]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/super.c
Merge tag 'pm-6.3-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[thirdparty/linux.git] / fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41
42 static int thaw_super_locked(struct super_block *sb);
43
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 "sb_writers",
49 "sb_pagefaults",
50 "sb_internal",
51 };
52
53 /*
54 * One thing we have to be careful of with a per-sb shrinker is that we don't
55 * drop the last active reference to the superblock from within the shrinker.
56 * If that happens we could trigger unregistering the shrinker from within the
57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
58 * take a passive reference to the superblock to avoid this from occurring.
59 */
60 static unsigned long super_cache_scan(struct shrinker *shrink,
61 struct shrink_control *sc)
62 {
63 struct super_block *sb;
64 long fs_objects = 0;
65 long total_objects;
66 long freed = 0;
67 long dentries;
68 long inodes;
69
70 sb = container_of(shrink, struct super_block, s_shrink);
71
72 /*
73 * Deadlock avoidance. We may hold various FS locks, and we don't want
74 * to recurse into the FS that called us in clear_inode() and friends..
75 */
76 if (!(sc->gfp_mask & __GFP_FS))
77 return SHRINK_STOP;
78
79 if (!trylock_super(sb))
80 return SHRINK_STOP;
81
82 if (sb->s_op->nr_cached_objects)
83 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
84
85 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
86 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
87 total_objects = dentries + inodes + fs_objects + 1;
88 if (!total_objects)
89 total_objects = 1;
90
91 /* proportion the scan between the caches */
92 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
93 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
94 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
95
96 /*
97 * prune the dcache first as the icache is pinned by it, then
98 * prune the icache, followed by the filesystem specific caches
99 *
100 * Ensure that we always scan at least one object - memcg kmem
101 * accounting uses this to fully empty the caches.
102 */
103 sc->nr_to_scan = dentries + 1;
104 freed = prune_dcache_sb(sb, sc);
105 sc->nr_to_scan = inodes + 1;
106 freed += prune_icache_sb(sb, sc);
107
108 if (fs_objects) {
109 sc->nr_to_scan = fs_objects + 1;
110 freed += sb->s_op->free_cached_objects(sb, sc);
111 }
112
113 up_read(&sb->s_umount);
114 return freed;
115 }
116
117 static unsigned long super_cache_count(struct shrinker *shrink,
118 struct shrink_control *sc)
119 {
120 struct super_block *sb;
121 long total_objects = 0;
122
123 sb = container_of(shrink, struct super_block, s_shrink);
124
125 /*
126 * We don't call trylock_super() here as it is a scalability bottleneck,
127 * so we're exposed to partial setup state. The shrinker rwsem does not
128 * protect filesystem operations backing list_lru_shrink_count() or
129 * s_op->nr_cached_objects(). Counts can change between
130 * super_cache_count and super_cache_scan, so we really don't need locks
131 * here.
132 *
133 * However, if we are currently mounting the superblock, the underlying
134 * filesystem might be in a state of partial construction and hence it
135 * is dangerous to access it. trylock_super() uses a SB_BORN check to
136 * avoid this situation, so do the same here. The memory barrier is
137 * matched with the one in mount_fs() as we don't hold locks here.
138 */
139 if (!(sb->s_flags & SB_BORN))
140 return 0;
141 smp_rmb();
142
143 if (sb->s_op && sb->s_op->nr_cached_objects)
144 total_objects = sb->s_op->nr_cached_objects(sb, sc);
145
146 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
147 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
148
149 if (!total_objects)
150 return SHRINK_EMPTY;
151
152 total_objects = vfs_pressure_ratio(total_objects);
153 return total_objects;
154 }
155
156 static void destroy_super_work(struct work_struct *work)
157 {
158 struct super_block *s = container_of(work, struct super_block,
159 destroy_work);
160 int i;
161
162 for (i = 0; i < SB_FREEZE_LEVELS; i++)
163 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
164 kfree(s);
165 }
166
167 static void destroy_super_rcu(struct rcu_head *head)
168 {
169 struct super_block *s = container_of(head, struct super_block, rcu);
170 INIT_WORK(&s->destroy_work, destroy_super_work);
171 schedule_work(&s->destroy_work);
172 }
173
174 /* Free a superblock that has never been seen by anyone */
175 static void destroy_unused_super(struct super_block *s)
176 {
177 if (!s)
178 return;
179 up_write(&s->s_umount);
180 list_lru_destroy(&s->s_dentry_lru);
181 list_lru_destroy(&s->s_inode_lru);
182 security_sb_free(s);
183 put_user_ns(s->s_user_ns);
184 kfree(s->s_subtype);
185 free_prealloced_shrinker(&s->s_shrink);
186 /* no delays needed */
187 destroy_super_work(&s->destroy_work);
188 }
189
190 /**
191 * alloc_super - create new superblock
192 * @type: filesystem type superblock should belong to
193 * @flags: the mount flags
194 * @user_ns: User namespace for the super_block
195 *
196 * Allocates and initializes a new &struct super_block. alloc_super()
197 * returns a pointer new superblock or %NULL if allocation had failed.
198 */
199 static struct super_block *alloc_super(struct file_system_type *type, int flags,
200 struct user_namespace *user_ns)
201 {
202 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
203 static const struct super_operations default_op;
204 int i;
205
206 if (!s)
207 return NULL;
208
209 INIT_LIST_HEAD(&s->s_mounts);
210 s->s_user_ns = get_user_ns(user_ns);
211 init_rwsem(&s->s_umount);
212 lockdep_set_class(&s->s_umount, &type->s_umount_key);
213 /*
214 * sget() can have s_umount recursion.
215 *
216 * When it cannot find a suitable sb, it allocates a new
217 * one (this one), and tries again to find a suitable old
218 * one.
219 *
220 * In case that succeeds, it will acquire the s_umount
221 * lock of the old one. Since these are clearly distrinct
222 * locks, and this object isn't exposed yet, there's no
223 * risk of deadlocks.
224 *
225 * Annotate this by putting this lock in a different
226 * subclass.
227 */
228 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
229
230 if (security_sb_alloc(s))
231 goto fail;
232
233 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
234 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
235 sb_writers_name[i],
236 &type->s_writers_key[i]))
237 goto fail;
238 }
239 init_waitqueue_head(&s->s_writers.wait_unfrozen);
240 s->s_bdi = &noop_backing_dev_info;
241 s->s_flags = flags;
242 if (s->s_user_ns != &init_user_ns)
243 s->s_iflags |= SB_I_NODEV;
244 INIT_HLIST_NODE(&s->s_instances);
245 INIT_HLIST_BL_HEAD(&s->s_roots);
246 mutex_init(&s->s_sync_lock);
247 INIT_LIST_HEAD(&s->s_inodes);
248 spin_lock_init(&s->s_inode_list_lock);
249 INIT_LIST_HEAD(&s->s_inodes_wb);
250 spin_lock_init(&s->s_inode_wblist_lock);
251
252 s->s_count = 1;
253 atomic_set(&s->s_active, 1);
254 mutex_init(&s->s_vfs_rename_mutex);
255 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
256 init_rwsem(&s->s_dquot.dqio_sem);
257 s->s_maxbytes = MAX_NON_LFS;
258 s->s_op = &default_op;
259 s->s_time_gran = 1000000000;
260 s->s_time_min = TIME64_MIN;
261 s->s_time_max = TIME64_MAX;
262
263 s->s_shrink.seeks = DEFAULT_SEEKS;
264 s->s_shrink.scan_objects = super_cache_scan;
265 s->s_shrink.count_objects = super_cache_count;
266 s->s_shrink.batch = 1024;
267 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
268 if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
269 goto fail;
270 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
271 goto fail;
272 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
273 goto fail;
274 return s;
275
276 fail:
277 destroy_unused_super(s);
278 return NULL;
279 }
280
281 /* Superblock refcounting */
282
283 /*
284 * Drop a superblock's refcount. The caller must hold sb_lock.
285 */
286 static void __put_super(struct super_block *s)
287 {
288 if (!--s->s_count) {
289 list_del_init(&s->s_list);
290 WARN_ON(s->s_dentry_lru.node);
291 WARN_ON(s->s_inode_lru.node);
292 WARN_ON(!list_empty(&s->s_mounts));
293 security_sb_free(s);
294 put_user_ns(s->s_user_ns);
295 kfree(s->s_subtype);
296 call_rcu(&s->rcu, destroy_super_rcu);
297 }
298 }
299
300 /**
301 * put_super - drop a temporary reference to superblock
302 * @sb: superblock in question
303 *
304 * Drops a temporary reference, frees superblock if there's no
305 * references left.
306 */
307 void put_super(struct super_block *sb)
308 {
309 spin_lock(&sb_lock);
310 __put_super(sb);
311 spin_unlock(&sb_lock);
312 }
313
314
315 /**
316 * deactivate_locked_super - drop an active reference to superblock
317 * @s: superblock to deactivate
318 *
319 * Drops an active reference to superblock, converting it into a temporary
320 * one if there is no other active references left. In that case we
321 * tell fs driver to shut it down and drop the temporary reference we
322 * had just acquired.
323 *
324 * Caller holds exclusive lock on superblock; that lock is released.
325 */
326 void deactivate_locked_super(struct super_block *s)
327 {
328 struct file_system_type *fs = s->s_type;
329 if (atomic_dec_and_test(&s->s_active)) {
330 unregister_shrinker(&s->s_shrink);
331 fs->kill_sb(s);
332
333 /*
334 * Since list_lru_destroy() may sleep, we cannot call it from
335 * put_super(), where we hold the sb_lock. Therefore we destroy
336 * the lru lists right now.
337 */
338 list_lru_destroy(&s->s_dentry_lru);
339 list_lru_destroy(&s->s_inode_lru);
340
341 put_filesystem(fs);
342 put_super(s);
343 } else {
344 up_write(&s->s_umount);
345 }
346 }
347
348 EXPORT_SYMBOL(deactivate_locked_super);
349
350 /**
351 * deactivate_super - drop an active reference to superblock
352 * @s: superblock to deactivate
353 *
354 * Variant of deactivate_locked_super(), except that superblock is *not*
355 * locked by caller. If we are going to drop the final active reference,
356 * lock will be acquired prior to that.
357 */
358 void deactivate_super(struct super_block *s)
359 {
360 if (!atomic_add_unless(&s->s_active, -1, 1)) {
361 down_write(&s->s_umount);
362 deactivate_locked_super(s);
363 }
364 }
365
366 EXPORT_SYMBOL(deactivate_super);
367
368 /**
369 * grab_super - acquire an active reference
370 * @s: reference we are trying to make active
371 *
372 * Tries to acquire an active reference. grab_super() is used when we
373 * had just found a superblock in super_blocks or fs_type->fs_supers
374 * and want to turn it into a full-blown active reference. grab_super()
375 * is called with sb_lock held and drops it. Returns 1 in case of
376 * success, 0 if we had failed (superblock contents was already dead or
377 * dying when grab_super() had been called). Note that this is only
378 * called for superblocks not in rundown mode (== ones still on ->fs_supers
379 * of their type), so increment of ->s_count is OK here.
380 */
381 static int grab_super(struct super_block *s) __releases(sb_lock)
382 {
383 s->s_count++;
384 spin_unlock(&sb_lock);
385 down_write(&s->s_umount);
386 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
387 put_super(s);
388 return 1;
389 }
390 up_write(&s->s_umount);
391 put_super(s);
392 return 0;
393 }
394
395 /*
396 * trylock_super - try to grab ->s_umount shared
397 * @sb: reference we are trying to grab
398 *
399 * Try to prevent fs shutdown. This is used in places where we
400 * cannot take an active reference but we need to ensure that the
401 * filesystem is not shut down while we are working on it. It returns
402 * false if we cannot acquire s_umount or if we lose the race and
403 * filesystem already got into shutdown, and returns true with the s_umount
404 * lock held in read mode in case of success. On successful return,
405 * the caller must drop the s_umount lock when done.
406 *
407 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
408 * The reason why it's safe is that we are OK with doing trylock instead
409 * of down_read(). There's a couple of places that are OK with that, but
410 * it's very much not a general-purpose interface.
411 */
412 bool trylock_super(struct super_block *sb)
413 {
414 if (down_read_trylock(&sb->s_umount)) {
415 if (!hlist_unhashed(&sb->s_instances) &&
416 sb->s_root && (sb->s_flags & SB_BORN))
417 return true;
418 up_read(&sb->s_umount);
419 }
420
421 return false;
422 }
423
424 /**
425 * retire_super - prevents superblock from being reused
426 * @sb: superblock to retire
427 *
428 * The function marks superblock to be ignored in superblock test, which
429 * prevents it from being reused for any new mounts. If the superblock has
430 * a private bdi, it also unregisters it, but doesn't reduce the refcount
431 * of the superblock to prevent potential races. The refcount is reduced
432 * by generic_shutdown_super(). The function can not be called
433 * concurrently with generic_shutdown_super(). It is safe to call the
434 * function multiple times, subsequent calls have no effect.
435 *
436 * The marker will affect the re-use only for block-device-based
437 * superblocks. Other superblocks will still get marked if this function
438 * is used, but that will not affect their reusability.
439 */
440 void retire_super(struct super_block *sb)
441 {
442 WARN_ON(!sb->s_bdev);
443 down_write(&sb->s_umount);
444 if (sb->s_iflags & SB_I_PERSB_BDI) {
445 bdi_unregister(sb->s_bdi);
446 sb->s_iflags &= ~SB_I_PERSB_BDI;
447 }
448 sb->s_iflags |= SB_I_RETIRED;
449 up_write(&sb->s_umount);
450 }
451 EXPORT_SYMBOL(retire_super);
452
453 /**
454 * generic_shutdown_super - common helper for ->kill_sb()
455 * @sb: superblock to kill
456 *
457 * generic_shutdown_super() does all fs-independent work on superblock
458 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
459 * that need destruction out of superblock, call generic_shutdown_super()
460 * and release aforementioned objects. Note: dentries and inodes _are_
461 * taken care of and do not need specific handling.
462 *
463 * Upon calling this function, the filesystem may no longer alter or
464 * rearrange the set of dentries belonging to this super_block, nor may it
465 * change the attachments of dentries to inodes.
466 */
467 void generic_shutdown_super(struct super_block *sb)
468 {
469 const struct super_operations *sop = sb->s_op;
470
471 if (sb->s_root) {
472 shrink_dcache_for_umount(sb);
473 sync_filesystem(sb);
474 sb->s_flags &= ~SB_ACTIVE;
475
476 cgroup_writeback_umount();
477
478 /* evict all inodes with zero refcount */
479 evict_inodes(sb);
480 /* only nonzero refcount inodes can have marks */
481 fsnotify_sb_delete(sb);
482 fscrypt_destroy_keyring(sb);
483 security_sb_delete(sb);
484
485 if (sb->s_dio_done_wq) {
486 destroy_workqueue(sb->s_dio_done_wq);
487 sb->s_dio_done_wq = NULL;
488 }
489
490 if (sop->put_super)
491 sop->put_super(sb);
492
493 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
494 "VFS: Busy inodes after unmount of %s (%s)",
495 sb->s_id, sb->s_type->name)) {
496 /*
497 * Adding a proper bailout path here would be hard, but
498 * we can at least make it more likely that a later
499 * iput_final() or such crashes cleanly.
500 */
501 struct inode *inode;
502
503 spin_lock(&sb->s_inode_list_lock);
504 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
505 inode->i_op = VFS_PTR_POISON;
506 inode->i_sb = VFS_PTR_POISON;
507 inode->i_mapping = VFS_PTR_POISON;
508 }
509 spin_unlock(&sb->s_inode_list_lock);
510 }
511 }
512 spin_lock(&sb_lock);
513 /* should be initialized for __put_super_and_need_restart() */
514 hlist_del_init(&sb->s_instances);
515 spin_unlock(&sb_lock);
516 up_write(&sb->s_umount);
517 if (sb->s_bdi != &noop_backing_dev_info) {
518 if (sb->s_iflags & SB_I_PERSB_BDI)
519 bdi_unregister(sb->s_bdi);
520 bdi_put(sb->s_bdi);
521 sb->s_bdi = &noop_backing_dev_info;
522 }
523 }
524
525 EXPORT_SYMBOL(generic_shutdown_super);
526
527 bool mount_capable(struct fs_context *fc)
528 {
529 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
530 return capable(CAP_SYS_ADMIN);
531 else
532 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
533 }
534
535 /**
536 * sget_fc - Find or create a superblock
537 * @fc: Filesystem context.
538 * @test: Comparison callback
539 * @set: Setup callback
540 *
541 * Find or create a superblock using the parameters stored in the filesystem
542 * context and the two callback functions.
543 *
544 * If an extant superblock is matched, then that will be returned with an
545 * elevated reference count that the caller must transfer or discard.
546 *
547 * If no match is made, a new superblock will be allocated and basic
548 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
549 * the set() callback will be invoked), the superblock will be published and it
550 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
551 * as yet unset.
552 */
553 struct super_block *sget_fc(struct fs_context *fc,
554 int (*test)(struct super_block *, struct fs_context *),
555 int (*set)(struct super_block *, struct fs_context *))
556 {
557 struct super_block *s = NULL;
558 struct super_block *old;
559 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
560 int err;
561
562 retry:
563 spin_lock(&sb_lock);
564 if (test) {
565 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
566 if (test(old, fc))
567 goto share_extant_sb;
568 }
569 }
570 if (!s) {
571 spin_unlock(&sb_lock);
572 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
573 if (!s)
574 return ERR_PTR(-ENOMEM);
575 goto retry;
576 }
577
578 s->s_fs_info = fc->s_fs_info;
579 err = set(s, fc);
580 if (err) {
581 s->s_fs_info = NULL;
582 spin_unlock(&sb_lock);
583 destroy_unused_super(s);
584 return ERR_PTR(err);
585 }
586 fc->s_fs_info = NULL;
587 s->s_type = fc->fs_type;
588 s->s_iflags |= fc->s_iflags;
589 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
590 list_add_tail(&s->s_list, &super_blocks);
591 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
592 spin_unlock(&sb_lock);
593 get_filesystem(s->s_type);
594 register_shrinker_prepared(&s->s_shrink);
595 return s;
596
597 share_extant_sb:
598 if (user_ns != old->s_user_ns) {
599 spin_unlock(&sb_lock);
600 destroy_unused_super(s);
601 return ERR_PTR(-EBUSY);
602 }
603 if (!grab_super(old))
604 goto retry;
605 destroy_unused_super(s);
606 return old;
607 }
608 EXPORT_SYMBOL(sget_fc);
609
610 /**
611 * sget - find or create a superblock
612 * @type: filesystem type superblock should belong to
613 * @test: comparison callback
614 * @set: setup callback
615 * @flags: mount flags
616 * @data: argument to each of them
617 */
618 struct super_block *sget(struct file_system_type *type,
619 int (*test)(struct super_block *,void *),
620 int (*set)(struct super_block *,void *),
621 int flags,
622 void *data)
623 {
624 struct user_namespace *user_ns = current_user_ns();
625 struct super_block *s = NULL;
626 struct super_block *old;
627 int err;
628
629 /* We don't yet pass the user namespace of the parent
630 * mount through to here so always use &init_user_ns
631 * until that changes.
632 */
633 if (flags & SB_SUBMOUNT)
634 user_ns = &init_user_ns;
635
636 retry:
637 spin_lock(&sb_lock);
638 if (test) {
639 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
640 if (!test(old, data))
641 continue;
642 if (user_ns != old->s_user_ns) {
643 spin_unlock(&sb_lock);
644 destroy_unused_super(s);
645 return ERR_PTR(-EBUSY);
646 }
647 if (!grab_super(old))
648 goto retry;
649 destroy_unused_super(s);
650 return old;
651 }
652 }
653 if (!s) {
654 spin_unlock(&sb_lock);
655 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
656 if (!s)
657 return ERR_PTR(-ENOMEM);
658 goto retry;
659 }
660
661 err = set(s, data);
662 if (err) {
663 spin_unlock(&sb_lock);
664 destroy_unused_super(s);
665 return ERR_PTR(err);
666 }
667 s->s_type = type;
668 strlcpy(s->s_id, type->name, sizeof(s->s_id));
669 list_add_tail(&s->s_list, &super_blocks);
670 hlist_add_head(&s->s_instances, &type->fs_supers);
671 spin_unlock(&sb_lock);
672 get_filesystem(type);
673 register_shrinker_prepared(&s->s_shrink);
674 return s;
675 }
676 EXPORT_SYMBOL(sget);
677
678 void drop_super(struct super_block *sb)
679 {
680 up_read(&sb->s_umount);
681 put_super(sb);
682 }
683
684 EXPORT_SYMBOL(drop_super);
685
686 void drop_super_exclusive(struct super_block *sb)
687 {
688 up_write(&sb->s_umount);
689 put_super(sb);
690 }
691 EXPORT_SYMBOL(drop_super_exclusive);
692
693 static void __iterate_supers(void (*f)(struct super_block *))
694 {
695 struct super_block *sb, *p = NULL;
696
697 spin_lock(&sb_lock);
698 list_for_each_entry(sb, &super_blocks, s_list) {
699 if (hlist_unhashed(&sb->s_instances))
700 continue;
701 sb->s_count++;
702 spin_unlock(&sb_lock);
703
704 f(sb);
705
706 spin_lock(&sb_lock);
707 if (p)
708 __put_super(p);
709 p = sb;
710 }
711 if (p)
712 __put_super(p);
713 spin_unlock(&sb_lock);
714 }
715 /**
716 * iterate_supers - call function for all active superblocks
717 * @f: function to call
718 * @arg: argument to pass to it
719 *
720 * Scans the superblock list and calls given function, passing it
721 * locked superblock and given argument.
722 */
723 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
724 {
725 struct super_block *sb, *p = NULL;
726
727 spin_lock(&sb_lock);
728 list_for_each_entry(sb, &super_blocks, s_list) {
729 if (hlist_unhashed(&sb->s_instances))
730 continue;
731 sb->s_count++;
732 spin_unlock(&sb_lock);
733
734 down_read(&sb->s_umount);
735 if (sb->s_root && (sb->s_flags & SB_BORN))
736 f(sb, arg);
737 up_read(&sb->s_umount);
738
739 spin_lock(&sb_lock);
740 if (p)
741 __put_super(p);
742 p = sb;
743 }
744 if (p)
745 __put_super(p);
746 spin_unlock(&sb_lock);
747 }
748
749 /**
750 * iterate_supers_type - call function for superblocks of given type
751 * @type: fs type
752 * @f: function to call
753 * @arg: argument to pass to it
754 *
755 * Scans the superblock list and calls given function, passing it
756 * locked superblock and given argument.
757 */
758 void iterate_supers_type(struct file_system_type *type,
759 void (*f)(struct super_block *, void *), void *arg)
760 {
761 struct super_block *sb, *p = NULL;
762
763 spin_lock(&sb_lock);
764 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
765 sb->s_count++;
766 spin_unlock(&sb_lock);
767
768 down_read(&sb->s_umount);
769 if (sb->s_root && (sb->s_flags & SB_BORN))
770 f(sb, arg);
771 up_read(&sb->s_umount);
772
773 spin_lock(&sb_lock);
774 if (p)
775 __put_super(p);
776 p = sb;
777 }
778 if (p)
779 __put_super(p);
780 spin_unlock(&sb_lock);
781 }
782
783 EXPORT_SYMBOL(iterate_supers_type);
784
785 /**
786 * get_super - get the superblock of a device
787 * @bdev: device to get the superblock for
788 *
789 * Scans the superblock list and finds the superblock of the file system
790 * mounted on the device given. %NULL is returned if no match is found.
791 */
792 struct super_block *get_super(struct block_device *bdev)
793 {
794 struct super_block *sb;
795
796 if (!bdev)
797 return NULL;
798
799 spin_lock(&sb_lock);
800 rescan:
801 list_for_each_entry(sb, &super_blocks, s_list) {
802 if (hlist_unhashed(&sb->s_instances))
803 continue;
804 if (sb->s_bdev == bdev) {
805 sb->s_count++;
806 spin_unlock(&sb_lock);
807 down_read(&sb->s_umount);
808 /* still alive? */
809 if (sb->s_root && (sb->s_flags & SB_BORN))
810 return sb;
811 up_read(&sb->s_umount);
812 /* nope, got unmounted */
813 spin_lock(&sb_lock);
814 __put_super(sb);
815 goto rescan;
816 }
817 }
818 spin_unlock(&sb_lock);
819 return NULL;
820 }
821
822 /**
823 * get_active_super - get an active reference to the superblock of a device
824 * @bdev: device to get the superblock for
825 *
826 * Scans the superblock list and finds the superblock of the file system
827 * mounted on the device given. Returns the superblock with an active
828 * reference or %NULL if none was found.
829 */
830 struct super_block *get_active_super(struct block_device *bdev)
831 {
832 struct super_block *sb;
833
834 if (!bdev)
835 return NULL;
836
837 restart:
838 spin_lock(&sb_lock);
839 list_for_each_entry(sb, &super_blocks, s_list) {
840 if (hlist_unhashed(&sb->s_instances))
841 continue;
842 if (sb->s_bdev == bdev) {
843 if (!grab_super(sb))
844 goto restart;
845 up_write(&sb->s_umount);
846 return sb;
847 }
848 }
849 spin_unlock(&sb_lock);
850 return NULL;
851 }
852
853 struct super_block *user_get_super(dev_t dev, bool excl)
854 {
855 struct super_block *sb;
856
857 spin_lock(&sb_lock);
858 rescan:
859 list_for_each_entry(sb, &super_blocks, s_list) {
860 if (hlist_unhashed(&sb->s_instances))
861 continue;
862 if (sb->s_dev == dev) {
863 sb->s_count++;
864 spin_unlock(&sb_lock);
865 if (excl)
866 down_write(&sb->s_umount);
867 else
868 down_read(&sb->s_umount);
869 /* still alive? */
870 if (sb->s_root && (sb->s_flags & SB_BORN))
871 return sb;
872 if (excl)
873 up_write(&sb->s_umount);
874 else
875 up_read(&sb->s_umount);
876 /* nope, got unmounted */
877 spin_lock(&sb_lock);
878 __put_super(sb);
879 goto rescan;
880 }
881 }
882 spin_unlock(&sb_lock);
883 return NULL;
884 }
885
886 /**
887 * reconfigure_super - asks filesystem to change superblock parameters
888 * @fc: The superblock and configuration
889 *
890 * Alters the configuration parameters of a live superblock.
891 */
892 int reconfigure_super(struct fs_context *fc)
893 {
894 struct super_block *sb = fc->root->d_sb;
895 int retval;
896 bool remount_ro = false;
897 bool force = fc->sb_flags & SB_FORCE;
898
899 if (fc->sb_flags_mask & ~MS_RMT_MASK)
900 return -EINVAL;
901 if (sb->s_writers.frozen != SB_UNFROZEN)
902 return -EBUSY;
903
904 retval = security_sb_remount(sb, fc->security);
905 if (retval)
906 return retval;
907
908 if (fc->sb_flags_mask & SB_RDONLY) {
909 #ifdef CONFIG_BLOCK
910 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
911 bdev_read_only(sb->s_bdev))
912 return -EACCES;
913 #endif
914
915 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
916 }
917
918 if (remount_ro) {
919 if (!hlist_empty(&sb->s_pins)) {
920 up_write(&sb->s_umount);
921 group_pin_kill(&sb->s_pins);
922 down_write(&sb->s_umount);
923 if (!sb->s_root)
924 return 0;
925 if (sb->s_writers.frozen != SB_UNFROZEN)
926 return -EBUSY;
927 remount_ro = !sb_rdonly(sb);
928 }
929 }
930 shrink_dcache_sb(sb);
931
932 /* If we are reconfiguring to RDONLY and current sb is read/write,
933 * make sure there are no files open for writing.
934 */
935 if (remount_ro) {
936 if (force) {
937 sb->s_readonly_remount = 1;
938 smp_wmb();
939 } else {
940 retval = sb_prepare_remount_readonly(sb);
941 if (retval)
942 return retval;
943 }
944 }
945
946 if (fc->ops->reconfigure) {
947 retval = fc->ops->reconfigure(fc);
948 if (retval) {
949 if (!force)
950 goto cancel_readonly;
951 /* If forced remount, go ahead despite any errors */
952 WARN(1, "forced remount of a %s fs returned %i\n",
953 sb->s_type->name, retval);
954 }
955 }
956
957 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
958 (fc->sb_flags & fc->sb_flags_mask)));
959 /* Needs to be ordered wrt mnt_is_readonly() */
960 smp_wmb();
961 sb->s_readonly_remount = 0;
962
963 /*
964 * Some filesystems modify their metadata via some other path than the
965 * bdev buffer cache (eg. use a private mapping, or directories in
966 * pagecache, etc). Also file data modifications go via their own
967 * mappings. So If we try to mount readonly then copy the filesystem
968 * from bdev, we could get stale data, so invalidate it to give a best
969 * effort at coherency.
970 */
971 if (remount_ro && sb->s_bdev)
972 invalidate_bdev(sb->s_bdev);
973 return 0;
974
975 cancel_readonly:
976 sb->s_readonly_remount = 0;
977 return retval;
978 }
979
980 static void do_emergency_remount_callback(struct super_block *sb)
981 {
982 down_write(&sb->s_umount);
983 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
984 !sb_rdonly(sb)) {
985 struct fs_context *fc;
986
987 fc = fs_context_for_reconfigure(sb->s_root,
988 SB_RDONLY | SB_FORCE, SB_RDONLY);
989 if (!IS_ERR(fc)) {
990 if (parse_monolithic_mount_data(fc, NULL) == 0)
991 (void)reconfigure_super(fc);
992 put_fs_context(fc);
993 }
994 }
995 up_write(&sb->s_umount);
996 }
997
998 static void do_emergency_remount(struct work_struct *work)
999 {
1000 __iterate_supers(do_emergency_remount_callback);
1001 kfree(work);
1002 printk("Emergency Remount complete\n");
1003 }
1004
1005 void emergency_remount(void)
1006 {
1007 struct work_struct *work;
1008
1009 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1010 if (work) {
1011 INIT_WORK(work, do_emergency_remount);
1012 schedule_work(work);
1013 }
1014 }
1015
1016 static void do_thaw_all_callback(struct super_block *sb)
1017 {
1018 down_write(&sb->s_umount);
1019 if (sb->s_root && sb->s_flags & SB_BORN) {
1020 emergency_thaw_bdev(sb);
1021 thaw_super_locked(sb);
1022 } else {
1023 up_write(&sb->s_umount);
1024 }
1025 }
1026
1027 static void do_thaw_all(struct work_struct *work)
1028 {
1029 __iterate_supers(do_thaw_all_callback);
1030 kfree(work);
1031 printk(KERN_WARNING "Emergency Thaw complete\n");
1032 }
1033
1034 /**
1035 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1036 *
1037 * Used for emergency unfreeze of all filesystems via SysRq
1038 */
1039 void emergency_thaw_all(void)
1040 {
1041 struct work_struct *work;
1042
1043 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1044 if (work) {
1045 INIT_WORK(work, do_thaw_all);
1046 schedule_work(work);
1047 }
1048 }
1049
1050 static DEFINE_IDA(unnamed_dev_ida);
1051
1052 /**
1053 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1054 * @p: Pointer to a dev_t.
1055 *
1056 * Filesystems which don't use real block devices can call this function
1057 * to allocate a virtual block device.
1058 *
1059 * Context: Any context. Frequently called while holding sb_lock.
1060 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1061 * or -ENOMEM if memory allocation failed.
1062 */
1063 int get_anon_bdev(dev_t *p)
1064 {
1065 int dev;
1066
1067 /*
1068 * Many userspace utilities consider an FSID of 0 invalid.
1069 * Always return at least 1 from get_anon_bdev.
1070 */
1071 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1072 GFP_ATOMIC);
1073 if (dev == -ENOSPC)
1074 dev = -EMFILE;
1075 if (dev < 0)
1076 return dev;
1077
1078 *p = MKDEV(0, dev);
1079 return 0;
1080 }
1081 EXPORT_SYMBOL(get_anon_bdev);
1082
1083 void free_anon_bdev(dev_t dev)
1084 {
1085 ida_free(&unnamed_dev_ida, MINOR(dev));
1086 }
1087 EXPORT_SYMBOL(free_anon_bdev);
1088
1089 int set_anon_super(struct super_block *s, void *data)
1090 {
1091 return get_anon_bdev(&s->s_dev);
1092 }
1093 EXPORT_SYMBOL(set_anon_super);
1094
1095 void kill_anon_super(struct super_block *sb)
1096 {
1097 dev_t dev = sb->s_dev;
1098 generic_shutdown_super(sb);
1099 free_anon_bdev(dev);
1100 }
1101 EXPORT_SYMBOL(kill_anon_super);
1102
1103 void kill_litter_super(struct super_block *sb)
1104 {
1105 if (sb->s_root)
1106 d_genocide(sb->s_root);
1107 kill_anon_super(sb);
1108 }
1109 EXPORT_SYMBOL(kill_litter_super);
1110
1111 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1112 {
1113 return set_anon_super(sb, NULL);
1114 }
1115 EXPORT_SYMBOL(set_anon_super_fc);
1116
1117 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1118 {
1119 return sb->s_fs_info == fc->s_fs_info;
1120 }
1121
1122 static int test_single_super(struct super_block *s, struct fs_context *fc)
1123 {
1124 return 1;
1125 }
1126
1127 static int vfs_get_super(struct fs_context *fc, bool reconf,
1128 int (*test)(struct super_block *, struct fs_context *),
1129 int (*fill_super)(struct super_block *sb,
1130 struct fs_context *fc))
1131 {
1132 struct super_block *sb;
1133 int err;
1134
1135 sb = sget_fc(fc, test, set_anon_super_fc);
1136 if (IS_ERR(sb))
1137 return PTR_ERR(sb);
1138
1139 if (!sb->s_root) {
1140 err = fill_super(sb, fc);
1141 if (err)
1142 goto error;
1143
1144 sb->s_flags |= SB_ACTIVE;
1145 fc->root = dget(sb->s_root);
1146 } else {
1147 fc->root = dget(sb->s_root);
1148 if (reconf) {
1149 err = reconfigure_super(fc);
1150 if (err < 0) {
1151 dput(fc->root);
1152 fc->root = NULL;
1153 goto error;
1154 }
1155 }
1156 }
1157
1158 return 0;
1159
1160 error:
1161 deactivate_locked_super(sb);
1162 return err;
1163 }
1164
1165 int get_tree_nodev(struct fs_context *fc,
1166 int (*fill_super)(struct super_block *sb,
1167 struct fs_context *fc))
1168 {
1169 return vfs_get_super(fc, false, NULL, fill_super);
1170 }
1171 EXPORT_SYMBOL(get_tree_nodev);
1172
1173 int get_tree_single(struct fs_context *fc,
1174 int (*fill_super)(struct super_block *sb,
1175 struct fs_context *fc))
1176 {
1177 return vfs_get_super(fc, false, test_single_super, fill_super);
1178 }
1179 EXPORT_SYMBOL(get_tree_single);
1180
1181 int get_tree_single_reconf(struct fs_context *fc,
1182 int (*fill_super)(struct super_block *sb,
1183 struct fs_context *fc))
1184 {
1185 return vfs_get_super(fc, true, test_single_super, fill_super);
1186 }
1187 EXPORT_SYMBOL(get_tree_single_reconf);
1188
1189 int get_tree_keyed(struct fs_context *fc,
1190 int (*fill_super)(struct super_block *sb,
1191 struct fs_context *fc),
1192 void *key)
1193 {
1194 fc->s_fs_info = key;
1195 return vfs_get_super(fc, false, test_keyed_super, fill_super);
1196 }
1197 EXPORT_SYMBOL(get_tree_keyed);
1198
1199 #ifdef CONFIG_BLOCK
1200
1201 static int set_bdev_super(struct super_block *s, void *data)
1202 {
1203 s->s_bdev = data;
1204 s->s_dev = s->s_bdev->bd_dev;
1205 s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1206
1207 if (bdev_stable_writes(s->s_bdev))
1208 s->s_iflags |= SB_I_STABLE_WRITES;
1209 return 0;
1210 }
1211
1212 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1213 {
1214 return set_bdev_super(s, fc->sget_key);
1215 }
1216
1217 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1218 {
1219 return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key;
1220 }
1221
1222 /**
1223 * get_tree_bdev - Get a superblock based on a single block device
1224 * @fc: The filesystem context holding the parameters
1225 * @fill_super: Helper to initialise a new superblock
1226 */
1227 int get_tree_bdev(struct fs_context *fc,
1228 int (*fill_super)(struct super_block *,
1229 struct fs_context *))
1230 {
1231 struct block_device *bdev;
1232 struct super_block *s;
1233 fmode_t mode = FMODE_READ | FMODE_EXCL;
1234 int error = 0;
1235
1236 if (!(fc->sb_flags & SB_RDONLY))
1237 mode |= FMODE_WRITE;
1238
1239 if (!fc->source)
1240 return invalf(fc, "No source specified");
1241
1242 bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1243 if (IS_ERR(bdev)) {
1244 errorf(fc, "%s: Can't open blockdev", fc->source);
1245 return PTR_ERR(bdev);
1246 }
1247
1248 /* Once the superblock is inserted into the list by sget_fc(), s_umount
1249 * will protect the lockfs code from trying to start a snapshot while
1250 * we are mounting
1251 */
1252 mutex_lock(&bdev->bd_fsfreeze_mutex);
1253 if (bdev->bd_fsfreeze_count > 0) {
1254 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1255 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1256 blkdev_put(bdev, mode);
1257 return -EBUSY;
1258 }
1259
1260 fc->sb_flags |= SB_NOSEC;
1261 fc->sget_key = bdev;
1262 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1263 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1264 if (IS_ERR(s)) {
1265 blkdev_put(bdev, mode);
1266 return PTR_ERR(s);
1267 }
1268
1269 if (s->s_root) {
1270 /* Don't summarily change the RO/RW state. */
1271 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1272 warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1273 deactivate_locked_super(s);
1274 blkdev_put(bdev, mode);
1275 return -EBUSY;
1276 }
1277
1278 /*
1279 * s_umount nests inside open_mutex during
1280 * __invalidate_device(). blkdev_put() acquires
1281 * open_mutex and can't be called under s_umount. Drop
1282 * s_umount temporarily. This is safe as we're
1283 * holding an active reference.
1284 */
1285 up_write(&s->s_umount);
1286 blkdev_put(bdev, mode);
1287 down_write(&s->s_umount);
1288 } else {
1289 s->s_mode = mode;
1290 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1291 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1292 fc->fs_type->name, s->s_id);
1293 sb_set_blocksize(s, block_size(bdev));
1294 error = fill_super(s, fc);
1295 if (error) {
1296 deactivate_locked_super(s);
1297 return error;
1298 }
1299
1300 s->s_flags |= SB_ACTIVE;
1301 bdev->bd_super = s;
1302 }
1303
1304 BUG_ON(fc->root);
1305 fc->root = dget(s->s_root);
1306 return 0;
1307 }
1308 EXPORT_SYMBOL(get_tree_bdev);
1309
1310 static int test_bdev_super(struct super_block *s, void *data)
1311 {
1312 return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data;
1313 }
1314
1315 struct dentry *mount_bdev(struct file_system_type *fs_type,
1316 int flags, const char *dev_name, void *data,
1317 int (*fill_super)(struct super_block *, void *, int))
1318 {
1319 struct block_device *bdev;
1320 struct super_block *s;
1321 fmode_t mode = FMODE_READ | FMODE_EXCL;
1322 int error = 0;
1323
1324 if (!(flags & SB_RDONLY))
1325 mode |= FMODE_WRITE;
1326
1327 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1328 if (IS_ERR(bdev))
1329 return ERR_CAST(bdev);
1330
1331 /*
1332 * once the super is inserted into the list by sget, s_umount
1333 * will protect the lockfs code from trying to start a snapshot
1334 * while we are mounting
1335 */
1336 mutex_lock(&bdev->bd_fsfreeze_mutex);
1337 if (bdev->bd_fsfreeze_count > 0) {
1338 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1339 error = -EBUSY;
1340 goto error_bdev;
1341 }
1342 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1343 bdev);
1344 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1345 if (IS_ERR(s))
1346 goto error_s;
1347
1348 if (s->s_root) {
1349 if ((flags ^ s->s_flags) & SB_RDONLY) {
1350 deactivate_locked_super(s);
1351 error = -EBUSY;
1352 goto error_bdev;
1353 }
1354
1355 /*
1356 * s_umount nests inside open_mutex during
1357 * __invalidate_device(). blkdev_put() acquires
1358 * open_mutex and can't be called under s_umount. Drop
1359 * s_umount temporarily. This is safe as we're
1360 * holding an active reference.
1361 */
1362 up_write(&s->s_umount);
1363 blkdev_put(bdev, mode);
1364 down_write(&s->s_umount);
1365 } else {
1366 s->s_mode = mode;
1367 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1368 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1369 fs_type->name, s->s_id);
1370 sb_set_blocksize(s, block_size(bdev));
1371 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1372 if (error) {
1373 deactivate_locked_super(s);
1374 goto error;
1375 }
1376
1377 s->s_flags |= SB_ACTIVE;
1378 bdev->bd_super = s;
1379 }
1380
1381 return dget(s->s_root);
1382
1383 error_s:
1384 error = PTR_ERR(s);
1385 error_bdev:
1386 blkdev_put(bdev, mode);
1387 error:
1388 return ERR_PTR(error);
1389 }
1390 EXPORT_SYMBOL(mount_bdev);
1391
1392 void kill_block_super(struct super_block *sb)
1393 {
1394 struct block_device *bdev = sb->s_bdev;
1395 fmode_t mode = sb->s_mode;
1396
1397 bdev->bd_super = NULL;
1398 generic_shutdown_super(sb);
1399 sync_blockdev(bdev);
1400 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1401 blkdev_put(bdev, mode | FMODE_EXCL);
1402 }
1403
1404 EXPORT_SYMBOL(kill_block_super);
1405 #endif
1406
1407 struct dentry *mount_nodev(struct file_system_type *fs_type,
1408 int flags, void *data,
1409 int (*fill_super)(struct super_block *, void *, int))
1410 {
1411 int error;
1412 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1413
1414 if (IS_ERR(s))
1415 return ERR_CAST(s);
1416
1417 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1418 if (error) {
1419 deactivate_locked_super(s);
1420 return ERR_PTR(error);
1421 }
1422 s->s_flags |= SB_ACTIVE;
1423 return dget(s->s_root);
1424 }
1425 EXPORT_SYMBOL(mount_nodev);
1426
1427 int reconfigure_single(struct super_block *s,
1428 int flags, void *data)
1429 {
1430 struct fs_context *fc;
1431 int ret;
1432
1433 /* The caller really need to be passing fc down into mount_single(),
1434 * then a chunk of this can be removed. [Bollocks -- AV]
1435 * Better yet, reconfiguration shouldn't happen, but rather the second
1436 * mount should be rejected if the parameters are not compatible.
1437 */
1438 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1439 if (IS_ERR(fc))
1440 return PTR_ERR(fc);
1441
1442 ret = parse_monolithic_mount_data(fc, data);
1443 if (ret < 0)
1444 goto out;
1445
1446 ret = reconfigure_super(fc);
1447 out:
1448 put_fs_context(fc);
1449 return ret;
1450 }
1451
1452 static int compare_single(struct super_block *s, void *p)
1453 {
1454 return 1;
1455 }
1456
1457 struct dentry *mount_single(struct file_system_type *fs_type,
1458 int flags, void *data,
1459 int (*fill_super)(struct super_block *, void *, int))
1460 {
1461 struct super_block *s;
1462 int error;
1463
1464 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1465 if (IS_ERR(s))
1466 return ERR_CAST(s);
1467 if (!s->s_root) {
1468 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1469 if (!error)
1470 s->s_flags |= SB_ACTIVE;
1471 } else {
1472 error = reconfigure_single(s, flags, data);
1473 }
1474 if (unlikely(error)) {
1475 deactivate_locked_super(s);
1476 return ERR_PTR(error);
1477 }
1478 return dget(s->s_root);
1479 }
1480 EXPORT_SYMBOL(mount_single);
1481
1482 /**
1483 * vfs_get_tree - Get the mountable root
1484 * @fc: The superblock configuration context.
1485 *
1486 * The filesystem is invoked to get or create a superblock which can then later
1487 * be used for mounting. The filesystem places a pointer to the root to be
1488 * used for mounting in @fc->root.
1489 */
1490 int vfs_get_tree(struct fs_context *fc)
1491 {
1492 struct super_block *sb;
1493 int error;
1494
1495 if (fc->root)
1496 return -EBUSY;
1497
1498 /* Get the mountable root in fc->root, with a ref on the root and a ref
1499 * on the superblock.
1500 */
1501 error = fc->ops->get_tree(fc);
1502 if (error < 0)
1503 return error;
1504
1505 if (!fc->root) {
1506 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1507 fc->fs_type->name);
1508 /* We don't know what the locking state of the superblock is -
1509 * if there is a superblock.
1510 */
1511 BUG();
1512 }
1513
1514 sb = fc->root->d_sb;
1515 WARN_ON(!sb->s_bdi);
1516
1517 /*
1518 * Write barrier is for super_cache_count(). We place it before setting
1519 * SB_BORN as the data dependency between the two functions is the
1520 * superblock structure contents that we just set up, not the SB_BORN
1521 * flag.
1522 */
1523 smp_wmb();
1524 sb->s_flags |= SB_BORN;
1525
1526 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1527 if (unlikely(error)) {
1528 fc_drop_locked(fc);
1529 return error;
1530 }
1531
1532 /*
1533 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1534 * but s_maxbytes was an unsigned long long for many releases. Throw
1535 * this warning for a little while to try and catch filesystems that
1536 * violate this rule.
1537 */
1538 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1539 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1540
1541 return 0;
1542 }
1543 EXPORT_SYMBOL(vfs_get_tree);
1544
1545 /*
1546 * Setup private BDI for given superblock. It gets automatically cleaned up
1547 * in generic_shutdown_super().
1548 */
1549 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1550 {
1551 struct backing_dev_info *bdi;
1552 int err;
1553 va_list args;
1554
1555 bdi = bdi_alloc(NUMA_NO_NODE);
1556 if (!bdi)
1557 return -ENOMEM;
1558
1559 va_start(args, fmt);
1560 err = bdi_register_va(bdi, fmt, args);
1561 va_end(args);
1562 if (err) {
1563 bdi_put(bdi);
1564 return err;
1565 }
1566 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1567 sb->s_bdi = bdi;
1568 sb->s_iflags |= SB_I_PERSB_BDI;
1569
1570 return 0;
1571 }
1572 EXPORT_SYMBOL(super_setup_bdi_name);
1573
1574 /*
1575 * Setup private BDI for given superblock. I gets automatically cleaned up
1576 * in generic_shutdown_super().
1577 */
1578 int super_setup_bdi(struct super_block *sb)
1579 {
1580 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1581
1582 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1583 atomic_long_inc_return(&bdi_seq));
1584 }
1585 EXPORT_SYMBOL(super_setup_bdi);
1586
1587 /**
1588 * sb_wait_write - wait until all writers to given file system finish
1589 * @sb: the super for which we wait
1590 * @level: type of writers we wait for (normal vs page fault)
1591 *
1592 * This function waits until there are no writers of given type to given file
1593 * system.
1594 */
1595 static void sb_wait_write(struct super_block *sb, int level)
1596 {
1597 percpu_down_write(sb->s_writers.rw_sem + level-1);
1598 }
1599
1600 /*
1601 * We are going to return to userspace and forget about these locks, the
1602 * ownership goes to the caller of thaw_super() which does unlock().
1603 */
1604 static void lockdep_sb_freeze_release(struct super_block *sb)
1605 {
1606 int level;
1607
1608 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1609 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1610 }
1611
1612 /*
1613 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1614 */
1615 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1616 {
1617 int level;
1618
1619 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1620 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1621 }
1622
1623 static void sb_freeze_unlock(struct super_block *sb, int level)
1624 {
1625 for (level--; level >= 0; level--)
1626 percpu_up_write(sb->s_writers.rw_sem + level);
1627 }
1628
1629 /**
1630 * freeze_super - lock the filesystem and force it into a consistent state
1631 * @sb: the super to lock
1632 *
1633 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1634 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1635 * -EBUSY.
1636 *
1637 * During this function, sb->s_writers.frozen goes through these values:
1638 *
1639 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1640 *
1641 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1642 * writes should be blocked, though page faults are still allowed. We wait for
1643 * all writes to complete and then proceed to the next stage.
1644 *
1645 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1646 * but internal fs threads can still modify the filesystem (although they
1647 * should not dirty new pages or inodes), writeback can run etc. After waiting
1648 * for all running page faults we sync the filesystem which will clean all
1649 * dirty pages and inodes (no new dirty pages or inodes can be created when
1650 * sync is running).
1651 *
1652 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1653 * modification are blocked (e.g. XFS preallocation truncation on inode
1654 * reclaim). This is usually implemented by blocking new transactions for
1655 * filesystems that have them and need this additional guard. After all
1656 * internal writers are finished we call ->freeze_fs() to finish filesystem
1657 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1658 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1659 *
1660 * sb->s_writers.frozen is protected by sb->s_umount.
1661 */
1662 int freeze_super(struct super_block *sb)
1663 {
1664 int ret;
1665
1666 atomic_inc(&sb->s_active);
1667 down_write(&sb->s_umount);
1668 if (sb->s_writers.frozen != SB_UNFROZEN) {
1669 deactivate_locked_super(sb);
1670 return -EBUSY;
1671 }
1672
1673 if (!(sb->s_flags & SB_BORN)) {
1674 up_write(&sb->s_umount);
1675 return 0; /* sic - it's "nothing to do" */
1676 }
1677
1678 if (sb_rdonly(sb)) {
1679 /* Nothing to do really... */
1680 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1681 up_write(&sb->s_umount);
1682 return 0;
1683 }
1684
1685 sb->s_writers.frozen = SB_FREEZE_WRITE;
1686 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1687 up_write(&sb->s_umount);
1688 sb_wait_write(sb, SB_FREEZE_WRITE);
1689 down_write(&sb->s_umount);
1690
1691 /* Now we go and block page faults... */
1692 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1693 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1694
1695 /* All writers are done so after syncing there won't be dirty data */
1696 ret = sync_filesystem(sb);
1697 if (ret) {
1698 sb->s_writers.frozen = SB_UNFROZEN;
1699 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1700 wake_up(&sb->s_writers.wait_unfrozen);
1701 deactivate_locked_super(sb);
1702 return ret;
1703 }
1704
1705 /* Now wait for internal filesystem counter */
1706 sb->s_writers.frozen = SB_FREEZE_FS;
1707 sb_wait_write(sb, SB_FREEZE_FS);
1708
1709 if (sb->s_op->freeze_fs) {
1710 ret = sb->s_op->freeze_fs(sb);
1711 if (ret) {
1712 printk(KERN_ERR
1713 "VFS:Filesystem freeze failed\n");
1714 sb->s_writers.frozen = SB_UNFROZEN;
1715 sb_freeze_unlock(sb, SB_FREEZE_FS);
1716 wake_up(&sb->s_writers.wait_unfrozen);
1717 deactivate_locked_super(sb);
1718 return ret;
1719 }
1720 }
1721 /*
1722 * For debugging purposes so that fs can warn if it sees write activity
1723 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1724 */
1725 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1726 lockdep_sb_freeze_release(sb);
1727 up_write(&sb->s_umount);
1728 return 0;
1729 }
1730 EXPORT_SYMBOL(freeze_super);
1731
1732 static int thaw_super_locked(struct super_block *sb)
1733 {
1734 int error;
1735
1736 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1737 up_write(&sb->s_umount);
1738 return -EINVAL;
1739 }
1740
1741 if (sb_rdonly(sb)) {
1742 sb->s_writers.frozen = SB_UNFROZEN;
1743 goto out;
1744 }
1745
1746 lockdep_sb_freeze_acquire(sb);
1747
1748 if (sb->s_op->unfreeze_fs) {
1749 error = sb->s_op->unfreeze_fs(sb);
1750 if (error) {
1751 printk(KERN_ERR
1752 "VFS:Filesystem thaw failed\n");
1753 lockdep_sb_freeze_release(sb);
1754 up_write(&sb->s_umount);
1755 return error;
1756 }
1757 }
1758
1759 sb->s_writers.frozen = SB_UNFROZEN;
1760 sb_freeze_unlock(sb, SB_FREEZE_FS);
1761 out:
1762 wake_up(&sb->s_writers.wait_unfrozen);
1763 deactivate_locked_super(sb);
1764 return 0;
1765 }
1766
1767 /**
1768 * thaw_super -- unlock filesystem
1769 * @sb: the super to thaw
1770 *
1771 * Unlocks the filesystem and marks it writeable again after freeze_super().
1772 */
1773 int thaw_super(struct super_block *sb)
1774 {
1775 down_write(&sb->s_umount);
1776 return thaw_super_locked(sb);
1777 }
1778 EXPORT_SYMBOL(thaw_super);
1779
1780 /*
1781 * Create workqueue for deferred direct IO completions. We allocate the
1782 * workqueue when it's first needed. This avoids creating workqueue for
1783 * filesystems that don't need it and also allows us to create the workqueue
1784 * late enough so the we can include s_id in the name of the workqueue.
1785 */
1786 int sb_init_dio_done_wq(struct super_block *sb)
1787 {
1788 struct workqueue_struct *old;
1789 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
1790 WQ_MEM_RECLAIM, 0,
1791 sb->s_id);
1792 if (!wq)
1793 return -ENOMEM;
1794 /*
1795 * This has to be atomic as more DIOs can race to create the workqueue
1796 */
1797 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
1798 /* Someone created workqueue before us? Free ours... */
1799 if (old)
1800 destroy_workqueue(wq);
1801 return 0;
1802 }