]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/super.c
blkdev: comment fs_holder_ops
[thirdparty/linux.git] / fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41
42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
43
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 "sb_writers",
49 "sb_pagefaults",
50 "sb_internal",
51 };
52
53 static inline void __super_lock(struct super_block *sb, bool excl)
54 {
55 if (excl)
56 down_write(&sb->s_umount);
57 else
58 down_read(&sb->s_umount);
59 }
60
61 static inline void super_unlock(struct super_block *sb, bool excl)
62 {
63 if (excl)
64 up_write(&sb->s_umount);
65 else
66 up_read(&sb->s_umount);
67 }
68
69 static inline void __super_lock_excl(struct super_block *sb)
70 {
71 __super_lock(sb, true);
72 }
73
74 static inline void super_unlock_excl(struct super_block *sb)
75 {
76 super_unlock(sb, true);
77 }
78
79 static inline void super_unlock_shared(struct super_block *sb)
80 {
81 super_unlock(sb, false);
82 }
83
84 static inline bool wait_born(struct super_block *sb)
85 {
86 unsigned int flags;
87
88 /*
89 * Pairs with smp_store_release() in super_wake() and ensures
90 * that we see SB_BORN or SB_DYING after we're woken.
91 */
92 flags = smp_load_acquire(&sb->s_flags);
93 return flags & (SB_BORN | SB_DYING);
94 }
95
96 /**
97 * super_lock - wait for superblock to become ready and lock it
98 * @sb: superblock to wait for
99 * @excl: whether exclusive access is required
100 *
101 * If the superblock has neither passed through vfs_get_tree() or
102 * generic_shutdown_super() yet wait for it to happen. Either superblock
103 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
104 * woken and we'll see SB_DYING.
105 *
106 * The caller must have acquired a temporary reference on @sb->s_count.
107 *
108 * Return: The function returns true if SB_BORN was set and with
109 * s_umount held. The function returns false if SB_DYING was
110 * set and without s_umount held.
111 */
112 static __must_check bool super_lock(struct super_block *sb, bool excl)
113 {
114
115 lockdep_assert_not_held(&sb->s_umount);
116
117 relock:
118 __super_lock(sb, excl);
119
120 /*
121 * Has gone through generic_shutdown_super() in the meantime.
122 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
123 * grab a reference to this. Tell them so.
124 */
125 if (sb->s_flags & SB_DYING) {
126 super_unlock(sb, excl);
127 return false;
128 }
129
130 /* Has called ->get_tree() successfully. */
131 if (sb->s_flags & SB_BORN)
132 return true;
133
134 super_unlock(sb, excl);
135
136 /* wait until the superblock is ready or dying */
137 wait_var_event(&sb->s_flags, wait_born(sb));
138
139 /*
140 * Neither SB_BORN nor SB_DYING are ever unset so we never loop.
141 * Just reacquire @sb->s_umount for the caller.
142 */
143 goto relock;
144 }
145
146 /* wait and try to acquire read-side of @sb->s_umount */
147 static inline bool super_lock_shared(struct super_block *sb)
148 {
149 return super_lock(sb, false);
150 }
151
152 /* wait and try to acquire write-side of @sb->s_umount */
153 static inline bool super_lock_excl(struct super_block *sb)
154 {
155 return super_lock(sb, true);
156 }
157
158 /* wake waiters */
159 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
160 static void super_wake(struct super_block *sb, unsigned int flag)
161 {
162 WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
163 WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
164
165 /*
166 * Pairs with smp_load_acquire() in super_lock() to make sure
167 * all initializations in the superblock are seen by the user
168 * seeing SB_BORN sent.
169 */
170 smp_store_release(&sb->s_flags, sb->s_flags | flag);
171 /*
172 * Pairs with the barrier in prepare_to_wait_event() to make sure
173 * ___wait_var_event() either sees SB_BORN set or
174 * waitqueue_active() check in wake_up_var() sees the waiter.
175 */
176 smp_mb();
177 wake_up_var(&sb->s_flags);
178 }
179
180 /*
181 * One thing we have to be careful of with a per-sb shrinker is that we don't
182 * drop the last active reference to the superblock from within the shrinker.
183 * If that happens we could trigger unregistering the shrinker from within the
184 * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
185 * take a passive reference to the superblock to avoid this from occurring.
186 */
187 static unsigned long super_cache_scan(struct shrinker *shrink,
188 struct shrink_control *sc)
189 {
190 struct super_block *sb;
191 long fs_objects = 0;
192 long total_objects;
193 long freed = 0;
194 long dentries;
195 long inodes;
196
197 sb = shrink->private_data;
198
199 /*
200 * Deadlock avoidance. We may hold various FS locks, and we don't want
201 * to recurse into the FS that called us in clear_inode() and friends..
202 */
203 if (!(sc->gfp_mask & __GFP_FS))
204 return SHRINK_STOP;
205
206 if (!super_trylock_shared(sb))
207 return SHRINK_STOP;
208
209 if (sb->s_op->nr_cached_objects)
210 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
211
212 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
213 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
214 total_objects = dentries + inodes + fs_objects + 1;
215 if (!total_objects)
216 total_objects = 1;
217
218 /* proportion the scan between the caches */
219 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
220 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
221 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
222
223 /*
224 * prune the dcache first as the icache is pinned by it, then
225 * prune the icache, followed by the filesystem specific caches
226 *
227 * Ensure that we always scan at least one object - memcg kmem
228 * accounting uses this to fully empty the caches.
229 */
230 sc->nr_to_scan = dentries + 1;
231 freed = prune_dcache_sb(sb, sc);
232 sc->nr_to_scan = inodes + 1;
233 freed += prune_icache_sb(sb, sc);
234
235 if (fs_objects) {
236 sc->nr_to_scan = fs_objects + 1;
237 freed += sb->s_op->free_cached_objects(sb, sc);
238 }
239
240 super_unlock_shared(sb);
241 return freed;
242 }
243
244 static unsigned long super_cache_count(struct shrinker *shrink,
245 struct shrink_control *sc)
246 {
247 struct super_block *sb;
248 long total_objects = 0;
249
250 sb = shrink->private_data;
251
252 /*
253 * We don't call super_trylock_shared() here as it is a scalability
254 * bottleneck, so we're exposed to partial setup state. The shrinker
255 * rwsem does not protect filesystem operations backing
256 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
257 * change between super_cache_count and super_cache_scan, so we really
258 * don't need locks here.
259 *
260 * However, if we are currently mounting the superblock, the underlying
261 * filesystem might be in a state of partial construction and hence it
262 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check
263 * to avoid this situation, so do the same here. The memory barrier is
264 * matched with the one in mount_fs() as we don't hold locks here.
265 */
266 if (!(sb->s_flags & SB_BORN))
267 return 0;
268 smp_rmb();
269
270 if (sb->s_op && sb->s_op->nr_cached_objects)
271 total_objects = sb->s_op->nr_cached_objects(sb, sc);
272
273 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
274 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
275
276 if (!total_objects)
277 return SHRINK_EMPTY;
278
279 total_objects = vfs_pressure_ratio(total_objects);
280 return total_objects;
281 }
282
283 static void destroy_super_work(struct work_struct *work)
284 {
285 struct super_block *s = container_of(work, struct super_block,
286 destroy_work);
287 int i;
288
289 for (i = 0; i < SB_FREEZE_LEVELS; i++)
290 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
291 kfree(s);
292 }
293
294 static void destroy_super_rcu(struct rcu_head *head)
295 {
296 struct super_block *s = container_of(head, struct super_block, rcu);
297 INIT_WORK(&s->destroy_work, destroy_super_work);
298 schedule_work(&s->destroy_work);
299 }
300
301 /* Free a superblock that has never been seen by anyone */
302 static void destroy_unused_super(struct super_block *s)
303 {
304 if (!s)
305 return;
306 super_unlock_excl(s);
307 list_lru_destroy(&s->s_dentry_lru);
308 list_lru_destroy(&s->s_inode_lru);
309 security_sb_free(s);
310 put_user_ns(s->s_user_ns);
311 kfree(s->s_subtype);
312 shrinker_free(s->s_shrink);
313 /* no delays needed */
314 destroy_super_work(&s->destroy_work);
315 }
316
317 /**
318 * alloc_super - create new superblock
319 * @type: filesystem type superblock should belong to
320 * @flags: the mount flags
321 * @user_ns: User namespace for the super_block
322 *
323 * Allocates and initializes a new &struct super_block. alloc_super()
324 * returns a pointer new superblock or %NULL if allocation had failed.
325 */
326 static struct super_block *alloc_super(struct file_system_type *type, int flags,
327 struct user_namespace *user_ns)
328 {
329 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
330 static const struct super_operations default_op;
331 int i;
332
333 if (!s)
334 return NULL;
335
336 INIT_LIST_HEAD(&s->s_mounts);
337 s->s_user_ns = get_user_ns(user_ns);
338 init_rwsem(&s->s_umount);
339 lockdep_set_class(&s->s_umount, &type->s_umount_key);
340 /*
341 * sget() can have s_umount recursion.
342 *
343 * When it cannot find a suitable sb, it allocates a new
344 * one (this one), and tries again to find a suitable old
345 * one.
346 *
347 * In case that succeeds, it will acquire the s_umount
348 * lock of the old one. Since these are clearly distrinct
349 * locks, and this object isn't exposed yet, there's no
350 * risk of deadlocks.
351 *
352 * Annotate this by putting this lock in a different
353 * subclass.
354 */
355 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
356
357 if (security_sb_alloc(s))
358 goto fail;
359
360 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
361 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
362 sb_writers_name[i],
363 &type->s_writers_key[i]))
364 goto fail;
365 }
366 s->s_bdi = &noop_backing_dev_info;
367 s->s_flags = flags;
368 if (s->s_user_ns != &init_user_ns)
369 s->s_iflags |= SB_I_NODEV;
370 INIT_HLIST_NODE(&s->s_instances);
371 INIT_HLIST_BL_HEAD(&s->s_roots);
372 mutex_init(&s->s_sync_lock);
373 INIT_LIST_HEAD(&s->s_inodes);
374 spin_lock_init(&s->s_inode_list_lock);
375 INIT_LIST_HEAD(&s->s_inodes_wb);
376 spin_lock_init(&s->s_inode_wblist_lock);
377
378 s->s_count = 1;
379 atomic_set(&s->s_active, 1);
380 mutex_init(&s->s_vfs_rename_mutex);
381 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
382 init_rwsem(&s->s_dquot.dqio_sem);
383 s->s_maxbytes = MAX_NON_LFS;
384 s->s_op = &default_op;
385 s->s_time_gran = 1000000000;
386 s->s_time_min = TIME64_MIN;
387 s->s_time_max = TIME64_MAX;
388
389 s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
390 "sb-%s", type->name);
391 if (!s->s_shrink)
392 goto fail;
393
394 s->s_shrink->scan_objects = super_cache_scan;
395 s->s_shrink->count_objects = super_cache_count;
396 s->s_shrink->batch = 1024;
397 s->s_shrink->private_data = s;
398
399 if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink))
400 goto fail;
401 if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink))
402 goto fail;
403 return s;
404
405 fail:
406 destroy_unused_super(s);
407 return NULL;
408 }
409
410 /* Superblock refcounting */
411
412 /*
413 * Drop a superblock's refcount. The caller must hold sb_lock.
414 */
415 static void __put_super(struct super_block *s)
416 {
417 if (!--s->s_count) {
418 list_del_init(&s->s_list);
419 WARN_ON(s->s_dentry_lru.node);
420 WARN_ON(s->s_inode_lru.node);
421 WARN_ON(!list_empty(&s->s_mounts));
422 security_sb_free(s);
423 put_user_ns(s->s_user_ns);
424 kfree(s->s_subtype);
425 call_rcu(&s->rcu, destroy_super_rcu);
426 }
427 }
428
429 /**
430 * put_super - drop a temporary reference to superblock
431 * @sb: superblock in question
432 *
433 * Drops a temporary reference, frees superblock if there's no
434 * references left.
435 */
436 void put_super(struct super_block *sb)
437 {
438 spin_lock(&sb_lock);
439 __put_super(sb);
440 spin_unlock(&sb_lock);
441 }
442
443 static void kill_super_notify(struct super_block *sb)
444 {
445 lockdep_assert_not_held(&sb->s_umount);
446
447 /* already notified earlier */
448 if (sb->s_flags & SB_DEAD)
449 return;
450
451 /*
452 * Remove it from @fs_supers so it isn't found by new
453 * sget{_fc}() walkers anymore. Any concurrent mounter still
454 * managing to grab a temporary reference is guaranteed to
455 * already see SB_DYING and will wait until we notify them about
456 * SB_DEAD.
457 */
458 spin_lock(&sb_lock);
459 hlist_del_init(&sb->s_instances);
460 spin_unlock(&sb_lock);
461
462 /*
463 * Let concurrent mounts know that this thing is really dead.
464 * We don't need @sb->s_umount here as every concurrent caller
465 * will see SB_DYING and either discard the superblock or wait
466 * for SB_DEAD.
467 */
468 super_wake(sb, SB_DEAD);
469 }
470
471 /**
472 * deactivate_locked_super - drop an active reference to superblock
473 * @s: superblock to deactivate
474 *
475 * Drops an active reference to superblock, converting it into a temporary
476 * one if there is no other active references left. In that case we
477 * tell fs driver to shut it down and drop the temporary reference we
478 * had just acquired.
479 *
480 * Caller holds exclusive lock on superblock; that lock is released.
481 */
482 void deactivate_locked_super(struct super_block *s)
483 {
484 struct file_system_type *fs = s->s_type;
485 if (atomic_dec_and_test(&s->s_active)) {
486 shrinker_free(s->s_shrink);
487 fs->kill_sb(s);
488
489 kill_super_notify(s);
490
491 /*
492 * Since list_lru_destroy() may sleep, we cannot call it from
493 * put_super(), where we hold the sb_lock. Therefore we destroy
494 * the lru lists right now.
495 */
496 list_lru_destroy(&s->s_dentry_lru);
497 list_lru_destroy(&s->s_inode_lru);
498
499 put_filesystem(fs);
500 put_super(s);
501 } else {
502 super_unlock_excl(s);
503 }
504 }
505
506 EXPORT_SYMBOL(deactivate_locked_super);
507
508 /**
509 * deactivate_super - drop an active reference to superblock
510 * @s: superblock to deactivate
511 *
512 * Variant of deactivate_locked_super(), except that superblock is *not*
513 * locked by caller. If we are going to drop the final active reference,
514 * lock will be acquired prior to that.
515 */
516 void deactivate_super(struct super_block *s)
517 {
518 if (!atomic_add_unless(&s->s_active, -1, 1)) {
519 __super_lock_excl(s);
520 deactivate_locked_super(s);
521 }
522 }
523
524 EXPORT_SYMBOL(deactivate_super);
525
526 static inline bool wait_dead(struct super_block *sb)
527 {
528 unsigned int flags;
529
530 /*
531 * Pairs with memory barrier in super_wake() and ensures
532 * that we see SB_DEAD after we're woken.
533 */
534 flags = smp_load_acquire(&sb->s_flags);
535 return flags & SB_DEAD;
536 }
537
538 /**
539 * grab_super - acquire an active reference to a superblock
540 * @sb: superblock to acquire
541 *
542 * Acquire a temporary reference on a superblock and try to trade it for
543 * an active reference. This is used in sget{_fc}() to wait for a
544 * superblock to either become SB_BORN or for it to pass through
545 * sb->kill() and be marked as SB_DEAD.
546 *
547 * Return: This returns true if an active reference could be acquired,
548 * false if not.
549 */
550 static bool grab_super(struct super_block *sb)
551 {
552 bool locked;
553
554 sb->s_count++;
555 spin_unlock(&sb_lock);
556 locked = super_lock_excl(sb);
557 if (locked) {
558 if (atomic_inc_not_zero(&sb->s_active)) {
559 put_super(sb);
560 return true;
561 }
562 super_unlock_excl(sb);
563 }
564 wait_var_event(&sb->s_flags, wait_dead(sb));
565 put_super(sb);
566 return false;
567 }
568
569 /*
570 * super_trylock_shared - try to grab ->s_umount shared
571 * @sb: reference we are trying to grab
572 *
573 * Try to prevent fs shutdown. This is used in places where we
574 * cannot take an active reference but we need to ensure that the
575 * filesystem is not shut down while we are working on it. It returns
576 * false if we cannot acquire s_umount or if we lose the race and
577 * filesystem already got into shutdown, and returns true with the s_umount
578 * lock held in read mode in case of success. On successful return,
579 * the caller must drop the s_umount lock when done.
580 *
581 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
582 * The reason why it's safe is that we are OK with doing trylock instead
583 * of down_read(). There's a couple of places that are OK with that, but
584 * it's very much not a general-purpose interface.
585 */
586 bool super_trylock_shared(struct super_block *sb)
587 {
588 if (down_read_trylock(&sb->s_umount)) {
589 if (!(sb->s_flags & SB_DYING) && sb->s_root &&
590 (sb->s_flags & SB_BORN))
591 return true;
592 super_unlock_shared(sb);
593 }
594
595 return false;
596 }
597
598 /**
599 * retire_super - prevents superblock from being reused
600 * @sb: superblock to retire
601 *
602 * The function marks superblock to be ignored in superblock test, which
603 * prevents it from being reused for any new mounts. If the superblock has
604 * a private bdi, it also unregisters it, but doesn't reduce the refcount
605 * of the superblock to prevent potential races. The refcount is reduced
606 * by generic_shutdown_super(). The function can not be called
607 * concurrently with generic_shutdown_super(). It is safe to call the
608 * function multiple times, subsequent calls have no effect.
609 *
610 * The marker will affect the re-use only for block-device-based
611 * superblocks. Other superblocks will still get marked if this function
612 * is used, but that will not affect their reusability.
613 */
614 void retire_super(struct super_block *sb)
615 {
616 WARN_ON(!sb->s_bdev);
617 __super_lock_excl(sb);
618 if (sb->s_iflags & SB_I_PERSB_BDI) {
619 bdi_unregister(sb->s_bdi);
620 sb->s_iflags &= ~SB_I_PERSB_BDI;
621 }
622 sb->s_iflags |= SB_I_RETIRED;
623 super_unlock_excl(sb);
624 }
625 EXPORT_SYMBOL(retire_super);
626
627 /**
628 * generic_shutdown_super - common helper for ->kill_sb()
629 * @sb: superblock to kill
630 *
631 * generic_shutdown_super() does all fs-independent work on superblock
632 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
633 * that need destruction out of superblock, call generic_shutdown_super()
634 * and release aforementioned objects. Note: dentries and inodes _are_
635 * taken care of and do not need specific handling.
636 *
637 * Upon calling this function, the filesystem may no longer alter or
638 * rearrange the set of dentries belonging to this super_block, nor may it
639 * change the attachments of dentries to inodes.
640 */
641 void generic_shutdown_super(struct super_block *sb)
642 {
643 const struct super_operations *sop = sb->s_op;
644
645 if (sb->s_root) {
646 shrink_dcache_for_umount(sb);
647 sync_filesystem(sb);
648 sb->s_flags &= ~SB_ACTIVE;
649
650 cgroup_writeback_umount();
651
652 /* Evict all inodes with zero refcount. */
653 evict_inodes(sb);
654
655 /*
656 * Clean up and evict any inodes that still have references due
657 * to fsnotify or the security policy.
658 */
659 fsnotify_sb_delete(sb);
660 security_sb_delete(sb);
661
662 /*
663 * Now that all potentially-encrypted inodes have been evicted,
664 * the fscrypt keyring can be destroyed.
665 */
666 fscrypt_destroy_keyring(sb);
667
668 if (sb->s_dio_done_wq) {
669 destroy_workqueue(sb->s_dio_done_wq);
670 sb->s_dio_done_wq = NULL;
671 }
672
673 if (sop->put_super)
674 sop->put_super(sb);
675
676 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
677 "VFS: Busy inodes after unmount of %s (%s)",
678 sb->s_id, sb->s_type->name)) {
679 /*
680 * Adding a proper bailout path here would be hard, but
681 * we can at least make it more likely that a later
682 * iput_final() or such crashes cleanly.
683 */
684 struct inode *inode;
685
686 spin_lock(&sb->s_inode_list_lock);
687 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
688 inode->i_op = VFS_PTR_POISON;
689 inode->i_sb = VFS_PTR_POISON;
690 inode->i_mapping = VFS_PTR_POISON;
691 }
692 spin_unlock(&sb->s_inode_list_lock);
693 }
694 }
695 /*
696 * Broadcast to everyone that grabbed a temporary reference to this
697 * superblock before we removed it from @fs_supers that the superblock
698 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
699 * discard this superblock and treat it as dead.
700 *
701 * We leave the superblock on @fs_supers so it can be found by
702 * sget{_fc}() until we passed sb->kill_sb().
703 */
704 super_wake(sb, SB_DYING);
705 super_unlock_excl(sb);
706 if (sb->s_bdi != &noop_backing_dev_info) {
707 if (sb->s_iflags & SB_I_PERSB_BDI)
708 bdi_unregister(sb->s_bdi);
709 bdi_put(sb->s_bdi);
710 sb->s_bdi = &noop_backing_dev_info;
711 }
712 }
713
714 EXPORT_SYMBOL(generic_shutdown_super);
715
716 bool mount_capable(struct fs_context *fc)
717 {
718 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
719 return capable(CAP_SYS_ADMIN);
720 else
721 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
722 }
723
724 /**
725 * sget_fc - Find or create a superblock
726 * @fc: Filesystem context.
727 * @test: Comparison callback
728 * @set: Setup callback
729 *
730 * Create a new superblock or find an existing one.
731 *
732 * The @test callback is used to find a matching existing superblock.
733 * Whether or not the requested parameters in @fc are taken into account
734 * is specific to the @test callback that is used. They may even be
735 * completely ignored.
736 *
737 * If an extant superblock is matched, it will be returned unless:
738 *
739 * (1) the namespace the filesystem context @fc and the extant
740 * superblock's namespace differ
741 *
742 * (2) the filesystem context @fc has requested that reusing an extant
743 * superblock is not allowed
744 *
745 * In both cases EBUSY will be returned.
746 *
747 * If no match is made, a new superblock will be allocated and basic
748 * initialisation will be performed (s_type, s_fs_info and s_id will be
749 * set and the @set callback will be invoked), the superblock will be
750 * published and it will be returned in a partially constructed state
751 * with SB_BORN and SB_ACTIVE as yet unset.
752 *
753 * Return: On success, an extant or newly created superblock is
754 * returned. On failure an error pointer is returned.
755 */
756 struct super_block *sget_fc(struct fs_context *fc,
757 int (*test)(struct super_block *, struct fs_context *),
758 int (*set)(struct super_block *, struct fs_context *))
759 {
760 struct super_block *s = NULL;
761 struct super_block *old;
762 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
763 int err;
764
765 retry:
766 spin_lock(&sb_lock);
767 if (test) {
768 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
769 if (test(old, fc))
770 goto share_extant_sb;
771 }
772 }
773 if (!s) {
774 spin_unlock(&sb_lock);
775 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
776 if (!s)
777 return ERR_PTR(-ENOMEM);
778 goto retry;
779 }
780
781 s->s_fs_info = fc->s_fs_info;
782 err = set(s, fc);
783 if (err) {
784 s->s_fs_info = NULL;
785 spin_unlock(&sb_lock);
786 destroy_unused_super(s);
787 return ERR_PTR(err);
788 }
789 fc->s_fs_info = NULL;
790 s->s_type = fc->fs_type;
791 s->s_iflags |= fc->s_iflags;
792 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
793 /*
794 * Make the superblock visible on @super_blocks and @fs_supers.
795 * It's in a nascent state and users should wait on SB_BORN or
796 * SB_DYING to be set.
797 */
798 list_add_tail(&s->s_list, &super_blocks);
799 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
800 spin_unlock(&sb_lock);
801 get_filesystem(s->s_type);
802 shrinker_register(s->s_shrink);
803 return s;
804
805 share_extant_sb:
806 if (user_ns != old->s_user_ns || fc->exclusive) {
807 spin_unlock(&sb_lock);
808 destroy_unused_super(s);
809 if (fc->exclusive)
810 warnfc(fc, "reusing existing filesystem not allowed");
811 else
812 warnfc(fc, "reusing existing filesystem in another namespace not allowed");
813 return ERR_PTR(-EBUSY);
814 }
815 if (!grab_super(old))
816 goto retry;
817 destroy_unused_super(s);
818 return old;
819 }
820 EXPORT_SYMBOL(sget_fc);
821
822 /**
823 * sget - find or create a superblock
824 * @type: filesystem type superblock should belong to
825 * @test: comparison callback
826 * @set: setup callback
827 * @flags: mount flags
828 * @data: argument to each of them
829 */
830 struct super_block *sget(struct file_system_type *type,
831 int (*test)(struct super_block *,void *),
832 int (*set)(struct super_block *,void *),
833 int flags,
834 void *data)
835 {
836 struct user_namespace *user_ns = current_user_ns();
837 struct super_block *s = NULL;
838 struct super_block *old;
839 int err;
840
841 /* We don't yet pass the user namespace of the parent
842 * mount through to here so always use &init_user_ns
843 * until that changes.
844 */
845 if (flags & SB_SUBMOUNT)
846 user_ns = &init_user_ns;
847
848 retry:
849 spin_lock(&sb_lock);
850 if (test) {
851 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
852 if (!test(old, data))
853 continue;
854 if (user_ns != old->s_user_ns) {
855 spin_unlock(&sb_lock);
856 destroy_unused_super(s);
857 return ERR_PTR(-EBUSY);
858 }
859 if (!grab_super(old))
860 goto retry;
861 destroy_unused_super(s);
862 return old;
863 }
864 }
865 if (!s) {
866 spin_unlock(&sb_lock);
867 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
868 if (!s)
869 return ERR_PTR(-ENOMEM);
870 goto retry;
871 }
872
873 err = set(s, data);
874 if (err) {
875 spin_unlock(&sb_lock);
876 destroy_unused_super(s);
877 return ERR_PTR(err);
878 }
879 s->s_type = type;
880 strscpy(s->s_id, type->name, sizeof(s->s_id));
881 list_add_tail(&s->s_list, &super_blocks);
882 hlist_add_head(&s->s_instances, &type->fs_supers);
883 spin_unlock(&sb_lock);
884 get_filesystem(type);
885 shrinker_register(s->s_shrink);
886 return s;
887 }
888 EXPORT_SYMBOL(sget);
889
890 void drop_super(struct super_block *sb)
891 {
892 super_unlock_shared(sb);
893 put_super(sb);
894 }
895
896 EXPORT_SYMBOL(drop_super);
897
898 void drop_super_exclusive(struct super_block *sb)
899 {
900 super_unlock_excl(sb);
901 put_super(sb);
902 }
903 EXPORT_SYMBOL(drop_super_exclusive);
904
905 static void __iterate_supers(void (*f)(struct super_block *))
906 {
907 struct super_block *sb, *p = NULL;
908
909 spin_lock(&sb_lock);
910 list_for_each_entry(sb, &super_blocks, s_list) {
911 /* Pairs with memory marrier in super_wake(). */
912 if (smp_load_acquire(&sb->s_flags) & SB_DYING)
913 continue;
914 sb->s_count++;
915 spin_unlock(&sb_lock);
916
917 f(sb);
918
919 spin_lock(&sb_lock);
920 if (p)
921 __put_super(p);
922 p = sb;
923 }
924 if (p)
925 __put_super(p);
926 spin_unlock(&sb_lock);
927 }
928 /**
929 * iterate_supers - call function for all active superblocks
930 * @f: function to call
931 * @arg: argument to pass to it
932 *
933 * Scans the superblock list and calls given function, passing it
934 * locked superblock and given argument.
935 */
936 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
937 {
938 struct super_block *sb, *p = NULL;
939
940 spin_lock(&sb_lock);
941 list_for_each_entry(sb, &super_blocks, s_list) {
942 bool locked;
943
944 sb->s_count++;
945 spin_unlock(&sb_lock);
946
947 locked = super_lock_shared(sb);
948 if (locked) {
949 if (sb->s_root)
950 f(sb, arg);
951 super_unlock_shared(sb);
952 }
953
954 spin_lock(&sb_lock);
955 if (p)
956 __put_super(p);
957 p = sb;
958 }
959 if (p)
960 __put_super(p);
961 spin_unlock(&sb_lock);
962 }
963
964 /**
965 * iterate_supers_type - call function for superblocks of given type
966 * @type: fs type
967 * @f: function to call
968 * @arg: argument to pass to it
969 *
970 * Scans the superblock list and calls given function, passing it
971 * locked superblock and given argument.
972 */
973 void iterate_supers_type(struct file_system_type *type,
974 void (*f)(struct super_block *, void *), void *arg)
975 {
976 struct super_block *sb, *p = NULL;
977
978 spin_lock(&sb_lock);
979 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
980 bool locked;
981
982 sb->s_count++;
983 spin_unlock(&sb_lock);
984
985 locked = super_lock_shared(sb);
986 if (locked) {
987 if (sb->s_root)
988 f(sb, arg);
989 super_unlock_shared(sb);
990 }
991
992 spin_lock(&sb_lock);
993 if (p)
994 __put_super(p);
995 p = sb;
996 }
997 if (p)
998 __put_super(p);
999 spin_unlock(&sb_lock);
1000 }
1001
1002 EXPORT_SYMBOL(iterate_supers_type);
1003
1004 struct super_block *user_get_super(dev_t dev, bool excl)
1005 {
1006 struct super_block *sb;
1007
1008 spin_lock(&sb_lock);
1009 list_for_each_entry(sb, &super_blocks, s_list) {
1010 if (sb->s_dev == dev) {
1011 bool locked;
1012
1013 sb->s_count++;
1014 spin_unlock(&sb_lock);
1015 /* still alive? */
1016 locked = super_lock(sb, excl);
1017 if (locked) {
1018 if (sb->s_root)
1019 return sb;
1020 super_unlock(sb, excl);
1021 }
1022 /* nope, got unmounted */
1023 spin_lock(&sb_lock);
1024 __put_super(sb);
1025 break;
1026 }
1027 }
1028 spin_unlock(&sb_lock);
1029 return NULL;
1030 }
1031
1032 /**
1033 * reconfigure_super - asks filesystem to change superblock parameters
1034 * @fc: The superblock and configuration
1035 *
1036 * Alters the configuration parameters of a live superblock.
1037 */
1038 int reconfigure_super(struct fs_context *fc)
1039 {
1040 struct super_block *sb = fc->root->d_sb;
1041 int retval;
1042 bool remount_ro = false;
1043 bool remount_rw = false;
1044 bool force = fc->sb_flags & SB_FORCE;
1045
1046 if (fc->sb_flags_mask & ~MS_RMT_MASK)
1047 return -EINVAL;
1048 if (sb->s_writers.frozen != SB_UNFROZEN)
1049 return -EBUSY;
1050
1051 retval = security_sb_remount(sb, fc->security);
1052 if (retval)
1053 return retval;
1054
1055 if (fc->sb_flags_mask & SB_RDONLY) {
1056 #ifdef CONFIG_BLOCK
1057 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1058 bdev_read_only(sb->s_bdev))
1059 return -EACCES;
1060 #endif
1061 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1062 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1063 }
1064
1065 if (remount_ro) {
1066 if (!hlist_empty(&sb->s_pins)) {
1067 super_unlock_excl(sb);
1068 group_pin_kill(&sb->s_pins);
1069 __super_lock_excl(sb);
1070 if (!sb->s_root)
1071 return 0;
1072 if (sb->s_writers.frozen != SB_UNFROZEN)
1073 return -EBUSY;
1074 remount_ro = !sb_rdonly(sb);
1075 }
1076 }
1077 shrink_dcache_sb(sb);
1078
1079 /* If we are reconfiguring to RDONLY and current sb is read/write,
1080 * make sure there are no files open for writing.
1081 */
1082 if (remount_ro) {
1083 if (force) {
1084 sb_start_ro_state_change(sb);
1085 } else {
1086 retval = sb_prepare_remount_readonly(sb);
1087 if (retval)
1088 return retval;
1089 }
1090 } else if (remount_rw) {
1091 /*
1092 * Protect filesystem's reconfigure code from writes from
1093 * userspace until reconfigure finishes.
1094 */
1095 sb_start_ro_state_change(sb);
1096 }
1097
1098 if (fc->ops->reconfigure) {
1099 retval = fc->ops->reconfigure(fc);
1100 if (retval) {
1101 if (!force)
1102 goto cancel_readonly;
1103 /* If forced remount, go ahead despite any errors */
1104 WARN(1, "forced remount of a %s fs returned %i\n",
1105 sb->s_type->name, retval);
1106 }
1107 }
1108
1109 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1110 (fc->sb_flags & fc->sb_flags_mask)));
1111 sb_end_ro_state_change(sb);
1112
1113 /*
1114 * Some filesystems modify their metadata via some other path than the
1115 * bdev buffer cache (eg. use a private mapping, or directories in
1116 * pagecache, etc). Also file data modifications go via their own
1117 * mappings. So If we try to mount readonly then copy the filesystem
1118 * from bdev, we could get stale data, so invalidate it to give a best
1119 * effort at coherency.
1120 */
1121 if (remount_ro && sb->s_bdev)
1122 invalidate_bdev(sb->s_bdev);
1123 return 0;
1124
1125 cancel_readonly:
1126 sb_end_ro_state_change(sb);
1127 return retval;
1128 }
1129
1130 static void do_emergency_remount_callback(struct super_block *sb)
1131 {
1132 bool locked = super_lock_excl(sb);
1133
1134 if (locked && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
1135 struct fs_context *fc;
1136
1137 fc = fs_context_for_reconfigure(sb->s_root,
1138 SB_RDONLY | SB_FORCE, SB_RDONLY);
1139 if (!IS_ERR(fc)) {
1140 if (parse_monolithic_mount_data(fc, NULL) == 0)
1141 (void)reconfigure_super(fc);
1142 put_fs_context(fc);
1143 }
1144 }
1145 if (locked)
1146 super_unlock_excl(sb);
1147 }
1148
1149 static void do_emergency_remount(struct work_struct *work)
1150 {
1151 __iterate_supers(do_emergency_remount_callback);
1152 kfree(work);
1153 printk("Emergency Remount complete\n");
1154 }
1155
1156 void emergency_remount(void)
1157 {
1158 struct work_struct *work;
1159
1160 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1161 if (work) {
1162 INIT_WORK(work, do_emergency_remount);
1163 schedule_work(work);
1164 }
1165 }
1166
1167 static void do_thaw_all_callback(struct super_block *sb)
1168 {
1169 bool locked = super_lock_excl(sb);
1170
1171 if (locked && sb->s_root) {
1172 if (IS_ENABLED(CONFIG_BLOCK))
1173 while (sb->s_bdev && !bdev_thaw(sb->s_bdev))
1174 pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
1175 thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
1176 return;
1177 }
1178 if (locked)
1179 super_unlock_excl(sb);
1180 }
1181
1182 static void do_thaw_all(struct work_struct *work)
1183 {
1184 __iterate_supers(do_thaw_all_callback);
1185 kfree(work);
1186 printk(KERN_WARNING "Emergency Thaw complete\n");
1187 }
1188
1189 /**
1190 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1191 *
1192 * Used for emergency unfreeze of all filesystems via SysRq
1193 */
1194 void emergency_thaw_all(void)
1195 {
1196 struct work_struct *work;
1197
1198 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1199 if (work) {
1200 INIT_WORK(work, do_thaw_all);
1201 schedule_work(work);
1202 }
1203 }
1204
1205 static DEFINE_IDA(unnamed_dev_ida);
1206
1207 /**
1208 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1209 * @p: Pointer to a dev_t.
1210 *
1211 * Filesystems which don't use real block devices can call this function
1212 * to allocate a virtual block device.
1213 *
1214 * Context: Any context. Frequently called while holding sb_lock.
1215 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1216 * or -ENOMEM if memory allocation failed.
1217 */
1218 int get_anon_bdev(dev_t *p)
1219 {
1220 int dev;
1221
1222 /*
1223 * Many userspace utilities consider an FSID of 0 invalid.
1224 * Always return at least 1 from get_anon_bdev.
1225 */
1226 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1227 GFP_ATOMIC);
1228 if (dev == -ENOSPC)
1229 dev = -EMFILE;
1230 if (dev < 0)
1231 return dev;
1232
1233 *p = MKDEV(0, dev);
1234 return 0;
1235 }
1236 EXPORT_SYMBOL(get_anon_bdev);
1237
1238 void free_anon_bdev(dev_t dev)
1239 {
1240 ida_free(&unnamed_dev_ida, MINOR(dev));
1241 }
1242 EXPORT_SYMBOL(free_anon_bdev);
1243
1244 int set_anon_super(struct super_block *s, void *data)
1245 {
1246 return get_anon_bdev(&s->s_dev);
1247 }
1248 EXPORT_SYMBOL(set_anon_super);
1249
1250 void kill_anon_super(struct super_block *sb)
1251 {
1252 dev_t dev = sb->s_dev;
1253 generic_shutdown_super(sb);
1254 kill_super_notify(sb);
1255 free_anon_bdev(dev);
1256 }
1257 EXPORT_SYMBOL(kill_anon_super);
1258
1259 void kill_litter_super(struct super_block *sb)
1260 {
1261 if (sb->s_root)
1262 d_genocide(sb->s_root);
1263 kill_anon_super(sb);
1264 }
1265 EXPORT_SYMBOL(kill_litter_super);
1266
1267 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1268 {
1269 return set_anon_super(sb, NULL);
1270 }
1271 EXPORT_SYMBOL(set_anon_super_fc);
1272
1273 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1274 {
1275 return sb->s_fs_info == fc->s_fs_info;
1276 }
1277
1278 static int test_single_super(struct super_block *s, struct fs_context *fc)
1279 {
1280 return 1;
1281 }
1282
1283 static int vfs_get_super(struct fs_context *fc,
1284 int (*test)(struct super_block *, struct fs_context *),
1285 int (*fill_super)(struct super_block *sb,
1286 struct fs_context *fc))
1287 {
1288 struct super_block *sb;
1289 int err;
1290
1291 sb = sget_fc(fc, test, set_anon_super_fc);
1292 if (IS_ERR(sb))
1293 return PTR_ERR(sb);
1294
1295 if (!sb->s_root) {
1296 err = fill_super(sb, fc);
1297 if (err)
1298 goto error;
1299
1300 sb->s_flags |= SB_ACTIVE;
1301 }
1302
1303 fc->root = dget(sb->s_root);
1304 return 0;
1305
1306 error:
1307 deactivate_locked_super(sb);
1308 return err;
1309 }
1310
1311 int get_tree_nodev(struct fs_context *fc,
1312 int (*fill_super)(struct super_block *sb,
1313 struct fs_context *fc))
1314 {
1315 return vfs_get_super(fc, NULL, fill_super);
1316 }
1317 EXPORT_SYMBOL(get_tree_nodev);
1318
1319 int get_tree_single(struct fs_context *fc,
1320 int (*fill_super)(struct super_block *sb,
1321 struct fs_context *fc))
1322 {
1323 return vfs_get_super(fc, test_single_super, fill_super);
1324 }
1325 EXPORT_SYMBOL(get_tree_single);
1326
1327 int get_tree_keyed(struct fs_context *fc,
1328 int (*fill_super)(struct super_block *sb,
1329 struct fs_context *fc),
1330 void *key)
1331 {
1332 fc->s_fs_info = key;
1333 return vfs_get_super(fc, test_keyed_super, fill_super);
1334 }
1335 EXPORT_SYMBOL(get_tree_keyed);
1336
1337 static int set_bdev_super(struct super_block *s, void *data)
1338 {
1339 s->s_dev = *(dev_t *)data;
1340 return 0;
1341 }
1342
1343 static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
1344 {
1345 return set_bdev_super(s, fc->sget_key);
1346 }
1347
1348 static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
1349 {
1350 return !(s->s_iflags & SB_I_RETIRED) &&
1351 s->s_dev == *(dev_t *)fc->sget_key;
1352 }
1353
1354 /**
1355 * sget_dev - Find or create a superblock by device number
1356 * @fc: Filesystem context.
1357 * @dev: device number
1358 *
1359 * Find or create a superblock using the provided device number that
1360 * will be stored in fc->sget_key.
1361 *
1362 * If an extant superblock is matched, then that will be returned with
1363 * an elevated reference count that the caller must transfer or discard.
1364 *
1365 * If no match is made, a new superblock will be allocated and basic
1366 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1367 * be set). The superblock will be published and it will be returned in
1368 * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1369 * unset.
1370 *
1371 * Return: an existing or newly created superblock on success, an error
1372 * pointer on failure.
1373 */
1374 struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
1375 {
1376 fc->sget_key = &dev;
1377 return sget_fc(fc, super_s_dev_test, super_s_dev_set);
1378 }
1379 EXPORT_SYMBOL(sget_dev);
1380
1381 #ifdef CONFIG_BLOCK
1382 /*
1383 * Lock the superblock that is holder of the bdev. Returns the superblock
1384 * pointer if we successfully locked the superblock and it is alive. Otherwise
1385 * we return NULL and just unlock bdev->bd_holder_lock.
1386 *
1387 * The function must be called with bdev->bd_holder_lock and releases it.
1388 */
1389 static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl)
1390 __releases(&bdev->bd_holder_lock)
1391 {
1392 struct super_block *sb = bdev->bd_holder;
1393 bool locked;
1394
1395 lockdep_assert_held(&bdev->bd_holder_lock);
1396 lockdep_assert_not_held(&sb->s_umount);
1397 lockdep_assert_not_held(&bdev->bd_disk->open_mutex);
1398
1399 /* Make sure sb doesn't go away from under us */
1400 spin_lock(&sb_lock);
1401 sb->s_count++;
1402 spin_unlock(&sb_lock);
1403
1404 mutex_unlock(&bdev->bd_holder_lock);
1405
1406 locked = super_lock(sb, excl);
1407
1408 /*
1409 * If the superblock wasn't already SB_DYING then we hold
1410 * s_umount and can safely drop our temporary reference.
1411 */
1412 put_super(sb);
1413
1414 if (!locked)
1415 return NULL;
1416
1417 if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1418 super_unlock(sb, excl);
1419 return NULL;
1420 }
1421
1422 return sb;
1423 }
1424
1425 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1426 {
1427 struct super_block *sb;
1428
1429 sb = bdev_super_lock(bdev, false);
1430 if (!sb)
1431 return;
1432
1433 if (!surprise)
1434 sync_filesystem(sb);
1435 shrink_dcache_sb(sb);
1436 invalidate_inodes(sb);
1437 if (sb->s_op->shutdown)
1438 sb->s_op->shutdown(sb);
1439
1440 super_unlock_shared(sb);
1441 }
1442
1443 static void fs_bdev_sync(struct block_device *bdev)
1444 {
1445 struct super_block *sb;
1446
1447 sb = bdev_super_lock(bdev, false);
1448 if (!sb)
1449 return;
1450
1451 sync_filesystem(sb);
1452 super_unlock_shared(sb);
1453 }
1454
1455 static struct super_block *get_bdev_super(struct block_device *bdev)
1456 {
1457 bool active = false;
1458 struct super_block *sb;
1459
1460 sb = bdev_super_lock(bdev, true);
1461 if (sb) {
1462 active = atomic_inc_not_zero(&sb->s_active);
1463 super_unlock_excl(sb);
1464 }
1465 if (!active)
1466 return NULL;
1467 return sb;
1468 }
1469
1470 static int fs_bdev_freeze(struct block_device *bdev)
1471 {
1472 struct super_block *sb;
1473 int error = 0;
1474
1475 lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1476
1477 sb = get_bdev_super(bdev);
1478 if (!sb)
1479 return -EINVAL;
1480
1481 if (sb->s_op->freeze_super)
1482 error = sb->s_op->freeze_super(sb, FREEZE_HOLDER_USERSPACE);
1483 else
1484 error = freeze_super(sb, FREEZE_HOLDER_USERSPACE);
1485 if (!error)
1486 error = sync_blockdev(bdev);
1487 deactivate_super(sb);
1488 return error;
1489 }
1490
1491 static int fs_bdev_thaw(struct block_device *bdev)
1492 {
1493 struct super_block *sb;
1494 int error;
1495
1496 lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1497
1498 sb = get_bdev_super(bdev);
1499 if (WARN_ON_ONCE(!sb))
1500 return -EINVAL;
1501
1502 if (sb->s_op->thaw_super)
1503 error = sb->s_op->thaw_super(sb, FREEZE_HOLDER_USERSPACE);
1504 else
1505 error = thaw_super(sb, FREEZE_HOLDER_USERSPACE);
1506 deactivate_super(sb);
1507 return error;
1508 }
1509
1510 const struct blk_holder_ops fs_holder_ops = {
1511 .mark_dead = fs_bdev_mark_dead,
1512 .sync = fs_bdev_sync,
1513 .freeze = fs_bdev_freeze,
1514 .thaw = fs_bdev_thaw,
1515 };
1516 EXPORT_SYMBOL_GPL(fs_holder_ops);
1517
1518 int setup_bdev_super(struct super_block *sb, int sb_flags,
1519 struct fs_context *fc)
1520 {
1521 blk_mode_t mode = sb_open_mode(sb_flags);
1522 struct bdev_handle *bdev_handle;
1523 struct block_device *bdev;
1524
1525 bdev_handle = bdev_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1526 if (IS_ERR(bdev_handle)) {
1527 if (fc)
1528 errorf(fc, "%s: Can't open blockdev", fc->source);
1529 return PTR_ERR(bdev_handle);
1530 }
1531 bdev = bdev_handle->bdev;
1532
1533 /*
1534 * This really should be in blkdev_get_by_dev, but right now can't due
1535 * to legacy issues that require us to allow opening a block device node
1536 * writable from userspace even for a read-only block device.
1537 */
1538 if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1539 bdev_release(bdev_handle);
1540 return -EACCES;
1541 }
1542
1543 /*
1544 * It is enough to check bdev was not frozen before we set
1545 * s_bdev as freezing will wait until SB_BORN is set.
1546 */
1547 if (atomic_read(&bdev->bd_fsfreeze_count) > 0) {
1548 if (fc)
1549 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1550 bdev_release(bdev_handle);
1551 return -EBUSY;
1552 }
1553 spin_lock(&sb_lock);
1554 sb->s_bdev_handle = bdev_handle;
1555 sb->s_bdev = bdev;
1556 sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1557 if (bdev_stable_writes(bdev))
1558 sb->s_iflags |= SB_I_STABLE_WRITES;
1559 spin_unlock(&sb_lock);
1560
1561 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1562 shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1563 sb->s_id);
1564 sb_set_blocksize(sb, block_size(bdev));
1565 return 0;
1566 }
1567 EXPORT_SYMBOL_GPL(setup_bdev_super);
1568
1569 /**
1570 * get_tree_bdev - Get a superblock based on a single block device
1571 * @fc: The filesystem context holding the parameters
1572 * @fill_super: Helper to initialise a new superblock
1573 */
1574 int get_tree_bdev(struct fs_context *fc,
1575 int (*fill_super)(struct super_block *,
1576 struct fs_context *))
1577 {
1578 struct super_block *s;
1579 int error = 0;
1580 dev_t dev;
1581
1582 if (!fc->source)
1583 return invalf(fc, "No source specified");
1584
1585 error = lookup_bdev(fc->source, &dev);
1586 if (error) {
1587 errorf(fc, "%s: Can't lookup blockdev", fc->source);
1588 return error;
1589 }
1590
1591 fc->sb_flags |= SB_NOSEC;
1592 s = sget_dev(fc, dev);
1593 if (IS_ERR(s))
1594 return PTR_ERR(s);
1595
1596 if (s->s_root) {
1597 /* Don't summarily change the RO/RW state. */
1598 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1599 warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1600 deactivate_locked_super(s);
1601 return -EBUSY;
1602 }
1603 } else {
1604 /*
1605 * We drop s_umount here because we need to open the bdev and
1606 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1607 * bdev_mark_dead()). It is safe because we have active sb
1608 * reference and SB_BORN is not set yet.
1609 */
1610 super_unlock_excl(s);
1611 error = setup_bdev_super(s, fc->sb_flags, fc);
1612 __super_lock_excl(s);
1613 if (!error)
1614 error = fill_super(s, fc);
1615 if (error) {
1616 deactivate_locked_super(s);
1617 return error;
1618 }
1619 s->s_flags |= SB_ACTIVE;
1620 }
1621
1622 BUG_ON(fc->root);
1623 fc->root = dget(s->s_root);
1624 return 0;
1625 }
1626 EXPORT_SYMBOL(get_tree_bdev);
1627
1628 static int test_bdev_super(struct super_block *s, void *data)
1629 {
1630 return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1631 }
1632
1633 struct dentry *mount_bdev(struct file_system_type *fs_type,
1634 int flags, const char *dev_name, void *data,
1635 int (*fill_super)(struct super_block *, void *, int))
1636 {
1637 struct super_block *s;
1638 int error;
1639 dev_t dev;
1640
1641 error = lookup_bdev(dev_name, &dev);
1642 if (error)
1643 return ERR_PTR(error);
1644
1645 flags |= SB_NOSEC;
1646 s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
1647 if (IS_ERR(s))
1648 return ERR_CAST(s);
1649
1650 if (s->s_root) {
1651 if ((flags ^ s->s_flags) & SB_RDONLY) {
1652 deactivate_locked_super(s);
1653 return ERR_PTR(-EBUSY);
1654 }
1655 } else {
1656 /*
1657 * We drop s_umount here because we need to open the bdev and
1658 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1659 * bdev_mark_dead()). It is safe because we have active sb
1660 * reference and SB_BORN is not set yet.
1661 */
1662 super_unlock_excl(s);
1663 error = setup_bdev_super(s, flags, NULL);
1664 __super_lock_excl(s);
1665 if (!error)
1666 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1667 if (error) {
1668 deactivate_locked_super(s);
1669 return ERR_PTR(error);
1670 }
1671
1672 s->s_flags |= SB_ACTIVE;
1673 }
1674
1675 return dget(s->s_root);
1676 }
1677 EXPORT_SYMBOL(mount_bdev);
1678
1679 void kill_block_super(struct super_block *sb)
1680 {
1681 struct block_device *bdev = sb->s_bdev;
1682
1683 generic_shutdown_super(sb);
1684 if (bdev) {
1685 sync_blockdev(bdev);
1686 bdev_release(sb->s_bdev_handle);
1687 }
1688 }
1689
1690 EXPORT_SYMBOL(kill_block_super);
1691 #endif
1692
1693 struct dentry *mount_nodev(struct file_system_type *fs_type,
1694 int flags, void *data,
1695 int (*fill_super)(struct super_block *, void *, int))
1696 {
1697 int error;
1698 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1699
1700 if (IS_ERR(s))
1701 return ERR_CAST(s);
1702
1703 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1704 if (error) {
1705 deactivate_locked_super(s);
1706 return ERR_PTR(error);
1707 }
1708 s->s_flags |= SB_ACTIVE;
1709 return dget(s->s_root);
1710 }
1711 EXPORT_SYMBOL(mount_nodev);
1712
1713 int reconfigure_single(struct super_block *s,
1714 int flags, void *data)
1715 {
1716 struct fs_context *fc;
1717 int ret;
1718
1719 /* The caller really need to be passing fc down into mount_single(),
1720 * then a chunk of this can be removed. [Bollocks -- AV]
1721 * Better yet, reconfiguration shouldn't happen, but rather the second
1722 * mount should be rejected if the parameters are not compatible.
1723 */
1724 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1725 if (IS_ERR(fc))
1726 return PTR_ERR(fc);
1727
1728 ret = parse_monolithic_mount_data(fc, data);
1729 if (ret < 0)
1730 goto out;
1731
1732 ret = reconfigure_super(fc);
1733 out:
1734 put_fs_context(fc);
1735 return ret;
1736 }
1737
1738 static int compare_single(struct super_block *s, void *p)
1739 {
1740 return 1;
1741 }
1742
1743 struct dentry *mount_single(struct file_system_type *fs_type,
1744 int flags, void *data,
1745 int (*fill_super)(struct super_block *, void *, int))
1746 {
1747 struct super_block *s;
1748 int error;
1749
1750 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1751 if (IS_ERR(s))
1752 return ERR_CAST(s);
1753 if (!s->s_root) {
1754 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1755 if (!error)
1756 s->s_flags |= SB_ACTIVE;
1757 } else {
1758 error = reconfigure_single(s, flags, data);
1759 }
1760 if (unlikely(error)) {
1761 deactivate_locked_super(s);
1762 return ERR_PTR(error);
1763 }
1764 return dget(s->s_root);
1765 }
1766 EXPORT_SYMBOL(mount_single);
1767
1768 /**
1769 * vfs_get_tree - Get the mountable root
1770 * @fc: The superblock configuration context.
1771 *
1772 * The filesystem is invoked to get or create a superblock which can then later
1773 * be used for mounting. The filesystem places a pointer to the root to be
1774 * used for mounting in @fc->root.
1775 */
1776 int vfs_get_tree(struct fs_context *fc)
1777 {
1778 struct super_block *sb;
1779 int error;
1780
1781 if (fc->root)
1782 return -EBUSY;
1783
1784 /* Get the mountable root in fc->root, with a ref on the root and a ref
1785 * on the superblock.
1786 */
1787 error = fc->ops->get_tree(fc);
1788 if (error < 0)
1789 return error;
1790
1791 if (!fc->root) {
1792 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1793 fc->fs_type->name);
1794 /* We don't know what the locking state of the superblock is -
1795 * if there is a superblock.
1796 */
1797 BUG();
1798 }
1799
1800 sb = fc->root->d_sb;
1801 WARN_ON(!sb->s_bdi);
1802
1803 /*
1804 * super_wake() contains a memory barrier which also care of
1805 * ordering for super_cache_count(). We place it before setting
1806 * SB_BORN as the data dependency between the two functions is
1807 * the superblock structure contents that we just set up, not
1808 * the SB_BORN flag.
1809 */
1810 super_wake(sb, SB_BORN);
1811
1812 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1813 if (unlikely(error)) {
1814 fc_drop_locked(fc);
1815 return error;
1816 }
1817
1818 /*
1819 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1820 * but s_maxbytes was an unsigned long long for many releases. Throw
1821 * this warning for a little while to try and catch filesystems that
1822 * violate this rule.
1823 */
1824 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1825 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1826
1827 return 0;
1828 }
1829 EXPORT_SYMBOL(vfs_get_tree);
1830
1831 /*
1832 * Setup private BDI for given superblock. It gets automatically cleaned up
1833 * in generic_shutdown_super().
1834 */
1835 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1836 {
1837 struct backing_dev_info *bdi;
1838 int err;
1839 va_list args;
1840
1841 bdi = bdi_alloc(NUMA_NO_NODE);
1842 if (!bdi)
1843 return -ENOMEM;
1844
1845 va_start(args, fmt);
1846 err = bdi_register_va(bdi, fmt, args);
1847 va_end(args);
1848 if (err) {
1849 bdi_put(bdi);
1850 return err;
1851 }
1852 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1853 sb->s_bdi = bdi;
1854 sb->s_iflags |= SB_I_PERSB_BDI;
1855
1856 return 0;
1857 }
1858 EXPORT_SYMBOL(super_setup_bdi_name);
1859
1860 /*
1861 * Setup private BDI for given superblock. I gets automatically cleaned up
1862 * in generic_shutdown_super().
1863 */
1864 int super_setup_bdi(struct super_block *sb)
1865 {
1866 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1867
1868 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1869 atomic_long_inc_return(&bdi_seq));
1870 }
1871 EXPORT_SYMBOL(super_setup_bdi);
1872
1873 /**
1874 * sb_wait_write - wait until all writers to given file system finish
1875 * @sb: the super for which we wait
1876 * @level: type of writers we wait for (normal vs page fault)
1877 *
1878 * This function waits until there are no writers of given type to given file
1879 * system.
1880 */
1881 static void sb_wait_write(struct super_block *sb, int level)
1882 {
1883 percpu_down_write(sb->s_writers.rw_sem + level-1);
1884 }
1885
1886 /*
1887 * We are going to return to userspace and forget about these locks, the
1888 * ownership goes to the caller of thaw_super() which does unlock().
1889 */
1890 static void lockdep_sb_freeze_release(struct super_block *sb)
1891 {
1892 int level;
1893
1894 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1895 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1896 }
1897
1898 /*
1899 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1900 */
1901 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1902 {
1903 int level;
1904
1905 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1906 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1907 }
1908
1909 static void sb_freeze_unlock(struct super_block *sb, int level)
1910 {
1911 for (level--; level >= 0; level--)
1912 percpu_up_write(sb->s_writers.rw_sem + level);
1913 }
1914
1915 static int wait_for_partially_frozen(struct super_block *sb)
1916 {
1917 int ret = 0;
1918
1919 do {
1920 unsigned short old = sb->s_writers.frozen;
1921
1922 up_write(&sb->s_umount);
1923 ret = wait_var_event_killable(&sb->s_writers.frozen,
1924 sb->s_writers.frozen != old);
1925 down_write(&sb->s_umount);
1926 } while (ret == 0 &&
1927 sb->s_writers.frozen != SB_UNFROZEN &&
1928 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1929
1930 return ret;
1931 }
1932
1933 /**
1934 * freeze_super - lock the filesystem and force it into a consistent state
1935 * @sb: the super to lock
1936 * @who: context that wants to freeze
1937 *
1938 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1939 * freeze_fs. Subsequent calls to this without first thawing the fs may return
1940 * -EBUSY.
1941 *
1942 * @who should be:
1943 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
1944 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
1945 *
1946 * The @who argument distinguishes between the kernel and userspace trying to
1947 * freeze the filesystem. Although there cannot be multiple kernel freezes or
1948 * multiple userspace freezes in effect at any given time, the kernel and
1949 * userspace can both hold a filesystem frozen. The filesystem remains frozen
1950 * until there are no kernel or userspace freezes in effect.
1951 *
1952 * During this function, sb->s_writers.frozen goes through these values:
1953 *
1954 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1955 *
1956 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1957 * writes should be blocked, though page faults are still allowed. We wait for
1958 * all writes to complete and then proceed to the next stage.
1959 *
1960 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1961 * but internal fs threads can still modify the filesystem (although they
1962 * should not dirty new pages or inodes), writeback can run etc. After waiting
1963 * for all running page faults we sync the filesystem which will clean all
1964 * dirty pages and inodes (no new dirty pages or inodes can be created when
1965 * sync is running).
1966 *
1967 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1968 * modification are blocked (e.g. XFS preallocation truncation on inode
1969 * reclaim). This is usually implemented by blocking new transactions for
1970 * filesystems that have them and need this additional guard. After all
1971 * internal writers are finished we call ->freeze_fs() to finish filesystem
1972 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1973 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1974 *
1975 * sb->s_writers.frozen is protected by sb->s_umount.
1976 */
1977 int freeze_super(struct super_block *sb, enum freeze_holder who)
1978 {
1979 int ret;
1980
1981 if (!super_lock_excl(sb)) {
1982 WARN_ON_ONCE("Dying superblock while freezing!");
1983 return -EINVAL;
1984 }
1985 atomic_inc(&sb->s_active);
1986
1987 retry:
1988 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
1989 if (sb->s_writers.freeze_holders & who) {
1990 deactivate_locked_super(sb);
1991 return -EBUSY;
1992 }
1993
1994 WARN_ON(sb->s_writers.freeze_holders == 0);
1995
1996 /*
1997 * Someone else already holds this type of freeze; share the
1998 * freeze and assign the active ref to the freeze.
1999 */
2000 sb->s_writers.freeze_holders |= who;
2001 super_unlock_excl(sb);
2002 return 0;
2003 }
2004
2005 if (sb->s_writers.frozen != SB_UNFROZEN) {
2006 ret = wait_for_partially_frozen(sb);
2007 if (ret) {
2008 deactivate_locked_super(sb);
2009 return ret;
2010 }
2011
2012 goto retry;
2013 }
2014
2015 if (!(sb->s_flags & SB_BORN)) {
2016 super_unlock_excl(sb);
2017 return 0; /* sic - it's "nothing to do" */
2018 }
2019
2020 if (sb_rdonly(sb)) {
2021 /* Nothing to do really... */
2022 sb->s_writers.freeze_holders |= who;
2023 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2024 wake_up_var(&sb->s_writers.frozen);
2025 super_unlock_excl(sb);
2026 return 0;
2027 }
2028
2029 sb->s_writers.frozen = SB_FREEZE_WRITE;
2030 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
2031 super_unlock_excl(sb);
2032 sb_wait_write(sb, SB_FREEZE_WRITE);
2033 if (!super_lock_excl(sb)) {
2034 WARN_ON_ONCE("Dying superblock while freezing!");
2035 return -EINVAL;
2036 }
2037
2038 /* Now we go and block page faults... */
2039 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
2040 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
2041
2042 /* All writers are done so after syncing there won't be dirty data */
2043 ret = sync_filesystem(sb);
2044 if (ret) {
2045 sb->s_writers.frozen = SB_UNFROZEN;
2046 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
2047 wake_up_var(&sb->s_writers.frozen);
2048 deactivate_locked_super(sb);
2049 return ret;
2050 }
2051
2052 /* Now wait for internal filesystem counter */
2053 sb->s_writers.frozen = SB_FREEZE_FS;
2054 sb_wait_write(sb, SB_FREEZE_FS);
2055
2056 if (sb->s_op->freeze_fs) {
2057 ret = sb->s_op->freeze_fs(sb);
2058 if (ret) {
2059 printk(KERN_ERR
2060 "VFS:Filesystem freeze failed\n");
2061 sb->s_writers.frozen = SB_UNFROZEN;
2062 sb_freeze_unlock(sb, SB_FREEZE_FS);
2063 wake_up_var(&sb->s_writers.frozen);
2064 deactivate_locked_super(sb);
2065 return ret;
2066 }
2067 }
2068 /*
2069 * For debugging purposes so that fs can warn if it sees write activity
2070 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2071 */
2072 sb->s_writers.freeze_holders |= who;
2073 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2074 wake_up_var(&sb->s_writers.frozen);
2075 lockdep_sb_freeze_release(sb);
2076 super_unlock_excl(sb);
2077 return 0;
2078 }
2079 EXPORT_SYMBOL(freeze_super);
2080
2081 /*
2082 * Undoes the effect of a freeze_super_locked call. If the filesystem is
2083 * frozen both by userspace and the kernel, a thaw call from either source
2084 * removes that state without releasing the other state or unlocking the
2085 * filesystem.
2086 */
2087 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
2088 {
2089 int error;
2090
2091 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2092 if (!(sb->s_writers.freeze_holders & who)) {
2093 super_unlock_excl(sb);
2094 return -EINVAL;
2095 }
2096
2097 /*
2098 * Freeze is shared with someone else. Release our hold and
2099 * drop the active ref that freeze_super assigned to the
2100 * freezer.
2101 */
2102 if (sb->s_writers.freeze_holders & ~who) {
2103 sb->s_writers.freeze_holders &= ~who;
2104 deactivate_locked_super(sb);
2105 return 0;
2106 }
2107 } else {
2108 super_unlock_excl(sb);
2109 return -EINVAL;
2110 }
2111
2112 if (sb_rdonly(sb)) {
2113 sb->s_writers.freeze_holders &= ~who;
2114 sb->s_writers.frozen = SB_UNFROZEN;
2115 wake_up_var(&sb->s_writers.frozen);
2116 goto out;
2117 }
2118
2119 lockdep_sb_freeze_acquire(sb);
2120
2121 if (sb->s_op->unfreeze_fs) {
2122 error = sb->s_op->unfreeze_fs(sb);
2123 if (error) {
2124 printk(KERN_ERR "VFS:Filesystem thaw failed\n");
2125 lockdep_sb_freeze_release(sb);
2126 super_unlock_excl(sb);
2127 return error;
2128 }
2129 }
2130
2131 sb->s_writers.freeze_holders &= ~who;
2132 sb->s_writers.frozen = SB_UNFROZEN;
2133 wake_up_var(&sb->s_writers.frozen);
2134 sb_freeze_unlock(sb, SB_FREEZE_FS);
2135 out:
2136 deactivate_locked_super(sb);
2137 return 0;
2138 }
2139
2140 /**
2141 * thaw_super -- unlock filesystem
2142 * @sb: the super to thaw
2143 * @who: context that wants to freeze
2144 *
2145 * Unlocks the filesystem and marks it writeable again after freeze_super()
2146 * if there are no remaining freezes on the filesystem.
2147 *
2148 * @who should be:
2149 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2150 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2151 */
2152 int thaw_super(struct super_block *sb, enum freeze_holder who)
2153 {
2154 if (!super_lock_excl(sb)) {
2155 WARN_ON_ONCE("Dying superblock while thawing!");
2156 return -EINVAL;
2157 }
2158 return thaw_super_locked(sb, who);
2159 }
2160 EXPORT_SYMBOL(thaw_super);
2161
2162 /*
2163 * Create workqueue for deferred direct IO completions. We allocate the
2164 * workqueue when it's first needed. This avoids creating workqueue for
2165 * filesystems that don't need it and also allows us to create the workqueue
2166 * late enough so the we can include s_id in the name of the workqueue.
2167 */
2168 int sb_init_dio_done_wq(struct super_block *sb)
2169 {
2170 struct workqueue_struct *old;
2171 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2172 WQ_MEM_RECLAIM, 0,
2173 sb->s_id);
2174 if (!wq)
2175 return -ENOMEM;
2176 /*
2177 * This has to be atomic as more DIOs can race to create the workqueue
2178 */
2179 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
2180 /* Someone created workqueue before us? Free ours... */
2181 if (old)
2182 destroy_workqueue(wq);
2183 return 0;
2184 }
2185 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);