]> git.ipfire.org Git - thirdparty/u-boot.git/blob - fs/ubifs/debug.c
fs: add fs_get_type() for current filesystem type
[thirdparty/u-boot.git] / fs / ubifs / debug.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11 /*
12 * This file implements most of the debugging stuff which is compiled in only
13 * when it is enabled. But some debugging check functions are implemented in
14 * corresponding subsystem, just because they are closely related and utilize
15 * various local functions of those subsystems.
16 */
17
18 #include <hexdump.h>
19
20 #ifndef __UBOOT__
21 #include <linux/module.h>
22 #include <linux/debugfs.h>
23 #include <linux/math64.h>
24 #include <linux/uaccess.h>
25 #include <linux/random.h>
26 #else
27 #include <linux/compat.h>
28 #include <linux/err.h>
29 #endif
30 #include "ubifs.h"
31
32 #ifndef __UBOOT__
33 static DEFINE_SPINLOCK(dbg_lock);
34 #endif
35
36 static const char *get_key_fmt(int fmt)
37 {
38 switch (fmt) {
39 case UBIFS_SIMPLE_KEY_FMT:
40 return "simple";
41 default:
42 return "unknown/invalid format";
43 }
44 }
45
46 static const char *get_key_hash(int hash)
47 {
48 switch (hash) {
49 case UBIFS_KEY_HASH_R5:
50 return "R5";
51 case UBIFS_KEY_HASH_TEST:
52 return "test";
53 default:
54 return "unknown/invalid name hash";
55 }
56 }
57
58 static const char *get_key_type(int type)
59 {
60 switch (type) {
61 case UBIFS_INO_KEY:
62 return "inode";
63 case UBIFS_DENT_KEY:
64 return "direntry";
65 case UBIFS_XENT_KEY:
66 return "xentry";
67 case UBIFS_DATA_KEY:
68 return "data";
69 case UBIFS_TRUN_KEY:
70 return "truncate";
71 default:
72 return "unknown/invalid key";
73 }
74 }
75
76 #ifndef __UBOOT__
77 static const char *get_dent_type(int type)
78 {
79 switch (type) {
80 case UBIFS_ITYPE_REG:
81 return "file";
82 case UBIFS_ITYPE_DIR:
83 return "dir";
84 case UBIFS_ITYPE_LNK:
85 return "symlink";
86 case UBIFS_ITYPE_BLK:
87 return "blkdev";
88 case UBIFS_ITYPE_CHR:
89 return "char dev";
90 case UBIFS_ITYPE_FIFO:
91 return "fifo";
92 case UBIFS_ITYPE_SOCK:
93 return "socket";
94 default:
95 return "unknown/invalid type";
96 }
97 }
98 #endif
99
100 const char *dbg_snprintf_key(const struct ubifs_info *c,
101 const union ubifs_key *key, char *buffer, int len)
102 {
103 char *p = buffer;
104 int type = key_type(c, key);
105
106 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
107 switch (type) {
108 case UBIFS_INO_KEY:
109 len -= snprintf(p, len, "(%lu, %s)",
110 (unsigned long)key_inum(c, key),
111 get_key_type(type));
112 break;
113 case UBIFS_DENT_KEY:
114 case UBIFS_XENT_KEY:
115 len -= snprintf(p, len, "(%lu, %s, %#08x)",
116 (unsigned long)key_inum(c, key),
117 get_key_type(type), key_hash(c, key));
118 break;
119 case UBIFS_DATA_KEY:
120 len -= snprintf(p, len, "(%lu, %s, %u)",
121 (unsigned long)key_inum(c, key),
122 get_key_type(type), key_block(c, key));
123 break;
124 case UBIFS_TRUN_KEY:
125 len -= snprintf(p, len, "(%lu, %s)",
126 (unsigned long)key_inum(c, key),
127 get_key_type(type));
128 break;
129 default:
130 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
131 key->u32[0], key->u32[1]);
132 }
133 } else
134 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
135 ubifs_assert(len > 0);
136 return p;
137 }
138
139 const char *dbg_ntype(int type)
140 {
141 switch (type) {
142 case UBIFS_PAD_NODE:
143 return "padding node";
144 case UBIFS_SB_NODE:
145 return "superblock node";
146 case UBIFS_MST_NODE:
147 return "master node";
148 case UBIFS_REF_NODE:
149 return "reference node";
150 case UBIFS_INO_NODE:
151 return "inode node";
152 case UBIFS_DENT_NODE:
153 return "direntry node";
154 case UBIFS_XENT_NODE:
155 return "xentry node";
156 case UBIFS_DATA_NODE:
157 return "data node";
158 case UBIFS_TRUN_NODE:
159 return "truncate node";
160 case UBIFS_IDX_NODE:
161 return "indexing node";
162 case UBIFS_CS_NODE:
163 return "commit start node";
164 case UBIFS_ORPH_NODE:
165 return "orphan node";
166 default:
167 return "unknown node";
168 }
169 }
170
171 static const char *dbg_gtype(int type)
172 {
173 switch (type) {
174 case UBIFS_NO_NODE_GROUP:
175 return "no node group";
176 case UBIFS_IN_NODE_GROUP:
177 return "in node group";
178 case UBIFS_LAST_OF_NODE_GROUP:
179 return "last of node group";
180 default:
181 return "unknown";
182 }
183 }
184
185 const char *dbg_cstate(int cmt_state)
186 {
187 switch (cmt_state) {
188 case COMMIT_RESTING:
189 return "commit resting";
190 case COMMIT_BACKGROUND:
191 return "background commit requested";
192 case COMMIT_REQUIRED:
193 return "commit required";
194 case COMMIT_RUNNING_BACKGROUND:
195 return "BACKGROUND commit running";
196 case COMMIT_RUNNING_REQUIRED:
197 return "commit running and required";
198 case COMMIT_BROKEN:
199 return "broken commit";
200 default:
201 return "unknown commit state";
202 }
203 }
204
205 const char *dbg_jhead(int jhead)
206 {
207 switch (jhead) {
208 case GCHD:
209 return "0 (GC)";
210 case BASEHD:
211 return "1 (base)";
212 case DATAHD:
213 return "2 (data)";
214 default:
215 return "unknown journal head";
216 }
217 }
218
219 static void dump_ch(const struct ubifs_ch *ch)
220 {
221 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
222 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
223 pr_err("\tnode_type %d (%s)\n", ch->node_type,
224 dbg_ntype(ch->node_type));
225 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
226 dbg_gtype(ch->group_type));
227 pr_err("\tsqnum %llu\n",
228 (unsigned long long)le64_to_cpu(ch->sqnum));
229 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
230 }
231
232 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
233 {
234 #ifndef __UBOOT__
235 const struct ubifs_inode *ui = ubifs_inode(inode);
236 struct qstr nm = { .name = NULL };
237 union ubifs_key key;
238 struct ubifs_dent_node *dent, *pdent = NULL;
239 int count = 2;
240
241 pr_err("Dump in-memory inode:");
242 pr_err("\tinode %lu\n", inode->i_ino);
243 pr_err("\tsize %llu\n",
244 (unsigned long long)i_size_read(inode));
245 pr_err("\tnlink %u\n", inode->i_nlink);
246 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
247 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
248 pr_err("\tatime %u.%u\n",
249 (unsigned int)inode->i_atime.tv_sec,
250 (unsigned int)inode->i_atime.tv_nsec);
251 pr_err("\tmtime %u.%u\n",
252 (unsigned int)inode->i_mtime.tv_sec,
253 (unsigned int)inode->i_mtime.tv_nsec);
254 pr_err("\tctime %u.%u\n",
255 (unsigned int)inode->i_ctime.tv_sec,
256 (unsigned int)inode->i_ctime.tv_nsec);
257 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
258 pr_err("\txattr_size %u\n", ui->xattr_size);
259 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
260 pr_err("\txattr_names %u\n", ui->xattr_names);
261 pr_err("\tdirty %u\n", ui->dirty);
262 pr_err("\txattr %u\n", ui->xattr);
263 pr_err("\tbulk_read %u\n", ui->xattr);
264 pr_err("\tsynced_i_size %llu\n",
265 (unsigned long long)ui->synced_i_size);
266 pr_err("\tui_size %llu\n",
267 (unsigned long long)ui->ui_size);
268 pr_err("\tflags %d\n", ui->flags);
269 pr_err("\tcompr_type %d\n", ui->compr_type);
270 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
271 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
272 pr_err("\tdata_len %d\n", ui->data_len);
273
274 if (!S_ISDIR(inode->i_mode))
275 return;
276
277 pr_err("List of directory entries:\n");
278 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
279
280 lowest_dent_key(c, &key, inode->i_ino);
281 while (1) {
282 dent = ubifs_tnc_next_ent(c, &key, &nm);
283 if (IS_ERR(dent)) {
284 if (PTR_ERR(dent) != -ENOENT)
285 pr_err("error %ld\n", PTR_ERR(dent));
286 break;
287 }
288
289 pr_err("\t%d: %s (%s)\n",
290 count++, dent->name, get_dent_type(dent->type));
291
292 nm.name = dent->name;
293 nm.len = le16_to_cpu(dent->nlen);
294 kfree(pdent);
295 pdent = dent;
296 key_read(c, &dent->key, &key);
297 }
298 kfree(pdent);
299 #endif
300 }
301
302 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
303 {
304 int i, n;
305 union ubifs_key key;
306 const struct ubifs_ch *ch = node;
307 char key_buf[DBG_KEY_BUF_LEN];
308
309 /* If the magic is incorrect, just hexdump the first bytes */
310 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
311 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
312 print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
313 (void *)node, UBIFS_CH_SZ, 1);
314 return;
315 }
316
317 spin_lock(&dbg_lock);
318 dump_ch(node);
319
320 switch (ch->node_type) {
321 case UBIFS_PAD_NODE:
322 {
323 const struct ubifs_pad_node *pad = node;
324
325 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
326 break;
327 }
328 case UBIFS_SB_NODE:
329 {
330 const struct ubifs_sb_node *sup = node;
331 unsigned int sup_flags = le32_to_cpu(sup->flags);
332
333 pr_err("\tkey_hash %d (%s)\n",
334 (int)sup->key_hash, get_key_hash(sup->key_hash));
335 pr_err("\tkey_fmt %d (%s)\n",
336 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
337 pr_err("\tflags %#x\n", sup_flags);
338 pr_err("\tbig_lpt %u\n",
339 !!(sup_flags & UBIFS_FLG_BIGLPT));
340 pr_err("\tspace_fixup %u\n",
341 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
342 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
343 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
344 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
345 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
346 pr_err("\tmax_bud_bytes %llu\n",
347 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
348 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
349 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
350 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
351 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
352 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
353 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
354 pr_err("\tdefault_compr %u\n",
355 (int)le16_to_cpu(sup->default_compr));
356 pr_err("\trp_size %llu\n",
357 (unsigned long long)le64_to_cpu(sup->rp_size));
358 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
359 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
360 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
361 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
362 pr_err("\tUUID %pUB\n", sup->uuid);
363 break;
364 }
365 case UBIFS_MST_NODE:
366 {
367 const struct ubifs_mst_node *mst = node;
368
369 pr_err("\thighest_inum %llu\n",
370 (unsigned long long)le64_to_cpu(mst->highest_inum));
371 pr_err("\tcommit number %llu\n",
372 (unsigned long long)le64_to_cpu(mst->cmt_no));
373 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
374 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
375 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
376 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
377 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
378 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
379 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
380 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
381 pr_err("\tindex_size %llu\n",
382 (unsigned long long)le64_to_cpu(mst->index_size));
383 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
384 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
385 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
386 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
387 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
388 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
389 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
390 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
391 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
392 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
393 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
394 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
395 pr_err("\ttotal_free %llu\n",
396 (unsigned long long)le64_to_cpu(mst->total_free));
397 pr_err("\ttotal_dirty %llu\n",
398 (unsigned long long)le64_to_cpu(mst->total_dirty));
399 pr_err("\ttotal_used %llu\n",
400 (unsigned long long)le64_to_cpu(mst->total_used));
401 pr_err("\ttotal_dead %llu\n",
402 (unsigned long long)le64_to_cpu(mst->total_dead));
403 pr_err("\ttotal_dark %llu\n",
404 (unsigned long long)le64_to_cpu(mst->total_dark));
405 break;
406 }
407 case UBIFS_REF_NODE:
408 {
409 const struct ubifs_ref_node *ref = node;
410
411 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
412 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
413 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
414 break;
415 }
416 case UBIFS_INO_NODE:
417 {
418 const struct ubifs_ino_node *ino = node;
419
420 key_read(c, &ino->key, &key);
421 pr_err("\tkey %s\n",
422 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
423 pr_err("\tcreat_sqnum %llu\n",
424 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
425 pr_err("\tsize %llu\n",
426 (unsigned long long)le64_to_cpu(ino->size));
427 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
428 pr_err("\tatime %lld.%u\n",
429 (long long)le64_to_cpu(ino->atime_sec),
430 le32_to_cpu(ino->atime_nsec));
431 pr_err("\tmtime %lld.%u\n",
432 (long long)le64_to_cpu(ino->mtime_sec),
433 le32_to_cpu(ino->mtime_nsec));
434 pr_err("\tctime %lld.%u\n",
435 (long long)le64_to_cpu(ino->ctime_sec),
436 le32_to_cpu(ino->ctime_nsec));
437 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
438 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
439 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
440 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
441 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
442 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
443 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
444 pr_err("\tcompr_type %#x\n",
445 (int)le16_to_cpu(ino->compr_type));
446 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
447 break;
448 }
449 case UBIFS_DENT_NODE:
450 case UBIFS_XENT_NODE:
451 {
452 const struct ubifs_dent_node *dent = node;
453 int nlen = le16_to_cpu(dent->nlen);
454
455 key_read(c, &dent->key, &key);
456 pr_err("\tkey %s\n",
457 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
458 pr_err("\tinum %llu\n",
459 (unsigned long long)le64_to_cpu(dent->inum));
460 pr_err("\ttype %d\n", (int)dent->type);
461 pr_err("\tnlen %d\n", nlen);
462 pr_err("\tname ");
463
464 if (nlen > UBIFS_MAX_NLEN)
465 pr_err("(bad name length, not printing, bad or corrupted node)");
466 else {
467 for (i = 0; i < nlen && dent->name[i]; i++)
468 pr_cont("%c", dent->name[i]);
469 }
470 pr_cont("\n");
471
472 break;
473 }
474 case UBIFS_DATA_NODE:
475 {
476 const struct ubifs_data_node *dn = node;
477 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
478
479 key_read(c, &dn->key, &key);
480 pr_err("\tkey %s\n",
481 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
482 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
483 pr_err("\tcompr_typ %d\n",
484 (int)le16_to_cpu(dn->compr_type));
485 pr_err("\tdata size %d\n", dlen);
486 pr_err("\tdata:\n");
487 print_hex_dump("\t", DUMP_PREFIX_OFFSET, 32, 1,
488 (void *)&dn->data, dlen, 0);
489 break;
490 }
491 case UBIFS_TRUN_NODE:
492 {
493 const struct ubifs_trun_node *trun = node;
494
495 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
496 pr_err("\told_size %llu\n",
497 (unsigned long long)le64_to_cpu(trun->old_size));
498 pr_err("\tnew_size %llu\n",
499 (unsigned long long)le64_to_cpu(trun->new_size));
500 break;
501 }
502 case UBIFS_IDX_NODE:
503 {
504 const struct ubifs_idx_node *idx = node;
505
506 n = le16_to_cpu(idx->child_cnt);
507 pr_err("\tchild_cnt %d\n", n);
508 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
509 pr_err("\tBranches:\n");
510
511 for (i = 0; i < n && i < c->fanout - 1; i++) {
512 const struct ubifs_branch *br;
513
514 br = ubifs_idx_branch(c, idx, i);
515 key_read(c, &br->key, &key);
516 pr_err("\t%d: LEB %d:%d len %d key %s\n",
517 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
518 le32_to_cpu(br->len),
519 dbg_snprintf_key(c, &key, key_buf,
520 DBG_KEY_BUF_LEN));
521 }
522 break;
523 }
524 case UBIFS_CS_NODE:
525 break;
526 case UBIFS_ORPH_NODE:
527 {
528 const struct ubifs_orph_node *orph = node;
529
530 pr_err("\tcommit number %llu\n",
531 (unsigned long long)
532 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
533 pr_err("\tlast node flag %llu\n",
534 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
535 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
536 pr_err("\t%d orphan inode numbers:\n", n);
537 for (i = 0; i < n; i++)
538 pr_err("\t ino %llu\n",
539 (unsigned long long)le64_to_cpu(orph->inos[i]));
540 break;
541 }
542 default:
543 pr_err("node type %d was not recognized\n",
544 (int)ch->node_type);
545 }
546 spin_unlock(&dbg_lock);
547 }
548
549 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
550 {
551 spin_lock(&dbg_lock);
552 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
553 req->new_ino, req->dirtied_ino);
554 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
555 req->new_ino_d, req->dirtied_ino_d);
556 pr_err("\tnew_page %d, dirtied_page %d\n",
557 req->new_page, req->dirtied_page);
558 pr_err("\tnew_dent %d, mod_dent %d\n",
559 req->new_dent, req->mod_dent);
560 pr_err("\tidx_growth %d\n", req->idx_growth);
561 pr_err("\tdata_growth %d dd_growth %d\n",
562 req->data_growth, req->dd_growth);
563 spin_unlock(&dbg_lock);
564 }
565
566 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
567 {
568 spin_lock(&dbg_lock);
569 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
570 current->pid, lst->empty_lebs, lst->idx_lebs);
571 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
572 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
573 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
574 lst->total_used, lst->total_dark, lst->total_dead);
575 spin_unlock(&dbg_lock);
576 }
577
578 #ifndef __UBOOT__
579 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
580 {
581 int i;
582 struct rb_node *rb;
583 struct ubifs_bud *bud;
584 struct ubifs_gced_idx_leb *idx_gc;
585 long long available, outstanding, free;
586
587 spin_lock(&c->space_lock);
588 spin_lock(&dbg_lock);
589 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
590 current->pid, bi->data_growth + bi->dd_growth,
591 bi->data_growth + bi->dd_growth + bi->idx_growth);
592 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
593 bi->data_growth, bi->dd_growth, bi->idx_growth);
594 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
595 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
596 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
597 bi->page_budget, bi->inode_budget, bi->dent_budget);
598 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
599 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
600 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
601
602 if (bi != &c->bi)
603 /*
604 * If we are dumping saved budgeting data, do not print
605 * additional information which is about the current state, not
606 * the old one which corresponded to the saved budgeting data.
607 */
608 goto out_unlock;
609
610 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
611 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
612 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
613 atomic_long_read(&c->dirty_pg_cnt),
614 atomic_long_read(&c->dirty_zn_cnt),
615 atomic_long_read(&c->clean_zn_cnt));
616 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
617
618 /* If we are in R/O mode, journal heads do not exist */
619 if (c->jheads)
620 for (i = 0; i < c->jhead_cnt; i++)
621 pr_err("\tjhead %s\t LEB %d\n",
622 dbg_jhead(c->jheads[i].wbuf.jhead),
623 c->jheads[i].wbuf.lnum);
624 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
625 bud = rb_entry(rb, struct ubifs_bud, rb);
626 pr_err("\tbud LEB %d\n", bud->lnum);
627 }
628 list_for_each_entry(bud, &c->old_buds, list)
629 pr_err("\told bud LEB %d\n", bud->lnum);
630 list_for_each_entry(idx_gc, &c->idx_gc, list)
631 pr_err("\tGC'ed idx LEB %d unmap %d\n",
632 idx_gc->lnum, idx_gc->unmap);
633 pr_err("\tcommit state %d\n", c->cmt_state);
634
635 /* Print budgeting predictions */
636 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
637 outstanding = c->bi.data_growth + c->bi.dd_growth;
638 free = ubifs_get_free_space_nolock(c);
639 pr_err("Budgeting predictions:\n");
640 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
641 available, outstanding, free);
642 out_unlock:
643 spin_unlock(&dbg_lock);
644 spin_unlock(&c->space_lock);
645 }
646 #else
647 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
648 {
649 }
650 #endif
651
652 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
653 {
654 int i, spc, dark = 0, dead = 0;
655 struct rb_node *rb;
656 struct ubifs_bud *bud;
657
658 spc = lp->free + lp->dirty;
659 if (spc < c->dead_wm)
660 dead = spc;
661 else
662 dark = ubifs_calc_dark(c, spc);
663
664 if (lp->flags & LPROPS_INDEX)
665 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
666 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
667 lp->flags);
668 else
669 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
670 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
671 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
672
673 if (lp->flags & LPROPS_TAKEN) {
674 if (lp->flags & LPROPS_INDEX)
675 pr_cont("index, taken");
676 else
677 pr_cont("taken");
678 } else {
679 const char *s;
680
681 if (lp->flags & LPROPS_INDEX) {
682 switch (lp->flags & LPROPS_CAT_MASK) {
683 case LPROPS_DIRTY_IDX:
684 s = "dirty index";
685 break;
686 case LPROPS_FRDI_IDX:
687 s = "freeable index";
688 break;
689 default:
690 s = "index";
691 }
692 } else {
693 switch (lp->flags & LPROPS_CAT_MASK) {
694 case LPROPS_UNCAT:
695 s = "not categorized";
696 break;
697 case LPROPS_DIRTY:
698 s = "dirty";
699 break;
700 case LPROPS_FREE:
701 s = "free";
702 break;
703 case LPROPS_EMPTY:
704 s = "empty";
705 break;
706 case LPROPS_FREEABLE:
707 s = "freeable";
708 break;
709 default:
710 s = NULL;
711 break;
712 }
713 }
714 pr_cont("%s", s);
715 }
716
717 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
718 bud = rb_entry(rb, struct ubifs_bud, rb);
719 if (bud->lnum == lp->lnum) {
720 int head = 0;
721 for (i = 0; i < c->jhead_cnt; i++) {
722 /*
723 * Note, if we are in R/O mode or in the middle
724 * of mounting/re-mounting, the write-buffers do
725 * not exist.
726 */
727 if (c->jheads &&
728 lp->lnum == c->jheads[i].wbuf.lnum) {
729 pr_cont(", jhead %s", dbg_jhead(i));
730 head = 1;
731 }
732 }
733 if (!head)
734 pr_cont(", bud of jhead %s",
735 dbg_jhead(bud->jhead));
736 }
737 }
738 if (lp->lnum == c->gc_lnum)
739 pr_cont(", GC LEB");
740 pr_cont(")\n");
741 }
742
743 void ubifs_dump_lprops(struct ubifs_info *c)
744 {
745 int lnum, err;
746 struct ubifs_lprops lp;
747 struct ubifs_lp_stats lst;
748
749 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
750 ubifs_get_lp_stats(c, &lst);
751 ubifs_dump_lstats(&lst);
752
753 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
754 err = ubifs_read_one_lp(c, lnum, &lp);
755 if (err) {
756 ubifs_err(c, "cannot read lprops for LEB %d", lnum);
757 continue;
758 }
759
760 ubifs_dump_lprop(c, &lp);
761 }
762 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
763 }
764
765 void ubifs_dump_lpt_info(struct ubifs_info *c)
766 {
767 int i;
768
769 spin_lock(&dbg_lock);
770 pr_err("(pid %d) dumping LPT information\n", current->pid);
771 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
772 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
773 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
774 pr_err("\tltab_sz: %d\n", c->ltab_sz);
775 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
776 pr_err("\tbig_lpt: %d\n", c->big_lpt);
777 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
778 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
779 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
780 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
781 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
782 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
783 pr_err("\tspace_bits: %d\n", c->space_bits);
784 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
785 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
786 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
787 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
788 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
789 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
790 pr_err("\tLPT head is at %d:%d\n",
791 c->nhead_lnum, c->nhead_offs);
792 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
793 if (c->big_lpt)
794 pr_err("\tLPT lsave is at %d:%d\n",
795 c->lsave_lnum, c->lsave_offs);
796 for (i = 0; i < c->lpt_lebs; i++)
797 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
798 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
799 c->ltab[i].tgc, c->ltab[i].cmt);
800 spin_unlock(&dbg_lock);
801 }
802
803 void ubifs_dump_sleb(const struct ubifs_info *c,
804 const struct ubifs_scan_leb *sleb, int offs)
805 {
806 struct ubifs_scan_node *snod;
807
808 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
809 current->pid, sleb->lnum, offs);
810
811 list_for_each_entry(snod, &sleb->nodes, list) {
812 cond_resched();
813 pr_err("Dumping node at LEB %d:%d len %d\n",
814 sleb->lnum, snod->offs, snod->len);
815 ubifs_dump_node(c, snod->node);
816 }
817 }
818
819 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
820 {
821 struct ubifs_scan_leb *sleb;
822 struct ubifs_scan_node *snod;
823 void *buf;
824
825 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
826
827 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
828 if (!buf) {
829 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
830 return;
831 }
832
833 sleb = ubifs_scan(c, lnum, 0, buf, 0);
834 if (IS_ERR(sleb)) {
835 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
836 goto out;
837 }
838
839 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
840 sleb->nodes_cnt, sleb->endpt);
841
842 list_for_each_entry(snod, &sleb->nodes, list) {
843 cond_resched();
844 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
845 snod->offs, snod->len);
846 ubifs_dump_node(c, snod->node);
847 }
848
849 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
850 ubifs_scan_destroy(sleb);
851
852 out:
853 vfree(buf);
854 return;
855 }
856
857 void ubifs_dump_znode(const struct ubifs_info *c,
858 const struct ubifs_znode *znode)
859 {
860 int n;
861 const struct ubifs_zbranch *zbr;
862 char key_buf[DBG_KEY_BUF_LEN];
863
864 spin_lock(&dbg_lock);
865 if (znode->parent)
866 zbr = &znode->parent->zbranch[znode->iip];
867 else
868 zbr = &c->zroot;
869
870 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
871 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
872 znode->level, znode->child_cnt, znode->flags);
873
874 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
875 spin_unlock(&dbg_lock);
876 return;
877 }
878
879 pr_err("zbranches:\n");
880 for (n = 0; n < znode->child_cnt; n++) {
881 zbr = &znode->zbranch[n];
882 if (znode->level > 0)
883 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
884 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
885 dbg_snprintf_key(c, &zbr->key, key_buf,
886 DBG_KEY_BUF_LEN));
887 else
888 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
889 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
890 dbg_snprintf_key(c, &zbr->key, key_buf,
891 DBG_KEY_BUF_LEN));
892 }
893 spin_unlock(&dbg_lock);
894 }
895
896 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
897 {
898 int i;
899
900 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
901 current->pid, cat, heap->cnt);
902 for (i = 0; i < heap->cnt; i++) {
903 struct ubifs_lprops *lprops = heap->arr[i];
904
905 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
906 i, lprops->lnum, lprops->hpos, lprops->free,
907 lprops->dirty, lprops->flags);
908 }
909 pr_err("(pid %d) finish dumping heap\n", current->pid);
910 }
911
912 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
913 struct ubifs_nnode *parent, int iip)
914 {
915 int i;
916
917 pr_err("(pid %d) dumping pnode:\n", current->pid);
918 pr_err("\taddress %zx parent %zx cnext %zx\n",
919 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
920 pr_err("\tflags %lu iip %d level %d num %d\n",
921 pnode->flags, iip, pnode->level, pnode->num);
922 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
923 struct ubifs_lprops *lp = &pnode->lprops[i];
924
925 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
926 i, lp->free, lp->dirty, lp->flags, lp->lnum);
927 }
928 }
929
930 void ubifs_dump_tnc(struct ubifs_info *c)
931 {
932 struct ubifs_znode *znode;
933 int level;
934
935 pr_err("\n");
936 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
937 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
938 level = znode->level;
939 pr_err("== Level %d ==\n", level);
940 while (znode) {
941 if (level != znode->level) {
942 level = znode->level;
943 pr_err("== Level %d ==\n", level);
944 }
945 ubifs_dump_znode(c, znode);
946 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
947 }
948 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
949 }
950
951 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
952 void *priv)
953 {
954 ubifs_dump_znode(c, znode);
955 return 0;
956 }
957
958 /**
959 * ubifs_dump_index - dump the on-flash index.
960 * @c: UBIFS file-system description object
961 *
962 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
963 * which dumps only in-memory znodes and does not read znodes which from flash.
964 */
965 void ubifs_dump_index(struct ubifs_info *c)
966 {
967 dbg_walk_index(c, NULL, dump_znode, NULL);
968 }
969
970 #ifndef __UBOOT__
971 /**
972 * dbg_save_space_info - save information about flash space.
973 * @c: UBIFS file-system description object
974 *
975 * This function saves information about UBIFS free space, dirty space, etc, in
976 * order to check it later.
977 */
978 void dbg_save_space_info(struct ubifs_info *c)
979 {
980 struct ubifs_debug_info *d = c->dbg;
981 int freeable_cnt;
982
983 spin_lock(&c->space_lock);
984 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
985 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
986 d->saved_idx_gc_cnt = c->idx_gc_cnt;
987
988 /*
989 * We use a dirty hack here and zero out @c->freeable_cnt, because it
990 * affects the free space calculations, and UBIFS might not know about
991 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
992 * only when we read their lprops, and we do this only lazily, upon the
993 * need. So at any given point of time @c->freeable_cnt might be not
994 * exactly accurate.
995 *
996 * Just one example about the issue we hit when we did not zero
997 * @c->freeable_cnt.
998 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
999 * amount of free space in @d->saved_free
1000 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1001 * information from flash, where we cache LEBs from various
1002 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1003 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1004 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1005 * -> 'ubifs_add_to_cat()').
1006 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1007 * becomes %1.
1008 * 4. We calculate the amount of free space when the re-mount is
1009 * finished in 'dbg_check_space_info()' and it does not match
1010 * @d->saved_free.
1011 */
1012 freeable_cnt = c->freeable_cnt;
1013 c->freeable_cnt = 0;
1014 d->saved_free = ubifs_get_free_space_nolock(c);
1015 c->freeable_cnt = freeable_cnt;
1016 spin_unlock(&c->space_lock);
1017 }
1018
1019 /**
1020 * dbg_check_space_info - check flash space information.
1021 * @c: UBIFS file-system description object
1022 *
1023 * This function compares current flash space information with the information
1024 * which was saved when the 'dbg_save_space_info()' function was called.
1025 * Returns zero if the information has not changed, and %-EINVAL it it has
1026 * changed.
1027 */
1028 int dbg_check_space_info(struct ubifs_info *c)
1029 {
1030 struct ubifs_debug_info *d = c->dbg;
1031 struct ubifs_lp_stats lst;
1032 long long free;
1033 int freeable_cnt;
1034
1035 spin_lock(&c->space_lock);
1036 freeable_cnt = c->freeable_cnt;
1037 c->freeable_cnt = 0;
1038 free = ubifs_get_free_space_nolock(c);
1039 c->freeable_cnt = freeable_cnt;
1040 spin_unlock(&c->space_lock);
1041
1042 if (free != d->saved_free) {
1043 ubifs_err(c, "free space changed from %lld to %lld",
1044 d->saved_free, free);
1045 goto out;
1046 }
1047
1048 return 0;
1049
1050 out:
1051 ubifs_msg(c, "saved lprops statistics dump");
1052 ubifs_dump_lstats(&d->saved_lst);
1053 ubifs_msg(c, "saved budgeting info dump");
1054 ubifs_dump_budg(c, &d->saved_bi);
1055 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1056 ubifs_msg(c, "current lprops statistics dump");
1057 ubifs_get_lp_stats(c, &lst);
1058 ubifs_dump_lstats(&lst);
1059 ubifs_msg(c, "current budgeting info dump");
1060 ubifs_dump_budg(c, &c->bi);
1061 dump_stack();
1062 return -EINVAL;
1063 }
1064
1065 /**
1066 * dbg_check_synced_i_size - check synchronized inode size.
1067 * @c: UBIFS file-system description object
1068 * @inode: inode to check
1069 *
1070 * If inode is clean, synchronized inode size has to be equivalent to current
1071 * inode size. This function has to be called only for locked inodes (@i_mutex
1072 * has to be locked). Returns %0 if synchronized inode size if correct, and
1073 * %-EINVAL if not.
1074 */
1075 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1076 {
1077 int err = 0;
1078 struct ubifs_inode *ui = ubifs_inode(inode);
1079
1080 if (!dbg_is_chk_gen(c))
1081 return 0;
1082 if (!S_ISREG(inode->i_mode))
1083 return 0;
1084
1085 mutex_lock(&ui->ui_mutex);
1086 spin_lock(&ui->ui_lock);
1087 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1088 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1089 ui->ui_size, ui->synced_i_size);
1090 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1091 inode->i_mode, i_size_read(inode));
1092 dump_stack();
1093 err = -EINVAL;
1094 }
1095 spin_unlock(&ui->ui_lock);
1096 mutex_unlock(&ui->ui_mutex);
1097 return err;
1098 }
1099
1100 /*
1101 * dbg_check_dir - check directory inode size and link count.
1102 * @c: UBIFS file-system description object
1103 * @dir: the directory to calculate size for
1104 * @size: the result is returned here
1105 *
1106 * This function makes sure that directory size and link count are correct.
1107 * Returns zero in case of success and a negative error code in case of
1108 * failure.
1109 *
1110 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1111 * calling this function.
1112 */
1113 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1114 {
1115 unsigned int nlink = 2;
1116 union ubifs_key key;
1117 struct ubifs_dent_node *dent, *pdent = NULL;
1118 struct qstr nm = { .name = NULL };
1119 loff_t size = UBIFS_INO_NODE_SZ;
1120
1121 if (!dbg_is_chk_gen(c))
1122 return 0;
1123
1124 if (!S_ISDIR(dir->i_mode))
1125 return 0;
1126
1127 lowest_dent_key(c, &key, dir->i_ino);
1128 while (1) {
1129 int err;
1130
1131 dent = ubifs_tnc_next_ent(c, &key, &nm);
1132 if (IS_ERR(dent)) {
1133 err = PTR_ERR(dent);
1134 if (err == -ENOENT)
1135 break;
1136 return err;
1137 }
1138
1139 nm.name = dent->name;
1140 nm.len = le16_to_cpu(dent->nlen);
1141 size += CALC_DENT_SIZE(nm.len);
1142 if (dent->type == UBIFS_ITYPE_DIR)
1143 nlink += 1;
1144 kfree(pdent);
1145 pdent = dent;
1146 key_read(c, &dent->key, &key);
1147 }
1148 kfree(pdent);
1149
1150 if (i_size_read(dir) != size) {
1151 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1152 dir->i_ino, (unsigned long long)i_size_read(dir),
1153 (unsigned long long)size);
1154 ubifs_dump_inode(c, dir);
1155 dump_stack();
1156 return -EINVAL;
1157 }
1158 if (dir->i_nlink != nlink) {
1159 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1160 dir->i_ino, dir->i_nlink, nlink);
1161 ubifs_dump_inode(c, dir);
1162 dump_stack();
1163 return -EINVAL;
1164 }
1165
1166 return 0;
1167 }
1168
1169 /**
1170 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1171 * @c: UBIFS file-system description object
1172 * @zbr1: first zbranch
1173 * @zbr2: following zbranch
1174 *
1175 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1176 * names of the direntries/xentries which are referred by the keys. This
1177 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1178 * sure the name of direntry/xentry referred by @zbr1 is less than
1179 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1180 * and a negative error code in case of failure.
1181 */
1182 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1183 struct ubifs_zbranch *zbr2)
1184 {
1185 int err, nlen1, nlen2, cmp;
1186 struct ubifs_dent_node *dent1, *dent2;
1187 union ubifs_key key;
1188 char key_buf[DBG_KEY_BUF_LEN];
1189
1190 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1191 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1192 if (!dent1)
1193 return -ENOMEM;
1194 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1195 if (!dent2) {
1196 err = -ENOMEM;
1197 goto out_free;
1198 }
1199
1200 err = ubifs_tnc_read_node(c, zbr1, dent1);
1201 if (err)
1202 goto out_free;
1203 err = ubifs_validate_entry(c, dent1);
1204 if (err)
1205 goto out_free;
1206
1207 err = ubifs_tnc_read_node(c, zbr2, dent2);
1208 if (err)
1209 goto out_free;
1210 err = ubifs_validate_entry(c, dent2);
1211 if (err)
1212 goto out_free;
1213
1214 /* Make sure node keys are the same as in zbranch */
1215 err = 1;
1216 key_read(c, &dent1->key, &key);
1217 if (keys_cmp(c, &zbr1->key, &key)) {
1218 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1219 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1220 DBG_KEY_BUF_LEN));
1221 ubifs_err(c, "but it should have key %s according to tnc",
1222 dbg_snprintf_key(c, &zbr1->key, key_buf,
1223 DBG_KEY_BUF_LEN));
1224 ubifs_dump_node(c, dent1);
1225 goto out_free;
1226 }
1227
1228 key_read(c, &dent2->key, &key);
1229 if (keys_cmp(c, &zbr2->key, &key)) {
1230 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1231 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1232 DBG_KEY_BUF_LEN));
1233 ubifs_err(c, "but it should have key %s according to tnc",
1234 dbg_snprintf_key(c, &zbr2->key, key_buf,
1235 DBG_KEY_BUF_LEN));
1236 ubifs_dump_node(c, dent2);
1237 goto out_free;
1238 }
1239
1240 nlen1 = le16_to_cpu(dent1->nlen);
1241 nlen2 = le16_to_cpu(dent2->nlen);
1242
1243 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1244 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1245 err = 0;
1246 goto out_free;
1247 }
1248 if (cmp == 0 && nlen1 == nlen2)
1249 ubifs_err(c, "2 xent/dent nodes with the same name");
1250 else
1251 ubifs_err(c, "bad order of colliding key %s",
1252 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1253
1254 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1255 ubifs_dump_node(c, dent1);
1256 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1257 ubifs_dump_node(c, dent2);
1258
1259 out_free:
1260 kfree(dent2);
1261 kfree(dent1);
1262 return err;
1263 }
1264
1265 /**
1266 * dbg_check_znode - check if znode is all right.
1267 * @c: UBIFS file-system description object
1268 * @zbr: zbranch which points to this znode
1269 *
1270 * This function makes sure that znode referred to by @zbr is all right.
1271 * Returns zero if it is, and %-EINVAL if it is not.
1272 */
1273 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1274 {
1275 struct ubifs_znode *znode = zbr->znode;
1276 struct ubifs_znode *zp = znode->parent;
1277 int n, err, cmp;
1278
1279 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1280 err = 1;
1281 goto out;
1282 }
1283 if (znode->level < 0) {
1284 err = 2;
1285 goto out;
1286 }
1287 if (znode->iip < 0 || znode->iip >= c->fanout) {
1288 err = 3;
1289 goto out;
1290 }
1291
1292 if (zbr->len == 0)
1293 /* Only dirty zbranch may have no on-flash nodes */
1294 if (!ubifs_zn_dirty(znode)) {
1295 err = 4;
1296 goto out;
1297 }
1298
1299 if (ubifs_zn_dirty(znode)) {
1300 /*
1301 * If znode is dirty, its parent has to be dirty as well. The
1302 * order of the operation is important, so we have to have
1303 * memory barriers.
1304 */
1305 smp_mb();
1306 if (zp && !ubifs_zn_dirty(zp)) {
1307 /*
1308 * The dirty flag is atomic and is cleared outside the
1309 * TNC mutex, so znode's dirty flag may now have
1310 * been cleared. The child is always cleared before the
1311 * parent, so we just need to check again.
1312 */
1313 smp_mb();
1314 if (ubifs_zn_dirty(znode)) {
1315 err = 5;
1316 goto out;
1317 }
1318 }
1319 }
1320
1321 if (zp) {
1322 const union ubifs_key *min, *max;
1323
1324 if (znode->level != zp->level - 1) {
1325 err = 6;
1326 goto out;
1327 }
1328
1329 /* Make sure the 'parent' pointer in our znode is correct */
1330 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1331 if (!err) {
1332 /* This zbranch does not exist in the parent */
1333 err = 7;
1334 goto out;
1335 }
1336
1337 if (znode->iip >= zp->child_cnt) {
1338 err = 8;
1339 goto out;
1340 }
1341
1342 if (znode->iip != n) {
1343 /* This may happen only in case of collisions */
1344 if (keys_cmp(c, &zp->zbranch[n].key,
1345 &zp->zbranch[znode->iip].key)) {
1346 err = 9;
1347 goto out;
1348 }
1349 n = znode->iip;
1350 }
1351
1352 /*
1353 * Make sure that the first key in our znode is greater than or
1354 * equal to the key in the pointing zbranch.
1355 */
1356 min = &zbr->key;
1357 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1358 if (cmp == 1) {
1359 err = 10;
1360 goto out;
1361 }
1362
1363 if (n + 1 < zp->child_cnt) {
1364 max = &zp->zbranch[n + 1].key;
1365
1366 /*
1367 * Make sure the last key in our znode is less or
1368 * equivalent than the key in the zbranch which goes
1369 * after our pointing zbranch.
1370 */
1371 cmp = keys_cmp(c, max,
1372 &znode->zbranch[znode->child_cnt - 1].key);
1373 if (cmp == -1) {
1374 err = 11;
1375 goto out;
1376 }
1377 }
1378 } else {
1379 /* This may only be root znode */
1380 if (zbr != &c->zroot) {
1381 err = 12;
1382 goto out;
1383 }
1384 }
1385
1386 /*
1387 * Make sure that next key is greater or equivalent then the previous
1388 * one.
1389 */
1390 for (n = 1; n < znode->child_cnt; n++) {
1391 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1392 &znode->zbranch[n].key);
1393 if (cmp > 0) {
1394 err = 13;
1395 goto out;
1396 }
1397 if (cmp == 0) {
1398 /* This can only be keys with colliding hash */
1399 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1400 err = 14;
1401 goto out;
1402 }
1403
1404 if (znode->level != 0 || c->replaying)
1405 continue;
1406
1407 /*
1408 * Colliding keys should follow binary order of
1409 * corresponding xentry/dentry names.
1410 */
1411 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1412 &znode->zbranch[n]);
1413 if (err < 0)
1414 return err;
1415 if (err) {
1416 err = 15;
1417 goto out;
1418 }
1419 }
1420 }
1421
1422 for (n = 0; n < znode->child_cnt; n++) {
1423 if (!znode->zbranch[n].znode &&
1424 (znode->zbranch[n].lnum == 0 ||
1425 znode->zbranch[n].len == 0)) {
1426 err = 16;
1427 goto out;
1428 }
1429
1430 if (znode->zbranch[n].lnum != 0 &&
1431 znode->zbranch[n].len == 0) {
1432 err = 17;
1433 goto out;
1434 }
1435
1436 if (znode->zbranch[n].lnum == 0 &&
1437 znode->zbranch[n].len != 0) {
1438 err = 18;
1439 goto out;
1440 }
1441
1442 if (znode->zbranch[n].lnum == 0 &&
1443 znode->zbranch[n].offs != 0) {
1444 err = 19;
1445 goto out;
1446 }
1447
1448 if (znode->level != 0 && znode->zbranch[n].znode)
1449 if (znode->zbranch[n].znode->parent != znode) {
1450 err = 20;
1451 goto out;
1452 }
1453 }
1454
1455 return 0;
1456
1457 out:
1458 ubifs_err(c, "failed, error %d", err);
1459 ubifs_msg(c, "dump of the znode");
1460 ubifs_dump_znode(c, znode);
1461 if (zp) {
1462 ubifs_msg(c, "dump of the parent znode");
1463 ubifs_dump_znode(c, zp);
1464 }
1465 dump_stack();
1466 return -EINVAL;
1467 }
1468 #else
1469
1470 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1471 {
1472 return 0;
1473 }
1474
1475 void dbg_debugfs_exit_fs(struct ubifs_info *c)
1476 {
1477 return;
1478 }
1479
1480 int ubifs_debugging_init(struct ubifs_info *c)
1481 {
1482 return 0;
1483 }
1484 void ubifs_debugging_exit(struct ubifs_info *c)
1485 {
1486 }
1487 int dbg_check_filesystem(struct ubifs_info *c)
1488 {
1489 return 0;
1490 }
1491 int dbg_debugfs_init_fs(struct ubifs_info *c)
1492 {
1493 return 0;
1494 }
1495 #endif
1496
1497 #ifndef __UBOOT__
1498 /**
1499 * dbg_check_tnc - check TNC tree.
1500 * @c: UBIFS file-system description object
1501 * @extra: do extra checks that are possible at start commit
1502 *
1503 * This function traverses whole TNC tree and checks every znode. Returns zero
1504 * if everything is all right and %-EINVAL if something is wrong with TNC.
1505 */
1506 int dbg_check_tnc(struct ubifs_info *c, int extra)
1507 {
1508 struct ubifs_znode *znode;
1509 long clean_cnt = 0, dirty_cnt = 0;
1510 int err, last;
1511
1512 if (!dbg_is_chk_index(c))
1513 return 0;
1514
1515 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1516 if (!c->zroot.znode)
1517 return 0;
1518
1519 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1520 while (1) {
1521 struct ubifs_znode *prev;
1522 struct ubifs_zbranch *zbr;
1523
1524 if (!znode->parent)
1525 zbr = &c->zroot;
1526 else
1527 zbr = &znode->parent->zbranch[znode->iip];
1528
1529 err = dbg_check_znode(c, zbr);
1530 if (err)
1531 return err;
1532
1533 if (extra) {
1534 if (ubifs_zn_dirty(znode))
1535 dirty_cnt += 1;
1536 else
1537 clean_cnt += 1;
1538 }
1539
1540 prev = znode;
1541 znode = ubifs_tnc_postorder_next(znode);
1542 if (!znode)
1543 break;
1544
1545 /*
1546 * If the last key of this znode is equivalent to the first key
1547 * of the next znode (collision), then check order of the keys.
1548 */
1549 last = prev->child_cnt - 1;
1550 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1551 !keys_cmp(c, &prev->zbranch[last].key,
1552 &znode->zbranch[0].key)) {
1553 err = dbg_check_key_order(c, &prev->zbranch[last],
1554 &znode->zbranch[0]);
1555 if (err < 0)
1556 return err;
1557 if (err) {
1558 ubifs_msg(c, "first znode");
1559 ubifs_dump_znode(c, prev);
1560 ubifs_msg(c, "second znode");
1561 ubifs_dump_znode(c, znode);
1562 return -EINVAL;
1563 }
1564 }
1565 }
1566
1567 if (extra) {
1568 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1569 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1570 atomic_long_read(&c->clean_zn_cnt),
1571 clean_cnt);
1572 return -EINVAL;
1573 }
1574 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1575 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1576 atomic_long_read(&c->dirty_zn_cnt),
1577 dirty_cnt);
1578 return -EINVAL;
1579 }
1580 }
1581
1582 return 0;
1583 }
1584 #else
1585 int dbg_check_tnc(struct ubifs_info *c, int extra)
1586 {
1587 return 0;
1588 }
1589 #endif
1590
1591 /**
1592 * dbg_walk_index - walk the on-flash index.
1593 * @c: UBIFS file-system description object
1594 * @leaf_cb: called for each leaf node
1595 * @znode_cb: called for each indexing node
1596 * @priv: private data which is passed to callbacks
1597 *
1598 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1599 * node and @znode_cb for each indexing node. Returns zero in case of success
1600 * and a negative error code in case of failure.
1601 *
1602 * It would be better if this function removed every znode it pulled to into
1603 * the TNC, so that the behavior more closely matched the non-debugging
1604 * behavior.
1605 */
1606 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1607 dbg_znode_callback znode_cb, void *priv)
1608 {
1609 int err;
1610 struct ubifs_zbranch *zbr;
1611 struct ubifs_znode *znode, *child;
1612
1613 mutex_lock(&c->tnc_mutex);
1614 /* If the root indexing node is not in TNC - pull it */
1615 if (!c->zroot.znode) {
1616 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1617 if (IS_ERR(c->zroot.znode)) {
1618 err = PTR_ERR(c->zroot.znode);
1619 c->zroot.znode = NULL;
1620 goto out_unlock;
1621 }
1622 }
1623
1624 /*
1625 * We are going to traverse the indexing tree in the postorder manner.
1626 * Go down and find the leftmost indexing node where we are going to
1627 * start from.
1628 */
1629 znode = c->zroot.znode;
1630 while (znode->level > 0) {
1631 zbr = &znode->zbranch[0];
1632 child = zbr->znode;
1633 if (!child) {
1634 child = ubifs_load_znode(c, zbr, znode, 0);
1635 if (IS_ERR(child)) {
1636 err = PTR_ERR(child);
1637 goto out_unlock;
1638 }
1639 zbr->znode = child;
1640 }
1641
1642 znode = child;
1643 }
1644
1645 /* Iterate over all indexing nodes */
1646 while (1) {
1647 int idx;
1648
1649 cond_resched();
1650
1651 if (znode_cb) {
1652 err = znode_cb(c, znode, priv);
1653 if (err) {
1654 ubifs_err(c, "znode checking function returned error %d",
1655 err);
1656 ubifs_dump_znode(c, znode);
1657 goto out_dump;
1658 }
1659 }
1660 if (leaf_cb && znode->level == 0) {
1661 for (idx = 0; idx < znode->child_cnt; idx++) {
1662 zbr = &znode->zbranch[idx];
1663 err = leaf_cb(c, zbr, priv);
1664 if (err) {
1665 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1666 err, zbr->lnum, zbr->offs);
1667 goto out_dump;
1668 }
1669 }
1670 }
1671
1672 if (!znode->parent)
1673 break;
1674
1675 idx = znode->iip + 1;
1676 znode = znode->parent;
1677 if (idx < znode->child_cnt) {
1678 /* Switch to the next index in the parent */
1679 zbr = &znode->zbranch[idx];
1680 child = zbr->znode;
1681 if (!child) {
1682 child = ubifs_load_znode(c, zbr, znode, idx);
1683 if (IS_ERR(child)) {
1684 err = PTR_ERR(child);
1685 goto out_unlock;
1686 }
1687 zbr->znode = child;
1688 }
1689 znode = child;
1690 } else
1691 /*
1692 * This is the last child, switch to the parent and
1693 * continue.
1694 */
1695 continue;
1696
1697 /* Go to the lowest leftmost znode in the new sub-tree */
1698 while (znode->level > 0) {
1699 zbr = &znode->zbranch[0];
1700 child = zbr->znode;
1701 if (!child) {
1702 child = ubifs_load_znode(c, zbr, znode, 0);
1703 if (IS_ERR(child)) {
1704 err = PTR_ERR(child);
1705 goto out_unlock;
1706 }
1707 zbr->znode = child;
1708 }
1709 znode = child;
1710 }
1711 }
1712
1713 mutex_unlock(&c->tnc_mutex);
1714 return 0;
1715
1716 out_dump:
1717 if (znode->parent)
1718 zbr = &znode->parent->zbranch[znode->iip];
1719 else
1720 zbr = &c->zroot;
1721 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1722 ubifs_dump_znode(c, znode);
1723 out_unlock:
1724 mutex_unlock(&c->tnc_mutex);
1725 return err;
1726 }
1727
1728 /**
1729 * add_size - add znode size to partially calculated index size.
1730 * @c: UBIFS file-system description object
1731 * @znode: znode to add size for
1732 * @priv: partially calculated index size
1733 *
1734 * This is a helper function for 'dbg_check_idx_size()' which is called for
1735 * every indexing node and adds its size to the 'long long' variable pointed to
1736 * by @priv.
1737 */
1738 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1739 {
1740 long long *idx_size = priv;
1741 int add;
1742
1743 add = ubifs_idx_node_sz(c, znode->child_cnt);
1744 add = ALIGN(add, 8);
1745 *idx_size += add;
1746 return 0;
1747 }
1748
1749 /**
1750 * dbg_check_idx_size - check index size.
1751 * @c: UBIFS file-system description object
1752 * @idx_size: size to check
1753 *
1754 * This function walks the UBIFS index, calculates its size and checks that the
1755 * size is equivalent to @idx_size. Returns zero in case of success and a
1756 * negative error code in case of failure.
1757 */
1758 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1759 {
1760 int err;
1761 long long calc = 0;
1762
1763 if (!dbg_is_chk_index(c))
1764 return 0;
1765
1766 err = dbg_walk_index(c, NULL, add_size, &calc);
1767 if (err) {
1768 ubifs_err(c, "error %d while walking the index", err);
1769 return err;
1770 }
1771
1772 if (calc != idx_size) {
1773 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1774 calc, idx_size);
1775 dump_stack();
1776 return -EINVAL;
1777 }
1778
1779 return 0;
1780 }
1781
1782 #ifndef __UBOOT__
1783 /**
1784 * struct fsck_inode - information about an inode used when checking the file-system.
1785 * @rb: link in the RB-tree of inodes
1786 * @inum: inode number
1787 * @mode: inode type, permissions, etc
1788 * @nlink: inode link count
1789 * @xattr_cnt: count of extended attributes
1790 * @references: how many directory/xattr entries refer this inode (calculated
1791 * while walking the index)
1792 * @calc_cnt: for directory inode count of child directories
1793 * @size: inode size (read from on-flash inode)
1794 * @xattr_sz: summary size of all extended attributes (read from on-flash
1795 * inode)
1796 * @calc_sz: for directories calculated directory size
1797 * @calc_xcnt: count of extended attributes
1798 * @calc_xsz: calculated summary size of all extended attributes
1799 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1800 * inode (read from on-flash inode)
1801 * @calc_xnms: calculated sum of lengths of all extended attribute names
1802 */
1803 struct fsck_inode {
1804 struct rb_node rb;
1805 ino_t inum;
1806 umode_t mode;
1807 unsigned int nlink;
1808 unsigned int xattr_cnt;
1809 int references;
1810 int calc_cnt;
1811 long long size;
1812 unsigned int xattr_sz;
1813 long long calc_sz;
1814 long long calc_xcnt;
1815 long long calc_xsz;
1816 unsigned int xattr_nms;
1817 long long calc_xnms;
1818 };
1819
1820 /**
1821 * struct fsck_data - private FS checking information.
1822 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1823 */
1824 struct fsck_data {
1825 struct rb_root inodes;
1826 };
1827
1828 /**
1829 * add_inode - add inode information to RB-tree of inodes.
1830 * @c: UBIFS file-system description object
1831 * @fsckd: FS checking information
1832 * @ino: raw UBIFS inode to add
1833 *
1834 * This is a helper function for 'check_leaf()' which adds information about
1835 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1836 * case of success and a negative error code in case of failure.
1837 */
1838 static struct fsck_inode *add_inode(struct ubifs_info *c,
1839 struct fsck_data *fsckd,
1840 struct ubifs_ino_node *ino)
1841 {
1842 struct rb_node **p, *parent = NULL;
1843 struct fsck_inode *fscki;
1844 ino_t inum = key_inum_flash(c, &ino->key);
1845 struct inode *inode;
1846 struct ubifs_inode *ui;
1847
1848 p = &fsckd->inodes.rb_node;
1849 while (*p) {
1850 parent = *p;
1851 fscki = rb_entry(parent, struct fsck_inode, rb);
1852 if (inum < fscki->inum)
1853 p = &(*p)->rb_left;
1854 else if (inum > fscki->inum)
1855 p = &(*p)->rb_right;
1856 else
1857 return fscki;
1858 }
1859
1860 if (inum > c->highest_inum) {
1861 ubifs_err(c, "too high inode number, max. is %lu",
1862 (unsigned long)c->highest_inum);
1863 return ERR_PTR(-EINVAL);
1864 }
1865
1866 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1867 if (!fscki)
1868 return ERR_PTR(-ENOMEM);
1869
1870 inode = ilookup(c->vfs_sb, inum);
1871
1872 fscki->inum = inum;
1873 /*
1874 * If the inode is present in the VFS inode cache, use it instead of
1875 * the on-flash inode which might be out-of-date. E.g., the size might
1876 * be out-of-date. If we do not do this, the following may happen, for
1877 * example:
1878 * 1. A power cut happens
1879 * 2. We mount the file-system R/O, the replay process fixes up the
1880 * inode size in the VFS cache, but on on-flash.
1881 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1882 * size.
1883 */
1884 if (!inode) {
1885 fscki->nlink = le32_to_cpu(ino->nlink);
1886 fscki->size = le64_to_cpu(ino->size);
1887 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1888 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1889 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1890 fscki->mode = le32_to_cpu(ino->mode);
1891 } else {
1892 ui = ubifs_inode(inode);
1893 fscki->nlink = inode->i_nlink;
1894 fscki->size = inode->i_size;
1895 fscki->xattr_cnt = ui->xattr_cnt;
1896 fscki->xattr_sz = ui->xattr_size;
1897 fscki->xattr_nms = ui->xattr_names;
1898 fscki->mode = inode->i_mode;
1899 iput(inode);
1900 }
1901
1902 if (S_ISDIR(fscki->mode)) {
1903 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1904 fscki->calc_cnt = 2;
1905 }
1906
1907 rb_link_node(&fscki->rb, parent, p);
1908 rb_insert_color(&fscki->rb, &fsckd->inodes);
1909
1910 return fscki;
1911 }
1912
1913 /**
1914 * search_inode - search inode in the RB-tree of inodes.
1915 * @fsckd: FS checking information
1916 * @inum: inode number to search
1917 *
1918 * This is a helper function for 'check_leaf()' which searches inode @inum in
1919 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1920 * the inode was not found.
1921 */
1922 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1923 {
1924 struct rb_node *p;
1925 struct fsck_inode *fscki;
1926
1927 p = fsckd->inodes.rb_node;
1928 while (p) {
1929 fscki = rb_entry(p, struct fsck_inode, rb);
1930 if (inum < fscki->inum)
1931 p = p->rb_left;
1932 else if (inum > fscki->inum)
1933 p = p->rb_right;
1934 else
1935 return fscki;
1936 }
1937 return NULL;
1938 }
1939
1940 /**
1941 * read_add_inode - read inode node and add it to RB-tree of inodes.
1942 * @c: UBIFS file-system description object
1943 * @fsckd: FS checking information
1944 * @inum: inode number to read
1945 *
1946 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1947 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1948 * information pointer in case of success and a negative error code in case of
1949 * failure.
1950 */
1951 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1952 struct fsck_data *fsckd, ino_t inum)
1953 {
1954 int n, err;
1955 union ubifs_key key;
1956 struct ubifs_znode *znode;
1957 struct ubifs_zbranch *zbr;
1958 struct ubifs_ino_node *ino;
1959 struct fsck_inode *fscki;
1960
1961 fscki = search_inode(fsckd, inum);
1962 if (fscki)
1963 return fscki;
1964
1965 ino_key_init(c, &key, inum);
1966 err = ubifs_lookup_level0(c, &key, &znode, &n);
1967 if (!err) {
1968 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1969 return ERR_PTR(-ENOENT);
1970 } else if (err < 0) {
1971 ubifs_err(c, "error %d while looking up inode %lu",
1972 err, (unsigned long)inum);
1973 return ERR_PTR(err);
1974 }
1975
1976 zbr = &znode->zbranch[n];
1977 if (zbr->len < UBIFS_INO_NODE_SZ) {
1978 ubifs_err(c, "bad node %lu node length %d",
1979 (unsigned long)inum, zbr->len);
1980 return ERR_PTR(-EINVAL);
1981 }
1982
1983 ino = kmalloc(zbr->len, GFP_NOFS);
1984 if (!ino)
1985 return ERR_PTR(-ENOMEM);
1986
1987 err = ubifs_tnc_read_node(c, zbr, ino);
1988 if (err) {
1989 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1990 zbr->lnum, zbr->offs, err);
1991 kfree(ino);
1992 return ERR_PTR(err);
1993 }
1994
1995 fscki = add_inode(c, fsckd, ino);
1996 kfree(ino);
1997 if (IS_ERR(fscki)) {
1998 ubifs_err(c, "error %ld while adding inode %lu node",
1999 PTR_ERR(fscki), (unsigned long)inum);
2000 return fscki;
2001 }
2002
2003 return fscki;
2004 }
2005
2006 /**
2007 * check_leaf - check leaf node.
2008 * @c: UBIFS file-system description object
2009 * @zbr: zbranch of the leaf node to check
2010 * @priv: FS checking information
2011 *
2012 * This is a helper function for 'dbg_check_filesystem()' which is called for
2013 * every single leaf node while walking the indexing tree. It checks that the
2014 * leaf node referred from the indexing tree exists, has correct CRC, and does
2015 * some other basic validation. This function is also responsible for building
2016 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2017 * calculates reference count, size, etc for each inode in order to later
2018 * compare them to the information stored inside the inodes and detect possible
2019 * inconsistencies. Returns zero in case of success and a negative error code
2020 * in case of failure.
2021 */
2022 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2023 void *priv)
2024 {
2025 ino_t inum;
2026 void *node;
2027 struct ubifs_ch *ch;
2028 int err, type = key_type(c, &zbr->key);
2029 struct fsck_inode *fscki;
2030
2031 if (zbr->len < UBIFS_CH_SZ) {
2032 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2033 zbr->len, zbr->lnum, zbr->offs);
2034 return -EINVAL;
2035 }
2036
2037 node = kmalloc(zbr->len, GFP_NOFS);
2038 if (!node)
2039 return -ENOMEM;
2040
2041 err = ubifs_tnc_read_node(c, zbr, node);
2042 if (err) {
2043 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2044 zbr->lnum, zbr->offs, err);
2045 goto out_free;
2046 }
2047
2048 /* If this is an inode node, add it to RB-tree of inodes */
2049 if (type == UBIFS_INO_KEY) {
2050 fscki = add_inode(c, priv, node);
2051 if (IS_ERR(fscki)) {
2052 err = PTR_ERR(fscki);
2053 ubifs_err(c, "error %d while adding inode node", err);
2054 goto out_dump;
2055 }
2056 goto out;
2057 }
2058
2059 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2060 type != UBIFS_DATA_KEY) {
2061 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2062 type, zbr->lnum, zbr->offs);
2063 err = -EINVAL;
2064 goto out_free;
2065 }
2066
2067 ch = node;
2068 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2069 ubifs_err(c, "too high sequence number, max. is %llu",
2070 c->max_sqnum);
2071 err = -EINVAL;
2072 goto out_dump;
2073 }
2074
2075 if (type == UBIFS_DATA_KEY) {
2076 long long blk_offs;
2077 struct ubifs_data_node *dn = node;
2078
2079 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2080
2081 /*
2082 * Search the inode node this data node belongs to and insert
2083 * it to the RB-tree of inodes.
2084 */
2085 inum = key_inum_flash(c, &dn->key);
2086 fscki = read_add_inode(c, priv, inum);
2087 if (IS_ERR(fscki)) {
2088 err = PTR_ERR(fscki);
2089 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2090 err, (unsigned long)inum);
2091 goto out_dump;
2092 }
2093
2094 /* Make sure the data node is within inode size */
2095 blk_offs = key_block_flash(c, &dn->key);
2096 blk_offs <<= UBIFS_BLOCK_SHIFT;
2097 blk_offs += le32_to_cpu(dn->size);
2098 if (blk_offs > fscki->size) {
2099 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2100 zbr->lnum, zbr->offs, fscki->size);
2101 err = -EINVAL;
2102 goto out_dump;
2103 }
2104 } else {
2105 int nlen;
2106 struct ubifs_dent_node *dent = node;
2107 struct fsck_inode *fscki1;
2108
2109 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2110
2111 err = ubifs_validate_entry(c, dent);
2112 if (err)
2113 goto out_dump;
2114
2115 /*
2116 * Search the inode node this entry refers to and the parent
2117 * inode node and insert them to the RB-tree of inodes.
2118 */
2119 inum = le64_to_cpu(dent->inum);
2120 fscki = read_add_inode(c, priv, inum);
2121 if (IS_ERR(fscki)) {
2122 err = PTR_ERR(fscki);
2123 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2124 err, (unsigned long)inum);
2125 goto out_dump;
2126 }
2127
2128 /* Count how many direntries or xentries refers this inode */
2129 fscki->references += 1;
2130
2131 inum = key_inum_flash(c, &dent->key);
2132 fscki1 = read_add_inode(c, priv, inum);
2133 if (IS_ERR(fscki1)) {
2134 err = PTR_ERR(fscki1);
2135 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2136 err, (unsigned long)inum);
2137 goto out_dump;
2138 }
2139
2140 nlen = le16_to_cpu(dent->nlen);
2141 if (type == UBIFS_XENT_KEY) {
2142 fscki1->calc_xcnt += 1;
2143 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2144 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2145 fscki1->calc_xnms += nlen;
2146 } else {
2147 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2148 if (dent->type == UBIFS_ITYPE_DIR)
2149 fscki1->calc_cnt += 1;
2150 }
2151 }
2152
2153 out:
2154 kfree(node);
2155 return 0;
2156
2157 out_dump:
2158 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2159 ubifs_dump_node(c, node);
2160 out_free:
2161 kfree(node);
2162 return err;
2163 }
2164
2165 /**
2166 * free_inodes - free RB-tree of inodes.
2167 * @fsckd: FS checking information
2168 */
2169 static void free_inodes(struct fsck_data *fsckd)
2170 {
2171 struct fsck_inode *fscki, *n;
2172
2173 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2174 kfree(fscki);
2175 }
2176
2177 /**
2178 * check_inodes - checks all inodes.
2179 * @c: UBIFS file-system description object
2180 * @fsckd: FS checking information
2181 *
2182 * This is a helper function for 'dbg_check_filesystem()' which walks the
2183 * RB-tree of inodes after the index scan has been finished, and checks that
2184 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2185 * %-EINVAL if not, and a negative error code in case of failure.
2186 */
2187 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2188 {
2189 int n, err;
2190 union ubifs_key key;
2191 struct ubifs_znode *znode;
2192 struct ubifs_zbranch *zbr;
2193 struct ubifs_ino_node *ino;
2194 struct fsck_inode *fscki;
2195 struct rb_node *this = rb_first(&fsckd->inodes);
2196
2197 while (this) {
2198 fscki = rb_entry(this, struct fsck_inode, rb);
2199 this = rb_next(this);
2200
2201 if (S_ISDIR(fscki->mode)) {
2202 /*
2203 * Directories have to have exactly one reference (they
2204 * cannot have hardlinks), although root inode is an
2205 * exception.
2206 */
2207 if (fscki->inum != UBIFS_ROOT_INO &&
2208 fscki->references != 1) {
2209 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2210 (unsigned long)fscki->inum,
2211 fscki->references);
2212 goto out_dump;
2213 }
2214 if (fscki->inum == UBIFS_ROOT_INO &&
2215 fscki->references != 0) {
2216 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2217 (unsigned long)fscki->inum,
2218 fscki->references);
2219 goto out_dump;
2220 }
2221 if (fscki->calc_sz != fscki->size) {
2222 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2223 (unsigned long)fscki->inum,
2224 fscki->size, fscki->calc_sz);
2225 goto out_dump;
2226 }
2227 if (fscki->calc_cnt != fscki->nlink) {
2228 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2229 (unsigned long)fscki->inum,
2230 fscki->nlink, fscki->calc_cnt);
2231 goto out_dump;
2232 }
2233 } else {
2234 if (fscki->references != fscki->nlink) {
2235 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2236 (unsigned long)fscki->inum,
2237 fscki->nlink, fscki->references);
2238 goto out_dump;
2239 }
2240 }
2241 if (fscki->xattr_sz != fscki->calc_xsz) {
2242 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2243 (unsigned long)fscki->inum, fscki->xattr_sz,
2244 fscki->calc_xsz);
2245 goto out_dump;
2246 }
2247 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2248 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2249 (unsigned long)fscki->inum,
2250 fscki->xattr_cnt, fscki->calc_xcnt);
2251 goto out_dump;
2252 }
2253 if (fscki->xattr_nms != fscki->calc_xnms) {
2254 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2255 (unsigned long)fscki->inum, fscki->xattr_nms,
2256 fscki->calc_xnms);
2257 goto out_dump;
2258 }
2259 }
2260
2261 return 0;
2262
2263 out_dump:
2264 /* Read the bad inode and dump it */
2265 ino_key_init(c, &key, fscki->inum);
2266 err = ubifs_lookup_level0(c, &key, &znode, &n);
2267 if (!err) {
2268 ubifs_err(c, "inode %lu not found in index",
2269 (unsigned long)fscki->inum);
2270 return -ENOENT;
2271 } else if (err < 0) {
2272 ubifs_err(c, "error %d while looking up inode %lu",
2273 err, (unsigned long)fscki->inum);
2274 return err;
2275 }
2276
2277 zbr = &znode->zbranch[n];
2278 ino = kmalloc(zbr->len, GFP_NOFS);
2279 if (!ino)
2280 return -ENOMEM;
2281
2282 err = ubifs_tnc_read_node(c, zbr, ino);
2283 if (err) {
2284 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2285 zbr->lnum, zbr->offs, err);
2286 kfree(ino);
2287 return err;
2288 }
2289
2290 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2291 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2292 ubifs_dump_node(c, ino);
2293 kfree(ino);
2294 return -EINVAL;
2295 }
2296
2297 /**
2298 * dbg_check_filesystem - check the file-system.
2299 * @c: UBIFS file-system description object
2300 *
2301 * This function checks the file system, namely:
2302 * o makes sure that all leaf nodes exist and their CRCs are correct;
2303 * o makes sure inode nlink, size, xattr size/count are correct (for all
2304 * inodes).
2305 *
2306 * The function reads whole indexing tree and all nodes, so it is pretty
2307 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2308 * not, and a negative error code in case of failure.
2309 */
2310 int dbg_check_filesystem(struct ubifs_info *c)
2311 {
2312 int err;
2313 struct fsck_data fsckd;
2314
2315 if (!dbg_is_chk_fs(c))
2316 return 0;
2317
2318 fsckd.inodes = RB_ROOT;
2319 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2320 if (err)
2321 goto out_free;
2322
2323 err = check_inodes(c, &fsckd);
2324 if (err)
2325 goto out_free;
2326
2327 free_inodes(&fsckd);
2328 return 0;
2329
2330 out_free:
2331 ubifs_err(c, "file-system check failed with error %d", err);
2332 dump_stack();
2333 free_inodes(&fsckd);
2334 return err;
2335 }
2336
2337 /**
2338 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2339 * @c: UBIFS file-system description object
2340 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2341 *
2342 * This function returns zero if the list of data nodes is sorted correctly,
2343 * and %-EINVAL if not.
2344 */
2345 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2346 {
2347 struct list_head *cur;
2348 struct ubifs_scan_node *sa, *sb;
2349
2350 if (!dbg_is_chk_gen(c))
2351 return 0;
2352
2353 for (cur = head->next; cur->next != head; cur = cur->next) {
2354 ino_t inuma, inumb;
2355 uint32_t blka, blkb;
2356
2357 cond_resched();
2358 sa = container_of(cur, struct ubifs_scan_node, list);
2359 sb = container_of(cur->next, struct ubifs_scan_node, list);
2360
2361 if (sa->type != UBIFS_DATA_NODE) {
2362 ubifs_err(c, "bad node type %d", sa->type);
2363 ubifs_dump_node(c, sa->node);
2364 return -EINVAL;
2365 }
2366 if (sb->type != UBIFS_DATA_NODE) {
2367 ubifs_err(c, "bad node type %d", sb->type);
2368 ubifs_dump_node(c, sb->node);
2369 return -EINVAL;
2370 }
2371
2372 inuma = key_inum(c, &sa->key);
2373 inumb = key_inum(c, &sb->key);
2374
2375 if (inuma < inumb)
2376 continue;
2377 if (inuma > inumb) {
2378 ubifs_err(c, "larger inum %lu goes before inum %lu",
2379 (unsigned long)inuma, (unsigned long)inumb);
2380 goto error_dump;
2381 }
2382
2383 blka = key_block(c, &sa->key);
2384 blkb = key_block(c, &sb->key);
2385
2386 if (blka > blkb) {
2387 ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2388 goto error_dump;
2389 }
2390 if (blka == blkb) {
2391 ubifs_err(c, "two data nodes for the same block");
2392 goto error_dump;
2393 }
2394 }
2395
2396 return 0;
2397
2398 error_dump:
2399 ubifs_dump_node(c, sa->node);
2400 ubifs_dump_node(c, sb->node);
2401 return -EINVAL;
2402 }
2403
2404 /**
2405 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2406 * @c: UBIFS file-system description object
2407 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2408 *
2409 * This function returns zero if the list of non-data nodes is sorted correctly,
2410 * and %-EINVAL if not.
2411 */
2412 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2413 {
2414 struct list_head *cur;
2415 struct ubifs_scan_node *sa, *sb;
2416
2417 if (!dbg_is_chk_gen(c))
2418 return 0;
2419
2420 for (cur = head->next; cur->next != head; cur = cur->next) {
2421 ino_t inuma, inumb;
2422 uint32_t hasha, hashb;
2423
2424 cond_resched();
2425 sa = container_of(cur, struct ubifs_scan_node, list);
2426 sb = container_of(cur->next, struct ubifs_scan_node, list);
2427
2428 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2429 sa->type != UBIFS_XENT_NODE) {
2430 ubifs_err(c, "bad node type %d", sa->type);
2431 ubifs_dump_node(c, sa->node);
2432 return -EINVAL;
2433 }
2434 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2435 sa->type != UBIFS_XENT_NODE) {
2436 ubifs_err(c, "bad node type %d", sb->type);
2437 ubifs_dump_node(c, sb->node);
2438 return -EINVAL;
2439 }
2440
2441 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2442 ubifs_err(c, "non-inode node goes before inode node");
2443 goto error_dump;
2444 }
2445
2446 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2447 continue;
2448
2449 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2450 /* Inode nodes are sorted in descending size order */
2451 if (sa->len < sb->len) {
2452 ubifs_err(c, "smaller inode node goes first");
2453 goto error_dump;
2454 }
2455 continue;
2456 }
2457
2458 /*
2459 * This is either a dentry or xentry, which should be sorted in
2460 * ascending (parent ino, hash) order.
2461 */
2462 inuma = key_inum(c, &sa->key);
2463 inumb = key_inum(c, &sb->key);
2464
2465 if (inuma < inumb)
2466 continue;
2467 if (inuma > inumb) {
2468 ubifs_err(c, "larger inum %lu goes before inum %lu",
2469 (unsigned long)inuma, (unsigned long)inumb);
2470 goto error_dump;
2471 }
2472
2473 hasha = key_block(c, &sa->key);
2474 hashb = key_block(c, &sb->key);
2475
2476 if (hasha > hashb) {
2477 ubifs_err(c, "larger hash %u goes before %u",
2478 hasha, hashb);
2479 goto error_dump;
2480 }
2481 }
2482
2483 return 0;
2484
2485 error_dump:
2486 ubifs_msg(c, "dumping first node");
2487 ubifs_dump_node(c, sa->node);
2488 ubifs_msg(c, "dumping second node");
2489 ubifs_dump_node(c, sb->node);
2490 return -EINVAL;
2491 return 0;
2492 }
2493
2494 static inline int chance(unsigned int n, unsigned int out_of)
2495 {
2496 return !!((prandom_u32() % out_of) + 1 <= n);
2497
2498 }
2499
2500 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2501 {
2502 struct ubifs_debug_info *d = c->dbg;
2503
2504 ubifs_assert(dbg_is_tst_rcvry(c));
2505
2506 if (!d->pc_cnt) {
2507 /* First call - decide delay to the power cut */
2508 if (chance(1, 2)) {
2509 unsigned long delay;
2510
2511 if (chance(1, 2)) {
2512 d->pc_delay = 1;
2513 /* Fail within 1 minute */
2514 delay = prandom_u32() % 60000;
2515 d->pc_timeout = jiffies;
2516 d->pc_timeout += msecs_to_jiffies(delay);
2517 ubifs_warn(c, "failing after %lums", delay);
2518 } else {
2519 d->pc_delay = 2;
2520 delay = prandom_u32() % 10000;
2521 /* Fail within 10000 operations */
2522 d->pc_cnt_max = delay;
2523 ubifs_warn(c, "failing after %lu calls", delay);
2524 }
2525 }
2526
2527 d->pc_cnt += 1;
2528 }
2529
2530 /* Determine if failure delay has expired */
2531 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2532 return 0;
2533 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2534 return 0;
2535
2536 if (lnum == UBIFS_SB_LNUM) {
2537 if (write && chance(1, 2))
2538 return 0;
2539 if (chance(19, 20))
2540 return 0;
2541 ubifs_warn(c, "failing in super block LEB %d", lnum);
2542 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2543 if (chance(19, 20))
2544 return 0;
2545 ubifs_warn(c, "failing in master LEB %d", lnum);
2546 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2547 if (write && chance(99, 100))
2548 return 0;
2549 if (chance(399, 400))
2550 return 0;
2551 ubifs_warn(c, "failing in log LEB %d", lnum);
2552 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2553 if (write && chance(7, 8))
2554 return 0;
2555 if (chance(19, 20))
2556 return 0;
2557 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2558 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2559 if (write && chance(1, 2))
2560 return 0;
2561 if (chance(9, 10))
2562 return 0;
2563 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2564 } else if (lnum == c->ihead_lnum) {
2565 if (chance(99, 100))
2566 return 0;
2567 ubifs_warn(c, "failing in index head LEB %d", lnum);
2568 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2569 if (chance(9, 10))
2570 return 0;
2571 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2572 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2573 !ubifs_search_bud(c, lnum)) {
2574 if (chance(19, 20))
2575 return 0;
2576 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2577 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2578 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2579 if (chance(999, 1000))
2580 return 0;
2581 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2582 } else {
2583 if (chance(9999, 10000))
2584 return 0;
2585 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2586 }
2587
2588 d->pc_happened = 1;
2589 ubifs_warn(c, "========== Power cut emulated ==========");
2590 dump_stack();
2591 return 1;
2592 }
2593
2594 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2595 unsigned int len)
2596 {
2597 unsigned int from, to, ffs = chance(1, 2);
2598 unsigned char *p = (void *)buf;
2599
2600 from = prandom_u32() % len;
2601 /* Corruption span max to end of write unit */
2602 to = min(len, ALIGN(from + 1, c->max_write_size));
2603
2604 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2605 ffs ? "0xFFs" : "random data");
2606
2607 if (ffs)
2608 memset(p + from, 0xFF, to - from);
2609 else
2610 prandom_bytes(p + from, to - from);
2611
2612 return to;
2613 }
2614
2615 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2616 int offs, int len)
2617 {
2618 int err, failing;
2619
2620 if (c->dbg->pc_happened)
2621 return -EROFS;
2622
2623 failing = power_cut_emulated(c, lnum, 1);
2624 if (failing) {
2625 len = corrupt_data(c, buf, len);
2626 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2627 len, lnum, offs);
2628 }
2629 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2630 if (err)
2631 return err;
2632 if (failing)
2633 return -EROFS;
2634 return 0;
2635 }
2636
2637 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2638 int len)
2639 {
2640 int err;
2641
2642 if (c->dbg->pc_happened)
2643 return -EROFS;
2644 if (power_cut_emulated(c, lnum, 1))
2645 return -EROFS;
2646 err = ubi_leb_change(c->ubi, lnum, buf, len);
2647 if (err)
2648 return err;
2649 if (power_cut_emulated(c, lnum, 1))
2650 return -EROFS;
2651 return 0;
2652 }
2653
2654 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2655 {
2656 int err;
2657
2658 if (c->dbg->pc_happened)
2659 return -EROFS;
2660 if (power_cut_emulated(c, lnum, 0))
2661 return -EROFS;
2662 err = ubi_leb_unmap(c->ubi, lnum);
2663 if (err)
2664 return err;
2665 if (power_cut_emulated(c, lnum, 0))
2666 return -EROFS;
2667 return 0;
2668 }
2669
2670 int dbg_leb_map(struct ubifs_info *c, int lnum)
2671 {
2672 int err;
2673
2674 if (c->dbg->pc_happened)
2675 return -EROFS;
2676 if (power_cut_emulated(c, lnum, 0))
2677 return -EROFS;
2678 err = ubi_leb_map(c->ubi, lnum);
2679 if (err)
2680 return err;
2681 if (power_cut_emulated(c, lnum, 0))
2682 return -EROFS;
2683 return 0;
2684 }
2685
2686 /*
2687 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2688 * contain the stuff specific to particular file-system mounts.
2689 */
2690 static struct dentry *dfs_rootdir;
2691
2692 static int dfs_file_open(struct inode *inode, struct file *file)
2693 {
2694 file->private_data = inode->i_private;
2695 return nonseekable_open(inode, file);
2696 }
2697
2698 /**
2699 * provide_user_output - provide output to the user reading a debugfs file.
2700 * @val: boolean value for the answer
2701 * @u: the buffer to store the answer at
2702 * @count: size of the buffer
2703 * @ppos: position in the @u output buffer
2704 *
2705 * This is a simple helper function which stores @val boolean value in the user
2706 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2707 * bytes written to @u in case of success and a negative error code in case of
2708 * failure.
2709 */
2710 static int provide_user_output(int val, char __user *u, size_t count,
2711 loff_t *ppos)
2712 {
2713 char buf[3];
2714
2715 if (val)
2716 buf[0] = '1';
2717 else
2718 buf[0] = '0';
2719 buf[1] = '\n';
2720 buf[2] = 0x00;
2721
2722 return simple_read_from_buffer(u, count, ppos, buf, 2);
2723 }
2724
2725 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2726 loff_t *ppos)
2727 {
2728 struct dentry *dent = file->f_path.dentry;
2729 struct ubifs_info *c = file->private_data;
2730 struct ubifs_debug_info *d = c->dbg;
2731 int val;
2732
2733 if (dent == d->dfs_chk_gen)
2734 val = d->chk_gen;
2735 else if (dent == d->dfs_chk_index)
2736 val = d->chk_index;
2737 else if (dent == d->dfs_chk_orph)
2738 val = d->chk_orph;
2739 else if (dent == d->dfs_chk_lprops)
2740 val = d->chk_lprops;
2741 else if (dent == d->dfs_chk_fs)
2742 val = d->chk_fs;
2743 else if (dent == d->dfs_tst_rcvry)
2744 val = d->tst_rcvry;
2745 else if (dent == d->dfs_ro_error)
2746 val = c->ro_error;
2747 else
2748 return -EINVAL;
2749
2750 return provide_user_output(val, u, count, ppos);
2751 }
2752
2753 /**
2754 * interpret_user_input - interpret user debugfs file input.
2755 * @u: user-provided buffer with the input
2756 * @count: buffer size
2757 *
2758 * This is a helper function which interpret user input to a boolean UBIFS
2759 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2760 * in case of failure.
2761 */
2762 static int interpret_user_input(const char __user *u, size_t count)
2763 {
2764 size_t buf_size;
2765 char buf[8];
2766
2767 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2768 if (copy_from_user(buf, u, buf_size))
2769 return -EFAULT;
2770
2771 if (buf[0] == '1')
2772 return 1;
2773 else if (buf[0] == '0')
2774 return 0;
2775
2776 return -EINVAL;
2777 }
2778
2779 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2780 size_t count, loff_t *ppos)
2781 {
2782 struct ubifs_info *c = file->private_data;
2783 struct ubifs_debug_info *d = c->dbg;
2784 struct dentry *dent = file->f_path.dentry;
2785 int val;
2786
2787 /*
2788 * TODO: this is racy - the file-system might have already been
2789 * unmounted and we'd oops in this case. The plan is to fix it with
2790 * help of 'iterate_supers_type()' which we should have in v3.0: when
2791 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2792 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2793 * superblocks and fine the one with the same UUID, and take the
2794 * locking right.
2795 *
2796 * The other way to go suggested by Al Viro is to create a separate
2797 * 'ubifs-debug' file-system instead.
2798 */
2799 if (file->f_path.dentry == d->dfs_dump_lprops) {
2800 ubifs_dump_lprops(c);
2801 return count;
2802 }
2803 if (file->f_path.dentry == d->dfs_dump_budg) {
2804 ubifs_dump_budg(c, &c->bi);
2805 return count;
2806 }
2807 if (file->f_path.dentry == d->dfs_dump_tnc) {
2808 mutex_lock(&c->tnc_mutex);
2809 ubifs_dump_tnc(c);
2810 mutex_unlock(&c->tnc_mutex);
2811 return count;
2812 }
2813
2814 val = interpret_user_input(u, count);
2815 if (val < 0)
2816 return val;
2817
2818 if (dent == d->dfs_chk_gen)
2819 d->chk_gen = val;
2820 else if (dent == d->dfs_chk_index)
2821 d->chk_index = val;
2822 else if (dent == d->dfs_chk_orph)
2823 d->chk_orph = val;
2824 else if (dent == d->dfs_chk_lprops)
2825 d->chk_lprops = val;
2826 else if (dent == d->dfs_chk_fs)
2827 d->chk_fs = val;
2828 else if (dent == d->dfs_tst_rcvry)
2829 d->tst_rcvry = val;
2830 else if (dent == d->dfs_ro_error)
2831 c->ro_error = !!val;
2832 else
2833 return -EINVAL;
2834
2835 return count;
2836 }
2837
2838 static const struct file_operations dfs_fops = {
2839 .open = dfs_file_open,
2840 .read = dfs_file_read,
2841 .write = dfs_file_write,
2842 .owner = THIS_MODULE,
2843 .llseek = no_llseek,
2844 };
2845
2846 /**
2847 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2848 * @c: UBIFS file-system description object
2849 *
2850 * This function creates all debugfs files for this instance of UBIFS. Returns
2851 * zero in case of success and a negative error code in case of failure.
2852 *
2853 * Note, the only reason we have not merged this function with the
2854 * 'ubifs_debugging_init()' function is because it is better to initialize
2855 * debugfs interfaces at the very end of the mount process, and remove them at
2856 * the very beginning of the mount process.
2857 */
2858 int dbg_debugfs_init_fs(struct ubifs_info *c)
2859 {
2860 int err, n;
2861 const char *fname;
2862 struct dentry *dent;
2863 struct ubifs_debug_info *d = c->dbg;
2864
2865 if (!IS_ENABLED(CONFIG_DEBUG_FS))
2866 return 0;
2867
2868 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2869 c->vi.ubi_num, c->vi.vol_id);
2870 if (n == UBIFS_DFS_DIR_LEN) {
2871 /* The array size is too small */
2872 fname = UBIFS_DFS_DIR_NAME;
2873 dent = ERR_PTR(-EINVAL);
2874 goto out;
2875 }
2876
2877 fname = d->dfs_dir_name;
2878 dent = debugfs_create_dir(fname, dfs_rootdir);
2879 if (IS_ERR_OR_NULL(dent))
2880 goto out;
2881 d->dfs_dir = dent;
2882
2883 fname = "dump_lprops";
2884 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2885 if (IS_ERR_OR_NULL(dent))
2886 goto out_remove;
2887 d->dfs_dump_lprops = dent;
2888
2889 fname = "dump_budg";
2890 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2891 if (IS_ERR_OR_NULL(dent))
2892 goto out_remove;
2893 d->dfs_dump_budg = dent;
2894
2895 fname = "dump_tnc";
2896 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2897 if (IS_ERR_OR_NULL(dent))
2898 goto out_remove;
2899 d->dfs_dump_tnc = dent;
2900
2901 fname = "chk_general";
2902 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2903 &dfs_fops);
2904 if (IS_ERR_OR_NULL(dent))
2905 goto out_remove;
2906 d->dfs_chk_gen = dent;
2907
2908 fname = "chk_index";
2909 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2910 &dfs_fops);
2911 if (IS_ERR_OR_NULL(dent))
2912 goto out_remove;
2913 d->dfs_chk_index = dent;
2914
2915 fname = "chk_orphans";
2916 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2917 &dfs_fops);
2918 if (IS_ERR_OR_NULL(dent))
2919 goto out_remove;
2920 d->dfs_chk_orph = dent;
2921
2922 fname = "chk_lprops";
2923 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2924 &dfs_fops);
2925 if (IS_ERR_OR_NULL(dent))
2926 goto out_remove;
2927 d->dfs_chk_lprops = dent;
2928
2929 fname = "chk_fs";
2930 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2931 &dfs_fops);
2932 if (IS_ERR_OR_NULL(dent))
2933 goto out_remove;
2934 d->dfs_chk_fs = dent;
2935
2936 fname = "tst_recovery";
2937 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2938 &dfs_fops);
2939 if (IS_ERR_OR_NULL(dent))
2940 goto out_remove;
2941 d->dfs_tst_rcvry = dent;
2942
2943 fname = "ro_error";
2944 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2945 &dfs_fops);
2946 if (IS_ERR_OR_NULL(dent))
2947 goto out_remove;
2948 d->dfs_ro_error = dent;
2949
2950 return 0;
2951
2952 out_remove:
2953 debugfs_remove_recursive(d->dfs_dir);
2954 out:
2955 err = dent ? PTR_ERR(dent) : -ENODEV;
2956 ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2957 fname, err);
2958 return err;
2959 }
2960
2961 /**
2962 * dbg_debugfs_exit_fs - remove all debugfs files.
2963 * @c: UBIFS file-system description object
2964 */
2965 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2966 {
2967 if (IS_ENABLED(CONFIG_DEBUG_FS))
2968 debugfs_remove_recursive(c->dbg->dfs_dir);
2969 }
2970
2971 struct ubifs_global_debug_info ubifs_dbg;
2972
2973 static struct dentry *dfs_chk_gen;
2974 static struct dentry *dfs_chk_index;
2975 static struct dentry *dfs_chk_orph;
2976 static struct dentry *dfs_chk_lprops;
2977 static struct dentry *dfs_chk_fs;
2978 static struct dentry *dfs_tst_rcvry;
2979
2980 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2981 size_t count, loff_t *ppos)
2982 {
2983 struct dentry *dent = file->f_path.dentry;
2984 int val;
2985
2986 if (dent == dfs_chk_gen)
2987 val = ubifs_dbg.chk_gen;
2988 else if (dent == dfs_chk_index)
2989 val = ubifs_dbg.chk_index;
2990 else if (dent == dfs_chk_orph)
2991 val = ubifs_dbg.chk_orph;
2992 else if (dent == dfs_chk_lprops)
2993 val = ubifs_dbg.chk_lprops;
2994 else if (dent == dfs_chk_fs)
2995 val = ubifs_dbg.chk_fs;
2996 else if (dent == dfs_tst_rcvry)
2997 val = ubifs_dbg.tst_rcvry;
2998 else
2999 return -EINVAL;
3000
3001 return provide_user_output(val, u, count, ppos);
3002 }
3003
3004 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3005 size_t count, loff_t *ppos)
3006 {
3007 struct dentry *dent = file->f_path.dentry;
3008 int val;
3009
3010 val = interpret_user_input(u, count);
3011 if (val < 0)
3012 return val;
3013
3014 if (dent == dfs_chk_gen)
3015 ubifs_dbg.chk_gen = val;
3016 else if (dent == dfs_chk_index)
3017 ubifs_dbg.chk_index = val;
3018 else if (dent == dfs_chk_orph)
3019 ubifs_dbg.chk_orph = val;
3020 else if (dent == dfs_chk_lprops)
3021 ubifs_dbg.chk_lprops = val;
3022 else if (dent == dfs_chk_fs)
3023 ubifs_dbg.chk_fs = val;
3024 else if (dent == dfs_tst_rcvry)
3025 ubifs_dbg.tst_rcvry = val;
3026 else
3027 return -EINVAL;
3028
3029 return count;
3030 }
3031
3032 static const struct file_operations dfs_global_fops = {
3033 .read = dfs_global_file_read,
3034 .write = dfs_global_file_write,
3035 .owner = THIS_MODULE,
3036 .llseek = no_llseek,
3037 };
3038
3039 /**
3040 * dbg_debugfs_init - initialize debugfs file-system.
3041 *
3042 * UBIFS uses debugfs file-system to expose various debugging knobs to
3043 * user-space. This function creates "ubifs" directory in the debugfs
3044 * file-system. Returns zero in case of success and a negative error code in
3045 * case of failure.
3046 */
3047 int dbg_debugfs_init(void)
3048 {
3049 int err;
3050 const char *fname;
3051 struct dentry *dent;
3052
3053 if (!IS_ENABLED(CONFIG_DEBUG_FS))
3054 return 0;
3055
3056 fname = "ubifs";
3057 dent = debugfs_create_dir(fname, NULL);
3058 if (IS_ERR_OR_NULL(dent))
3059 goto out;
3060 dfs_rootdir = dent;
3061
3062 fname = "chk_general";
3063 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3064 &dfs_global_fops);
3065 if (IS_ERR_OR_NULL(dent))
3066 goto out_remove;
3067 dfs_chk_gen = dent;
3068
3069 fname = "chk_index";
3070 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3071 &dfs_global_fops);
3072 if (IS_ERR_OR_NULL(dent))
3073 goto out_remove;
3074 dfs_chk_index = dent;
3075
3076 fname = "chk_orphans";
3077 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3078 &dfs_global_fops);
3079 if (IS_ERR_OR_NULL(dent))
3080 goto out_remove;
3081 dfs_chk_orph = dent;
3082
3083 fname = "chk_lprops";
3084 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3085 &dfs_global_fops);
3086 if (IS_ERR_OR_NULL(dent))
3087 goto out_remove;
3088 dfs_chk_lprops = dent;
3089
3090 fname = "chk_fs";
3091 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3092 &dfs_global_fops);
3093 if (IS_ERR_OR_NULL(dent))
3094 goto out_remove;
3095 dfs_chk_fs = dent;
3096
3097 fname = "tst_recovery";
3098 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3099 &dfs_global_fops);
3100 if (IS_ERR_OR_NULL(dent))
3101 goto out_remove;
3102 dfs_tst_rcvry = dent;
3103
3104 return 0;
3105
3106 out_remove:
3107 debugfs_remove_recursive(dfs_rootdir);
3108 out:
3109 err = dent ? PTR_ERR(dent) : -ENODEV;
3110 pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3111 current->pid, fname, err);
3112 return err;
3113 }
3114
3115 /**
3116 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3117 */
3118 void dbg_debugfs_exit(void)
3119 {
3120 if (IS_ENABLED(CONFIG_DEBUG_FS))
3121 debugfs_remove_recursive(dfs_rootdir);
3122 }
3123
3124 /**
3125 * ubifs_debugging_init - initialize UBIFS debugging.
3126 * @c: UBIFS file-system description object
3127 *
3128 * This function initializes debugging-related data for the file system.
3129 * Returns zero in case of success and a negative error code in case of
3130 * failure.
3131 */
3132 int ubifs_debugging_init(struct ubifs_info *c)
3133 {
3134 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3135 if (!c->dbg)
3136 return -ENOMEM;
3137
3138 return 0;
3139 }
3140
3141 /**
3142 * ubifs_debugging_exit - free debugging data.
3143 * @c: UBIFS file-system description object
3144 */
3145 void ubifs_debugging_exit(struct ubifs_info *c)
3146 {
3147 kfree(c->dbg);
3148 }
3149 #endif