]> git.ipfire.org Git - thirdparty/u-boot.git/blob - fs/ubifs/debug.c
Merge https://gitlab.denx.de/u-boot/custodians/u-boot-samsung.git
[thirdparty/u-boot.git] / fs / ubifs / debug.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11 /*
12 * This file implements most of the debugging stuff which is compiled in only
13 * when it is enabled. But some debugging check functions are implemented in
14 * corresponding subsystem, just because they are closely related and utilize
15 * various local functions of those subsystems.
16 */
17
18 #include <hexdump.h>
19 #include <log.h>
20 #include <dm/devres.h>
21
22 #ifndef __UBOOT__
23 #include <linux/module.h>
24 #include <linux/debugfs.h>
25 #include <linux/math64.h>
26 #include <linux/uaccess.h>
27 #include <linux/random.h>
28 #else
29 #include <linux/compat.h>
30 #include <linux/err.h>
31 #endif
32 #include "ubifs.h"
33
34 #ifndef __UBOOT__
35 static DEFINE_SPINLOCK(dbg_lock);
36 #endif
37
38 static const char *get_key_fmt(int fmt)
39 {
40 switch (fmt) {
41 case UBIFS_SIMPLE_KEY_FMT:
42 return "simple";
43 default:
44 return "unknown/invalid format";
45 }
46 }
47
48 static const char *get_key_hash(int hash)
49 {
50 switch (hash) {
51 case UBIFS_KEY_HASH_R5:
52 return "R5";
53 case UBIFS_KEY_HASH_TEST:
54 return "test";
55 default:
56 return "unknown/invalid name hash";
57 }
58 }
59
60 static const char *get_key_type(int type)
61 {
62 switch (type) {
63 case UBIFS_INO_KEY:
64 return "inode";
65 case UBIFS_DENT_KEY:
66 return "direntry";
67 case UBIFS_XENT_KEY:
68 return "xentry";
69 case UBIFS_DATA_KEY:
70 return "data";
71 case UBIFS_TRUN_KEY:
72 return "truncate";
73 default:
74 return "unknown/invalid key";
75 }
76 }
77
78 #ifndef __UBOOT__
79 static const char *get_dent_type(int type)
80 {
81 switch (type) {
82 case UBIFS_ITYPE_REG:
83 return "file";
84 case UBIFS_ITYPE_DIR:
85 return "dir";
86 case UBIFS_ITYPE_LNK:
87 return "symlink";
88 case UBIFS_ITYPE_BLK:
89 return "blkdev";
90 case UBIFS_ITYPE_CHR:
91 return "char dev";
92 case UBIFS_ITYPE_FIFO:
93 return "fifo";
94 case UBIFS_ITYPE_SOCK:
95 return "socket";
96 default:
97 return "unknown/invalid type";
98 }
99 }
100 #endif
101
102 const char *dbg_snprintf_key(const struct ubifs_info *c,
103 const union ubifs_key *key, char *buffer, int len)
104 {
105 char *p = buffer;
106 int type = key_type(c, key);
107
108 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
109 switch (type) {
110 case UBIFS_INO_KEY:
111 len -= snprintf(p, len, "(%lu, %s)",
112 (unsigned long)key_inum(c, key),
113 get_key_type(type));
114 break;
115 case UBIFS_DENT_KEY:
116 case UBIFS_XENT_KEY:
117 len -= snprintf(p, len, "(%lu, %s, %#08x)",
118 (unsigned long)key_inum(c, key),
119 get_key_type(type), key_hash(c, key));
120 break;
121 case UBIFS_DATA_KEY:
122 len -= snprintf(p, len, "(%lu, %s, %u)",
123 (unsigned long)key_inum(c, key),
124 get_key_type(type), key_block(c, key));
125 break;
126 case UBIFS_TRUN_KEY:
127 len -= snprintf(p, len, "(%lu, %s)",
128 (unsigned long)key_inum(c, key),
129 get_key_type(type));
130 break;
131 default:
132 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
133 key->u32[0], key->u32[1]);
134 }
135 } else
136 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
137 ubifs_assert(len > 0);
138 return p;
139 }
140
141 const char *dbg_ntype(int type)
142 {
143 switch (type) {
144 case UBIFS_PAD_NODE:
145 return "padding node";
146 case UBIFS_SB_NODE:
147 return "superblock node";
148 case UBIFS_MST_NODE:
149 return "master node";
150 case UBIFS_REF_NODE:
151 return "reference node";
152 case UBIFS_INO_NODE:
153 return "inode node";
154 case UBIFS_DENT_NODE:
155 return "direntry node";
156 case UBIFS_XENT_NODE:
157 return "xentry node";
158 case UBIFS_DATA_NODE:
159 return "data node";
160 case UBIFS_TRUN_NODE:
161 return "truncate node";
162 case UBIFS_IDX_NODE:
163 return "indexing node";
164 case UBIFS_CS_NODE:
165 return "commit start node";
166 case UBIFS_ORPH_NODE:
167 return "orphan node";
168 default:
169 return "unknown node";
170 }
171 }
172
173 static const char *dbg_gtype(int type)
174 {
175 switch (type) {
176 case UBIFS_NO_NODE_GROUP:
177 return "no node group";
178 case UBIFS_IN_NODE_GROUP:
179 return "in node group";
180 case UBIFS_LAST_OF_NODE_GROUP:
181 return "last of node group";
182 default:
183 return "unknown";
184 }
185 }
186
187 const char *dbg_cstate(int cmt_state)
188 {
189 switch (cmt_state) {
190 case COMMIT_RESTING:
191 return "commit resting";
192 case COMMIT_BACKGROUND:
193 return "background commit requested";
194 case COMMIT_REQUIRED:
195 return "commit required";
196 case COMMIT_RUNNING_BACKGROUND:
197 return "BACKGROUND commit running";
198 case COMMIT_RUNNING_REQUIRED:
199 return "commit running and required";
200 case COMMIT_BROKEN:
201 return "broken commit";
202 default:
203 return "unknown commit state";
204 }
205 }
206
207 const char *dbg_jhead(int jhead)
208 {
209 switch (jhead) {
210 case GCHD:
211 return "0 (GC)";
212 case BASEHD:
213 return "1 (base)";
214 case DATAHD:
215 return "2 (data)";
216 default:
217 return "unknown journal head";
218 }
219 }
220
221 static void dump_ch(const struct ubifs_ch *ch)
222 {
223 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
224 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
225 pr_err("\tnode_type %d (%s)\n", ch->node_type,
226 dbg_ntype(ch->node_type));
227 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
228 dbg_gtype(ch->group_type));
229 pr_err("\tsqnum %llu\n",
230 (unsigned long long)le64_to_cpu(ch->sqnum));
231 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
232 }
233
234 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
235 {
236 #ifndef __UBOOT__
237 const struct ubifs_inode *ui = ubifs_inode(inode);
238 struct qstr nm = { .name = NULL };
239 union ubifs_key key;
240 struct ubifs_dent_node *dent, *pdent = NULL;
241 int count = 2;
242
243 pr_err("Dump in-memory inode:");
244 pr_err("\tinode %lu\n", inode->i_ino);
245 pr_err("\tsize %llu\n",
246 (unsigned long long)i_size_read(inode));
247 pr_err("\tnlink %u\n", inode->i_nlink);
248 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
249 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
250 pr_err("\tatime %u.%u\n",
251 (unsigned int)inode->i_atime.tv_sec,
252 (unsigned int)inode->i_atime.tv_nsec);
253 pr_err("\tmtime %u.%u\n",
254 (unsigned int)inode->i_mtime.tv_sec,
255 (unsigned int)inode->i_mtime.tv_nsec);
256 pr_err("\tctime %u.%u\n",
257 (unsigned int)inode->i_ctime.tv_sec,
258 (unsigned int)inode->i_ctime.tv_nsec);
259 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
260 pr_err("\txattr_size %u\n", ui->xattr_size);
261 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
262 pr_err("\txattr_names %u\n", ui->xattr_names);
263 pr_err("\tdirty %u\n", ui->dirty);
264 pr_err("\txattr %u\n", ui->xattr);
265 pr_err("\tbulk_read %u\n", ui->xattr);
266 pr_err("\tsynced_i_size %llu\n",
267 (unsigned long long)ui->synced_i_size);
268 pr_err("\tui_size %llu\n",
269 (unsigned long long)ui->ui_size);
270 pr_err("\tflags %d\n", ui->flags);
271 pr_err("\tcompr_type %d\n", ui->compr_type);
272 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
273 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
274 pr_err("\tdata_len %d\n", ui->data_len);
275
276 if (!S_ISDIR(inode->i_mode))
277 return;
278
279 pr_err("List of directory entries:\n");
280 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
281
282 lowest_dent_key(c, &key, inode->i_ino);
283 while (1) {
284 dent = ubifs_tnc_next_ent(c, &key, &nm);
285 if (IS_ERR(dent)) {
286 if (PTR_ERR(dent) != -ENOENT)
287 pr_err("error %ld\n", PTR_ERR(dent));
288 break;
289 }
290
291 pr_err("\t%d: %s (%s)\n",
292 count++, dent->name, get_dent_type(dent->type));
293
294 nm.name = dent->name;
295 nm.len = le16_to_cpu(dent->nlen);
296 kfree(pdent);
297 pdent = dent;
298 key_read(c, &dent->key, &key);
299 }
300 kfree(pdent);
301 #endif
302 }
303
304 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
305 {
306 int i, n;
307 union ubifs_key key;
308 const struct ubifs_ch *ch = node;
309 char key_buf[DBG_KEY_BUF_LEN];
310
311 /* If the magic is incorrect, just hexdump the first bytes */
312 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
313 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
314 print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
315 (void *)node, UBIFS_CH_SZ, 1);
316 return;
317 }
318
319 spin_lock(&dbg_lock);
320 dump_ch(node);
321
322 switch (ch->node_type) {
323 case UBIFS_PAD_NODE:
324 {
325 const struct ubifs_pad_node *pad = node;
326
327 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
328 break;
329 }
330 case UBIFS_SB_NODE:
331 {
332 const struct ubifs_sb_node *sup = node;
333 unsigned int sup_flags = le32_to_cpu(sup->flags);
334
335 pr_err("\tkey_hash %d (%s)\n",
336 (int)sup->key_hash, get_key_hash(sup->key_hash));
337 pr_err("\tkey_fmt %d (%s)\n",
338 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
339 pr_err("\tflags %#x\n", sup_flags);
340 pr_err("\tbig_lpt %u\n",
341 !!(sup_flags & UBIFS_FLG_BIGLPT));
342 pr_err("\tspace_fixup %u\n",
343 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
344 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
345 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
346 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
347 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
348 pr_err("\tmax_bud_bytes %llu\n",
349 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
350 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
351 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
352 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
353 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
354 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
355 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
356 pr_err("\tdefault_compr %u\n",
357 (int)le16_to_cpu(sup->default_compr));
358 pr_err("\trp_size %llu\n",
359 (unsigned long long)le64_to_cpu(sup->rp_size));
360 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
361 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
362 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
363 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
364 pr_err("\tUUID %pUB\n", sup->uuid);
365 break;
366 }
367 case UBIFS_MST_NODE:
368 {
369 const struct ubifs_mst_node *mst = node;
370
371 pr_err("\thighest_inum %llu\n",
372 (unsigned long long)le64_to_cpu(mst->highest_inum));
373 pr_err("\tcommit number %llu\n",
374 (unsigned long long)le64_to_cpu(mst->cmt_no));
375 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
376 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
377 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
378 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
379 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
380 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
381 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
382 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
383 pr_err("\tindex_size %llu\n",
384 (unsigned long long)le64_to_cpu(mst->index_size));
385 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
386 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
387 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
388 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
389 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
390 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
391 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
392 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
393 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
394 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
395 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
396 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
397 pr_err("\ttotal_free %llu\n",
398 (unsigned long long)le64_to_cpu(mst->total_free));
399 pr_err("\ttotal_dirty %llu\n",
400 (unsigned long long)le64_to_cpu(mst->total_dirty));
401 pr_err("\ttotal_used %llu\n",
402 (unsigned long long)le64_to_cpu(mst->total_used));
403 pr_err("\ttotal_dead %llu\n",
404 (unsigned long long)le64_to_cpu(mst->total_dead));
405 pr_err("\ttotal_dark %llu\n",
406 (unsigned long long)le64_to_cpu(mst->total_dark));
407 break;
408 }
409 case UBIFS_REF_NODE:
410 {
411 const struct ubifs_ref_node *ref = node;
412
413 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
414 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
415 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
416 break;
417 }
418 case UBIFS_INO_NODE:
419 {
420 const struct ubifs_ino_node *ino = node;
421
422 key_read(c, &ino->key, &key);
423 pr_err("\tkey %s\n",
424 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
425 pr_err("\tcreat_sqnum %llu\n",
426 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
427 pr_err("\tsize %llu\n",
428 (unsigned long long)le64_to_cpu(ino->size));
429 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
430 pr_err("\tatime %lld.%u\n",
431 (long long)le64_to_cpu(ino->atime_sec),
432 le32_to_cpu(ino->atime_nsec));
433 pr_err("\tmtime %lld.%u\n",
434 (long long)le64_to_cpu(ino->mtime_sec),
435 le32_to_cpu(ino->mtime_nsec));
436 pr_err("\tctime %lld.%u\n",
437 (long long)le64_to_cpu(ino->ctime_sec),
438 le32_to_cpu(ino->ctime_nsec));
439 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
440 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
441 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
442 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
443 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
444 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
445 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
446 pr_err("\tcompr_type %#x\n",
447 (int)le16_to_cpu(ino->compr_type));
448 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
449 break;
450 }
451 case UBIFS_DENT_NODE:
452 case UBIFS_XENT_NODE:
453 {
454 const struct ubifs_dent_node *dent = node;
455 int nlen = le16_to_cpu(dent->nlen);
456
457 key_read(c, &dent->key, &key);
458 pr_err("\tkey %s\n",
459 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
460 pr_err("\tinum %llu\n",
461 (unsigned long long)le64_to_cpu(dent->inum));
462 pr_err("\ttype %d\n", (int)dent->type);
463 pr_err("\tnlen %d\n", nlen);
464 pr_err("\tname ");
465
466 if (nlen > UBIFS_MAX_NLEN)
467 pr_err("(bad name length, not printing, bad or corrupted node)");
468 else {
469 for (i = 0; i < nlen && dent->name[i]; i++)
470 pr_cont("%c", dent->name[i]);
471 }
472 pr_cont("\n");
473
474 break;
475 }
476 case UBIFS_DATA_NODE:
477 {
478 const struct ubifs_data_node *dn = node;
479 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
480
481 key_read(c, &dn->key, &key);
482 pr_err("\tkey %s\n",
483 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
484 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
485 pr_err("\tcompr_typ %d\n",
486 (int)le16_to_cpu(dn->compr_type));
487 pr_err("\tdata size %d\n", dlen);
488 pr_err("\tdata:\n");
489 print_hex_dump("\t", DUMP_PREFIX_OFFSET, 32, 1,
490 (void *)&dn->data, dlen, 0);
491 break;
492 }
493 case UBIFS_TRUN_NODE:
494 {
495 const struct ubifs_trun_node *trun = node;
496
497 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
498 pr_err("\told_size %llu\n",
499 (unsigned long long)le64_to_cpu(trun->old_size));
500 pr_err("\tnew_size %llu\n",
501 (unsigned long long)le64_to_cpu(trun->new_size));
502 break;
503 }
504 case UBIFS_IDX_NODE:
505 {
506 const struct ubifs_idx_node *idx = node;
507
508 n = le16_to_cpu(idx->child_cnt);
509 pr_err("\tchild_cnt %d\n", n);
510 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
511 pr_err("\tBranches:\n");
512
513 for (i = 0; i < n && i < c->fanout - 1; i++) {
514 const struct ubifs_branch *br;
515
516 br = ubifs_idx_branch(c, idx, i);
517 key_read(c, &br->key, &key);
518 pr_err("\t%d: LEB %d:%d len %d key %s\n",
519 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
520 le32_to_cpu(br->len),
521 dbg_snprintf_key(c, &key, key_buf,
522 DBG_KEY_BUF_LEN));
523 }
524 break;
525 }
526 case UBIFS_CS_NODE:
527 break;
528 case UBIFS_ORPH_NODE:
529 {
530 const struct ubifs_orph_node *orph = node;
531
532 pr_err("\tcommit number %llu\n",
533 (unsigned long long)
534 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
535 pr_err("\tlast node flag %llu\n",
536 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
537 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
538 pr_err("\t%d orphan inode numbers:\n", n);
539 for (i = 0; i < n; i++)
540 pr_err("\t ino %llu\n",
541 (unsigned long long)le64_to_cpu(orph->inos[i]));
542 break;
543 }
544 default:
545 pr_err("node type %d was not recognized\n",
546 (int)ch->node_type);
547 }
548 spin_unlock(&dbg_lock);
549 }
550
551 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
552 {
553 spin_lock(&dbg_lock);
554 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
555 req->new_ino, req->dirtied_ino);
556 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
557 req->new_ino_d, req->dirtied_ino_d);
558 pr_err("\tnew_page %d, dirtied_page %d\n",
559 req->new_page, req->dirtied_page);
560 pr_err("\tnew_dent %d, mod_dent %d\n",
561 req->new_dent, req->mod_dent);
562 pr_err("\tidx_growth %d\n", req->idx_growth);
563 pr_err("\tdata_growth %d dd_growth %d\n",
564 req->data_growth, req->dd_growth);
565 spin_unlock(&dbg_lock);
566 }
567
568 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
569 {
570 spin_lock(&dbg_lock);
571 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
572 current->pid, lst->empty_lebs, lst->idx_lebs);
573 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
574 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
575 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
576 lst->total_used, lst->total_dark, lst->total_dead);
577 spin_unlock(&dbg_lock);
578 }
579
580 #ifndef __UBOOT__
581 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
582 {
583 int i;
584 struct rb_node *rb;
585 struct ubifs_bud *bud;
586 struct ubifs_gced_idx_leb *idx_gc;
587 long long available, outstanding, free;
588
589 spin_lock(&c->space_lock);
590 spin_lock(&dbg_lock);
591 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
592 current->pid, bi->data_growth + bi->dd_growth,
593 bi->data_growth + bi->dd_growth + bi->idx_growth);
594 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
595 bi->data_growth, bi->dd_growth, bi->idx_growth);
596 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
597 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
598 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
599 bi->page_budget, bi->inode_budget, bi->dent_budget);
600 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
601 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
602 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
603
604 if (bi != &c->bi)
605 /*
606 * If we are dumping saved budgeting data, do not print
607 * additional information which is about the current state, not
608 * the old one which corresponded to the saved budgeting data.
609 */
610 goto out_unlock;
611
612 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
613 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
614 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
615 atomic_long_read(&c->dirty_pg_cnt),
616 atomic_long_read(&c->dirty_zn_cnt),
617 atomic_long_read(&c->clean_zn_cnt));
618 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
619
620 /* If we are in R/O mode, journal heads do not exist */
621 if (c->jheads)
622 for (i = 0; i < c->jhead_cnt; i++)
623 pr_err("\tjhead %s\t LEB %d\n",
624 dbg_jhead(c->jheads[i].wbuf.jhead),
625 c->jheads[i].wbuf.lnum);
626 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
627 bud = rb_entry(rb, struct ubifs_bud, rb);
628 pr_err("\tbud LEB %d\n", bud->lnum);
629 }
630 list_for_each_entry(bud, &c->old_buds, list)
631 pr_err("\told bud LEB %d\n", bud->lnum);
632 list_for_each_entry(idx_gc, &c->idx_gc, list)
633 pr_err("\tGC'ed idx LEB %d unmap %d\n",
634 idx_gc->lnum, idx_gc->unmap);
635 pr_err("\tcommit state %d\n", c->cmt_state);
636
637 /* Print budgeting predictions */
638 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
639 outstanding = c->bi.data_growth + c->bi.dd_growth;
640 free = ubifs_get_free_space_nolock(c);
641 pr_err("Budgeting predictions:\n");
642 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
643 available, outstanding, free);
644 out_unlock:
645 spin_unlock(&dbg_lock);
646 spin_unlock(&c->space_lock);
647 }
648 #else
649 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
650 {
651 }
652 #endif
653
654 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
655 {
656 int i, spc, dark = 0, dead = 0;
657 struct rb_node *rb;
658 struct ubifs_bud *bud;
659
660 spc = lp->free + lp->dirty;
661 if (spc < c->dead_wm)
662 dead = spc;
663 else
664 dark = ubifs_calc_dark(c, spc);
665
666 if (lp->flags & LPROPS_INDEX)
667 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
668 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
669 lp->flags);
670 else
671 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
672 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
673 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
674
675 if (lp->flags & LPROPS_TAKEN) {
676 if (lp->flags & LPROPS_INDEX)
677 pr_cont("index, taken");
678 else
679 pr_cont("taken");
680 } else {
681 const char *s;
682
683 if (lp->flags & LPROPS_INDEX) {
684 switch (lp->flags & LPROPS_CAT_MASK) {
685 case LPROPS_DIRTY_IDX:
686 s = "dirty index";
687 break;
688 case LPROPS_FRDI_IDX:
689 s = "freeable index";
690 break;
691 default:
692 s = "index";
693 }
694 } else {
695 switch (lp->flags & LPROPS_CAT_MASK) {
696 case LPROPS_UNCAT:
697 s = "not categorized";
698 break;
699 case LPROPS_DIRTY:
700 s = "dirty";
701 break;
702 case LPROPS_FREE:
703 s = "free";
704 break;
705 case LPROPS_EMPTY:
706 s = "empty";
707 break;
708 case LPROPS_FREEABLE:
709 s = "freeable";
710 break;
711 default:
712 s = NULL;
713 break;
714 }
715 }
716 pr_cont("%s", s);
717 }
718
719 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
720 bud = rb_entry(rb, struct ubifs_bud, rb);
721 if (bud->lnum == lp->lnum) {
722 int head = 0;
723 for (i = 0; i < c->jhead_cnt; i++) {
724 /*
725 * Note, if we are in R/O mode or in the middle
726 * of mounting/re-mounting, the write-buffers do
727 * not exist.
728 */
729 if (c->jheads &&
730 lp->lnum == c->jheads[i].wbuf.lnum) {
731 pr_cont(", jhead %s", dbg_jhead(i));
732 head = 1;
733 }
734 }
735 if (!head)
736 pr_cont(", bud of jhead %s",
737 dbg_jhead(bud->jhead));
738 }
739 }
740 if (lp->lnum == c->gc_lnum)
741 pr_cont(", GC LEB");
742 pr_cont(")\n");
743 }
744
745 void ubifs_dump_lprops(struct ubifs_info *c)
746 {
747 int lnum, err;
748 struct ubifs_lprops lp;
749 struct ubifs_lp_stats lst;
750
751 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
752 ubifs_get_lp_stats(c, &lst);
753 ubifs_dump_lstats(&lst);
754
755 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
756 err = ubifs_read_one_lp(c, lnum, &lp);
757 if (err) {
758 ubifs_err(c, "cannot read lprops for LEB %d", lnum);
759 continue;
760 }
761
762 ubifs_dump_lprop(c, &lp);
763 }
764 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
765 }
766
767 void ubifs_dump_lpt_info(struct ubifs_info *c)
768 {
769 int i;
770
771 spin_lock(&dbg_lock);
772 pr_err("(pid %d) dumping LPT information\n", current->pid);
773 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
774 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
775 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
776 pr_err("\tltab_sz: %d\n", c->ltab_sz);
777 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
778 pr_err("\tbig_lpt: %d\n", c->big_lpt);
779 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
780 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
781 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
782 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
783 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
784 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
785 pr_err("\tspace_bits: %d\n", c->space_bits);
786 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
787 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
788 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
789 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
790 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
791 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
792 pr_err("\tLPT head is at %d:%d\n",
793 c->nhead_lnum, c->nhead_offs);
794 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
795 if (c->big_lpt)
796 pr_err("\tLPT lsave is at %d:%d\n",
797 c->lsave_lnum, c->lsave_offs);
798 for (i = 0; i < c->lpt_lebs; i++)
799 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
800 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
801 c->ltab[i].tgc, c->ltab[i].cmt);
802 spin_unlock(&dbg_lock);
803 }
804
805 void ubifs_dump_sleb(const struct ubifs_info *c,
806 const struct ubifs_scan_leb *sleb, int offs)
807 {
808 struct ubifs_scan_node *snod;
809
810 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
811 current->pid, sleb->lnum, offs);
812
813 list_for_each_entry(snod, &sleb->nodes, list) {
814 cond_resched();
815 pr_err("Dumping node at LEB %d:%d len %d\n",
816 sleb->lnum, snod->offs, snod->len);
817 ubifs_dump_node(c, snod->node);
818 }
819 }
820
821 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
822 {
823 struct ubifs_scan_leb *sleb;
824 struct ubifs_scan_node *snod;
825 void *buf;
826
827 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
828
829 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
830 if (!buf) {
831 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
832 return;
833 }
834
835 sleb = ubifs_scan(c, lnum, 0, buf, 0);
836 if (IS_ERR(sleb)) {
837 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
838 goto out;
839 }
840
841 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
842 sleb->nodes_cnt, sleb->endpt);
843
844 list_for_each_entry(snod, &sleb->nodes, list) {
845 cond_resched();
846 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
847 snod->offs, snod->len);
848 ubifs_dump_node(c, snod->node);
849 }
850
851 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
852 ubifs_scan_destroy(sleb);
853
854 out:
855 vfree(buf);
856 return;
857 }
858
859 void ubifs_dump_znode(const struct ubifs_info *c,
860 const struct ubifs_znode *znode)
861 {
862 int n;
863 const struct ubifs_zbranch *zbr;
864 char key_buf[DBG_KEY_BUF_LEN];
865
866 spin_lock(&dbg_lock);
867 if (znode->parent)
868 zbr = &znode->parent->zbranch[znode->iip];
869 else
870 zbr = &c->zroot;
871
872 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
873 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
874 znode->level, znode->child_cnt, znode->flags);
875
876 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
877 spin_unlock(&dbg_lock);
878 return;
879 }
880
881 pr_err("zbranches:\n");
882 for (n = 0; n < znode->child_cnt; n++) {
883 zbr = &znode->zbranch[n];
884 if (znode->level > 0)
885 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
886 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
887 dbg_snprintf_key(c, &zbr->key, key_buf,
888 DBG_KEY_BUF_LEN));
889 else
890 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
891 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
892 dbg_snprintf_key(c, &zbr->key, key_buf,
893 DBG_KEY_BUF_LEN));
894 }
895 spin_unlock(&dbg_lock);
896 }
897
898 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
899 {
900 int i;
901
902 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
903 current->pid, cat, heap->cnt);
904 for (i = 0; i < heap->cnt; i++) {
905 struct ubifs_lprops *lprops = heap->arr[i];
906
907 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
908 i, lprops->lnum, lprops->hpos, lprops->free,
909 lprops->dirty, lprops->flags);
910 }
911 pr_err("(pid %d) finish dumping heap\n", current->pid);
912 }
913
914 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
915 struct ubifs_nnode *parent, int iip)
916 {
917 int i;
918
919 pr_err("(pid %d) dumping pnode:\n", current->pid);
920 pr_err("\taddress %zx parent %zx cnext %zx\n",
921 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
922 pr_err("\tflags %lu iip %d level %d num %d\n",
923 pnode->flags, iip, pnode->level, pnode->num);
924 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
925 struct ubifs_lprops *lp = &pnode->lprops[i];
926
927 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
928 i, lp->free, lp->dirty, lp->flags, lp->lnum);
929 }
930 }
931
932 void ubifs_dump_tnc(struct ubifs_info *c)
933 {
934 struct ubifs_znode *znode;
935 int level;
936
937 pr_err("\n");
938 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
939 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
940 level = znode->level;
941 pr_err("== Level %d ==\n", level);
942 while (znode) {
943 if (level != znode->level) {
944 level = znode->level;
945 pr_err("== Level %d ==\n", level);
946 }
947 ubifs_dump_znode(c, znode);
948 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
949 }
950 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
951 }
952
953 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
954 void *priv)
955 {
956 ubifs_dump_znode(c, znode);
957 return 0;
958 }
959
960 /**
961 * ubifs_dump_index - dump the on-flash index.
962 * @c: UBIFS file-system description object
963 *
964 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
965 * which dumps only in-memory znodes and does not read znodes which from flash.
966 */
967 void ubifs_dump_index(struct ubifs_info *c)
968 {
969 dbg_walk_index(c, NULL, dump_znode, NULL);
970 }
971
972 #ifndef __UBOOT__
973 /**
974 * dbg_save_space_info - save information about flash space.
975 * @c: UBIFS file-system description object
976 *
977 * This function saves information about UBIFS free space, dirty space, etc, in
978 * order to check it later.
979 */
980 void dbg_save_space_info(struct ubifs_info *c)
981 {
982 struct ubifs_debug_info *d = c->dbg;
983 int freeable_cnt;
984
985 spin_lock(&c->space_lock);
986 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
987 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
988 d->saved_idx_gc_cnt = c->idx_gc_cnt;
989
990 /*
991 * We use a dirty hack here and zero out @c->freeable_cnt, because it
992 * affects the free space calculations, and UBIFS might not know about
993 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
994 * only when we read their lprops, and we do this only lazily, upon the
995 * need. So at any given point of time @c->freeable_cnt might be not
996 * exactly accurate.
997 *
998 * Just one example about the issue we hit when we did not zero
999 * @c->freeable_cnt.
1000 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1001 * amount of free space in @d->saved_free
1002 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1003 * information from flash, where we cache LEBs from various
1004 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1005 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1006 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1007 * -> 'ubifs_add_to_cat()').
1008 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1009 * becomes %1.
1010 * 4. We calculate the amount of free space when the re-mount is
1011 * finished in 'dbg_check_space_info()' and it does not match
1012 * @d->saved_free.
1013 */
1014 freeable_cnt = c->freeable_cnt;
1015 c->freeable_cnt = 0;
1016 d->saved_free = ubifs_get_free_space_nolock(c);
1017 c->freeable_cnt = freeable_cnt;
1018 spin_unlock(&c->space_lock);
1019 }
1020
1021 /**
1022 * dbg_check_space_info - check flash space information.
1023 * @c: UBIFS file-system description object
1024 *
1025 * This function compares current flash space information with the information
1026 * which was saved when the 'dbg_save_space_info()' function was called.
1027 * Returns zero if the information has not changed, and %-EINVAL it it has
1028 * changed.
1029 */
1030 int dbg_check_space_info(struct ubifs_info *c)
1031 {
1032 struct ubifs_debug_info *d = c->dbg;
1033 struct ubifs_lp_stats lst;
1034 long long free;
1035 int freeable_cnt;
1036
1037 spin_lock(&c->space_lock);
1038 freeable_cnt = c->freeable_cnt;
1039 c->freeable_cnt = 0;
1040 free = ubifs_get_free_space_nolock(c);
1041 c->freeable_cnt = freeable_cnt;
1042 spin_unlock(&c->space_lock);
1043
1044 if (free != d->saved_free) {
1045 ubifs_err(c, "free space changed from %lld to %lld",
1046 d->saved_free, free);
1047 goto out;
1048 }
1049
1050 return 0;
1051
1052 out:
1053 ubifs_msg(c, "saved lprops statistics dump");
1054 ubifs_dump_lstats(&d->saved_lst);
1055 ubifs_msg(c, "saved budgeting info dump");
1056 ubifs_dump_budg(c, &d->saved_bi);
1057 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1058 ubifs_msg(c, "current lprops statistics dump");
1059 ubifs_get_lp_stats(c, &lst);
1060 ubifs_dump_lstats(&lst);
1061 ubifs_msg(c, "current budgeting info dump");
1062 ubifs_dump_budg(c, &c->bi);
1063 dump_stack();
1064 return -EINVAL;
1065 }
1066
1067 /**
1068 * dbg_check_synced_i_size - check synchronized inode size.
1069 * @c: UBIFS file-system description object
1070 * @inode: inode to check
1071 *
1072 * If inode is clean, synchronized inode size has to be equivalent to current
1073 * inode size. This function has to be called only for locked inodes (@i_mutex
1074 * has to be locked). Returns %0 if synchronized inode size if correct, and
1075 * %-EINVAL if not.
1076 */
1077 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1078 {
1079 int err = 0;
1080 struct ubifs_inode *ui = ubifs_inode(inode);
1081
1082 if (!dbg_is_chk_gen(c))
1083 return 0;
1084 if (!S_ISREG(inode->i_mode))
1085 return 0;
1086
1087 mutex_lock(&ui->ui_mutex);
1088 spin_lock(&ui->ui_lock);
1089 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1090 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1091 ui->ui_size, ui->synced_i_size);
1092 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1093 inode->i_mode, i_size_read(inode));
1094 dump_stack();
1095 err = -EINVAL;
1096 }
1097 spin_unlock(&ui->ui_lock);
1098 mutex_unlock(&ui->ui_mutex);
1099 return err;
1100 }
1101
1102 /*
1103 * dbg_check_dir - check directory inode size and link count.
1104 * @c: UBIFS file-system description object
1105 * @dir: the directory to calculate size for
1106 * @size: the result is returned here
1107 *
1108 * This function makes sure that directory size and link count are correct.
1109 * Returns zero in case of success and a negative error code in case of
1110 * failure.
1111 *
1112 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1113 * calling this function.
1114 */
1115 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1116 {
1117 unsigned int nlink = 2;
1118 union ubifs_key key;
1119 struct ubifs_dent_node *dent, *pdent = NULL;
1120 struct qstr nm = { .name = NULL };
1121 loff_t size = UBIFS_INO_NODE_SZ;
1122
1123 if (!dbg_is_chk_gen(c))
1124 return 0;
1125
1126 if (!S_ISDIR(dir->i_mode))
1127 return 0;
1128
1129 lowest_dent_key(c, &key, dir->i_ino);
1130 while (1) {
1131 int err;
1132
1133 dent = ubifs_tnc_next_ent(c, &key, &nm);
1134 if (IS_ERR(dent)) {
1135 err = PTR_ERR(dent);
1136 if (err == -ENOENT)
1137 break;
1138 return err;
1139 }
1140
1141 nm.name = dent->name;
1142 nm.len = le16_to_cpu(dent->nlen);
1143 size += CALC_DENT_SIZE(nm.len);
1144 if (dent->type == UBIFS_ITYPE_DIR)
1145 nlink += 1;
1146 kfree(pdent);
1147 pdent = dent;
1148 key_read(c, &dent->key, &key);
1149 }
1150 kfree(pdent);
1151
1152 if (i_size_read(dir) != size) {
1153 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1154 dir->i_ino, (unsigned long long)i_size_read(dir),
1155 (unsigned long long)size);
1156 ubifs_dump_inode(c, dir);
1157 dump_stack();
1158 return -EINVAL;
1159 }
1160 if (dir->i_nlink != nlink) {
1161 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1162 dir->i_ino, dir->i_nlink, nlink);
1163 ubifs_dump_inode(c, dir);
1164 dump_stack();
1165 return -EINVAL;
1166 }
1167
1168 return 0;
1169 }
1170
1171 /**
1172 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1173 * @c: UBIFS file-system description object
1174 * @zbr1: first zbranch
1175 * @zbr2: following zbranch
1176 *
1177 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1178 * names of the direntries/xentries which are referred by the keys. This
1179 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1180 * sure the name of direntry/xentry referred by @zbr1 is less than
1181 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1182 * and a negative error code in case of failure.
1183 */
1184 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1185 struct ubifs_zbranch *zbr2)
1186 {
1187 int err, nlen1, nlen2, cmp;
1188 struct ubifs_dent_node *dent1, *dent2;
1189 union ubifs_key key;
1190 char key_buf[DBG_KEY_BUF_LEN];
1191
1192 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1193 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1194 if (!dent1)
1195 return -ENOMEM;
1196 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1197 if (!dent2) {
1198 err = -ENOMEM;
1199 goto out_free;
1200 }
1201
1202 err = ubifs_tnc_read_node(c, zbr1, dent1);
1203 if (err)
1204 goto out_free;
1205 err = ubifs_validate_entry(c, dent1);
1206 if (err)
1207 goto out_free;
1208
1209 err = ubifs_tnc_read_node(c, zbr2, dent2);
1210 if (err)
1211 goto out_free;
1212 err = ubifs_validate_entry(c, dent2);
1213 if (err)
1214 goto out_free;
1215
1216 /* Make sure node keys are the same as in zbranch */
1217 err = 1;
1218 key_read(c, &dent1->key, &key);
1219 if (keys_cmp(c, &zbr1->key, &key)) {
1220 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1221 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1222 DBG_KEY_BUF_LEN));
1223 ubifs_err(c, "but it should have key %s according to tnc",
1224 dbg_snprintf_key(c, &zbr1->key, key_buf,
1225 DBG_KEY_BUF_LEN));
1226 ubifs_dump_node(c, dent1);
1227 goto out_free;
1228 }
1229
1230 key_read(c, &dent2->key, &key);
1231 if (keys_cmp(c, &zbr2->key, &key)) {
1232 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1233 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1234 DBG_KEY_BUF_LEN));
1235 ubifs_err(c, "but it should have key %s according to tnc",
1236 dbg_snprintf_key(c, &zbr2->key, key_buf,
1237 DBG_KEY_BUF_LEN));
1238 ubifs_dump_node(c, dent2);
1239 goto out_free;
1240 }
1241
1242 nlen1 = le16_to_cpu(dent1->nlen);
1243 nlen2 = le16_to_cpu(dent2->nlen);
1244
1245 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1246 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1247 err = 0;
1248 goto out_free;
1249 }
1250 if (cmp == 0 && nlen1 == nlen2)
1251 ubifs_err(c, "2 xent/dent nodes with the same name");
1252 else
1253 ubifs_err(c, "bad order of colliding key %s",
1254 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1255
1256 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1257 ubifs_dump_node(c, dent1);
1258 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1259 ubifs_dump_node(c, dent2);
1260
1261 out_free:
1262 kfree(dent2);
1263 kfree(dent1);
1264 return err;
1265 }
1266
1267 /**
1268 * dbg_check_znode - check if znode is all right.
1269 * @c: UBIFS file-system description object
1270 * @zbr: zbranch which points to this znode
1271 *
1272 * This function makes sure that znode referred to by @zbr is all right.
1273 * Returns zero if it is, and %-EINVAL if it is not.
1274 */
1275 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1276 {
1277 struct ubifs_znode *znode = zbr->znode;
1278 struct ubifs_znode *zp = znode->parent;
1279 int n, err, cmp;
1280
1281 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1282 err = 1;
1283 goto out;
1284 }
1285 if (znode->level < 0) {
1286 err = 2;
1287 goto out;
1288 }
1289 if (znode->iip < 0 || znode->iip >= c->fanout) {
1290 err = 3;
1291 goto out;
1292 }
1293
1294 if (zbr->len == 0)
1295 /* Only dirty zbranch may have no on-flash nodes */
1296 if (!ubifs_zn_dirty(znode)) {
1297 err = 4;
1298 goto out;
1299 }
1300
1301 if (ubifs_zn_dirty(znode)) {
1302 /*
1303 * If znode is dirty, its parent has to be dirty as well. The
1304 * order of the operation is important, so we have to have
1305 * memory barriers.
1306 */
1307 smp_mb();
1308 if (zp && !ubifs_zn_dirty(zp)) {
1309 /*
1310 * The dirty flag is atomic and is cleared outside the
1311 * TNC mutex, so znode's dirty flag may now have
1312 * been cleared. The child is always cleared before the
1313 * parent, so we just need to check again.
1314 */
1315 smp_mb();
1316 if (ubifs_zn_dirty(znode)) {
1317 err = 5;
1318 goto out;
1319 }
1320 }
1321 }
1322
1323 if (zp) {
1324 const union ubifs_key *min, *max;
1325
1326 if (znode->level != zp->level - 1) {
1327 err = 6;
1328 goto out;
1329 }
1330
1331 /* Make sure the 'parent' pointer in our znode is correct */
1332 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1333 if (!err) {
1334 /* This zbranch does not exist in the parent */
1335 err = 7;
1336 goto out;
1337 }
1338
1339 if (znode->iip >= zp->child_cnt) {
1340 err = 8;
1341 goto out;
1342 }
1343
1344 if (znode->iip != n) {
1345 /* This may happen only in case of collisions */
1346 if (keys_cmp(c, &zp->zbranch[n].key,
1347 &zp->zbranch[znode->iip].key)) {
1348 err = 9;
1349 goto out;
1350 }
1351 n = znode->iip;
1352 }
1353
1354 /*
1355 * Make sure that the first key in our znode is greater than or
1356 * equal to the key in the pointing zbranch.
1357 */
1358 min = &zbr->key;
1359 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1360 if (cmp == 1) {
1361 err = 10;
1362 goto out;
1363 }
1364
1365 if (n + 1 < zp->child_cnt) {
1366 max = &zp->zbranch[n + 1].key;
1367
1368 /*
1369 * Make sure the last key in our znode is less or
1370 * equivalent than the key in the zbranch which goes
1371 * after our pointing zbranch.
1372 */
1373 cmp = keys_cmp(c, max,
1374 &znode->zbranch[znode->child_cnt - 1].key);
1375 if (cmp == -1) {
1376 err = 11;
1377 goto out;
1378 }
1379 }
1380 } else {
1381 /* This may only be root znode */
1382 if (zbr != &c->zroot) {
1383 err = 12;
1384 goto out;
1385 }
1386 }
1387
1388 /*
1389 * Make sure that next key is greater or equivalent then the previous
1390 * one.
1391 */
1392 for (n = 1; n < znode->child_cnt; n++) {
1393 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1394 &znode->zbranch[n].key);
1395 if (cmp > 0) {
1396 err = 13;
1397 goto out;
1398 }
1399 if (cmp == 0) {
1400 /* This can only be keys with colliding hash */
1401 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1402 err = 14;
1403 goto out;
1404 }
1405
1406 if (znode->level != 0 || c->replaying)
1407 continue;
1408
1409 /*
1410 * Colliding keys should follow binary order of
1411 * corresponding xentry/dentry names.
1412 */
1413 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1414 &znode->zbranch[n]);
1415 if (err < 0)
1416 return err;
1417 if (err) {
1418 err = 15;
1419 goto out;
1420 }
1421 }
1422 }
1423
1424 for (n = 0; n < znode->child_cnt; n++) {
1425 if (!znode->zbranch[n].znode &&
1426 (znode->zbranch[n].lnum == 0 ||
1427 znode->zbranch[n].len == 0)) {
1428 err = 16;
1429 goto out;
1430 }
1431
1432 if (znode->zbranch[n].lnum != 0 &&
1433 znode->zbranch[n].len == 0) {
1434 err = 17;
1435 goto out;
1436 }
1437
1438 if (znode->zbranch[n].lnum == 0 &&
1439 znode->zbranch[n].len != 0) {
1440 err = 18;
1441 goto out;
1442 }
1443
1444 if (znode->zbranch[n].lnum == 0 &&
1445 znode->zbranch[n].offs != 0) {
1446 err = 19;
1447 goto out;
1448 }
1449
1450 if (znode->level != 0 && znode->zbranch[n].znode)
1451 if (znode->zbranch[n].znode->parent != znode) {
1452 err = 20;
1453 goto out;
1454 }
1455 }
1456
1457 return 0;
1458
1459 out:
1460 ubifs_err(c, "failed, error %d", err);
1461 ubifs_msg(c, "dump of the znode");
1462 ubifs_dump_znode(c, znode);
1463 if (zp) {
1464 ubifs_msg(c, "dump of the parent znode");
1465 ubifs_dump_znode(c, zp);
1466 }
1467 dump_stack();
1468 return -EINVAL;
1469 }
1470 #else
1471
1472 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1473 {
1474 return 0;
1475 }
1476
1477 void dbg_debugfs_exit_fs(struct ubifs_info *c)
1478 {
1479 return;
1480 }
1481
1482 int ubifs_debugging_init(struct ubifs_info *c)
1483 {
1484 return 0;
1485 }
1486 void ubifs_debugging_exit(struct ubifs_info *c)
1487 {
1488 }
1489 int dbg_check_filesystem(struct ubifs_info *c)
1490 {
1491 return 0;
1492 }
1493 int dbg_debugfs_init_fs(struct ubifs_info *c)
1494 {
1495 return 0;
1496 }
1497 #endif
1498
1499 #ifndef __UBOOT__
1500 /**
1501 * dbg_check_tnc - check TNC tree.
1502 * @c: UBIFS file-system description object
1503 * @extra: do extra checks that are possible at start commit
1504 *
1505 * This function traverses whole TNC tree and checks every znode. Returns zero
1506 * if everything is all right and %-EINVAL if something is wrong with TNC.
1507 */
1508 int dbg_check_tnc(struct ubifs_info *c, int extra)
1509 {
1510 struct ubifs_znode *znode;
1511 long clean_cnt = 0, dirty_cnt = 0;
1512 int err, last;
1513
1514 if (!dbg_is_chk_index(c))
1515 return 0;
1516
1517 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1518 if (!c->zroot.znode)
1519 return 0;
1520
1521 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1522 while (1) {
1523 struct ubifs_znode *prev;
1524 struct ubifs_zbranch *zbr;
1525
1526 if (!znode->parent)
1527 zbr = &c->zroot;
1528 else
1529 zbr = &znode->parent->zbranch[znode->iip];
1530
1531 err = dbg_check_znode(c, zbr);
1532 if (err)
1533 return err;
1534
1535 if (extra) {
1536 if (ubifs_zn_dirty(znode))
1537 dirty_cnt += 1;
1538 else
1539 clean_cnt += 1;
1540 }
1541
1542 prev = znode;
1543 znode = ubifs_tnc_postorder_next(znode);
1544 if (!znode)
1545 break;
1546
1547 /*
1548 * If the last key of this znode is equivalent to the first key
1549 * of the next znode (collision), then check order of the keys.
1550 */
1551 last = prev->child_cnt - 1;
1552 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1553 !keys_cmp(c, &prev->zbranch[last].key,
1554 &znode->zbranch[0].key)) {
1555 err = dbg_check_key_order(c, &prev->zbranch[last],
1556 &znode->zbranch[0]);
1557 if (err < 0)
1558 return err;
1559 if (err) {
1560 ubifs_msg(c, "first znode");
1561 ubifs_dump_znode(c, prev);
1562 ubifs_msg(c, "second znode");
1563 ubifs_dump_znode(c, znode);
1564 return -EINVAL;
1565 }
1566 }
1567 }
1568
1569 if (extra) {
1570 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1571 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1572 atomic_long_read(&c->clean_zn_cnt),
1573 clean_cnt);
1574 return -EINVAL;
1575 }
1576 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1577 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1578 atomic_long_read(&c->dirty_zn_cnt),
1579 dirty_cnt);
1580 return -EINVAL;
1581 }
1582 }
1583
1584 return 0;
1585 }
1586 #else
1587 int dbg_check_tnc(struct ubifs_info *c, int extra)
1588 {
1589 return 0;
1590 }
1591 #endif
1592
1593 /**
1594 * dbg_walk_index - walk the on-flash index.
1595 * @c: UBIFS file-system description object
1596 * @leaf_cb: called for each leaf node
1597 * @znode_cb: called for each indexing node
1598 * @priv: private data which is passed to callbacks
1599 *
1600 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1601 * node and @znode_cb for each indexing node. Returns zero in case of success
1602 * and a negative error code in case of failure.
1603 *
1604 * It would be better if this function removed every znode it pulled to into
1605 * the TNC, so that the behavior more closely matched the non-debugging
1606 * behavior.
1607 */
1608 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1609 dbg_znode_callback znode_cb, void *priv)
1610 {
1611 int err;
1612 struct ubifs_zbranch *zbr;
1613 struct ubifs_znode *znode, *child;
1614
1615 mutex_lock(&c->tnc_mutex);
1616 /* If the root indexing node is not in TNC - pull it */
1617 if (!c->zroot.znode) {
1618 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1619 if (IS_ERR(c->zroot.znode)) {
1620 err = PTR_ERR(c->zroot.znode);
1621 c->zroot.znode = NULL;
1622 goto out_unlock;
1623 }
1624 }
1625
1626 /*
1627 * We are going to traverse the indexing tree in the postorder manner.
1628 * Go down and find the leftmost indexing node where we are going to
1629 * start from.
1630 */
1631 znode = c->zroot.znode;
1632 while (znode->level > 0) {
1633 zbr = &znode->zbranch[0];
1634 child = zbr->znode;
1635 if (!child) {
1636 child = ubifs_load_znode(c, zbr, znode, 0);
1637 if (IS_ERR(child)) {
1638 err = PTR_ERR(child);
1639 goto out_unlock;
1640 }
1641 zbr->znode = child;
1642 }
1643
1644 znode = child;
1645 }
1646
1647 /* Iterate over all indexing nodes */
1648 while (1) {
1649 int idx;
1650
1651 cond_resched();
1652
1653 if (znode_cb) {
1654 err = znode_cb(c, znode, priv);
1655 if (err) {
1656 ubifs_err(c, "znode checking function returned error %d",
1657 err);
1658 ubifs_dump_znode(c, znode);
1659 goto out_dump;
1660 }
1661 }
1662 if (leaf_cb && znode->level == 0) {
1663 for (idx = 0; idx < znode->child_cnt; idx++) {
1664 zbr = &znode->zbranch[idx];
1665 err = leaf_cb(c, zbr, priv);
1666 if (err) {
1667 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1668 err, zbr->lnum, zbr->offs);
1669 goto out_dump;
1670 }
1671 }
1672 }
1673
1674 if (!znode->parent)
1675 break;
1676
1677 idx = znode->iip + 1;
1678 znode = znode->parent;
1679 if (idx < znode->child_cnt) {
1680 /* Switch to the next index in the parent */
1681 zbr = &znode->zbranch[idx];
1682 child = zbr->znode;
1683 if (!child) {
1684 child = ubifs_load_znode(c, zbr, znode, idx);
1685 if (IS_ERR(child)) {
1686 err = PTR_ERR(child);
1687 goto out_unlock;
1688 }
1689 zbr->znode = child;
1690 }
1691 znode = child;
1692 } else
1693 /*
1694 * This is the last child, switch to the parent and
1695 * continue.
1696 */
1697 continue;
1698
1699 /* Go to the lowest leftmost znode in the new sub-tree */
1700 while (znode->level > 0) {
1701 zbr = &znode->zbranch[0];
1702 child = zbr->znode;
1703 if (!child) {
1704 child = ubifs_load_znode(c, zbr, znode, 0);
1705 if (IS_ERR(child)) {
1706 err = PTR_ERR(child);
1707 goto out_unlock;
1708 }
1709 zbr->znode = child;
1710 }
1711 znode = child;
1712 }
1713 }
1714
1715 mutex_unlock(&c->tnc_mutex);
1716 return 0;
1717
1718 out_dump:
1719 if (znode->parent)
1720 zbr = &znode->parent->zbranch[znode->iip];
1721 else
1722 zbr = &c->zroot;
1723 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1724 ubifs_dump_znode(c, znode);
1725 out_unlock:
1726 mutex_unlock(&c->tnc_mutex);
1727 return err;
1728 }
1729
1730 /**
1731 * add_size - add znode size to partially calculated index size.
1732 * @c: UBIFS file-system description object
1733 * @znode: znode to add size for
1734 * @priv: partially calculated index size
1735 *
1736 * This is a helper function for 'dbg_check_idx_size()' which is called for
1737 * every indexing node and adds its size to the 'long long' variable pointed to
1738 * by @priv.
1739 */
1740 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1741 {
1742 long long *idx_size = priv;
1743 int add;
1744
1745 add = ubifs_idx_node_sz(c, znode->child_cnt);
1746 add = ALIGN(add, 8);
1747 *idx_size += add;
1748 return 0;
1749 }
1750
1751 /**
1752 * dbg_check_idx_size - check index size.
1753 * @c: UBIFS file-system description object
1754 * @idx_size: size to check
1755 *
1756 * This function walks the UBIFS index, calculates its size and checks that the
1757 * size is equivalent to @idx_size. Returns zero in case of success and a
1758 * negative error code in case of failure.
1759 */
1760 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1761 {
1762 int err;
1763 long long calc = 0;
1764
1765 if (!dbg_is_chk_index(c))
1766 return 0;
1767
1768 err = dbg_walk_index(c, NULL, add_size, &calc);
1769 if (err) {
1770 ubifs_err(c, "error %d while walking the index", err);
1771 return err;
1772 }
1773
1774 if (calc != idx_size) {
1775 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1776 calc, idx_size);
1777 dump_stack();
1778 return -EINVAL;
1779 }
1780
1781 return 0;
1782 }
1783
1784 #ifndef __UBOOT__
1785 /**
1786 * struct fsck_inode - information about an inode used when checking the file-system.
1787 * @rb: link in the RB-tree of inodes
1788 * @inum: inode number
1789 * @mode: inode type, permissions, etc
1790 * @nlink: inode link count
1791 * @xattr_cnt: count of extended attributes
1792 * @references: how many directory/xattr entries refer this inode (calculated
1793 * while walking the index)
1794 * @calc_cnt: for directory inode count of child directories
1795 * @size: inode size (read from on-flash inode)
1796 * @xattr_sz: summary size of all extended attributes (read from on-flash
1797 * inode)
1798 * @calc_sz: for directories calculated directory size
1799 * @calc_xcnt: count of extended attributes
1800 * @calc_xsz: calculated summary size of all extended attributes
1801 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1802 * inode (read from on-flash inode)
1803 * @calc_xnms: calculated sum of lengths of all extended attribute names
1804 */
1805 struct fsck_inode {
1806 struct rb_node rb;
1807 ino_t inum;
1808 umode_t mode;
1809 unsigned int nlink;
1810 unsigned int xattr_cnt;
1811 int references;
1812 int calc_cnt;
1813 long long size;
1814 unsigned int xattr_sz;
1815 long long calc_sz;
1816 long long calc_xcnt;
1817 long long calc_xsz;
1818 unsigned int xattr_nms;
1819 long long calc_xnms;
1820 };
1821
1822 /**
1823 * struct fsck_data - private FS checking information.
1824 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1825 */
1826 struct fsck_data {
1827 struct rb_root inodes;
1828 };
1829
1830 /**
1831 * add_inode - add inode information to RB-tree of inodes.
1832 * @c: UBIFS file-system description object
1833 * @fsckd: FS checking information
1834 * @ino: raw UBIFS inode to add
1835 *
1836 * This is a helper function for 'check_leaf()' which adds information about
1837 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1838 * case of success and a negative error code in case of failure.
1839 */
1840 static struct fsck_inode *add_inode(struct ubifs_info *c,
1841 struct fsck_data *fsckd,
1842 struct ubifs_ino_node *ino)
1843 {
1844 struct rb_node **p, *parent = NULL;
1845 struct fsck_inode *fscki;
1846 ino_t inum = key_inum_flash(c, &ino->key);
1847 struct inode *inode;
1848 struct ubifs_inode *ui;
1849
1850 p = &fsckd->inodes.rb_node;
1851 while (*p) {
1852 parent = *p;
1853 fscki = rb_entry(parent, struct fsck_inode, rb);
1854 if (inum < fscki->inum)
1855 p = &(*p)->rb_left;
1856 else if (inum > fscki->inum)
1857 p = &(*p)->rb_right;
1858 else
1859 return fscki;
1860 }
1861
1862 if (inum > c->highest_inum) {
1863 ubifs_err(c, "too high inode number, max. is %lu",
1864 (unsigned long)c->highest_inum);
1865 return ERR_PTR(-EINVAL);
1866 }
1867
1868 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1869 if (!fscki)
1870 return ERR_PTR(-ENOMEM);
1871
1872 inode = ilookup(c->vfs_sb, inum);
1873
1874 fscki->inum = inum;
1875 /*
1876 * If the inode is present in the VFS inode cache, use it instead of
1877 * the on-flash inode which might be out-of-date. E.g., the size might
1878 * be out-of-date. If we do not do this, the following may happen, for
1879 * example:
1880 * 1. A power cut happens
1881 * 2. We mount the file-system R/O, the replay process fixes up the
1882 * inode size in the VFS cache, but on on-flash.
1883 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1884 * size.
1885 */
1886 if (!inode) {
1887 fscki->nlink = le32_to_cpu(ino->nlink);
1888 fscki->size = le64_to_cpu(ino->size);
1889 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1890 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1891 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1892 fscki->mode = le32_to_cpu(ino->mode);
1893 } else {
1894 ui = ubifs_inode(inode);
1895 fscki->nlink = inode->i_nlink;
1896 fscki->size = inode->i_size;
1897 fscki->xattr_cnt = ui->xattr_cnt;
1898 fscki->xattr_sz = ui->xattr_size;
1899 fscki->xattr_nms = ui->xattr_names;
1900 fscki->mode = inode->i_mode;
1901 iput(inode);
1902 }
1903
1904 if (S_ISDIR(fscki->mode)) {
1905 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1906 fscki->calc_cnt = 2;
1907 }
1908
1909 rb_link_node(&fscki->rb, parent, p);
1910 rb_insert_color(&fscki->rb, &fsckd->inodes);
1911
1912 return fscki;
1913 }
1914
1915 /**
1916 * search_inode - search inode in the RB-tree of inodes.
1917 * @fsckd: FS checking information
1918 * @inum: inode number to search
1919 *
1920 * This is a helper function for 'check_leaf()' which searches inode @inum in
1921 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1922 * the inode was not found.
1923 */
1924 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1925 {
1926 struct rb_node *p;
1927 struct fsck_inode *fscki;
1928
1929 p = fsckd->inodes.rb_node;
1930 while (p) {
1931 fscki = rb_entry(p, struct fsck_inode, rb);
1932 if (inum < fscki->inum)
1933 p = p->rb_left;
1934 else if (inum > fscki->inum)
1935 p = p->rb_right;
1936 else
1937 return fscki;
1938 }
1939 return NULL;
1940 }
1941
1942 /**
1943 * read_add_inode - read inode node and add it to RB-tree of inodes.
1944 * @c: UBIFS file-system description object
1945 * @fsckd: FS checking information
1946 * @inum: inode number to read
1947 *
1948 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1949 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1950 * information pointer in case of success and a negative error code in case of
1951 * failure.
1952 */
1953 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1954 struct fsck_data *fsckd, ino_t inum)
1955 {
1956 int n, err;
1957 union ubifs_key key;
1958 struct ubifs_znode *znode;
1959 struct ubifs_zbranch *zbr;
1960 struct ubifs_ino_node *ino;
1961 struct fsck_inode *fscki;
1962
1963 fscki = search_inode(fsckd, inum);
1964 if (fscki)
1965 return fscki;
1966
1967 ino_key_init(c, &key, inum);
1968 err = ubifs_lookup_level0(c, &key, &znode, &n);
1969 if (!err) {
1970 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1971 return ERR_PTR(-ENOENT);
1972 } else if (err < 0) {
1973 ubifs_err(c, "error %d while looking up inode %lu",
1974 err, (unsigned long)inum);
1975 return ERR_PTR(err);
1976 }
1977
1978 zbr = &znode->zbranch[n];
1979 if (zbr->len < UBIFS_INO_NODE_SZ) {
1980 ubifs_err(c, "bad node %lu node length %d",
1981 (unsigned long)inum, zbr->len);
1982 return ERR_PTR(-EINVAL);
1983 }
1984
1985 ino = kmalloc(zbr->len, GFP_NOFS);
1986 if (!ino)
1987 return ERR_PTR(-ENOMEM);
1988
1989 err = ubifs_tnc_read_node(c, zbr, ino);
1990 if (err) {
1991 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1992 zbr->lnum, zbr->offs, err);
1993 kfree(ino);
1994 return ERR_PTR(err);
1995 }
1996
1997 fscki = add_inode(c, fsckd, ino);
1998 kfree(ino);
1999 if (IS_ERR(fscki)) {
2000 ubifs_err(c, "error %ld while adding inode %lu node",
2001 PTR_ERR(fscki), (unsigned long)inum);
2002 return fscki;
2003 }
2004
2005 return fscki;
2006 }
2007
2008 /**
2009 * check_leaf - check leaf node.
2010 * @c: UBIFS file-system description object
2011 * @zbr: zbranch of the leaf node to check
2012 * @priv: FS checking information
2013 *
2014 * This is a helper function for 'dbg_check_filesystem()' which is called for
2015 * every single leaf node while walking the indexing tree. It checks that the
2016 * leaf node referred from the indexing tree exists, has correct CRC, and does
2017 * some other basic validation. This function is also responsible for building
2018 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2019 * calculates reference count, size, etc for each inode in order to later
2020 * compare them to the information stored inside the inodes and detect possible
2021 * inconsistencies. Returns zero in case of success and a negative error code
2022 * in case of failure.
2023 */
2024 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2025 void *priv)
2026 {
2027 ino_t inum;
2028 void *node;
2029 struct ubifs_ch *ch;
2030 int err, type = key_type(c, &zbr->key);
2031 struct fsck_inode *fscki;
2032
2033 if (zbr->len < UBIFS_CH_SZ) {
2034 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2035 zbr->len, zbr->lnum, zbr->offs);
2036 return -EINVAL;
2037 }
2038
2039 node = kmalloc(zbr->len, GFP_NOFS);
2040 if (!node)
2041 return -ENOMEM;
2042
2043 err = ubifs_tnc_read_node(c, zbr, node);
2044 if (err) {
2045 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2046 zbr->lnum, zbr->offs, err);
2047 goto out_free;
2048 }
2049
2050 /* If this is an inode node, add it to RB-tree of inodes */
2051 if (type == UBIFS_INO_KEY) {
2052 fscki = add_inode(c, priv, node);
2053 if (IS_ERR(fscki)) {
2054 err = PTR_ERR(fscki);
2055 ubifs_err(c, "error %d while adding inode node", err);
2056 goto out_dump;
2057 }
2058 goto out;
2059 }
2060
2061 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2062 type != UBIFS_DATA_KEY) {
2063 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2064 type, zbr->lnum, zbr->offs);
2065 err = -EINVAL;
2066 goto out_free;
2067 }
2068
2069 ch = node;
2070 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2071 ubifs_err(c, "too high sequence number, max. is %llu",
2072 c->max_sqnum);
2073 err = -EINVAL;
2074 goto out_dump;
2075 }
2076
2077 if (type == UBIFS_DATA_KEY) {
2078 long long blk_offs;
2079 struct ubifs_data_node *dn = node;
2080
2081 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2082
2083 /*
2084 * Search the inode node this data node belongs to and insert
2085 * it to the RB-tree of inodes.
2086 */
2087 inum = key_inum_flash(c, &dn->key);
2088 fscki = read_add_inode(c, priv, inum);
2089 if (IS_ERR(fscki)) {
2090 err = PTR_ERR(fscki);
2091 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2092 err, (unsigned long)inum);
2093 goto out_dump;
2094 }
2095
2096 /* Make sure the data node is within inode size */
2097 blk_offs = key_block_flash(c, &dn->key);
2098 blk_offs <<= UBIFS_BLOCK_SHIFT;
2099 blk_offs += le32_to_cpu(dn->size);
2100 if (blk_offs > fscki->size) {
2101 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2102 zbr->lnum, zbr->offs, fscki->size);
2103 err = -EINVAL;
2104 goto out_dump;
2105 }
2106 } else {
2107 int nlen;
2108 struct ubifs_dent_node *dent = node;
2109 struct fsck_inode *fscki1;
2110
2111 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2112
2113 err = ubifs_validate_entry(c, dent);
2114 if (err)
2115 goto out_dump;
2116
2117 /*
2118 * Search the inode node this entry refers to and the parent
2119 * inode node and insert them to the RB-tree of inodes.
2120 */
2121 inum = le64_to_cpu(dent->inum);
2122 fscki = read_add_inode(c, priv, inum);
2123 if (IS_ERR(fscki)) {
2124 err = PTR_ERR(fscki);
2125 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2126 err, (unsigned long)inum);
2127 goto out_dump;
2128 }
2129
2130 /* Count how many direntries or xentries refers this inode */
2131 fscki->references += 1;
2132
2133 inum = key_inum_flash(c, &dent->key);
2134 fscki1 = read_add_inode(c, priv, inum);
2135 if (IS_ERR(fscki1)) {
2136 err = PTR_ERR(fscki1);
2137 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2138 err, (unsigned long)inum);
2139 goto out_dump;
2140 }
2141
2142 nlen = le16_to_cpu(dent->nlen);
2143 if (type == UBIFS_XENT_KEY) {
2144 fscki1->calc_xcnt += 1;
2145 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2146 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2147 fscki1->calc_xnms += nlen;
2148 } else {
2149 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2150 if (dent->type == UBIFS_ITYPE_DIR)
2151 fscki1->calc_cnt += 1;
2152 }
2153 }
2154
2155 out:
2156 kfree(node);
2157 return 0;
2158
2159 out_dump:
2160 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2161 ubifs_dump_node(c, node);
2162 out_free:
2163 kfree(node);
2164 return err;
2165 }
2166
2167 /**
2168 * free_inodes - free RB-tree of inodes.
2169 * @fsckd: FS checking information
2170 */
2171 static void free_inodes(struct fsck_data *fsckd)
2172 {
2173 struct fsck_inode *fscki, *n;
2174
2175 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2176 kfree(fscki);
2177 }
2178
2179 /**
2180 * check_inodes - checks all inodes.
2181 * @c: UBIFS file-system description object
2182 * @fsckd: FS checking information
2183 *
2184 * This is a helper function for 'dbg_check_filesystem()' which walks the
2185 * RB-tree of inodes after the index scan has been finished, and checks that
2186 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2187 * %-EINVAL if not, and a negative error code in case of failure.
2188 */
2189 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2190 {
2191 int n, err;
2192 union ubifs_key key;
2193 struct ubifs_znode *znode;
2194 struct ubifs_zbranch *zbr;
2195 struct ubifs_ino_node *ino;
2196 struct fsck_inode *fscki;
2197 struct rb_node *this = rb_first(&fsckd->inodes);
2198
2199 while (this) {
2200 fscki = rb_entry(this, struct fsck_inode, rb);
2201 this = rb_next(this);
2202
2203 if (S_ISDIR(fscki->mode)) {
2204 /*
2205 * Directories have to have exactly one reference (they
2206 * cannot have hardlinks), although root inode is an
2207 * exception.
2208 */
2209 if (fscki->inum != UBIFS_ROOT_INO &&
2210 fscki->references != 1) {
2211 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2212 (unsigned long)fscki->inum,
2213 fscki->references);
2214 goto out_dump;
2215 }
2216 if (fscki->inum == UBIFS_ROOT_INO &&
2217 fscki->references != 0) {
2218 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2219 (unsigned long)fscki->inum,
2220 fscki->references);
2221 goto out_dump;
2222 }
2223 if (fscki->calc_sz != fscki->size) {
2224 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2225 (unsigned long)fscki->inum,
2226 fscki->size, fscki->calc_sz);
2227 goto out_dump;
2228 }
2229 if (fscki->calc_cnt != fscki->nlink) {
2230 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2231 (unsigned long)fscki->inum,
2232 fscki->nlink, fscki->calc_cnt);
2233 goto out_dump;
2234 }
2235 } else {
2236 if (fscki->references != fscki->nlink) {
2237 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2238 (unsigned long)fscki->inum,
2239 fscki->nlink, fscki->references);
2240 goto out_dump;
2241 }
2242 }
2243 if (fscki->xattr_sz != fscki->calc_xsz) {
2244 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2245 (unsigned long)fscki->inum, fscki->xattr_sz,
2246 fscki->calc_xsz);
2247 goto out_dump;
2248 }
2249 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2250 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2251 (unsigned long)fscki->inum,
2252 fscki->xattr_cnt, fscki->calc_xcnt);
2253 goto out_dump;
2254 }
2255 if (fscki->xattr_nms != fscki->calc_xnms) {
2256 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2257 (unsigned long)fscki->inum, fscki->xattr_nms,
2258 fscki->calc_xnms);
2259 goto out_dump;
2260 }
2261 }
2262
2263 return 0;
2264
2265 out_dump:
2266 /* Read the bad inode and dump it */
2267 ino_key_init(c, &key, fscki->inum);
2268 err = ubifs_lookup_level0(c, &key, &znode, &n);
2269 if (!err) {
2270 ubifs_err(c, "inode %lu not found in index",
2271 (unsigned long)fscki->inum);
2272 return -ENOENT;
2273 } else if (err < 0) {
2274 ubifs_err(c, "error %d while looking up inode %lu",
2275 err, (unsigned long)fscki->inum);
2276 return err;
2277 }
2278
2279 zbr = &znode->zbranch[n];
2280 ino = kmalloc(zbr->len, GFP_NOFS);
2281 if (!ino)
2282 return -ENOMEM;
2283
2284 err = ubifs_tnc_read_node(c, zbr, ino);
2285 if (err) {
2286 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2287 zbr->lnum, zbr->offs, err);
2288 kfree(ino);
2289 return err;
2290 }
2291
2292 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2293 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2294 ubifs_dump_node(c, ino);
2295 kfree(ino);
2296 return -EINVAL;
2297 }
2298
2299 /**
2300 * dbg_check_filesystem - check the file-system.
2301 * @c: UBIFS file-system description object
2302 *
2303 * This function checks the file system, namely:
2304 * o makes sure that all leaf nodes exist and their CRCs are correct;
2305 * o makes sure inode nlink, size, xattr size/count are correct (for all
2306 * inodes).
2307 *
2308 * The function reads whole indexing tree and all nodes, so it is pretty
2309 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2310 * not, and a negative error code in case of failure.
2311 */
2312 int dbg_check_filesystem(struct ubifs_info *c)
2313 {
2314 int err;
2315 struct fsck_data fsckd;
2316
2317 if (!dbg_is_chk_fs(c))
2318 return 0;
2319
2320 fsckd.inodes = RB_ROOT;
2321 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2322 if (err)
2323 goto out_free;
2324
2325 err = check_inodes(c, &fsckd);
2326 if (err)
2327 goto out_free;
2328
2329 free_inodes(&fsckd);
2330 return 0;
2331
2332 out_free:
2333 ubifs_err(c, "file-system check failed with error %d", err);
2334 dump_stack();
2335 free_inodes(&fsckd);
2336 return err;
2337 }
2338
2339 /**
2340 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2341 * @c: UBIFS file-system description object
2342 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2343 *
2344 * This function returns zero if the list of data nodes is sorted correctly,
2345 * and %-EINVAL if not.
2346 */
2347 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2348 {
2349 struct list_head *cur;
2350 struct ubifs_scan_node *sa, *sb;
2351
2352 if (!dbg_is_chk_gen(c))
2353 return 0;
2354
2355 for (cur = head->next; cur->next != head; cur = cur->next) {
2356 ino_t inuma, inumb;
2357 uint32_t blka, blkb;
2358
2359 cond_resched();
2360 sa = container_of(cur, struct ubifs_scan_node, list);
2361 sb = container_of(cur->next, struct ubifs_scan_node, list);
2362
2363 if (sa->type != UBIFS_DATA_NODE) {
2364 ubifs_err(c, "bad node type %d", sa->type);
2365 ubifs_dump_node(c, sa->node);
2366 return -EINVAL;
2367 }
2368 if (sb->type != UBIFS_DATA_NODE) {
2369 ubifs_err(c, "bad node type %d", sb->type);
2370 ubifs_dump_node(c, sb->node);
2371 return -EINVAL;
2372 }
2373
2374 inuma = key_inum(c, &sa->key);
2375 inumb = key_inum(c, &sb->key);
2376
2377 if (inuma < inumb)
2378 continue;
2379 if (inuma > inumb) {
2380 ubifs_err(c, "larger inum %lu goes before inum %lu",
2381 (unsigned long)inuma, (unsigned long)inumb);
2382 goto error_dump;
2383 }
2384
2385 blka = key_block(c, &sa->key);
2386 blkb = key_block(c, &sb->key);
2387
2388 if (blka > blkb) {
2389 ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2390 goto error_dump;
2391 }
2392 if (blka == blkb) {
2393 ubifs_err(c, "two data nodes for the same block");
2394 goto error_dump;
2395 }
2396 }
2397
2398 return 0;
2399
2400 error_dump:
2401 ubifs_dump_node(c, sa->node);
2402 ubifs_dump_node(c, sb->node);
2403 return -EINVAL;
2404 }
2405
2406 /**
2407 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2408 * @c: UBIFS file-system description object
2409 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2410 *
2411 * This function returns zero if the list of non-data nodes is sorted correctly,
2412 * and %-EINVAL if not.
2413 */
2414 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2415 {
2416 struct list_head *cur;
2417 struct ubifs_scan_node *sa, *sb;
2418
2419 if (!dbg_is_chk_gen(c))
2420 return 0;
2421
2422 for (cur = head->next; cur->next != head; cur = cur->next) {
2423 ino_t inuma, inumb;
2424 uint32_t hasha, hashb;
2425
2426 cond_resched();
2427 sa = container_of(cur, struct ubifs_scan_node, list);
2428 sb = container_of(cur->next, struct ubifs_scan_node, list);
2429
2430 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2431 sa->type != UBIFS_XENT_NODE) {
2432 ubifs_err(c, "bad node type %d", sa->type);
2433 ubifs_dump_node(c, sa->node);
2434 return -EINVAL;
2435 }
2436 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2437 sa->type != UBIFS_XENT_NODE) {
2438 ubifs_err(c, "bad node type %d", sb->type);
2439 ubifs_dump_node(c, sb->node);
2440 return -EINVAL;
2441 }
2442
2443 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2444 ubifs_err(c, "non-inode node goes before inode node");
2445 goto error_dump;
2446 }
2447
2448 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2449 continue;
2450
2451 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2452 /* Inode nodes are sorted in descending size order */
2453 if (sa->len < sb->len) {
2454 ubifs_err(c, "smaller inode node goes first");
2455 goto error_dump;
2456 }
2457 continue;
2458 }
2459
2460 /*
2461 * This is either a dentry or xentry, which should be sorted in
2462 * ascending (parent ino, hash) order.
2463 */
2464 inuma = key_inum(c, &sa->key);
2465 inumb = key_inum(c, &sb->key);
2466
2467 if (inuma < inumb)
2468 continue;
2469 if (inuma > inumb) {
2470 ubifs_err(c, "larger inum %lu goes before inum %lu",
2471 (unsigned long)inuma, (unsigned long)inumb);
2472 goto error_dump;
2473 }
2474
2475 hasha = key_block(c, &sa->key);
2476 hashb = key_block(c, &sb->key);
2477
2478 if (hasha > hashb) {
2479 ubifs_err(c, "larger hash %u goes before %u",
2480 hasha, hashb);
2481 goto error_dump;
2482 }
2483 }
2484
2485 return 0;
2486
2487 error_dump:
2488 ubifs_msg(c, "dumping first node");
2489 ubifs_dump_node(c, sa->node);
2490 ubifs_msg(c, "dumping second node");
2491 ubifs_dump_node(c, sb->node);
2492 return -EINVAL;
2493 return 0;
2494 }
2495
2496 static inline int chance(unsigned int n, unsigned int out_of)
2497 {
2498 return !!((prandom_u32() % out_of) + 1 <= n);
2499
2500 }
2501
2502 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2503 {
2504 struct ubifs_debug_info *d = c->dbg;
2505
2506 ubifs_assert(dbg_is_tst_rcvry(c));
2507
2508 if (!d->pc_cnt) {
2509 /* First call - decide delay to the power cut */
2510 if (chance(1, 2)) {
2511 unsigned long delay;
2512
2513 if (chance(1, 2)) {
2514 d->pc_delay = 1;
2515 /* Fail within 1 minute */
2516 delay = prandom_u32() % 60000;
2517 d->pc_timeout = jiffies;
2518 d->pc_timeout += msecs_to_jiffies(delay);
2519 ubifs_warn(c, "failing after %lums", delay);
2520 } else {
2521 d->pc_delay = 2;
2522 delay = prandom_u32() % 10000;
2523 /* Fail within 10000 operations */
2524 d->pc_cnt_max = delay;
2525 ubifs_warn(c, "failing after %lu calls", delay);
2526 }
2527 }
2528
2529 d->pc_cnt += 1;
2530 }
2531
2532 /* Determine if failure delay has expired */
2533 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2534 return 0;
2535 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2536 return 0;
2537
2538 if (lnum == UBIFS_SB_LNUM) {
2539 if (write && chance(1, 2))
2540 return 0;
2541 if (chance(19, 20))
2542 return 0;
2543 ubifs_warn(c, "failing in super block LEB %d", lnum);
2544 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2545 if (chance(19, 20))
2546 return 0;
2547 ubifs_warn(c, "failing in master LEB %d", lnum);
2548 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2549 if (write && chance(99, 100))
2550 return 0;
2551 if (chance(399, 400))
2552 return 0;
2553 ubifs_warn(c, "failing in log LEB %d", lnum);
2554 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2555 if (write && chance(7, 8))
2556 return 0;
2557 if (chance(19, 20))
2558 return 0;
2559 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2560 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2561 if (write && chance(1, 2))
2562 return 0;
2563 if (chance(9, 10))
2564 return 0;
2565 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2566 } else if (lnum == c->ihead_lnum) {
2567 if (chance(99, 100))
2568 return 0;
2569 ubifs_warn(c, "failing in index head LEB %d", lnum);
2570 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2571 if (chance(9, 10))
2572 return 0;
2573 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2574 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2575 !ubifs_search_bud(c, lnum)) {
2576 if (chance(19, 20))
2577 return 0;
2578 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2579 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2580 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2581 if (chance(999, 1000))
2582 return 0;
2583 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2584 } else {
2585 if (chance(9999, 10000))
2586 return 0;
2587 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2588 }
2589
2590 d->pc_happened = 1;
2591 ubifs_warn(c, "========== Power cut emulated ==========");
2592 dump_stack();
2593 return 1;
2594 }
2595
2596 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2597 unsigned int len)
2598 {
2599 unsigned int from, to, ffs = chance(1, 2);
2600 unsigned char *p = (void *)buf;
2601
2602 from = prandom_u32() % len;
2603 /* Corruption span max to end of write unit */
2604 to = min(len, ALIGN(from + 1, c->max_write_size));
2605
2606 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2607 ffs ? "0xFFs" : "random data");
2608
2609 if (ffs)
2610 memset(p + from, 0xFF, to - from);
2611 else
2612 prandom_bytes(p + from, to - from);
2613
2614 return to;
2615 }
2616
2617 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2618 int offs, int len)
2619 {
2620 int err, failing;
2621
2622 if (c->dbg->pc_happened)
2623 return -EROFS;
2624
2625 failing = power_cut_emulated(c, lnum, 1);
2626 if (failing) {
2627 len = corrupt_data(c, buf, len);
2628 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2629 len, lnum, offs);
2630 }
2631 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2632 if (err)
2633 return err;
2634 if (failing)
2635 return -EROFS;
2636 return 0;
2637 }
2638
2639 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2640 int len)
2641 {
2642 int err;
2643
2644 if (c->dbg->pc_happened)
2645 return -EROFS;
2646 if (power_cut_emulated(c, lnum, 1))
2647 return -EROFS;
2648 err = ubi_leb_change(c->ubi, lnum, buf, len);
2649 if (err)
2650 return err;
2651 if (power_cut_emulated(c, lnum, 1))
2652 return -EROFS;
2653 return 0;
2654 }
2655
2656 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2657 {
2658 int err;
2659
2660 if (c->dbg->pc_happened)
2661 return -EROFS;
2662 if (power_cut_emulated(c, lnum, 0))
2663 return -EROFS;
2664 err = ubi_leb_unmap(c->ubi, lnum);
2665 if (err)
2666 return err;
2667 if (power_cut_emulated(c, lnum, 0))
2668 return -EROFS;
2669 return 0;
2670 }
2671
2672 int dbg_leb_map(struct ubifs_info *c, int lnum)
2673 {
2674 int err;
2675
2676 if (c->dbg->pc_happened)
2677 return -EROFS;
2678 if (power_cut_emulated(c, lnum, 0))
2679 return -EROFS;
2680 err = ubi_leb_map(c->ubi, lnum);
2681 if (err)
2682 return err;
2683 if (power_cut_emulated(c, lnum, 0))
2684 return -EROFS;
2685 return 0;
2686 }
2687
2688 /*
2689 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2690 * contain the stuff specific to particular file-system mounts.
2691 */
2692 static struct dentry *dfs_rootdir;
2693
2694 static int dfs_file_open(struct inode *inode, struct file *file)
2695 {
2696 file->private_data = inode->i_private;
2697 return nonseekable_open(inode, file);
2698 }
2699
2700 /**
2701 * provide_user_output - provide output to the user reading a debugfs file.
2702 * @val: boolean value for the answer
2703 * @u: the buffer to store the answer at
2704 * @count: size of the buffer
2705 * @ppos: position in the @u output buffer
2706 *
2707 * This is a simple helper function which stores @val boolean value in the user
2708 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2709 * bytes written to @u in case of success and a negative error code in case of
2710 * failure.
2711 */
2712 static int provide_user_output(int val, char __user *u, size_t count,
2713 loff_t *ppos)
2714 {
2715 char buf[3];
2716
2717 if (val)
2718 buf[0] = '1';
2719 else
2720 buf[0] = '0';
2721 buf[1] = '\n';
2722 buf[2] = 0x00;
2723
2724 return simple_read_from_buffer(u, count, ppos, buf, 2);
2725 }
2726
2727 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2728 loff_t *ppos)
2729 {
2730 struct dentry *dent = file->f_path.dentry;
2731 struct ubifs_info *c = file->private_data;
2732 struct ubifs_debug_info *d = c->dbg;
2733 int val;
2734
2735 if (dent == d->dfs_chk_gen)
2736 val = d->chk_gen;
2737 else if (dent == d->dfs_chk_index)
2738 val = d->chk_index;
2739 else if (dent == d->dfs_chk_orph)
2740 val = d->chk_orph;
2741 else if (dent == d->dfs_chk_lprops)
2742 val = d->chk_lprops;
2743 else if (dent == d->dfs_chk_fs)
2744 val = d->chk_fs;
2745 else if (dent == d->dfs_tst_rcvry)
2746 val = d->tst_rcvry;
2747 else if (dent == d->dfs_ro_error)
2748 val = c->ro_error;
2749 else
2750 return -EINVAL;
2751
2752 return provide_user_output(val, u, count, ppos);
2753 }
2754
2755 /**
2756 * interpret_user_input - interpret user debugfs file input.
2757 * @u: user-provided buffer with the input
2758 * @count: buffer size
2759 *
2760 * This is a helper function which interpret user input to a boolean UBIFS
2761 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2762 * in case of failure.
2763 */
2764 static int interpret_user_input(const char __user *u, size_t count)
2765 {
2766 size_t buf_size;
2767 char buf[8];
2768
2769 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2770 if (copy_from_user(buf, u, buf_size))
2771 return -EFAULT;
2772
2773 if (buf[0] == '1')
2774 return 1;
2775 else if (buf[0] == '0')
2776 return 0;
2777
2778 return -EINVAL;
2779 }
2780
2781 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2782 size_t count, loff_t *ppos)
2783 {
2784 struct ubifs_info *c = file->private_data;
2785 struct ubifs_debug_info *d = c->dbg;
2786 struct dentry *dent = file->f_path.dentry;
2787 int val;
2788
2789 /*
2790 * TODO: this is racy - the file-system might have already been
2791 * unmounted and we'd oops in this case. The plan is to fix it with
2792 * help of 'iterate_supers_type()' which we should have in v3.0: when
2793 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2794 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2795 * superblocks and fine the one with the same UUID, and take the
2796 * locking right.
2797 *
2798 * The other way to go suggested by Al Viro is to create a separate
2799 * 'ubifs-debug' file-system instead.
2800 */
2801 if (file->f_path.dentry == d->dfs_dump_lprops) {
2802 ubifs_dump_lprops(c);
2803 return count;
2804 }
2805 if (file->f_path.dentry == d->dfs_dump_budg) {
2806 ubifs_dump_budg(c, &c->bi);
2807 return count;
2808 }
2809 if (file->f_path.dentry == d->dfs_dump_tnc) {
2810 mutex_lock(&c->tnc_mutex);
2811 ubifs_dump_tnc(c);
2812 mutex_unlock(&c->tnc_mutex);
2813 return count;
2814 }
2815
2816 val = interpret_user_input(u, count);
2817 if (val < 0)
2818 return val;
2819
2820 if (dent == d->dfs_chk_gen)
2821 d->chk_gen = val;
2822 else if (dent == d->dfs_chk_index)
2823 d->chk_index = val;
2824 else if (dent == d->dfs_chk_orph)
2825 d->chk_orph = val;
2826 else if (dent == d->dfs_chk_lprops)
2827 d->chk_lprops = val;
2828 else if (dent == d->dfs_chk_fs)
2829 d->chk_fs = val;
2830 else if (dent == d->dfs_tst_rcvry)
2831 d->tst_rcvry = val;
2832 else if (dent == d->dfs_ro_error)
2833 c->ro_error = !!val;
2834 else
2835 return -EINVAL;
2836
2837 return count;
2838 }
2839
2840 static const struct file_operations dfs_fops = {
2841 .open = dfs_file_open,
2842 .read = dfs_file_read,
2843 .write = dfs_file_write,
2844 .owner = THIS_MODULE,
2845 .llseek = no_llseek,
2846 };
2847
2848 /**
2849 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2850 * @c: UBIFS file-system description object
2851 *
2852 * This function creates all debugfs files for this instance of UBIFS. Returns
2853 * zero in case of success and a negative error code in case of failure.
2854 *
2855 * Note, the only reason we have not merged this function with the
2856 * 'ubifs_debugging_init()' function is because it is better to initialize
2857 * debugfs interfaces at the very end of the mount process, and remove them at
2858 * the very beginning of the mount process.
2859 */
2860 int dbg_debugfs_init_fs(struct ubifs_info *c)
2861 {
2862 int err, n;
2863 const char *fname;
2864 struct dentry *dent;
2865 struct ubifs_debug_info *d = c->dbg;
2866
2867 if (!IS_ENABLED(CONFIG_DEBUG_FS))
2868 return 0;
2869
2870 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2871 c->vi.ubi_num, c->vi.vol_id);
2872 if (n == UBIFS_DFS_DIR_LEN) {
2873 /* The array size is too small */
2874 fname = UBIFS_DFS_DIR_NAME;
2875 dent = ERR_PTR(-EINVAL);
2876 goto out;
2877 }
2878
2879 fname = d->dfs_dir_name;
2880 dent = debugfs_create_dir(fname, dfs_rootdir);
2881 if (IS_ERR_OR_NULL(dent))
2882 goto out;
2883 d->dfs_dir = dent;
2884
2885 fname = "dump_lprops";
2886 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2887 if (IS_ERR_OR_NULL(dent))
2888 goto out_remove;
2889 d->dfs_dump_lprops = dent;
2890
2891 fname = "dump_budg";
2892 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2893 if (IS_ERR_OR_NULL(dent))
2894 goto out_remove;
2895 d->dfs_dump_budg = dent;
2896
2897 fname = "dump_tnc";
2898 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2899 if (IS_ERR_OR_NULL(dent))
2900 goto out_remove;
2901 d->dfs_dump_tnc = dent;
2902
2903 fname = "chk_general";
2904 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2905 &dfs_fops);
2906 if (IS_ERR_OR_NULL(dent))
2907 goto out_remove;
2908 d->dfs_chk_gen = dent;
2909
2910 fname = "chk_index";
2911 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2912 &dfs_fops);
2913 if (IS_ERR_OR_NULL(dent))
2914 goto out_remove;
2915 d->dfs_chk_index = dent;
2916
2917 fname = "chk_orphans";
2918 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2919 &dfs_fops);
2920 if (IS_ERR_OR_NULL(dent))
2921 goto out_remove;
2922 d->dfs_chk_orph = dent;
2923
2924 fname = "chk_lprops";
2925 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2926 &dfs_fops);
2927 if (IS_ERR_OR_NULL(dent))
2928 goto out_remove;
2929 d->dfs_chk_lprops = dent;
2930
2931 fname = "chk_fs";
2932 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2933 &dfs_fops);
2934 if (IS_ERR_OR_NULL(dent))
2935 goto out_remove;
2936 d->dfs_chk_fs = dent;
2937
2938 fname = "tst_recovery";
2939 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2940 &dfs_fops);
2941 if (IS_ERR_OR_NULL(dent))
2942 goto out_remove;
2943 d->dfs_tst_rcvry = dent;
2944
2945 fname = "ro_error";
2946 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2947 &dfs_fops);
2948 if (IS_ERR_OR_NULL(dent))
2949 goto out_remove;
2950 d->dfs_ro_error = dent;
2951
2952 return 0;
2953
2954 out_remove:
2955 debugfs_remove_recursive(d->dfs_dir);
2956 out:
2957 err = dent ? PTR_ERR(dent) : -ENODEV;
2958 ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2959 fname, err);
2960 return err;
2961 }
2962
2963 /**
2964 * dbg_debugfs_exit_fs - remove all debugfs files.
2965 * @c: UBIFS file-system description object
2966 */
2967 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2968 {
2969 if (IS_ENABLED(CONFIG_DEBUG_FS))
2970 debugfs_remove_recursive(c->dbg->dfs_dir);
2971 }
2972
2973 struct ubifs_global_debug_info ubifs_dbg;
2974
2975 static struct dentry *dfs_chk_gen;
2976 static struct dentry *dfs_chk_index;
2977 static struct dentry *dfs_chk_orph;
2978 static struct dentry *dfs_chk_lprops;
2979 static struct dentry *dfs_chk_fs;
2980 static struct dentry *dfs_tst_rcvry;
2981
2982 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2983 size_t count, loff_t *ppos)
2984 {
2985 struct dentry *dent = file->f_path.dentry;
2986 int val;
2987
2988 if (dent == dfs_chk_gen)
2989 val = ubifs_dbg.chk_gen;
2990 else if (dent == dfs_chk_index)
2991 val = ubifs_dbg.chk_index;
2992 else if (dent == dfs_chk_orph)
2993 val = ubifs_dbg.chk_orph;
2994 else if (dent == dfs_chk_lprops)
2995 val = ubifs_dbg.chk_lprops;
2996 else if (dent == dfs_chk_fs)
2997 val = ubifs_dbg.chk_fs;
2998 else if (dent == dfs_tst_rcvry)
2999 val = ubifs_dbg.tst_rcvry;
3000 else
3001 return -EINVAL;
3002
3003 return provide_user_output(val, u, count, ppos);
3004 }
3005
3006 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3007 size_t count, loff_t *ppos)
3008 {
3009 struct dentry *dent = file->f_path.dentry;
3010 int val;
3011
3012 val = interpret_user_input(u, count);
3013 if (val < 0)
3014 return val;
3015
3016 if (dent == dfs_chk_gen)
3017 ubifs_dbg.chk_gen = val;
3018 else if (dent == dfs_chk_index)
3019 ubifs_dbg.chk_index = val;
3020 else if (dent == dfs_chk_orph)
3021 ubifs_dbg.chk_orph = val;
3022 else if (dent == dfs_chk_lprops)
3023 ubifs_dbg.chk_lprops = val;
3024 else if (dent == dfs_chk_fs)
3025 ubifs_dbg.chk_fs = val;
3026 else if (dent == dfs_tst_rcvry)
3027 ubifs_dbg.tst_rcvry = val;
3028 else
3029 return -EINVAL;
3030
3031 return count;
3032 }
3033
3034 static const struct file_operations dfs_global_fops = {
3035 .read = dfs_global_file_read,
3036 .write = dfs_global_file_write,
3037 .owner = THIS_MODULE,
3038 .llseek = no_llseek,
3039 };
3040
3041 /**
3042 * dbg_debugfs_init - initialize debugfs file-system.
3043 *
3044 * UBIFS uses debugfs file-system to expose various debugging knobs to
3045 * user-space. This function creates "ubifs" directory in the debugfs
3046 * file-system. Returns zero in case of success and a negative error code in
3047 * case of failure.
3048 */
3049 int dbg_debugfs_init(void)
3050 {
3051 int err;
3052 const char *fname;
3053 struct dentry *dent;
3054
3055 if (!IS_ENABLED(CONFIG_DEBUG_FS))
3056 return 0;
3057
3058 fname = "ubifs";
3059 dent = debugfs_create_dir(fname, NULL);
3060 if (IS_ERR_OR_NULL(dent))
3061 goto out;
3062 dfs_rootdir = dent;
3063
3064 fname = "chk_general";
3065 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3066 &dfs_global_fops);
3067 if (IS_ERR_OR_NULL(dent))
3068 goto out_remove;
3069 dfs_chk_gen = dent;
3070
3071 fname = "chk_index";
3072 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3073 &dfs_global_fops);
3074 if (IS_ERR_OR_NULL(dent))
3075 goto out_remove;
3076 dfs_chk_index = dent;
3077
3078 fname = "chk_orphans";
3079 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3080 &dfs_global_fops);
3081 if (IS_ERR_OR_NULL(dent))
3082 goto out_remove;
3083 dfs_chk_orph = dent;
3084
3085 fname = "chk_lprops";
3086 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3087 &dfs_global_fops);
3088 if (IS_ERR_OR_NULL(dent))
3089 goto out_remove;
3090 dfs_chk_lprops = dent;
3091
3092 fname = "chk_fs";
3093 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3094 &dfs_global_fops);
3095 if (IS_ERR_OR_NULL(dent))
3096 goto out_remove;
3097 dfs_chk_fs = dent;
3098
3099 fname = "tst_recovery";
3100 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3101 &dfs_global_fops);
3102 if (IS_ERR_OR_NULL(dent))
3103 goto out_remove;
3104 dfs_tst_rcvry = dent;
3105
3106 return 0;
3107
3108 out_remove:
3109 debugfs_remove_recursive(dfs_rootdir);
3110 out:
3111 err = dent ? PTR_ERR(dent) : -ENODEV;
3112 pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3113 current->pid, fname, err);
3114 return err;
3115 }
3116
3117 /**
3118 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3119 */
3120 void dbg_debugfs_exit(void)
3121 {
3122 if (IS_ENABLED(CONFIG_DEBUG_FS))
3123 debugfs_remove_recursive(dfs_rootdir);
3124 }
3125
3126 /**
3127 * ubifs_debugging_init - initialize UBIFS debugging.
3128 * @c: UBIFS file-system description object
3129 *
3130 * This function initializes debugging-related data for the file system.
3131 * Returns zero in case of success and a negative error code in case of
3132 * failure.
3133 */
3134 int ubifs_debugging_init(struct ubifs_info *c)
3135 {
3136 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3137 if (!c->dbg)
3138 return -ENOMEM;
3139
3140 return 0;
3141 }
3142
3143 /**
3144 * ubifs_debugging_exit - free debugging data.
3145 * @c: UBIFS file-system description object
3146 */
3147 void ubifs_debugging_exit(struct ubifs_info *c)
3148 {
3149 kfree(c->dbg);
3150 }
3151 #endif