]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/splice.c
Merge tag 's390-6.3-3' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[thirdparty/linux.git] / fs / splice.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * "splice": joining two ropes together by interweaving their strands.
4 *
5 * This is the "extended pipe" functionality, where a pipe is used as
6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 * buffer that you can use to transfer data from one end to the other.
8 *
9 * The traditional unix read/write is extended with a "splice()" operation
10 * that transfers data buffers to or from a pipe buffer.
11 *
12 * Named by Larry McVoy, original implementation from Linus, extended by
13 * Jens to support splicing to files, network, direct splicing, etc and
14 * fixing lots of bugs.
15 *
16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19 *
20 */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/security.h>
34 #include <linux/gfp.h>
35 #include <linux/socket.h>
36 #include <linux/sched/signal.h>
37
38 #include "internal.h"
39
40 /*
41 * Attempt to steal a page from a pipe buffer. This should perhaps go into
42 * a vm helper function, it's already simplified quite a bit by the
43 * addition of remove_mapping(). If success is returned, the caller may
44 * attempt to reuse this page for another destination.
45 */
46 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
47 struct pipe_buffer *buf)
48 {
49 struct folio *folio = page_folio(buf->page);
50 struct address_space *mapping;
51
52 folio_lock(folio);
53
54 mapping = folio_mapping(folio);
55 if (mapping) {
56 WARN_ON(!folio_test_uptodate(folio));
57
58 /*
59 * At least for ext2 with nobh option, we need to wait on
60 * writeback completing on this folio, since we'll remove it
61 * from the pagecache. Otherwise truncate wont wait on the
62 * folio, allowing the disk blocks to be reused by someone else
63 * before we actually wrote our data to them. fs corruption
64 * ensues.
65 */
66 folio_wait_writeback(folio);
67
68 if (folio_has_private(folio) &&
69 !filemap_release_folio(folio, GFP_KERNEL))
70 goto out_unlock;
71
72 /*
73 * If we succeeded in removing the mapping, set LRU flag
74 * and return good.
75 */
76 if (remove_mapping(mapping, folio)) {
77 buf->flags |= PIPE_BUF_FLAG_LRU;
78 return true;
79 }
80 }
81
82 /*
83 * Raced with truncate or failed to remove folio from current
84 * address space, unlock and return failure.
85 */
86 out_unlock:
87 folio_unlock(folio);
88 return false;
89 }
90
91 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
92 struct pipe_buffer *buf)
93 {
94 put_page(buf->page);
95 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 }
97
98 /*
99 * Check whether the contents of buf is OK to access. Since the content
100 * is a page cache page, IO may be in flight.
101 */
102 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
103 struct pipe_buffer *buf)
104 {
105 struct page *page = buf->page;
106 int err;
107
108 if (!PageUptodate(page)) {
109 lock_page(page);
110
111 /*
112 * Page got truncated/unhashed. This will cause a 0-byte
113 * splice, if this is the first page.
114 */
115 if (!page->mapping) {
116 err = -ENODATA;
117 goto error;
118 }
119
120 /*
121 * Uh oh, read-error from disk.
122 */
123 if (!PageUptodate(page)) {
124 err = -EIO;
125 goto error;
126 }
127
128 /*
129 * Page is ok afterall, we are done.
130 */
131 unlock_page(page);
132 }
133
134 return 0;
135 error:
136 unlock_page(page);
137 return err;
138 }
139
140 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
141 .confirm = page_cache_pipe_buf_confirm,
142 .release = page_cache_pipe_buf_release,
143 .try_steal = page_cache_pipe_buf_try_steal,
144 .get = generic_pipe_buf_get,
145 };
146
147 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
148 struct pipe_buffer *buf)
149 {
150 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
151 return false;
152
153 buf->flags |= PIPE_BUF_FLAG_LRU;
154 return generic_pipe_buf_try_steal(pipe, buf);
155 }
156
157 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
158 .release = page_cache_pipe_buf_release,
159 .try_steal = user_page_pipe_buf_try_steal,
160 .get = generic_pipe_buf_get,
161 };
162
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165 smp_mb();
166 if (waitqueue_active(&pipe->rd_wait))
167 wake_up_interruptible(&pipe->rd_wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170
171 /**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184 {
185 unsigned int spd_pages = spd->nr_pages;
186 unsigned int tail = pipe->tail;
187 unsigned int head = pipe->head;
188 unsigned int mask = pipe->ring_size - 1;
189 int ret = 0, page_nr = 0;
190
191 if (!spd_pages)
192 return 0;
193
194 if (unlikely(!pipe->readers)) {
195 send_sig(SIGPIPE, current, 0);
196 ret = -EPIPE;
197 goto out;
198 }
199
200 while (!pipe_full(head, tail, pipe->max_usage)) {
201 struct pipe_buffer *buf = &pipe->bufs[head & mask];
202
203 buf->page = spd->pages[page_nr];
204 buf->offset = spd->partial[page_nr].offset;
205 buf->len = spd->partial[page_nr].len;
206 buf->private = spd->partial[page_nr].private;
207 buf->ops = spd->ops;
208 buf->flags = 0;
209
210 head++;
211 pipe->head = head;
212 page_nr++;
213 ret += buf->len;
214
215 if (!--spd->nr_pages)
216 break;
217 }
218
219 if (!ret)
220 ret = -EAGAIN;
221
222 out:
223 while (page_nr < spd_pages)
224 spd->spd_release(spd, page_nr++);
225
226 return ret;
227 }
228 EXPORT_SYMBOL_GPL(splice_to_pipe);
229
230 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
231 {
232 unsigned int head = pipe->head;
233 unsigned int tail = pipe->tail;
234 unsigned int mask = pipe->ring_size - 1;
235 int ret;
236
237 if (unlikely(!pipe->readers)) {
238 send_sig(SIGPIPE, current, 0);
239 ret = -EPIPE;
240 } else if (pipe_full(head, tail, pipe->max_usage)) {
241 ret = -EAGAIN;
242 } else {
243 pipe->bufs[head & mask] = *buf;
244 pipe->head = head + 1;
245 return buf->len;
246 }
247 pipe_buf_release(pipe, buf);
248 return ret;
249 }
250 EXPORT_SYMBOL(add_to_pipe);
251
252 /*
253 * Check if we need to grow the arrays holding pages and partial page
254 * descriptions.
255 */
256 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
257 {
258 unsigned int max_usage = READ_ONCE(pipe->max_usage);
259
260 spd->nr_pages_max = max_usage;
261 if (max_usage <= PIPE_DEF_BUFFERS)
262 return 0;
263
264 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
265 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
266 GFP_KERNEL);
267
268 if (spd->pages && spd->partial)
269 return 0;
270
271 kfree(spd->pages);
272 kfree(spd->partial);
273 return -ENOMEM;
274 }
275
276 void splice_shrink_spd(struct splice_pipe_desc *spd)
277 {
278 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
279 return;
280
281 kfree(spd->pages);
282 kfree(spd->partial);
283 }
284
285 /*
286 * Splice data from an O_DIRECT file into pages and then add them to the output
287 * pipe.
288 */
289 ssize_t direct_splice_read(struct file *in, loff_t *ppos,
290 struct pipe_inode_info *pipe,
291 size_t len, unsigned int flags)
292 {
293 struct iov_iter to;
294 struct bio_vec *bv;
295 struct kiocb kiocb;
296 struct page **pages;
297 ssize_t ret;
298 size_t used, npages, chunk, remain, reclaim;
299 int i;
300
301 /* Work out how much data we can actually add into the pipe */
302 used = pipe_occupancy(pipe->head, pipe->tail);
303 npages = max_t(ssize_t, pipe->max_usage - used, 0);
304 len = min_t(size_t, len, npages * PAGE_SIZE);
305 npages = DIV_ROUND_UP(len, PAGE_SIZE);
306
307 bv = kzalloc(array_size(npages, sizeof(bv[0])) +
308 array_size(npages, sizeof(struct page *)), GFP_KERNEL);
309 if (!bv)
310 return -ENOMEM;
311
312 pages = (void *)(bv + npages);
313 npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
314 if (!npages) {
315 kfree(bv);
316 return -ENOMEM;
317 }
318
319 remain = len = min_t(size_t, len, npages * PAGE_SIZE);
320
321 for (i = 0; i < npages; i++) {
322 chunk = min_t(size_t, PAGE_SIZE, remain);
323 bv[i].bv_page = pages[i];
324 bv[i].bv_offset = 0;
325 bv[i].bv_len = chunk;
326 remain -= chunk;
327 }
328
329 /* Do the I/O */
330 iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
331 init_sync_kiocb(&kiocb, in);
332 kiocb.ki_pos = *ppos;
333 ret = call_read_iter(in, &kiocb, &to);
334
335 reclaim = npages * PAGE_SIZE;
336 remain = 0;
337 if (ret > 0) {
338 reclaim -= ret;
339 remain = ret;
340 *ppos = kiocb.ki_pos;
341 file_accessed(in);
342 } else if (ret < 0) {
343 /*
344 * callers of ->splice_read() expect -EAGAIN on
345 * "can't put anything in there", rather than -EFAULT.
346 */
347 if (ret == -EFAULT)
348 ret = -EAGAIN;
349 }
350
351 /* Free any pages that didn't get touched at all. */
352 reclaim /= PAGE_SIZE;
353 if (reclaim) {
354 npages -= reclaim;
355 release_pages(pages + npages, reclaim);
356 }
357
358 /* Push the remaining pages into the pipe. */
359 for (i = 0; i < npages; i++) {
360 struct pipe_buffer *buf = pipe_head_buf(pipe);
361
362 chunk = min_t(size_t, remain, PAGE_SIZE);
363 *buf = (struct pipe_buffer) {
364 .ops = &default_pipe_buf_ops,
365 .page = bv[i].bv_page,
366 .offset = 0,
367 .len = chunk,
368 };
369 pipe->head++;
370 remain -= chunk;
371 }
372
373 kfree(bv);
374 return ret;
375 }
376 EXPORT_SYMBOL(direct_splice_read);
377
378 /**
379 * generic_file_splice_read - splice data from file to a pipe
380 * @in: file to splice from
381 * @ppos: position in @in
382 * @pipe: pipe to splice to
383 * @len: number of bytes to splice
384 * @flags: splice modifier flags
385 *
386 * Description:
387 * Will read pages from given file and fill them into a pipe. Can be
388 * used as long as it has more or less sane ->read_iter().
389 *
390 */
391 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
392 struct pipe_inode_info *pipe, size_t len,
393 unsigned int flags)
394 {
395 struct iov_iter to;
396 struct kiocb kiocb;
397 int ret;
398
399 iov_iter_pipe(&to, ITER_DEST, pipe, len);
400 init_sync_kiocb(&kiocb, in);
401 kiocb.ki_pos = *ppos;
402 ret = call_read_iter(in, &kiocb, &to);
403 if (ret > 0) {
404 *ppos = kiocb.ki_pos;
405 file_accessed(in);
406 } else if (ret < 0) {
407 /* free what was emitted */
408 pipe_discard_from(pipe, to.start_head);
409 /*
410 * callers of ->splice_read() expect -EAGAIN on
411 * "can't put anything in there", rather than -EFAULT.
412 */
413 if (ret == -EFAULT)
414 ret = -EAGAIN;
415 }
416
417 return ret;
418 }
419 EXPORT_SYMBOL(generic_file_splice_read);
420
421 const struct pipe_buf_operations default_pipe_buf_ops = {
422 .release = generic_pipe_buf_release,
423 .try_steal = generic_pipe_buf_try_steal,
424 .get = generic_pipe_buf_get,
425 };
426
427 /* Pipe buffer operations for a socket and similar. */
428 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
429 .release = generic_pipe_buf_release,
430 .get = generic_pipe_buf_get,
431 };
432 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
433
434 /*
435 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
436 * using sendpage(). Return the number of bytes sent.
437 */
438 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
439 struct pipe_buffer *buf, struct splice_desc *sd)
440 {
441 struct file *file = sd->u.file;
442 loff_t pos = sd->pos;
443 int more;
444
445 if (!likely(file->f_op->sendpage))
446 return -EINVAL;
447
448 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
449
450 if (sd->len < sd->total_len &&
451 pipe_occupancy(pipe->head, pipe->tail) > 1)
452 more |= MSG_SENDPAGE_NOTLAST;
453
454 return file->f_op->sendpage(file, buf->page, buf->offset,
455 sd->len, &pos, more);
456 }
457
458 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
459 {
460 smp_mb();
461 if (waitqueue_active(&pipe->wr_wait))
462 wake_up_interruptible(&pipe->wr_wait);
463 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
464 }
465
466 /**
467 * splice_from_pipe_feed - feed available data from a pipe to a file
468 * @pipe: pipe to splice from
469 * @sd: information to @actor
470 * @actor: handler that splices the data
471 *
472 * Description:
473 * This function loops over the pipe and calls @actor to do the
474 * actual moving of a single struct pipe_buffer to the desired
475 * destination. It returns when there's no more buffers left in
476 * the pipe or if the requested number of bytes (@sd->total_len)
477 * have been copied. It returns a positive number (one) if the
478 * pipe needs to be filled with more data, zero if the required
479 * number of bytes have been copied and -errno on error.
480 *
481 * This, together with splice_from_pipe_{begin,end,next}, may be
482 * used to implement the functionality of __splice_from_pipe() when
483 * locking is required around copying the pipe buffers to the
484 * destination.
485 */
486 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
487 splice_actor *actor)
488 {
489 unsigned int head = pipe->head;
490 unsigned int tail = pipe->tail;
491 unsigned int mask = pipe->ring_size - 1;
492 int ret;
493
494 while (!pipe_empty(head, tail)) {
495 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
496
497 sd->len = buf->len;
498 if (sd->len > sd->total_len)
499 sd->len = sd->total_len;
500
501 ret = pipe_buf_confirm(pipe, buf);
502 if (unlikely(ret)) {
503 if (ret == -ENODATA)
504 ret = 0;
505 return ret;
506 }
507
508 ret = actor(pipe, buf, sd);
509 if (ret <= 0)
510 return ret;
511
512 buf->offset += ret;
513 buf->len -= ret;
514
515 sd->num_spliced += ret;
516 sd->len -= ret;
517 sd->pos += ret;
518 sd->total_len -= ret;
519
520 if (!buf->len) {
521 pipe_buf_release(pipe, buf);
522 tail++;
523 pipe->tail = tail;
524 if (pipe->files)
525 sd->need_wakeup = true;
526 }
527
528 if (!sd->total_len)
529 return 0;
530 }
531
532 return 1;
533 }
534
535 /* We know we have a pipe buffer, but maybe it's empty? */
536 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
537 {
538 unsigned int tail = pipe->tail;
539 unsigned int mask = pipe->ring_size - 1;
540 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
541
542 if (unlikely(!buf->len)) {
543 pipe_buf_release(pipe, buf);
544 pipe->tail = tail+1;
545 return true;
546 }
547
548 return false;
549 }
550
551 /**
552 * splice_from_pipe_next - wait for some data to splice from
553 * @pipe: pipe to splice from
554 * @sd: information about the splice operation
555 *
556 * Description:
557 * This function will wait for some data and return a positive
558 * value (one) if pipe buffers are available. It will return zero
559 * or -errno if no more data needs to be spliced.
560 */
561 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
562 {
563 /*
564 * Check for signal early to make process killable when there are
565 * always buffers available
566 */
567 if (signal_pending(current))
568 return -ERESTARTSYS;
569
570 repeat:
571 while (pipe_empty(pipe->head, pipe->tail)) {
572 if (!pipe->writers)
573 return 0;
574
575 if (sd->num_spliced)
576 return 0;
577
578 if (sd->flags & SPLICE_F_NONBLOCK)
579 return -EAGAIN;
580
581 if (signal_pending(current))
582 return -ERESTARTSYS;
583
584 if (sd->need_wakeup) {
585 wakeup_pipe_writers(pipe);
586 sd->need_wakeup = false;
587 }
588
589 pipe_wait_readable(pipe);
590 }
591
592 if (eat_empty_buffer(pipe))
593 goto repeat;
594
595 return 1;
596 }
597
598 /**
599 * splice_from_pipe_begin - start splicing from pipe
600 * @sd: information about the splice operation
601 *
602 * Description:
603 * This function should be called before a loop containing
604 * splice_from_pipe_next() and splice_from_pipe_feed() to
605 * initialize the necessary fields of @sd.
606 */
607 static void splice_from_pipe_begin(struct splice_desc *sd)
608 {
609 sd->num_spliced = 0;
610 sd->need_wakeup = false;
611 }
612
613 /**
614 * splice_from_pipe_end - finish splicing from pipe
615 * @pipe: pipe to splice from
616 * @sd: information about the splice operation
617 *
618 * Description:
619 * This function will wake up pipe writers if necessary. It should
620 * be called after a loop containing splice_from_pipe_next() and
621 * splice_from_pipe_feed().
622 */
623 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
624 {
625 if (sd->need_wakeup)
626 wakeup_pipe_writers(pipe);
627 }
628
629 /**
630 * __splice_from_pipe - splice data from a pipe to given actor
631 * @pipe: pipe to splice from
632 * @sd: information to @actor
633 * @actor: handler that splices the data
634 *
635 * Description:
636 * This function does little more than loop over the pipe and call
637 * @actor to do the actual moving of a single struct pipe_buffer to
638 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
639 * pipe_to_user.
640 *
641 */
642 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
643 splice_actor *actor)
644 {
645 int ret;
646
647 splice_from_pipe_begin(sd);
648 do {
649 cond_resched();
650 ret = splice_from_pipe_next(pipe, sd);
651 if (ret > 0)
652 ret = splice_from_pipe_feed(pipe, sd, actor);
653 } while (ret > 0);
654 splice_from_pipe_end(pipe, sd);
655
656 return sd->num_spliced ? sd->num_spliced : ret;
657 }
658 EXPORT_SYMBOL(__splice_from_pipe);
659
660 /**
661 * splice_from_pipe - splice data from a pipe to a file
662 * @pipe: pipe to splice from
663 * @out: file to splice to
664 * @ppos: position in @out
665 * @len: how many bytes to splice
666 * @flags: splice modifier flags
667 * @actor: handler that splices the data
668 *
669 * Description:
670 * See __splice_from_pipe. This function locks the pipe inode,
671 * otherwise it's identical to __splice_from_pipe().
672 *
673 */
674 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
675 loff_t *ppos, size_t len, unsigned int flags,
676 splice_actor *actor)
677 {
678 ssize_t ret;
679 struct splice_desc sd = {
680 .total_len = len,
681 .flags = flags,
682 .pos = *ppos,
683 .u.file = out,
684 };
685
686 pipe_lock(pipe);
687 ret = __splice_from_pipe(pipe, &sd, actor);
688 pipe_unlock(pipe);
689
690 return ret;
691 }
692
693 /**
694 * iter_file_splice_write - splice data from a pipe to a file
695 * @pipe: pipe info
696 * @out: file to write to
697 * @ppos: position in @out
698 * @len: number of bytes to splice
699 * @flags: splice modifier flags
700 *
701 * Description:
702 * Will either move or copy pages (determined by @flags options) from
703 * the given pipe inode to the given file.
704 * This one is ->write_iter-based.
705 *
706 */
707 ssize_t
708 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
709 loff_t *ppos, size_t len, unsigned int flags)
710 {
711 struct splice_desc sd = {
712 .total_len = len,
713 .flags = flags,
714 .pos = *ppos,
715 .u.file = out,
716 };
717 int nbufs = pipe->max_usage;
718 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
719 GFP_KERNEL);
720 ssize_t ret;
721
722 if (unlikely(!array))
723 return -ENOMEM;
724
725 pipe_lock(pipe);
726
727 splice_from_pipe_begin(&sd);
728 while (sd.total_len) {
729 struct iov_iter from;
730 unsigned int head, tail, mask;
731 size_t left;
732 int n;
733
734 ret = splice_from_pipe_next(pipe, &sd);
735 if (ret <= 0)
736 break;
737
738 if (unlikely(nbufs < pipe->max_usage)) {
739 kfree(array);
740 nbufs = pipe->max_usage;
741 array = kcalloc(nbufs, sizeof(struct bio_vec),
742 GFP_KERNEL);
743 if (!array) {
744 ret = -ENOMEM;
745 break;
746 }
747 }
748
749 head = pipe->head;
750 tail = pipe->tail;
751 mask = pipe->ring_size - 1;
752
753 /* build the vector */
754 left = sd.total_len;
755 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
756 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
757 size_t this_len = buf->len;
758
759 /* zero-length bvecs are not supported, skip them */
760 if (!this_len)
761 continue;
762 this_len = min(this_len, left);
763
764 ret = pipe_buf_confirm(pipe, buf);
765 if (unlikely(ret)) {
766 if (ret == -ENODATA)
767 ret = 0;
768 goto done;
769 }
770
771 bvec_set_page(&array[n], buf->page, this_len,
772 buf->offset);
773 left -= this_len;
774 n++;
775 }
776
777 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
778 ret = vfs_iter_write(out, &from, &sd.pos, 0);
779 if (ret <= 0)
780 break;
781
782 sd.num_spliced += ret;
783 sd.total_len -= ret;
784 *ppos = sd.pos;
785
786 /* dismiss the fully eaten buffers, adjust the partial one */
787 tail = pipe->tail;
788 while (ret) {
789 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
790 if (ret >= buf->len) {
791 ret -= buf->len;
792 buf->len = 0;
793 pipe_buf_release(pipe, buf);
794 tail++;
795 pipe->tail = tail;
796 if (pipe->files)
797 sd.need_wakeup = true;
798 } else {
799 buf->offset += ret;
800 buf->len -= ret;
801 ret = 0;
802 }
803 }
804 }
805 done:
806 kfree(array);
807 splice_from_pipe_end(pipe, &sd);
808
809 pipe_unlock(pipe);
810
811 if (sd.num_spliced)
812 ret = sd.num_spliced;
813
814 return ret;
815 }
816
817 EXPORT_SYMBOL(iter_file_splice_write);
818
819 /**
820 * generic_splice_sendpage - splice data from a pipe to a socket
821 * @pipe: pipe to splice from
822 * @out: socket to write to
823 * @ppos: position in @out
824 * @len: number of bytes to splice
825 * @flags: splice modifier flags
826 *
827 * Description:
828 * Will send @len bytes from the pipe to a network socket. No data copying
829 * is involved.
830 *
831 */
832 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
833 loff_t *ppos, size_t len, unsigned int flags)
834 {
835 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
836 }
837
838 EXPORT_SYMBOL(generic_splice_sendpage);
839
840 static int warn_unsupported(struct file *file, const char *op)
841 {
842 pr_debug_ratelimited(
843 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
844 op, file, current->pid, current->comm);
845 return -EINVAL;
846 }
847
848 /*
849 * Attempt to initiate a splice from pipe to file.
850 */
851 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
852 loff_t *ppos, size_t len, unsigned int flags)
853 {
854 if (unlikely(!out->f_op->splice_write))
855 return warn_unsupported(out, "write");
856 return out->f_op->splice_write(pipe, out, ppos, len, flags);
857 }
858
859 /*
860 * Attempt to initiate a splice from a file to a pipe.
861 */
862 static long do_splice_to(struct file *in, loff_t *ppos,
863 struct pipe_inode_info *pipe, size_t len,
864 unsigned int flags)
865 {
866 unsigned int p_space;
867 int ret;
868
869 if (unlikely(!(in->f_mode & FMODE_READ)))
870 return -EBADF;
871
872 /* Don't try to read more the pipe has space for. */
873 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
874 len = min_t(size_t, len, p_space << PAGE_SHIFT);
875
876 ret = rw_verify_area(READ, in, ppos, len);
877 if (unlikely(ret < 0))
878 return ret;
879
880 if (unlikely(len > MAX_RW_COUNT))
881 len = MAX_RW_COUNT;
882
883 if (unlikely(!in->f_op->splice_read))
884 return warn_unsupported(in, "read");
885 return in->f_op->splice_read(in, ppos, pipe, len, flags);
886 }
887
888 /**
889 * splice_direct_to_actor - splices data directly between two non-pipes
890 * @in: file to splice from
891 * @sd: actor information on where to splice to
892 * @actor: handles the data splicing
893 *
894 * Description:
895 * This is a special case helper to splice directly between two
896 * points, without requiring an explicit pipe. Internally an allocated
897 * pipe is cached in the process, and reused during the lifetime of
898 * that process.
899 *
900 */
901 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
902 splice_direct_actor *actor)
903 {
904 struct pipe_inode_info *pipe;
905 long ret, bytes;
906 size_t len;
907 int i, flags, more;
908
909 /*
910 * We require the input to be seekable, as we don't want to randomly
911 * drop data for eg socket -> socket splicing. Use the piped splicing
912 * for that!
913 */
914 if (unlikely(!(in->f_mode & FMODE_LSEEK)))
915 return -EINVAL;
916
917 /*
918 * neither in nor out is a pipe, setup an internal pipe attached to
919 * 'out' and transfer the wanted data from 'in' to 'out' through that
920 */
921 pipe = current->splice_pipe;
922 if (unlikely(!pipe)) {
923 pipe = alloc_pipe_info();
924 if (!pipe)
925 return -ENOMEM;
926
927 /*
928 * We don't have an immediate reader, but we'll read the stuff
929 * out of the pipe right after the splice_to_pipe(). So set
930 * PIPE_READERS appropriately.
931 */
932 pipe->readers = 1;
933
934 current->splice_pipe = pipe;
935 }
936
937 /*
938 * Do the splice.
939 */
940 bytes = 0;
941 len = sd->total_len;
942 flags = sd->flags;
943
944 /*
945 * Don't block on output, we have to drain the direct pipe.
946 */
947 sd->flags &= ~SPLICE_F_NONBLOCK;
948 more = sd->flags & SPLICE_F_MORE;
949
950 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
951
952 while (len) {
953 size_t read_len;
954 loff_t pos = sd->pos, prev_pos = pos;
955
956 ret = do_splice_to(in, &pos, pipe, len, flags);
957 if (unlikely(ret <= 0))
958 goto out_release;
959
960 read_len = ret;
961 sd->total_len = read_len;
962
963 /*
964 * If more data is pending, set SPLICE_F_MORE
965 * If this is the last data and SPLICE_F_MORE was not set
966 * initially, clears it.
967 */
968 if (read_len < len)
969 sd->flags |= SPLICE_F_MORE;
970 else if (!more)
971 sd->flags &= ~SPLICE_F_MORE;
972 /*
973 * NOTE: nonblocking mode only applies to the input. We
974 * must not do the output in nonblocking mode as then we
975 * could get stuck data in the internal pipe:
976 */
977 ret = actor(pipe, sd);
978 if (unlikely(ret <= 0)) {
979 sd->pos = prev_pos;
980 goto out_release;
981 }
982
983 bytes += ret;
984 len -= ret;
985 sd->pos = pos;
986
987 if (ret < read_len) {
988 sd->pos = prev_pos + ret;
989 goto out_release;
990 }
991 }
992
993 done:
994 pipe->tail = pipe->head = 0;
995 file_accessed(in);
996 return bytes;
997
998 out_release:
999 /*
1000 * If we did an incomplete transfer we must release
1001 * the pipe buffers in question:
1002 */
1003 for (i = 0; i < pipe->ring_size; i++) {
1004 struct pipe_buffer *buf = &pipe->bufs[i];
1005
1006 if (buf->ops)
1007 pipe_buf_release(pipe, buf);
1008 }
1009
1010 if (!bytes)
1011 bytes = ret;
1012
1013 goto done;
1014 }
1015 EXPORT_SYMBOL(splice_direct_to_actor);
1016
1017 static int direct_splice_actor(struct pipe_inode_info *pipe,
1018 struct splice_desc *sd)
1019 {
1020 struct file *file = sd->u.file;
1021
1022 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1023 sd->flags);
1024 }
1025
1026 /**
1027 * do_splice_direct - splices data directly between two files
1028 * @in: file to splice from
1029 * @ppos: input file offset
1030 * @out: file to splice to
1031 * @opos: output file offset
1032 * @len: number of bytes to splice
1033 * @flags: splice modifier flags
1034 *
1035 * Description:
1036 * For use by do_sendfile(). splice can easily emulate sendfile, but
1037 * doing it in the application would incur an extra system call
1038 * (splice in + splice out, as compared to just sendfile()). So this helper
1039 * can splice directly through a process-private pipe.
1040 *
1041 */
1042 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1043 loff_t *opos, size_t len, unsigned int flags)
1044 {
1045 struct splice_desc sd = {
1046 .len = len,
1047 .total_len = len,
1048 .flags = flags,
1049 .pos = *ppos,
1050 .u.file = out,
1051 .opos = opos,
1052 };
1053 long ret;
1054
1055 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1056 return -EBADF;
1057
1058 if (unlikely(out->f_flags & O_APPEND))
1059 return -EINVAL;
1060
1061 ret = rw_verify_area(WRITE, out, opos, len);
1062 if (unlikely(ret < 0))
1063 return ret;
1064
1065 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1066 if (ret > 0)
1067 *ppos = sd.pos;
1068
1069 return ret;
1070 }
1071 EXPORT_SYMBOL(do_splice_direct);
1072
1073 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1074 {
1075 for (;;) {
1076 if (unlikely(!pipe->readers)) {
1077 send_sig(SIGPIPE, current, 0);
1078 return -EPIPE;
1079 }
1080 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1081 return 0;
1082 if (flags & SPLICE_F_NONBLOCK)
1083 return -EAGAIN;
1084 if (signal_pending(current))
1085 return -ERESTARTSYS;
1086 pipe_wait_writable(pipe);
1087 }
1088 }
1089
1090 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1091 struct pipe_inode_info *opipe,
1092 size_t len, unsigned int flags);
1093
1094 long splice_file_to_pipe(struct file *in,
1095 struct pipe_inode_info *opipe,
1096 loff_t *offset,
1097 size_t len, unsigned int flags)
1098 {
1099 long ret;
1100
1101 pipe_lock(opipe);
1102 ret = wait_for_space(opipe, flags);
1103 if (!ret)
1104 ret = do_splice_to(in, offset, opipe, len, flags);
1105 pipe_unlock(opipe);
1106 if (ret > 0)
1107 wakeup_pipe_readers(opipe);
1108 return ret;
1109 }
1110
1111 /*
1112 * Determine where to splice to/from.
1113 */
1114 long do_splice(struct file *in, loff_t *off_in, struct file *out,
1115 loff_t *off_out, size_t len, unsigned int flags)
1116 {
1117 struct pipe_inode_info *ipipe;
1118 struct pipe_inode_info *opipe;
1119 loff_t offset;
1120 long ret;
1121
1122 if (unlikely(!(in->f_mode & FMODE_READ) ||
1123 !(out->f_mode & FMODE_WRITE)))
1124 return -EBADF;
1125
1126 ipipe = get_pipe_info(in, true);
1127 opipe = get_pipe_info(out, true);
1128
1129 if (ipipe && opipe) {
1130 if (off_in || off_out)
1131 return -ESPIPE;
1132
1133 /* Splicing to self would be fun, but... */
1134 if (ipipe == opipe)
1135 return -EINVAL;
1136
1137 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1138 flags |= SPLICE_F_NONBLOCK;
1139
1140 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1141 }
1142
1143 if (ipipe) {
1144 if (off_in)
1145 return -ESPIPE;
1146 if (off_out) {
1147 if (!(out->f_mode & FMODE_PWRITE))
1148 return -EINVAL;
1149 offset = *off_out;
1150 } else {
1151 offset = out->f_pos;
1152 }
1153
1154 if (unlikely(out->f_flags & O_APPEND))
1155 return -EINVAL;
1156
1157 ret = rw_verify_area(WRITE, out, &offset, len);
1158 if (unlikely(ret < 0))
1159 return ret;
1160
1161 if (in->f_flags & O_NONBLOCK)
1162 flags |= SPLICE_F_NONBLOCK;
1163
1164 file_start_write(out);
1165 ret = do_splice_from(ipipe, out, &offset, len, flags);
1166 file_end_write(out);
1167
1168 if (!off_out)
1169 out->f_pos = offset;
1170 else
1171 *off_out = offset;
1172
1173 return ret;
1174 }
1175
1176 if (opipe) {
1177 if (off_out)
1178 return -ESPIPE;
1179 if (off_in) {
1180 if (!(in->f_mode & FMODE_PREAD))
1181 return -EINVAL;
1182 offset = *off_in;
1183 } else {
1184 offset = in->f_pos;
1185 }
1186
1187 if (out->f_flags & O_NONBLOCK)
1188 flags |= SPLICE_F_NONBLOCK;
1189
1190 ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1191 if (!off_in)
1192 in->f_pos = offset;
1193 else
1194 *off_in = offset;
1195
1196 return ret;
1197 }
1198
1199 return -EINVAL;
1200 }
1201
1202 static long __do_splice(struct file *in, loff_t __user *off_in,
1203 struct file *out, loff_t __user *off_out,
1204 size_t len, unsigned int flags)
1205 {
1206 struct pipe_inode_info *ipipe;
1207 struct pipe_inode_info *opipe;
1208 loff_t offset, *__off_in = NULL, *__off_out = NULL;
1209 long ret;
1210
1211 ipipe = get_pipe_info(in, true);
1212 opipe = get_pipe_info(out, true);
1213
1214 if (ipipe && off_in)
1215 return -ESPIPE;
1216 if (opipe && off_out)
1217 return -ESPIPE;
1218
1219 if (off_out) {
1220 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1221 return -EFAULT;
1222 __off_out = &offset;
1223 }
1224 if (off_in) {
1225 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1226 return -EFAULT;
1227 __off_in = &offset;
1228 }
1229
1230 ret = do_splice(in, __off_in, out, __off_out, len, flags);
1231 if (ret < 0)
1232 return ret;
1233
1234 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1235 return -EFAULT;
1236 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1237 return -EFAULT;
1238
1239 return ret;
1240 }
1241
1242 static int iter_to_pipe(struct iov_iter *from,
1243 struct pipe_inode_info *pipe,
1244 unsigned flags)
1245 {
1246 struct pipe_buffer buf = {
1247 .ops = &user_page_pipe_buf_ops,
1248 .flags = flags
1249 };
1250 size_t total = 0;
1251 int ret = 0;
1252
1253 while (iov_iter_count(from)) {
1254 struct page *pages[16];
1255 ssize_t left;
1256 size_t start;
1257 int i, n;
1258
1259 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1260 if (left <= 0) {
1261 ret = left;
1262 break;
1263 }
1264
1265 n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1266 for (i = 0; i < n; i++) {
1267 int size = min_t(int, left, PAGE_SIZE - start);
1268
1269 buf.page = pages[i];
1270 buf.offset = start;
1271 buf.len = size;
1272 ret = add_to_pipe(pipe, &buf);
1273 if (unlikely(ret < 0)) {
1274 iov_iter_revert(from, left);
1275 // this one got dropped by add_to_pipe()
1276 while (++i < n)
1277 put_page(pages[i]);
1278 goto out;
1279 }
1280 total += ret;
1281 left -= size;
1282 start = 0;
1283 }
1284 }
1285 out:
1286 return total ? total : ret;
1287 }
1288
1289 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1290 struct splice_desc *sd)
1291 {
1292 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1293 return n == sd->len ? n : -EFAULT;
1294 }
1295
1296 /*
1297 * For lack of a better implementation, implement vmsplice() to userspace
1298 * as a simple copy of the pipes pages to the user iov.
1299 */
1300 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1301 unsigned int flags)
1302 {
1303 struct pipe_inode_info *pipe = get_pipe_info(file, true);
1304 struct splice_desc sd = {
1305 .total_len = iov_iter_count(iter),
1306 .flags = flags,
1307 .u.data = iter
1308 };
1309 long ret = 0;
1310
1311 if (!pipe)
1312 return -EBADF;
1313
1314 if (sd.total_len) {
1315 pipe_lock(pipe);
1316 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1317 pipe_unlock(pipe);
1318 }
1319
1320 return ret;
1321 }
1322
1323 /*
1324 * vmsplice splices a user address range into a pipe. It can be thought of
1325 * as splice-from-memory, where the regular splice is splice-from-file (or
1326 * to file). In both cases the output is a pipe, naturally.
1327 */
1328 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1329 unsigned int flags)
1330 {
1331 struct pipe_inode_info *pipe;
1332 long ret = 0;
1333 unsigned buf_flag = 0;
1334
1335 if (flags & SPLICE_F_GIFT)
1336 buf_flag = PIPE_BUF_FLAG_GIFT;
1337
1338 pipe = get_pipe_info(file, true);
1339 if (!pipe)
1340 return -EBADF;
1341
1342 pipe_lock(pipe);
1343 ret = wait_for_space(pipe, flags);
1344 if (!ret)
1345 ret = iter_to_pipe(iter, pipe, buf_flag);
1346 pipe_unlock(pipe);
1347 if (ret > 0)
1348 wakeup_pipe_readers(pipe);
1349 return ret;
1350 }
1351
1352 static int vmsplice_type(struct fd f, int *type)
1353 {
1354 if (!f.file)
1355 return -EBADF;
1356 if (f.file->f_mode & FMODE_WRITE) {
1357 *type = ITER_SOURCE;
1358 } else if (f.file->f_mode & FMODE_READ) {
1359 *type = ITER_DEST;
1360 } else {
1361 fdput(f);
1362 return -EBADF;
1363 }
1364 return 0;
1365 }
1366
1367 /*
1368 * Note that vmsplice only really supports true splicing _from_ user memory
1369 * to a pipe, not the other way around. Splicing from user memory is a simple
1370 * operation that can be supported without any funky alignment restrictions
1371 * or nasty vm tricks. We simply map in the user memory and fill them into
1372 * a pipe. The reverse isn't quite as easy, though. There are two possible
1373 * solutions for that:
1374 *
1375 * - memcpy() the data internally, at which point we might as well just
1376 * do a regular read() on the buffer anyway.
1377 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1378 * has restriction limitations on both ends of the pipe).
1379 *
1380 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1381 *
1382 */
1383 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1384 unsigned long, nr_segs, unsigned int, flags)
1385 {
1386 struct iovec iovstack[UIO_FASTIOV];
1387 struct iovec *iov = iovstack;
1388 struct iov_iter iter;
1389 ssize_t error;
1390 struct fd f;
1391 int type;
1392
1393 if (unlikely(flags & ~SPLICE_F_ALL))
1394 return -EINVAL;
1395
1396 f = fdget(fd);
1397 error = vmsplice_type(f, &type);
1398 if (error)
1399 return error;
1400
1401 error = import_iovec(type, uiov, nr_segs,
1402 ARRAY_SIZE(iovstack), &iov, &iter);
1403 if (error < 0)
1404 goto out_fdput;
1405
1406 if (!iov_iter_count(&iter))
1407 error = 0;
1408 else if (type == ITER_SOURCE)
1409 error = vmsplice_to_pipe(f.file, &iter, flags);
1410 else
1411 error = vmsplice_to_user(f.file, &iter, flags);
1412
1413 kfree(iov);
1414 out_fdput:
1415 fdput(f);
1416 return error;
1417 }
1418
1419 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1420 int, fd_out, loff_t __user *, off_out,
1421 size_t, len, unsigned int, flags)
1422 {
1423 struct fd in, out;
1424 long error;
1425
1426 if (unlikely(!len))
1427 return 0;
1428
1429 if (unlikely(flags & ~SPLICE_F_ALL))
1430 return -EINVAL;
1431
1432 error = -EBADF;
1433 in = fdget(fd_in);
1434 if (in.file) {
1435 out = fdget(fd_out);
1436 if (out.file) {
1437 error = __do_splice(in.file, off_in, out.file, off_out,
1438 len, flags);
1439 fdput(out);
1440 }
1441 fdput(in);
1442 }
1443 return error;
1444 }
1445
1446 /*
1447 * Make sure there's data to read. Wait for input if we can, otherwise
1448 * return an appropriate error.
1449 */
1450 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1451 {
1452 int ret;
1453
1454 /*
1455 * Check the pipe occupancy without the inode lock first. This function
1456 * is speculative anyways, so missing one is ok.
1457 */
1458 if (!pipe_empty(pipe->head, pipe->tail))
1459 return 0;
1460
1461 ret = 0;
1462 pipe_lock(pipe);
1463
1464 while (pipe_empty(pipe->head, pipe->tail)) {
1465 if (signal_pending(current)) {
1466 ret = -ERESTARTSYS;
1467 break;
1468 }
1469 if (!pipe->writers)
1470 break;
1471 if (flags & SPLICE_F_NONBLOCK) {
1472 ret = -EAGAIN;
1473 break;
1474 }
1475 pipe_wait_readable(pipe);
1476 }
1477
1478 pipe_unlock(pipe);
1479 return ret;
1480 }
1481
1482 /*
1483 * Make sure there's writeable room. Wait for room if we can, otherwise
1484 * return an appropriate error.
1485 */
1486 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1487 {
1488 int ret;
1489
1490 /*
1491 * Check pipe occupancy without the inode lock first. This function
1492 * is speculative anyways, so missing one is ok.
1493 */
1494 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1495 return 0;
1496
1497 ret = 0;
1498 pipe_lock(pipe);
1499
1500 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1501 if (!pipe->readers) {
1502 send_sig(SIGPIPE, current, 0);
1503 ret = -EPIPE;
1504 break;
1505 }
1506 if (flags & SPLICE_F_NONBLOCK) {
1507 ret = -EAGAIN;
1508 break;
1509 }
1510 if (signal_pending(current)) {
1511 ret = -ERESTARTSYS;
1512 break;
1513 }
1514 pipe_wait_writable(pipe);
1515 }
1516
1517 pipe_unlock(pipe);
1518 return ret;
1519 }
1520
1521 /*
1522 * Splice contents of ipipe to opipe.
1523 */
1524 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1525 struct pipe_inode_info *opipe,
1526 size_t len, unsigned int flags)
1527 {
1528 struct pipe_buffer *ibuf, *obuf;
1529 unsigned int i_head, o_head;
1530 unsigned int i_tail, o_tail;
1531 unsigned int i_mask, o_mask;
1532 int ret = 0;
1533 bool input_wakeup = false;
1534
1535
1536 retry:
1537 ret = ipipe_prep(ipipe, flags);
1538 if (ret)
1539 return ret;
1540
1541 ret = opipe_prep(opipe, flags);
1542 if (ret)
1543 return ret;
1544
1545 /*
1546 * Potential ABBA deadlock, work around it by ordering lock
1547 * grabbing by pipe info address. Otherwise two different processes
1548 * could deadlock (one doing tee from A -> B, the other from B -> A).
1549 */
1550 pipe_double_lock(ipipe, opipe);
1551
1552 i_tail = ipipe->tail;
1553 i_mask = ipipe->ring_size - 1;
1554 o_head = opipe->head;
1555 o_mask = opipe->ring_size - 1;
1556
1557 do {
1558 size_t o_len;
1559
1560 if (!opipe->readers) {
1561 send_sig(SIGPIPE, current, 0);
1562 if (!ret)
1563 ret = -EPIPE;
1564 break;
1565 }
1566
1567 i_head = ipipe->head;
1568 o_tail = opipe->tail;
1569
1570 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1571 break;
1572
1573 /*
1574 * Cannot make any progress, because either the input
1575 * pipe is empty or the output pipe is full.
1576 */
1577 if (pipe_empty(i_head, i_tail) ||
1578 pipe_full(o_head, o_tail, opipe->max_usage)) {
1579 /* Already processed some buffers, break */
1580 if (ret)
1581 break;
1582
1583 if (flags & SPLICE_F_NONBLOCK) {
1584 ret = -EAGAIN;
1585 break;
1586 }
1587
1588 /*
1589 * We raced with another reader/writer and haven't
1590 * managed to process any buffers. A zero return
1591 * value means EOF, so retry instead.
1592 */
1593 pipe_unlock(ipipe);
1594 pipe_unlock(opipe);
1595 goto retry;
1596 }
1597
1598 ibuf = &ipipe->bufs[i_tail & i_mask];
1599 obuf = &opipe->bufs[o_head & o_mask];
1600
1601 if (len >= ibuf->len) {
1602 /*
1603 * Simply move the whole buffer from ipipe to opipe
1604 */
1605 *obuf = *ibuf;
1606 ibuf->ops = NULL;
1607 i_tail++;
1608 ipipe->tail = i_tail;
1609 input_wakeup = true;
1610 o_len = obuf->len;
1611 o_head++;
1612 opipe->head = o_head;
1613 } else {
1614 /*
1615 * Get a reference to this pipe buffer,
1616 * so we can copy the contents over.
1617 */
1618 if (!pipe_buf_get(ipipe, ibuf)) {
1619 if (ret == 0)
1620 ret = -EFAULT;
1621 break;
1622 }
1623 *obuf = *ibuf;
1624
1625 /*
1626 * Don't inherit the gift and merge flags, we need to
1627 * prevent multiple steals of this page.
1628 */
1629 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1630 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1631
1632 obuf->len = len;
1633 ibuf->offset += len;
1634 ibuf->len -= len;
1635 o_len = len;
1636 o_head++;
1637 opipe->head = o_head;
1638 }
1639 ret += o_len;
1640 len -= o_len;
1641 } while (len);
1642
1643 pipe_unlock(ipipe);
1644 pipe_unlock(opipe);
1645
1646 /*
1647 * If we put data in the output pipe, wakeup any potential readers.
1648 */
1649 if (ret > 0)
1650 wakeup_pipe_readers(opipe);
1651
1652 if (input_wakeup)
1653 wakeup_pipe_writers(ipipe);
1654
1655 return ret;
1656 }
1657
1658 /*
1659 * Link contents of ipipe to opipe.
1660 */
1661 static int link_pipe(struct pipe_inode_info *ipipe,
1662 struct pipe_inode_info *opipe,
1663 size_t len, unsigned int flags)
1664 {
1665 struct pipe_buffer *ibuf, *obuf;
1666 unsigned int i_head, o_head;
1667 unsigned int i_tail, o_tail;
1668 unsigned int i_mask, o_mask;
1669 int ret = 0;
1670
1671 /*
1672 * Potential ABBA deadlock, work around it by ordering lock
1673 * grabbing by pipe info address. Otherwise two different processes
1674 * could deadlock (one doing tee from A -> B, the other from B -> A).
1675 */
1676 pipe_double_lock(ipipe, opipe);
1677
1678 i_tail = ipipe->tail;
1679 i_mask = ipipe->ring_size - 1;
1680 o_head = opipe->head;
1681 o_mask = opipe->ring_size - 1;
1682
1683 do {
1684 if (!opipe->readers) {
1685 send_sig(SIGPIPE, current, 0);
1686 if (!ret)
1687 ret = -EPIPE;
1688 break;
1689 }
1690
1691 i_head = ipipe->head;
1692 o_tail = opipe->tail;
1693
1694 /*
1695 * If we have iterated all input buffers or run out of
1696 * output room, break.
1697 */
1698 if (pipe_empty(i_head, i_tail) ||
1699 pipe_full(o_head, o_tail, opipe->max_usage))
1700 break;
1701
1702 ibuf = &ipipe->bufs[i_tail & i_mask];
1703 obuf = &opipe->bufs[o_head & o_mask];
1704
1705 /*
1706 * Get a reference to this pipe buffer,
1707 * so we can copy the contents over.
1708 */
1709 if (!pipe_buf_get(ipipe, ibuf)) {
1710 if (ret == 0)
1711 ret = -EFAULT;
1712 break;
1713 }
1714
1715 *obuf = *ibuf;
1716
1717 /*
1718 * Don't inherit the gift and merge flag, we need to prevent
1719 * multiple steals of this page.
1720 */
1721 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1722 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1723
1724 if (obuf->len > len)
1725 obuf->len = len;
1726 ret += obuf->len;
1727 len -= obuf->len;
1728
1729 o_head++;
1730 opipe->head = o_head;
1731 i_tail++;
1732 } while (len);
1733
1734 pipe_unlock(ipipe);
1735 pipe_unlock(opipe);
1736
1737 /*
1738 * If we put data in the output pipe, wakeup any potential readers.
1739 */
1740 if (ret > 0)
1741 wakeup_pipe_readers(opipe);
1742
1743 return ret;
1744 }
1745
1746 /*
1747 * This is a tee(1) implementation that works on pipes. It doesn't copy
1748 * any data, it simply references the 'in' pages on the 'out' pipe.
1749 * The 'flags' used are the SPLICE_F_* variants, currently the only
1750 * applicable one is SPLICE_F_NONBLOCK.
1751 */
1752 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1753 {
1754 struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1755 struct pipe_inode_info *opipe = get_pipe_info(out, true);
1756 int ret = -EINVAL;
1757
1758 if (unlikely(!(in->f_mode & FMODE_READ) ||
1759 !(out->f_mode & FMODE_WRITE)))
1760 return -EBADF;
1761
1762 /*
1763 * Duplicate the contents of ipipe to opipe without actually
1764 * copying the data.
1765 */
1766 if (ipipe && opipe && ipipe != opipe) {
1767 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1768 flags |= SPLICE_F_NONBLOCK;
1769
1770 /*
1771 * Keep going, unless we encounter an error. The ipipe/opipe
1772 * ordering doesn't really matter.
1773 */
1774 ret = ipipe_prep(ipipe, flags);
1775 if (!ret) {
1776 ret = opipe_prep(opipe, flags);
1777 if (!ret)
1778 ret = link_pipe(ipipe, opipe, len, flags);
1779 }
1780 }
1781
1782 return ret;
1783 }
1784
1785 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1786 {
1787 struct fd in, out;
1788 int error;
1789
1790 if (unlikely(flags & ~SPLICE_F_ALL))
1791 return -EINVAL;
1792
1793 if (unlikely(!len))
1794 return 0;
1795
1796 error = -EBADF;
1797 in = fdget(fdin);
1798 if (in.file) {
1799 out = fdget(fdout);
1800 if (out.file) {
1801 error = do_tee(in.file, out.file, len, flags);
1802 fdput(out);
1803 }
1804 fdput(in);
1805 }
1806
1807 return error;
1808 }