]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/super.c
ovl: add helper ovl_file_modified()
[thirdparty/kernel/linux.git] / fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41
42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
43
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 "sb_writers",
49 "sb_pagefaults",
50 "sb_internal",
51 };
52
53 static inline void __super_lock(struct super_block *sb, bool excl)
54 {
55 if (excl)
56 down_write(&sb->s_umount);
57 else
58 down_read(&sb->s_umount);
59 }
60
61 static inline void super_unlock(struct super_block *sb, bool excl)
62 {
63 if (excl)
64 up_write(&sb->s_umount);
65 else
66 up_read(&sb->s_umount);
67 }
68
69 static inline void __super_lock_excl(struct super_block *sb)
70 {
71 __super_lock(sb, true);
72 }
73
74 static inline void super_unlock_excl(struct super_block *sb)
75 {
76 super_unlock(sb, true);
77 }
78
79 static inline void super_unlock_shared(struct super_block *sb)
80 {
81 super_unlock(sb, false);
82 }
83
84 static inline bool wait_born(struct super_block *sb)
85 {
86 unsigned int flags;
87
88 /*
89 * Pairs with smp_store_release() in super_wake() and ensures
90 * that we see SB_BORN or SB_DYING after we're woken.
91 */
92 flags = smp_load_acquire(&sb->s_flags);
93 return flags & (SB_BORN | SB_DYING);
94 }
95
96 /**
97 * super_lock - wait for superblock to become ready and lock it
98 * @sb: superblock to wait for
99 * @excl: whether exclusive access is required
100 *
101 * If the superblock has neither passed through vfs_get_tree() or
102 * generic_shutdown_super() yet wait for it to happen. Either superblock
103 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
104 * woken and we'll see SB_DYING.
105 *
106 * The caller must have acquired a temporary reference on @sb->s_count.
107 *
108 * Return: This returns true if SB_BORN was set, false if SB_DYING was
109 * set. The function acquires s_umount and returns with it held.
110 */
111 static __must_check bool super_lock(struct super_block *sb, bool excl)
112 {
113
114 lockdep_assert_not_held(&sb->s_umount);
115
116 relock:
117 __super_lock(sb, excl);
118
119 /*
120 * Has gone through generic_shutdown_super() in the meantime.
121 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
122 * grab a reference to this. Tell them so.
123 */
124 if (sb->s_flags & SB_DYING)
125 return false;
126
127 /* Has called ->get_tree() successfully. */
128 if (sb->s_flags & SB_BORN)
129 return true;
130
131 super_unlock(sb, excl);
132
133 /* wait until the superblock is ready or dying */
134 wait_var_event(&sb->s_flags, wait_born(sb));
135
136 /*
137 * Neither SB_BORN nor SB_DYING are ever unset so we never loop.
138 * Just reacquire @sb->s_umount for the caller.
139 */
140 goto relock;
141 }
142
143 /* wait and acquire read-side of @sb->s_umount */
144 static inline bool super_lock_shared(struct super_block *sb)
145 {
146 return super_lock(sb, false);
147 }
148
149 /* wait and acquire write-side of @sb->s_umount */
150 static inline bool super_lock_excl(struct super_block *sb)
151 {
152 return super_lock(sb, true);
153 }
154
155 /* wake waiters */
156 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
157 static void super_wake(struct super_block *sb, unsigned int flag)
158 {
159 WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
160 WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
161
162 /*
163 * Pairs with smp_load_acquire() in super_lock() to make sure
164 * all initializations in the superblock are seen by the user
165 * seeing SB_BORN sent.
166 */
167 smp_store_release(&sb->s_flags, sb->s_flags | flag);
168 /*
169 * Pairs with the barrier in prepare_to_wait_event() to make sure
170 * ___wait_var_event() either sees SB_BORN set or
171 * waitqueue_active() check in wake_up_var() sees the waiter.
172 */
173 smp_mb();
174 wake_up_var(&sb->s_flags);
175 }
176
177 /*
178 * One thing we have to be careful of with a per-sb shrinker is that we don't
179 * drop the last active reference to the superblock from within the shrinker.
180 * If that happens we could trigger unregistering the shrinker from within the
181 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
182 * take a passive reference to the superblock to avoid this from occurring.
183 */
184 static unsigned long super_cache_scan(struct shrinker *shrink,
185 struct shrink_control *sc)
186 {
187 struct super_block *sb;
188 long fs_objects = 0;
189 long total_objects;
190 long freed = 0;
191 long dentries;
192 long inodes;
193
194 sb = container_of(shrink, struct super_block, s_shrink);
195
196 /*
197 * Deadlock avoidance. We may hold various FS locks, and we don't want
198 * to recurse into the FS that called us in clear_inode() and friends..
199 */
200 if (!(sc->gfp_mask & __GFP_FS))
201 return SHRINK_STOP;
202
203 if (!super_trylock_shared(sb))
204 return SHRINK_STOP;
205
206 if (sb->s_op->nr_cached_objects)
207 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
208
209 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
210 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
211 total_objects = dentries + inodes + fs_objects + 1;
212 if (!total_objects)
213 total_objects = 1;
214
215 /* proportion the scan between the caches */
216 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
217 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
218 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
219
220 /*
221 * prune the dcache first as the icache is pinned by it, then
222 * prune the icache, followed by the filesystem specific caches
223 *
224 * Ensure that we always scan at least one object - memcg kmem
225 * accounting uses this to fully empty the caches.
226 */
227 sc->nr_to_scan = dentries + 1;
228 freed = prune_dcache_sb(sb, sc);
229 sc->nr_to_scan = inodes + 1;
230 freed += prune_icache_sb(sb, sc);
231
232 if (fs_objects) {
233 sc->nr_to_scan = fs_objects + 1;
234 freed += sb->s_op->free_cached_objects(sb, sc);
235 }
236
237 super_unlock_shared(sb);
238 return freed;
239 }
240
241 static unsigned long super_cache_count(struct shrinker *shrink,
242 struct shrink_control *sc)
243 {
244 struct super_block *sb;
245 long total_objects = 0;
246
247 sb = container_of(shrink, struct super_block, s_shrink);
248
249 /*
250 * We don't call super_trylock_shared() here as it is a scalability
251 * bottleneck, so we're exposed to partial setup state. The shrinker
252 * rwsem does not protect filesystem operations backing
253 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
254 * change between super_cache_count and super_cache_scan, so we really
255 * don't need locks here.
256 *
257 * However, if we are currently mounting the superblock, the underlying
258 * filesystem might be in a state of partial construction and hence it
259 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check
260 * to avoid this situation, so do the same here. The memory barrier is
261 * matched with the one in mount_fs() as we don't hold locks here.
262 */
263 if (!(sb->s_flags & SB_BORN))
264 return 0;
265 smp_rmb();
266
267 if (sb->s_op && sb->s_op->nr_cached_objects)
268 total_objects = sb->s_op->nr_cached_objects(sb, sc);
269
270 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
271 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
272
273 if (!total_objects)
274 return SHRINK_EMPTY;
275
276 total_objects = vfs_pressure_ratio(total_objects);
277 return total_objects;
278 }
279
280 static void destroy_super_work(struct work_struct *work)
281 {
282 struct super_block *s = container_of(work, struct super_block,
283 destroy_work);
284 int i;
285
286 for (i = 0; i < SB_FREEZE_LEVELS; i++)
287 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
288 kfree(s);
289 }
290
291 static void destroy_super_rcu(struct rcu_head *head)
292 {
293 struct super_block *s = container_of(head, struct super_block, rcu);
294 INIT_WORK(&s->destroy_work, destroy_super_work);
295 schedule_work(&s->destroy_work);
296 }
297
298 /* Free a superblock that has never been seen by anyone */
299 static void destroy_unused_super(struct super_block *s)
300 {
301 if (!s)
302 return;
303 super_unlock_excl(s);
304 list_lru_destroy(&s->s_dentry_lru);
305 list_lru_destroy(&s->s_inode_lru);
306 security_sb_free(s);
307 put_user_ns(s->s_user_ns);
308 kfree(s->s_subtype);
309 free_prealloced_shrinker(&s->s_shrink);
310 /* no delays needed */
311 destroy_super_work(&s->destroy_work);
312 }
313
314 /**
315 * alloc_super - create new superblock
316 * @type: filesystem type superblock should belong to
317 * @flags: the mount flags
318 * @user_ns: User namespace for the super_block
319 *
320 * Allocates and initializes a new &struct super_block. alloc_super()
321 * returns a pointer new superblock or %NULL if allocation had failed.
322 */
323 static struct super_block *alloc_super(struct file_system_type *type, int flags,
324 struct user_namespace *user_ns)
325 {
326 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
327 static const struct super_operations default_op;
328 int i;
329
330 if (!s)
331 return NULL;
332
333 INIT_LIST_HEAD(&s->s_mounts);
334 s->s_user_ns = get_user_ns(user_ns);
335 init_rwsem(&s->s_umount);
336 lockdep_set_class(&s->s_umount, &type->s_umount_key);
337 /*
338 * sget() can have s_umount recursion.
339 *
340 * When it cannot find a suitable sb, it allocates a new
341 * one (this one), and tries again to find a suitable old
342 * one.
343 *
344 * In case that succeeds, it will acquire the s_umount
345 * lock of the old one. Since these are clearly distrinct
346 * locks, and this object isn't exposed yet, there's no
347 * risk of deadlocks.
348 *
349 * Annotate this by putting this lock in a different
350 * subclass.
351 */
352 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
353
354 if (security_sb_alloc(s))
355 goto fail;
356
357 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
358 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
359 sb_writers_name[i],
360 &type->s_writers_key[i]))
361 goto fail;
362 }
363 s->s_bdi = &noop_backing_dev_info;
364 s->s_flags = flags;
365 if (s->s_user_ns != &init_user_ns)
366 s->s_iflags |= SB_I_NODEV;
367 INIT_HLIST_NODE(&s->s_instances);
368 INIT_HLIST_BL_HEAD(&s->s_roots);
369 mutex_init(&s->s_sync_lock);
370 INIT_LIST_HEAD(&s->s_inodes);
371 spin_lock_init(&s->s_inode_list_lock);
372 INIT_LIST_HEAD(&s->s_inodes_wb);
373 spin_lock_init(&s->s_inode_wblist_lock);
374
375 s->s_count = 1;
376 atomic_set(&s->s_active, 1);
377 mutex_init(&s->s_vfs_rename_mutex);
378 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
379 init_rwsem(&s->s_dquot.dqio_sem);
380 s->s_maxbytes = MAX_NON_LFS;
381 s->s_op = &default_op;
382 s->s_time_gran = 1000000000;
383 s->s_time_min = TIME64_MIN;
384 s->s_time_max = TIME64_MAX;
385
386 s->s_shrink.seeks = DEFAULT_SEEKS;
387 s->s_shrink.scan_objects = super_cache_scan;
388 s->s_shrink.count_objects = super_cache_count;
389 s->s_shrink.batch = 1024;
390 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
391 if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
392 goto fail;
393 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
394 goto fail;
395 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
396 goto fail;
397 return s;
398
399 fail:
400 destroy_unused_super(s);
401 return NULL;
402 }
403
404 /* Superblock refcounting */
405
406 /*
407 * Drop a superblock's refcount. The caller must hold sb_lock.
408 */
409 static void __put_super(struct super_block *s)
410 {
411 if (!--s->s_count) {
412 list_del_init(&s->s_list);
413 WARN_ON(s->s_dentry_lru.node);
414 WARN_ON(s->s_inode_lru.node);
415 WARN_ON(!list_empty(&s->s_mounts));
416 security_sb_free(s);
417 put_user_ns(s->s_user_ns);
418 kfree(s->s_subtype);
419 call_rcu(&s->rcu, destroy_super_rcu);
420 }
421 }
422
423 /**
424 * put_super - drop a temporary reference to superblock
425 * @sb: superblock in question
426 *
427 * Drops a temporary reference, frees superblock if there's no
428 * references left.
429 */
430 void put_super(struct super_block *sb)
431 {
432 spin_lock(&sb_lock);
433 __put_super(sb);
434 spin_unlock(&sb_lock);
435 }
436
437 static void kill_super_notify(struct super_block *sb)
438 {
439 lockdep_assert_not_held(&sb->s_umount);
440
441 /* already notified earlier */
442 if (sb->s_flags & SB_DEAD)
443 return;
444
445 /*
446 * Remove it from @fs_supers so it isn't found by new
447 * sget{_fc}() walkers anymore. Any concurrent mounter still
448 * managing to grab a temporary reference is guaranteed to
449 * already see SB_DYING and will wait until we notify them about
450 * SB_DEAD.
451 */
452 spin_lock(&sb_lock);
453 hlist_del_init(&sb->s_instances);
454 spin_unlock(&sb_lock);
455
456 /*
457 * Let concurrent mounts know that this thing is really dead.
458 * We don't need @sb->s_umount here as every concurrent caller
459 * will see SB_DYING and either discard the superblock or wait
460 * for SB_DEAD.
461 */
462 super_wake(sb, SB_DEAD);
463 }
464
465 /**
466 * deactivate_locked_super - drop an active reference to superblock
467 * @s: superblock to deactivate
468 *
469 * Drops an active reference to superblock, converting it into a temporary
470 * one if there is no other active references left. In that case we
471 * tell fs driver to shut it down and drop the temporary reference we
472 * had just acquired.
473 *
474 * Caller holds exclusive lock on superblock; that lock is released.
475 */
476 void deactivate_locked_super(struct super_block *s)
477 {
478 struct file_system_type *fs = s->s_type;
479 if (atomic_dec_and_test(&s->s_active)) {
480 unregister_shrinker(&s->s_shrink);
481 fs->kill_sb(s);
482
483 kill_super_notify(s);
484
485 /*
486 * Since list_lru_destroy() may sleep, we cannot call it from
487 * put_super(), where we hold the sb_lock. Therefore we destroy
488 * the lru lists right now.
489 */
490 list_lru_destroy(&s->s_dentry_lru);
491 list_lru_destroy(&s->s_inode_lru);
492
493 put_filesystem(fs);
494 put_super(s);
495 } else {
496 super_unlock_excl(s);
497 }
498 }
499
500 EXPORT_SYMBOL(deactivate_locked_super);
501
502 /**
503 * deactivate_super - drop an active reference to superblock
504 * @s: superblock to deactivate
505 *
506 * Variant of deactivate_locked_super(), except that superblock is *not*
507 * locked by caller. If we are going to drop the final active reference,
508 * lock will be acquired prior to that.
509 */
510 void deactivate_super(struct super_block *s)
511 {
512 if (!atomic_add_unless(&s->s_active, -1, 1)) {
513 __super_lock_excl(s);
514 deactivate_locked_super(s);
515 }
516 }
517
518 EXPORT_SYMBOL(deactivate_super);
519
520 /**
521 * grab_super - acquire an active reference
522 * @s: reference we are trying to make active
523 *
524 * Tries to acquire an active reference. grab_super() is used when we
525 * had just found a superblock in super_blocks or fs_type->fs_supers
526 * and want to turn it into a full-blown active reference. grab_super()
527 * is called with sb_lock held and drops it. Returns 1 in case of
528 * success, 0 if we had failed (superblock contents was already dead or
529 * dying when grab_super() had been called). Note that this is only
530 * called for superblocks not in rundown mode (== ones still on ->fs_supers
531 * of their type), so increment of ->s_count is OK here.
532 */
533 static int grab_super(struct super_block *s) __releases(sb_lock)
534 {
535 bool born;
536
537 s->s_count++;
538 spin_unlock(&sb_lock);
539 born = super_lock_excl(s);
540 if (born && atomic_inc_not_zero(&s->s_active)) {
541 put_super(s);
542 return 1;
543 }
544 super_unlock_excl(s);
545 put_super(s);
546 return 0;
547 }
548
549 static inline bool wait_dead(struct super_block *sb)
550 {
551 unsigned int flags;
552
553 /*
554 * Pairs with memory barrier in super_wake() and ensures
555 * that we see SB_DEAD after we're woken.
556 */
557 flags = smp_load_acquire(&sb->s_flags);
558 return flags & SB_DEAD;
559 }
560
561 /**
562 * grab_super_dead - acquire an active reference to a superblock
563 * @sb: superblock to acquire
564 *
565 * Acquire a temporary reference on a superblock and try to trade it for
566 * an active reference. This is used in sget{_fc}() to wait for a
567 * superblock to either become SB_BORN or for it to pass through
568 * sb->kill() and be marked as SB_DEAD.
569 *
570 * Return: This returns true if an active reference could be acquired,
571 * false if not.
572 */
573 static bool grab_super_dead(struct super_block *sb)
574 {
575
576 sb->s_count++;
577 if (grab_super(sb)) {
578 put_super(sb);
579 lockdep_assert_held(&sb->s_umount);
580 return true;
581 }
582 wait_var_event(&sb->s_flags, wait_dead(sb));
583 lockdep_assert_not_held(&sb->s_umount);
584 put_super(sb);
585 return false;
586 }
587
588 /*
589 * super_trylock_shared - try to grab ->s_umount shared
590 * @sb: reference we are trying to grab
591 *
592 * Try to prevent fs shutdown. This is used in places where we
593 * cannot take an active reference but we need to ensure that the
594 * filesystem is not shut down while we are working on it. It returns
595 * false if we cannot acquire s_umount or if we lose the race and
596 * filesystem already got into shutdown, and returns true with the s_umount
597 * lock held in read mode in case of success. On successful return,
598 * the caller must drop the s_umount lock when done.
599 *
600 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
601 * The reason why it's safe is that we are OK with doing trylock instead
602 * of down_read(). There's a couple of places that are OK with that, but
603 * it's very much not a general-purpose interface.
604 */
605 bool super_trylock_shared(struct super_block *sb)
606 {
607 if (down_read_trylock(&sb->s_umount)) {
608 if (!(sb->s_flags & SB_DYING) && sb->s_root &&
609 (sb->s_flags & SB_BORN))
610 return true;
611 super_unlock_shared(sb);
612 }
613
614 return false;
615 }
616
617 /**
618 * retire_super - prevents superblock from being reused
619 * @sb: superblock to retire
620 *
621 * The function marks superblock to be ignored in superblock test, which
622 * prevents it from being reused for any new mounts. If the superblock has
623 * a private bdi, it also unregisters it, but doesn't reduce the refcount
624 * of the superblock to prevent potential races. The refcount is reduced
625 * by generic_shutdown_super(). The function can not be called
626 * concurrently with generic_shutdown_super(). It is safe to call the
627 * function multiple times, subsequent calls have no effect.
628 *
629 * The marker will affect the re-use only for block-device-based
630 * superblocks. Other superblocks will still get marked if this function
631 * is used, but that will not affect their reusability.
632 */
633 void retire_super(struct super_block *sb)
634 {
635 WARN_ON(!sb->s_bdev);
636 __super_lock_excl(sb);
637 if (sb->s_iflags & SB_I_PERSB_BDI) {
638 bdi_unregister(sb->s_bdi);
639 sb->s_iflags &= ~SB_I_PERSB_BDI;
640 }
641 sb->s_iflags |= SB_I_RETIRED;
642 super_unlock_excl(sb);
643 }
644 EXPORT_SYMBOL(retire_super);
645
646 /**
647 * generic_shutdown_super - common helper for ->kill_sb()
648 * @sb: superblock to kill
649 *
650 * generic_shutdown_super() does all fs-independent work on superblock
651 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
652 * that need destruction out of superblock, call generic_shutdown_super()
653 * and release aforementioned objects. Note: dentries and inodes _are_
654 * taken care of and do not need specific handling.
655 *
656 * Upon calling this function, the filesystem may no longer alter or
657 * rearrange the set of dentries belonging to this super_block, nor may it
658 * change the attachments of dentries to inodes.
659 */
660 void generic_shutdown_super(struct super_block *sb)
661 {
662 const struct super_operations *sop = sb->s_op;
663
664 if (sb->s_root) {
665 shrink_dcache_for_umount(sb);
666 sync_filesystem(sb);
667 sb->s_flags &= ~SB_ACTIVE;
668
669 cgroup_writeback_umount();
670
671 /* Evict all inodes with zero refcount. */
672 evict_inodes(sb);
673
674 /*
675 * Clean up and evict any inodes that still have references due
676 * to fsnotify or the security policy.
677 */
678 fsnotify_sb_delete(sb);
679 security_sb_delete(sb);
680
681 /*
682 * Now that all potentially-encrypted inodes have been evicted,
683 * the fscrypt keyring can be destroyed.
684 */
685 fscrypt_destroy_keyring(sb);
686
687 if (sb->s_dio_done_wq) {
688 destroy_workqueue(sb->s_dio_done_wq);
689 sb->s_dio_done_wq = NULL;
690 }
691
692 if (sop->put_super)
693 sop->put_super(sb);
694
695 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
696 "VFS: Busy inodes after unmount of %s (%s)",
697 sb->s_id, sb->s_type->name)) {
698 /*
699 * Adding a proper bailout path here would be hard, but
700 * we can at least make it more likely that a later
701 * iput_final() or such crashes cleanly.
702 */
703 struct inode *inode;
704
705 spin_lock(&sb->s_inode_list_lock);
706 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
707 inode->i_op = VFS_PTR_POISON;
708 inode->i_sb = VFS_PTR_POISON;
709 inode->i_mapping = VFS_PTR_POISON;
710 }
711 spin_unlock(&sb->s_inode_list_lock);
712 }
713 }
714 /*
715 * Broadcast to everyone that grabbed a temporary reference to this
716 * superblock before we removed it from @fs_supers that the superblock
717 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
718 * discard this superblock and treat it as dead.
719 *
720 * We leave the superblock on @fs_supers so it can be found by
721 * sget{_fc}() until we passed sb->kill_sb().
722 */
723 super_wake(sb, SB_DYING);
724 super_unlock_excl(sb);
725 if (sb->s_bdi != &noop_backing_dev_info) {
726 if (sb->s_iflags & SB_I_PERSB_BDI)
727 bdi_unregister(sb->s_bdi);
728 bdi_put(sb->s_bdi);
729 sb->s_bdi = &noop_backing_dev_info;
730 }
731 }
732
733 EXPORT_SYMBOL(generic_shutdown_super);
734
735 bool mount_capable(struct fs_context *fc)
736 {
737 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
738 return capable(CAP_SYS_ADMIN);
739 else
740 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
741 }
742
743 /**
744 * sget_fc - Find or create a superblock
745 * @fc: Filesystem context.
746 * @test: Comparison callback
747 * @set: Setup callback
748 *
749 * Create a new superblock or find an existing one.
750 *
751 * The @test callback is used to find a matching existing superblock.
752 * Whether or not the requested parameters in @fc are taken into account
753 * is specific to the @test callback that is used. They may even be
754 * completely ignored.
755 *
756 * If an extant superblock is matched, it will be returned unless:
757 *
758 * (1) the namespace the filesystem context @fc and the extant
759 * superblock's namespace differ
760 *
761 * (2) the filesystem context @fc has requested that reusing an extant
762 * superblock is not allowed
763 *
764 * In both cases EBUSY will be returned.
765 *
766 * If no match is made, a new superblock will be allocated and basic
767 * initialisation will be performed (s_type, s_fs_info and s_id will be
768 * set and the @set callback will be invoked), the superblock will be
769 * published and it will be returned in a partially constructed state
770 * with SB_BORN and SB_ACTIVE as yet unset.
771 *
772 * Return: On success, an extant or newly created superblock is
773 * returned. On failure an error pointer is returned.
774 */
775 struct super_block *sget_fc(struct fs_context *fc,
776 int (*test)(struct super_block *, struct fs_context *),
777 int (*set)(struct super_block *, struct fs_context *))
778 {
779 struct super_block *s = NULL;
780 struct super_block *old;
781 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
782 int err;
783
784 retry:
785 spin_lock(&sb_lock);
786 if (test) {
787 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
788 if (test(old, fc))
789 goto share_extant_sb;
790 }
791 }
792 if (!s) {
793 spin_unlock(&sb_lock);
794 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
795 if (!s)
796 return ERR_PTR(-ENOMEM);
797 goto retry;
798 }
799
800 s->s_fs_info = fc->s_fs_info;
801 err = set(s, fc);
802 if (err) {
803 s->s_fs_info = NULL;
804 spin_unlock(&sb_lock);
805 destroy_unused_super(s);
806 return ERR_PTR(err);
807 }
808 fc->s_fs_info = NULL;
809 s->s_type = fc->fs_type;
810 s->s_iflags |= fc->s_iflags;
811 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
812 /*
813 * Make the superblock visible on @super_blocks and @fs_supers.
814 * It's in a nascent state and users should wait on SB_BORN or
815 * SB_DYING to be set.
816 */
817 list_add_tail(&s->s_list, &super_blocks);
818 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
819 spin_unlock(&sb_lock);
820 get_filesystem(s->s_type);
821 register_shrinker_prepared(&s->s_shrink);
822 return s;
823
824 share_extant_sb:
825 if (user_ns != old->s_user_ns || fc->exclusive) {
826 spin_unlock(&sb_lock);
827 destroy_unused_super(s);
828 if (fc->exclusive)
829 warnfc(fc, "reusing existing filesystem not allowed");
830 else
831 warnfc(fc, "reusing existing filesystem in another namespace not allowed");
832 return ERR_PTR(-EBUSY);
833 }
834 if (!grab_super_dead(old))
835 goto retry;
836 destroy_unused_super(s);
837 return old;
838 }
839 EXPORT_SYMBOL(sget_fc);
840
841 /**
842 * sget - find or create a superblock
843 * @type: filesystem type superblock should belong to
844 * @test: comparison callback
845 * @set: setup callback
846 * @flags: mount flags
847 * @data: argument to each of them
848 */
849 struct super_block *sget(struct file_system_type *type,
850 int (*test)(struct super_block *,void *),
851 int (*set)(struct super_block *,void *),
852 int flags,
853 void *data)
854 {
855 struct user_namespace *user_ns = current_user_ns();
856 struct super_block *s = NULL;
857 struct super_block *old;
858 int err;
859
860 /* We don't yet pass the user namespace of the parent
861 * mount through to here so always use &init_user_ns
862 * until that changes.
863 */
864 if (flags & SB_SUBMOUNT)
865 user_ns = &init_user_ns;
866
867 retry:
868 spin_lock(&sb_lock);
869 if (test) {
870 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
871 if (!test(old, data))
872 continue;
873 if (user_ns != old->s_user_ns) {
874 spin_unlock(&sb_lock);
875 destroy_unused_super(s);
876 return ERR_PTR(-EBUSY);
877 }
878 if (!grab_super_dead(old))
879 goto retry;
880 destroy_unused_super(s);
881 return old;
882 }
883 }
884 if (!s) {
885 spin_unlock(&sb_lock);
886 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
887 if (!s)
888 return ERR_PTR(-ENOMEM);
889 goto retry;
890 }
891
892 err = set(s, data);
893 if (err) {
894 spin_unlock(&sb_lock);
895 destroy_unused_super(s);
896 return ERR_PTR(err);
897 }
898 s->s_type = type;
899 strscpy(s->s_id, type->name, sizeof(s->s_id));
900 list_add_tail(&s->s_list, &super_blocks);
901 hlist_add_head(&s->s_instances, &type->fs_supers);
902 spin_unlock(&sb_lock);
903 get_filesystem(type);
904 register_shrinker_prepared(&s->s_shrink);
905 return s;
906 }
907 EXPORT_SYMBOL(sget);
908
909 void drop_super(struct super_block *sb)
910 {
911 super_unlock_shared(sb);
912 put_super(sb);
913 }
914
915 EXPORT_SYMBOL(drop_super);
916
917 void drop_super_exclusive(struct super_block *sb)
918 {
919 super_unlock_excl(sb);
920 put_super(sb);
921 }
922 EXPORT_SYMBOL(drop_super_exclusive);
923
924 static void __iterate_supers(void (*f)(struct super_block *))
925 {
926 struct super_block *sb, *p = NULL;
927
928 spin_lock(&sb_lock);
929 list_for_each_entry(sb, &super_blocks, s_list) {
930 /* Pairs with memory marrier in super_wake(). */
931 if (smp_load_acquire(&sb->s_flags) & SB_DYING)
932 continue;
933 sb->s_count++;
934 spin_unlock(&sb_lock);
935
936 f(sb);
937
938 spin_lock(&sb_lock);
939 if (p)
940 __put_super(p);
941 p = sb;
942 }
943 if (p)
944 __put_super(p);
945 spin_unlock(&sb_lock);
946 }
947 /**
948 * iterate_supers - call function for all active superblocks
949 * @f: function to call
950 * @arg: argument to pass to it
951 *
952 * Scans the superblock list and calls given function, passing it
953 * locked superblock and given argument.
954 */
955 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
956 {
957 struct super_block *sb, *p = NULL;
958
959 spin_lock(&sb_lock);
960 list_for_each_entry(sb, &super_blocks, s_list) {
961 bool born;
962
963 sb->s_count++;
964 spin_unlock(&sb_lock);
965
966 born = super_lock_shared(sb);
967 if (born && sb->s_root)
968 f(sb, arg);
969 super_unlock_shared(sb);
970
971 spin_lock(&sb_lock);
972 if (p)
973 __put_super(p);
974 p = sb;
975 }
976 if (p)
977 __put_super(p);
978 spin_unlock(&sb_lock);
979 }
980
981 /**
982 * iterate_supers_type - call function for superblocks of given type
983 * @type: fs type
984 * @f: function to call
985 * @arg: argument to pass to it
986 *
987 * Scans the superblock list and calls given function, passing it
988 * locked superblock and given argument.
989 */
990 void iterate_supers_type(struct file_system_type *type,
991 void (*f)(struct super_block *, void *), void *arg)
992 {
993 struct super_block *sb, *p = NULL;
994
995 spin_lock(&sb_lock);
996 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
997 bool born;
998
999 sb->s_count++;
1000 spin_unlock(&sb_lock);
1001
1002 born = super_lock_shared(sb);
1003 if (born && sb->s_root)
1004 f(sb, arg);
1005 super_unlock_shared(sb);
1006
1007 spin_lock(&sb_lock);
1008 if (p)
1009 __put_super(p);
1010 p = sb;
1011 }
1012 if (p)
1013 __put_super(p);
1014 spin_unlock(&sb_lock);
1015 }
1016
1017 EXPORT_SYMBOL(iterate_supers_type);
1018
1019 /**
1020 * get_active_super - get an active reference to the superblock of a device
1021 * @bdev: device to get the superblock for
1022 *
1023 * Scans the superblock list and finds the superblock of the file system
1024 * mounted on the device given. Returns the superblock with an active
1025 * reference or %NULL if none was found.
1026 */
1027 struct super_block *get_active_super(struct block_device *bdev)
1028 {
1029 struct super_block *sb;
1030
1031 if (!bdev)
1032 return NULL;
1033
1034 spin_lock(&sb_lock);
1035 list_for_each_entry(sb, &super_blocks, s_list) {
1036 if (sb->s_bdev == bdev) {
1037 if (!grab_super(sb))
1038 return NULL;
1039 super_unlock_excl(sb);
1040 return sb;
1041 }
1042 }
1043 spin_unlock(&sb_lock);
1044 return NULL;
1045 }
1046
1047 struct super_block *user_get_super(dev_t dev, bool excl)
1048 {
1049 struct super_block *sb;
1050
1051 spin_lock(&sb_lock);
1052 list_for_each_entry(sb, &super_blocks, s_list) {
1053 if (sb->s_dev == dev) {
1054 bool born;
1055
1056 sb->s_count++;
1057 spin_unlock(&sb_lock);
1058 /* still alive? */
1059 born = super_lock(sb, excl);
1060 if (born && sb->s_root)
1061 return sb;
1062 super_unlock(sb, excl);
1063 /* nope, got unmounted */
1064 spin_lock(&sb_lock);
1065 __put_super(sb);
1066 break;
1067 }
1068 }
1069 spin_unlock(&sb_lock);
1070 return NULL;
1071 }
1072
1073 /**
1074 * reconfigure_super - asks filesystem to change superblock parameters
1075 * @fc: The superblock and configuration
1076 *
1077 * Alters the configuration parameters of a live superblock.
1078 */
1079 int reconfigure_super(struct fs_context *fc)
1080 {
1081 struct super_block *sb = fc->root->d_sb;
1082 int retval;
1083 bool remount_ro = false;
1084 bool remount_rw = false;
1085 bool force = fc->sb_flags & SB_FORCE;
1086
1087 if (fc->sb_flags_mask & ~MS_RMT_MASK)
1088 return -EINVAL;
1089 if (sb->s_writers.frozen != SB_UNFROZEN)
1090 return -EBUSY;
1091
1092 retval = security_sb_remount(sb, fc->security);
1093 if (retval)
1094 return retval;
1095
1096 if (fc->sb_flags_mask & SB_RDONLY) {
1097 #ifdef CONFIG_BLOCK
1098 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1099 bdev_read_only(sb->s_bdev))
1100 return -EACCES;
1101 #endif
1102 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1103 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1104 }
1105
1106 if (remount_ro) {
1107 if (!hlist_empty(&sb->s_pins)) {
1108 super_unlock_excl(sb);
1109 group_pin_kill(&sb->s_pins);
1110 __super_lock_excl(sb);
1111 if (!sb->s_root)
1112 return 0;
1113 if (sb->s_writers.frozen != SB_UNFROZEN)
1114 return -EBUSY;
1115 remount_ro = !sb_rdonly(sb);
1116 }
1117 }
1118 shrink_dcache_sb(sb);
1119
1120 /* If we are reconfiguring to RDONLY and current sb is read/write,
1121 * make sure there are no files open for writing.
1122 */
1123 if (remount_ro) {
1124 if (force) {
1125 sb_start_ro_state_change(sb);
1126 } else {
1127 retval = sb_prepare_remount_readonly(sb);
1128 if (retval)
1129 return retval;
1130 }
1131 } else if (remount_rw) {
1132 /*
1133 * Protect filesystem's reconfigure code from writes from
1134 * userspace until reconfigure finishes.
1135 */
1136 sb_start_ro_state_change(sb);
1137 }
1138
1139 if (fc->ops->reconfigure) {
1140 retval = fc->ops->reconfigure(fc);
1141 if (retval) {
1142 if (!force)
1143 goto cancel_readonly;
1144 /* If forced remount, go ahead despite any errors */
1145 WARN(1, "forced remount of a %s fs returned %i\n",
1146 sb->s_type->name, retval);
1147 }
1148 }
1149
1150 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1151 (fc->sb_flags & fc->sb_flags_mask)));
1152 sb_end_ro_state_change(sb);
1153
1154 /*
1155 * Some filesystems modify their metadata via some other path than the
1156 * bdev buffer cache (eg. use a private mapping, or directories in
1157 * pagecache, etc). Also file data modifications go via their own
1158 * mappings. So If we try to mount readonly then copy the filesystem
1159 * from bdev, we could get stale data, so invalidate it to give a best
1160 * effort at coherency.
1161 */
1162 if (remount_ro && sb->s_bdev)
1163 invalidate_bdev(sb->s_bdev);
1164 return 0;
1165
1166 cancel_readonly:
1167 sb_end_ro_state_change(sb);
1168 return retval;
1169 }
1170
1171 static void do_emergency_remount_callback(struct super_block *sb)
1172 {
1173 bool born = super_lock_excl(sb);
1174
1175 if (born && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
1176 struct fs_context *fc;
1177
1178 fc = fs_context_for_reconfigure(sb->s_root,
1179 SB_RDONLY | SB_FORCE, SB_RDONLY);
1180 if (!IS_ERR(fc)) {
1181 if (parse_monolithic_mount_data(fc, NULL) == 0)
1182 (void)reconfigure_super(fc);
1183 put_fs_context(fc);
1184 }
1185 }
1186 super_unlock_excl(sb);
1187 }
1188
1189 static void do_emergency_remount(struct work_struct *work)
1190 {
1191 __iterate_supers(do_emergency_remount_callback);
1192 kfree(work);
1193 printk("Emergency Remount complete\n");
1194 }
1195
1196 void emergency_remount(void)
1197 {
1198 struct work_struct *work;
1199
1200 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1201 if (work) {
1202 INIT_WORK(work, do_emergency_remount);
1203 schedule_work(work);
1204 }
1205 }
1206
1207 static void do_thaw_all_callback(struct super_block *sb)
1208 {
1209 bool born = super_lock_excl(sb);
1210
1211 if (born && sb->s_root) {
1212 if (IS_ENABLED(CONFIG_BLOCK))
1213 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
1214 pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
1215 thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
1216 } else {
1217 super_unlock_excl(sb);
1218 }
1219 }
1220
1221 static void do_thaw_all(struct work_struct *work)
1222 {
1223 __iterate_supers(do_thaw_all_callback);
1224 kfree(work);
1225 printk(KERN_WARNING "Emergency Thaw complete\n");
1226 }
1227
1228 /**
1229 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1230 *
1231 * Used for emergency unfreeze of all filesystems via SysRq
1232 */
1233 void emergency_thaw_all(void)
1234 {
1235 struct work_struct *work;
1236
1237 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1238 if (work) {
1239 INIT_WORK(work, do_thaw_all);
1240 schedule_work(work);
1241 }
1242 }
1243
1244 static DEFINE_IDA(unnamed_dev_ida);
1245
1246 /**
1247 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1248 * @p: Pointer to a dev_t.
1249 *
1250 * Filesystems which don't use real block devices can call this function
1251 * to allocate a virtual block device.
1252 *
1253 * Context: Any context. Frequently called while holding sb_lock.
1254 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1255 * or -ENOMEM if memory allocation failed.
1256 */
1257 int get_anon_bdev(dev_t *p)
1258 {
1259 int dev;
1260
1261 /*
1262 * Many userspace utilities consider an FSID of 0 invalid.
1263 * Always return at least 1 from get_anon_bdev.
1264 */
1265 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1266 GFP_ATOMIC);
1267 if (dev == -ENOSPC)
1268 dev = -EMFILE;
1269 if (dev < 0)
1270 return dev;
1271
1272 *p = MKDEV(0, dev);
1273 return 0;
1274 }
1275 EXPORT_SYMBOL(get_anon_bdev);
1276
1277 void free_anon_bdev(dev_t dev)
1278 {
1279 ida_free(&unnamed_dev_ida, MINOR(dev));
1280 }
1281 EXPORT_SYMBOL(free_anon_bdev);
1282
1283 int set_anon_super(struct super_block *s, void *data)
1284 {
1285 return get_anon_bdev(&s->s_dev);
1286 }
1287 EXPORT_SYMBOL(set_anon_super);
1288
1289 void kill_anon_super(struct super_block *sb)
1290 {
1291 dev_t dev = sb->s_dev;
1292 generic_shutdown_super(sb);
1293 kill_super_notify(sb);
1294 free_anon_bdev(dev);
1295 }
1296 EXPORT_SYMBOL(kill_anon_super);
1297
1298 void kill_litter_super(struct super_block *sb)
1299 {
1300 if (sb->s_root)
1301 d_genocide(sb->s_root);
1302 kill_anon_super(sb);
1303 }
1304 EXPORT_SYMBOL(kill_litter_super);
1305
1306 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1307 {
1308 return set_anon_super(sb, NULL);
1309 }
1310 EXPORT_SYMBOL(set_anon_super_fc);
1311
1312 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1313 {
1314 return sb->s_fs_info == fc->s_fs_info;
1315 }
1316
1317 static int test_single_super(struct super_block *s, struct fs_context *fc)
1318 {
1319 return 1;
1320 }
1321
1322 static int vfs_get_super(struct fs_context *fc,
1323 int (*test)(struct super_block *, struct fs_context *),
1324 int (*fill_super)(struct super_block *sb,
1325 struct fs_context *fc))
1326 {
1327 struct super_block *sb;
1328 int err;
1329
1330 sb = sget_fc(fc, test, set_anon_super_fc);
1331 if (IS_ERR(sb))
1332 return PTR_ERR(sb);
1333
1334 if (!sb->s_root) {
1335 err = fill_super(sb, fc);
1336 if (err)
1337 goto error;
1338
1339 sb->s_flags |= SB_ACTIVE;
1340 }
1341
1342 fc->root = dget(sb->s_root);
1343 return 0;
1344
1345 error:
1346 deactivate_locked_super(sb);
1347 return err;
1348 }
1349
1350 int get_tree_nodev(struct fs_context *fc,
1351 int (*fill_super)(struct super_block *sb,
1352 struct fs_context *fc))
1353 {
1354 return vfs_get_super(fc, NULL, fill_super);
1355 }
1356 EXPORT_SYMBOL(get_tree_nodev);
1357
1358 int get_tree_single(struct fs_context *fc,
1359 int (*fill_super)(struct super_block *sb,
1360 struct fs_context *fc))
1361 {
1362 return vfs_get_super(fc, test_single_super, fill_super);
1363 }
1364 EXPORT_SYMBOL(get_tree_single);
1365
1366 int get_tree_keyed(struct fs_context *fc,
1367 int (*fill_super)(struct super_block *sb,
1368 struct fs_context *fc),
1369 void *key)
1370 {
1371 fc->s_fs_info = key;
1372 return vfs_get_super(fc, test_keyed_super, fill_super);
1373 }
1374 EXPORT_SYMBOL(get_tree_keyed);
1375
1376 static int set_bdev_super(struct super_block *s, void *data)
1377 {
1378 s->s_dev = *(dev_t *)data;
1379 return 0;
1380 }
1381
1382 static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
1383 {
1384 return set_bdev_super(s, fc->sget_key);
1385 }
1386
1387 static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
1388 {
1389 return !(s->s_iflags & SB_I_RETIRED) &&
1390 s->s_dev == *(dev_t *)fc->sget_key;
1391 }
1392
1393 /**
1394 * sget_dev - Find or create a superblock by device number
1395 * @fc: Filesystem context.
1396 * @dev: device number
1397 *
1398 * Find or create a superblock using the provided device number that
1399 * will be stored in fc->sget_key.
1400 *
1401 * If an extant superblock is matched, then that will be returned with
1402 * an elevated reference count that the caller must transfer or discard.
1403 *
1404 * If no match is made, a new superblock will be allocated and basic
1405 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1406 * be set). The superblock will be published and it will be returned in
1407 * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1408 * unset.
1409 *
1410 * Return: an existing or newly created superblock on success, an error
1411 * pointer on failure.
1412 */
1413 struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
1414 {
1415 fc->sget_key = &dev;
1416 return sget_fc(fc, super_s_dev_test, super_s_dev_set);
1417 }
1418 EXPORT_SYMBOL(sget_dev);
1419
1420 #ifdef CONFIG_BLOCK
1421 /*
1422 * Lock the superblock that is holder of the bdev. Returns the superblock
1423 * pointer if we successfully locked the superblock and it is alive. Otherwise
1424 * we return NULL and just unlock bdev->bd_holder_lock.
1425 *
1426 * The function must be called with bdev->bd_holder_lock and releases it.
1427 */
1428 static struct super_block *bdev_super_lock_shared(struct block_device *bdev)
1429 __releases(&bdev->bd_holder_lock)
1430 {
1431 struct super_block *sb = bdev->bd_holder;
1432 bool born;
1433
1434 lockdep_assert_held(&bdev->bd_holder_lock);
1435 lockdep_assert_not_held(&sb->s_umount);
1436 lockdep_assert_not_held(&bdev->bd_disk->open_mutex);
1437
1438 /* Make sure sb doesn't go away from under us */
1439 spin_lock(&sb_lock);
1440 sb->s_count++;
1441 spin_unlock(&sb_lock);
1442 mutex_unlock(&bdev->bd_holder_lock);
1443
1444 born = super_lock_shared(sb);
1445 if (!born || !sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1446 super_unlock_shared(sb);
1447 put_super(sb);
1448 return NULL;
1449 }
1450 /*
1451 * The superblock is active and we hold s_umount, we can drop our
1452 * temporary reference now.
1453 */
1454 put_super(sb);
1455 return sb;
1456 }
1457
1458 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1459 {
1460 struct super_block *sb;
1461
1462 sb = bdev_super_lock_shared(bdev);
1463 if (!sb)
1464 return;
1465
1466 if (!surprise)
1467 sync_filesystem(sb);
1468 shrink_dcache_sb(sb);
1469 invalidate_inodes(sb);
1470 if (sb->s_op->shutdown)
1471 sb->s_op->shutdown(sb);
1472
1473 super_unlock_shared(sb);
1474 }
1475
1476 static void fs_bdev_sync(struct block_device *bdev)
1477 {
1478 struct super_block *sb;
1479
1480 sb = bdev_super_lock_shared(bdev);
1481 if (!sb)
1482 return;
1483 sync_filesystem(sb);
1484 super_unlock_shared(sb);
1485 }
1486
1487 const struct blk_holder_ops fs_holder_ops = {
1488 .mark_dead = fs_bdev_mark_dead,
1489 .sync = fs_bdev_sync,
1490 };
1491 EXPORT_SYMBOL_GPL(fs_holder_ops);
1492
1493 int setup_bdev_super(struct super_block *sb, int sb_flags,
1494 struct fs_context *fc)
1495 {
1496 blk_mode_t mode = sb_open_mode(sb_flags);
1497 struct bdev_handle *bdev_handle;
1498 struct block_device *bdev;
1499
1500 bdev_handle = bdev_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1501 if (IS_ERR(bdev_handle)) {
1502 if (fc)
1503 errorf(fc, "%s: Can't open blockdev", fc->source);
1504 return PTR_ERR(bdev_handle);
1505 }
1506 bdev = bdev_handle->bdev;
1507
1508 /*
1509 * This really should be in blkdev_get_by_dev, but right now can't due
1510 * to legacy issues that require us to allow opening a block device node
1511 * writable from userspace even for a read-only block device.
1512 */
1513 if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1514 bdev_release(bdev_handle);
1515 return -EACCES;
1516 }
1517
1518 /*
1519 * Until SB_BORN flag is set, there can be no active superblock
1520 * references and thus no filesystem freezing. get_active_super() will
1521 * just loop waiting for SB_BORN so even freeze_bdev() cannot proceed.
1522 *
1523 * It is enough to check bdev was not frozen before we set s_bdev.
1524 */
1525 mutex_lock(&bdev->bd_fsfreeze_mutex);
1526 if (bdev->bd_fsfreeze_count > 0) {
1527 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1528 if (fc)
1529 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1530 bdev_release(bdev_handle);
1531 return -EBUSY;
1532 }
1533 spin_lock(&sb_lock);
1534 sb->s_bdev_handle = bdev_handle;
1535 sb->s_bdev = bdev;
1536 sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1537 if (bdev_stable_writes(bdev))
1538 sb->s_iflags |= SB_I_STABLE_WRITES;
1539 spin_unlock(&sb_lock);
1540 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1541
1542 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1543 shrinker_debugfs_rename(&sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1544 sb->s_id);
1545 sb_set_blocksize(sb, block_size(bdev));
1546 return 0;
1547 }
1548 EXPORT_SYMBOL_GPL(setup_bdev_super);
1549
1550 /**
1551 * get_tree_bdev - Get a superblock based on a single block device
1552 * @fc: The filesystem context holding the parameters
1553 * @fill_super: Helper to initialise a new superblock
1554 */
1555 int get_tree_bdev(struct fs_context *fc,
1556 int (*fill_super)(struct super_block *,
1557 struct fs_context *))
1558 {
1559 struct super_block *s;
1560 int error = 0;
1561 dev_t dev;
1562
1563 if (!fc->source)
1564 return invalf(fc, "No source specified");
1565
1566 error = lookup_bdev(fc->source, &dev);
1567 if (error) {
1568 errorf(fc, "%s: Can't lookup blockdev", fc->source);
1569 return error;
1570 }
1571
1572 fc->sb_flags |= SB_NOSEC;
1573 s = sget_dev(fc, dev);
1574 if (IS_ERR(s))
1575 return PTR_ERR(s);
1576
1577 if (s->s_root) {
1578 /* Don't summarily change the RO/RW state. */
1579 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1580 warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1581 deactivate_locked_super(s);
1582 return -EBUSY;
1583 }
1584 } else {
1585 /*
1586 * We drop s_umount here because we need to open the bdev and
1587 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1588 * bdev_mark_dead()). It is safe because we have active sb
1589 * reference and SB_BORN is not set yet.
1590 */
1591 super_unlock_excl(s);
1592 error = setup_bdev_super(s, fc->sb_flags, fc);
1593 __super_lock_excl(s);
1594 if (!error)
1595 error = fill_super(s, fc);
1596 if (error) {
1597 deactivate_locked_super(s);
1598 return error;
1599 }
1600 s->s_flags |= SB_ACTIVE;
1601 }
1602
1603 BUG_ON(fc->root);
1604 fc->root = dget(s->s_root);
1605 return 0;
1606 }
1607 EXPORT_SYMBOL(get_tree_bdev);
1608
1609 static int test_bdev_super(struct super_block *s, void *data)
1610 {
1611 return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1612 }
1613
1614 struct dentry *mount_bdev(struct file_system_type *fs_type,
1615 int flags, const char *dev_name, void *data,
1616 int (*fill_super)(struct super_block *, void *, int))
1617 {
1618 struct super_block *s;
1619 int error;
1620 dev_t dev;
1621
1622 error = lookup_bdev(dev_name, &dev);
1623 if (error)
1624 return ERR_PTR(error);
1625
1626 flags |= SB_NOSEC;
1627 s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
1628 if (IS_ERR(s))
1629 return ERR_CAST(s);
1630
1631 if (s->s_root) {
1632 if ((flags ^ s->s_flags) & SB_RDONLY) {
1633 deactivate_locked_super(s);
1634 return ERR_PTR(-EBUSY);
1635 }
1636 } else {
1637 /*
1638 * We drop s_umount here because we need to open the bdev and
1639 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1640 * bdev_mark_dead()). It is safe because we have active sb
1641 * reference and SB_BORN is not set yet.
1642 */
1643 super_unlock_excl(s);
1644 error = setup_bdev_super(s, flags, NULL);
1645 __super_lock_excl(s);
1646 if (!error)
1647 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1648 if (error) {
1649 deactivate_locked_super(s);
1650 return ERR_PTR(error);
1651 }
1652
1653 s->s_flags |= SB_ACTIVE;
1654 }
1655
1656 return dget(s->s_root);
1657 }
1658 EXPORT_SYMBOL(mount_bdev);
1659
1660 void kill_block_super(struct super_block *sb)
1661 {
1662 struct block_device *bdev = sb->s_bdev;
1663
1664 generic_shutdown_super(sb);
1665 if (bdev) {
1666 sync_blockdev(bdev);
1667 bdev_release(sb->s_bdev_handle);
1668 }
1669 }
1670
1671 EXPORT_SYMBOL(kill_block_super);
1672 #endif
1673
1674 struct dentry *mount_nodev(struct file_system_type *fs_type,
1675 int flags, void *data,
1676 int (*fill_super)(struct super_block *, void *, int))
1677 {
1678 int error;
1679 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1680
1681 if (IS_ERR(s))
1682 return ERR_CAST(s);
1683
1684 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1685 if (error) {
1686 deactivate_locked_super(s);
1687 return ERR_PTR(error);
1688 }
1689 s->s_flags |= SB_ACTIVE;
1690 return dget(s->s_root);
1691 }
1692 EXPORT_SYMBOL(mount_nodev);
1693
1694 int reconfigure_single(struct super_block *s,
1695 int flags, void *data)
1696 {
1697 struct fs_context *fc;
1698 int ret;
1699
1700 /* The caller really need to be passing fc down into mount_single(),
1701 * then a chunk of this can be removed. [Bollocks -- AV]
1702 * Better yet, reconfiguration shouldn't happen, but rather the second
1703 * mount should be rejected if the parameters are not compatible.
1704 */
1705 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1706 if (IS_ERR(fc))
1707 return PTR_ERR(fc);
1708
1709 ret = parse_monolithic_mount_data(fc, data);
1710 if (ret < 0)
1711 goto out;
1712
1713 ret = reconfigure_super(fc);
1714 out:
1715 put_fs_context(fc);
1716 return ret;
1717 }
1718
1719 static int compare_single(struct super_block *s, void *p)
1720 {
1721 return 1;
1722 }
1723
1724 struct dentry *mount_single(struct file_system_type *fs_type,
1725 int flags, void *data,
1726 int (*fill_super)(struct super_block *, void *, int))
1727 {
1728 struct super_block *s;
1729 int error;
1730
1731 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1732 if (IS_ERR(s))
1733 return ERR_CAST(s);
1734 if (!s->s_root) {
1735 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1736 if (!error)
1737 s->s_flags |= SB_ACTIVE;
1738 } else {
1739 error = reconfigure_single(s, flags, data);
1740 }
1741 if (unlikely(error)) {
1742 deactivate_locked_super(s);
1743 return ERR_PTR(error);
1744 }
1745 return dget(s->s_root);
1746 }
1747 EXPORT_SYMBOL(mount_single);
1748
1749 /**
1750 * vfs_get_tree - Get the mountable root
1751 * @fc: The superblock configuration context.
1752 *
1753 * The filesystem is invoked to get or create a superblock which can then later
1754 * be used for mounting. The filesystem places a pointer to the root to be
1755 * used for mounting in @fc->root.
1756 */
1757 int vfs_get_tree(struct fs_context *fc)
1758 {
1759 struct super_block *sb;
1760 int error;
1761
1762 if (fc->root)
1763 return -EBUSY;
1764
1765 /* Get the mountable root in fc->root, with a ref on the root and a ref
1766 * on the superblock.
1767 */
1768 error = fc->ops->get_tree(fc);
1769 if (error < 0)
1770 return error;
1771
1772 if (!fc->root) {
1773 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1774 fc->fs_type->name);
1775 /* We don't know what the locking state of the superblock is -
1776 * if there is a superblock.
1777 */
1778 BUG();
1779 }
1780
1781 sb = fc->root->d_sb;
1782 WARN_ON(!sb->s_bdi);
1783
1784 /*
1785 * super_wake() contains a memory barrier which also care of
1786 * ordering for super_cache_count(). We place it before setting
1787 * SB_BORN as the data dependency between the two functions is
1788 * the superblock structure contents that we just set up, not
1789 * the SB_BORN flag.
1790 */
1791 super_wake(sb, SB_BORN);
1792
1793 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1794 if (unlikely(error)) {
1795 fc_drop_locked(fc);
1796 return error;
1797 }
1798
1799 /*
1800 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1801 * but s_maxbytes was an unsigned long long for many releases. Throw
1802 * this warning for a little while to try and catch filesystems that
1803 * violate this rule.
1804 */
1805 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1806 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1807
1808 return 0;
1809 }
1810 EXPORT_SYMBOL(vfs_get_tree);
1811
1812 /*
1813 * Setup private BDI for given superblock. It gets automatically cleaned up
1814 * in generic_shutdown_super().
1815 */
1816 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1817 {
1818 struct backing_dev_info *bdi;
1819 int err;
1820 va_list args;
1821
1822 bdi = bdi_alloc(NUMA_NO_NODE);
1823 if (!bdi)
1824 return -ENOMEM;
1825
1826 va_start(args, fmt);
1827 err = bdi_register_va(bdi, fmt, args);
1828 va_end(args);
1829 if (err) {
1830 bdi_put(bdi);
1831 return err;
1832 }
1833 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1834 sb->s_bdi = bdi;
1835 sb->s_iflags |= SB_I_PERSB_BDI;
1836
1837 return 0;
1838 }
1839 EXPORT_SYMBOL(super_setup_bdi_name);
1840
1841 /*
1842 * Setup private BDI for given superblock. I gets automatically cleaned up
1843 * in generic_shutdown_super().
1844 */
1845 int super_setup_bdi(struct super_block *sb)
1846 {
1847 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1848
1849 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1850 atomic_long_inc_return(&bdi_seq));
1851 }
1852 EXPORT_SYMBOL(super_setup_bdi);
1853
1854 /**
1855 * sb_wait_write - wait until all writers to given file system finish
1856 * @sb: the super for which we wait
1857 * @level: type of writers we wait for (normal vs page fault)
1858 *
1859 * This function waits until there are no writers of given type to given file
1860 * system.
1861 */
1862 static void sb_wait_write(struct super_block *sb, int level)
1863 {
1864 percpu_down_write(sb->s_writers.rw_sem + level-1);
1865 }
1866
1867 /*
1868 * We are going to return to userspace and forget about these locks, the
1869 * ownership goes to the caller of thaw_super() which does unlock().
1870 */
1871 static void lockdep_sb_freeze_release(struct super_block *sb)
1872 {
1873 int level;
1874
1875 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1876 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1877 }
1878
1879 /*
1880 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1881 */
1882 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1883 {
1884 int level;
1885
1886 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1887 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1888 }
1889
1890 static void sb_freeze_unlock(struct super_block *sb, int level)
1891 {
1892 for (level--; level >= 0; level--)
1893 percpu_up_write(sb->s_writers.rw_sem + level);
1894 }
1895
1896 static int wait_for_partially_frozen(struct super_block *sb)
1897 {
1898 int ret = 0;
1899
1900 do {
1901 unsigned short old = sb->s_writers.frozen;
1902
1903 up_write(&sb->s_umount);
1904 ret = wait_var_event_killable(&sb->s_writers.frozen,
1905 sb->s_writers.frozen != old);
1906 down_write(&sb->s_umount);
1907 } while (ret == 0 &&
1908 sb->s_writers.frozen != SB_UNFROZEN &&
1909 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1910
1911 return ret;
1912 }
1913
1914 /**
1915 * freeze_super - lock the filesystem and force it into a consistent state
1916 * @sb: the super to lock
1917 * @who: context that wants to freeze
1918 *
1919 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1920 * freeze_fs. Subsequent calls to this without first thawing the fs may return
1921 * -EBUSY.
1922 *
1923 * @who should be:
1924 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
1925 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
1926 *
1927 * The @who argument distinguishes between the kernel and userspace trying to
1928 * freeze the filesystem. Although there cannot be multiple kernel freezes or
1929 * multiple userspace freezes in effect at any given time, the kernel and
1930 * userspace can both hold a filesystem frozen. The filesystem remains frozen
1931 * until there are no kernel or userspace freezes in effect.
1932 *
1933 * During this function, sb->s_writers.frozen goes through these values:
1934 *
1935 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1936 *
1937 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1938 * writes should be blocked, though page faults are still allowed. We wait for
1939 * all writes to complete and then proceed to the next stage.
1940 *
1941 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1942 * but internal fs threads can still modify the filesystem (although they
1943 * should not dirty new pages or inodes), writeback can run etc. After waiting
1944 * for all running page faults we sync the filesystem which will clean all
1945 * dirty pages and inodes (no new dirty pages or inodes can be created when
1946 * sync is running).
1947 *
1948 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1949 * modification are blocked (e.g. XFS preallocation truncation on inode
1950 * reclaim). This is usually implemented by blocking new transactions for
1951 * filesystems that have them and need this additional guard. After all
1952 * internal writers are finished we call ->freeze_fs() to finish filesystem
1953 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1954 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1955 *
1956 * sb->s_writers.frozen is protected by sb->s_umount.
1957 */
1958 int freeze_super(struct super_block *sb, enum freeze_holder who)
1959 {
1960 int ret;
1961
1962 atomic_inc(&sb->s_active);
1963 if (!super_lock_excl(sb))
1964 WARN(1, "Dying superblock while freezing!");
1965
1966 retry:
1967 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
1968 if (sb->s_writers.freeze_holders & who) {
1969 deactivate_locked_super(sb);
1970 return -EBUSY;
1971 }
1972
1973 WARN_ON(sb->s_writers.freeze_holders == 0);
1974
1975 /*
1976 * Someone else already holds this type of freeze; share the
1977 * freeze and assign the active ref to the freeze.
1978 */
1979 sb->s_writers.freeze_holders |= who;
1980 super_unlock_excl(sb);
1981 return 0;
1982 }
1983
1984 if (sb->s_writers.frozen != SB_UNFROZEN) {
1985 ret = wait_for_partially_frozen(sb);
1986 if (ret) {
1987 deactivate_locked_super(sb);
1988 return ret;
1989 }
1990
1991 goto retry;
1992 }
1993
1994 if (!(sb->s_flags & SB_BORN)) {
1995 super_unlock_excl(sb);
1996 return 0; /* sic - it's "nothing to do" */
1997 }
1998
1999 if (sb_rdonly(sb)) {
2000 /* Nothing to do really... */
2001 sb->s_writers.freeze_holders |= who;
2002 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2003 wake_up_var(&sb->s_writers.frozen);
2004 super_unlock_excl(sb);
2005 return 0;
2006 }
2007
2008 sb->s_writers.frozen = SB_FREEZE_WRITE;
2009 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
2010 super_unlock_excl(sb);
2011 sb_wait_write(sb, SB_FREEZE_WRITE);
2012 if (!super_lock_excl(sb))
2013 WARN(1, "Dying superblock while freezing!");
2014
2015 /* Now we go and block page faults... */
2016 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
2017 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
2018
2019 /* All writers are done so after syncing there won't be dirty data */
2020 ret = sync_filesystem(sb);
2021 if (ret) {
2022 sb->s_writers.frozen = SB_UNFROZEN;
2023 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
2024 wake_up_var(&sb->s_writers.frozen);
2025 deactivate_locked_super(sb);
2026 return ret;
2027 }
2028
2029 /* Now wait for internal filesystem counter */
2030 sb->s_writers.frozen = SB_FREEZE_FS;
2031 sb_wait_write(sb, SB_FREEZE_FS);
2032
2033 if (sb->s_op->freeze_fs) {
2034 ret = sb->s_op->freeze_fs(sb);
2035 if (ret) {
2036 printk(KERN_ERR
2037 "VFS:Filesystem freeze failed\n");
2038 sb->s_writers.frozen = SB_UNFROZEN;
2039 sb_freeze_unlock(sb, SB_FREEZE_FS);
2040 wake_up_var(&sb->s_writers.frozen);
2041 deactivate_locked_super(sb);
2042 return ret;
2043 }
2044 }
2045 /*
2046 * For debugging purposes so that fs can warn if it sees write activity
2047 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2048 */
2049 sb->s_writers.freeze_holders |= who;
2050 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2051 wake_up_var(&sb->s_writers.frozen);
2052 lockdep_sb_freeze_release(sb);
2053 super_unlock_excl(sb);
2054 return 0;
2055 }
2056 EXPORT_SYMBOL(freeze_super);
2057
2058 /*
2059 * Undoes the effect of a freeze_super_locked call. If the filesystem is
2060 * frozen both by userspace and the kernel, a thaw call from either source
2061 * removes that state without releasing the other state or unlocking the
2062 * filesystem.
2063 */
2064 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
2065 {
2066 int error;
2067
2068 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2069 if (!(sb->s_writers.freeze_holders & who)) {
2070 super_unlock_excl(sb);
2071 return -EINVAL;
2072 }
2073
2074 /*
2075 * Freeze is shared with someone else. Release our hold and
2076 * drop the active ref that freeze_super assigned to the
2077 * freezer.
2078 */
2079 if (sb->s_writers.freeze_holders & ~who) {
2080 sb->s_writers.freeze_holders &= ~who;
2081 deactivate_locked_super(sb);
2082 return 0;
2083 }
2084 } else {
2085 super_unlock_excl(sb);
2086 return -EINVAL;
2087 }
2088
2089 if (sb_rdonly(sb)) {
2090 sb->s_writers.freeze_holders &= ~who;
2091 sb->s_writers.frozen = SB_UNFROZEN;
2092 wake_up_var(&sb->s_writers.frozen);
2093 goto out;
2094 }
2095
2096 lockdep_sb_freeze_acquire(sb);
2097
2098 if (sb->s_op->unfreeze_fs) {
2099 error = sb->s_op->unfreeze_fs(sb);
2100 if (error) {
2101 printk(KERN_ERR "VFS:Filesystem thaw failed\n");
2102 lockdep_sb_freeze_release(sb);
2103 super_unlock_excl(sb);
2104 return error;
2105 }
2106 }
2107
2108 sb->s_writers.freeze_holders &= ~who;
2109 sb->s_writers.frozen = SB_UNFROZEN;
2110 wake_up_var(&sb->s_writers.frozen);
2111 sb_freeze_unlock(sb, SB_FREEZE_FS);
2112 out:
2113 deactivate_locked_super(sb);
2114 return 0;
2115 }
2116
2117 /**
2118 * thaw_super -- unlock filesystem
2119 * @sb: the super to thaw
2120 * @who: context that wants to freeze
2121 *
2122 * Unlocks the filesystem and marks it writeable again after freeze_super()
2123 * if there are no remaining freezes on the filesystem.
2124 *
2125 * @who should be:
2126 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2127 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2128 */
2129 int thaw_super(struct super_block *sb, enum freeze_holder who)
2130 {
2131 if (!super_lock_excl(sb))
2132 WARN(1, "Dying superblock while thawing!");
2133 return thaw_super_locked(sb, who);
2134 }
2135 EXPORT_SYMBOL(thaw_super);
2136
2137 /*
2138 * Create workqueue for deferred direct IO completions. We allocate the
2139 * workqueue when it's first needed. This avoids creating workqueue for
2140 * filesystems that don't need it and also allows us to create the workqueue
2141 * late enough so the we can include s_id in the name of the workqueue.
2142 */
2143 int sb_init_dio_done_wq(struct super_block *sb)
2144 {
2145 struct workqueue_struct *old;
2146 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2147 WQ_MEM_RECLAIM, 0,
2148 sb->s_id);
2149 if (!wq)
2150 return -ENOMEM;
2151 /*
2152 * This has to be atomic as more DIOs can race to create the workqueue
2153 */
2154 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
2155 /* Someone created workqueue before us? Free ours... */
2156 if (old)
2157 destroy_workqueue(wq);
2158 return 0;
2159 }
2160 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);