]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/super.c
super: wait until we passed kill super
[thirdparty/linux.git] / fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41
42 static int thaw_super_locked(struct super_block *sb);
43
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 "sb_writers",
49 "sb_pagefaults",
50 "sb_internal",
51 };
52
53 static inline void __super_lock(struct super_block *sb, bool excl)
54 {
55 if (excl)
56 down_write(&sb->s_umount);
57 else
58 down_read(&sb->s_umount);
59 }
60
61 static inline void super_unlock(struct super_block *sb, bool excl)
62 {
63 if (excl)
64 up_write(&sb->s_umount);
65 else
66 up_read(&sb->s_umount);
67 }
68
69 static inline void __super_lock_excl(struct super_block *sb)
70 {
71 __super_lock(sb, true);
72 }
73
74 static inline void super_unlock_excl(struct super_block *sb)
75 {
76 super_unlock(sb, true);
77 }
78
79 static inline void super_unlock_shared(struct super_block *sb)
80 {
81 super_unlock(sb, false);
82 }
83
84 static inline bool wait_born(struct super_block *sb)
85 {
86 unsigned int flags;
87
88 /*
89 * Pairs with smp_store_release() in super_wake() and ensures
90 * that we see SB_BORN or SB_DYING after we're woken.
91 */
92 flags = smp_load_acquire(&sb->s_flags);
93 return flags & (SB_BORN | SB_DYING);
94 }
95
96 /**
97 * super_lock - wait for superblock to become ready and lock it
98 * @sb: superblock to wait for
99 * @excl: whether exclusive access is required
100 *
101 * If the superblock has neither passed through vfs_get_tree() or
102 * generic_shutdown_super() yet wait for it to happen. Either superblock
103 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
104 * woken and we'll see SB_DYING.
105 *
106 * The caller must have acquired a temporary reference on @sb->s_count.
107 *
108 * Return: This returns true if SB_BORN was set, false if SB_DYING was
109 * set. The function acquires s_umount and returns with it held.
110 */
111 static __must_check bool super_lock(struct super_block *sb, bool excl)
112 {
113
114 lockdep_assert_not_held(&sb->s_umount);
115
116 relock:
117 __super_lock(sb, excl);
118
119 /*
120 * Has gone through generic_shutdown_super() in the meantime.
121 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
122 * grab a reference to this. Tell them so.
123 */
124 if (sb->s_flags & SB_DYING)
125 return false;
126
127 /* Has called ->get_tree() successfully. */
128 if (sb->s_flags & SB_BORN)
129 return true;
130
131 super_unlock(sb, excl);
132
133 /* wait until the superblock is ready or dying */
134 wait_var_event(&sb->s_flags, wait_born(sb));
135
136 /*
137 * Neither SB_BORN nor SB_DYING are ever unset so we never loop.
138 * Just reacquire @sb->s_umount for the caller.
139 */
140 goto relock;
141 }
142
143 /* wait and acquire read-side of @sb->s_umount */
144 static inline bool super_lock_shared(struct super_block *sb)
145 {
146 return super_lock(sb, false);
147 }
148
149 /* wait and acquire write-side of @sb->s_umount */
150 static inline bool super_lock_excl(struct super_block *sb)
151 {
152 return super_lock(sb, true);
153 }
154
155 /* wake waiters */
156 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
157 static void super_wake(struct super_block *sb, unsigned int flag)
158 {
159 WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
160 WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
161
162 /*
163 * Pairs with smp_load_acquire() in super_lock() to make sure
164 * all initializations in the superblock are seen by the user
165 * seeing SB_BORN sent.
166 */
167 smp_store_release(&sb->s_flags, sb->s_flags | flag);
168 /*
169 * Pairs with the barrier in prepare_to_wait_event() to make sure
170 * ___wait_var_event() either sees SB_BORN set or
171 * waitqueue_active() check in wake_up_var() sees the waiter.
172 */
173 smp_mb();
174 wake_up_var(&sb->s_flags);
175 }
176
177 /*
178 * One thing we have to be careful of with a per-sb shrinker is that we don't
179 * drop the last active reference to the superblock from within the shrinker.
180 * If that happens we could trigger unregistering the shrinker from within the
181 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
182 * take a passive reference to the superblock to avoid this from occurring.
183 */
184 static unsigned long super_cache_scan(struct shrinker *shrink,
185 struct shrink_control *sc)
186 {
187 struct super_block *sb;
188 long fs_objects = 0;
189 long total_objects;
190 long freed = 0;
191 long dentries;
192 long inodes;
193
194 sb = container_of(shrink, struct super_block, s_shrink);
195
196 /*
197 * Deadlock avoidance. We may hold various FS locks, and we don't want
198 * to recurse into the FS that called us in clear_inode() and friends..
199 */
200 if (!(sc->gfp_mask & __GFP_FS))
201 return SHRINK_STOP;
202
203 if (!super_trylock_shared(sb))
204 return SHRINK_STOP;
205
206 if (sb->s_op->nr_cached_objects)
207 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
208
209 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
210 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
211 total_objects = dentries + inodes + fs_objects + 1;
212 if (!total_objects)
213 total_objects = 1;
214
215 /* proportion the scan between the caches */
216 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
217 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
218 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
219
220 /*
221 * prune the dcache first as the icache is pinned by it, then
222 * prune the icache, followed by the filesystem specific caches
223 *
224 * Ensure that we always scan at least one object - memcg kmem
225 * accounting uses this to fully empty the caches.
226 */
227 sc->nr_to_scan = dentries + 1;
228 freed = prune_dcache_sb(sb, sc);
229 sc->nr_to_scan = inodes + 1;
230 freed += prune_icache_sb(sb, sc);
231
232 if (fs_objects) {
233 sc->nr_to_scan = fs_objects + 1;
234 freed += sb->s_op->free_cached_objects(sb, sc);
235 }
236
237 super_unlock_shared(sb);
238 return freed;
239 }
240
241 static unsigned long super_cache_count(struct shrinker *shrink,
242 struct shrink_control *sc)
243 {
244 struct super_block *sb;
245 long total_objects = 0;
246
247 sb = container_of(shrink, struct super_block, s_shrink);
248
249 /*
250 * We don't call super_trylock_shared() here as it is a scalability
251 * bottleneck, so we're exposed to partial setup state. The shrinker
252 * rwsem does not protect filesystem operations backing
253 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
254 * change between super_cache_count and super_cache_scan, so we really
255 * don't need locks here.
256 *
257 * However, if we are currently mounting the superblock, the underlying
258 * filesystem might be in a state of partial construction and hence it
259 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check
260 * to avoid this situation, so do the same here. The memory barrier is
261 * matched with the one in mount_fs() as we don't hold locks here.
262 */
263 if (!(sb->s_flags & SB_BORN))
264 return 0;
265 smp_rmb();
266
267 if (sb->s_op && sb->s_op->nr_cached_objects)
268 total_objects = sb->s_op->nr_cached_objects(sb, sc);
269
270 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
271 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
272
273 if (!total_objects)
274 return SHRINK_EMPTY;
275
276 total_objects = vfs_pressure_ratio(total_objects);
277 return total_objects;
278 }
279
280 static void destroy_super_work(struct work_struct *work)
281 {
282 struct super_block *s = container_of(work, struct super_block,
283 destroy_work);
284 int i;
285
286 for (i = 0; i < SB_FREEZE_LEVELS; i++)
287 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
288 kfree(s);
289 }
290
291 static void destroy_super_rcu(struct rcu_head *head)
292 {
293 struct super_block *s = container_of(head, struct super_block, rcu);
294 INIT_WORK(&s->destroy_work, destroy_super_work);
295 schedule_work(&s->destroy_work);
296 }
297
298 /* Free a superblock that has never been seen by anyone */
299 static void destroy_unused_super(struct super_block *s)
300 {
301 if (!s)
302 return;
303 super_unlock_excl(s);
304 list_lru_destroy(&s->s_dentry_lru);
305 list_lru_destroy(&s->s_inode_lru);
306 security_sb_free(s);
307 put_user_ns(s->s_user_ns);
308 kfree(s->s_subtype);
309 free_prealloced_shrinker(&s->s_shrink);
310 /* no delays needed */
311 destroy_super_work(&s->destroy_work);
312 }
313
314 /**
315 * alloc_super - create new superblock
316 * @type: filesystem type superblock should belong to
317 * @flags: the mount flags
318 * @user_ns: User namespace for the super_block
319 *
320 * Allocates and initializes a new &struct super_block. alloc_super()
321 * returns a pointer new superblock or %NULL if allocation had failed.
322 */
323 static struct super_block *alloc_super(struct file_system_type *type, int flags,
324 struct user_namespace *user_ns)
325 {
326 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
327 static const struct super_operations default_op;
328 int i;
329
330 if (!s)
331 return NULL;
332
333 INIT_LIST_HEAD(&s->s_mounts);
334 s->s_user_ns = get_user_ns(user_ns);
335 init_rwsem(&s->s_umount);
336 lockdep_set_class(&s->s_umount, &type->s_umount_key);
337 /*
338 * sget() can have s_umount recursion.
339 *
340 * When it cannot find a suitable sb, it allocates a new
341 * one (this one), and tries again to find a suitable old
342 * one.
343 *
344 * In case that succeeds, it will acquire the s_umount
345 * lock of the old one. Since these are clearly distrinct
346 * locks, and this object isn't exposed yet, there's no
347 * risk of deadlocks.
348 *
349 * Annotate this by putting this lock in a different
350 * subclass.
351 */
352 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
353
354 if (security_sb_alloc(s))
355 goto fail;
356
357 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
358 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
359 sb_writers_name[i],
360 &type->s_writers_key[i]))
361 goto fail;
362 }
363 s->s_bdi = &noop_backing_dev_info;
364 s->s_flags = flags;
365 if (s->s_user_ns != &init_user_ns)
366 s->s_iflags |= SB_I_NODEV;
367 INIT_HLIST_NODE(&s->s_instances);
368 INIT_HLIST_BL_HEAD(&s->s_roots);
369 mutex_init(&s->s_sync_lock);
370 INIT_LIST_HEAD(&s->s_inodes);
371 spin_lock_init(&s->s_inode_list_lock);
372 INIT_LIST_HEAD(&s->s_inodes_wb);
373 spin_lock_init(&s->s_inode_wblist_lock);
374
375 s->s_count = 1;
376 atomic_set(&s->s_active, 1);
377 mutex_init(&s->s_vfs_rename_mutex);
378 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
379 init_rwsem(&s->s_dquot.dqio_sem);
380 s->s_maxbytes = MAX_NON_LFS;
381 s->s_op = &default_op;
382 s->s_time_gran = 1000000000;
383 s->s_time_min = TIME64_MIN;
384 s->s_time_max = TIME64_MAX;
385
386 s->s_shrink.seeks = DEFAULT_SEEKS;
387 s->s_shrink.scan_objects = super_cache_scan;
388 s->s_shrink.count_objects = super_cache_count;
389 s->s_shrink.batch = 1024;
390 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
391 if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
392 goto fail;
393 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
394 goto fail;
395 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
396 goto fail;
397 return s;
398
399 fail:
400 destroy_unused_super(s);
401 return NULL;
402 }
403
404 /* Superblock refcounting */
405
406 /*
407 * Drop a superblock's refcount. The caller must hold sb_lock.
408 */
409 static void __put_super(struct super_block *s)
410 {
411 if (!--s->s_count) {
412 list_del_init(&s->s_list);
413 WARN_ON(s->s_dentry_lru.node);
414 WARN_ON(s->s_inode_lru.node);
415 WARN_ON(!list_empty(&s->s_mounts));
416 security_sb_free(s);
417 put_user_ns(s->s_user_ns);
418 kfree(s->s_subtype);
419 call_rcu(&s->rcu, destroy_super_rcu);
420 }
421 }
422
423 /**
424 * put_super - drop a temporary reference to superblock
425 * @sb: superblock in question
426 *
427 * Drops a temporary reference, frees superblock if there's no
428 * references left.
429 */
430 void put_super(struct super_block *sb)
431 {
432 spin_lock(&sb_lock);
433 __put_super(sb);
434 spin_unlock(&sb_lock);
435 }
436
437
438 /**
439 * deactivate_locked_super - drop an active reference to superblock
440 * @s: superblock to deactivate
441 *
442 * Drops an active reference to superblock, converting it into a temporary
443 * one if there is no other active references left. In that case we
444 * tell fs driver to shut it down and drop the temporary reference we
445 * had just acquired.
446 *
447 * Caller holds exclusive lock on superblock; that lock is released.
448 */
449 void deactivate_locked_super(struct super_block *s)
450 {
451 struct file_system_type *fs = s->s_type;
452 if (atomic_dec_and_test(&s->s_active)) {
453 unregister_shrinker(&s->s_shrink);
454 fs->kill_sb(s);
455
456 /*
457 * Since list_lru_destroy() may sleep, we cannot call it from
458 * put_super(), where we hold the sb_lock. Therefore we destroy
459 * the lru lists right now.
460 */
461 list_lru_destroy(&s->s_dentry_lru);
462 list_lru_destroy(&s->s_inode_lru);
463
464 /*
465 * Remove it from @fs_supers so it isn't found by new
466 * sget{_fc}() walkers anymore. Any concurrent mounter still
467 * managing to grab a temporary reference is guaranteed to
468 * already see SB_DYING and will wait until we notify them about
469 * SB_DEAD.
470 */
471 spin_lock(&sb_lock);
472 hlist_del_init(&s->s_instances);
473 spin_unlock(&sb_lock);
474
475 /*
476 * Let concurrent mounts know that this thing is really dead.
477 * We don't need @sb->s_umount here as every concurrent caller
478 * will see SB_DYING and either discard the superblock or wait
479 * for SB_DEAD.
480 */
481 super_wake(s, SB_DEAD);
482
483 put_filesystem(fs);
484 put_super(s);
485 } else {
486 super_unlock_excl(s);
487 }
488 }
489
490 EXPORT_SYMBOL(deactivate_locked_super);
491
492 /**
493 * deactivate_super - drop an active reference to superblock
494 * @s: superblock to deactivate
495 *
496 * Variant of deactivate_locked_super(), except that superblock is *not*
497 * locked by caller. If we are going to drop the final active reference,
498 * lock will be acquired prior to that.
499 */
500 void deactivate_super(struct super_block *s)
501 {
502 if (!atomic_add_unless(&s->s_active, -1, 1)) {
503 __super_lock_excl(s);
504 deactivate_locked_super(s);
505 }
506 }
507
508 EXPORT_SYMBOL(deactivate_super);
509
510 /**
511 * grab_super - acquire an active reference
512 * @s: reference we are trying to make active
513 *
514 * Tries to acquire an active reference. grab_super() is used when we
515 * had just found a superblock in super_blocks or fs_type->fs_supers
516 * and want to turn it into a full-blown active reference. grab_super()
517 * is called with sb_lock held and drops it. Returns 1 in case of
518 * success, 0 if we had failed (superblock contents was already dead or
519 * dying when grab_super() had been called). Note that this is only
520 * called for superblocks not in rundown mode (== ones still on ->fs_supers
521 * of their type), so increment of ->s_count is OK here.
522 */
523 static int grab_super(struct super_block *s) __releases(sb_lock)
524 {
525 bool born;
526
527 s->s_count++;
528 spin_unlock(&sb_lock);
529 born = super_lock_excl(s);
530 if (born && atomic_inc_not_zero(&s->s_active)) {
531 put_super(s);
532 return 1;
533 }
534 super_unlock_excl(s);
535 put_super(s);
536 return 0;
537 }
538
539 static inline bool wait_dead(struct super_block *sb)
540 {
541 unsigned int flags;
542
543 /*
544 * Pairs with memory barrier in super_wake() and ensures
545 * that we see SB_DEAD after we're woken.
546 */
547 flags = smp_load_acquire(&sb->s_flags);
548 return flags & SB_DEAD;
549 }
550
551 /**
552 * grab_super_dead - acquire an active reference to a superblock
553 * @sb: superblock to acquire
554 *
555 * Acquire a temporary reference on a superblock and try to trade it for
556 * an active reference. This is used in sget{_fc}() to wait for a
557 * superblock to either become SB_BORN or for it to pass through
558 * sb->kill() and be marked as SB_DEAD.
559 *
560 * Return: This returns true if an active reference could be acquired,
561 * false if not.
562 */
563 static bool grab_super_dead(struct super_block *sb)
564 {
565
566 sb->s_count++;
567 if (grab_super(sb)) {
568 put_super(sb);
569 lockdep_assert_held(&sb->s_umount);
570 return true;
571 }
572 wait_var_event(&sb->s_flags, wait_dead(sb));
573 put_super(sb);
574 lockdep_assert_not_held(&sb->s_umount);
575 return false;
576 }
577
578 /*
579 * super_trylock_shared - try to grab ->s_umount shared
580 * @sb: reference we are trying to grab
581 *
582 * Try to prevent fs shutdown. This is used in places where we
583 * cannot take an active reference but we need to ensure that the
584 * filesystem is not shut down while we are working on it. It returns
585 * false if we cannot acquire s_umount or if we lose the race and
586 * filesystem already got into shutdown, and returns true with the s_umount
587 * lock held in read mode in case of success. On successful return,
588 * the caller must drop the s_umount lock when done.
589 *
590 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
591 * The reason why it's safe is that we are OK with doing trylock instead
592 * of down_read(). There's a couple of places that are OK with that, but
593 * it's very much not a general-purpose interface.
594 */
595 bool super_trylock_shared(struct super_block *sb)
596 {
597 if (down_read_trylock(&sb->s_umount)) {
598 if (!(sb->s_flags & SB_DYING) && sb->s_root &&
599 (sb->s_flags & SB_BORN))
600 return true;
601 super_unlock_shared(sb);
602 }
603
604 return false;
605 }
606
607 /**
608 * retire_super - prevents superblock from being reused
609 * @sb: superblock to retire
610 *
611 * The function marks superblock to be ignored in superblock test, which
612 * prevents it from being reused for any new mounts. If the superblock has
613 * a private bdi, it also unregisters it, but doesn't reduce the refcount
614 * of the superblock to prevent potential races. The refcount is reduced
615 * by generic_shutdown_super(). The function can not be called
616 * concurrently with generic_shutdown_super(). It is safe to call the
617 * function multiple times, subsequent calls have no effect.
618 *
619 * The marker will affect the re-use only for block-device-based
620 * superblocks. Other superblocks will still get marked if this function
621 * is used, but that will not affect their reusability.
622 */
623 void retire_super(struct super_block *sb)
624 {
625 WARN_ON(!sb->s_bdev);
626 __super_lock_excl(sb);
627 if (sb->s_iflags & SB_I_PERSB_BDI) {
628 bdi_unregister(sb->s_bdi);
629 sb->s_iflags &= ~SB_I_PERSB_BDI;
630 }
631 sb->s_iflags |= SB_I_RETIRED;
632 super_unlock_excl(sb);
633 }
634 EXPORT_SYMBOL(retire_super);
635
636 /**
637 * generic_shutdown_super - common helper for ->kill_sb()
638 * @sb: superblock to kill
639 *
640 * generic_shutdown_super() does all fs-independent work on superblock
641 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
642 * that need destruction out of superblock, call generic_shutdown_super()
643 * and release aforementioned objects. Note: dentries and inodes _are_
644 * taken care of and do not need specific handling.
645 *
646 * Upon calling this function, the filesystem may no longer alter or
647 * rearrange the set of dentries belonging to this super_block, nor may it
648 * change the attachments of dentries to inodes.
649 */
650 void generic_shutdown_super(struct super_block *sb)
651 {
652 const struct super_operations *sop = sb->s_op;
653
654 if (sb->s_root) {
655 shrink_dcache_for_umount(sb);
656 sync_filesystem(sb);
657 sb->s_flags &= ~SB_ACTIVE;
658
659 cgroup_writeback_umount();
660
661 /* Evict all inodes with zero refcount. */
662 evict_inodes(sb);
663
664 /*
665 * Clean up and evict any inodes that still have references due
666 * to fsnotify or the security policy.
667 */
668 fsnotify_sb_delete(sb);
669 security_sb_delete(sb);
670
671 /*
672 * Now that all potentially-encrypted inodes have been evicted,
673 * the fscrypt keyring can be destroyed.
674 */
675 fscrypt_destroy_keyring(sb);
676
677 if (sb->s_dio_done_wq) {
678 destroy_workqueue(sb->s_dio_done_wq);
679 sb->s_dio_done_wq = NULL;
680 }
681
682 if (sop->put_super)
683 sop->put_super(sb);
684
685 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
686 "VFS: Busy inodes after unmount of %s (%s)",
687 sb->s_id, sb->s_type->name)) {
688 /*
689 * Adding a proper bailout path here would be hard, but
690 * we can at least make it more likely that a later
691 * iput_final() or such crashes cleanly.
692 */
693 struct inode *inode;
694
695 spin_lock(&sb->s_inode_list_lock);
696 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
697 inode->i_op = VFS_PTR_POISON;
698 inode->i_sb = VFS_PTR_POISON;
699 inode->i_mapping = VFS_PTR_POISON;
700 }
701 spin_unlock(&sb->s_inode_list_lock);
702 }
703 }
704 /*
705 * Broadcast to everyone that grabbed a temporary reference to this
706 * superblock before we removed it from @fs_supers that the superblock
707 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
708 * discard this superblock and treat it as dead.
709 *
710 * We leave the superblock on @fs_supers so it can be found by
711 * sget{_fc}() until we passed sb->kill_sb().
712 */
713 super_wake(sb, SB_DYING);
714 super_unlock_excl(sb);
715 if (sb->s_bdi != &noop_backing_dev_info) {
716 if (sb->s_iflags & SB_I_PERSB_BDI)
717 bdi_unregister(sb->s_bdi);
718 bdi_put(sb->s_bdi);
719 sb->s_bdi = &noop_backing_dev_info;
720 }
721 }
722
723 EXPORT_SYMBOL(generic_shutdown_super);
724
725 bool mount_capable(struct fs_context *fc)
726 {
727 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
728 return capable(CAP_SYS_ADMIN);
729 else
730 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
731 }
732
733 /**
734 * sget_fc - Find or create a superblock
735 * @fc: Filesystem context.
736 * @test: Comparison callback
737 * @set: Setup callback
738 *
739 * Find or create a superblock using the parameters stored in the filesystem
740 * context and the two callback functions.
741 *
742 * If an extant superblock is matched, then that will be returned with an
743 * elevated reference count that the caller must transfer or discard.
744 *
745 * If no match is made, a new superblock will be allocated and basic
746 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
747 * the set() callback will be invoked), the superblock will be published and it
748 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
749 * as yet unset.
750 */
751 struct super_block *sget_fc(struct fs_context *fc,
752 int (*test)(struct super_block *, struct fs_context *),
753 int (*set)(struct super_block *, struct fs_context *))
754 {
755 struct super_block *s = NULL;
756 struct super_block *old;
757 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
758 int err;
759
760 retry:
761 spin_lock(&sb_lock);
762 if (test) {
763 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
764 if (test(old, fc))
765 goto share_extant_sb;
766 }
767 }
768 if (!s) {
769 spin_unlock(&sb_lock);
770 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
771 if (!s)
772 return ERR_PTR(-ENOMEM);
773 goto retry;
774 }
775
776 s->s_fs_info = fc->s_fs_info;
777 err = set(s, fc);
778 if (err) {
779 s->s_fs_info = NULL;
780 spin_unlock(&sb_lock);
781 destroy_unused_super(s);
782 return ERR_PTR(err);
783 }
784 fc->s_fs_info = NULL;
785 s->s_type = fc->fs_type;
786 s->s_iflags |= fc->s_iflags;
787 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
788 /*
789 * Make the superblock visible on @super_blocks and @fs_supers.
790 * It's in a nascent state and users should wait on SB_BORN or
791 * SB_DYING to be set.
792 */
793 list_add_tail(&s->s_list, &super_blocks);
794 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
795 spin_unlock(&sb_lock);
796 get_filesystem(s->s_type);
797 register_shrinker_prepared(&s->s_shrink);
798 return s;
799
800 share_extant_sb:
801 if (user_ns != old->s_user_ns) {
802 spin_unlock(&sb_lock);
803 destroy_unused_super(s);
804 return ERR_PTR(-EBUSY);
805 }
806 if (!grab_super_dead(old))
807 goto retry;
808 destroy_unused_super(s);
809 return old;
810 }
811 EXPORT_SYMBOL(sget_fc);
812
813 /**
814 * sget - find or create a superblock
815 * @type: filesystem type superblock should belong to
816 * @test: comparison callback
817 * @set: setup callback
818 * @flags: mount flags
819 * @data: argument to each of them
820 */
821 struct super_block *sget(struct file_system_type *type,
822 int (*test)(struct super_block *,void *),
823 int (*set)(struct super_block *,void *),
824 int flags,
825 void *data)
826 {
827 struct user_namespace *user_ns = current_user_ns();
828 struct super_block *s = NULL;
829 struct super_block *old;
830 int err;
831
832 /* We don't yet pass the user namespace of the parent
833 * mount through to here so always use &init_user_ns
834 * until that changes.
835 */
836 if (flags & SB_SUBMOUNT)
837 user_ns = &init_user_ns;
838
839 retry:
840 spin_lock(&sb_lock);
841 if (test) {
842 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
843 if (!test(old, data))
844 continue;
845 if (user_ns != old->s_user_ns) {
846 spin_unlock(&sb_lock);
847 destroy_unused_super(s);
848 return ERR_PTR(-EBUSY);
849 }
850 if (!grab_super_dead(old))
851 goto retry;
852 destroy_unused_super(s);
853 return old;
854 }
855 }
856 if (!s) {
857 spin_unlock(&sb_lock);
858 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
859 if (!s)
860 return ERR_PTR(-ENOMEM);
861 goto retry;
862 }
863
864 err = set(s, data);
865 if (err) {
866 spin_unlock(&sb_lock);
867 destroy_unused_super(s);
868 return ERR_PTR(err);
869 }
870 s->s_type = type;
871 strscpy(s->s_id, type->name, sizeof(s->s_id));
872 list_add_tail(&s->s_list, &super_blocks);
873 hlist_add_head(&s->s_instances, &type->fs_supers);
874 spin_unlock(&sb_lock);
875 get_filesystem(type);
876 register_shrinker_prepared(&s->s_shrink);
877 return s;
878 }
879 EXPORT_SYMBOL(sget);
880
881 void drop_super(struct super_block *sb)
882 {
883 super_unlock_shared(sb);
884 put_super(sb);
885 }
886
887 EXPORT_SYMBOL(drop_super);
888
889 void drop_super_exclusive(struct super_block *sb)
890 {
891 super_unlock_excl(sb);
892 put_super(sb);
893 }
894 EXPORT_SYMBOL(drop_super_exclusive);
895
896 static void __iterate_supers(void (*f)(struct super_block *))
897 {
898 struct super_block *sb, *p = NULL;
899
900 spin_lock(&sb_lock);
901 list_for_each_entry(sb, &super_blocks, s_list) {
902 /* Pairs with memory marrier in super_wake(). */
903 if (smp_load_acquire(&sb->s_flags) & SB_DYING)
904 continue;
905 sb->s_count++;
906 spin_unlock(&sb_lock);
907
908 f(sb);
909
910 spin_lock(&sb_lock);
911 if (p)
912 __put_super(p);
913 p = sb;
914 }
915 if (p)
916 __put_super(p);
917 spin_unlock(&sb_lock);
918 }
919 /**
920 * iterate_supers - call function for all active superblocks
921 * @f: function to call
922 * @arg: argument to pass to it
923 *
924 * Scans the superblock list and calls given function, passing it
925 * locked superblock and given argument.
926 */
927 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
928 {
929 struct super_block *sb, *p = NULL;
930
931 spin_lock(&sb_lock);
932 list_for_each_entry(sb, &super_blocks, s_list) {
933 bool born;
934
935 sb->s_count++;
936 spin_unlock(&sb_lock);
937
938 born = super_lock_shared(sb);
939 if (born && sb->s_root)
940 f(sb, arg);
941 super_unlock_shared(sb);
942
943 spin_lock(&sb_lock);
944 if (p)
945 __put_super(p);
946 p = sb;
947 }
948 if (p)
949 __put_super(p);
950 spin_unlock(&sb_lock);
951 }
952
953 /**
954 * iterate_supers_type - call function for superblocks of given type
955 * @type: fs type
956 * @f: function to call
957 * @arg: argument to pass to it
958 *
959 * Scans the superblock list and calls given function, passing it
960 * locked superblock and given argument.
961 */
962 void iterate_supers_type(struct file_system_type *type,
963 void (*f)(struct super_block *, void *), void *arg)
964 {
965 struct super_block *sb, *p = NULL;
966
967 spin_lock(&sb_lock);
968 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
969 bool born;
970
971 sb->s_count++;
972 spin_unlock(&sb_lock);
973
974 born = super_lock_shared(sb);
975 if (born && sb->s_root)
976 f(sb, arg);
977 super_unlock_shared(sb);
978
979 spin_lock(&sb_lock);
980 if (p)
981 __put_super(p);
982 p = sb;
983 }
984 if (p)
985 __put_super(p);
986 spin_unlock(&sb_lock);
987 }
988
989 EXPORT_SYMBOL(iterate_supers_type);
990
991 /**
992 * get_active_super - get an active reference to the superblock of a device
993 * @bdev: device to get the superblock for
994 *
995 * Scans the superblock list and finds the superblock of the file system
996 * mounted on the device given. Returns the superblock with an active
997 * reference or %NULL if none was found.
998 */
999 struct super_block *get_active_super(struct block_device *bdev)
1000 {
1001 struct super_block *sb;
1002
1003 if (!bdev)
1004 return NULL;
1005
1006 spin_lock(&sb_lock);
1007 list_for_each_entry(sb, &super_blocks, s_list) {
1008 if (sb->s_bdev == bdev) {
1009 if (!grab_super(sb))
1010 return NULL;
1011 super_unlock_excl(sb);
1012 return sb;
1013 }
1014 }
1015 spin_unlock(&sb_lock);
1016 return NULL;
1017 }
1018
1019 struct super_block *user_get_super(dev_t dev, bool excl)
1020 {
1021 struct super_block *sb;
1022
1023 spin_lock(&sb_lock);
1024 list_for_each_entry(sb, &super_blocks, s_list) {
1025 if (sb->s_dev == dev) {
1026 bool born;
1027
1028 sb->s_count++;
1029 spin_unlock(&sb_lock);
1030 /* still alive? */
1031 born = super_lock(sb, excl);
1032 if (born && sb->s_root)
1033 return sb;
1034 super_unlock(sb, excl);
1035 /* nope, got unmounted */
1036 spin_lock(&sb_lock);
1037 __put_super(sb);
1038 break;
1039 }
1040 }
1041 spin_unlock(&sb_lock);
1042 return NULL;
1043 }
1044
1045 /**
1046 * reconfigure_super - asks filesystem to change superblock parameters
1047 * @fc: The superblock and configuration
1048 *
1049 * Alters the configuration parameters of a live superblock.
1050 */
1051 int reconfigure_super(struct fs_context *fc)
1052 {
1053 struct super_block *sb = fc->root->d_sb;
1054 int retval;
1055 bool remount_ro = false;
1056 bool remount_rw = false;
1057 bool force = fc->sb_flags & SB_FORCE;
1058
1059 if (fc->sb_flags_mask & ~MS_RMT_MASK)
1060 return -EINVAL;
1061 if (sb->s_writers.frozen != SB_UNFROZEN)
1062 return -EBUSY;
1063
1064 retval = security_sb_remount(sb, fc->security);
1065 if (retval)
1066 return retval;
1067
1068 if (fc->sb_flags_mask & SB_RDONLY) {
1069 #ifdef CONFIG_BLOCK
1070 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1071 bdev_read_only(sb->s_bdev))
1072 return -EACCES;
1073 #endif
1074 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1075 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1076 }
1077
1078 if (remount_ro) {
1079 if (!hlist_empty(&sb->s_pins)) {
1080 super_unlock_excl(sb);
1081 group_pin_kill(&sb->s_pins);
1082 __super_lock_excl(sb);
1083 if (!sb->s_root)
1084 return 0;
1085 if (sb->s_writers.frozen != SB_UNFROZEN)
1086 return -EBUSY;
1087 remount_ro = !sb_rdonly(sb);
1088 }
1089 }
1090 shrink_dcache_sb(sb);
1091
1092 /* If we are reconfiguring to RDONLY and current sb is read/write,
1093 * make sure there are no files open for writing.
1094 */
1095 if (remount_ro) {
1096 if (force) {
1097 sb_start_ro_state_change(sb);
1098 } else {
1099 retval = sb_prepare_remount_readonly(sb);
1100 if (retval)
1101 return retval;
1102 }
1103 } else if (remount_rw) {
1104 /*
1105 * Protect filesystem's reconfigure code from writes from
1106 * userspace until reconfigure finishes.
1107 */
1108 sb_start_ro_state_change(sb);
1109 }
1110
1111 if (fc->ops->reconfigure) {
1112 retval = fc->ops->reconfigure(fc);
1113 if (retval) {
1114 if (!force)
1115 goto cancel_readonly;
1116 /* If forced remount, go ahead despite any errors */
1117 WARN(1, "forced remount of a %s fs returned %i\n",
1118 sb->s_type->name, retval);
1119 }
1120 }
1121
1122 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1123 (fc->sb_flags & fc->sb_flags_mask)));
1124 sb_end_ro_state_change(sb);
1125
1126 /*
1127 * Some filesystems modify their metadata via some other path than the
1128 * bdev buffer cache (eg. use a private mapping, or directories in
1129 * pagecache, etc). Also file data modifications go via their own
1130 * mappings. So If we try to mount readonly then copy the filesystem
1131 * from bdev, we could get stale data, so invalidate it to give a best
1132 * effort at coherency.
1133 */
1134 if (remount_ro && sb->s_bdev)
1135 invalidate_bdev(sb->s_bdev);
1136 return 0;
1137
1138 cancel_readonly:
1139 sb_end_ro_state_change(sb);
1140 return retval;
1141 }
1142
1143 static void do_emergency_remount_callback(struct super_block *sb)
1144 {
1145 bool born = super_lock_excl(sb);
1146
1147 if (born && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
1148 struct fs_context *fc;
1149
1150 fc = fs_context_for_reconfigure(sb->s_root,
1151 SB_RDONLY | SB_FORCE, SB_RDONLY);
1152 if (!IS_ERR(fc)) {
1153 if (parse_monolithic_mount_data(fc, NULL) == 0)
1154 (void)reconfigure_super(fc);
1155 put_fs_context(fc);
1156 }
1157 }
1158 super_unlock_excl(sb);
1159 }
1160
1161 static void do_emergency_remount(struct work_struct *work)
1162 {
1163 __iterate_supers(do_emergency_remount_callback);
1164 kfree(work);
1165 printk("Emergency Remount complete\n");
1166 }
1167
1168 void emergency_remount(void)
1169 {
1170 struct work_struct *work;
1171
1172 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1173 if (work) {
1174 INIT_WORK(work, do_emergency_remount);
1175 schedule_work(work);
1176 }
1177 }
1178
1179 static void do_thaw_all_callback(struct super_block *sb)
1180 {
1181 bool born = super_lock_excl(sb);
1182
1183 if (born && sb->s_root) {
1184 emergency_thaw_bdev(sb);
1185 thaw_super_locked(sb);
1186 } else {
1187 super_unlock_excl(sb);
1188 }
1189 }
1190
1191 static void do_thaw_all(struct work_struct *work)
1192 {
1193 __iterate_supers(do_thaw_all_callback);
1194 kfree(work);
1195 printk(KERN_WARNING "Emergency Thaw complete\n");
1196 }
1197
1198 /**
1199 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1200 *
1201 * Used for emergency unfreeze of all filesystems via SysRq
1202 */
1203 void emergency_thaw_all(void)
1204 {
1205 struct work_struct *work;
1206
1207 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1208 if (work) {
1209 INIT_WORK(work, do_thaw_all);
1210 schedule_work(work);
1211 }
1212 }
1213
1214 static DEFINE_IDA(unnamed_dev_ida);
1215
1216 /**
1217 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1218 * @p: Pointer to a dev_t.
1219 *
1220 * Filesystems which don't use real block devices can call this function
1221 * to allocate a virtual block device.
1222 *
1223 * Context: Any context. Frequently called while holding sb_lock.
1224 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1225 * or -ENOMEM if memory allocation failed.
1226 */
1227 int get_anon_bdev(dev_t *p)
1228 {
1229 int dev;
1230
1231 /*
1232 * Many userspace utilities consider an FSID of 0 invalid.
1233 * Always return at least 1 from get_anon_bdev.
1234 */
1235 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1236 GFP_ATOMIC);
1237 if (dev == -ENOSPC)
1238 dev = -EMFILE;
1239 if (dev < 0)
1240 return dev;
1241
1242 *p = MKDEV(0, dev);
1243 return 0;
1244 }
1245 EXPORT_SYMBOL(get_anon_bdev);
1246
1247 void free_anon_bdev(dev_t dev)
1248 {
1249 ida_free(&unnamed_dev_ida, MINOR(dev));
1250 }
1251 EXPORT_SYMBOL(free_anon_bdev);
1252
1253 int set_anon_super(struct super_block *s, void *data)
1254 {
1255 return get_anon_bdev(&s->s_dev);
1256 }
1257 EXPORT_SYMBOL(set_anon_super);
1258
1259 void kill_anon_super(struct super_block *sb)
1260 {
1261 dev_t dev = sb->s_dev;
1262 generic_shutdown_super(sb);
1263 free_anon_bdev(dev);
1264 }
1265 EXPORT_SYMBOL(kill_anon_super);
1266
1267 void kill_litter_super(struct super_block *sb)
1268 {
1269 if (sb->s_root)
1270 d_genocide(sb->s_root);
1271 kill_anon_super(sb);
1272 }
1273 EXPORT_SYMBOL(kill_litter_super);
1274
1275 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1276 {
1277 return set_anon_super(sb, NULL);
1278 }
1279 EXPORT_SYMBOL(set_anon_super_fc);
1280
1281 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1282 {
1283 return sb->s_fs_info == fc->s_fs_info;
1284 }
1285
1286 static int test_single_super(struct super_block *s, struct fs_context *fc)
1287 {
1288 return 1;
1289 }
1290
1291 static int vfs_get_super(struct fs_context *fc, bool reconf,
1292 int (*test)(struct super_block *, struct fs_context *),
1293 int (*fill_super)(struct super_block *sb,
1294 struct fs_context *fc))
1295 {
1296 struct super_block *sb;
1297 int err;
1298
1299 sb = sget_fc(fc, test, set_anon_super_fc);
1300 if (IS_ERR(sb))
1301 return PTR_ERR(sb);
1302
1303 if (!sb->s_root) {
1304 err = fill_super(sb, fc);
1305 if (err)
1306 goto error;
1307
1308 sb->s_flags |= SB_ACTIVE;
1309 fc->root = dget(sb->s_root);
1310 } else {
1311 fc->root = dget(sb->s_root);
1312 if (reconf) {
1313 err = reconfigure_super(fc);
1314 if (err < 0) {
1315 dput(fc->root);
1316 fc->root = NULL;
1317 goto error;
1318 }
1319 }
1320 }
1321
1322 return 0;
1323
1324 error:
1325 deactivate_locked_super(sb);
1326 return err;
1327 }
1328
1329 int get_tree_nodev(struct fs_context *fc,
1330 int (*fill_super)(struct super_block *sb,
1331 struct fs_context *fc))
1332 {
1333 return vfs_get_super(fc, false, NULL, fill_super);
1334 }
1335 EXPORT_SYMBOL(get_tree_nodev);
1336
1337 int get_tree_single(struct fs_context *fc,
1338 int (*fill_super)(struct super_block *sb,
1339 struct fs_context *fc))
1340 {
1341 return vfs_get_super(fc, false, test_single_super, fill_super);
1342 }
1343 EXPORT_SYMBOL(get_tree_single);
1344
1345 int get_tree_single_reconf(struct fs_context *fc,
1346 int (*fill_super)(struct super_block *sb,
1347 struct fs_context *fc))
1348 {
1349 return vfs_get_super(fc, true, test_single_super, fill_super);
1350 }
1351 EXPORT_SYMBOL(get_tree_single_reconf);
1352
1353 int get_tree_keyed(struct fs_context *fc,
1354 int (*fill_super)(struct super_block *sb,
1355 struct fs_context *fc),
1356 void *key)
1357 {
1358 fc->s_fs_info = key;
1359 return vfs_get_super(fc, false, test_keyed_super, fill_super);
1360 }
1361 EXPORT_SYMBOL(get_tree_keyed);
1362
1363 #ifdef CONFIG_BLOCK
1364 /*
1365 * Lock a super block that the callers holds a reference to.
1366 *
1367 * The caller needs to ensure that the super_block isn't being freed while
1368 * calling this function, e.g. by holding a lock over the call to this function
1369 * and the place that clears the pointer to the superblock used by this function
1370 * before freeing the superblock.
1371 */
1372 static bool super_lock_shared_active(struct super_block *sb)
1373 {
1374 bool born = super_lock_shared(sb);
1375
1376 if (!born || !sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1377 super_unlock_shared(sb);
1378 return false;
1379 }
1380 return true;
1381 }
1382
1383 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1384 {
1385 struct super_block *sb = bdev->bd_holder;
1386
1387 /* bd_holder_lock ensures that the sb isn't freed */
1388 lockdep_assert_held(&bdev->bd_holder_lock);
1389
1390 if (!super_lock_shared_active(sb))
1391 return;
1392
1393 if (!surprise)
1394 sync_filesystem(sb);
1395 shrink_dcache_sb(sb);
1396 invalidate_inodes(sb);
1397 if (sb->s_op->shutdown)
1398 sb->s_op->shutdown(sb);
1399
1400 super_unlock_shared(sb);
1401 }
1402
1403 static void fs_bdev_sync(struct block_device *bdev)
1404 {
1405 struct super_block *sb = bdev->bd_holder;
1406
1407 lockdep_assert_held(&bdev->bd_holder_lock);
1408
1409 if (!super_lock_shared_active(sb))
1410 return;
1411 sync_filesystem(sb);
1412 super_unlock_shared(sb);
1413 }
1414
1415 const struct blk_holder_ops fs_holder_ops = {
1416 .mark_dead = fs_bdev_mark_dead,
1417 .sync = fs_bdev_sync,
1418 };
1419 EXPORT_SYMBOL_GPL(fs_holder_ops);
1420
1421 static int set_bdev_super(struct super_block *s, void *data)
1422 {
1423 s->s_dev = *(dev_t *)data;
1424 return 0;
1425 }
1426
1427 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1428 {
1429 return set_bdev_super(s, fc->sget_key);
1430 }
1431
1432 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1433 {
1434 return !(s->s_iflags & SB_I_RETIRED) &&
1435 s->s_dev == *(dev_t *)fc->sget_key;
1436 }
1437
1438 int setup_bdev_super(struct super_block *sb, int sb_flags,
1439 struct fs_context *fc)
1440 {
1441 blk_mode_t mode = sb_open_mode(sb_flags);
1442 struct block_device *bdev;
1443
1444 bdev = blkdev_get_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1445 if (IS_ERR(bdev)) {
1446 if (fc)
1447 errorf(fc, "%s: Can't open blockdev", fc->source);
1448 return PTR_ERR(bdev);
1449 }
1450
1451 /*
1452 * This really should be in blkdev_get_by_dev, but right now can't due
1453 * to legacy issues that require us to allow opening a block device node
1454 * writable from userspace even for a read-only block device.
1455 */
1456 if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1457 blkdev_put(bdev, sb);
1458 return -EACCES;
1459 }
1460
1461 /*
1462 * Until SB_BORN flag is set, there can be no active superblock
1463 * references and thus no filesystem freezing. get_active_super() will
1464 * just loop waiting for SB_BORN so even freeze_bdev() cannot proceed.
1465 *
1466 * It is enough to check bdev was not frozen before we set s_bdev.
1467 */
1468 mutex_lock(&bdev->bd_fsfreeze_mutex);
1469 if (bdev->bd_fsfreeze_count > 0) {
1470 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1471 if (fc)
1472 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1473 blkdev_put(bdev, sb);
1474 return -EBUSY;
1475 }
1476 spin_lock(&sb_lock);
1477 sb->s_bdev = bdev;
1478 sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1479 if (bdev_stable_writes(bdev))
1480 sb->s_iflags |= SB_I_STABLE_WRITES;
1481 spin_unlock(&sb_lock);
1482 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1483
1484 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1485 shrinker_debugfs_rename(&sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1486 sb->s_id);
1487 sb_set_blocksize(sb, block_size(bdev));
1488 return 0;
1489 }
1490 EXPORT_SYMBOL_GPL(setup_bdev_super);
1491
1492 /**
1493 * get_tree_bdev - Get a superblock based on a single block device
1494 * @fc: The filesystem context holding the parameters
1495 * @fill_super: Helper to initialise a new superblock
1496 */
1497 int get_tree_bdev(struct fs_context *fc,
1498 int (*fill_super)(struct super_block *,
1499 struct fs_context *))
1500 {
1501 struct super_block *s;
1502 int error = 0;
1503 dev_t dev;
1504
1505 if (!fc->source)
1506 return invalf(fc, "No source specified");
1507
1508 error = lookup_bdev(fc->source, &dev);
1509 if (error) {
1510 errorf(fc, "%s: Can't lookup blockdev", fc->source);
1511 return error;
1512 }
1513
1514 fc->sb_flags |= SB_NOSEC;
1515 fc->sget_key = &dev;
1516 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1517 if (IS_ERR(s))
1518 return PTR_ERR(s);
1519
1520 if (s->s_root) {
1521 /* Don't summarily change the RO/RW state. */
1522 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1523 warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1524 deactivate_locked_super(s);
1525 return -EBUSY;
1526 }
1527 } else {
1528 /*
1529 * We drop s_umount here because we need to open the bdev and
1530 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1531 * bdev_mark_dead()). It is safe because we have active sb
1532 * reference and SB_BORN is not set yet.
1533 */
1534 super_unlock_excl(s);
1535 error = setup_bdev_super(s, fc->sb_flags, fc);
1536 __super_lock_excl(s);
1537 if (!error)
1538 error = fill_super(s, fc);
1539 if (error) {
1540 deactivate_locked_super(s);
1541 return error;
1542 }
1543 s->s_flags |= SB_ACTIVE;
1544 }
1545
1546 BUG_ON(fc->root);
1547 fc->root = dget(s->s_root);
1548 return 0;
1549 }
1550 EXPORT_SYMBOL(get_tree_bdev);
1551
1552 static int test_bdev_super(struct super_block *s, void *data)
1553 {
1554 return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1555 }
1556
1557 struct dentry *mount_bdev(struct file_system_type *fs_type,
1558 int flags, const char *dev_name, void *data,
1559 int (*fill_super)(struct super_block *, void *, int))
1560 {
1561 struct super_block *s;
1562 int error;
1563 dev_t dev;
1564
1565 error = lookup_bdev(dev_name, &dev);
1566 if (error)
1567 return ERR_PTR(error);
1568
1569 flags |= SB_NOSEC;
1570 s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
1571 if (IS_ERR(s))
1572 return ERR_CAST(s);
1573
1574 if (s->s_root) {
1575 if ((flags ^ s->s_flags) & SB_RDONLY) {
1576 deactivate_locked_super(s);
1577 return ERR_PTR(-EBUSY);
1578 }
1579 } else {
1580 /*
1581 * We drop s_umount here because we need to open the bdev and
1582 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1583 * bdev_mark_dead()). It is safe because we have active sb
1584 * reference and SB_BORN is not set yet.
1585 */
1586 super_unlock_excl(s);
1587 error = setup_bdev_super(s, flags, NULL);
1588 __super_lock_excl(s);
1589 if (!error)
1590 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1591 if (error) {
1592 deactivate_locked_super(s);
1593 return ERR_PTR(error);
1594 }
1595
1596 s->s_flags |= SB_ACTIVE;
1597 }
1598
1599 return dget(s->s_root);
1600 }
1601 EXPORT_SYMBOL(mount_bdev);
1602
1603 void kill_block_super(struct super_block *sb)
1604 {
1605 struct block_device *bdev = sb->s_bdev;
1606
1607 generic_shutdown_super(sb);
1608 if (bdev) {
1609 sync_blockdev(bdev);
1610 blkdev_put(bdev, sb);
1611 }
1612 }
1613
1614 EXPORT_SYMBOL(kill_block_super);
1615 #endif
1616
1617 struct dentry *mount_nodev(struct file_system_type *fs_type,
1618 int flags, void *data,
1619 int (*fill_super)(struct super_block *, void *, int))
1620 {
1621 int error;
1622 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1623
1624 if (IS_ERR(s))
1625 return ERR_CAST(s);
1626
1627 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1628 if (error) {
1629 deactivate_locked_super(s);
1630 return ERR_PTR(error);
1631 }
1632 s->s_flags |= SB_ACTIVE;
1633 return dget(s->s_root);
1634 }
1635 EXPORT_SYMBOL(mount_nodev);
1636
1637 int reconfigure_single(struct super_block *s,
1638 int flags, void *data)
1639 {
1640 struct fs_context *fc;
1641 int ret;
1642
1643 /* The caller really need to be passing fc down into mount_single(),
1644 * then a chunk of this can be removed. [Bollocks -- AV]
1645 * Better yet, reconfiguration shouldn't happen, but rather the second
1646 * mount should be rejected if the parameters are not compatible.
1647 */
1648 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1649 if (IS_ERR(fc))
1650 return PTR_ERR(fc);
1651
1652 ret = parse_monolithic_mount_data(fc, data);
1653 if (ret < 0)
1654 goto out;
1655
1656 ret = reconfigure_super(fc);
1657 out:
1658 put_fs_context(fc);
1659 return ret;
1660 }
1661
1662 static int compare_single(struct super_block *s, void *p)
1663 {
1664 return 1;
1665 }
1666
1667 struct dentry *mount_single(struct file_system_type *fs_type,
1668 int flags, void *data,
1669 int (*fill_super)(struct super_block *, void *, int))
1670 {
1671 struct super_block *s;
1672 int error;
1673
1674 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1675 if (IS_ERR(s))
1676 return ERR_CAST(s);
1677 if (!s->s_root) {
1678 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1679 if (!error)
1680 s->s_flags |= SB_ACTIVE;
1681 } else {
1682 error = reconfigure_single(s, flags, data);
1683 }
1684 if (unlikely(error)) {
1685 deactivate_locked_super(s);
1686 return ERR_PTR(error);
1687 }
1688 return dget(s->s_root);
1689 }
1690 EXPORT_SYMBOL(mount_single);
1691
1692 /**
1693 * vfs_get_tree - Get the mountable root
1694 * @fc: The superblock configuration context.
1695 *
1696 * The filesystem is invoked to get or create a superblock which can then later
1697 * be used for mounting. The filesystem places a pointer to the root to be
1698 * used for mounting in @fc->root.
1699 */
1700 int vfs_get_tree(struct fs_context *fc)
1701 {
1702 struct super_block *sb;
1703 int error;
1704
1705 if (fc->root)
1706 return -EBUSY;
1707
1708 /* Get the mountable root in fc->root, with a ref on the root and a ref
1709 * on the superblock.
1710 */
1711 error = fc->ops->get_tree(fc);
1712 if (error < 0)
1713 return error;
1714
1715 if (!fc->root) {
1716 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1717 fc->fs_type->name);
1718 /* We don't know what the locking state of the superblock is -
1719 * if there is a superblock.
1720 */
1721 BUG();
1722 }
1723
1724 sb = fc->root->d_sb;
1725 WARN_ON(!sb->s_bdi);
1726
1727 /*
1728 * super_wake() contains a memory barrier which also care of
1729 * ordering for super_cache_count(). We place it before setting
1730 * SB_BORN as the data dependency between the two functions is
1731 * the superblock structure contents that we just set up, not
1732 * the SB_BORN flag.
1733 */
1734 super_wake(sb, SB_BORN);
1735
1736 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1737 if (unlikely(error)) {
1738 fc_drop_locked(fc);
1739 return error;
1740 }
1741
1742 /*
1743 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1744 * but s_maxbytes was an unsigned long long for many releases. Throw
1745 * this warning for a little while to try and catch filesystems that
1746 * violate this rule.
1747 */
1748 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1749 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1750
1751 return 0;
1752 }
1753 EXPORT_SYMBOL(vfs_get_tree);
1754
1755 /*
1756 * Setup private BDI for given superblock. It gets automatically cleaned up
1757 * in generic_shutdown_super().
1758 */
1759 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1760 {
1761 struct backing_dev_info *bdi;
1762 int err;
1763 va_list args;
1764
1765 bdi = bdi_alloc(NUMA_NO_NODE);
1766 if (!bdi)
1767 return -ENOMEM;
1768
1769 va_start(args, fmt);
1770 err = bdi_register_va(bdi, fmt, args);
1771 va_end(args);
1772 if (err) {
1773 bdi_put(bdi);
1774 return err;
1775 }
1776 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1777 sb->s_bdi = bdi;
1778 sb->s_iflags |= SB_I_PERSB_BDI;
1779
1780 return 0;
1781 }
1782 EXPORT_SYMBOL(super_setup_bdi_name);
1783
1784 /*
1785 * Setup private BDI for given superblock. I gets automatically cleaned up
1786 * in generic_shutdown_super().
1787 */
1788 int super_setup_bdi(struct super_block *sb)
1789 {
1790 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1791
1792 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1793 atomic_long_inc_return(&bdi_seq));
1794 }
1795 EXPORT_SYMBOL(super_setup_bdi);
1796
1797 /**
1798 * sb_wait_write - wait until all writers to given file system finish
1799 * @sb: the super for which we wait
1800 * @level: type of writers we wait for (normal vs page fault)
1801 *
1802 * This function waits until there are no writers of given type to given file
1803 * system.
1804 */
1805 static void sb_wait_write(struct super_block *sb, int level)
1806 {
1807 percpu_down_write(sb->s_writers.rw_sem + level-1);
1808 }
1809
1810 /*
1811 * We are going to return to userspace and forget about these locks, the
1812 * ownership goes to the caller of thaw_super() which does unlock().
1813 */
1814 static void lockdep_sb_freeze_release(struct super_block *sb)
1815 {
1816 int level;
1817
1818 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1819 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1820 }
1821
1822 /*
1823 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1824 */
1825 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1826 {
1827 int level;
1828
1829 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1830 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1831 }
1832
1833 static void sb_freeze_unlock(struct super_block *sb, int level)
1834 {
1835 for (level--; level >= 0; level--)
1836 percpu_up_write(sb->s_writers.rw_sem + level);
1837 }
1838
1839 /**
1840 * freeze_super - lock the filesystem and force it into a consistent state
1841 * @sb: the super to lock
1842 *
1843 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1844 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1845 * -EBUSY.
1846 *
1847 * During this function, sb->s_writers.frozen goes through these values:
1848 *
1849 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1850 *
1851 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1852 * writes should be blocked, though page faults are still allowed. We wait for
1853 * all writes to complete and then proceed to the next stage.
1854 *
1855 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1856 * but internal fs threads can still modify the filesystem (although they
1857 * should not dirty new pages or inodes), writeback can run etc. After waiting
1858 * for all running page faults we sync the filesystem which will clean all
1859 * dirty pages and inodes (no new dirty pages or inodes can be created when
1860 * sync is running).
1861 *
1862 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1863 * modification are blocked (e.g. XFS preallocation truncation on inode
1864 * reclaim). This is usually implemented by blocking new transactions for
1865 * filesystems that have them and need this additional guard. After all
1866 * internal writers are finished we call ->freeze_fs() to finish filesystem
1867 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1868 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1869 *
1870 * sb->s_writers.frozen is protected by sb->s_umount.
1871 */
1872 int freeze_super(struct super_block *sb)
1873 {
1874 int ret;
1875
1876 atomic_inc(&sb->s_active);
1877 __super_lock_excl(sb);
1878 if (sb->s_writers.frozen != SB_UNFROZEN) {
1879 deactivate_locked_super(sb);
1880 return -EBUSY;
1881 }
1882
1883 if (!(sb->s_flags & SB_BORN)) {
1884 super_unlock_excl(sb);
1885 return 0; /* sic - it's "nothing to do" */
1886 }
1887
1888 if (sb_rdonly(sb)) {
1889 /* Nothing to do really... */
1890 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1891 super_unlock_excl(sb);
1892 return 0;
1893 }
1894
1895 sb->s_writers.frozen = SB_FREEZE_WRITE;
1896 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1897 super_unlock_excl(sb);
1898 sb_wait_write(sb, SB_FREEZE_WRITE);
1899 __super_lock_excl(sb);
1900
1901 /* Now we go and block page faults... */
1902 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1903 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1904
1905 /* All writers are done so after syncing there won't be dirty data */
1906 ret = sync_filesystem(sb);
1907 if (ret) {
1908 sb->s_writers.frozen = SB_UNFROZEN;
1909 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1910 deactivate_locked_super(sb);
1911 return ret;
1912 }
1913
1914 /* Now wait for internal filesystem counter */
1915 sb->s_writers.frozen = SB_FREEZE_FS;
1916 sb_wait_write(sb, SB_FREEZE_FS);
1917
1918 if (sb->s_op->freeze_fs) {
1919 ret = sb->s_op->freeze_fs(sb);
1920 if (ret) {
1921 printk(KERN_ERR
1922 "VFS:Filesystem freeze failed\n");
1923 sb->s_writers.frozen = SB_UNFROZEN;
1924 sb_freeze_unlock(sb, SB_FREEZE_FS);
1925 deactivate_locked_super(sb);
1926 return ret;
1927 }
1928 }
1929 /*
1930 * For debugging purposes so that fs can warn if it sees write activity
1931 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1932 */
1933 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1934 lockdep_sb_freeze_release(sb);
1935 super_unlock_excl(sb);
1936 return 0;
1937 }
1938 EXPORT_SYMBOL(freeze_super);
1939
1940 static int thaw_super_locked(struct super_block *sb)
1941 {
1942 int error;
1943
1944 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1945 super_unlock_excl(sb);
1946 return -EINVAL;
1947 }
1948
1949 if (sb_rdonly(sb)) {
1950 sb->s_writers.frozen = SB_UNFROZEN;
1951 goto out;
1952 }
1953
1954 lockdep_sb_freeze_acquire(sb);
1955
1956 if (sb->s_op->unfreeze_fs) {
1957 error = sb->s_op->unfreeze_fs(sb);
1958 if (error) {
1959 printk(KERN_ERR
1960 "VFS:Filesystem thaw failed\n");
1961 lockdep_sb_freeze_release(sb);
1962 super_unlock_excl(sb);
1963 return error;
1964 }
1965 }
1966
1967 sb->s_writers.frozen = SB_UNFROZEN;
1968 sb_freeze_unlock(sb, SB_FREEZE_FS);
1969 out:
1970 deactivate_locked_super(sb);
1971 return 0;
1972 }
1973
1974 /**
1975 * thaw_super -- unlock filesystem
1976 * @sb: the super to thaw
1977 *
1978 * Unlocks the filesystem and marks it writeable again after freeze_super().
1979 */
1980 int thaw_super(struct super_block *sb)
1981 {
1982 __super_lock_excl(sb);
1983 return thaw_super_locked(sb);
1984 }
1985 EXPORT_SYMBOL(thaw_super);
1986
1987 /*
1988 * Create workqueue for deferred direct IO completions. We allocate the
1989 * workqueue when it's first needed. This avoids creating workqueue for
1990 * filesystems that don't need it and also allows us to create the workqueue
1991 * late enough so the we can include s_id in the name of the workqueue.
1992 */
1993 int sb_init_dio_done_wq(struct super_block *sb)
1994 {
1995 struct workqueue_struct *old;
1996 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
1997 WQ_MEM_RECLAIM, 0,
1998 sb->s_id);
1999 if (!wq)
2000 return -ENOMEM;
2001 /*
2002 * This has to be atomic as more DIOs can race to create the workqueue
2003 */
2004 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
2005 /* Someone created workqueue before us? Free ours... */
2006 if (old)
2007 destroy_workqueue(wq);
2008 return 0;
2009 }