
1136 } while (1);
1137
1138 retval = 0;
1139
1140 failure:
1141 if (th && (!dangle || (retval && !th->t_trans_id))) {
1142 int err;
1143 if (th->t_trans_id)
1144 reiserfs_update_sd(th, inode);
1145 err = reiserfs_end_persistent_transaction(th);
1146 if (err)
1147 retval = err;
1148 }
1149
1150 reiserfs_write_unlock(inode->i_sb);
1151 reiserfs_check_path(&path);
1152 return retval;
1153 }
1154
1155 static void reiserfs_readahead(struct readahead_control *rac)
1156 {
1157 mpage_readahead(rac, reiserfs_get_block);
1158 }
1159
1160 /*
1161 * Compute real number of used bytes by file
1162 * Following three functions can go away when we'll have enough space in
1163 * stat item
1164 */
1165 static int real_space_diff(struct inode *inode, int sd_size)
1166 {
1167 int bytes;
1168 loff_t blocksize = inode->i_sb->s_blocksize;
1169
1170 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1171 return sd_size;
1172
1173 /*
1174 * End of file is also in full block with indirect reference, so round
1175 * up to the next block.
1176 *
1177 * there is just no way to know if the tail is actually packed
1178 * on the file, so we have to assume it isn't. When we pack the
1179 * tail, we add 4 bytes to pretend there really is an unformatted
1180 * node pointer
1181 */
1182 bytes =
1183 ((inode->i_size +
1184 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1185 sd_size;
1186 return bytes;
1187 }
1188
1189 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1190 int sd_size)
1191 {
1192 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1193 return inode->i_size +
1194 (loff_t) (real_space_diff(inode, sd_size));
1195 }
1196 return ((loff_t) real_space_diff(inode, sd_size)) +
1197 (((loff_t) blocks) << 9);
1198 }
1199
1200 /* Compute number of blocks used by file in ReiserFS counting */
1201 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1202 {
1203 loff_t bytes = inode_get_bytes(inode);
1204 loff_t real_space = real_space_diff(inode, sd_size);
1205
1206 /* keeps fsck and non-quota versions of reiserfs happy */
1207 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1208 bytes += (loff_t) 511;
1209 }
1210
1211 /*
1212 * files from before the quota patch might i_blocks such that
1213 * bytes < real_space. Deal with that here to prevent it from
1214 * going negative.
1215 */
1216 if (bytes < real_space)
1217 return 0;
1218 return (bytes - real_space) >> 9;
1219 }
1220
1221 /*
1222 * BAD: new directories have stat data of new type and all other items
1223 * of old type. Version stored in the inode says about body items, so
1224 * in update_stat_data we can not rely on inode, but have to check
1225 * item version directly
1226 */
1227
1228 /* called by read_locked_inode */
1229 static void init_inode(struct inode *inode, struct treepath *path)
1230 {
1231 struct buffer_head *bh;
1232 struct item_head *ih;
1233 __u32 rdev;
1234
1235 bh = PATH_PLAST_BUFFER(path);
1236 ih = tp_item_head(path);
1237
1238 copy_key(INODE_PKEY(inode), &ih->ih_key);
1239
1240 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1241 REISERFS_I(inode)->i_flags = 0;
1242 REISERFS_I(inode)->i_prealloc_block = 0;
1243 REISERFS_I(inode)->i_prealloc_count = 0;
1244 REISERFS_I(inode)->i_trans_id = 0;
1245 REISERFS_I(inode)->i_jl = NULL;
1246 reiserfs_init_xattr_rwsem(inode);
1247
1248 if (stat_data_v1(ih)) {
1249 struct stat_data_v1 *sd =
1250 (struct stat_data_v1 *)ih_item_body(bh, ih);
1251 unsigned long blocks;
1252
1253 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1254 set_inode_sd_version(inode, STAT_DATA_V1);
1255 inode->i_mode = sd_v1_mode(sd);
1256 set_nlink(inode, sd_v1_nlink(sd));
1257 i_uid_write(inode, sd_v1_uid(sd));
1258 i_gid_write(inode, sd_v1_gid(sd));
1259 inode->i_size = sd_v1_size(sd);
1260 inode->i_atime.tv_sec = sd_v1_atime(sd);
1261 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1262 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1263 inode->i_atime.tv_nsec = 0;
1264 inode->i_ctime.tv_nsec = 0;
1265 inode->i_mtime.tv_nsec = 0;
1266
1267 inode->i_blocks = sd_v1_blocks(sd);
1268 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1269 blocks = (inode->i_size + 511) >> 9;
1270 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1271
1272 /*
1273 * there was a bug in <=3.5.23 when i_blocks could take
1274 * negative values. Starting from 3.5.17 this value could
1275 * even be stored in stat data. For such files we set
1276 * i_blocks based on file size. Just 2 notes: this can be
1277 * wrong for sparse files. On-disk value will be only
1278 * updated if file's inode will ever change
1279 */
1280 if (inode->i_blocks > blocks) {
1281 inode->i_blocks = blocks;
1282 }
1283
1284 rdev = sd_v1_rdev(sd);
1285 REISERFS_I(inode)->i_first_direct_byte =
1286 sd_v1_first_direct_byte(sd);
1287
1288 /*
1289 * an early bug in the quota code can give us an odd
1290 * number for the block count. This is incorrect, fix it here.
1291 */
1292 if (inode->i_blocks & 1) {
1293 inode->i_blocks++;
1294 }
1295 inode_set_bytes(inode,
1296 to_real_used_space(inode, inode->i_blocks,
1297 SD_V1_SIZE));
1298 /*
1299 * nopack is initially zero for v1 objects. For v2 objects,
1300 * nopack is initialised from sd_attrs
1301 */
1302 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1303 } else {
1304 /*
1305 * new stat data found, but object may have old items
1306 * (directories and symlinks)
1307 */
1308 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1309
1310 inode->i_mode = sd_v2_mode(sd);
1311 set_nlink(inode, sd_v2_nlink(sd));
1312 i_uid_write(inode, sd_v2_uid(sd));
1313 inode->i_size = sd_v2_size(sd);
1314 i_gid_write(inode, sd_v2_gid(sd));
1315 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1316 inode->i_atime.tv_sec = sd_v2_atime(sd);
1317 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1318 inode->i_ctime.tv_nsec = 0;
1319 inode->i_mtime.tv_nsec = 0;
1320 inode->i_atime.tv_nsec = 0;
1321 inode->i_blocks = sd_v2_blocks(sd);
1322 rdev = sd_v2_rdev(sd);
1323 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1324 inode->i_generation =
1325 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1326 else
1327 inode->i_generation = sd_v2_generation(sd);
1328
1329 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1330 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1331 else
1332 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1333 REISERFS_I(inode)->i_first_direct_byte = 0;
1334 set_inode_sd_version(inode, STAT_DATA_V2);
1335 inode_set_bytes(inode,
1336 to_real_used_space(inode, inode->i_blocks,
1337 SD_V2_SIZE));
1338 /*
1339 * read persistent inode attributes from sd and initialise
1340 * generic inode flags from them
1341 */
1342 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1343 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1344 }
1345
1346 pathrelse(path);
1347 if (S_ISREG(inode->i_mode)) {
1348 inode->i_op = &reiserfs_file_inode_operations;
1349 inode->i_fop = &reiserfs_file_operations;
1350 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1351 } else if (S_ISDIR(inode->i_mode)) {
1352 inode->i_op = &reiserfs_dir_inode_operations;
1353 inode->i_fop = &reiserfs_dir_operations;
1354 } else if (S_ISLNK(inode->i_mode)) {
1355 inode->i_op = &reiserfs_symlink_inode_operations;
1356 inode_nohighmem(inode);
1357 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1358 } else {
1359 inode->i_blocks = 0;
1360 inode->i_op = &reiserfs_special_inode_operations;
1361 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1362 }
1363 }
1364
1365 /* update new stat data with inode fields */
1366 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1367 {
1368 struct stat_data *sd_v2 = (struct stat_data *)sd;
1369
1370 set_sd_v2_mode(sd_v2, inode->i_mode);
1371 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1372 set_sd_v2_uid(sd_v2, i_uid_read(inode));
1373 set_sd_v2_size(sd_v2, size);
1374 set_sd_v2_gid(sd_v2, i_gid_read(inode));
1375 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1376 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1377 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1378 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1379 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1380 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1381 else
1382 set_sd_v2_generation(sd_v2, inode->i_generation);
1383 set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
1384 }
1385
1386 /* used to copy inode's fields to old stat data */
1387 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1388 {
1389 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1390
1391 set_sd_v1_mode(sd_v1, inode->i_mode);
1392 set_sd_v1_uid(sd_v1, i_uid_read(inode));
1393 set_sd_v1_gid(sd_v1, i_gid_read(inode));
1394 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1395 set_sd_v1_size(sd_v1, size);
1396 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1397 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1398 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1399
1400 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1401 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1402 else
1403 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1404
1405 /* Sigh. i_first_direct_byte is back */
1406 set_sd_v1_first_direct_byte(sd_v1,
1407 REISERFS_I(inode)->i_first_direct_byte);
1408 }
1409
1410 /*
1411 * NOTE, you must prepare the buffer head before sending it here,
1412 * and then log it after the call
1413 */
1414 static void update_stat_data(struct treepath *path, struct inode *inode,
1415 loff_t size)
1416 {
1417 struct buffer_head *bh;
1418 struct item_head *ih;
1419
1420 bh = PATH_PLAST_BUFFER(path);
1421 ih = tp_item_head(path);
1422
1423 if (!is_statdata_le_ih(ih))
1424 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1425 INODE_PKEY(inode), ih);
1426
1427 /* path points to old stat data */
1428 if (stat_data_v1(ih)) {
1429 inode2sd_v1(ih_item_body(bh, ih), inode, size);
1430 } else {
1431 inode2sd(ih_item_body(bh, ih), inode, size);
1432 }
1433
1434 return;
1435 }
1436
1437 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1438 struct inode *inode, loff_t size)
1439 {
1440 struct cpu_key key;
1441 INITIALIZE_PATH(path);
1442 struct buffer_head *bh;
1443 int fs_gen;
1444 struct item_head *ih, tmp_ih;
1445 int retval;
1446
1447 BUG_ON(!th->t_trans_id);
1448
1449 /* key type is unimportant */
1450 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1451
1452 for (;;) {
1453 int pos;
1454 /* look for the object's stat data */
1455 retval = search_item(inode->i_sb, &key, &path);
1456 if (retval == IO_ERROR) {
1457 reiserfs_error(inode->i_sb, "vs-13050",
1458 "i/o failure occurred trying to "
1459 "update %K stat data", &key);
1460 return;
1461 }
1462 if (retval == ITEM_NOT_FOUND) {
1463 pos = PATH_LAST_POSITION(&path);
1464 pathrelse(&path);
1465 if (inode->i_nlink == 0) {
1466 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1467 return;
1468 }
1469 reiserfs_warning(inode->i_sb, "vs-13060",
1470 "stat data of object %k (nlink == %d) "
1471 "not found (pos %d)",
1472 INODE_PKEY(inode), inode->i_nlink,
1473 pos);
1474 reiserfs_check_path(&path);
1475 return;
1476 }
1477
1478 /*
1479 * sigh, prepare_for_journal might schedule. When it
1480 * schedules the FS might change. We have to detect that,
1481 * and loop back to the search if the stat data item has moved
1482 */
1483 bh = get_last_bh(&path);
1484 ih = tp_item_head(&path);
1485 copy_item_head(&tmp_ih, ih);
1486 fs_gen = get_generation(inode->i_sb);
1487 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1488
1489 /* Stat_data item has been moved after scheduling. */
1490 if (fs_changed(fs_gen, inode->i_sb)
1491 && item_moved(&tmp_ih, &path)) {
1492 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1493 continue;
1494 }
1495 break;
1496 }
1497 update_stat_data(&path, inode, size);
1498 journal_mark_dirty(th, bh);
1499 pathrelse(&path);
1500 return;
1501 }
1502
1503 /*
1504 * reiserfs_read_locked_inode is called to read the inode off disk, and it
1505 * does a make_bad_inode when things go wrong. But, we need to make sure
1506 * and clear the key in the private portion of the inode, otherwise a
1507 * corresponding iput might try to delete whatever object the inode last
1508 * represented.
1509 */
1510 static void reiserfs_make_bad_inode(struct inode *inode)
1511 {
1512 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1513 make_bad_inode(inode);
1514 }
1515
1516 /*
1517 * initially this function was derived from minix or ext2's analog and
1518 * evolved as the prototype did
1519 */
1520 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1521 {
1522 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1523 inode->i_ino = args->objectid;
1524 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1525 return 0;
1526 }
1527
1528 /*
1529 * looks for stat data in the tree, and fills up the fields of in-core
1530 * inode stat data fields
1531 */
1532 void reiserfs_read_locked_inode(struct inode *inode,
1533 struct reiserfs_iget_args *args)
1534 {
1535 INITIALIZE_PATH(path_to_sd);
1536 struct cpu_key key;
1537 unsigned long dirino;
1538 int retval;
1539
1540 dirino = args->dirid;
1541
1542 /*
1543 * set version 1, version 2 could be used too, because stat data
1544 * key is the same in both versions
1545 */
1546 _make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3);
1547
1548 /* look for the object's stat data */
1549 retval = search_item(inode->i_sb, &key, &path_to_sd);
1550 if (retval == IO_ERROR) {
1551 reiserfs_error(inode->i_sb, "vs-13070",
1552 "i/o failure occurred trying to find "
1553 "stat data of %K", &key);
1554 reiserfs_make_bad_inode(inode);
1555 return;
1556 }
1557
1558 /* a stale NFS handle can trigger this without it being an error */
1559 if (retval != ITEM_FOUND) {
1560 pathrelse(&path_to_sd);
1561 reiserfs_make_bad_inode(inode);
1562 clear_nlink(inode);
1563 return;
1564 }
1565
1566 init_inode(inode, &path_to_sd);
1567
1568 /*
1569 * It is possible that knfsd is trying to access inode of a file
1570 * that is being removed from the disk by some other thread. As we
1571 * update sd on unlink all that is required is to check for nlink
1572 * here. This bug was first found by Sizif when debugging
1573 * SquidNG/Butterfly, forgotten, and found again after Philippe
1574 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1575
1576 * More logical fix would require changes in fs/inode.c:iput() to
1577 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1578 * in iget() to return NULL if I_FREEING inode is found in
1579 * hash-table.
1580 */
1581
1582 /*
1583 * Currently there is one place where it's ok to meet inode with
1584 * nlink==0: processing of open-unlinked and half-truncated files
1585 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1586 */
1587 if ((inode->i_nlink == 0) &&
1588 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1589 reiserfs_warning(inode->i_sb, "vs-13075",
1590 "dead inode read from disk %K. "
1591 "This is likely to be race with knfsd. Ignore",
1592 &key);
1593 reiserfs_make_bad_inode(inode);
1594 }
1595
1596 /* init inode should be relsing */
1597 reiserfs_check_path(&path_to_sd);
1598
1599 /*
1600 * Stat data v1 doesn't support ACLs.
1601 */
1602 if (get_inode_sd_version(inode) == STAT_DATA_V1)
1603 cache_no_acl(inode);
1604 }
1605
1606 /*
1607 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1608 *
1609 * @inode: inode from hash table to check
1610 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1611 *
1612 * This function is called by iget5_locked() to distinguish reiserfs inodes
1613 * having the same inode numbers. Such inodes can only exist due to some
1614 * error condition. One of them should be bad. Inodes with identical
1615 * inode numbers (objectids) are distinguished by parent directory ids.
1616 *
1617 */
1618 int reiserfs_find_actor(struct inode *inode, void *opaque)
1619 {
1620 struct reiserfs_iget_args *args;
1621
1622 args = opaque;
1623 /* args is already in CPU order */
1624 return (inode->i_ino == args->objectid) &&
1625 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1626 }
1627
1628 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1629 {
1630 struct inode *inode;
1631 struct reiserfs_iget_args args;
1632 int depth;
1633
1634 args.objectid = key->on_disk_key.k_objectid;
1635 args.dirid = key->on_disk_key.k_dir_id;
1636 depth = reiserfs_write_unlock_nested(s);
1637 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1638 reiserfs_find_actor, reiserfs_init_locked_inode,
1639 (void *)(&args));
1640 reiserfs_write_lock_nested(s, depth);
1641 if (!inode)
1642 return ERR_PTR(-ENOMEM);
1643
1644 if (inode->i_state & I_NEW) {
1645 reiserfs_read_locked_inode(inode, &args);
1646 unlock_new_inode(inode);
1647 }
1648
1649 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1650 /* either due to i/o error or a stale NFS handle */
1651 iput(inode);
1652 inode = NULL;
1653 }
1654 return inode;
1655 }
1656
1657 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1658 u32 objectid, u32 dir_id, u32 generation)
1659
1660 {
1661 struct cpu_key key;
1662 struct inode *inode;
1663
1664 key.on_disk_key.k_objectid = objectid;
1665 key.on_disk_key.k_dir_id = dir_id;
1666 reiserfs_write_lock(sb);
1667 inode = reiserfs_iget(sb, &key);
1668 if (inode && !IS_ERR(inode) && generation != 0 &&
1669 generation != inode->i_generation) {
1670 iput(inode);
1671 inode = NULL;
1672 }
1673 reiserfs_write_unlock(sb);
1674
1675 return d_obtain_alias(inode);
1676 }
1677
1678 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1679 int fh_len, int fh_type)
1680 {
1681 /*
1682 * fhtype happens to reflect the number of u32s encoded.
1683 * due to a bug in earlier code, fhtype might indicate there
1684 * are more u32s then actually fitted.
1685 * so if fhtype seems to be more than len, reduce fhtype.
1686 * Valid types are:
1687 * 2 - objectid + dir_id - legacy support
1688 * 3 - objectid + dir_id + generation
1689 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1690 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1691 * 6 - as above plus generation of directory
1692 * 6 does not fit in NFSv2 handles
1693 */
1694 if (fh_type > fh_len) {
1695 if (fh_type != 6 || fh_len != 5)
1696 reiserfs_warning(sb, "reiserfs-13077",
1697 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1698 fh_type, fh_len);
1699 fh_type = fh_len;
1700 }
1701 if (fh_len < 2)
1702 return NULL;
1703
1704 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1705 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1706 }
1707
1708 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1709 int fh_len, int fh_type)
1710 {
1711 if (fh_type > fh_len)
1712 fh_type = fh_len;
1713 if (fh_type < 4)
1714 return NULL;
1715
1716 return reiserfs_get_dentry(sb,
1717 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1718 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1719 (fh_type == 6) ? fid->raw[5] : 0);
1720 }
1721
1722 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1723 struct inode *parent)
1724 {
1725 int maxlen = *lenp;
1726
1727 if (parent && (maxlen < 5)) {
1728 *lenp = 5;
1729 return FILEID_INVALID;
1730 } else if (maxlen < 3) {
1731 *lenp = 3;
1732 return FILEID_INVALID;
1733 }
1734
1735 data[0] = inode->i_ino;
1736 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1737 data[2] = inode->i_generation;
1738 *lenp = 3;
1739 if (parent) {
1740 data[3] = parent->i_ino;
1741 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1742 *lenp = 5;
1743 if (maxlen >= 6) {
1744 data[5] = parent->i_generation;
1745 *lenp = 6;
1746 }
1747 }
1748 return *lenp;
1749 }
1750
1751 /*
1752 * looks for stat data, then copies fields to it, marks the buffer
1753 * containing stat data as dirty
1754 */
1755 /*
1756 * reiserfs inodes are never really dirty, since the dirty inode call
1757 * always logs them. This call allows the VFS inode marking routines
1758 * to properly mark inodes for datasync and such, but only actually
1759 * does something when called for a synchronous update.
1760 */
1761 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1762 {
1763 struct reiserfs_transaction_handle th;
1764 int jbegin_count = 1;
1765
1766 if (sb_rdonly(inode->i_sb))
1767 return -EROFS;
1768 /*
1769 * memory pressure can sometimes initiate write_inode calls with
1770 * sync == 1,
1771 * these cases are just when the system needs ram, not when the
1772 * inode needs to reach disk for safety, and they can safely be
1773 * ignored because the altered inode has already been logged.
1774 */
1775 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1776 reiserfs_write_lock(inode->i_sb);
1777 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1778 reiserfs_update_sd(&th, inode);
1779 journal_end_sync(&th);
1780 }
1781 reiserfs_write_unlock(inode->i_sb);
1782 }
1783 return 0;
1784 }
1785
1786 /*
1787 * stat data of new object is inserted already, this inserts the item
1788 * containing "." and ".." entries
1789 */
1790 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1791 struct inode *inode,
1792 struct item_head *ih, struct treepath *path,
1793 struct inode *dir)
1794 {
1795 struct super_block *sb = th->t_super;
1796 char empty_dir[EMPTY_DIR_SIZE];
1797 char *body = empty_dir;
1798 struct cpu_key key;
1799 int retval;
1800
1801 BUG_ON(!th->t_trans_id);
1802
1803 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1804 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1805 TYPE_DIRENTRY, 3 /*key length */ );
1806
1807 /*
1808 * compose item head for new item. Directories consist of items of
1809 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1810 * is done by reiserfs_new_inode
1811 */
1812 if (old_format_only(sb)) {
1813 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1814 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1815
1816 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1817 ih->ih_key.k_objectid,
1818 INODE_PKEY(dir)->k_dir_id,
1819 INODE_PKEY(dir)->k_objectid);
1820 } else {
1821 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1822 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1823
1824 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1825 ih->ih_key.k_objectid,
1826 INODE_PKEY(dir)->k_dir_id,
1827 INODE_PKEY(dir)->k_objectid);
1828 }
1829
1830 /* look for place in the tree for new item */
1831 retval = search_item(sb, &key, path);
1832 if (retval == IO_ERROR) {
1833 reiserfs_error(sb, "vs-13080",
1834 "i/o failure occurred creating new directory");
1835 return -EIO;
1836 }
1837 if (retval == ITEM_FOUND) {
1838 pathrelse(path);
1839 reiserfs_warning(sb, "vs-13070",
1840 "object with this key exists (%k)",
1841 &(ih->ih_key));
1842 return -EEXIST;
1843 }
1844
1845 /* insert item, that is empty directory item */
1846 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1847 }
1848
1849 /*
1850 * stat data of object has been inserted, this inserts the item
1851 * containing the body of symlink
1852 */
1853 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1854 struct inode *inode,
1855 struct item_head *ih,
1856 struct treepath *path, const char *symname,
1857 int item_len)
1858 {
1859 struct super_block *sb = th->t_super;
1860 struct cpu_key key;
1861 int retval;
1862
1863 BUG_ON(!th->t_trans_id);
1864
1865 _make_cpu_key(&key, KEY_FORMAT_3_5,
1866 le32_to_cpu(ih->ih_key.k_dir_id),
1867 le32_to_cpu(ih->ih_key.k_objectid),
1868 1, TYPE_DIRECT, 3 /*key length */ );
1869
1870 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1871 0 /*free_space */ );
1872
1873 /* look for place in the tree for new item */
1874 retval = search_item(sb, &key, path);
1875 if (retval == IO_ERROR) {
1876 reiserfs_error(sb, "vs-13080",
1877 "i/o failure occurred creating new symlink");
1878 return -EIO;
1879 }
1880 if (retval == ITEM_FOUND) {
1881 pathrelse(path);
1882 reiserfs_warning(sb, "vs-13080",
1883 "object with this key exists (%k)",
1884 &(ih->ih_key));
1885 return -EEXIST;
1886 }
1887
1888 /* insert item, that is body of symlink */
1889 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1890 }
1891
1892 /*
1893 * inserts the stat data into the tree, and then calls
1894 * reiserfs_new_directory (to insert ".", ".." item if new object is
1895 * directory) or reiserfs_new_symlink (to insert symlink body if new
1896 * object is symlink) or nothing (if new object is regular file)
1897
1898 * NOTE! uid and gid must already be set in the inode. If we return
1899 * non-zero due to an error, we have to drop the quota previously allocated
1900 * for the fresh inode. This can only be done outside a transaction, so
1901 * if we return non-zero, we also end the transaction.
1902 *
1903 * @th: active transaction handle
1904 * @dir: parent directory for new inode
1905 * @mode: mode of new inode
1906 * @symname: symlink contents if inode is symlink
1907 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1908 * symlinks
1909 * @inode: inode to be filled
1910 * @security: optional security context to associate with this inode
1911 */
1912 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1913 struct inode *dir, umode_t mode, const char *symname,
1914 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1915 strlen (symname) for symlinks) */
1916 loff_t i_size, struct dentry *dentry,
1917 struct inode *inode,
1918 struct reiserfs_security_handle *security)
1919 {
1920 struct super_block *sb = dir->i_sb;
1921 struct reiserfs_iget_args args;
1922 INITIALIZE_PATH(path_to_key);
1923 struct cpu_key key;
1924 struct item_head ih;
1925 struct stat_data sd;
1926 int retval;
1927 int err;
1928 int depth;
1929
1930 BUG_ON(!th->t_trans_id);
1931
1932 depth = reiserfs_write_unlock_nested(sb);
1933 err = dquot_alloc_inode(inode);
1934 reiserfs_write_lock_nested(sb, depth);
1935 if (err)
1936 goto out_end_trans;
1937 if (!dir->i_nlink) {
1938 err = -EPERM;
1939 goto out_bad_inode;
1940 }
1941
1942 /* item head of new item */
1943 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1944 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1945 if (!ih.ih_key.k_objectid) {
1946 err = -ENOMEM;
1947 goto out_bad_inode;
1948 }
1949 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1950 if (old_format_only(sb))
1951 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1952 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1953 else
1954 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1955 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1956 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1957 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1958
1959 depth = reiserfs_write_unlock_nested(inode->i_sb);
1960 err = insert_inode_locked4(inode, args.objectid,
1961 reiserfs_find_actor, &args);
1962 reiserfs_write_lock_nested(inode->i_sb, depth);
1963 if (err) {
1964 err = -EINVAL;
1965 goto out_bad_inode;
1966 }
1967
1968 if (old_format_only(sb))
1969 /*
1970 * not a perfect generation count, as object ids can be reused,
1971 * but this is as good as reiserfs can do right now.
1972 * note that the private part of inode isn't filled in yet,
1973 * we have to use the directory.
1974 */
1975 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1976 else
1977 #if defined( USE_INODE_GENERATION_COUNTER )
1978 inode->i_generation =
1979 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1980 #else
1981 inode->i_generation = ++event;
1982 #endif
1983
1984 /* fill stat data */
1985 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1986
1987 /* uid and gid must already be set by the caller for quota init */
1988
1989 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1990 inode->i_size = i_size;
1991 inode->i_blocks = 0;
1992 inode->i_bytes = 0;
1993 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1994 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1995
1996 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1997 REISERFS_I(inode)->i_flags = 0;
1998 REISERFS_I(inode)->i_prealloc_block = 0;
1999 REISERFS_I(inode)->i_prealloc_count = 0;
2000 REISERFS_I(inode)->i_trans_id = 0;
2001 REISERFS_I(inode)->i_jl = NULL;
2002 REISERFS_I(inode)->i_attrs =
2003 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2004 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2005 reiserfs_init_xattr_rwsem(inode);
2006
2007 /* key to search for correct place for new stat data */
2008 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2009 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2010 TYPE_STAT_DATA, 3 /*key length */ );
2011
2012 /* find proper place for inserting of stat data */
2013 retval = search_item(sb, &key, &path_to_key);
2014 if (retval == IO_ERROR) {
2015 err = -EIO;
2016 goto out_bad_inode;
2017 }
2018 if (retval == ITEM_FOUND) {
2019 pathrelse(&path_to_key);
2020 err = -EEXIST;
2021 goto out_bad_inode;
2022 }
2023 if (old_format_only(sb)) {
2024 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
2025 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2026 pathrelse(&path_to_key);
2027 err = -EINVAL;
2028 goto out_bad_inode;
2029 }
2030 inode2sd_v1(&sd, inode, inode->i_size);
2031 } else {
2032 inode2sd(&sd, inode, inode->i_size);
2033 }
2034 /*
2035 * store in in-core inode the key of stat data and version all
2036 * object items will have (directory items will have old offset
2037 * format, other new objects will consist of new items)
2038 */
2039 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2040 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2041 else
2042 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2043 if (old_format_only(sb))
2044 set_inode_sd_version(inode, STAT_DATA_V1);
2045 else
2046 set_inode_sd_version(inode, STAT_DATA_V2);
2047
2048 /* insert the stat data into the tree */
2049 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2050 if (REISERFS_I(dir)->new_packing_locality)
2051 th->displace_new_blocks = 1;
2052 #endif
2053 retval =
2054 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2055 (char *)(&sd));
2056 if (retval) {
2057 err = retval;
2058 reiserfs_check_path(&path_to_key);
2059 goto out_bad_inode;
2060 }
2061 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2062 if (!th->displace_new_blocks)
2063 REISERFS_I(dir)->new_packing_locality = 0;
2064 #endif
2065 if (S_ISDIR(mode)) {
2066 /* insert item with "." and ".." */
2067 retval =
2068 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2069 }
2070
2071 if (S_ISLNK(mode)) {
2072 /* insert body of symlink */
2073 if (!old_format_only(sb))
2074 i_size = ROUND_UP(i_size);
2075 retval =
2076 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2077 i_size);
2078 }
2079 if (retval) {
2080 err = retval;
2081 reiserfs_check_path(&path_to_key);
2082 journal_end(th);
2083 goto out_inserted_sd;
2084 }
2085
2086 /*
2087 * Mark it private if we're creating the privroot
2088 * or something under it.
2089 */
2090 if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root) {
2091 inode->i_flags |= S_PRIVATE;
2092 inode->i_opflags &= ~IOP_XATTR;
2093 }
2094
2095 if (reiserfs_posixacl(inode->i_sb)) {
2096 reiserfs_write_unlock(inode->i_sb);
2097 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2098 reiserfs_write_lock(inode->i_sb);
2099 if (retval) {
2100 err = retval;
2101 reiserfs_check_path(&path_to_key);
2102 journal_end(th);
2103 goto out_inserted_sd;
2104 }
2105 } else if (inode->i_sb->s_flags & SB_POSIXACL) {
2106 reiserfs_warning(inode->i_sb, "jdm-13090",
2107 "ACLs aren't enabled in the fs, "
2108 "but vfs thinks they are!");
2109 }
2110
2111 if (security->name) {
2112 reiserfs_write_unlock(inode->i_sb);
2113 retval = reiserfs_security_write(th, inode, security);
2114 reiserfs_write_lock(inode->i_sb);
2115 if (retval) {
2116 err = retval;
2117 reiserfs_check_path(&path_to_key);
2118 retval = journal_end(th);
2119 if (retval)
2120 err = retval;
2121 goto out_inserted_sd;
2122 }
2123 }
2124
2125 reiserfs_update_sd(th, inode);
2126 reiserfs_check_path(&path_to_key);
2127
2128 return 0;
2129
2130 out_bad_inode:
2131 /* Invalidate the object, nothing was inserted yet */
2132 INODE_PKEY(inode)->k_objectid = 0;
2133
2134 /* Quota change must be inside a transaction for journaling */
2135 depth = reiserfs_write_unlock_nested(inode->i_sb);
2136 dquot_free_inode(inode);
2137 reiserfs_write_lock_nested(inode->i_sb, depth);
2138
2139 out_end_trans:
2140 journal_end(th);
2141 /*
2142 * Drop can be outside and it needs more credits so it's better
2143 * to have it outside
2144 */
2145 depth = reiserfs_write_unlock_nested(inode->i_sb);
2146 dquot_drop(inode);
2147 reiserfs_write_lock_nested(inode->i_sb, depth);
2148 inode->i_flags |= S_NOQUOTA;
2149 make_bad_inode(inode);
2150
2151 out_inserted_sd:
2152 clear_nlink(inode);
2153 th->t_trans_id = 0; /* so the caller can't use this handle later */
2154 if (inode->i_state & I_NEW)
2155 unlock_new_inode(inode);
2156 iput(inode);
2157 return err;
2158 }
2159
2160 /*
2161 * finds the tail page in the page cache,
2162 * reads the last block in.
2163 *
2164 * On success, page_result is set to a locked, pinned page, and bh_result
2165 * is set to an up to date buffer for the last block in the file. returns 0.
2166 *
2167 * tail conversion is not done, so bh_result might not be valid for writing
2168 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2169 * trying to write the block.
2170 *
2171 * on failure, nonzero is returned, page_result and bh_result are untouched.
2172 */
2173 static int grab_tail_page(struct inode *inode,
2174 struct page **page_result,
2175 struct buffer_head **bh_result)
2176 {
2177
2178 /*
2179 * we want the page with the last byte in the file,
2180 * not the page that will hold the next byte for appending
2181 */
2182 unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2183 unsigned long pos = 0;
2184 unsigned long start = 0;
2185 unsigned long blocksize = inode->i_sb->s_blocksize;
2186 unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2187 struct buffer_head *bh;
2188 struct buffer_head *head;
2189 struct page *page;
2190 int error;
2191
2192 /*
2193 * we know that we are only called with inode->i_size > 0.
2194 * we also know that a file tail can never be as big as a block
2195 * If i_size % blocksize == 0, our file is currently block aligned
2196 * and it won't need converting or zeroing after a truncate.
2197 */
2198 if ((offset & (blocksize - 1)) == 0) {
2199 return -ENOENT;
2200 }
2201 page = grab_cache_page(inode->i_mapping, index);
2202 error = -ENOMEM;
2203 if (!page) {
2204 goto out;
2205 }
2206 /* start within the page of the last block in the file */
2207 start = (offset / blocksize) * blocksize;
2208
2209 error = __block_write_begin(page, start, offset - start,
2210 reiserfs_get_block_create_0);
2211 if (error)
2212 goto unlock;
2213
2214 head = page_buffers(page);
2215 bh = head;
2216 do {
2217 if (pos >= start) {
2218 break;
2219 }
2220 bh = bh->b_this_page;
2221 pos += blocksize;
2222 } while (bh != head);
2223
2224 if (!buffer_uptodate(bh)) {
2225 /*
2226 * note, this should never happen, prepare_write should be
2227 * taking care of this for us. If the buffer isn't up to
2228 * date, I've screwed up the code to find the buffer, or the
2229 * code to call prepare_write
2230 */
2231 reiserfs_error(inode->i_sb, "clm-6000",
2232 "error reading block %lu", bh->b_blocknr);
2233 error = -EIO;
2234 goto unlock;
2235 }
2236 *bh_result = bh;
2237 *page_result = page;
2238
2239 out:
2240 return error;
2241
2242 unlock:
2243 unlock_page(page);
2244 put_page(page);
2245 return error;
2246 }
2247
2248 /*
2249 * vfs version of truncate file. Must NOT be called with
2250 * a transaction already started.
2251 *
2252 * some code taken from block_truncate_page
2253 */
2254 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2255 {
2256 struct reiserfs_transaction_handle th;
2257 /* we want the offset for the first byte after the end of the file */
2258 unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2259 unsigned blocksize = inode->i_sb->s_blocksize;
2260 unsigned length;
2261 struct page *page = NULL;
2262 int error;
2263 struct buffer_head *bh = NULL;
2264 int err2;
2265
2266 reiserfs_write_lock(inode->i_sb);
2267
2268 if (inode->i_size > 0) {
2269 error = grab_tail_page(inode, &page, &bh);
2270 if (error) {
2271 /*
2272 * -ENOENT means we truncated past the end of the
2273 * file, and get_block_create_0 could not find a
2274 * block to read in, which is ok.
2275 */
2276 if (error != -ENOENT)
2277 reiserfs_error(inode->i_sb, "clm-6001",
2278 "grab_tail_page failed %d",
2279 error);
2280 page = NULL;
2281 bh = NULL;
2282 }
2283 }
2284
2285 /*
2286 * so, if page != NULL, we have a buffer head for the offset at
2287 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2288 * then we have an unformatted node. Otherwise, we have a direct item,
2289 * and no zeroing is required on disk. We zero after the truncate,
2290 * because the truncate might pack the item anyway
2291 * (it will unmap bh if it packs).
2292 *
2293 * it is enough to reserve space in transaction for 2 balancings:
2294 * one for "save" link adding and another for the first
2295 * cut_from_item. 1 is for update_sd
2296 */
2297 error = journal_begin(&th, inode->i_sb,
2298 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2299 if (error)
2300 goto out;
2301 reiserfs_update_inode_transaction(inode);
2302 if (update_timestamps)
2303 /*
2304 * we are doing real truncate: if the system crashes
2305 * before the last transaction of truncating gets committed
2306 * - on reboot the file either appears truncated properly
2307 * or not truncated at all
2308 */
2309 add_save_link(&th, inode, 1);
2310 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2311 error = journal_end(&th);
2312 if (error)
2313 goto out;
2314
2315 /* check reiserfs_do_truncate after ending the transaction */
2316 if (err2) {
2317 error = err2;
2318 goto out;
2319 }
2320
2321 if (update_timestamps) {
2322 error = remove_save_link(inode, 1 /* truncate */);
2323 if (error)
2324 goto out;
2325 }
2326
2327 if (page) {
2328 length = offset & (blocksize - 1);
2329 /* if we are not on a block boundary */
2330 if (length) {
2331 length = blocksize - length;
2332 zero_user(page, offset, length);
2333 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2334 mark_buffer_dirty(bh);
2335 }
2336 }
2337 unlock_page(page);
2338 put_page(page);
2339 }
2340
2341 reiserfs_write_unlock(inode->i_sb);
2342
2343 return 0;
2344 out:
2345 if (page) {
2346 unlock_page(page);
2347 put_page(page);
2348 }
2349
2350 reiserfs_write_unlock(inode->i_sb);
2351
2352 return error;
2353 }
2354
2355 static int map_block_for_writepage(struct inode *inode,
2356 struct buffer_head *bh_result,
2357 unsigned long block)
2358 {
2359 struct reiserfs_transaction_handle th;
2360 int fs_gen;
2361 struct item_head tmp_ih;
2362 struct item_head *ih;
2363 struct buffer_head *bh;
2364 __le32 *item;
2365 struct cpu_key key;
2366 INITIALIZE_PATH(path);
2367 int pos_in_item;
2368 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2369 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2370 int retval;
2371 int use_get_block = 0;
2372 int bytes_copied = 0;
2373 int copy_size;
2374 int trans_running = 0;
2375
2376 /*
2377 * catch places below that try to log something without
2378 * starting a trans
2379 */
2380 th.t_trans_id = 0;
2381
2382 if (!buffer_uptodate(bh_result)) {
2383 return -EIO;
2384 }
2385
2386 kmap(bh_result->b_page);
2387 start_over:
2388 reiserfs_write_lock(inode->i_sb);
2389 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2390
2391 research:
2392 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2393 if (retval != POSITION_FOUND) {
2394 use_get_block = 1;
2395 goto out;
2396 }
2397
2398 bh = get_last_bh(&path);
2399 ih = tp_item_head(&path);
2400 item = tp_item_body(&path);
2401 pos_in_item = path.pos_in_item;
2402
2403 /* we've found an unformatted node */
2404 if (indirect_item_found(retval, ih)) {
2405 if (bytes_copied > 0) {
2406 reiserfs_warning(inode->i_sb, "clm-6002",
2407 "bytes_copied %d", bytes_copied);
2408 }
2409 if (!get_block_num(item, pos_in_item)) {
2410 /* crap, we are writing to a hole */
2411 use_get_block = 1;
2412 goto out;
2413 }
2414 set_block_dev_mapped(bh_result,
2415 get_block_num(item, pos_in_item), inode);
2416 } else if (is_direct_le_ih(ih)) {
2417 char *p;
2418 p = page_address(bh_result->b_page);
2419 p += (byte_offset - 1) & (PAGE_SIZE - 1);
2420 copy_size = ih_item_len(ih) - pos_in_item;
2421
2422 fs_gen = get_generation(inode->i_sb);
2423 copy_item_head(&tmp_ih, ih);
2424
2425 if (!trans_running) {
2426 /* vs-3050 is gone, no need to drop the path */
2427 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2428 if (retval)
2429 goto out;
2430 reiserfs_update_inode_transaction(inode);
2431 trans_running = 1;
2432 if (fs_changed(fs_gen, inode->i_sb)
2433 && item_moved(&tmp_ih, &path)) {
2434 reiserfs_restore_prepared_buffer(inode->i_sb,
2435 bh);
2436 goto research;
2437 }
2438 }
2439
2440 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2441
2442 if (fs_changed(fs_gen, inode->i_sb)
2443 && item_moved(&tmp_ih, &path)) {
2444 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2445 goto research;
2446 }
2447
2448 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2449 copy_size);
2450
2451 journal_mark_dirty(&th, bh);
2452 bytes_copied += copy_size;
2453 set_block_dev_mapped(bh_result, 0, inode);
2454
2455 /* are there still bytes left? */
2456 if (bytes_copied < bh_result->b_size &&
2457 (byte_offset + bytes_copied) < inode->i_size) {
2458 set_cpu_key_k_offset(&key,
2459 cpu_key_k_offset(&key) +
2460 copy_size);
2461 goto research;
2462 }
2463 } else {
2464 reiserfs_warning(inode->i_sb, "clm-6003",
2465 "bad item inode %lu", inode->i_ino);
2466 retval = -EIO;
2467 goto out;
2468 }
2469 retval = 0;
2470
2471 out:
2472 pathrelse(&path);
2473 if (trans_running) {
2474 int err = journal_end(&th);
2475 if (err)
2476 retval = err;
2477 trans_running = 0;
2478 }
2479 reiserfs_write_unlock(inode->i_sb);
2480
2481 /* this is where we fill in holes in the file. */
2482 if (use_get_block) {
2483 retval = reiserfs_get_block(inode, block, bh_result,
2484 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2485 | GET_BLOCK_NO_DANGLE);
2486 if (!retval) {
2487 if (!buffer_mapped(bh_result)
2488 || bh_result->b_blocknr == 0) {
2489 /* get_block failed to find a mapped unformatted node. */
2490 use_get_block = 0;
2491 goto start_over;
2492 }
2493 }
2494 }
2495 kunmap(bh_result->b_page);
2496
2497 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2498 /*
2499 * we've copied data from the page into the direct item, so the
2500 * buffer in the page is now clean, mark it to reflect that.
2501 */
2502 lock_buffer(bh_result);
2503 clear_buffer_dirty(bh_result);
2504 unlock_buffer(bh_result);
2505 }
2506 return retval;
2507 }
2508
2509 /*
2510 * mason@suse.com: updated in 2.5.54 to follow the same general io
2511 * start/recovery path as __block_write_full_page, along with special
2512 * code to handle reiserfs tails.
2513 */
2514 static int reiserfs_write_full_page(struct page *page,
2515 struct writeback_control *wbc)
2516 {
2517 struct inode *inode = page->mapping->host;
2518 unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2519 int error = 0;
2520 unsigned long block;
2521 sector_t last_block;
2522 struct buffer_head *head, *bh;
2523 int partial = 0;
2524 int nr = 0;
2525 int checked = PageChecked(page);
2526 struct reiserfs_transaction_handle th;
2527 struct super_block *s = inode->i_sb;
2528 int bh_per_page = PAGE_SIZE / s->s_blocksize;
2529 th.t_trans_id = 0;
2530
2531 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2532 if (checked && (current->flags & PF_MEMALLOC)) {
2533 redirty_page_for_writepage(wbc, page);
2534 unlock_page(page);
2535 return 0;
2536 }
2537
2538 /*
2539 * The page dirty bit is cleared before writepage is called, which
2540 * means we have to tell create_empty_buffers to make dirty buffers
2541 * The page really should be up to date at this point, so tossing
2542 * in the BH_Uptodate is just a sanity check.
2543 */
2544 if (!page_has_buffers(page)) {
2545 create_empty_buffers(page, s->s_blocksize,
2546 (1 << BH_Dirty) | (1 << BH_Uptodate));
2547 }
2548 head = page_buffers(page);
2549
2550 /*
2551 * last page in the file, zero out any contents past the
2552 * last byte in the file
2553 */
2554 if (page->index >= end_index) {
2555 unsigned last_offset;
2556
2557 last_offset = inode->i_size & (PAGE_SIZE - 1);
2558 /* no file contents in this page */
2559 if (page->index >= end_index + 1 || !last_offset) {
2560 unlock_page(page);
2561 return 0;
2562 }
2563 zero_user_segment(page, last_offset, PAGE_SIZE);
2564 }
2565 bh = head;
2566 block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2567 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2568 /* first map all the buffers, logging any direct items we find */
2569 do {
2570 if (block > last_block) {
2571 /*
2572 * This can happen when the block size is less than
2573 * the page size. The corresponding bytes in the page
2574 * were zero filled above
2575 */
2576 clear_buffer_dirty(bh);
2577 set_buffer_uptodate(bh);
2578 } else if ((checked || buffer_dirty(bh)) &&
2579 (!buffer_mapped(bh) || bh->b_blocknr == 0)) {
2580 /*
2581 * not mapped yet, or it points to a direct item, search
2582 * the btree for the mapping info, and log any direct
2583 * items found
2584 */
2585 if ((error = map_block_for_writepage(inode, bh, block))) {
2586 goto fail;
2587 }
2588 }
2589 bh = bh->b_this_page;
2590 block++;
2591 } while (bh != head);
2592
2593 /*
2594 * we start the transaction after map_block_for_writepage,
2595 * because it can create holes in the file (an unbounded operation).
2596 * starting it here, we can make a reliable estimate for how many
2597 * blocks we're going to log
2598 */
2599 if (checked) {
2600 ClearPageChecked(page);
2601 reiserfs_write_lock(s);
2602 error = journal_begin(&th, s, bh_per_page + 1);
2603 if (error) {
2604 reiserfs_write_unlock(s);
2605 goto fail;
2606 }
2607 reiserfs_update_inode_transaction(inode);
2608 }
2609 /* now go through and lock any dirty buffers on the page */
2610 do {
2611 get_bh(bh);
2612 if (!buffer_mapped(bh))
2613 continue;
2614 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2615 continue;
2616
2617 if (checked) {
2618 reiserfs_prepare_for_journal(s, bh, 1);
2619 journal_mark_dirty(&th, bh);
2620 continue;
2621 }
2622 /*
2623 * from this point on, we know the buffer is mapped to a
2624 * real block and not a direct item
2625 */
2626 if (wbc->sync_mode != WB_SYNC_NONE) {
2627 lock_buffer(bh);
2628 } else {
2629 if (!trylock_buffer(bh)) {
2630 redirty_page_for_writepage(wbc, page);
2631 continue;
2632 }
2633 }
2634 if (test_clear_buffer_dirty(bh)) {
2635 mark_buffer_async_write(bh);
2636 } else {
2637 unlock_buffer(bh);
2638 }
2639 } while ((bh = bh->b_this_page) != head);
2640
2641 if (checked) {
2642 error = journal_end(&th);
2643 reiserfs_write_unlock(s);
2644 if (error)
2645 goto fail;
2646 }
2647 BUG_ON(PageWriteback(page));
2648 set_page_writeback(page);
2649 unlock_page(page);
2650
2651 /*
2652 * since any buffer might be the only dirty buffer on the page,
2653 * the first submit_bh can bring the page out of writeback.
2654 * be careful with the buffers.
2655 */
2656 do {
2657 struct buffer_head *next = bh->b_this_page;
2658 if (buffer_async_write(bh)) {
2659 submit_bh(REQ_OP_WRITE, bh);
2660 nr++;
2661 }
2662 put_bh(bh);
2663 bh = next;
2664 } while (bh != head);
2665
2666 error = 0;
2667 done:
2668 if (nr == 0) {
2669 /*
2670 * if this page only had a direct item, it is very possible for
2671 * no io to be required without there being an error. Or,
2672 * someone else could have locked them and sent them down the
2673 * pipe without locking the page
2674 */
2675 bh = head;
2676 do {
2677 if (!buffer_uptodate(bh)) {
2678 partial = 1;
2679 break;
2680 }
2681 bh = bh->b_this_page;
2682 } while (bh != head);
2683 if (!partial)
2684 SetPageUptodate(page);
2685 end_page_writeback(page);
2686 }
2687 return error;
2688
2689 fail:
2690 /*
2691 * catches various errors, we need to make sure any valid dirty blocks
2692 * get to the media. The page is currently locked and not marked for
2693 * writeback
2694 */
2695 ClearPageUptodate(page);
2696 bh = head;
2697 do {
2698 get_bh(bh);
2699 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2700 lock_buffer(bh);
2701 mark_buffer_async_write(bh);
2702 } else {
2703 /*
2704 * clear any dirty bits that might have come from
2705 * getting attached to a dirty page
2706 */
2707 clear_buffer_dirty(bh);
2708 }
2709 bh = bh->b_this_page;
2710 } while (bh != head);
2711 SetPageError(page);
2712 BUG_ON(PageWriteback(page));
2713 set_page_writeback(page);
2714 unlock_page(page);
2715 do {
2716 struct buffer_head *next = bh->b_this_page;
2717 if (buffer_async_write(bh)) {
2718 clear_buffer_dirty(bh);
2719 submit_bh(REQ_OP_WRITE, bh);
2720 nr++;
2721 }
2722 put_bh(bh);
2723 bh = next;
2724 } while (bh != head);
2725 goto done;
2726 }
2727
2728 static int reiserfs_read_folio(struct file *f, struct folio *folio)
2729 {
2730 return block_read_full_folio(folio, reiserfs_get_block);
2731 }
2732
2733 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2734 {
2735 struct inode *inode = page->mapping->host;
2736 reiserfs_wait_on_write_block(inode->i_sb);
2737 return reiserfs_write_full_page(page, wbc);
2738 }
2739
2740 static void reiserfs_truncate_failed_write(struct inode *inode)
2741 {
2742 truncate_inode_pages(inode->i_mapping, inode->i_size);
2743 reiserfs_truncate_file(inode, 0);
2744 }
2745
2746 static int reiserfs_write_begin(struct file *file,
2747 struct address_space *mapping,
2748 loff_t pos, unsigned len,
2749 struct page **pagep, void **fsdata)
2750 {
2751 struct inode *inode;
2752 struct page *page;
2753 pgoff_t index;
2754 int ret;
2755 int old_ref = 0;
2756
2757 inode = mapping->host;
2758 index = pos >> PAGE_SHIFT;
2759 page = grab_cache_page_write_begin(mapping, index);
2760 if (!page)
2761 return -ENOMEM;
2762 *pagep = page;
2763
2764 reiserfs_wait_on_write_block(inode->i_sb);
2765 fix_tail_page_for_writing(page);
2766 if (reiserfs_transaction_running(inode->i_sb)) {
2767 struct reiserfs_transaction_handle *th;
2768 th = (struct reiserfs_transaction_handle *)current->
2769 journal_info;
2770 BUG_ON(!th->t_refcount);
2771 BUG_ON(!th->t_trans_id);
2772 old_ref = th->t_refcount;
2773 th->t_refcount++;
2774 }
2775 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2776 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2777 struct reiserfs_transaction_handle *th = current->journal_info;
2778 /*
2779 * this gets a little ugly. If reiserfs_get_block returned an
2780 * error and left a transacstion running, we've got to close
2781 * it, and we've got to free handle if it was a persistent
2782 * transaction.
2783 *
2784 * But, if we had nested into an existing transaction, we need
2785 * to just drop the ref count on the handle.
2786 *
2787 * If old_ref == 0, the transaction is from reiserfs_get_block,
2788 * and it was a persistent trans. Otherwise, it was nested
2789 * above.
2790 */
2791 if (th->t_refcount > old_ref) {
2792 if (old_ref)
2793 th->t_refcount--;
2794 else {
2795 int err;
2796 reiserfs_write_lock(inode->i_sb);
2797 err = reiserfs_end_persistent_transaction(th);
2798 reiserfs_write_unlock(inode->i_sb);
2799 if (err)
2800 ret = err;
2801 }
2802 }
2803 }
2804 if (ret) {
2805 unlock_page(page);
2806 put_page(page);
2807 /* Truncate allocated blocks */
2808 reiserfs_truncate_failed_write(inode);
2809 }
2810 return ret;
2811 }
2812
2813 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2814 {
2815 struct inode *inode = page->mapping->host;
2816 int ret;
2817 int old_ref = 0;
2818 int depth;
2819
2820 depth = reiserfs_write_unlock_nested(inode->i_sb);
2821 reiserfs_wait_on_write_block(inode->i_sb);
2822 reiserfs_write_lock_nested(inode->i_sb, depth);
2823
2824 fix_tail_page_for_writing(page);
2825 if (reiserfs_transaction_running(inode->i_sb)) {
2826 struct reiserfs_transaction_handle *th;
2827 th = (struct reiserfs_transaction_handle *)current->
2828 journal_info;
2829 BUG_ON(!th->t_refcount);
2830 BUG_ON(!th->t_trans_id);
2831 old_ref = th->t_refcount;
2832 th->t_refcount++;
2833 }
2834
2835 ret = __block_write_begin(page, from, len, reiserfs_get_block);
2836 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2837 struct reiserfs_transaction_handle *th = current->journal_info;
2838 /*
2839 * this gets a little ugly. If reiserfs_get_block returned an
2840 * error and left a transacstion running, we've got to close
2841 * it, and we've got to free handle if it was a persistent
2842 * transaction.
2843 *
2844 * But, if we had nested into an existing transaction, we need
2845 * to just drop the ref count on the handle.
2846 *
2847 * If old_ref == 0, the transaction is from reiserfs_get_block,
2848 * and it was a persistent trans. Otherwise, it was nested
2849 * above.
2850 */
2851 if (th->t_refcount > old_ref) {
2852 if (old_ref)
2853 th->t_refcount--;
2854 else {
2855 int err;
2856 reiserfs_write_lock(inode->i_sb);
2857 err = reiserfs_end_persistent_transaction(th);
2858 reiserfs_write_unlock(inode->i_sb);
2859 if (err)
2860 ret = err;
2861 }
2862 }
2863 }
2864 return ret;
2865
2866 }
2867
2868 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2869 {
2870 return generic_block_bmap(as, block, reiserfs_bmap);
2871 }
2872
2873 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2874 loff_t pos, unsigned len, unsigned copied,
2875 struct page *page, void *fsdata)
2876 {
2877 struct inode *inode = page->mapping->host;
2878 int ret = 0;
2879 int update_sd = 0;
2880 struct reiserfs_transaction_handle *th;
2881 unsigned start;
2882 bool locked = false;
2883
2884 reiserfs_wait_on_write_block(inode->i_sb);
2885 if (reiserfs_transaction_running(inode->i_sb))
2886 th = current->journal_info;
2887 else
2888 th = NULL;
2889
2890 start = pos & (PAGE_SIZE - 1);
2891 if (unlikely(copied < len)) {
2892 if (!PageUptodate(page))
2893 copied = 0;
2894
2895 page_zero_new_buffers(page, start + copied, start + len);
2896 }
2897 flush_dcache_page(page);
2898
2899 reiserfs_commit_page(inode, page, start, start + copied);
2900
2901 /*
2902 * generic_commit_write does this for us, but does not update the
2903 * transaction tracking stuff when the size changes. So, we have
2904 * to do the i_size updates here.
2905 */
2906 if (pos + copied > inode->i_size) {
2907 struct reiserfs_transaction_handle myth;
2908 reiserfs_write_lock(inode->i_sb);
2909 locked = true;
2910 /*
2911 * If the file have grown beyond the border where it
2912 * can have a tail, unmark it as needing a tail
2913 * packing
2914 */
2915 if ((have_large_tails(inode->i_sb)
2916 && inode->i_size > i_block_size(inode) * 4)
2917 || (have_small_tails(inode->i_sb)
2918 && inode->i_size > i_block_size(inode)))
2919 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2920
2921 ret = journal_begin(&myth, inode->i_sb, 1);
2922 if (ret)
2923 goto journal_error;
2924
2925 reiserfs_update_inode_transaction(inode);
2926 inode->i_size = pos + copied;
2927 /*
2928 * this will just nest into our transaction. It's important
2929 * to use mark_inode_dirty so the inode gets pushed around on
2930 * the dirty lists, and so that O_SYNC works as expected
2931 */
2932 mark_inode_dirty(inode);
2933 reiserfs_update_sd(&myth, inode);
2934 update_sd = 1;
2935 ret = journal_end(&myth);
2936 if (ret)
2937 goto journal_error;
2938 }
2939 if (th) {
2940 if (!locked) {
2941 reiserfs_write_lock(inode->i_sb);
2942 locked = true;
2943 }
2944 if (!update_sd)
2945 mark_inode_dirty(inode);
2946 ret = reiserfs_end_persistent_transaction(th);
2947 if (ret)
2948 goto out;
2949 }
2950
2951 out:
2952 if (locked)
2953 reiserfs_write_unlock(inode->i_sb);
2954 unlock_page(page);
2955 put_page(page);
2956
2957 if (pos + len > inode->i_size)
2958 reiserfs_truncate_failed_write(inode);
2959
2960 return ret == 0 ? copied : ret;
2961
2962 journal_error:
2963 reiserfs_write_unlock(inode->i_sb);
2964 locked = false;
2965 if (th) {
2966 if (!update_sd)
2967 reiserfs_update_sd(th, inode);
2968 ret = reiserfs_end_persistent_transaction(th);
2969 }
2970 goto out;
2971 }
2972
2973 int reiserfs_commit_write(struct file *f, struct page *page,
2974 unsigned from, unsigned to)
2975 {
2976 struct inode *inode = page->mapping->host;
2977 loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2978 int ret = 0;
2979 int update_sd = 0;
2980 struct reiserfs_transaction_handle *th = NULL;
2981 int depth;
2982
2983 depth = reiserfs_write_unlock_nested(inode->i_sb);
2984 reiserfs_wait_on_write_block(inode->i_sb);
2985 reiserfs_write_lock_nested(inode->i_sb, depth);
2986
2987 if (reiserfs_transaction_running(inode->i_sb)) {
2988 th = current->journal_info;
2989 }
2990 reiserfs_commit_page(inode, page, from, to);
2991
2992 /*
2993 * generic_commit_write does this for us, but does not update the
2994 * transaction tracking stuff when the size changes. So, we have
2995 * to do the i_size updates here.
2996 */
2997 if (pos > inode->i_size) {
2998 struct reiserfs_transaction_handle myth;
2999 /*
3000 * If the file have grown beyond the border where it
3001 * can have a tail, unmark it as needing a tail
3002 * packing
3003 */
3004 if ((have_large_tails(inode->i_sb)
3005 && inode->i_size > i_block_size(inode) * 4)
3006 || (have_small_tails(inode->i_sb)
3007 && inode->i_size > i_block_size(inode)))
3008 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3009
3010 ret = journal_begin(&myth, inode->i_sb, 1);
3011 if (ret)
3012 goto journal_error;
3013
3014 reiserfs_update_inode_transaction(inode);
3015 inode->i_size = pos;
3016 /*
3017 * this will just nest into our transaction. It's important
3018 * to use mark_inode_dirty so the inode gets pushed around
3019 * on the dirty lists, and so that O_SYNC works as expected
3020 */
3021 mark_inode_dirty(inode);
3022 reiserfs_update_sd(&myth, inode);
3023 update_sd = 1;
3024 ret = journal_end(&myth);
3025 if (ret)
3026 goto journal_error;
3027 }
3028 if (th) {
3029 if (!update_sd)
3030 mark_inode_dirty(inode);
3031 ret = reiserfs_end_persistent_transaction(th);
3032 if (ret)
3033 goto out;
3034 }
3035
3036 out:
3037 return ret;
3038
3039 journal_error:
3040 if (th) {
3041 if (!update_sd)
3042 reiserfs_update_sd(th, inode);
3043 ret = reiserfs_end_persistent_transaction(th);
3044 }
3045
3046 return ret;
3047 }
3048
3049 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3050 {
3051 if (reiserfs_attrs(inode->i_sb)) {
3052 if (sd_attrs & REISERFS_SYNC_FL)
3053 inode->i_flags |= S_SYNC;
3054 else
3055 inode->i_flags &= ~S_SYNC;
3056 if (sd_attrs & REISERFS_IMMUTABLE_FL)
3057 inode->i_flags |= S_IMMUTABLE;
3058 else
3059 inode->i_flags &= ~S_IMMUTABLE;
3060 if (sd_attrs & REISERFS_APPEND_FL)
3061 inode->i_flags |= S_APPEND;
3062 else
3063 inode->i_flags &= ~S_APPEND;
3064 if (sd_attrs & REISERFS_NOATIME_FL)
3065 inode->i_flags |= S_NOATIME;
3066 else
3067 inode->i_flags &= ~S_NOATIME;
3068 if (sd_attrs & REISERFS_NOTAIL_FL)
3069 REISERFS_I(inode)->i_flags |= i_nopack_mask;
3070 else
3071 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3072 }
3073 }
3074
3075 /*
3076 * decide if this buffer needs to stay around for data logging or ordered
3077 * write purposes
3078 */
3079 static int invalidate_folio_can_drop(struct inode *inode, struct buffer_head *bh)
3080 {
3081 int ret = 1;
3082 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3083
3084 lock_buffer(bh);
3085 spin_lock(&j->j_dirty_buffers_lock);
3086 if (!buffer_mapped(bh)) {
3087 goto free_jh;
3088 }
3089 /*
3090 * the page is locked, and the only places that log a data buffer
3091 * also lock the page.
3092 */
3093 if (reiserfs_file_data_log(inode)) {
3094 /*
3095 * very conservative, leave the buffer pinned if
3096 * anyone might need it.
3097 */
3098 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3099 ret = 0;
3100 }
3101 } else if (buffer_dirty(bh)) {
3102 struct reiserfs_journal_list *jl;
3103 struct reiserfs_jh *jh = bh->b_private;
3104
3105 /*
3106 * why is this safe?
3107 * reiserfs_setattr updates i_size in the on disk
3108 * stat data before allowing vmtruncate to be called.
3109 *
3110 * If buffer was put onto the ordered list for this
3111 * transaction, we know for sure either this transaction
3112 * or an older one already has updated i_size on disk,
3113 * and this ordered data won't be referenced in the file
3114 * if we crash.
3115 *
3116 * if the buffer was put onto the ordered list for an older
3117 * transaction, we need to leave it around
3118 */
3119 if (jh && (jl = jh->jl)
3120 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3121 ret = 0;
3122 }
3123 free_jh:
3124 if (ret && bh->b_private) {
3125 reiserfs_free_jh(bh);
3126 }
3127 spin_unlock(&j->j_dirty_buffers_lock);
3128 unlock_buffer(bh);
3129 return ret;
3130 }
3131
3132 /* clm -- taken from fs/buffer.c:block_invalidate_folio */
3133 static void reiserfs_invalidate_folio(struct folio *folio, size_t offset,
3134 size_t length)
3135 {
3136 struct buffer_head *head, *bh, *next;
3137 struct inode *inode = folio->mapping->host;
3138 unsigned int curr_off = 0;
3139 unsigned int stop = offset + length;
3140 int partial_page = (offset || length < folio_size(folio));
3141 int ret = 1;
3142
3143 BUG_ON(!folio_test_locked(folio));
3144
3145 if (!partial_page)
3146 folio_clear_checked(folio);
3147
3148 head = folio_buffers(folio);
3149 if (!head)
3150 goto out;
3151
3152 bh = head;
3153 do {
3154 unsigned int next_off = curr_off + bh->b_size;
3155 next = bh->b_this_page;
3156
3157 if (next_off > stop)
3158 goto out;
3159
3160 /*
3161 * is this block fully invalidated?
3162 */
3163 if (offset <= curr_off) {
3164 if (invalidate_folio_can_drop(inode, bh))
3165 reiserfs_unmap_buffer(bh);
3166 else
3167 ret = 0;
3168 }
3169 curr_off = next_off;
3170 bh = next;
3171 } while (bh != head);
3172
3173 /*
3174 * We release buffers only if the entire page is being invalidated.
3175 * The get_block cached value has been unconditionally invalidated,
3176 * so real IO is not possible anymore.
3177 */
3178 if (!partial_page && ret) {
3179 ret = filemap_release_folio(folio, 0);
3180 /* maybe should BUG_ON(!ret); - neilb */
3181 }
3182 out:
3183 return;
3184 }
3185
3186 static bool reiserfs_dirty_folio(struct address_space *mapping,
3187 struct folio *folio)
3188 {
3189 if (reiserfs_file_data_log(mapping->host)) {
3190 folio_set_checked(folio);
3191 return filemap_dirty_folio(mapping, folio);
3192 }
3193 return block_dirty_folio(mapping, folio);
3194 }
3195
3196 /*
3197 * Returns true if the folio's buffers were dropped. The folio is locked.
3198 *
3199 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3200 * in the buffers at folio_buffers(folio).
3201 *
3202 * even in -o notail mode, we can't be sure an old mount without -o notail
3203 * didn't create files with tails.
3204 */
3205 static bool reiserfs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
3206 {
3207 struct inode *inode = folio->mapping->host;
3208 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3209 struct buffer_head *head;
3210 struct buffer_head *bh;
3211 bool ret = true;
3212
3213 WARN_ON(folio_test_checked(folio));
3214 spin_lock(&j->j_dirty_buffers_lock);
3215 head = folio_buffers(folio);
3216 bh = head;
3217 do {
3218 if (bh->b_private) {
3219 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3220 reiserfs_free_jh(bh);
3221 } else {
3222 ret = false;
3223 break;
3224 }
3225 }
3226 bh = bh->b_this_page;
3227 } while (bh != head);
3228 if (ret)
3229 ret = try_to_free_buffers(folio);
3230 spin_unlock(&j->j_dirty_buffers_lock);
3231 return ret;
3232 }
3233
3234 /*
3235 * We thank Mingming Cao for helping us understand in great detail what
3236 * to do in this section of the code.
3237 */
3238 static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3239 {
3240 struct file *file = iocb->ki_filp;
3241 struct inode *inode = file->f_mapping->host;
3242 size_t count = iov_iter_count(iter);
3243 ssize_t ret;
3244
3245 ret = blockdev_direct_IO(iocb, inode, iter,
3246 reiserfs_get_blocks_direct_io);
3247
3248 /*
3249 * In case of error extending write may have instantiated a few
3250 * blocks outside i_size. Trim these off again.
3251 */
3252 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3253 loff_t isize = i_size_read(inode);
3254 loff_t end = iocb->ki_pos + count;
3255
3256 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3257 truncate_setsize(inode, isize);
3258 reiserfs_vfs_truncate_file(inode);
3259 }
3260 }
3261
3262 return ret;
3263 }
3264
3265 int reiserfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3266 struct iattr *attr)
3267 {
3268 struct inode *inode = d_inode(dentry);
3269 unsigned int ia_valid;
3270 int error;
3271
3272 error = setattr_prepare(&init_user_ns, dentry, attr);
3273 if (error)
3274 return error;
3275
3276 /* must be turned off for recursive notify_change calls */
3277 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3278
3279 if (is_quota_modification(mnt_userns, inode, attr)) {
3280 error = dquot_initialize(inode);
3281 if (error)
3282 return error;
3283 }
3284 reiserfs_write_lock(inode->i_sb);
3285 if (attr->ia_valid & ATTR_SIZE) {
3286 /*
3287 * version 2 items will be caught by the s_maxbytes check
3288 * done for us in vmtruncate
3289 */
3290 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3291 attr->ia_size > MAX_NON_LFS) {
3292 reiserfs_write_unlock(inode->i_sb);
3293 error = -EFBIG;
3294 goto out;
3295 }
3296
3297 inode_dio_wait(inode);
3298
3299 /* fill in hole pointers in the expanding truncate case. */
3300 if (attr->ia_size > inode->i_size) {
3301 loff_t pos = attr->ia_size;
3302
3303 if ((pos & (inode->i_sb->s_blocksize - 1)) == 0)
3304 pos++;
3305 error = generic_cont_expand_simple(inode, pos);
3306 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3307 int err;
3308 struct reiserfs_transaction_handle th;
3309 /* we're changing at most 2 bitmaps, inode + super */
3310 err = journal_begin(&th, inode->i_sb, 4);
3311 if (!err) {
3312 reiserfs_discard_prealloc(&th, inode);
3313 err = journal_end(&th);
3314 }
3315 if (err)
3316 error = err;
3317 }
3318 if (error) {
3319 reiserfs_write_unlock(inode->i_sb);
3320 goto out;
3321 }
3322 /*
3323 * file size is changed, ctime and mtime are
3324 * to be updated
3325 */
3326 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3327 }
3328 }
3329 reiserfs_write_unlock(inode->i_sb);
3330
3331 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3332 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3333 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3334 /* stat data of format v3.5 has 16 bit uid and gid */
3335 error = -EINVAL;
3336 goto out;
3337 }
3338
3339 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3340 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3341 struct reiserfs_transaction_handle th;
3342 int jbegin_count =
3343 2 *
3344 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3345 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3346 2;
3347
3348 error = reiserfs_chown_xattrs(inode, attr);
3349
3350 if (error)
3351 return error;
3352
3353 /*
3354 * (user+group)*(old+new) structure - we count quota
3355 * info and , inode write (sb, inode)
3356 */
3357 reiserfs_write_lock(inode->i_sb);
3358 error = journal_begin(&th, inode->i_sb, jbegin_count);
3359 reiserfs_write_unlock(inode->i_sb);
3360 if (error)
3361 goto out;
3362 error = dquot_transfer(mnt_userns, inode, attr);
3363 reiserfs_write_lock(inode->i_sb);
3364 if (error) {
3365 journal_end(&th);
3366 reiserfs_write_unlock(inode->i_sb);
3367 goto out;
3368 }
3369
3370 /*
3371 * Update corresponding info in inode so that everything
3372 * is in one transaction
3373 */
3374 if (attr->ia_valid & ATTR_UID)
3375 inode->i_uid = attr->ia_uid;
3376 if (attr->ia_valid & ATTR_GID)
3377 inode->i_gid = attr->ia_gid;
3378 mark_inode_dirty(inode);
3379 error = journal_end(&th);
3380 reiserfs_write_unlock(inode->i_sb);
3381 if (error)
3382 goto out;
3383 }
3384
3385 if ((attr->ia_valid & ATTR_SIZE) &&
3386 attr->ia_size != i_size_read(inode)) {
3387 error = inode_newsize_ok(inode, attr->ia_size);
3388 if (!error) {
3389 /*
3390 * Could race against reiserfs_file_release
3391 * if called from NFS, so take tailpack mutex.
3392 */
3393 mutex_lock(&REISERFS_I(inode)->tailpack);
3394 truncate_setsize(inode, attr->ia_size);
3395 reiserfs_truncate_file(inode, 1);
3396 mutex_unlock(&REISERFS_I(inode)->tailpack);
3397 }
3398 }
3399
3400 if (!error) {
3401 setattr_copy(&init_user_ns, inode, attr);
3402 mark_inode_dirty(inode);
3403 }
3404
3405 if (!error && reiserfs_posixacl(inode->i_sb)) {
3406 if (attr->ia_valid & ATTR_MODE)
3407 error = reiserfs_acl_chmod(inode);
3408 }
3409
3410 out:
3411 return error;
3412 }
3413
3414 const struct address_space_operations reiserfs_address_space_operations = {
3415 .writepage = reiserfs_writepage,
3416 .read_folio = reiserfs_read_folio,
3417 .readahead = reiserfs_readahead,
3418 .release_folio = reiserfs_release_folio,
3419 .invalidate_folio = reiserfs_invalidate_folio,
3420 .write_begin = reiserfs_write_begin,
3421 .write_end = reiserfs_write_end,
3422 .bmap = reiserfs_aop_bmap,
3423 .direct_IO = reiserfs_direct_IO,
3424 .dirty_folio = reiserfs_dirty_folio,
3425 };