]> git.ipfire.org Git - people/ms/linux.git/blob - fs/reiserfs/reiserfs.h
fs: make helpers idmap mount aware
[people/ms/linux.git] / fs / reiserfs / reiserfs.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for
4 * licensing and copyright details
5 */
6
7 #include <linux/reiserfs_fs.h>
8
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/sched.h>
12 #include <linux/bug.h>
13 #include <linux/workqueue.h>
14 #include <asm/unaligned.h>
15 #include <linux/bitops.h>
16 #include <linux/proc_fs.h>
17 #include <linux/buffer_head.h>
18
19 /* the 32 bit compat definitions with int argument */
20 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int)
21 #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
22 #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
23 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION
24 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION
25
26 struct reiserfs_journal_list;
27
28 /* bitmasks for i_flags field in reiserfs-specific part of inode */
29 typedef enum {
30 /*
31 * this says what format of key do all items (but stat data) of
32 * an object have. If this is set, that format is 3.6 otherwise - 3.5
33 */
34 i_item_key_version_mask = 0x0001,
35
36 /*
37 * If this is unset, object has 3.5 stat data, otherwise,
38 * it has 3.6 stat data with 64bit size, 32bit nlink etc.
39 */
40 i_stat_data_version_mask = 0x0002,
41
42 /* file might need tail packing on close */
43 i_pack_on_close_mask = 0x0004,
44
45 /* don't pack tail of file */
46 i_nopack_mask = 0x0008,
47
48 /*
49 * If either of these are set, "safe link" was created for this
50 * file during truncate or unlink. Safe link is used to avoid
51 * leakage of disk space on crash with some files open, but unlinked.
52 */
53 i_link_saved_unlink_mask = 0x0010,
54 i_link_saved_truncate_mask = 0x0020,
55
56 i_has_xattr_dir = 0x0040,
57 i_data_log = 0x0080,
58 } reiserfs_inode_flags;
59
60 struct reiserfs_inode_info {
61 __u32 i_key[4]; /* key is still 4 32 bit integers */
62
63 /*
64 * transient inode flags that are never stored on disk. Bitmasks
65 * for this field are defined above.
66 */
67 __u32 i_flags;
68
69 /* offset of first byte stored in direct item. */
70 __u32 i_first_direct_byte;
71
72 /* copy of persistent inode flags read from sd_attrs. */
73 __u32 i_attrs;
74
75 /* first unused block of a sequence of unused blocks */
76 int i_prealloc_block;
77 int i_prealloc_count; /* length of that sequence */
78
79 /* per-transaction list of inodes which have preallocated blocks */
80 struct list_head i_prealloc_list;
81
82 /*
83 * new_packing_locality is created; new blocks for the contents
84 * of this directory should be displaced
85 */
86 unsigned new_packing_locality:1;
87
88 /*
89 * we use these for fsync or O_SYNC to decide which transaction
90 * needs to be committed in order for this inode to be properly
91 * flushed
92 */
93 unsigned int i_trans_id;
94
95 struct reiserfs_journal_list *i_jl;
96 atomic_t openers;
97 struct mutex tailpack;
98 #ifdef CONFIG_REISERFS_FS_XATTR
99 struct rw_semaphore i_xattr_sem;
100 #endif
101 #ifdef CONFIG_QUOTA
102 struct dquot *i_dquot[MAXQUOTAS];
103 #endif
104
105 struct inode vfs_inode;
106 };
107
108 typedef enum {
109 reiserfs_attrs_cleared = 0x00000001,
110 } reiserfs_super_block_flags;
111
112 /*
113 * struct reiserfs_super_block accessors/mutators since this is a disk
114 * structure, it will always be in little endian format.
115 */
116 #define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count))
117 #define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
118 #define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks))
119 #define set_sb_free_blocks(sbp,v) ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
120 #define sb_root_block(sbp) (le32_to_cpu((sbp)->s_v1.s_root_block))
121 #define set_sb_root_block(sbp,v) ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
122
123 #define sb_jp_journal_1st_block(sbp) \
124 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
125 #define set_sb_jp_journal_1st_block(sbp,v) \
126 ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
127 #define sb_jp_journal_dev(sbp) \
128 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
129 #define set_sb_jp_journal_dev(sbp,v) \
130 ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
131 #define sb_jp_journal_size(sbp) \
132 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
133 #define set_sb_jp_journal_size(sbp,v) \
134 ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
135 #define sb_jp_journal_trans_max(sbp) \
136 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
137 #define set_sb_jp_journal_trans_max(sbp,v) \
138 ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
139 #define sb_jp_journal_magic(sbp) \
140 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
141 #define set_sb_jp_journal_magic(sbp,v) \
142 ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
143 #define sb_jp_journal_max_batch(sbp) \
144 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
145 #define set_sb_jp_journal_max_batch(sbp,v) \
146 ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
147 #define sb_jp_jourmal_max_commit_age(sbp) \
148 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
149 #define set_sb_jp_journal_max_commit_age(sbp,v) \
150 ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
151
152 #define sb_blocksize(sbp) (le16_to_cpu((sbp)->s_v1.s_blocksize))
153 #define set_sb_blocksize(sbp,v) ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
154 #define sb_oid_maxsize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
155 #define set_sb_oid_maxsize(sbp,v) ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
156 #define sb_oid_cursize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
157 #define set_sb_oid_cursize(sbp,v) ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
158 #define sb_umount_state(sbp) (le16_to_cpu((sbp)->s_v1.s_umount_state))
159 #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
160 #define sb_fs_state(sbp) (le16_to_cpu((sbp)->s_v1.s_fs_state))
161 #define set_sb_fs_state(sbp,v) ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
162 #define sb_hash_function_code(sbp) \
163 (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
164 #define set_sb_hash_function_code(sbp,v) \
165 ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
166 #define sb_tree_height(sbp) (le16_to_cpu((sbp)->s_v1.s_tree_height))
167 #define set_sb_tree_height(sbp,v) ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
168 #define sb_bmap_nr(sbp) (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
169 #define set_sb_bmap_nr(sbp,v) ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
170 #define sb_version(sbp) (le16_to_cpu((sbp)->s_v1.s_version))
171 #define set_sb_version(sbp,v) ((sbp)->s_v1.s_version = cpu_to_le16(v))
172
173 #define sb_mnt_count(sbp) (le16_to_cpu((sbp)->s_mnt_count))
174 #define set_sb_mnt_count(sbp, v) ((sbp)->s_mnt_count = cpu_to_le16(v))
175
176 #define sb_reserved_for_journal(sbp) \
177 (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
178 #define set_sb_reserved_for_journal(sbp,v) \
179 ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
180
181 /* LOGGING -- */
182
183 /*
184 * These all interelate for performance.
185 *
186 * If the journal block count is smaller than n transactions, you lose speed.
187 * I don't know what n is yet, I'm guessing 8-16.
188 *
189 * typical transaction size depends on the application, how often fsync is
190 * called, and how many metadata blocks you dirty in a 30 second period.
191 * The more small files (<16k) you use, the larger your transactions will
192 * be.
193 *
194 * If your journal fills faster than dirty buffers get flushed to disk, it
195 * must flush them before allowing the journal to wrap, which slows things
196 * down. If you need high speed meta data updates, the journal should be
197 * big enough to prevent wrapping before dirty meta blocks get to disk.
198 *
199 * If the batch max is smaller than the transaction max, you'll waste space
200 * at the end of the journal because journal_end sets the next transaction
201 * to start at 0 if the next transaction has any chance of wrapping.
202 *
203 * The large the batch max age, the better the speed, and the more meta
204 * data changes you'll lose after a crash.
205 */
206
207 /* don't mess with these for a while */
208 /* we have a node size define somewhere in reiserfs_fs.h. -Hans */
209 #define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */
210 #define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */
211 #define JOURNAL_HASH_SIZE 8192
212
213 /* number of copies of the bitmaps to have floating. Must be >= 2 */
214 #define JOURNAL_NUM_BITMAPS 5
215
216 /*
217 * One of these for every block in every transaction
218 * Each one is in two hash tables. First, a hash of the current transaction,
219 * and after journal_end, a hash of all the in memory transactions.
220 * next and prev are used by the current transaction (journal_hash).
221 * hnext and hprev are used by journal_list_hash. If a block is in more
222 * than one transaction, the journal_list_hash links it in multiple times.
223 * This allows flush_journal_list to remove just the cnode belonging to a
224 * given transaction.
225 */
226 struct reiserfs_journal_cnode {
227 struct buffer_head *bh; /* real buffer head */
228 struct super_block *sb; /* dev of real buffer head */
229
230 /* block number of real buffer head, == 0 when buffer on disk */
231 __u32 blocknr;
232
233 unsigned long state;
234
235 /* journal list this cnode lives in */
236 struct reiserfs_journal_list *jlist;
237
238 struct reiserfs_journal_cnode *next; /* next in transaction list */
239 struct reiserfs_journal_cnode *prev; /* prev in transaction list */
240 struct reiserfs_journal_cnode *hprev; /* prev in hash list */
241 struct reiserfs_journal_cnode *hnext; /* next in hash list */
242 };
243
244 struct reiserfs_bitmap_node {
245 int id;
246 char *data;
247 struct list_head list;
248 };
249
250 struct reiserfs_list_bitmap {
251 struct reiserfs_journal_list *journal_list;
252 struct reiserfs_bitmap_node **bitmaps;
253 };
254
255 /*
256 * one of these for each transaction. The most important part here is the
257 * j_realblock. this list of cnodes is used to hash all the blocks in all
258 * the commits, to mark all the real buffer heads dirty once all the commits
259 * hit the disk, and to make sure every real block in a transaction is on
260 * disk before allowing the log area to be overwritten
261 */
262 struct reiserfs_journal_list {
263 unsigned long j_start;
264 unsigned long j_state;
265 unsigned long j_len;
266 atomic_t j_nonzerolen;
267 atomic_t j_commit_left;
268
269 /* all commits older than this on disk */
270 atomic_t j_older_commits_done;
271
272 struct mutex j_commit_mutex;
273 unsigned int j_trans_id;
274 time64_t j_timestamp; /* write-only but useful for crash dump analysis */
275 struct reiserfs_list_bitmap *j_list_bitmap;
276 struct buffer_head *j_commit_bh; /* commit buffer head */
277 struct reiserfs_journal_cnode *j_realblock;
278 struct reiserfs_journal_cnode *j_freedlist; /* list of buffers that were freed during this trans. free each of these on flush */
279 /* time ordered list of all active transactions */
280 struct list_head j_list;
281
282 /*
283 * time ordered list of all transactions we haven't tried
284 * to flush yet
285 */
286 struct list_head j_working_list;
287
288 /* list of tail conversion targets in need of flush before commit */
289 struct list_head j_tail_bh_list;
290
291 /* list of data=ordered buffers in need of flush before commit */
292 struct list_head j_bh_list;
293 int j_refcount;
294 };
295
296 struct reiserfs_journal {
297 struct buffer_head **j_ap_blocks; /* journal blocks on disk */
298 /* newest journal block */
299 struct reiserfs_journal_cnode *j_last;
300
301 /* oldest journal block. start here for traverse */
302 struct reiserfs_journal_cnode *j_first;
303
304 struct block_device *j_dev_bd;
305 fmode_t j_dev_mode;
306
307 /* first block on s_dev of reserved area journal */
308 int j_1st_reserved_block;
309
310 unsigned long j_state;
311 unsigned int j_trans_id;
312 unsigned long j_mount_id;
313
314 /* start of current waiting commit (index into j_ap_blocks) */
315 unsigned long j_start;
316 unsigned long j_len; /* length of current waiting commit */
317
318 /* number of buffers requested by journal_begin() */
319 unsigned long j_len_alloc;
320
321 atomic_t j_wcount; /* count of writers for current commit */
322
323 /* batch count. allows turning X transactions into 1 */
324 unsigned long j_bcount;
325
326 /* first unflushed transactions offset */
327 unsigned long j_first_unflushed_offset;
328
329 /* last fully flushed journal timestamp */
330 unsigned j_last_flush_trans_id;
331
332 struct buffer_head *j_header_bh;
333
334 time64_t j_trans_start_time; /* time this transaction started */
335 struct mutex j_mutex;
336 struct mutex j_flush_mutex;
337
338 /* wait for current transaction to finish before starting new one */
339 wait_queue_head_t j_join_wait;
340
341 atomic_t j_jlock; /* lock for j_join_wait */
342 int j_list_bitmap_index; /* number of next list bitmap to use */
343
344 /* no more journal begins allowed. MUST sleep on j_join_wait */
345 int j_must_wait;
346
347 /* next journal_end will flush all journal list */
348 int j_next_full_flush;
349
350 /* next journal_end will flush all async commits */
351 int j_next_async_flush;
352
353 int j_cnode_used; /* number of cnodes on the used list */
354 int j_cnode_free; /* number of cnodes on the free list */
355
356 /* max number of blocks in a transaction. */
357 unsigned int j_trans_max;
358
359 /* max number of blocks to batch into a trans */
360 unsigned int j_max_batch;
361
362 /* in seconds, how old can an async commit be */
363 unsigned int j_max_commit_age;
364
365 /* in seconds, how old can a transaction be */
366 unsigned int j_max_trans_age;
367
368 /* the default for the max commit age */
369 unsigned int j_default_max_commit_age;
370
371 struct reiserfs_journal_cnode *j_cnode_free_list;
372
373 /* orig pointer returned from vmalloc */
374 struct reiserfs_journal_cnode *j_cnode_free_orig;
375
376 struct reiserfs_journal_list *j_current_jl;
377 int j_free_bitmap_nodes;
378 int j_used_bitmap_nodes;
379
380 int j_num_lists; /* total number of active transactions */
381 int j_num_work_lists; /* number that need attention from kreiserfsd */
382
383 /* debugging to make sure things are flushed in order */
384 unsigned int j_last_flush_id;
385
386 /* debugging to make sure things are committed in order */
387 unsigned int j_last_commit_id;
388
389 struct list_head j_bitmap_nodes;
390 struct list_head j_dirty_buffers;
391 spinlock_t j_dirty_buffers_lock; /* protects j_dirty_buffers */
392
393 /* list of all active transactions */
394 struct list_head j_journal_list;
395
396 /* lists that haven't been touched by writeback attempts */
397 struct list_head j_working_list;
398
399 /* hash table for real buffer heads in current trans */
400 struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE];
401
402 /* hash table for all the real buffer heads in all the transactions */
403 struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE];
404
405 /* array of bitmaps to record the deleted blocks */
406 struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS];
407
408 /* list of inodes which have preallocated blocks */
409 struct list_head j_prealloc_list;
410 int j_persistent_trans;
411 unsigned long j_max_trans_size;
412 unsigned long j_max_batch_size;
413
414 int j_errno;
415
416 /* when flushing ordered buffers, throttle new ordered writers */
417 struct delayed_work j_work;
418 struct super_block *j_work_sb;
419 atomic_t j_async_throttle;
420 };
421
422 enum journal_state_bits {
423 J_WRITERS_BLOCKED = 1, /* set when new writers not allowed */
424 J_WRITERS_QUEUED, /* set when log is full due to too many writers */
425 J_ABORTED, /* set when log is aborted */
426 };
427
428 /* ick. magic string to find desc blocks in the journal */
429 #define JOURNAL_DESC_MAGIC "ReIsErLB"
430
431 typedef __u32(*hashf_t) (const signed char *, int);
432
433 struct reiserfs_bitmap_info {
434 __u32 free_count;
435 };
436
437 struct proc_dir_entry;
438
439 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
440 typedef unsigned long int stat_cnt_t;
441 typedef struct reiserfs_proc_info_data {
442 spinlock_t lock;
443 int exiting;
444 int max_hash_collisions;
445
446 stat_cnt_t breads;
447 stat_cnt_t bread_miss;
448 stat_cnt_t search_by_key;
449 stat_cnt_t search_by_key_fs_changed;
450 stat_cnt_t search_by_key_restarted;
451
452 stat_cnt_t insert_item_restarted;
453 stat_cnt_t paste_into_item_restarted;
454 stat_cnt_t cut_from_item_restarted;
455 stat_cnt_t delete_solid_item_restarted;
456 stat_cnt_t delete_item_restarted;
457
458 stat_cnt_t leaked_oid;
459 stat_cnt_t leaves_removable;
460
461 /*
462 * balances per level.
463 * Use explicit 5 as MAX_HEIGHT is not visible yet.
464 */
465 stat_cnt_t balance_at[5]; /* XXX */
466 /* sbk == search_by_key */
467 stat_cnt_t sbk_read_at[5]; /* XXX */
468 stat_cnt_t sbk_fs_changed[5];
469 stat_cnt_t sbk_restarted[5];
470 stat_cnt_t items_at[5]; /* XXX */
471 stat_cnt_t free_at[5]; /* XXX */
472 stat_cnt_t can_node_be_removed[5]; /* XXX */
473 long int lnum[5]; /* XXX */
474 long int rnum[5]; /* XXX */
475 long int lbytes[5]; /* XXX */
476 long int rbytes[5]; /* XXX */
477 stat_cnt_t get_neighbors[5];
478 stat_cnt_t get_neighbors_restart[5];
479 stat_cnt_t need_l_neighbor[5];
480 stat_cnt_t need_r_neighbor[5];
481
482 stat_cnt_t free_block;
483 struct __scan_bitmap_stats {
484 stat_cnt_t call;
485 stat_cnt_t wait;
486 stat_cnt_t bmap;
487 stat_cnt_t retry;
488 stat_cnt_t in_journal_hint;
489 stat_cnt_t in_journal_nohint;
490 stat_cnt_t stolen;
491 } scan_bitmap;
492 struct __journal_stats {
493 stat_cnt_t in_journal;
494 stat_cnt_t in_journal_bitmap;
495 stat_cnt_t in_journal_reusable;
496 stat_cnt_t lock_journal;
497 stat_cnt_t lock_journal_wait;
498 stat_cnt_t journal_being;
499 stat_cnt_t journal_relock_writers;
500 stat_cnt_t journal_relock_wcount;
501 stat_cnt_t mark_dirty;
502 stat_cnt_t mark_dirty_already;
503 stat_cnt_t mark_dirty_notjournal;
504 stat_cnt_t restore_prepared;
505 stat_cnt_t prepare;
506 stat_cnt_t prepare_retry;
507 } journal;
508 } reiserfs_proc_info_data_t;
509 #else
510 typedef struct reiserfs_proc_info_data {
511 } reiserfs_proc_info_data_t;
512 #endif
513
514 /* Number of quota types we support */
515 #define REISERFS_MAXQUOTAS 2
516
517 /* reiserfs union of in-core super block data */
518 struct reiserfs_sb_info {
519 /* Buffer containing the super block */
520 struct buffer_head *s_sbh;
521
522 /* Pointer to the on-disk super block in the buffer */
523 struct reiserfs_super_block *s_rs;
524 struct reiserfs_bitmap_info *s_ap_bitmap;
525
526 /* pointer to journal information */
527 struct reiserfs_journal *s_journal;
528
529 unsigned short s_mount_state; /* reiserfs state (valid, invalid) */
530
531 /* Serialize writers access, replace the old bkl */
532 struct mutex lock;
533
534 /* Owner of the lock (can be recursive) */
535 struct task_struct *lock_owner;
536
537 /* Depth of the lock, start from -1 like the bkl */
538 int lock_depth;
539
540 struct workqueue_struct *commit_wq;
541
542 /* Comment? -Hans */
543 void (*end_io_handler) (struct buffer_head *, int);
544
545 /*
546 * pointer to function which is used to sort names in directory.
547 * Set on mount
548 */
549 hashf_t s_hash_function;
550
551 /* reiserfs's mount options are set here */
552 unsigned long s_mount_opt;
553
554 /* This is a structure that describes block allocator options */
555 struct {
556 /* Bitfield for enable/disable kind of options */
557 unsigned long bits;
558
559 /*
560 * size started from which we consider file
561 * to be a large one (in blocks)
562 */
563 unsigned long large_file_size;
564
565 int border; /* percentage of disk, border takes */
566
567 /*
568 * Minimal file size (in blocks) starting
569 * from which we do preallocations
570 */
571 int preallocmin;
572
573 /*
574 * Number of blocks we try to prealloc when file
575 * reaches preallocmin size (in blocks) or prealloc_list
576 is empty.
577 */
578 int preallocsize;
579 } s_alloc_options;
580
581 /* Comment? -Hans */
582 wait_queue_head_t s_wait;
583 /* increased by one every time the tree gets re-balanced */
584 atomic_t s_generation_counter;
585
586 /* File system properties. Currently holds on-disk FS format */
587 unsigned long s_properties;
588
589 /* session statistics */
590 int s_disk_reads;
591 int s_disk_writes;
592 int s_fix_nodes;
593 int s_do_balance;
594 int s_unneeded_left_neighbor;
595 int s_good_search_by_key_reada;
596 int s_bmaps;
597 int s_bmaps_without_search;
598 int s_direct2indirect;
599 int s_indirect2direct;
600
601 /*
602 * set up when it's ok for reiserfs_read_inode2() to read from
603 * disk inode with nlink==0. Currently this is only used during
604 * finish_unfinished() processing at mount time
605 */
606 int s_is_unlinked_ok;
607
608 reiserfs_proc_info_data_t s_proc_info_data;
609 struct proc_dir_entry *procdir;
610
611 /* amount of blocks reserved for further allocations */
612 int reserved_blocks;
613
614
615 /* this lock on now only used to protect reserved_blocks variable */
616 spinlock_t bitmap_lock;
617 struct dentry *priv_root; /* root of /.reiserfs_priv */
618 struct dentry *xattr_root; /* root of /.reiserfs_priv/xattrs */
619 int j_errno;
620
621 int work_queued; /* non-zero delayed work is queued */
622 struct delayed_work old_work; /* old transactions flush delayed work */
623 spinlock_t old_work_lock; /* protects old_work and work_queued */
624
625 #ifdef CONFIG_QUOTA
626 char *s_qf_names[REISERFS_MAXQUOTAS];
627 int s_jquota_fmt;
628 #endif
629 char *s_jdev; /* Stored jdev for mount option showing */
630 #ifdef CONFIG_REISERFS_CHECK
631
632 /*
633 * Detects whether more than one copy of tb exists per superblock
634 * as a means of checking whether do_balance is executing
635 * concurrently against another tree reader/writer on a same
636 * mount point.
637 */
638 struct tree_balance *cur_tb;
639 #endif
640 };
641
642 /* Definitions of reiserfs on-disk properties: */
643 #define REISERFS_3_5 0
644 #define REISERFS_3_6 1
645 #define REISERFS_OLD_FORMAT 2
646
647 /* Mount options */
648 enum reiserfs_mount_options {
649 /* large tails will be created in a session */
650 REISERFS_LARGETAIL,
651 /*
652 * small (for files less than block size) tails will
653 * be created in a session
654 */
655 REISERFS_SMALLTAIL,
656
657 /* replay journal and return 0. Use by fsck */
658 REPLAYONLY,
659
660 /*
661 * -o conv: causes conversion of old format super block to the
662 * new format. If not specified - old partition will be dealt
663 * with in a manner of 3.5.x
664 */
665 REISERFS_CONVERT,
666
667 /*
668 * -o hash={tea, rupasov, r5, detect} is meant for properly mounting
669 * reiserfs disks from 3.5.19 or earlier. 99% of the time, this
670 * option is not required. If the normal autodection code can't
671 * determine which hash to use (because both hashes had the same
672 * value for a file) use this option to force a specific hash.
673 * It won't allow you to override the existing hash on the FS, so
674 * if you have a tea hash disk, and mount with -o hash=rupasov,
675 * the mount will fail.
676 */
677 FORCE_TEA_HASH, /* try to force tea hash on mount */
678 FORCE_RUPASOV_HASH, /* try to force rupasov hash on mount */
679 FORCE_R5_HASH, /* try to force rupasov hash on mount */
680 FORCE_HASH_DETECT, /* try to detect hash function on mount */
681
682 REISERFS_DATA_LOG,
683 REISERFS_DATA_ORDERED,
684 REISERFS_DATA_WRITEBACK,
685
686 /*
687 * used for testing experimental features, makes benchmarking new
688 * features with and without more convenient, should never be used by
689 * users in any code shipped to users (ideally)
690 */
691
692 REISERFS_NO_BORDER,
693 REISERFS_NO_UNHASHED_RELOCATION,
694 REISERFS_HASHED_RELOCATION,
695 REISERFS_ATTRS,
696 REISERFS_XATTRS_USER,
697 REISERFS_POSIXACL,
698 REISERFS_EXPOSE_PRIVROOT,
699 REISERFS_BARRIER_NONE,
700 REISERFS_BARRIER_FLUSH,
701
702 /* Actions on error */
703 REISERFS_ERROR_PANIC,
704 REISERFS_ERROR_RO,
705 REISERFS_ERROR_CONTINUE,
706
707 REISERFS_USRQUOTA, /* User quota option specified */
708 REISERFS_GRPQUOTA, /* Group quota option specified */
709
710 REISERFS_TEST1,
711 REISERFS_TEST2,
712 REISERFS_TEST3,
713 REISERFS_TEST4,
714 REISERFS_UNSUPPORTED_OPT,
715 };
716
717 #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
718 #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
719 #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
720 #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
721 #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
722 #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
723 #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
724 #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
725
726 #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
727 #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
728 #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
729 #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
730 #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
731 #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
732 #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
733 #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
734 #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
735 #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
736 #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
737 #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
738 #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
739 #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
740 #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
741
742 #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
743 #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
744
745 void reiserfs_file_buffer(struct buffer_head *bh, int list);
746 extern struct file_system_type reiserfs_fs_type;
747 int reiserfs_resize(struct super_block *, unsigned long);
748
749 #define CARRY_ON 0
750 #define SCHEDULE_OCCURRED 1
751
752 #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
753 #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
754 #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
755 #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
756 #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
757
758 #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
759
760 #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
761 static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
762 *journal)
763 {
764 return test_bit(J_ABORTED, &journal->j_state);
765 }
766
767 /*
768 * Locking primitives. The write lock is a per superblock
769 * special mutex that has properties close to the Big Kernel Lock
770 * which was used in the previous locking scheme.
771 */
772 void reiserfs_write_lock(struct super_block *s);
773 void reiserfs_write_unlock(struct super_block *s);
774 int __must_check reiserfs_write_unlock_nested(struct super_block *s);
775 void reiserfs_write_lock_nested(struct super_block *s, int depth);
776
777 #ifdef CONFIG_REISERFS_CHECK
778 void reiserfs_lock_check_recursive(struct super_block *s);
779 #else
780 static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
781 #endif
782
783 /*
784 * Several mutexes depend on the write lock.
785 * However sometimes we want to relax the write lock while we hold
786 * these mutexes, according to the release/reacquire on schedule()
787 * properties of the Bkl that were used.
788 * Reiserfs performances and locking were based on this scheme.
789 * Now that the write lock is a mutex and not the bkl anymore, doing so
790 * may result in a deadlock:
791 *
792 * A acquire write_lock
793 * A acquire j_commit_mutex
794 * A release write_lock and wait for something
795 * B acquire write_lock
796 * B can't acquire j_commit_mutex and sleep
797 * A can't acquire write lock anymore
798 * deadlock
799 *
800 * What we do here is avoiding such deadlock by playing the same game
801 * than the Bkl: if we can't acquire a mutex that depends on the write lock,
802 * we release the write lock, wait a bit and then retry.
803 *
804 * The mutexes concerned by this hack are:
805 * - The commit mutex of a journal list
806 * - The flush mutex
807 * - The journal lock
808 * - The inode mutex
809 */
810 static inline void reiserfs_mutex_lock_safe(struct mutex *m,
811 struct super_block *s)
812 {
813 int depth;
814
815 depth = reiserfs_write_unlock_nested(s);
816 mutex_lock(m);
817 reiserfs_write_lock_nested(s, depth);
818 }
819
820 static inline void
821 reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
822 struct super_block *s)
823 {
824 int depth;
825
826 depth = reiserfs_write_unlock_nested(s);
827 mutex_lock_nested(m, subclass);
828 reiserfs_write_lock_nested(s, depth);
829 }
830
831 static inline void
832 reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
833 {
834 int depth;
835 depth = reiserfs_write_unlock_nested(s);
836 down_read(sem);
837 reiserfs_write_lock_nested(s, depth);
838 }
839
840 /*
841 * When we schedule, we usually want to also release the write lock,
842 * according to the previous bkl based locking scheme of reiserfs.
843 */
844 static inline void reiserfs_cond_resched(struct super_block *s)
845 {
846 if (need_resched()) {
847 int depth;
848
849 depth = reiserfs_write_unlock_nested(s);
850 schedule();
851 reiserfs_write_lock_nested(s, depth);
852 }
853 }
854
855 struct fid;
856
857 /*
858 * in reading the #defines, it may help to understand that they employ
859 * the following abbreviations:
860 *
861 * B = Buffer
862 * I = Item header
863 * H = Height within the tree (should be changed to LEV)
864 * N = Number of the item in the node
865 * STAT = stat data
866 * DEH = Directory Entry Header
867 * EC = Entry Count
868 * E = Entry number
869 * UL = Unsigned Long
870 * BLKH = BLocK Header
871 * UNFM = UNForMatted node
872 * DC = Disk Child
873 * P = Path
874 *
875 * These #defines are named by concatenating these abbreviations,
876 * where first comes the arguments, and last comes the return value,
877 * of the macro.
878 */
879
880 #define USE_INODE_GENERATION_COUNTER
881
882 #define REISERFS_PREALLOCATE
883 #define DISPLACE_NEW_PACKING_LOCALITIES
884 #define PREALLOCATION_SIZE 9
885
886 /* n must be power of 2 */
887 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
888
889 /*
890 * to be ok for alpha and others we have to align structures to 8 byte
891 * boundary.
892 * FIXME: do not change 4 by anything else: there is code which relies on that
893 */
894 #define ROUND_UP(x) _ROUND_UP(x,8LL)
895
896 /*
897 * debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
898 * messages.
899 */
900 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
901
902 void __reiserfs_warning(struct super_block *s, const char *id,
903 const char *func, const char *fmt, ...);
904 #define reiserfs_warning(s, id, fmt, args...) \
905 __reiserfs_warning(s, id, __func__, fmt, ##args)
906 /* assertions handling */
907
908 /* always check a condition and panic if it's false. */
909 #define __RASSERT(cond, scond, format, args...) \
910 do { \
911 if (!(cond)) \
912 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
913 __FILE__ ":%i:%s: " format "\n", \
914 __LINE__, __func__ , ##args); \
915 } while (0)
916
917 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
918
919 #if defined( CONFIG_REISERFS_CHECK )
920 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
921 #else
922 #define RFALSE( cond, format, args... ) do {;} while( 0 )
923 #endif
924
925 #define CONSTF __attribute_const__
926 /*
927 * Disk Data Structures
928 */
929
930 /***************************************************************************
931 * SUPER BLOCK *
932 ***************************************************************************/
933
934 /*
935 * Structure of super block on disk, a version of which in RAM is often
936 * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger
937 * structure containing fields never written to disk.
938 */
939 #define UNSET_HASH 0 /* Detect hash on disk */
940 #define TEA_HASH 1
941 #define YURA_HASH 2
942 #define R5_HASH 3
943 #define DEFAULT_HASH R5_HASH
944
945 struct journal_params {
946 /* where does journal start from on its * device */
947 __le32 jp_journal_1st_block;
948
949 /* journal device st_rdev */
950 __le32 jp_journal_dev;
951
952 /* size of the journal */
953 __le32 jp_journal_size;
954
955 /* max number of blocks in a transaction. */
956 __le32 jp_journal_trans_max;
957
958 /*
959 * random value made on fs creation
960 * (this was sb_journal_block_count)
961 */
962 __le32 jp_journal_magic;
963
964 /* max number of blocks to batch into a trans */
965 __le32 jp_journal_max_batch;
966
967 /* in seconds, how old can an async commit be */
968 __le32 jp_journal_max_commit_age;
969
970 /* in seconds, how old can a transaction be */
971 __le32 jp_journal_max_trans_age;
972 };
973
974 /* this is the super from 3.5.X, where X >= 10 */
975 struct reiserfs_super_block_v1 {
976 __le32 s_block_count; /* blocks count */
977 __le32 s_free_blocks; /* free blocks count */
978 __le32 s_root_block; /* root block number */
979 struct journal_params s_journal;
980 __le16 s_blocksize; /* block size */
981
982 /* max size of object id array, see get_objectid() commentary */
983 __le16 s_oid_maxsize;
984 __le16 s_oid_cursize; /* current size of object id array */
985
986 /* this is set to 1 when filesystem was umounted, to 2 - when not */
987 __le16 s_umount_state;
988
989 /*
990 * reiserfs magic string indicates that file system is reiserfs:
991 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs"
992 */
993 char s_magic[10];
994
995 /*
996 * it is set to used by fsck to mark which
997 * phase of rebuilding is done
998 */
999 __le16 s_fs_state;
1000 /*
1001 * indicate, what hash function is being use
1002 * to sort names in a directory
1003 */
1004 __le32 s_hash_function_code;
1005 __le16 s_tree_height; /* height of disk tree */
1006
1007 /*
1008 * amount of bitmap blocks needed to address
1009 * each block of file system
1010 */
1011 __le16 s_bmap_nr;
1012
1013 /*
1014 * this field is only reliable on filesystem with non-standard journal
1015 */
1016 __le16 s_version;
1017
1018 /*
1019 * size in blocks of journal area on main device, we need to
1020 * keep after making fs with non-standard journal
1021 */
1022 __le16 s_reserved_for_journal;
1023 } __attribute__ ((__packed__));
1024
1025 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
1026
1027 /* this is the on disk super block */
1028 struct reiserfs_super_block {
1029 struct reiserfs_super_block_v1 s_v1;
1030 __le32 s_inode_generation;
1031
1032 /* Right now used only by inode-attributes, if enabled */
1033 __le32 s_flags;
1034
1035 unsigned char s_uuid[16]; /* filesystem unique identifier */
1036 unsigned char s_label[16]; /* filesystem volume label */
1037 __le16 s_mnt_count; /* Count of mounts since last fsck */
1038 __le16 s_max_mnt_count; /* Maximum mounts before check */
1039 __le32 s_lastcheck; /* Timestamp of last fsck */
1040 __le32 s_check_interval; /* Interval between checks */
1041
1042 /*
1043 * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1()
1044 * so any additions must be updated there as well. */
1045 char s_unused[76];
1046 } __attribute__ ((__packed__));
1047
1048 #define SB_SIZE (sizeof(struct reiserfs_super_block))
1049
1050 #define REISERFS_VERSION_1 0
1051 #define REISERFS_VERSION_2 2
1052
1053 /* on-disk super block fields converted to cpu form */
1054 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
1055 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
1056 #define SB_BLOCKSIZE(s) \
1057 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
1058 #define SB_BLOCK_COUNT(s) \
1059 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
1060 #define SB_FREE_BLOCKS(s) \
1061 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
1062 #define SB_REISERFS_MAGIC(s) \
1063 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
1064 #define SB_ROOT_BLOCK(s) \
1065 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
1066 #define SB_TREE_HEIGHT(s) \
1067 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
1068 #define SB_REISERFS_STATE(s) \
1069 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
1070 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
1071 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
1072
1073 #define PUT_SB_BLOCK_COUNT(s, val) \
1074 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
1075 #define PUT_SB_FREE_BLOCKS(s, val) \
1076 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
1077 #define PUT_SB_ROOT_BLOCK(s, val) \
1078 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
1079 #define PUT_SB_TREE_HEIGHT(s, val) \
1080 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
1081 #define PUT_SB_REISERFS_STATE(s, val) \
1082 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
1083 #define PUT_SB_VERSION(s, val) \
1084 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
1085 #define PUT_SB_BMAP_NR(s, val) \
1086 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
1087
1088 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
1089 #define SB_ONDISK_JOURNAL_SIZE(s) \
1090 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
1091 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
1092 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
1093 #define SB_ONDISK_JOURNAL_DEVICE(s) \
1094 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
1095 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
1096 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
1097
1098 #define is_block_in_log_or_reserved_area(s, block) \
1099 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
1100 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
1101 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
1102 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
1103
1104 int is_reiserfs_3_5(struct reiserfs_super_block *rs);
1105 int is_reiserfs_3_6(struct reiserfs_super_block *rs);
1106 int is_reiserfs_jr(struct reiserfs_super_block *rs);
1107
1108 /*
1109 * ReiserFS leaves the first 64k unused, so that partition labels have
1110 * enough space. If someone wants to write a fancy bootloader that
1111 * needs more than 64k, let us know, and this will be increased in size.
1112 * This number must be larger than the largest block size on any
1113 * platform, or code will break. -Hans
1114 */
1115 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
1116 #define REISERFS_FIRST_BLOCK unused_define
1117 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
1118
1119 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
1120 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
1121
1122 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */
1123 #define CARRY_ON 0
1124 #define REPEAT_SEARCH -1
1125 #define IO_ERROR -2
1126 #define NO_DISK_SPACE -3
1127 #define NO_BALANCING_NEEDED (-4)
1128 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
1129 #define QUOTA_EXCEEDED -6
1130
1131 typedef __u32 b_blocknr_t;
1132 typedef __le32 unp_t;
1133
1134 struct unfm_nodeinfo {
1135 unp_t unfm_nodenum;
1136 unsigned short unfm_freespace;
1137 };
1138
1139 /* there are two formats of keys: 3.5 and 3.6 */
1140 #define KEY_FORMAT_3_5 0
1141 #define KEY_FORMAT_3_6 1
1142
1143 /* there are two stat datas */
1144 #define STAT_DATA_V1 0
1145 #define STAT_DATA_V2 1
1146
1147 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
1148 {
1149 return container_of(inode, struct reiserfs_inode_info, vfs_inode);
1150 }
1151
1152 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
1153 {
1154 return sb->s_fs_info;
1155 }
1156
1157 /*
1158 * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
1159 * which overflows on large file systems.
1160 */
1161 static inline __u32 reiserfs_bmap_count(struct super_block *sb)
1162 {
1163 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
1164 }
1165
1166 static inline int bmap_would_wrap(unsigned bmap_nr)
1167 {
1168 return bmap_nr > ((1LL << 16) - 1);
1169 }
1170
1171 extern const struct xattr_handler *reiserfs_xattr_handlers[];
1172
1173 /*
1174 * this says about version of key of all items (but stat data) the
1175 * object consists of
1176 */
1177 #define get_inode_item_key_version( inode ) \
1178 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
1179
1180 #define set_inode_item_key_version( inode, version ) \
1181 ({ if((version)==KEY_FORMAT_3_6) \
1182 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
1183 else \
1184 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
1185
1186 #define get_inode_sd_version(inode) \
1187 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
1188
1189 #define set_inode_sd_version(inode, version) \
1190 ({ if((version)==STAT_DATA_V2) \
1191 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
1192 else \
1193 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
1194
1195 /*
1196 * This is an aggressive tail suppression policy, I am hoping it
1197 * improves our benchmarks. The principle behind it is that percentage
1198 * space saving is what matters, not absolute space saving. This is
1199 * non-intuitive, but it helps to understand it if you consider that the
1200 * cost to access 4 blocks is not much more than the cost to access 1
1201 * block, if you have to do a seek and rotate. A tail risks a
1202 * non-linear disk access that is significant as a percentage of total
1203 * time cost for a 4 block file and saves an amount of space that is
1204 * less significant as a percentage of space, or so goes the hypothesis.
1205 * -Hans
1206 */
1207 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
1208 (\
1209 (!(n_tail_size)) || \
1210 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
1211 ( (n_file_size) >= (n_block_size) * 4 ) || \
1212 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
1213 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
1214 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
1215 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
1216 ( ( (n_file_size) >= (n_block_size) ) && \
1217 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
1218 )
1219
1220 /*
1221 * Another strategy for tails, this one means only create a tail if all the
1222 * file would fit into one DIRECT item.
1223 * Primary intention for this one is to increase performance by decreasing
1224 * seeking.
1225 */
1226 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
1227 (\
1228 (!(n_tail_size)) || \
1229 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
1230 )
1231
1232 /*
1233 * values for s_umount_state field
1234 */
1235 #define REISERFS_VALID_FS 1
1236 #define REISERFS_ERROR_FS 2
1237
1238 /*
1239 * there are 5 item types currently
1240 */
1241 #define TYPE_STAT_DATA 0
1242 #define TYPE_INDIRECT 1
1243 #define TYPE_DIRECT 2
1244 #define TYPE_DIRENTRY 3
1245 #define TYPE_MAXTYPE 3
1246 #define TYPE_ANY 15 /* FIXME: comment is required */
1247
1248 /***************************************************************************
1249 * KEY & ITEM HEAD *
1250 ***************************************************************************/
1251
1252 /* * directories use this key as well as old files */
1253 struct offset_v1 {
1254 __le32 k_offset;
1255 __le32 k_uniqueness;
1256 } __attribute__ ((__packed__));
1257
1258 struct offset_v2 {
1259 __le64 v;
1260 } __attribute__ ((__packed__));
1261
1262 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
1263 {
1264 __u8 type = le64_to_cpu(v2->v) >> 60;
1265 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
1266 }
1267
1268 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
1269 {
1270 v2->v =
1271 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
1272 }
1273
1274 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
1275 {
1276 return le64_to_cpu(v2->v) & (~0ULL >> 4);
1277 }
1278
1279 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
1280 {
1281 offset &= (~0ULL >> 4);
1282 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
1283 }
1284
1285 /*
1286 * Key of an item determines its location in the S+tree, and
1287 * is composed of 4 components
1288 */
1289 struct reiserfs_key {
1290 /* packing locality: by default parent directory object id */
1291 __le32 k_dir_id;
1292
1293 __le32 k_objectid; /* object identifier */
1294 union {
1295 struct offset_v1 k_offset_v1;
1296 struct offset_v2 k_offset_v2;
1297 } __attribute__ ((__packed__)) u;
1298 } __attribute__ ((__packed__));
1299
1300 struct in_core_key {
1301 /* packing locality: by default parent directory object id */
1302 __u32 k_dir_id;
1303 __u32 k_objectid; /* object identifier */
1304 __u64 k_offset;
1305 __u8 k_type;
1306 };
1307
1308 struct cpu_key {
1309 struct in_core_key on_disk_key;
1310 int version;
1311 /* 3 in all cases but direct2indirect and indirect2direct conversion */
1312 int key_length;
1313 };
1314
1315 /*
1316 * Our function for comparing keys can compare keys of different
1317 * lengths. It takes as a parameter the length of the keys it is to
1318 * compare. These defines are used in determining what is to be passed
1319 * to it as that parameter.
1320 */
1321 #define REISERFS_FULL_KEY_LEN 4
1322 #define REISERFS_SHORT_KEY_LEN 2
1323
1324 /* The result of the key compare */
1325 #define FIRST_GREATER 1
1326 #define SECOND_GREATER -1
1327 #define KEYS_IDENTICAL 0
1328 #define KEY_FOUND 1
1329 #define KEY_NOT_FOUND 0
1330
1331 #define KEY_SIZE (sizeof(struct reiserfs_key))
1332
1333 /* return values for search_by_key and clones */
1334 #define ITEM_FOUND 1
1335 #define ITEM_NOT_FOUND 0
1336 #define ENTRY_FOUND 1
1337 #define ENTRY_NOT_FOUND 0
1338 #define DIRECTORY_NOT_FOUND -1
1339 #define REGULAR_FILE_FOUND -2
1340 #define DIRECTORY_FOUND -3
1341 #define BYTE_FOUND 1
1342 #define BYTE_NOT_FOUND 0
1343 #define FILE_NOT_FOUND -1
1344
1345 #define POSITION_FOUND 1
1346 #define POSITION_NOT_FOUND 0
1347
1348 /* return values for reiserfs_find_entry and search_by_entry_key */
1349 #define NAME_FOUND 1
1350 #define NAME_NOT_FOUND 0
1351 #define GOTO_PREVIOUS_ITEM 2
1352 #define NAME_FOUND_INVISIBLE 3
1353
1354 /*
1355 * Everything in the filesystem is stored as a set of items. The
1356 * item head contains the key of the item, its free space (for
1357 * indirect items) and specifies the location of the item itself
1358 * within the block.
1359 */
1360
1361 struct item_head {
1362 /*
1363 * Everything in the tree is found by searching for it based on
1364 * its key.
1365 */
1366 struct reiserfs_key ih_key;
1367 union {
1368 /*
1369 * The free space in the last unformatted node of an
1370 * indirect item if this is an indirect item. This
1371 * equals 0xFFFF iff this is a direct item or stat data
1372 * item. Note that the key, not this field, is used to
1373 * determine the item type, and thus which field this
1374 * union contains.
1375 */
1376 __le16 ih_free_space_reserved;
1377
1378 /*
1379 * Iff this is a directory item, this field equals the
1380 * number of directory entries in the directory item.
1381 */
1382 __le16 ih_entry_count;
1383 } __attribute__ ((__packed__)) u;
1384 __le16 ih_item_len; /* total size of the item body */
1385
1386 /* an offset to the item body within the block */
1387 __le16 ih_item_location;
1388
1389 /*
1390 * 0 for all old items, 2 for new ones. Highest bit is set by fsck
1391 * temporary, cleaned after all done
1392 */
1393 __le16 ih_version;
1394 } __attribute__ ((__packed__));
1395 /* size of item header */
1396 #define IH_SIZE (sizeof(struct item_head))
1397
1398 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
1399 #define ih_version(ih) le16_to_cpu((ih)->ih_version)
1400 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
1401 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
1402 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
1403
1404 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
1405 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
1406 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
1407 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
1408 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
1409
1410 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
1411
1412 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
1413 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
1414
1415 /*
1416 * these operate on indirect items, where you've got an array of ints
1417 * at a possibly unaligned location. These are a noop on ia32
1418 *
1419 * p is the array of __u32, i is the index into the array, v is the value
1420 * to store there.
1421 */
1422 #define get_block_num(p, i) get_unaligned_le32((p) + (i))
1423 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1424
1425 /* * in old version uniqueness field shows key type */
1426 #define V1_SD_UNIQUENESS 0
1427 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
1428 #define V1_DIRECT_UNIQUENESS 0xffffffff
1429 #define V1_DIRENTRY_UNIQUENESS 500
1430 #define V1_ANY_UNIQUENESS 555 /* FIXME: comment is required */
1431
1432 /* here are conversion routines */
1433 static inline int uniqueness2type(__u32 uniqueness) CONSTF;
1434 static inline int uniqueness2type(__u32 uniqueness)
1435 {
1436 switch ((int)uniqueness) {
1437 case V1_SD_UNIQUENESS:
1438 return TYPE_STAT_DATA;
1439 case V1_INDIRECT_UNIQUENESS:
1440 return TYPE_INDIRECT;
1441 case V1_DIRECT_UNIQUENESS:
1442 return TYPE_DIRECT;
1443 case V1_DIRENTRY_UNIQUENESS:
1444 return TYPE_DIRENTRY;
1445 case V1_ANY_UNIQUENESS:
1446 default:
1447 return TYPE_ANY;
1448 }
1449 }
1450
1451 static inline __u32 type2uniqueness(int type) CONSTF;
1452 static inline __u32 type2uniqueness(int type)
1453 {
1454 switch (type) {
1455 case TYPE_STAT_DATA:
1456 return V1_SD_UNIQUENESS;
1457 case TYPE_INDIRECT:
1458 return V1_INDIRECT_UNIQUENESS;
1459 case TYPE_DIRECT:
1460 return V1_DIRECT_UNIQUENESS;
1461 case TYPE_DIRENTRY:
1462 return V1_DIRENTRY_UNIQUENESS;
1463 case TYPE_ANY:
1464 default:
1465 return V1_ANY_UNIQUENESS;
1466 }
1467 }
1468
1469 /*
1470 * key is pointer to on disk key which is stored in le, result is cpu,
1471 * there is no way to get version of object from key, so, provide
1472 * version to these defines
1473 */
1474 static inline loff_t le_key_k_offset(int version,
1475 const struct reiserfs_key *key)
1476 {
1477 return (version == KEY_FORMAT_3_5) ?
1478 le32_to_cpu(key->u.k_offset_v1.k_offset) :
1479 offset_v2_k_offset(&(key->u.k_offset_v2));
1480 }
1481
1482 static inline loff_t le_ih_k_offset(const struct item_head *ih)
1483 {
1484 return le_key_k_offset(ih_version(ih), &(ih->ih_key));
1485 }
1486
1487 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
1488 {
1489 if (version == KEY_FORMAT_3_5) {
1490 loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness);
1491 return uniqueness2type(val);
1492 } else
1493 return offset_v2_k_type(&(key->u.k_offset_v2));
1494 }
1495
1496 static inline loff_t le_ih_k_type(const struct item_head *ih)
1497 {
1498 return le_key_k_type(ih_version(ih), &(ih->ih_key));
1499 }
1500
1501 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
1502 loff_t offset)
1503 {
1504 if (version == KEY_FORMAT_3_5)
1505 key->u.k_offset_v1.k_offset = cpu_to_le32(offset);
1506 else
1507 set_offset_v2_k_offset(&key->u.k_offset_v2, offset);
1508 }
1509
1510 static inline void add_le_key_k_offset(int version, struct reiserfs_key *key,
1511 loff_t offset)
1512 {
1513 set_le_key_k_offset(version, key,
1514 le_key_k_offset(version, key) + offset);
1515 }
1516
1517 static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset)
1518 {
1519 add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1520 }
1521
1522 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
1523 {
1524 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1525 }
1526
1527 static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
1528 int type)
1529 {
1530 if (version == KEY_FORMAT_3_5) {
1531 type = type2uniqueness(type);
1532 key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type);
1533 } else
1534 set_offset_v2_k_type(&key->u.k_offset_v2, type);
1535 }
1536
1537 static inline void set_le_ih_k_type(struct item_head *ih, int type)
1538 {
1539 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
1540 }
1541
1542 static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
1543 {
1544 return le_key_k_type(version, key) == TYPE_DIRENTRY;
1545 }
1546
1547 static inline int is_direct_le_key(int version, struct reiserfs_key *key)
1548 {
1549 return le_key_k_type(version, key) == TYPE_DIRECT;
1550 }
1551
1552 static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
1553 {
1554 return le_key_k_type(version, key) == TYPE_INDIRECT;
1555 }
1556
1557 static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
1558 {
1559 return le_key_k_type(version, key) == TYPE_STAT_DATA;
1560 }
1561
1562 /* item header has version. */
1563 static inline int is_direntry_le_ih(struct item_head *ih)
1564 {
1565 return is_direntry_le_key(ih_version(ih), &ih->ih_key);
1566 }
1567
1568 static inline int is_direct_le_ih(struct item_head *ih)
1569 {
1570 return is_direct_le_key(ih_version(ih), &ih->ih_key);
1571 }
1572
1573 static inline int is_indirect_le_ih(struct item_head *ih)
1574 {
1575 return is_indirect_le_key(ih_version(ih), &ih->ih_key);
1576 }
1577
1578 static inline int is_statdata_le_ih(struct item_head *ih)
1579 {
1580 return is_statdata_le_key(ih_version(ih), &ih->ih_key);
1581 }
1582
1583 /* key is pointer to cpu key, result is cpu */
1584 static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
1585 {
1586 return key->on_disk_key.k_offset;
1587 }
1588
1589 static inline loff_t cpu_key_k_type(const struct cpu_key *key)
1590 {
1591 return key->on_disk_key.k_type;
1592 }
1593
1594 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
1595 {
1596 key->on_disk_key.k_offset = offset;
1597 }
1598
1599 static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
1600 {
1601 key->on_disk_key.k_type = type;
1602 }
1603
1604 static inline void cpu_key_k_offset_dec(struct cpu_key *key)
1605 {
1606 key->on_disk_key.k_offset--;
1607 }
1608
1609 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
1610 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
1611 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
1612 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
1613
1614 /* are these used ? */
1615 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
1616 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
1617 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
1618 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
1619
1620 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
1621 (!COMP_SHORT_KEYS(ih, key) && \
1622 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1623
1624 /* maximal length of item */
1625 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
1626 #define MIN_ITEM_LEN 1
1627
1628 /* object identifier for root dir */
1629 #define REISERFS_ROOT_OBJECTID 2
1630 #define REISERFS_ROOT_PARENT_OBJECTID 1
1631
1632 extern struct reiserfs_key root_key;
1633
1634 /*
1635 * Picture represents a leaf of the S+tree
1636 * ______________________________________________________
1637 * | | Array of | | |
1638 * |Block | Object-Item | F r e e | Objects- |
1639 * | head | Headers | S p a c e | Items |
1640 * |______|_______________|___________________|___________|
1641 */
1642
1643 /*
1644 * Header of a disk block. More precisely, header of a formatted leaf
1645 * or internal node, and not the header of an unformatted node.
1646 */
1647 struct block_head {
1648 __le16 blk_level; /* Level of a block in the tree. */
1649 __le16 blk_nr_item; /* Number of keys/items in a block. */
1650 __le16 blk_free_space; /* Block free space in bytes. */
1651 __le16 blk_reserved;
1652 /* dump this in v4/planA */
1653
1654 /* kept only for compatibility */
1655 struct reiserfs_key blk_right_delim_key;
1656 };
1657
1658 #define BLKH_SIZE (sizeof(struct block_head))
1659 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
1660 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
1661 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
1662 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
1663 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
1664 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
1665 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
1666 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
1667 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
1668 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
1669
1670 /* values for blk_level field of the struct block_head */
1671
1672 /*
1673 * When node gets removed from the tree its blk_level is set to FREE_LEVEL.
1674 * It is then used to see whether the node is still in the tree
1675 */
1676 #define FREE_LEVEL 0
1677
1678 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
1679
1680 /*
1681 * Given the buffer head of a formatted node, resolve to the
1682 * block head of that node.
1683 */
1684 #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data))
1685 /* Number of items that are in buffer. */
1686 #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh)))
1687 #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh)))
1688 #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh)))
1689
1690 #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
1691 #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
1692 #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1693
1694 /* Get right delimiting key. -- little endian */
1695 #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh))))
1696
1697 /* Does the buffer contain a disk leaf. */
1698 #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1699
1700 /* Does the buffer contain a disk internal node */
1701 #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
1702 && B_LEVEL(bh) <= MAX_HEIGHT)
1703
1704 /***************************************************************************
1705 * STAT DATA *
1706 ***************************************************************************/
1707
1708 /*
1709 * old stat data is 32 bytes long. We are going to distinguish new one by
1710 * different size
1711 */
1712 struct stat_data_v1 {
1713 __le16 sd_mode; /* file type, permissions */
1714 __le16 sd_nlink; /* number of hard links */
1715 __le16 sd_uid; /* owner */
1716 __le16 sd_gid; /* group */
1717 __le32 sd_size; /* file size */
1718 __le32 sd_atime; /* time of last access */
1719 __le32 sd_mtime; /* time file was last modified */
1720
1721 /*
1722 * time inode (stat data) was last changed
1723 * (except changes to sd_atime and sd_mtime)
1724 */
1725 __le32 sd_ctime;
1726 union {
1727 __le32 sd_rdev;
1728 __le32 sd_blocks; /* number of blocks file uses */
1729 } __attribute__ ((__packed__)) u;
1730
1731 /*
1732 * first byte of file which is stored in a direct item: except that if
1733 * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no
1734 * direct item. The existence of this field really grates on me.
1735 * Let's replace it with a macro based on sd_size and our tail
1736 * suppression policy. Someday. -Hans
1737 */
1738 __le32 sd_first_direct_byte;
1739 } __attribute__ ((__packed__));
1740
1741 #define SD_V1_SIZE (sizeof(struct stat_data_v1))
1742 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
1743 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
1744 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
1745 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
1746 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
1747 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
1748 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
1749 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
1750 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
1751 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
1752 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
1753 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
1754 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
1755 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
1756 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
1757 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
1758 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
1759 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
1760 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
1761 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
1762 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
1763 #define sd_v1_first_direct_byte(sdp) \
1764 (le32_to_cpu((sdp)->sd_first_direct_byte))
1765 #define set_sd_v1_first_direct_byte(sdp,v) \
1766 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
1767
1768 /* inode flags stored in sd_attrs (nee sd_reserved) */
1769
1770 /*
1771 * we want common flags to have the same values as in ext2,
1772 * so chattr(1) will work without problems
1773 */
1774 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
1775 #define REISERFS_APPEND_FL FS_APPEND_FL
1776 #define REISERFS_SYNC_FL FS_SYNC_FL
1777 #define REISERFS_NOATIME_FL FS_NOATIME_FL
1778 #define REISERFS_NODUMP_FL FS_NODUMP_FL
1779 #define REISERFS_SECRM_FL FS_SECRM_FL
1780 #define REISERFS_UNRM_FL FS_UNRM_FL
1781 #define REISERFS_COMPR_FL FS_COMPR_FL
1782 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL
1783
1784 /* persistent flags that file inherits from the parent directory */
1785 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
1786 REISERFS_SYNC_FL | \
1787 REISERFS_NOATIME_FL | \
1788 REISERFS_NODUMP_FL | \
1789 REISERFS_SECRM_FL | \
1790 REISERFS_COMPR_FL | \
1791 REISERFS_NOTAIL_FL )
1792
1793 /*
1794 * Stat Data on disk (reiserfs version of UFS disk inode minus the
1795 * address blocks)
1796 */
1797 struct stat_data {
1798 __le16 sd_mode; /* file type, permissions */
1799 __le16 sd_attrs; /* persistent inode flags */
1800 __le32 sd_nlink; /* number of hard links */
1801 __le64 sd_size; /* file size */
1802 __le32 sd_uid; /* owner */
1803 __le32 sd_gid; /* group */
1804 __le32 sd_atime; /* time of last access */
1805 __le32 sd_mtime; /* time file was last modified */
1806
1807 /*
1808 * time inode (stat data) was last changed
1809 * (except changes to sd_atime and sd_mtime)
1810 */
1811 __le32 sd_ctime;
1812 __le32 sd_blocks;
1813 union {
1814 __le32 sd_rdev;
1815 __le32 sd_generation;
1816 } __attribute__ ((__packed__)) u;
1817 } __attribute__ ((__packed__));
1818
1819 /* this is 44 bytes long */
1820 #define SD_SIZE (sizeof(struct stat_data))
1821 #define SD_V2_SIZE SD_SIZE
1822 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
1823 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
1824 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
1825 /* sd_reserved */
1826 /* set_sd_reserved */
1827 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
1828 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
1829 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
1830 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
1831 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
1832 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
1833 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
1834 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
1835 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
1836 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
1837 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
1838 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
1839 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
1840 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
1841 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
1842 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1843 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
1844 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
1845 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
1846 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1847 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
1848 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
1849
1850 /***************************************************************************
1851 * DIRECTORY STRUCTURE *
1852 ***************************************************************************/
1853 /*
1854 * Picture represents the structure of directory items
1855 * ________________________________________________
1856 * | Array of | | | | | |
1857 * | directory |N-1| N-2 | .... | 1st |0th|
1858 * | entry headers | | | | | |
1859 * |_______________|___|_____|________|_______|___|
1860 * <---- directory entries ------>
1861 *
1862 * First directory item has k_offset component 1. We store "." and ".."
1863 * in one item, always, we never split "." and ".." into differing
1864 * items. This makes, among other things, the code for removing
1865 * directories simpler.
1866 */
1867 #define SD_OFFSET 0
1868 #define SD_UNIQUENESS 0
1869 #define DOT_OFFSET 1
1870 #define DOT_DOT_OFFSET 2
1871 #define DIRENTRY_UNIQUENESS 500
1872
1873 #define FIRST_ITEM_OFFSET 1
1874
1875 /*
1876 * Q: How to get key of object pointed to by entry from entry?
1877 *
1878 * A: Each directory entry has its header. This header has deh_dir_id
1879 * and deh_objectid fields, those are key of object, entry points to
1880 */
1881
1882 /*
1883 * NOT IMPLEMENTED:
1884 * Directory will someday contain stat data of object
1885 */
1886
1887 struct reiserfs_de_head {
1888 __le32 deh_offset; /* third component of the directory entry key */
1889
1890 /*
1891 * objectid of the parent directory of the object, that is referenced
1892 * by directory entry
1893 */
1894 __le32 deh_dir_id;
1895
1896 /* objectid of the object, that is referenced by directory entry */
1897 __le32 deh_objectid;
1898 __le16 deh_location; /* offset of name in the whole item */
1899
1900 /*
1901 * whether 1) entry contains stat data (for future), and
1902 * 2) whether entry is hidden (unlinked)
1903 */
1904 __le16 deh_state;
1905 } __attribute__ ((__packed__));
1906 #define DEH_SIZE sizeof(struct reiserfs_de_head)
1907 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
1908 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
1909 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
1910 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
1911 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
1912
1913 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
1914 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1915 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1916 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1917 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
1918
1919 /* empty directory contains two entries "." and ".." and their headers */
1920 #define EMPTY_DIR_SIZE \
1921 (DEH_SIZE * 2 + ROUND_UP (sizeof(".") - 1) + ROUND_UP (sizeof("..") - 1))
1922
1923 /* old format directories have this size when empty */
1924 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1925
1926 #define DEH_Statdata 0 /* not used now */
1927 #define DEH_Visible 2
1928
1929 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1930 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1931 # define ADDR_UNALIGNED_BITS (3)
1932 #endif
1933
1934 /*
1935 * These are only used to manipulate deh_state.
1936 * Because of this, we'll use the ext2_ bit routines,
1937 * since they are little endian
1938 */
1939 #ifdef ADDR_UNALIGNED_BITS
1940
1941 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1942 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1943
1944 # define set_bit_unaligned(nr, addr) \
1945 __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1946 # define clear_bit_unaligned(nr, addr) \
1947 __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1948 # define test_bit_unaligned(nr, addr) \
1949 test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1950
1951 #else
1952
1953 # define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr)
1954 # define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr)
1955 # define test_bit_unaligned(nr, addr) test_bit_le(nr, addr)
1956
1957 #endif
1958
1959 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1960 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1961 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1962 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1963
1964 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1965 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1966 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1967
1968 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1969 __le32 par_dirid, __le32 par_objid);
1970 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1971 __le32 par_dirid, __le32 par_objid);
1972
1973 /* two entries per block (at least) */
1974 #define REISERFS_MAX_NAME(block_size) 255
1975
1976 /*
1977 * this structure is used for operations on directory entries. It is
1978 * not a disk structure.
1979 *
1980 * When reiserfs_find_entry or search_by_entry_key find directory
1981 * entry, they return filled reiserfs_dir_entry structure
1982 */
1983 struct reiserfs_dir_entry {
1984 struct buffer_head *de_bh;
1985 int de_item_num;
1986 struct item_head *de_ih;
1987 int de_entry_num;
1988 struct reiserfs_de_head *de_deh;
1989 int de_entrylen;
1990 int de_namelen;
1991 char *de_name;
1992 unsigned long *de_gen_number_bit_string;
1993
1994 __u32 de_dir_id;
1995 __u32 de_objectid;
1996
1997 struct cpu_key de_entry_key;
1998 };
1999
2000 /*
2001 * these defines are useful when a particular member of
2002 * a reiserfs_dir_entry is needed
2003 */
2004
2005 /* pointer to file name, stored in entry */
2006 #define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \
2007 (ih_item_body(bh, ih) + deh_location(deh))
2008
2009 /* length of name */
2010 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
2011 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
2012
2013 /* hash value occupies bits from 7 up to 30 */
2014 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
2015 /* generation number occupies 7 bits starting from 0 up to 6 */
2016 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
2017 #define MAX_GENERATION_NUMBER 127
2018
2019 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
2020
2021 /*
2022 * Picture represents an internal node of the reiserfs tree
2023 * ______________________________________________________
2024 * | | Array of | Array of | Free |
2025 * |block | keys | pointers | space |
2026 * | head | N | N+1 | |
2027 * |______|_______________|___________________|___________|
2028 */
2029
2030 /***************************************************************************
2031 * DISK CHILD *
2032 ***************************************************************************/
2033 /*
2034 * Disk child pointer:
2035 * The pointer from an internal node of the tree to a node that is on disk.
2036 */
2037 struct disk_child {
2038 __le32 dc_block_number; /* Disk child's block number. */
2039 __le16 dc_size; /* Disk child's used space. */
2040 __le16 dc_reserved;
2041 };
2042
2043 #define DC_SIZE (sizeof(struct disk_child))
2044 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
2045 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
2046 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
2047 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
2048
2049 /* Get disk child by buffer header and position in the tree node. */
2050 #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\
2051 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
2052
2053 /* Get disk child number by buffer header and position in the tree node. */
2054 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
2055 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
2056 (put_dc_block_number(B_N_CHILD(bh, n_pos), val))
2057
2058 /* maximal value of field child_size in structure disk_child */
2059 /* child size is the combined size of all items and their headers */
2060 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
2061
2062 /* amount of used space in buffer (not including block head) */
2063 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
2064
2065 /* max and min number of keys in internal node */
2066 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
2067 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
2068
2069 /***************************************************************************
2070 * PATH STRUCTURES AND DEFINES *
2071 ***************************************************************************/
2072
2073 /*
2074 * search_by_key fills up the path from the root to the leaf as it descends
2075 * the tree looking for the key. It uses reiserfs_bread to try to find
2076 * buffers in the cache given their block number. If it does not find
2077 * them in the cache it reads them from disk. For each node search_by_key
2078 * finds using reiserfs_bread it then uses bin_search to look through that
2079 * node. bin_search will find the position of the block_number of the next
2080 * node if it is looking through an internal node. If it is looking through
2081 * a leaf node bin_search will find the position of the item which has key
2082 * either equal to given key, or which is the maximal key less than the
2083 * given key.
2084 */
2085
2086 struct path_element {
2087 /* Pointer to the buffer at the path in the tree. */
2088 struct buffer_head *pe_buffer;
2089 /* Position in the tree node which is placed in the buffer above. */
2090 int pe_position;
2091 };
2092
2093 /*
2094 * maximal height of a tree. don't change this without
2095 * changing JOURNAL_PER_BALANCE_CNT
2096 */
2097 #define MAX_HEIGHT 5
2098
2099 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
2100 #define EXTENDED_MAX_HEIGHT 7
2101
2102 /* Must be equal to at least 2. */
2103 #define FIRST_PATH_ELEMENT_OFFSET 2
2104
2105 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
2106 #define ILLEGAL_PATH_ELEMENT_OFFSET 1
2107
2108 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
2109 #define MAX_FEB_SIZE 6
2110
2111 /*
2112 * We need to keep track of who the ancestors of nodes are. When we
2113 * perform a search we record which nodes were visited while
2114 * descending the tree looking for the node we searched for. This list
2115 * of nodes is called the path. This information is used while
2116 * performing balancing. Note that this path information may become
2117 * invalid, and this means we must check it when using it to see if it
2118 * is still valid. You'll need to read search_by_key and the comments
2119 * in it, especially about decrement_counters_in_path(), to understand
2120 * this structure.
2121 *
2122 * Paths make the code so much harder to work with and debug.... An
2123 * enormous number of bugs are due to them, and trying to write or modify
2124 * code that uses them just makes my head hurt. They are based on an
2125 * excessive effort to avoid disturbing the precious VFS code.:-( The
2126 * gods only know how we are going to SMP the code that uses them.
2127 * znodes are the way!
2128 */
2129
2130 #define PATH_READA 0x1 /* do read ahead */
2131 #define PATH_READA_BACK 0x2 /* read backwards */
2132
2133 struct treepath {
2134 int path_length; /* Length of the array above. */
2135 int reada;
2136 /* Array of the path elements. */
2137 struct path_element path_elements[EXTENDED_MAX_HEIGHT];
2138 int pos_in_item;
2139 };
2140
2141 #define pos_in_item(path) ((path)->pos_in_item)
2142
2143 #define INITIALIZE_PATH(var) \
2144 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
2145
2146 /* Get path element by path and path position. */
2147 #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset))
2148
2149 /* Get buffer header at the path by path and path position. */
2150 #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
2151
2152 /* Get position in the element at the path by path and path position. */
2153 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
2154
2155 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
2156
2157 /*
2158 * you know, to the person who didn't write this the macro name does not
2159 * at first suggest what it does. Maybe POSITION_FROM_PATH_END? Or
2160 * maybe we should just focus on dumping paths... -Hans
2161 */
2162 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
2163
2164 /*
2165 * in do_balance leaf has h == 0 in contrast with path structure,
2166 * where root has level == 0. That is why we need these defines
2167 */
2168
2169 /* tb->S[h] */
2170 #define PATH_H_PBUFFER(path, h) \
2171 PATH_OFFSET_PBUFFER(path, path->path_length - (h))
2172
2173 /* tb->F[h] or tb->S[0]->b_parent */
2174 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1)
2175
2176 #define PATH_H_POSITION(path, h) \
2177 PATH_OFFSET_POSITION(path, path->path_length - (h))
2178
2179 /* tb->S[h]->b_item_order */
2180 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)
2181
2182 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
2183
2184 static inline void *reiserfs_node_data(const struct buffer_head *bh)
2185 {
2186 return bh->b_data + sizeof(struct block_head);
2187 }
2188
2189 /* get key from internal node */
2190 static inline struct reiserfs_key *internal_key(struct buffer_head *bh,
2191 int item_num)
2192 {
2193 struct reiserfs_key *key = reiserfs_node_data(bh);
2194
2195 return &key[item_num];
2196 }
2197
2198 /* get the item header from leaf node */
2199 static inline struct item_head *item_head(const struct buffer_head *bh,
2200 int item_num)
2201 {
2202 struct item_head *ih = reiserfs_node_data(bh);
2203
2204 return &ih[item_num];
2205 }
2206
2207 /* get the key from leaf node */
2208 static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh,
2209 int item_num)
2210 {
2211 return &item_head(bh, item_num)->ih_key;
2212 }
2213
2214 static inline void *ih_item_body(const struct buffer_head *bh,
2215 const struct item_head *ih)
2216 {
2217 return bh->b_data + ih_location(ih);
2218 }
2219
2220 /* get item body from leaf node */
2221 static inline void *item_body(const struct buffer_head *bh, int item_num)
2222 {
2223 return ih_item_body(bh, item_head(bh, item_num));
2224 }
2225
2226 static inline struct item_head *tp_item_head(const struct treepath *path)
2227 {
2228 return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
2229 }
2230
2231 static inline void *tp_item_body(const struct treepath *path)
2232 {
2233 return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
2234 }
2235
2236 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
2237 #define get_item_pos(path) PATH_LAST_POSITION(path)
2238 #define item_moved(ih,path) comp_items(ih, path)
2239 #define path_changed(ih,path) comp_items (ih, path)
2240
2241 /* array of the entry headers */
2242 /* get item body */
2243 #define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih)))
2244
2245 /*
2246 * length of the directory entry in directory item. This define
2247 * calculates length of i-th directory entry using directory entry
2248 * locations from dir entry head. When it calculates length of 0-th
2249 * directory entry, it uses length of whole item in place of entry
2250 * location of the non-existent following entry in the calculation.
2251 * See picture above.
2252 */
2253 static inline int entry_length(const struct buffer_head *bh,
2254 const struct item_head *ih, int pos_in_item)
2255 {
2256 struct reiserfs_de_head *deh;
2257
2258 deh = B_I_DEH(bh, ih) + pos_in_item;
2259 if (pos_in_item)
2260 return deh_location(deh - 1) - deh_location(deh);
2261
2262 return ih_item_len(ih) - deh_location(deh);
2263 }
2264
2265 /***************************************************************************
2266 * MISC *
2267 ***************************************************************************/
2268
2269 /* Size of pointer to the unformatted node. */
2270 #define UNFM_P_SIZE (sizeof(unp_t))
2271 #define UNFM_P_SHIFT 2
2272
2273 /* in in-core inode key is stored on le form */
2274 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
2275
2276 #define MAX_UL_INT 0xffffffff
2277 #define MAX_INT 0x7ffffff
2278 #define MAX_US_INT 0xffff
2279
2280 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
2281 static inline loff_t max_reiserfs_offset(struct inode *inode)
2282 {
2283 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
2284 return (loff_t) U32_MAX;
2285
2286 return (loff_t) ((~(__u64) 0) >> 4);
2287 }
2288
2289 #define MAX_KEY_OBJECTID MAX_UL_INT
2290
2291 #define MAX_B_NUM MAX_UL_INT
2292 #define MAX_FC_NUM MAX_US_INT
2293
2294 /* the purpose is to detect overflow of an unsigned short */
2295 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
2296
2297 /*
2298 * The following defines are used in reiserfs_insert_item
2299 * and reiserfs_append_item
2300 */
2301 #define REISERFS_KERNEL_MEM 0 /* kernel memory mode */
2302 #define REISERFS_USER_MEM 1 /* user memory mode */
2303
2304 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
2305 #define get_generation(s) atomic_read (&fs_generation(s))
2306 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
2307 #define __fs_changed(gen,s) (gen != get_generation (s))
2308 #define fs_changed(gen,s) \
2309 ({ \
2310 reiserfs_cond_resched(s); \
2311 __fs_changed(gen, s); \
2312 })
2313
2314 /***************************************************************************
2315 * FIXATE NODES *
2316 ***************************************************************************/
2317
2318 #define VI_TYPE_LEFT_MERGEABLE 1
2319 #define VI_TYPE_RIGHT_MERGEABLE 2
2320
2321 /*
2322 * To make any changes in the tree we always first find node, that
2323 * contains item to be changed/deleted or place to insert a new
2324 * item. We call this node S. To do balancing we need to decide what
2325 * we will shift to left/right neighbor, or to a new node, where new
2326 * item will be etc. To make this analysis simpler we build virtual
2327 * node. Virtual node is an array of items, that will replace items of
2328 * node S. (For instance if we are going to delete an item, virtual
2329 * node does not contain it). Virtual node keeps information about
2330 * item sizes and types, mergeability of first and last items, sizes
2331 * of all entries in directory item. We use this array of items when
2332 * calculating what we can shift to neighbors and how many nodes we
2333 * have to have if we do not any shiftings, if we shift to left/right
2334 * neighbor or to both.
2335 */
2336 struct virtual_item {
2337 int vi_index; /* index in the array of item operations */
2338 unsigned short vi_type; /* left/right mergeability */
2339
2340 /* length of item that it will have after balancing */
2341 unsigned short vi_item_len;
2342
2343 struct item_head *vi_ih;
2344 const char *vi_item; /* body of item (old or new) */
2345 const void *vi_new_data; /* 0 always but paste mode */
2346 void *vi_uarea; /* item specific area */
2347 };
2348
2349 struct virtual_node {
2350 /* this is a pointer to the free space in the buffer */
2351 char *vn_free_ptr;
2352
2353 unsigned short vn_nr_item; /* number of items in virtual node */
2354
2355 /*
2356 * size of node , that node would have if it has
2357 * unlimited size and no balancing is performed
2358 */
2359 short vn_size;
2360
2361 /* mode of balancing (paste, insert, delete, cut) */
2362 short vn_mode;
2363
2364 short vn_affected_item_num;
2365 short vn_pos_in_item;
2366
2367 /* item header of inserted item, 0 for other modes */
2368 struct item_head *vn_ins_ih;
2369 const void *vn_data;
2370
2371 /* array of items (including a new one, excluding item to be deleted) */
2372 struct virtual_item *vn_vi;
2373 };
2374
2375 /* used by directory items when creating virtual nodes */
2376 struct direntry_uarea {
2377 int flags;
2378 __u16 entry_count;
2379 __u16 entry_sizes[1];
2380 } __attribute__ ((__packed__));
2381
2382 /***************************************************************************
2383 * TREE BALANCE *
2384 ***************************************************************************/
2385
2386 /*
2387 * This temporary structure is used in tree balance algorithms, and
2388 * constructed as we go to the extent that its various parts are
2389 * needed. It contains arrays of nodes that can potentially be
2390 * involved in the balancing of node S, and parameters that define how
2391 * each of the nodes must be balanced. Note that in these algorithms
2392 * for balancing the worst case is to need to balance the current node
2393 * S and the left and right neighbors and all of their parents plus
2394 * create a new node. We implement S1 balancing for the leaf nodes
2395 * and S0 balancing for the internal nodes (S1 and S0 are defined in
2396 * our papers.)
2397 */
2398
2399 /* size of the array of buffers to free at end of do_balance */
2400 #define MAX_FREE_BLOCK 7
2401
2402 /* maximum number of FEB blocknrs on a single level */
2403 #define MAX_AMOUNT_NEEDED 2
2404
2405 /* someday somebody will prefix every field in this struct with tb_ */
2406 struct tree_balance {
2407 int tb_mode;
2408 int need_balance_dirty;
2409 struct super_block *tb_sb;
2410 struct reiserfs_transaction_handle *transaction_handle;
2411 struct treepath *tb_path;
2412
2413 /* array of left neighbors of nodes in the path */
2414 struct buffer_head *L[MAX_HEIGHT];
2415
2416 /* array of right neighbors of nodes in the path */
2417 struct buffer_head *R[MAX_HEIGHT];
2418
2419 /* array of fathers of the left neighbors */
2420 struct buffer_head *FL[MAX_HEIGHT];
2421
2422 /* array of fathers of the right neighbors */
2423 struct buffer_head *FR[MAX_HEIGHT];
2424 /* array of common parents of center node and its left neighbor */
2425 struct buffer_head *CFL[MAX_HEIGHT];
2426
2427 /* array of common parents of center node and its right neighbor */
2428 struct buffer_head *CFR[MAX_HEIGHT];
2429
2430 /*
2431 * array of empty buffers. Number of buffers in array equals
2432 * cur_blknum.
2433 */
2434 struct buffer_head *FEB[MAX_FEB_SIZE];
2435 struct buffer_head *used[MAX_FEB_SIZE];
2436 struct buffer_head *thrown[MAX_FEB_SIZE];
2437
2438 /*
2439 * array of number of items which must be shifted to the left in
2440 * order to balance the current node; for leaves includes item that
2441 * will be partially shifted; for internal nodes, it is the number
2442 * of child pointers rather than items. It includes the new item
2443 * being created. The code sometimes subtracts one to get the
2444 * number of wholly shifted items for other purposes.
2445 */
2446 int lnum[MAX_HEIGHT];
2447
2448 /* substitute right for left in comment above */
2449 int rnum[MAX_HEIGHT];
2450
2451 /*
2452 * array indexed by height h mapping the key delimiting L[h] and
2453 * S[h] to its item number within the node CFL[h]
2454 */
2455 int lkey[MAX_HEIGHT];
2456
2457 /* substitute r for l in comment above */
2458 int rkey[MAX_HEIGHT];
2459
2460 /*
2461 * the number of bytes by we are trying to add or remove from
2462 * S[h]. A negative value means removing.
2463 */
2464 int insert_size[MAX_HEIGHT];
2465
2466 /*
2467 * number of nodes that will replace node S[h] after balancing
2468 * on the level h of the tree. If 0 then S is being deleted,
2469 * if 1 then S is remaining and no new nodes are being created,
2470 * if 2 or 3 then 1 or 2 new nodes is being created
2471 */
2472 int blknum[MAX_HEIGHT];
2473
2474 /* fields that are used only for balancing leaves of the tree */
2475
2476 /* number of empty blocks having been already allocated */
2477 int cur_blknum;
2478
2479 /* number of items that fall into left most node when S[0] splits */
2480 int s0num;
2481
2482 /*
2483 * number of bytes which can flow to the left neighbor from the left
2484 * most liquid item that cannot be shifted from S[0] entirely
2485 * if -1 then nothing will be partially shifted
2486 */
2487 int lbytes;
2488
2489 /*
2490 * number of bytes which will flow to the right neighbor from the right
2491 * most liquid item that cannot be shifted from S[0] entirely
2492 * if -1 then nothing will be partially shifted
2493 */
2494 int rbytes;
2495
2496
2497 /*
2498 * index into the array of item headers in
2499 * S[0] of the affected item
2500 */
2501 int item_pos;
2502
2503 /* new nodes allocated to hold what could not fit into S */
2504 struct buffer_head *S_new[2];
2505
2506 /*
2507 * number of items that will be placed into nodes in S_new
2508 * when S[0] splits
2509 */
2510 int snum[2];
2511
2512 /*
2513 * number of bytes which flow to nodes in S_new when S[0] splits
2514 * note: if S[0] splits into 3 nodes, then items do not need to be cut
2515 */
2516 int sbytes[2];
2517
2518 int pos_in_item;
2519 int zeroes_num;
2520
2521 /*
2522 * buffers which are to be freed after do_balance finishes
2523 * by unfix_nodes
2524 */
2525 struct buffer_head *buf_to_free[MAX_FREE_BLOCK];
2526
2527 /*
2528 * kmalloced memory. Used to create virtual node and keep
2529 * map of dirtied bitmap blocks
2530 */
2531 char *vn_buf;
2532
2533 int vn_buf_size; /* size of the vn_buf */
2534
2535 /* VN starts after bitmap of bitmap blocks */
2536 struct virtual_node *tb_vn;
2537
2538 /*
2539 * saved value of `reiserfs_generation' counter see
2540 * FILESYSTEM_CHANGED() macro in reiserfs_fs.h
2541 */
2542 int fs_gen;
2543
2544 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2545 /*
2546 * key pointer, to pass to block allocator or
2547 * another low-level subsystem
2548 */
2549 struct in_core_key key;
2550 #endif
2551 };
2552
2553 /* These are modes of balancing */
2554
2555 /* When inserting an item. */
2556 #define M_INSERT 'i'
2557 /*
2558 * When inserting into (directories only) or appending onto an already
2559 * existent item.
2560 */
2561 #define M_PASTE 'p'
2562 /* When deleting an item. */
2563 #define M_DELETE 'd'
2564 /* When truncating an item or removing an entry from a (directory) item. */
2565 #define M_CUT 'c'
2566
2567 /* used when balancing on leaf level skipped (in reiserfsck) */
2568 #define M_INTERNAL 'n'
2569
2570 /*
2571 * When further balancing is not needed, then do_balance does not need
2572 * to be called.
2573 */
2574 #define M_SKIP_BALANCING 's'
2575 #define M_CONVERT 'v'
2576
2577 /* modes of leaf_move_items */
2578 #define LEAF_FROM_S_TO_L 0
2579 #define LEAF_FROM_S_TO_R 1
2580 #define LEAF_FROM_R_TO_L 2
2581 #define LEAF_FROM_L_TO_R 3
2582 #define LEAF_FROM_S_TO_SNEW 4
2583
2584 #define FIRST_TO_LAST 0
2585 #define LAST_TO_FIRST 1
2586
2587 /*
2588 * used in do_balance for passing parent of node information that has
2589 * been gotten from tb struct
2590 */
2591 struct buffer_info {
2592 struct tree_balance *tb;
2593 struct buffer_head *bi_bh;
2594 struct buffer_head *bi_parent;
2595 int bi_position;
2596 };
2597
2598 static inline struct super_block *sb_from_tb(struct tree_balance *tb)
2599 {
2600 return tb ? tb->tb_sb : NULL;
2601 }
2602
2603 static inline struct super_block *sb_from_bi(struct buffer_info *bi)
2604 {
2605 return bi ? sb_from_tb(bi->tb) : NULL;
2606 }
2607
2608 /*
2609 * there are 4 types of items: stat data, directory item, indirect, direct.
2610 * +-------------------+------------+--------------+------------+
2611 * | | k_offset | k_uniqueness | mergeable? |
2612 * +-------------------+------------+--------------+------------+
2613 * | stat data | 0 | 0 | no |
2614 * +-------------------+------------+--------------+------------+
2615 * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. | no |
2616 * | non 1st directory | hash value | UNIQUENESS | yes |
2617 * | item | | | |
2618 * +-------------------+------------+--------------+------------+
2619 * | indirect item | offset + 1 |TYPE_INDIRECT | [1] |
2620 * +-------------------+------------+--------------+------------+
2621 * | direct item | offset + 1 |TYPE_DIRECT | [2] |
2622 * +-------------------+------------+--------------+------------+
2623 *
2624 * [1] if this is not the first indirect item of the object
2625 * [2] if this is not the first direct item of the object
2626 */
2627
2628 struct item_operations {
2629 int (*bytes_number) (struct item_head * ih, int block_size);
2630 void (*decrement_key) (struct cpu_key *);
2631 int (*is_left_mergeable) (struct reiserfs_key * ih,
2632 unsigned long bsize);
2633 void (*print_item) (struct item_head *, char *item);
2634 void (*check_item) (struct item_head *, char *item);
2635
2636 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
2637 int is_affected, int insert_size);
2638 int (*check_left) (struct virtual_item * vi, int free,
2639 int start_skip, int end_skip);
2640 int (*check_right) (struct virtual_item * vi, int free);
2641 int (*part_size) (struct virtual_item * vi, int from, int to);
2642 int (*unit_num) (struct virtual_item * vi);
2643 void (*print_vi) (struct virtual_item * vi);
2644 };
2645
2646 extern struct item_operations *item_ops[TYPE_ANY + 1];
2647
2648 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
2649 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
2650 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
2651 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
2652 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
2653 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
2654 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
2655 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
2656 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
2657 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
2658
2659 #define COMP_SHORT_KEYS comp_short_keys
2660
2661 /* number of blocks pointed to by the indirect item */
2662 #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE)
2663
2664 /*
2665 * the used space within the unformatted node corresponding
2666 * to pos within the item pointed to by ih
2667 */
2668 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
2669
2670 /*
2671 * number of bytes contained by the direct item or the
2672 * unformatted nodes the indirect item points to
2673 */
2674
2675 /* following defines use reiserfs buffer header and item header */
2676
2677 /* get stat-data */
2678 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
2679
2680 /* this is 3976 for size==4096 */
2681 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
2682
2683 /*
2684 * indirect items consist of entries which contain blocknrs, pos
2685 * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
2686 * blocknr contained by the entry pos points to
2687 */
2688 #define B_I_POS_UNFM_POINTER(bh, ih, pos) \
2689 le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos)))
2690 #define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val) \
2691 (*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val))
2692
2693 struct reiserfs_iget_args {
2694 __u32 objectid;
2695 __u32 dirid;
2696 };
2697
2698 /***************************************************************************
2699 * FUNCTION DECLARATIONS *
2700 ***************************************************************************/
2701
2702 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
2703
2704 #define journal_trans_half(blocksize) \
2705 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
2706
2707 /* journal.c see journal.c for all the comments here */
2708
2709 /* first block written in a commit. */
2710 struct reiserfs_journal_desc {
2711 __le32 j_trans_id; /* id of commit */
2712
2713 /* length of commit. len +1 is the commit block */
2714 __le32 j_len;
2715
2716 __le32 j_mount_id; /* mount id of this trans */
2717 __le32 j_realblock[1]; /* real locations for each block */
2718 };
2719
2720 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
2721 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
2722 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
2723
2724 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
2725 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
2726 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
2727
2728 /* last block written in a commit */
2729 struct reiserfs_journal_commit {
2730 __le32 j_trans_id; /* must match j_trans_id from the desc block */
2731 __le32 j_len; /* ditto */
2732 __le32 j_realblock[1]; /* real locations for each block */
2733 };
2734
2735 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
2736 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
2737 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
2738
2739 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
2740 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
2741
2742 /*
2743 * this header block gets written whenever a transaction is considered
2744 * fully flushed, and is more recent than the last fully flushed transaction.
2745 * fully flushed means all the log blocks and all the real blocks are on
2746 * disk, and this transaction does not need to be replayed.
2747 */
2748 struct reiserfs_journal_header {
2749 /* id of last fully flushed transaction */
2750 __le32 j_last_flush_trans_id;
2751
2752 /* offset in the log of where to start replay after a crash */
2753 __le32 j_first_unflushed_offset;
2754
2755 __le32 j_mount_id;
2756 /* 12 */ struct journal_params jh_journal;
2757 };
2758
2759 /* biggest tunable defines are right here */
2760 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
2761
2762 /* biggest possible single transaction, don't change for now (8/3/99) */
2763 #define JOURNAL_TRANS_MAX_DEFAULT 1024
2764 #define JOURNAL_TRANS_MIN_DEFAULT 256
2765
2766 /*
2767 * max blocks to batch into one transaction,
2768 * don't make this any bigger than 900
2769 */
2770 #define JOURNAL_MAX_BATCH_DEFAULT 900
2771 #define JOURNAL_MIN_RATIO 2
2772 #define JOURNAL_MAX_COMMIT_AGE 30
2773 #define JOURNAL_MAX_TRANS_AGE 30
2774 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
2775 #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \
2776 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
2777 REISERFS_QUOTA_TRANS_BLOCKS(sb)))
2778
2779 #ifdef CONFIG_QUOTA
2780 #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
2781 /* We need to update data and inode (atime) */
2782 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
2783 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
2784 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2785 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
2786 /* same as with INIT */
2787 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2788 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
2789 #else
2790 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
2791 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
2792 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
2793 #endif
2794
2795 /*
2796 * both of these can be as low as 1, or as high as you want. The min is the
2797 * number of 4k bitmap nodes preallocated on mount. New nodes are allocated
2798 * as needed, and released when transactions are committed. On release, if
2799 * the current number of nodes is > max, the node is freed, otherwise,
2800 * it is put on a free list for faster use later.
2801 */
2802 #define REISERFS_MIN_BITMAP_NODES 10
2803 #define REISERFS_MAX_BITMAP_NODES 100
2804
2805 /* these are based on journal hash size of 8192 */
2806 #define JBH_HASH_SHIFT 13
2807 #define JBH_HASH_MASK 8191
2808
2809 #define _jhashfn(sb,block) \
2810 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
2811 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
2812 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
2813
2814 /* We need these to make journal.c code more readable */
2815 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2816 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2817 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2818
2819 enum reiserfs_bh_state_bits {
2820 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
2821 BH_JDirty_wait,
2822 /*
2823 * disk block was taken off free list before being in a
2824 * finished transaction, or written to disk. Can be reused immed.
2825 */
2826 BH_JNew,
2827 BH_JPrepared,
2828 BH_JRestore_dirty,
2829 BH_JTest, /* debugging only will go away */
2830 };
2831
2832 BUFFER_FNS(JDirty, journaled);
2833 TAS_BUFFER_FNS(JDirty, journaled);
2834 BUFFER_FNS(JDirty_wait, journal_dirty);
2835 TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
2836 BUFFER_FNS(JNew, journal_new);
2837 TAS_BUFFER_FNS(JNew, journal_new);
2838 BUFFER_FNS(JPrepared, journal_prepared);
2839 TAS_BUFFER_FNS(JPrepared, journal_prepared);
2840 BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2841 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2842 BUFFER_FNS(JTest, journal_test);
2843 TAS_BUFFER_FNS(JTest, journal_test);
2844
2845 /* transaction handle which is passed around for all journal calls */
2846 struct reiserfs_transaction_handle {
2847 /*
2848 * super for this FS when journal_begin was called. saves calls to
2849 * reiserfs_get_super also used by nested transactions to make
2850 * sure they are nesting on the right FS _must_ be first
2851 * in the handle
2852 */
2853 struct super_block *t_super;
2854
2855 int t_refcount;
2856 int t_blocks_logged; /* number of blocks this writer has logged */
2857 int t_blocks_allocated; /* number of blocks this writer allocated */
2858
2859 /* sanity check, equals the current trans id */
2860 unsigned int t_trans_id;
2861
2862 void *t_handle_save; /* save existing current->journal_info */
2863
2864 /*
2865 * if new block allocation occurres, that block
2866 * should be displaced from others
2867 */
2868 unsigned displace_new_blocks:1;
2869
2870 struct list_head t_list;
2871 };
2872
2873 /*
2874 * used to keep track of ordered and tail writes, attached to the buffer
2875 * head through b_journal_head.
2876 */
2877 struct reiserfs_jh {
2878 struct reiserfs_journal_list *jl;
2879 struct buffer_head *bh;
2880 struct list_head list;
2881 };
2882
2883 void reiserfs_free_jh(struct buffer_head *bh);
2884 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
2885 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
2886 int journal_mark_dirty(struct reiserfs_transaction_handle *,
2887 struct buffer_head *bh);
2888
2889 static inline int reiserfs_file_data_log(struct inode *inode)
2890 {
2891 if (reiserfs_data_log(inode->i_sb) ||
2892 (REISERFS_I(inode)->i_flags & i_data_log))
2893 return 1;
2894 return 0;
2895 }
2896
2897 static inline int reiserfs_transaction_running(struct super_block *s)
2898 {
2899 struct reiserfs_transaction_handle *th = current->journal_info;
2900 if (th && th->t_super == s)
2901 return 1;
2902 if (th && th->t_super == NULL)
2903 BUG();
2904 return 0;
2905 }
2906
2907 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
2908 {
2909 return th->t_blocks_allocated - th->t_blocks_logged;
2910 }
2911
2912 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
2913 super_block
2914 *,
2915 int count);
2916 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
2917 void reiserfs_vfs_truncate_file(struct inode *inode);
2918 int reiserfs_commit_page(struct inode *inode, struct page *page,
2919 unsigned from, unsigned to);
2920 void reiserfs_flush_old_commits(struct super_block *);
2921 int reiserfs_commit_for_inode(struct inode *);
2922 int reiserfs_inode_needs_commit(struct inode *);
2923 void reiserfs_update_inode_transaction(struct inode *);
2924 void reiserfs_wait_on_write_block(struct super_block *s);
2925 void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
2926 void reiserfs_allow_writes(struct super_block *s);
2927 void reiserfs_check_lock_depth(struct super_block *s, char *caller);
2928 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
2929 int wait);
2930 void reiserfs_restore_prepared_buffer(struct super_block *,
2931 struct buffer_head *bh);
2932 int journal_init(struct super_block *, const char *j_dev_name, int old_format,
2933 unsigned int);
2934 int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
2935 int journal_release_error(struct reiserfs_transaction_handle *,
2936 struct super_block *);
2937 int journal_end(struct reiserfs_transaction_handle *);
2938 int journal_end_sync(struct reiserfs_transaction_handle *);
2939 int journal_mark_freed(struct reiserfs_transaction_handle *,
2940 struct super_block *, b_blocknr_t blocknr);
2941 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
2942 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
2943 int bit_nr, int searchall, b_blocknr_t *next);
2944 int journal_begin(struct reiserfs_transaction_handle *,
2945 struct super_block *sb, unsigned long);
2946 int journal_join_abort(struct reiserfs_transaction_handle *,
2947 struct super_block *sb);
2948 void reiserfs_abort_journal(struct super_block *sb, int errno);
2949 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
2950 int reiserfs_allocate_list_bitmaps(struct super_block *s,
2951 struct reiserfs_list_bitmap *, unsigned int);
2952
2953 void reiserfs_schedule_old_flush(struct super_block *s);
2954 void reiserfs_cancel_old_flush(struct super_block *s);
2955 void add_save_link(struct reiserfs_transaction_handle *th,
2956 struct inode *inode, int truncate);
2957 int remove_save_link(struct inode *inode, int truncate);
2958
2959 /* objectid.c */
2960 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
2961 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
2962 __u32 objectid_to_release);
2963 int reiserfs_convert_objectid_map_v1(struct super_block *);
2964
2965 /* stree.c */
2966 int B_IS_IN_TREE(const struct buffer_head *);
2967 extern void copy_item_head(struct item_head *to,
2968 const struct item_head *from);
2969
2970 /* first key is in cpu form, second - le */
2971 extern int comp_short_keys(const struct reiserfs_key *le_key,
2972 const struct cpu_key *cpu_key);
2973 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
2974
2975 /* both are in le form */
2976 extern int comp_le_keys(const struct reiserfs_key *,
2977 const struct reiserfs_key *);
2978 extern int comp_short_le_keys(const struct reiserfs_key *,
2979 const struct reiserfs_key *);
2980
2981 /* * get key version from on disk key - kludge */
2982 static inline int le_key_version(const struct reiserfs_key *key)
2983 {
2984 int type;
2985
2986 type = offset_v2_k_type(&(key->u.k_offset_v2));
2987 if (type != TYPE_DIRECT && type != TYPE_INDIRECT
2988 && type != TYPE_DIRENTRY)
2989 return KEY_FORMAT_3_5;
2990
2991 return KEY_FORMAT_3_6;
2992
2993 }
2994
2995 static inline void copy_key(struct reiserfs_key *to,
2996 const struct reiserfs_key *from)
2997 {
2998 memcpy(to, from, KEY_SIZE);
2999 }
3000
3001 int comp_items(const struct item_head *stored_ih, const struct treepath *path);
3002 const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
3003 const struct super_block *sb);
3004 int search_by_key(struct super_block *, const struct cpu_key *,
3005 struct treepath *, int);
3006 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
3007 int search_for_position_by_key(struct super_block *sb,
3008 const struct cpu_key *cpu_key,
3009 struct treepath *search_path);
3010 extern void decrement_bcount(struct buffer_head *bh);
3011 void decrement_counters_in_path(struct treepath *search_path);
3012 void pathrelse(struct treepath *search_path);
3013 int reiserfs_check_path(struct treepath *p);
3014 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
3015
3016 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
3017 struct treepath *path,
3018 const struct cpu_key *key,
3019 struct item_head *ih,
3020 struct inode *inode, const char *body);
3021
3022 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
3023 struct treepath *path,
3024 const struct cpu_key *key,
3025 struct inode *inode,
3026 const char *body, int paste_size);
3027
3028 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
3029 struct treepath *path,
3030 struct cpu_key *key,
3031 struct inode *inode,
3032 struct page *page, loff_t new_file_size);
3033
3034 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
3035 struct treepath *path,
3036 const struct cpu_key *key,
3037 struct inode *inode, struct buffer_head *un_bh);
3038
3039 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
3040 struct inode *inode, struct reiserfs_key *key);
3041 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
3042 struct inode *inode);
3043 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
3044 struct inode *inode, struct page *,
3045 int update_timestamps);
3046
3047 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
3048 #define file_size(inode) ((inode)->i_size)
3049 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
3050
3051 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
3052 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
3053
3054 void padd_item(char *item, int total_length, int length);
3055
3056 /* inode.c */
3057 /* args for the create parameter of reiserfs_get_block */
3058 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
3059 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */
3060 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
3061 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
3062 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */
3063 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
3064
3065 void reiserfs_read_locked_inode(struct inode *inode,
3066 struct reiserfs_iget_args *args);
3067 int reiserfs_find_actor(struct inode *inode, void *p);
3068 int reiserfs_init_locked_inode(struct inode *inode, void *p);
3069 void reiserfs_evict_inode(struct inode *inode);
3070 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3071 int reiserfs_get_block(struct inode *inode, sector_t block,
3072 struct buffer_head *bh_result, int create);
3073 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3074 int fh_len, int fh_type);
3075 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
3076 int fh_len, int fh_type);
3077 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
3078 struct inode *parent);
3079
3080 int reiserfs_truncate_file(struct inode *, int update_timestamps);
3081 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
3082 int type, int key_length);
3083 void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
3084 int version,
3085 loff_t offset, int type, int length, int entry_count);
3086 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
3087
3088 struct reiserfs_security_handle;
3089 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
3090 struct inode *dir, umode_t mode,
3091 const char *symname, loff_t i_size,
3092 struct dentry *dentry, struct inode *inode,
3093 struct reiserfs_security_handle *security);
3094
3095 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
3096 struct inode *inode, loff_t size);
3097
3098 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
3099 struct inode *inode)
3100 {
3101 reiserfs_update_sd_size(th, inode, inode->i_size);
3102 }
3103
3104 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
3105 int reiserfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3106 struct iattr *attr);
3107
3108 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
3109
3110 /* namei.c */
3111 void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
3112 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
3113 struct treepath *path, struct reiserfs_dir_entry *de);
3114 struct dentry *reiserfs_get_parent(struct dentry *);
3115
3116 #ifdef CONFIG_REISERFS_PROC_INFO
3117 int reiserfs_proc_info_init(struct super_block *sb);
3118 int reiserfs_proc_info_done(struct super_block *sb);
3119 int reiserfs_proc_info_global_init(void);
3120 int reiserfs_proc_info_global_done(void);
3121
3122 #define PROC_EXP( e ) e
3123
3124 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
3125 #define PROC_INFO_MAX( sb, field, value ) \
3126 __PINFO( sb ).field = \
3127 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
3128 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
3129 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
3130 #define PROC_INFO_BH_STAT( sb, bh, level ) \
3131 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
3132 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
3133 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
3134 #else
3135 static inline int reiserfs_proc_info_init(struct super_block *sb)
3136 {
3137 return 0;
3138 }
3139
3140 static inline int reiserfs_proc_info_done(struct super_block *sb)
3141 {
3142 return 0;
3143 }
3144
3145 static inline int reiserfs_proc_info_global_init(void)
3146 {
3147 return 0;
3148 }
3149
3150 static inline int reiserfs_proc_info_global_done(void)
3151 {
3152 return 0;
3153 }
3154
3155 #define PROC_EXP( e )
3156 #define VOID_V ( ( void ) 0 )
3157 #define PROC_INFO_MAX( sb, field, value ) VOID_V
3158 #define PROC_INFO_INC( sb, field ) VOID_V
3159 #define PROC_INFO_ADD( sb, field, val ) VOID_V
3160 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
3161 #endif
3162
3163 /* dir.c */
3164 extern const struct inode_operations reiserfs_dir_inode_operations;
3165 extern const struct inode_operations reiserfs_symlink_inode_operations;
3166 extern const struct inode_operations reiserfs_special_inode_operations;
3167 extern const struct file_operations reiserfs_dir_operations;
3168 int reiserfs_readdir_inode(struct inode *, struct dir_context *);
3169
3170 /* tail_conversion.c */
3171 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
3172 struct treepath *, struct buffer_head *, loff_t);
3173 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
3174 struct page *, struct treepath *, const struct cpu_key *,
3175 loff_t, char *);
3176 void reiserfs_unmap_buffer(struct buffer_head *);
3177
3178 /* file.c */
3179 extern const struct inode_operations reiserfs_file_inode_operations;
3180 extern const struct file_operations reiserfs_file_operations;
3181 extern const struct address_space_operations reiserfs_address_space_operations;
3182
3183 /* fix_nodes.c */
3184
3185 int fix_nodes(int n_op_mode, struct tree_balance *tb,
3186 struct item_head *ins_ih, const void *);
3187 void unfix_nodes(struct tree_balance *);
3188
3189 /* prints.c */
3190 void __reiserfs_panic(struct super_block *s, const char *id,
3191 const char *function, const char *fmt, ...)
3192 __attribute__ ((noreturn));
3193 #define reiserfs_panic(s, id, fmt, args...) \
3194 __reiserfs_panic(s, id, __func__, fmt, ##args)
3195 void __reiserfs_error(struct super_block *s, const char *id,
3196 const char *function, const char *fmt, ...);
3197 #define reiserfs_error(s, id, fmt, args...) \
3198 __reiserfs_error(s, id, __func__, fmt, ##args)
3199 void reiserfs_info(struct super_block *s, const char *fmt, ...);
3200 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
3201 void print_indirect_item(struct buffer_head *bh, int item_num);
3202 void store_print_tb(struct tree_balance *tb);
3203 void print_cur_tb(char *mes);
3204 void print_de(struct reiserfs_dir_entry *de);
3205 void print_bi(struct buffer_info *bi, char *mes);
3206 #define PRINT_LEAF_ITEMS 1 /* print all items */
3207 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
3208 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
3209 void print_block(struct buffer_head *bh, ...);
3210 void print_bmap(struct super_block *s, int silent);
3211 void print_bmap_block(int i, char *data, int size, int silent);
3212 /*void print_super_block (struct super_block * s, char * mes);*/
3213 void print_objectid_map(struct super_block *s);
3214 void print_block_head(struct buffer_head *bh, char *mes);
3215 void check_leaf(struct buffer_head *bh);
3216 void check_internal(struct buffer_head *bh);
3217 void print_statistics(struct super_block *s);
3218 char *reiserfs_hashname(int code);
3219
3220 /* lbalance.c */
3221 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
3222 int mov_bytes, struct buffer_head *Snew);
3223 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
3224 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
3225 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
3226 int del_num, int del_bytes);
3227 void leaf_insert_into_buf(struct buffer_info *bi, int before,
3228 struct item_head * const inserted_item_ih,
3229 const char * const inserted_item_body,
3230 int zeros_number);
3231 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
3232 int pos_in_item, int paste_size,
3233 const char * const body, int zeros_number);
3234 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
3235 int pos_in_item, int cut_size);
3236 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
3237 int new_entry_count, struct reiserfs_de_head *new_dehs,
3238 const char *records, int paste_size);
3239 /* ibalance.c */
3240 int balance_internal(struct tree_balance *, int, int, struct item_head *,
3241 struct buffer_head **);
3242
3243 /* do_balance.c */
3244 void do_balance_mark_leaf_dirty(struct tree_balance *tb,
3245 struct buffer_head *bh, int flag);
3246 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
3247 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
3248
3249 void do_balance(struct tree_balance *tb, struct item_head *ih,
3250 const char *body, int flag);
3251 void reiserfs_invalidate_buffer(struct tree_balance *tb,
3252 struct buffer_head *bh);
3253
3254 int get_left_neighbor_position(struct tree_balance *tb, int h);
3255 int get_right_neighbor_position(struct tree_balance *tb, int h);
3256 void replace_key(struct tree_balance *tb, struct buffer_head *, int,
3257 struct buffer_head *, int);
3258 void make_empty_node(struct buffer_info *);
3259 struct buffer_head *get_FEB(struct tree_balance *);
3260
3261 /* bitmap.c */
3262
3263 /*
3264 * structure contains hints for block allocator, and it is a container for
3265 * arguments, such as node, search path, transaction_handle, etc.
3266 */
3267 struct __reiserfs_blocknr_hint {
3268 /* inode passed to allocator, if we allocate unf. nodes */
3269 struct inode *inode;
3270
3271 sector_t block; /* file offset, in blocks */
3272 struct in_core_key key;
3273
3274 /*
3275 * search path, used by allocator to deternine search_start by
3276 * various ways
3277 */
3278 struct treepath *path;
3279
3280 /*
3281 * transaction handle is needed to log super blocks
3282 * and bitmap blocks changes
3283 */
3284 struct reiserfs_transaction_handle *th;
3285
3286 b_blocknr_t beg, end;
3287
3288 /*
3289 * a field used to transfer search start value (block number)
3290 * between different block allocator procedures
3291 * (determine_search_start() and others)
3292 */
3293 b_blocknr_t search_start;
3294
3295 /*
3296 * is set in determine_prealloc_size() function,
3297 * used by underlayed function that do actual allocation
3298 */
3299 int prealloc_size;
3300
3301 /*
3302 * the allocator uses different polices for getting disk
3303 * space for formatted/unformatted blocks with/without preallocation
3304 */
3305 unsigned formatted_node:1;
3306 unsigned preallocate:1;
3307 };
3308
3309 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
3310
3311 int reiserfs_parse_alloc_options(struct super_block *, char *);
3312 void reiserfs_init_alloc_options(struct super_block *s);
3313
3314 /*
3315 * given a directory, this will tell you what packing locality
3316 * to use for a new object underneat it. The locality is returned
3317 * in disk byte order (le).
3318 */
3319 __le32 reiserfs_choose_packing(struct inode *dir);
3320
3321 void show_alloc_options(struct seq_file *seq, struct super_block *s);
3322 int reiserfs_init_bitmap_cache(struct super_block *sb);
3323 void reiserfs_free_bitmap_cache(struct super_block *sb);
3324 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
3325 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
3326 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
3327 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
3328 b_blocknr_t, int for_unformatted);
3329 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
3330 int);
3331 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
3332 b_blocknr_t * new_blocknrs,
3333 int amount_needed)
3334 {
3335 reiserfs_blocknr_hint_t hint = {
3336 .th = tb->transaction_handle,
3337 .path = tb->tb_path,
3338 .inode = NULL,
3339 .key = tb->key,
3340 .block = 0,
3341 .formatted_node = 1
3342 };
3343 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
3344 0);
3345 }
3346
3347 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
3348 *th, struct inode *inode,
3349 b_blocknr_t * new_blocknrs,
3350 struct treepath *path,
3351 sector_t block)
3352 {
3353 reiserfs_blocknr_hint_t hint = {
3354 .th = th,
3355 .path = path,
3356 .inode = inode,
3357 .block = block,
3358 .formatted_node = 0,
3359 .preallocate = 0
3360 };
3361 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
3362 }
3363
3364 #ifdef REISERFS_PREALLOCATE
3365 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
3366 *th, struct inode *inode,
3367 b_blocknr_t * new_blocknrs,
3368 struct treepath *path,
3369 sector_t block)
3370 {
3371 reiserfs_blocknr_hint_t hint = {
3372 .th = th,
3373 .path = path,
3374 .inode = inode,
3375 .block = block,
3376 .formatted_node = 0,
3377 .preallocate = 1
3378 };
3379 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
3380 }
3381
3382 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
3383 struct inode *inode);
3384 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
3385 #endif
3386
3387 /* hashes.c */
3388 __u32 keyed_hash(const signed char *msg, int len);
3389 __u32 yura_hash(const signed char *msg, int len);
3390 __u32 r5_hash(const signed char *msg, int len);
3391
3392 #define reiserfs_set_le_bit __set_bit_le
3393 #define reiserfs_test_and_set_le_bit __test_and_set_bit_le
3394 #define reiserfs_clear_le_bit __clear_bit_le
3395 #define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le
3396 #define reiserfs_test_le_bit test_bit_le
3397 #define reiserfs_find_next_zero_le_bit find_next_zero_bit_le
3398
3399 /*
3400 * sometimes reiserfs_truncate may require to allocate few new blocks
3401 * to perform indirect2direct conversion. People probably used to
3402 * think, that truncate should work without problems on a filesystem
3403 * without free disk space. They may complain that they can not
3404 * truncate due to lack of free disk space. This spare space allows us
3405 * to not worry about it. 500 is probably too much, but it should be
3406 * absolutely safe
3407 */
3408 #define SPARE_SPACE 500
3409
3410 /* prototypes from ioctl.c */
3411 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3412 long reiserfs_compat_ioctl(struct file *filp,
3413 unsigned int cmd, unsigned long arg);
3414 int reiserfs_unpack(struct inode *inode, struct file *filp);