]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/super.c
Merge tag 'f2fs-for-v5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeu...
[thirdparty/linux.git] / fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41
42 static int thaw_super_locked(struct super_block *sb);
43
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 "sb_writers",
49 "sb_pagefaults",
50 "sb_internal",
51 };
52
53 /*
54 * One thing we have to be careful of with a per-sb shrinker is that we don't
55 * drop the last active reference to the superblock from within the shrinker.
56 * If that happens we could trigger unregistering the shrinker from within the
57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
58 * take a passive reference to the superblock to avoid this from occurring.
59 */
60 static unsigned long super_cache_scan(struct shrinker *shrink,
61 struct shrink_control *sc)
62 {
63 struct super_block *sb;
64 long fs_objects = 0;
65 long total_objects;
66 long freed = 0;
67 long dentries;
68 long inodes;
69
70 sb = container_of(shrink, struct super_block, s_shrink);
71
72 /*
73 * Deadlock avoidance. We may hold various FS locks, and we don't want
74 * to recurse into the FS that called us in clear_inode() and friends..
75 */
76 if (!(sc->gfp_mask & __GFP_FS))
77 return SHRINK_STOP;
78
79 if (!trylock_super(sb))
80 return SHRINK_STOP;
81
82 if (sb->s_op->nr_cached_objects)
83 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
84
85 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
86 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
87 total_objects = dentries + inodes + fs_objects + 1;
88 if (!total_objects)
89 total_objects = 1;
90
91 /* proportion the scan between the caches */
92 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
93 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
94 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
95
96 /*
97 * prune the dcache first as the icache is pinned by it, then
98 * prune the icache, followed by the filesystem specific caches
99 *
100 * Ensure that we always scan at least one object - memcg kmem
101 * accounting uses this to fully empty the caches.
102 */
103 sc->nr_to_scan = dentries + 1;
104 freed = prune_dcache_sb(sb, sc);
105 sc->nr_to_scan = inodes + 1;
106 freed += prune_icache_sb(sb, sc);
107
108 if (fs_objects) {
109 sc->nr_to_scan = fs_objects + 1;
110 freed += sb->s_op->free_cached_objects(sb, sc);
111 }
112
113 up_read(&sb->s_umount);
114 return freed;
115 }
116
117 static unsigned long super_cache_count(struct shrinker *shrink,
118 struct shrink_control *sc)
119 {
120 struct super_block *sb;
121 long total_objects = 0;
122
123 sb = container_of(shrink, struct super_block, s_shrink);
124
125 /*
126 * We don't call trylock_super() here as it is a scalability bottleneck,
127 * so we're exposed to partial setup state. The shrinker rwsem does not
128 * protect filesystem operations backing list_lru_shrink_count() or
129 * s_op->nr_cached_objects(). Counts can change between
130 * super_cache_count and super_cache_scan, so we really don't need locks
131 * here.
132 *
133 * However, if we are currently mounting the superblock, the underlying
134 * filesystem might be in a state of partial construction and hence it
135 * is dangerous to access it. trylock_super() uses a SB_BORN check to
136 * avoid this situation, so do the same here. The memory barrier is
137 * matched with the one in mount_fs() as we don't hold locks here.
138 */
139 if (!(sb->s_flags & SB_BORN))
140 return 0;
141 smp_rmb();
142
143 if (sb->s_op && sb->s_op->nr_cached_objects)
144 total_objects = sb->s_op->nr_cached_objects(sb, sc);
145
146 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
147 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
148
149 if (!total_objects)
150 return SHRINK_EMPTY;
151
152 total_objects = vfs_pressure_ratio(total_objects);
153 return total_objects;
154 }
155
156 static void destroy_super_work(struct work_struct *work)
157 {
158 struct super_block *s = container_of(work, struct super_block,
159 destroy_work);
160 int i;
161
162 for (i = 0; i < SB_FREEZE_LEVELS; i++)
163 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
164 kfree(s);
165 }
166
167 static void destroy_super_rcu(struct rcu_head *head)
168 {
169 struct super_block *s = container_of(head, struct super_block, rcu);
170 INIT_WORK(&s->destroy_work, destroy_super_work);
171 schedule_work(&s->destroy_work);
172 }
173
174 /* Free a superblock that has never been seen by anyone */
175 static void destroy_unused_super(struct super_block *s)
176 {
177 if (!s)
178 return;
179 up_write(&s->s_umount);
180 list_lru_destroy(&s->s_dentry_lru);
181 list_lru_destroy(&s->s_inode_lru);
182 security_sb_free(s);
183 put_user_ns(s->s_user_ns);
184 kfree(s->s_subtype);
185 free_prealloced_shrinker(&s->s_shrink);
186 /* no delays needed */
187 destroy_super_work(&s->destroy_work);
188 }
189
190 /**
191 * alloc_super - create new superblock
192 * @type: filesystem type superblock should belong to
193 * @flags: the mount flags
194 * @user_ns: User namespace for the super_block
195 *
196 * Allocates and initializes a new &struct super_block. alloc_super()
197 * returns a pointer new superblock or %NULL if allocation had failed.
198 */
199 static struct super_block *alloc_super(struct file_system_type *type, int flags,
200 struct user_namespace *user_ns)
201 {
202 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
203 static const struct super_operations default_op;
204 int i;
205
206 if (!s)
207 return NULL;
208
209 INIT_LIST_HEAD(&s->s_mounts);
210 s->s_user_ns = get_user_ns(user_ns);
211 init_rwsem(&s->s_umount);
212 lockdep_set_class(&s->s_umount, &type->s_umount_key);
213 /*
214 * sget() can have s_umount recursion.
215 *
216 * When it cannot find a suitable sb, it allocates a new
217 * one (this one), and tries again to find a suitable old
218 * one.
219 *
220 * In case that succeeds, it will acquire the s_umount
221 * lock of the old one. Since these are clearly distrinct
222 * locks, and this object isn't exposed yet, there's no
223 * risk of deadlocks.
224 *
225 * Annotate this by putting this lock in a different
226 * subclass.
227 */
228 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
229
230 if (security_sb_alloc(s))
231 goto fail;
232
233 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
234 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
235 sb_writers_name[i],
236 &type->s_writers_key[i]))
237 goto fail;
238 }
239 init_waitqueue_head(&s->s_writers.wait_unfrozen);
240 s->s_bdi = &noop_backing_dev_info;
241 s->s_flags = flags;
242 if (s->s_user_ns != &init_user_ns)
243 s->s_iflags |= SB_I_NODEV;
244 INIT_HLIST_NODE(&s->s_instances);
245 INIT_HLIST_BL_HEAD(&s->s_roots);
246 mutex_init(&s->s_sync_lock);
247 INIT_LIST_HEAD(&s->s_inodes);
248 spin_lock_init(&s->s_inode_list_lock);
249 INIT_LIST_HEAD(&s->s_inodes_wb);
250 spin_lock_init(&s->s_inode_wblist_lock);
251
252 s->s_count = 1;
253 atomic_set(&s->s_active, 1);
254 mutex_init(&s->s_vfs_rename_mutex);
255 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
256 init_rwsem(&s->s_dquot.dqio_sem);
257 s->s_maxbytes = MAX_NON_LFS;
258 s->s_op = &default_op;
259 s->s_time_gran = 1000000000;
260 s->cleancache_poolid = CLEANCACHE_NO_POOL;
261
262 s->s_shrink.seeks = DEFAULT_SEEKS;
263 s->s_shrink.scan_objects = super_cache_scan;
264 s->s_shrink.count_objects = super_cache_count;
265 s->s_shrink.batch = 1024;
266 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
267 if (prealloc_shrinker(&s->s_shrink))
268 goto fail;
269 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
270 goto fail;
271 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
272 goto fail;
273 return s;
274
275 fail:
276 destroy_unused_super(s);
277 return NULL;
278 }
279
280 /* Superblock refcounting */
281
282 /*
283 * Drop a superblock's refcount. The caller must hold sb_lock.
284 */
285 static void __put_super(struct super_block *s)
286 {
287 if (!--s->s_count) {
288 list_del_init(&s->s_list);
289 WARN_ON(s->s_dentry_lru.node);
290 WARN_ON(s->s_inode_lru.node);
291 WARN_ON(!list_empty(&s->s_mounts));
292 security_sb_free(s);
293 put_user_ns(s->s_user_ns);
294 kfree(s->s_subtype);
295 call_rcu(&s->rcu, destroy_super_rcu);
296 }
297 }
298
299 /**
300 * put_super - drop a temporary reference to superblock
301 * @sb: superblock in question
302 *
303 * Drops a temporary reference, frees superblock if there's no
304 * references left.
305 */
306 static void put_super(struct super_block *sb)
307 {
308 spin_lock(&sb_lock);
309 __put_super(sb);
310 spin_unlock(&sb_lock);
311 }
312
313
314 /**
315 * deactivate_locked_super - drop an active reference to superblock
316 * @s: superblock to deactivate
317 *
318 * Drops an active reference to superblock, converting it into a temporary
319 * one if there is no other active references left. In that case we
320 * tell fs driver to shut it down and drop the temporary reference we
321 * had just acquired.
322 *
323 * Caller holds exclusive lock on superblock; that lock is released.
324 */
325 void deactivate_locked_super(struct super_block *s)
326 {
327 struct file_system_type *fs = s->s_type;
328 if (atomic_dec_and_test(&s->s_active)) {
329 cleancache_invalidate_fs(s);
330 unregister_shrinker(&s->s_shrink);
331 fs->kill_sb(s);
332
333 /*
334 * Since list_lru_destroy() may sleep, we cannot call it from
335 * put_super(), where we hold the sb_lock. Therefore we destroy
336 * the lru lists right now.
337 */
338 list_lru_destroy(&s->s_dentry_lru);
339 list_lru_destroy(&s->s_inode_lru);
340
341 put_filesystem(fs);
342 put_super(s);
343 } else {
344 up_write(&s->s_umount);
345 }
346 }
347
348 EXPORT_SYMBOL(deactivate_locked_super);
349
350 /**
351 * deactivate_super - drop an active reference to superblock
352 * @s: superblock to deactivate
353 *
354 * Variant of deactivate_locked_super(), except that superblock is *not*
355 * locked by caller. If we are going to drop the final active reference,
356 * lock will be acquired prior to that.
357 */
358 void deactivate_super(struct super_block *s)
359 {
360 if (!atomic_add_unless(&s->s_active, -1, 1)) {
361 down_write(&s->s_umount);
362 deactivate_locked_super(s);
363 }
364 }
365
366 EXPORT_SYMBOL(deactivate_super);
367
368 /**
369 * grab_super - acquire an active reference
370 * @s: reference we are trying to make active
371 *
372 * Tries to acquire an active reference. grab_super() is used when we
373 * had just found a superblock in super_blocks or fs_type->fs_supers
374 * and want to turn it into a full-blown active reference. grab_super()
375 * is called with sb_lock held and drops it. Returns 1 in case of
376 * success, 0 if we had failed (superblock contents was already dead or
377 * dying when grab_super() had been called). Note that this is only
378 * called for superblocks not in rundown mode (== ones still on ->fs_supers
379 * of their type), so increment of ->s_count is OK here.
380 */
381 static int grab_super(struct super_block *s) __releases(sb_lock)
382 {
383 s->s_count++;
384 spin_unlock(&sb_lock);
385 down_write(&s->s_umount);
386 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
387 put_super(s);
388 return 1;
389 }
390 up_write(&s->s_umount);
391 put_super(s);
392 return 0;
393 }
394
395 /*
396 * trylock_super - try to grab ->s_umount shared
397 * @sb: reference we are trying to grab
398 *
399 * Try to prevent fs shutdown. This is used in places where we
400 * cannot take an active reference but we need to ensure that the
401 * filesystem is not shut down while we are working on it. It returns
402 * false if we cannot acquire s_umount or if we lose the race and
403 * filesystem already got into shutdown, and returns true with the s_umount
404 * lock held in read mode in case of success. On successful return,
405 * the caller must drop the s_umount lock when done.
406 *
407 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
408 * The reason why it's safe is that we are OK with doing trylock instead
409 * of down_read(). There's a couple of places that are OK with that, but
410 * it's very much not a general-purpose interface.
411 */
412 bool trylock_super(struct super_block *sb)
413 {
414 if (down_read_trylock(&sb->s_umount)) {
415 if (!hlist_unhashed(&sb->s_instances) &&
416 sb->s_root && (sb->s_flags & SB_BORN))
417 return true;
418 up_read(&sb->s_umount);
419 }
420
421 return false;
422 }
423
424 /**
425 * generic_shutdown_super - common helper for ->kill_sb()
426 * @sb: superblock to kill
427 *
428 * generic_shutdown_super() does all fs-independent work on superblock
429 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
430 * that need destruction out of superblock, call generic_shutdown_super()
431 * and release aforementioned objects. Note: dentries and inodes _are_
432 * taken care of and do not need specific handling.
433 *
434 * Upon calling this function, the filesystem may no longer alter or
435 * rearrange the set of dentries belonging to this super_block, nor may it
436 * change the attachments of dentries to inodes.
437 */
438 void generic_shutdown_super(struct super_block *sb)
439 {
440 const struct super_operations *sop = sb->s_op;
441
442 if (sb->s_root) {
443 shrink_dcache_for_umount(sb);
444 sync_filesystem(sb);
445 sb->s_flags &= ~SB_ACTIVE;
446
447 fsnotify_sb_delete(sb);
448 cgroup_writeback_umount();
449
450 evict_inodes(sb);
451
452 if (sb->s_dio_done_wq) {
453 destroy_workqueue(sb->s_dio_done_wq);
454 sb->s_dio_done_wq = NULL;
455 }
456
457 if (sop->put_super)
458 sop->put_super(sb);
459
460 if (!list_empty(&sb->s_inodes)) {
461 printk("VFS: Busy inodes after unmount of %s. "
462 "Self-destruct in 5 seconds. Have a nice day...\n",
463 sb->s_id);
464 }
465 }
466 spin_lock(&sb_lock);
467 /* should be initialized for __put_super_and_need_restart() */
468 hlist_del_init(&sb->s_instances);
469 spin_unlock(&sb_lock);
470 up_write(&sb->s_umount);
471 if (sb->s_bdi != &noop_backing_dev_info) {
472 bdi_put(sb->s_bdi);
473 sb->s_bdi = &noop_backing_dev_info;
474 }
475 }
476
477 EXPORT_SYMBOL(generic_shutdown_super);
478
479 /**
480 * sget_fc - Find or create a superblock
481 * @fc: Filesystem context.
482 * @test: Comparison callback
483 * @set: Setup callback
484 *
485 * Find or create a superblock using the parameters stored in the filesystem
486 * context and the two callback functions.
487 *
488 * If an extant superblock is matched, then that will be returned with an
489 * elevated reference count that the caller must transfer or discard.
490 *
491 * If no match is made, a new superblock will be allocated and basic
492 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
493 * the set() callback will be invoked), the superblock will be published and it
494 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
495 * as yet unset.
496 */
497 struct super_block *sget_fc(struct fs_context *fc,
498 int (*test)(struct super_block *, struct fs_context *),
499 int (*set)(struct super_block *, struct fs_context *))
500 {
501 struct super_block *s = NULL;
502 struct super_block *old;
503 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
504 int err;
505
506 if (!(fc->sb_flags & SB_KERNMOUNT) &&
507 fc->purpose != FS_CONTEXT_FOR_SUBMOUNT) {
508 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
509 * over the namespace.
510 */
511 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) {
512 if (!capable(CAP_SYS_ADMIN))
513 return ERR_PTR(-EPERM);
514 } else {
515 if (!ns_capable(fc->user_ns, CAP_SYS_ADMIN))
516 return ERR_PTR(-EPERM);
517 }
518 }
519
520 retry:
521 spin_lock(&sb_lock);
522 if (test) {
523 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
524 if (test(old, fc))
525 goto share_extant_sb;
526 }
527 }
528 if (!s) {
529 spin_unlock(&sb_lock);
530 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
531 if (!s)
532 return ERR_PTR(-ENOMEM);
533 goto retry;
534 }
535
536 s->s_fs_info = fc->s_fs_info;
537 err = set(s, fc);
538 if (err) {
539 s->s_fs_info = NULL;
540 spin_unlock(&sb_lock);
541 destroy_unused_super(s);
542 return ERR_PTR(err);
543 }
544 fc->s_fs_info = NULL;
545 s->s_type = fc->fs_type;
546 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
547 list_add_tail(&s->s_list, &super_blocks);
548 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
549 spin_unlock(&sb_lock);
550 get_filesystem(s->s_type);
551 register_shrinker_prepared(&s->s_shrink);
552 return s;
553
554 share_extant_sb:
555 if (user_ns != old->s_user_ns) {
556 spin_unlock(&sb_lock);
557 destroy_unused_super(s);
558 return ERR_PTR(-EBUSY);
559 }
560 if (!grab_super(old))
561 goto retry;
562 destroy_unused_super(s);
563 return old;
564 }
565 EXPORT_SYMBOL(sget_fc);
566
567 /**
568 * sget_userns - find or create a superblock
569 * @type: filesystem type superblock should belong to
570 * @test: comparison callback
571 * @set: setup callback
572 * @flags: mount flags
573 * @user_ns: User namespace for the super_block
574 * @data: argument to each of them
575 */
576 struct super_block *sget_userns(struct file_system_type *type,
577 int (*test)(struct super_block *,void *),
578 int (*set)(struct super_block *,void *),
579 int flags, struct user_namespace *user_ns,
580 void *data)
581 {
582 struct super_block *s = NULL;
583 struct super_block *old;
584 int err;
585
586 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) &&
587 !(type->fs_flags & FS_USERNS_MOUNT) &&
588 !capable(CAP_SYS_ADMIN))
589 return ERR_PTR(-EPERM);
590 retry:
591 spin_lock(&sb_lock);
592 if (test) {
593 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
594 if (!test(old, data))
595 continue;
596 if (user_ns != old->s_user_ns) {
597 spin_unlock(&sb_lock);
598 destroy_unused_super(s);
599 return ERR_PTR(-EBUSY);
600 }
601 if (!grab_super(old))
602 goto retry;
603 destroy_unused_super(s);
604 return old;
605 }
606 }
607 if (!s) {
608 spin_unlock(&sb_lock);
609 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
610 if (!s)
611 return ERR_PTR(-ENOMEM);
612 goto retry;
613 }
614
615 err = set(s, data);
616 if (err) {
617 spin_unlock(&sb_lock);
618 destroy_unused_super(s);
619 return ERR_PTR(err);
620 }
621 s->s_type = type;
622 strlcpy(s->s_id, type->name, sizeof(s->s_id));
623 list_add_tail(&s->s_list, &super_blocks);
624 hlist_add_head(&s->s_instances, &type->fs_supers);
625 spin_unlock(&sb_lock);
626 get_filesystem(type);
627 register_shrinker_prepared(&s->s_shrink);
628 return s;
629 }
630
631 EXPORT_SYMBOL(sget_userns);
632
633 /**
634 * sget - find or create a superblock
635 * @type: filesystem type superblock should belong to
636 * @test: comparison callback
637 * @set: setup callback
638 * @flags: mount flags
639 * @data: argument to each of them
640 */
641 struct super_block *sget(struct file_system_type *type,
642 int (*test)(struct super_block *,void *),
643 int (*set)(struct super_block *,void *),
644 int flags,
645 void *data)
646 {
647 struct user_namespace *user_ns = current_user_ns();
648
649 /* We don't yet pass the user namespace of the parent
650 * mount through to here so always use &init_user_ns
651 * until that changes.
652 */
653 if (flags & SB_SUBMOUNT)
654 user_ns = &init_user_ns;
655
656 /* Ensure the requestor has permissions over the target filesystem */
657 if (!(flags & (SB_KERNMOUNT|SB_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
658 return ERR_PTR(-EPERM);
659
660 return sget_userns(type, test, set, flags, user_ns, data);
661 }
662
663 EXPORT_SYMBOL(sget);
664
665 void drop_super(struct super_block *sb)
666 {
667 up_read(&sb->s_umount);
668 put_super(sb);
669 }
670
671 EXPORT_SYMBOL(drop_super);
672
673 void drop_super_exclusive(struct super_block *sb)
674 {
675 up_write(&sb->s_umount);
676 put_super(sb);
677 }
678 EXPORT_SYMBOL(drop_super_exclusive);
679
680 static void __iterate_supers(void (*f)(struct super_block *))
681 {
682 struct super_block *sb, *p = NULL;
683
684 spin_lock(&sb_lock);
685 list_for_each_entry(sb, &super_blocks, s_list) {
686 if (hlist_unhashed(&sb->s_instances))
687 continue;
688 sb->s_count++;
689 spin_unlock(&sb_lock);
690
691 f(sb);
692
693 spin_lock(&sb_lock);
694 if (p)
695 __put_super(p);
696 p = sb;
697 }
698 if (p)
699 __put_super(p);
700 spin_unlock(&sb_lock);
701 }
702 /**
703 * iterate_supers - call function for all active superblocks
704 * @f: function to call
705 * @arg: argument to pass to it
706 *
707 * Scans the superblock list and calls given function, passing it
708 * locked superblock and given argument.
709 */
710 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
711 {
712 struct super_block *sb, *p = NULL;
713
714 spin_lock(&sb_lock);
715 list_for_each_entry(sb, &super_blocks, s_list) {
716 if (hlist_unhashed(&sb->s_instances))
717 continue;
718 sb->s_count++;
719 spin_unlock(&sb_lock);
720
721 down_read(&sb->s_umount);
722 if (sb->s_root && (sb->s_flags & SB_BORN))
723 f(sb, arg);
724 up_read(&sb->s_umount);
725
726 spin_lock(&sb_lock);
727 if (p)
728 __put_super(p);
729 p = sb;
730 }
731 if (p)
732 __put_super(p);
733 spin_unlock(&sb_lock);
734 }
735
736 /**
737 * iterate_supers_type - call function for superblocks of given type
738 * @type: fs type
739 * @f: function to call
740 * @arg: argument to pass to it
741 *
742 * Scans the superblock list and calls given function, passing it
743 * locked superblock and given argument.
744 */
745 void iterate_supers_type(struct file_system_type *type,
746 void (*f)(struct super_block *, void *), void *arg)
747 {
748 struct super_block *sb, *p = NULL;
749
750 spin_lock(&sb_lock);
751 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
752 sb->s_count++;
753 spin_unlock(&sb_lock);
754
755 down_read(&sb->s_umount);
756 if (sb->s_root && (sb->s_flags & SB_BORN))
757 f(sb, arg);
758 up_read(&sb->s_umount);
759
760 spin_lock(&sb_lock);
761 if (p)
762 __put_super(p);
763 p = sb;
764 }
765 if (p)
766 __put_super(p);
767 spin_unlock(&sb_lock);
768 }
769
770 EXPORT_SYMBOL(iterate_supers_type);
771
772 static struct super_block *__get_super(struct block_device *bdev, bool excl)
773 {
774 struct super_block *sb;
775
776 if (!bdev)
777 return NULL;
778
779 spin_lock(&sb_lock);
780 rescan:
781 list_for_each_entry(sb, &super_blocks, s_list) {
782 if (hlist_unhashed(&sb->s_instances))
783 continue;
784 if (sb->s_bdev == bdev) {
785 sb->s_count++;
786 spin_unlock(&sb_lock);
787 if (!excl)
788 down_read(&sb->s_umount);
789 else
790 down_write(&sb->s_umount);
791 /* still alive? */
792 if (sb->s_root && (sb->s_flags & SB_BORN))
793 return sb;
794 if (!excl)
795 up_read(&sb->s_umount);
796 else
797 up_write(&sb->s_umount);
798 /* nope, got unmounted */
799 spin_lock(&sb_lock);
800 __put_super(sb);
801 goto rescan;
802 }
803 }
804 spin_unlock(&sb_lock);
805 return NULL;
806 }
807
808 /**
809 * get_super - get the superblock of a device
810 * @bdev: device to get the superblock for
811 *
812 * Scans the superblock list and finds the superblock of the file system
813 * mounted on the device given. %NULL is returned if no match is found.
814 */
815 struct super_block *get_super(struct block_device *bdev)
816 {
817 return __get_super(bdev, false);
818 }
819 EXPORT_SYMBOL(get_super);
820
821 static struct super_block *__get_super_thawed(struct block_device *bdev,
822 bool excl)
823 {
824 while (1) {
825 struct super_block *s = __get_super(bdev, excl);
826 if (!s || s->s_writers.frozen == SB_UNFROZEN)
827 return s;
828 if (!excl)
829 up_read(&s->s_umount);
830 else
831 up_write(&s->s_umount);
832 wait_event(s->s_writers.wait_unfrozen,
833 s->s_writers.frozen == SB_UNFROZEN);
834 put_super(s);
835 }
836 }
837
838 /**
839 * get_super_thawed - get thawed superblock of a device
840 * @bdev: device to get the superblock for
841 *
842 * Scans the superblock list and finds the superblock of the file system
843 * mounted on the device. The superblock is returned once it is thawed
844 * (or immediately if it was not frozen). %NULL is returned if no match
845 * is found.
846 */
847 struct super_block *get_super_thawed(struct block_device *bdev)
848 {
849 return __get_super_thawed(bdev, false);
850 }
851 EXPORT_SYMBOL(get_super_thawed);
852
853 /**
854 * get_super_exclusive_thawed - get thawed superblock of a device
855 * @bdev: device to get the superblock for
856 *
857 * Scans the superblock list and finds the superblock of the file system
858 * mounted on the device. The superblock is returned once it is thawed
859 * (or immediately if it was not frozen) and s_umount semaphore is held
860 * in exclusive mode. %NULL is returned if no match is found.
861 */
862 struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
863 {
864 return __get_super_thawed(bdev, true);
865 }
866 EXPORT_SYMBOL(get_super_exclusive_thawed);
867
868 /**
869 * get_active_super - get an active reference to the superblock of a device
870 * @bdev: device to get the superblock for
871 *
872 * Scans the superblock list and finds the superblock of the file system
873 * mounted on the device given. Returns the superblock with an active
874 * reference or %NULL if none was found.
875 */
876 struct super_block *get_active_super(struct block_device *bdev)
877 {
878 struct super_block *sb;
879
880 if (!bdev)
881 return NULL;
882
883 restart:
884 spin_lock(&sb_lock);
885 list_for_each_entry(sb, &super_blocks, s_list) {
886 if (hlist_unhashed(&sb->s_instances))
887 continue;
888 if (sb->s_bdev == bdev) {
889 if (!grab_super(sb))
890 goto restart;
891 up_write(&sb->s_umount);
892 return sb;
893 }
894 }
895 spin_unlock(&sb_lock);
896 return NULL;
897 }
898
899 struct super_block *user_get_super(dev_t dev)
900 {
901 struct super_block *sb;
902
903 spin_lock(&sb_lock);
904 rescan:
905 list_for_each_entry(sb, &super_blocks, s_list) {
906 if (hlist_unhashed(&sb->s_instances))
907 continue;
908 if (sb->s_dev == dev) {
909 sb->s_count++;
910 spin_unlock(&sb_lock);
911 down_read(&sb->s_umount);
912 /* still alive? */
913 if (sb->s_root && (sb->s_flags & SB_BORN))
914 return sb;
915 up_read(&sb->s_umount);
916 /* nope, got unmounted */
917 spin_lock(&sb_lock);
918 __put_super(sb);
919 goto rescan;
920 }
921 }
922 spin_unlock(&sb_lock);
923 return NULL;
924 }
925
926 /**
927 * reconfigure_super - asks filesystem to change superblock parameters
928 * @fc: The superblock and configuration
929 *
930 * Alters the configuration parameters of a live superblock.
931 */
932 int reconfigure_super(struct fs_context *fc)
933 {
934 struct super_block *sb = fc->root->d_sb;
935 int retval;
936 bool remount_ro = false;
937 bool force = fc->sb_flags & SB_FORCE;
938
939 if (fc->sb_flags_mask & ~MS_RMT_MASK)
940 return -EINVAL;
941 if (sb->s_writers.frozen != SB_UNFROZEN)
942 return -EBUSY;
943
944 retval = security_sb_remount(sb, fc->security);
945 if (retval)
946 return retval;
947
948 if (fc->sb_flags_mask & SB_RDONLY) {
949 #ifdef CONFIG_BLOCK
950 if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
951 return -EACCES;
952 #endif
953
954 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
955 }
956
957 if (remount_ro) {
958 if (!hlist_empty(&sb->s_pins)) {
959 up_write(&sb->s_umount);
960 group_pin_kill(&sb->s_pins);
961 down_write(&sb->s_umount);
962 if (!sb->s_root)
963 return 0;
964 if (sb->s_writers.frozen != SB_UNFROZEN)
965 return -EBUSY;
966 remount_ro = !sb_rdonly(sb);
967 }
968 }
969 shrink_dcache_sb(sb);
970
971 /* If we are reconfiguring to RDONLY and current sb is read/write,
972 * make sure there are no files open for writing.
973 */
974 if (remount_ro) {
975 if (force) {
976 sb->s_readonly_remount = 1;
977 smp_wmb();
978 } else {
979 retval = sb_prepare_remount_readonly(sb);
980 if (retval)
981 return retval;
982 }
983 }
984
985 if (fc->ops->reconfigure) {
986 retval = fc->ops->reconfigure(fc);
987 if (retval) {
988 if (!force)
989 goto cancel_readonly;
990 /* If forced remount, go ahead despite any errors */
991 WARN(1, "forced remount of a %s fs returned %i\n",
992 sb->s_type->name, retval);
993 }
994 }
995
996 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
997 (fc->sb_flags & fc->sb_flags_mask)));
998 /* Needs to be ordered wrt mnt_is_readonly() */
999 smp_wmb();
1000 sb->s_readonly_remount = 0;
1001
1002 /*
1003 * Some filesystems modify their metadata via some other path than the
1004 * bdev buffer cache (eg. use a private mapping, or directories in
1005 * pagecache, etc). Also file data modifications go via their own
1006 * mappings. So If we try to mount readonly then copy the filesystem
1007 * from bdev, we could get stale data, so invalidate it to give a best
1008 * effort at coherency.
1009 */
1010 if (remount_ro && sb->s_bdev)
1011 invalidate_bdev(sb->s_bdev);
1012 return 0;
1013
1014 cancel_readonly:
1015 sb->s_readonly_remount = 0;
1016 return retval;
1017 }
1018
1019 static void do_emergency_remount_callback(struct super_block *sb)
1020 {
1021 down_write(&sb->s_umount);
1022 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
1023 !sb_rdonly(sb)) {
1024 struct fs_context *fc;
1025
1026 fc = fs_context_for_reconfigure(sb->s_root,
1027 SB_RDONLY | SB_FORCE, SB_RDONLY);
1028 if (!IS_ERR(fc)) {
1029 if (parse_monolithic_mount_data(fc, NULL) == 0)
1030 (void)reconfigure_super(fc);
1031 put_fs_context(fc);
1032 }
1033 }
1034 up_write(&sb->s_umount);
1035 }
1036
1037 static void do_emergency_remount(struct work_struct *work)
1038 {
1039 __iterate_supers(do_emergency_remount_callback);
1040 kfree(work);
1041 printk("Emergency Remount complete\n");
1042 }
1043
1044 void emergency_remount(void)
1045 {
1046 struct work_struct *work;
1047
1048 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1049 if (work) {
1050 INIT_WORK(work, do_emergency_remount);
1051 schedule_work(work);
1052 }
1053 }
1054
1055 static void do_thaw_all_callback(struct super_block *sb)
1056 {
1057 down_write(&sb->s_umount);
1058 if (sb->s_root && sb->s_flags & SB_BORN) {
1059 emergency_thaw_bdev(sb);
1060 thaw_super_locked(sb);
1061 } else {
1062 up_write(&sb->s_umount);
1063 }
1064 }
1065
1066 static void do_thaw_all(struct work_struct *work)
1067 {
1068 __iterate_supers(do_thaw_all_callback);
1069 kfree(work);
1070 printk(KERN_WARNING "Emergency Thaw complete\n");
1071 }
1072
1073 /**
1074 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1075 *
1076 * Used for emergency unfreeze of all filesystems via SysRq
1077 */
1078 void emergency_thaw_all(void)
1079 {
1080 struct work_struct *work;
1081
1082 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1083 if (work) {
1084 INIT_WORK(work, do_thaw_all);
1085 schedule_work(work);
1086 }
1087 }
1088
1089 static DEFINE_IDA(unnamed_dev_ida);
1090
1091 /**
1092 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1093 * @p: Pointer to a dev_t.
1094 *
1095 * Filesystems which don't use real block devices can call this function
1096 * to allocate a virtual block device.
1097 *
1098 * Context: Any context. Frequently called while holding sb_lock.
1099 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1100 * or -ENOMEM if memory allocation failed.
1101 */
1102 int get_anon_bdev(dev_t *p)
1103 {
1104 int dev;
1105
1106 /*
1107 * Many userspace utilities consider an FSID of 0 invalid.
1108 * Always return at least 1 from get_anon_bdev.
1109 */
1110 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1111 GFP_ATOMIC);
1112 if (dev == -ENOSPC)
1113 dev = -EMFILE;
1114 if (dev < 0)
1115 return dev;
1116
1117 *p = MKDEV(0, dev);
1118 return 0;
1119 }
1120 EXPORT_SYMBOL(get_anon_bdev);
1121
1122 void free_anon_bdev(dev_t dev)
1123 {
1124 ida_free(&unnamed_dev_ida, MINOR(dev));
1125 }
1126 EXPORT_SYMBOL(free_anon_bdev);
1127
1128 int set_anon_super(struct super_block *s, void *data)
1129 {
1130 return get_anon_bdev(&s->s_dev);
1131 }
1132 EXPORT_SYMBOL(set_anon_super);
1133
1134 void kill_anon_super(struct super_block *sb)
1135 {
1136 dev_t dev = sb->s_dev;
1137 generic_shutdown_super(sb);
1138 free_anon_bdev(dev);
1139 }
1140 EXPORT_SYMBOL(kill_anon_super);
1141
1142 void kill_litter_super(struct super_block *sb)
1143 {
1144 if (sb->s_root)
1145 d_genocide(sb->s_root);
1146 kill_anon_super(sb);
1147 }
1148 EXPORT_SYMBOL(kill_litter_super);
1149
1150 static int ns_test_super(struct super_block *sb, void *data)
1151 {
1152 return sb->s_fs_info == data;
1153 }
1154
1155 static int ns_set_super(struct super_block *sb, void *data)
1156 {
1157 sb->s_fs_info = data;
1158 return set_anon_super(sb, NULL);
1159 }
1160
1161 struct dentry *mount_ns(struct file_system_type *fs_type,
1162 int flags, void *data, void *ns, struct user_namespace *user_ns,
1163 int (*fill_super)(struct super_block *, void *, int))
1164 {
1165 struct super_block *sb;
1166
1167 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1168 * over the namespace.
1169 */
1170 if (!(flags & SB_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1171 return ERR_PTR(-EPERM);
1172
1173 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1174 user_ns, ns);
1175 if (IS_ERR(sb))
1176 return ERR_CAST(sb);
1177
1178 if (!sb->s_root) {
1179 int err;
1180 err = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
1181 if (err) {
1182 deactivate_locked_super(sb);
1183 return ERR_PTR(err);
1184 }
1185
1186 sb->s_flags |= SB_ACTIVE;
1187 }
1188
1189 return dget(sb->s_root);
1190 }
1191
1192 EXPORT_SYMBOL(mount_ns);
1193
1194 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1195 {
1196 return set_anon_super(sb, NULL);
1197 }
1198 EXPORT_SYMBOL(set_anon_super_fc);
1199
1200 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1201 {
1202 return sb->s_fs_info == fc->s_fs_info;
1203 }
1204
1205 static int test_single_super(struct super_block *s, struct fs_context *fc)
1206 {
1207 return 1;
1208 }
1209
1210 /**
1211 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1212 * @fc: The filesystem context holding the parameters
1213 * @keying: How to distinguish superblocks
1214 * @fill_super: Helper to initialise a new superblock
1215 *
1216 * Search for a superblock and create a new one if not found. The search
1217 * criterion is controlled by @keying. If the search fails, a new superblock
1218 * is created and @fill_super() is called to initialise it.
1219 *
1220 * @keying can take one of a number of values:
1221 *
1222 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1223 * system. This is typically used for special system filesystems.
1224 *
1225 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1226 * distinct keys (where the key is in s_fs_info). Searching for the same
1227 * key again will turn up the superblock for that key.
1228 *
1229 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1230 * unkeyed. Each call will get a new superblock.
1231 *
1232 * A permissions check is made by sget_fc() unless we're getting a superblock
1233 * for a kernel-internal mount or a submount.
1234 */
1235 int vfs_get_super(struct fs_context *fc,
1236 enum vfs_get_super_keying keying,
1237 int (*fill_super)(struct super_block *sb,
1238 struct fs_context *fc))
1239 {
1240 int (*test)(struct super_block *, struct fs_context *);
1241 struct super_block *sb;
1242
1243 switch (keying) {
1244 case vfs_get_single_super:
1245 test = test_single_super;
1246 break;
1247 case vfs_get_keyed_super:
1248 test = test_keyed_super;
1249 break;
1250 case vfs_get_independent_super:
1251 test = NULL;
1252 break;
1253 default:
1254 BUG();
1255 }
1256
1257 sb = sget_fc(fc, test, set_anon_super_fc);
1258 if (IS_ERR(sb))
1259 return PTR_ERR(sb);
1260
1261 if (!sb->s_root) {
1262 int err = fill_super(sb, fc);
1263 if (err) {
1264 deactivate_locked_super(sb);
1265 return err;
1266 }
1267
1268 sb->s_flags |= SB_ACTIVE;
1269 }
1270
1271 BUG_ON(fc->root);
1272 fc->root = dget(sb->s_root);
1273 return 0;
1274 }
1275 EXPORT_SYMBOL(vfs_get_super);
1276
1277 #ifdef CONFIG_BLOCK
1278 static int set_bdev_super(struct super_block *s, void *data)
1279 {
1280 s->s_bdev = data;
1281 s->s_dev = s->s_bdev->bd_dev;
1282 s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1283
1284 return 0;
1285 }
1286
1287 static int test_bdev_super(struct super_block *s, void *data)
1288 {
1289 return (void *)s->s_bdev == data;
1290 }
1291
1292 struct dentry *mount_bdev(struct file_system_type *fs_type,
1293 int flags, const char *dev_name, void *data,
1294 int (*fill_super)(struct super_block *, void *, int))
1295 {
1296 struct block_device *bdev;
1297 struct super_block *s;
1298 fmode_t mode = FMODE_READ | FMODE_EXCL;
1299 int error = 0;
1300
1301 if (!(flags & SB_RDONLY))
1302 mode |= FMODE_WRITE;
1303
1304 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1305 if (IS_ERR(bdev))
1306 return ERR_CAST(bdev);
1307
1308 /*
1309 * once the super is inserted into the list by sget, s_umount
1310 * will protect the lockfs code from trying to start a snapshot
1311 * while we are mounting
1312 */
1313 mutex_lock(&bdev->bd_fsfreeze_mutex);
1314 if (bdev->bd_fsfreeze_count > 0) {
1315 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1316 error = -EBUSY;
1317 goto error_bdev;
1318 }
1319 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1320 bdev);
1321 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1322 if (IS_ERR(s))
1323 goto error_s;
1324
1325 if (s->s_root) {
1326 if ((flags ^ s->s_flags) & SB_RDONLY) {
1327 deactivate_locked_super(s);
1328 error = -EBUSY;
1329 goto error_bdev;
1330 }
1331
1332 /*
1333 * s_umount nests inside bd_mutex during
1334 * __invalidate_device(). blkdev_put() acquires
1335 * bd_mutex and can't be called under s_umount. Drop
1336 * s_umount temporarily. This is safe as we're
1337 * holding an active reference.
1338 */
1339 up_write(&s->s_umount);
1340 blkdev_put(bdev, mode);
1341 down_write(&s->s_umount);
1342 } else {
1343 s->s_mode = mode;
1344 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1345 sb_set_blocksize(s, block_size(bdev));
1346 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1347 if (error) {
1348 deactivate_locked_super(s);
1349 goto error;
1350 }
1351
1352 s->s_flags |= SB_ACTIVE;
1353 bdev->bd_super = s;
1354 }
1355
1356 return dget(s->s_root);
1357
1358 error_s:
1359 error = PTR_ERR(s);
1360 error_bdev:
1361 blkdev_put(bdev, mode);
1362 error:
1363 return ERR_PTR(error);
1364 }
1365 EXPORT_SYMBOL(mount_bdev);
1366
1367 void kill_block_super(struct super_block *sb)
1368 {
1369 struct block_device *bdev = sb->s_bdev;
1370 fmode_t mode = sb->s_mode;
1371
1372 bdev->bd_super = NULL;
1373 generic_shutdown_super(sb);
1374 sync_blockdev(bdev);
1375 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1376 blkdev_put(bdev, mode | FMODE_EXCL);
1377 }
1378
1379 EXPORT_SYMBOL(kill_block_super);
1380 #endif
1381
1382 struct dentry *mount_nodev(struct file_system_type *fs_type,
1383 int flags, void *data,
1384 int (*fill_super)(struct super_block *, void *, int))
1385 {
1386 int error;
1387 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1388
1389 if (IS_ERR(s))
1390 return ERR_CAST(s);
1391
1392 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1393 if (error) {
1394 deactivate_locked_super(s);
1395 return ERR_PTR(error);
1396 }
1397 s->s_flags |= SB_ACTIVE;
1398 return dget(s->s_root);
1399 }
1400 EXPORT_SYMBOL(mount_nodev);
1401
1402 static int reconfigure_single(struct super_block *s,
1403 int flags, void *data)
1404 {
1405 struct fs_context *fc;
1406 int ret;
1407
1408 /* The caller really need to be passing fc down into mount_single(),
1409 * then a chunk of this can be removed. [Bollocks -- AV]
1410 * Better yet, reconfiguration shouldn't happen, but rather the second
1411 * mount should be rejected if the parameters are not compatible.
1412 */
1413 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1414 if (IS_ERR(fc))
1415 return PTR_ERR(fc);
1416
1417 ret = parse_monolithic_mount_data(fc, data);
1418 if (ret < 0)
1419 goto out;
1420
1421 ret = reconfigure_super(fc);
1422 out:
1423 put_fs_context(fc);
1424 return ret;
1425 }
1426
1427 static int compare_single(struct super_block *s, void *p)
1428 {
1429 return 1;
1430 }
1431
1432 struct dentry *mount_single(struct file_system_type *fs_type,
1433 int flags, void *data,
1434 int (*fill_super)(struct super_block *, void *, int))
1435 {
1436 struct super_block *s;
1437 int error;
1438
1439 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1440 if (IS_ERR(s))
1441 return ERR_CAST(s);
1442 if (!s->s_root) {
1443 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1444 if (!error)
1445 s->s_flags |= SB_ACTIVE;
1446 } else {
1447 error = reconfigure_single(s, flags, data);
1448 }
1449 if (unlikely(error)) {
1450 deactivate_locked_super(s);
1451 return ERR_PTR(error);
1452 }
1453 return dget(s->s_root);
1454 }
1455 EXPORT_SYMBOL(mount_single);
1456
1457 /**
1458 * vfs_get_tree - Get the mountable root
1459 * @fc: The superblock configuration context.
1460 *
1461 * The filesystem is invoked to get or create a superblock which can then later
1462 * be used for mounting. The filesystem places a pointer to the root to be
1463 * used for mounting in @fc->root.
1464 */
1465 int vfs_get_tree(struct fs_context *fc)
1466 {
1467 struct super_block *sb;
1468 int error;
1469
1470 if (fc->root)
1471 return -EBUSY;
1472
1473 /* Get the mountable root in fc->root, with a ref on the root and a ref
1474 * on the superblock.
1475 */
1476 error = fc->ops->get_tree(fc);
1477 if (error < 0)
1478 return error;
1479
1480 if (!fc->root) {
1481 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1482 fc->fs_type->name);
1483 /* We don't know what the locking state of the superblock is -
1484 * if there is a superblock.
1485 */
1486 BUG();
1487 }
1488
1489 sb = fc->root->d_sb;
1490 WARN_ON(!sb->s_bdi);
1491
1492 if (fc->subtype && !sb->s_subtype) {
1493 sb->s_subtype = fc->subtype;
1494 fc->subtype = NULL;
1495 }
1496
1497 /*
1498 * Write barrier is for super_cache_count(). We place it before setting
1499 * SB_BORN as the data dependency between the two functions is the
1500 * superblock structure contents that we just set up, not the SB_BORN
1501 * flag.
1502 */
1503 smp_wmb();
1504 sb->s_flags |= SB_BORN;
1505
1506 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1507 if (unlikely(error)) {
1508 fc_drop_locked(fc);
1509 return error;
1510 }
1511
1512 /*
1513 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1514 * but s_maxbytes was an unsigned long long for many releases. Throw
1515 * this warning for a little while to try and catch filesystems that
1516 * violate this rule.
1517 */
1518 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1519 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1520
1521 return 0;
1522 }
1523 EXPORT_SYMBOL(vfs_get_tree);
1524
1525 /*
1526 * Setup private BDI for given superblock. It gets automatically cleaned up
1527 * in generic_shutdown_super().
1528 */
1529 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1530 {
1531 struct backing_dev_info *bdi;
1532 int err;
1533 va_list args;
1534
1535 bdi = bdi_alloc(GFP_KERNEL);
1536 if (!bdi)
1537 return -ENOMEM;
1538
1539 bdi->name = sb->s_type->name;
1540
1541 va_start(args, fmt);
1542 err = bdi_register_va(bdi, fmt, args);
1543 va_end(args);
1544 if (err) {
1545 bdi_put(bdi);
1546 return err;
1547 }
1548 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1549 sb->s_bdi = bdi;
1550
1551 return 0;
1552 }
1553 EXPORT_SYMBOL(super_setup_bdi_name);
1554
1555 /*
1556 * Setup private BDI for given superblock. I gets automatically cleaned up
1557 * in generic_shutdown_super().
1558 */
1559 int super_setup_bdi(struct super_block *sb)
1560 {
1561 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1562
1563 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1564 atomic_long_inc_return(&bdi_seq));
1565 }
1566 EXPORT_SYMBOL(super_setup_bdi);
1567
1568 /*
1569 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1570 * instead.
1571 */
1572 void __sb_end_write(struct super_block *sb, int level)
1573 {
1574 percpu_up_read(sb->s_writers.rw_sem + level-1);
1575 }
1576 EXPORT_SYMBOL(__sb_end_write);
1577
1578 /*
1579 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1580 * instead.
1581 */
1582 int __sb_start_write(struct super_block *sb, int level, bool wait)
1583 {
1584 bool force_trylock = false;
1585 int ret = 1;
1586
1587 #ifdef CONFIG_LOCKDEP
1588 /*
1589 * We want lockdep to tell us about possible deadlocks with freezing
1590 * but it's it bit tricky to properly instrument it. Getting a freeze
1591 * protection works as getting a read lock but there are subtle
1592 * problems. XFS for example gets freeze protection on internal level
1593 * twice in some cases, which is OK only because we already hold a
1594 * freeze protection also on higher level. Due to these cases we have
1595 * to use wait == F (trylock mode) which must not fail.
1596 */
1597 if (wait) {
1598 int i;
1599
1600 for (i = 0; i < level - 1; i++)
1601 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1602 force_trylock = true;
1603 break;
1604 }
1605 }
1606 #endif
1607 if (wait && !force_trylock)
1608 percpu_down_read(sb->s_writers.rw_sem + level-1);
1609 else
1610 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1611
1612 WARN_ON(force_trylock && !ret);
1613 return ret;
1614 }
1615 EXPORT_SYMBOL(__sb_start_write);
1616
1617 /**
1618 * sb_wait_write - wait until all writers to given file system finish
1619 * @sb: the super for which we wait
1620 * @level: type of writers we wait for (normal vs page fault)
1621 *
1622 * This function waits until there are no writers of given type to given file
1623 * system.
1624 */
1625 static void sb_wait_write(struct super_block *sb, int level)
1626 {
1627 percpu_down_write(sb->s_writers.rw_sem + level-1);
1628 }
1629
1630 /*
1631 * We are going to return to userspace and forget about these locks, the
1632 * ownership goes to the caller of thaw_super() which does unlock().
1633 */
1634 static void lockdep_sb_freeze_release(struct super_block *sb)
1635 {
1636 int level;
1637
1638 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1639 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1640 }
1641
1642 /*
1643 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1644 */
1645 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1646 {
1647 int level;
1648
1649 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1650 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1651 }
1652
1653 static void sb_freeze_unlock(struct super_block *sb)
1654 {
1655 int level;
1656
1657 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1658 percpu_up_write(sb->s_writers.rw_sem + level);
1659 }
1660
1661 /**
1662 * freeze_super - lock the filesystem and force it into a consistent state
1663 * @sb: the super to lock
1664 *
1665 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1666 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1667 * -EBUSY.
1668 *
1669 * During this function, sb->s_writers.frozen goes through these values:
1670 *
1671 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1672 *
1673 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1674 * writes should be blocked, though page faults are still allowed. We wait for
1675 * all writes to complete and then proceed to the next stage.
1676 *
1677 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1678 * but internal fs threads can still modify the filesystem (although they
1679 * should not dirty new pages or inodes), writeback can run etc. After waiting
1680 * for all running page faults we sync the filesystem which will clean all
1681 * dirty pages and inodes (no new dirty pages or inodes can be created when
1682 * sync is running).
1683 *
1684 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1685 * modification are blocked (e.g. XFS preallocation truncation on inode
1686 * reclaim). This is usually implemented by blocking new transactions for
1687 * filesystems that have them and need this additional guard. After all
1688 * internal writers are finished we call ->freeze_fs() to finish filesystem
1689 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1690 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1691 *
1692 * sb->s_writers.frozen is protected by sb->s_umount.
1693 */
1694 int freeze_super(struct super_block *sb)
1695 {
1696 int ret;
1697
1698 atomic_inc(&sb->s_active);
1699 down_write(&sb->s_umount);
1700 if (sb->s_writers.frozen != SB_UNFROZEN) {
1701 deactivate_locked_super(sb);
1702 return -EBUSY;
1703 }
1704
1705 if (!(sb->s_flags & SB_BORN)) {
1706 up_write(&sb->s_umount);
1707 return 0; /* sic - it's "nothing to do" */
1708 }
1709
1710 if (sb_rdonly(sb)) {
1711 /* Nothing to do really... */
1712 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1713 up_write(&sb->s_umount);
1714 return 0;
1715 }
1716
1717 sb->s_writers.frozen = SB_FREEZE_WRITE;
1718 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1719 up_write(&sb->s_umount);
1720 sb_wait_write(sb, SB_FREEZE_WRITE);
1721 down_write(&sb->s_umount);
1722
1723 /* Now we go and block page faults... */
1724 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1725 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1726
1727 /* All writers are done so after syncing there won't be dirty data */
1728 sync_filesystem(sb);
1729
1730 /* Now wait for internal filesystem counter */
1731 sb->s_writers.frozen = SB_FREEZE_FS;
1732 sb_wait_write(sb, SB_FREEZE_FS);
1733
1734 if (sb->s_op->freeze_fs) {
1735 ret = sb->s_op->freeze_fs(sb);
1736 if (ret) {
1737 printk(KERN_ERR
1738 "VFS:Filesystem freeze failed\n");
1739 sb->s_writers.frozen = SB_UNFROZEN;
1740 sb_freeze_unlock(sb);
1741 wake_up(&sb->s_writers.wait_unfrozen);
1742 deactivate_locked_super(sb);
1743 return ret;
1744 }
1745 }
1746 /*
1747 * For debugging purposes so that fs can warn if it sees write activity
1748 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1749 */
1750 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1751 lockdep_sb_freeze_release(sb);
1752 up_write(&sb->s_umount);
1753 return 0;
1754 }
1755 EXPORT_SYMBOL(freeze_super);
1756
1757 /**
1758 * thaw_super -- unlock filesystem
1759 * @sb: the super to thaw
1760 *
1761 * Unlocks the filesystem and marks it writeable again after freeze_super().
1762 */
1763 static int thaw_super_locked(struct super_block *sb)
1764 {
1765 int error;
1766
1767 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1768 up_write(&sb->s_umount);
1769 return -EINVAL;
1770 }
1771
1772 if (sb_rdonly(sb)) {
1773 sb->s_writers.frozen = SB_UNFROZEN;
1774 goto out;
1775 }
1776
1777 lockdep_sb_freeze_acquire(sb);
1778
1779 if (sb->s_op->unfreeze_fs) {
1780 error = sb->s_op->unfreeze_fs(sb);
1781 if (error) {
1782 printk(KERN_ERR
1783 "VFS:Filesystem thaw failed\n");
1784 lockdep_sb_freeze_release(sb);
1785 up_write(&sb->s_umount);
1786 return error;
1787 }
1788 }
1789
1790 sb->s_writers.frozen = SB_UNFROZEN;
1791 sb_freeze_unlock(sb);
1792 out:
1793 wake_up(&sb->s_writers.wait_unfrozen);
1794 deactivate_locked_super(sb);
1795 return 0;
1796 }
1797
1798 int thaw_super(struct super_block *sb)
1799 {
1800 down_write(&sb->s_umount);
1801 return thaw_super_locked(sb);
1802 }
1803 EXPORT_SYMBOL(thaw_super);