]> git.ipfire.org Git - people/ms/u-boot.git/blob - fs/ubifs/lpt_commit.c
mtd, ubi, ubifs: resync with Linux-3.14
[people/ms/u-boot.git] / fs / ubifs / lpt_commit.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 *
8 * Authors: Adrian Hunter
9 * Artem Bityutskiy (Битюцкий Артём)
10 */
11
12 /*
13 * This file implements commit-related functionality of the LEB properties
14 * subsystem.
15 */
16
17 #define __UBOOT__
18 #ifndef __UBOOT__
19 #include <linux/crc16.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #else
23 #include <linux/compat.h>
24 #include <linux/err.h>
25 #include "crc16.h"
26 #endif
27 #include "ubifs.h"
28
29 #ifndef __UBOOT__
30 static int dbg_populate_lsave(struct ubifs_info *c);
31 #endif
32
33 /**
34 * first_dirty_cnode - find first dirty cnode.
35 * @c: UBIFS file-system description object
36 * @nnode: nnode at which to start
37 *
38 * This function returns the first dirty cnode or %NULL if there is not one.
39 */
40 static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
41 {
42 ubifs_assert(nnode);
43 while (1) {
44 int i, cont = 0;
45
46 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
47 struct ubifs_cnode *cnode;
48
49 cnode = nnode->nbranch[i].cnode;
50 if (cnode &&
51 test_bit(DIRTY_CNODE, &cnode->flags)) {
52 if (cnode->level == 0)
53 return cnode;
54 nnode = (struct ubifs_nnode *)cnode;
55 cont = 1;
56 break;
57 }
58 }
59 if (!cont)
60 return (struct ubifs_cnode *)nnode;
61 }
62 }
63
64 /**
65 * next_dirty_cnode - find next dirty cnode.
66 * @cnode: cnode from which to begin searching
67 *
68 * This function returns the next dirty cnode or %NULL if there is not one.
69 */
70 static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
71 {
72 struct ubifs_nnode *nnode;
73 int i;
74
75 ubifs_assert(cnode);
76 nnode = cnode->parent;
77 if (!nnode)
78 return NULL;
79 for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
80 cnode = nnode->nbranch[i].cnode;
81 if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
82 if (cnode->level == 0)
83 return cnode; /* cnode is a pnode */
84 /* cnode is a nnode */
85 return first_dirty_cnode((struct ubifs_nnode *)cnode);
86 }
87 }
88 return (struct ubifs_cnode *)nnode;
89 }
90
91 /**
92 * get_cnodes_to_commit - create list of dirty cnodes to commit.
93 * @c: UBIFS file-system description object
94 *
95 * This function returns the number of cnodes to commit.
96 */
97 static int get_cnodes_to_commit(struct ubifs_info *c)
98 {
99 struct ubifs_cnode *cnode, *cnext;
100 int cnt = 0;
101
102 if (!c->nroot)
103 return 0;
104
105 if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
106 return 0;
107
108 c->lpt_cnext = first_dirty_cnode(c->nroot);
109 cnode = c->lpt_cnext;
110 if (!cnode)
111 return 0;
112 cnt += 1;
113 while (1) {
114 ubifs_assert(!test_bit(COW_CNODE, &cnode->flags));
115 __set_bit(COW_CNODE, &cnode->flags);
116 cnext = next_dirty_cnode(cnode);
117 if (!cnext) {
118 cnode->cnext = c->lpt_cnext;
119 break;
120 }
121 cnode->cnext = cnext;
122 cnode = cnext;
123 cnt += 1;
124 }
125 dbg_cmt("committing %d cnodes", cnt);
126 dbg_lp("committing %d cnodes", cnt);
127 ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
128 return cnt;
129 }
130
131 /**
132 * upd_ltab - update LPT LEB properties.
133 * @c: UBIFS file-system description object
134 * @lnum: LEB number
135 * @free: amount of free space
136 * @dirty: amount of dirty space to add
137 */
138 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
139 {
140 dbg_lp("LEB %d free %d dirty %d to %d +%d",
141 lnum, c->ltab[lnum - c->lpt_first].free,
142 c->ltab[lnum - c->lpt_first].dirty, free, dirty);
143 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
144 c->ltab[lnum - c->lpt_first].free = free;
145 c->ltab[lnum - c->lpt_first].dirty += dirty;
146 }
147
148 /**
149 * alloc_lpt_leb - allocate an LPT LEB that is empty.
150 * @c: UBIFS file-system description object
151 * @lnum: LEB number is passed and returned here
152 *
153 * This function finds the next empty LEB in the ltab starting from @lnum. If a
154 * an empty LEB is found it is returned in @lnum and the function returns %0.
155 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
156 * never to run out of space.
157 */
158 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
159 {
160 int i, n;
161
162 n = *lnum - c->lpt_first + 1;
163 for (i = n; i < c->lpt_lebs; i++) {
164 if (c->ltab[i].tgc || c->ltab[i].cmt)
165 continue;
166 if (c->ltab[i].free == c->leb_size) {
167 c->ltab[i].cmt = 1;
168 *lnum = i + c->lpt_first;
169 return 0;
170 }
171 }
172
173 for (i = 0; i < n; i++) {
174 if (c->ltab[i].tgc || c->ltab[i].cmt)
175 continue;
176 if (c->ltab[i].free == c->leb_size) {
177 c->ltab[i].cmt = 1;
178 *lnum = i + c->lpt_first;
179 return 0;
180 }
181 }
182 return -ENOSPC;
183 }
184
185 /**
186 * layout_cnodes - layout cnodes for commit.
187 * @c: UBIFS file-system description object
188 *
189 * This function returns %0 on success and a negative error code on failure.
190 */
191 static int layout_cnodes(struct ubifs_info *c)
192 {
193 int lnum, offs, len, alen, done_lsave, done_ltab, err;
194 struct ubifs_cnode *cnode;
195
196 err = dbg_chk_lpt_sz(c, 0, 0);
197 if (err)
198 return err;
199 cnode = c->lpt_cnext;
200 if (!cnode)
201 return 0;
202 lnum = c->nhead_lnum;
203 offs = c->nhead_offs;
204 /* Try to place lsave and ltab nicely */
205 done_lsave = !c->big_lpt;
206 done_ltab = 0;
207 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
208 done_lsave = 1;
209 c->lsave_lnum = lnum;
210 c->lsave_offs = offs;
211 offs += c->lsave_sz;
212 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
213 }
214
215 if (offs + c->ltab_sz <= c->leb_size) {
216 done_ltab = 1;
217 c->ltab_lnum = lnum;
218 c->ltab_offs = offs;
219 offs += c->ltab_sz;
220 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
221 }
222
223 do {
224 if (cnode->level) {
225 len = c->nnode_sz;
226 c->dirty_nn_cnt -= 1;
227 } else {
228 len = c->pnode_sz;
229 c->dirty_pn_cnt -= 1;
230 }
231 while (offs + len > c->leb_size) {
232 alen = ALIGN(offs, c->min_io_size);
233 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
234 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
235 err = alloc_lpt_leb(c, &lnum);
236 if (err)
237 goto no_space;
238 offs = 0;
239 ubifs_assert(lnum >= c->lpt_first &&
240 lnum <= c->lpt_last);
241 /* Try to place lsave and ltab nicely */
242 if (!done_lsave) {
243 done_lsave = 1;
244 c->lsave_lnum = lnum;
245 c->lsave_offs = offs;
246 offs += c->lsave_sz;
247 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
248 continue;
249 }
250 if (!done_ltab) {
251 done_ltab = 1;
252 c->ltab_lnum = lnum;
253 c->ltab_offs = offs;
254 offs += c->ltab_sz;
255 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
256 continue;
257 }
258 break;
259 }
260 if (cnode->parent) {
261 cnode->parent->nbranch[cnode->iip].lnum = lnum;
262 cnode->parent->nbranch[cnode->iip].offs = offs;
263 } else {
264 c->lpt_lnum = lnum;
265 c->lpt_offs = offs;
266 }
267 offs += len;
268 dbg_chk_lpt_sz(c, 1, len);
269 cnode = cnode->cnext;
270 } while (cnode && cnode != c->lpt_cnext);
271
272 /* Make sure to place LPT's save table */
273 if (!done_lsave) {
274 if (offs + c->lsave_sz > c->leb_size) {
275 alen = ALIGN(offs, c->min_io_size);
276 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
277 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
278 err = alloc_lpt_leb(c, &lnum);
279 if (err)
280 goto no_space;
281 offs = 0;
282 ubifs_assert(lnum >= c->lpt_first &&
283 lnum <= c->lpt_last);
284 }
285 done_lsave = 1;
286 c->lsave_lnum = lnum;
287 c->lsave_offs = offs;
288 offs += c->lsave_sz;
289 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
290 }
291
292 /* Make sure to place LPT's own lprops table */
293 if (!done_ltab) {
294 if (offs + c->ltab_sz > c->leb_size) {
295 alen = ALIGN(offs, c->min_io_size);
296 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
297 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
298 err = alloc_lpt_leb(c, &lnum);
299 if (err)
300 goto no_space;
301 offs = 0;
302 ubifs_assert(lnum >= c->lpt_first &&
303 lnum <= c->lpt_last);
304 }
305 done_ltab = 1;
306 c->ltab_lnum = lnum;
307 c->ltab_offs = offs;
308 offs += c->ltab_sz;
309 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
310 }
311
312 alen = ALIGN(offs, c->min_io_size);
313 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
314 dbg_chk_lpt_sz(c, 4, alen - offs);
315 err = dbg_chk_lpt_sz(c, 3, alen);
316 if (err)
317 return err;
318 return 0;
319
320 no_space:
321 ubifs_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
322 lnum, offs, len, done_ltab, done_lsave);
323 ubifs_dump_lpt_info(c);
324 ubifs_dump_lpt_lebs(c);
325 dump_stack();
326 return err;
327 }
328
329 #ifndef __UBOOT__
330 /**
331 * realloc_lpt_leb - allocate an LPT LEB that is empty.
332 * @c: UBIFS file-system description object
333 * @lnum: LEB number is passed and returned here
334 *
335 * This function duplicates exactly the results of the function alloc_lpt_leb.
336 * It is used during end commit to reallocate the same LEB numbers that were
337 * allocated by alloc_lpt_leb during start commit.
338 *
339 * This function finds the next LEB that was allocated by the alloc_lpt_leb
340 * function starting from @lnum. If a LEB is found it is returned in @lnum and
341 * the function returns %0. Otherwise the function returns -ENOSPC.
342 * Note however, that LPT is designed never to run out of space.
343 */
344 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
345 {
346 int i, n;
347
348 n = *lnum - c->lpt_first + 1;
349 for (i = n; i < c->lpt_lebs; i++)
350 if (c->ltab[i].cmt) {
351 c->ltab[i].cmt = 0;
352 *lnum = i + c->lpt_first;
353 return 0;
354 }
355
356 for (i = 0; i < n; i++)
357 if (c->ltab[i].cmt) {
358 c->ltab[i].cmt = 0;
359 *lnum = i + c->lpt_first;
360 return 0;
361 }
362 return -ENOSPC;
363 }
364
365 /**
366 * write_cnodes - write cnodes for commit.
367 * @c: UBIFS file-system description object
368 *
369 * This function returns %0 on success and a negative error code on failure.
370 */
371 static int write_cnodes(struct ubifs_info *c)
372 {
373 int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
374 struct ubifs_cnode *cnode;
375 void *buf = c->lpt_buf;
376
377 cnode = c->lpt_cnext;
378 if (!cnode)
379 return 0;
380 lnum = c->nhead_lnum;
381 offs = c->nhead_offs;
382 from = offs;
383 /* Ensure empty LEB is unmapped */
384 if (offs == 0) {
385 err = ubifs_leb_unmap(c, lnum);
386 if (err)
387 return err;
388 }
389 /* Try to place lsave and ltab nicely */
390 done_lsave = !c->big_lpt;
391 done_ltab = 0;
392 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
393 done_lsave = 1;
394 ubifs_pack_lsave(c, buf + offs, c->lsave);
395 offs += c->lsave_sz;
396 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
397 }
398
399 if (offs + c->ltab_sz <= c->leb_size) {
400 done_ltab = 1;
401 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
402 offs += c->ltab_sz;
403 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
404 }
405
406 /* Loop for each cnode */
407 do {
408 if (cnode->level)
409 len = c->nnode_sz;
410 else
411 len = c->pnode_sz;
412 while (offs + len > c->leb_size) {
413 wlen = offs - from;
414 if (wlen) {
415 alen = ALIGN(wlen, c->min_io_size);
416 memset(buf + offs, 0xff, alen - wlen);
417 err = ubifs_leb_write(c, lnum, buf + from, from,
418 alen);
419 if (err)
420 return err;
421 }
422 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
423 err = realloc_lpt_leb(c, &lnum);
424 if (err)
425 goto no_space;
426 offs = from = 0;
427 ubifs_assert(lnum >= c->lpt_first &&
428 lnum <= c->lpt_last);
429 err = ubifs_leb_unmap(c, lnum);
430 if (err)
431 return err;
432 /* Try to place lsave and ltab nicely */
433 if (!done_lsave) {
434 done_lsave = 1;
435 ubifs_pack_lsave(c, buf + offs, c->lsave);
436 offs += c->lsave_sz;
437 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
438 continue;
439 }
440 if (!done_ltab) {
441 done_ltab = 1;
442 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
443 offs += c->ltab_sz;
444 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
445 continue;
446 }
447 break;
448 }
449 if (cnode->level)
450 ubifs_pack_nnode(c, buf + offs,
451 (struct ubifs_nnode *)cnode);
452 else
453 ubifs_pack_pnode(c, buf + offs,
454 (struct ubifs_pnode *)cnode);
455 /*
456 * The reason for the barriers is the same as in case of TNC.
457 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
458 * 'dirty_cow_pnode()' are the functions for which this is
459 * important.
460 */
461 clear_bit(DIRTY_CNODE, &cnode->flags);
462 smp_mb__before_clear_bit();
463 clear_bit(COW_CNODE, &cnode->flags);
464 smp_mb__after_clear_bit();
465 offs += len;
466 dbg_chk_lpt_sz(c, 1, len);
467 cnode = cnode->cnext;
468 } while (cnode && cnode != c->lpt_cnext);
469
470 /* Make sure to place LPT's save table */
471 if (!done_lsave) {
472 if (offs + c->lsave_sz > c->leb_size) {
473 wlen = offs - from;
474 alen = ALIGN(wlen, c->min_io_size);
475 memset(buf + offs, 0xff, alen - wlen);
476 err = ubifs_leb_write(c, lnum, buf + from, from, alen);
477 if (err)
478 return err;
479 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
480 err = realloc_lpt_leb(c, &lnum);
481 if (err)
482 goto no_space;
483 offs = from = 0;
484 ubifs_assert(lnum >= c->lpt_first &&
485 lnum <= c->lpt_last);
486 err = ubifs_leb_unmap(c, lnum);
487 if (err)
488 return err;
489 }
490 done_lsave = 1;
491 ubifs_pack_lsave(c, buf + offs, c->lsave);
492 offs += c->lsave_sz;
493 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
494 }
495
496 /* Make sure to place LPT's own lprops table */
497 if (!done_ltab) {
498 if (offs + c->ltab_sz > c->leb_size) {
499 wlen = offs - from;
500 alen = ALIGN(wlen, c->min_io_size);
501 memset(buf + offs, 0xff, alen - wlen);
502 err = ubifs_leb_write(c, lnum, buf + from, from, alen);
503 if (err)
504 return err;
505 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
506 err = realloc_lpt_leb(c, &lnum);
507 if (err)
508 goto no_space;
509 offs = from = 0;
510 ubifs_assert(lnum >= c->lpt_first &&
511 lnum <= c->lpt_last);
512 err = ubifs_leb_unmap(c, lnum);
513 if (err)
514 return err;
515 }
516 done_ltab = 1;
517 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
518 offs += c->ltab_sz;
519 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
520 }
521
522 /* Write remaining data in buffer */
523 wlen = offs - from;
524 alen = ALIGN(wlen, c->min_io_size);
525 memset(buf + offs, 0xff, alen - wlen);
526 err = ubifs_leb_write(c, lnum, buf + from, from, alen);
527 if (err)
528 return err;
529
530 dbg_chk_lpt_sz(c, 4, alen - wlen);
531 err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
532 if (err)
533 return err;
534
535 c->nhead_lnum = lnum;
536 c->nhead_offs = ALIGN(offs, c->min_io_size);
537
538 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
539 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
540 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
541 if (c->big_lpt)
542 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
543
544 return 0;
545
546 no_space:
547 ubifs_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
548 lnum, offs, len, done_ltab, done_lsave);
549 ubifs_dump_lpt_info(c);
550 ubifs_dump_lpt_lebs(c);
551 dump_stack();
552 return err;
553 }
554 #endif
555
556 /**
557 * next_pnode_to_dirty - find next pnode to dirty.
558 * @c: UBIFS file-system description object
559 * @pnode: pnode
560 *
561 * This function returns the next pnode to dirty or %NULL if there are no more
562 * pnodes. Note that pnodes that have never been written (lnum == 0) are
563 * skipped.
564 */
565 static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
566 struct ubifs_pnode *pnode)
567 {
568 struct ubifs_nnode *nnode;
569 int iip;
570
571 /* Try to go right */
572 nnode = pnode->parent;
573 for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
574 if (nnode->nbranch[iip].lnum)
575 return ubifs_get_pnode(c, nnode, iip);
576 }
577
578 /* Go up while can't go right */
579 do {
580 iip = nnode->iip + 1;
581 nnode = nnode->parent;
582 if (!nnode)
583 return NULL;
584 for (; iip < UBIFS_LPT_FANOUT; iip++) {
585 if (nnode->nbranch[iip].lnum)
586 break;
587 }
588 } while (iip >= UBIFS_LPT_FANOUT);
589
590 /* Go right */
591 nnode = ubifs_get_nnode(c, nnode, iip);
592 if (IS_ERR(nnode))
593 return (void *)nnode;
594
595 /* Go down to level 1 */
596 while (nnode->level > 1) {
597 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
598 if (nnode->nbranch[iip].lnum)
599 break;
600 }
601 if (iip >= UBIFS_LPT_FANOUT) {
602 /*
603 * Should not happen, but we need to keep going
604 * if it does.
605 */
606 iip = 0;
607 }
608 nnode = ubifs_get_nnode(c, nnode, iip);
609 if (IS_ERR(nnode))
610 return (void *)nnode;
611 }
612
613 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
614 if (nnode->nbranch[iip].lnum)
615 break;
616 if (iip >= UBIFS_LPT_FANOUT)
617 /* Should not happen, but we need to keep going if it does */
618 iip = 0;
619 return ubifs_get_pnode(c, nnode, iip);
620 }
621
622 /**
623 * pnode_lookup - lookup a pnode in the LPT.
624 * @c: UBIFS file-system description object
625 * @i: pnode number (0 to main_lebs - 1)
626 *
627 * This function returns a pointer to the pnode on success or a negative
628 * error code on failure.
629 */
630 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
631 {
632 int err, h, iip, shft;
633 struct ubifs_nnode *nnode;
634
635 if (!c->nroot) {
636 err = ubifs_read_nnode(c, NULL, 0);
637 if (err)
638 return ERR_PTR(err);
639 }
640 i <<= UBIFS_LPT_FANOUT_SHIFT;
641 nnode = c->nroot;
642 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
643 for (h = 1; h < c->lpt_hght; h++) {
644 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
645 shft -= UBIFS_LPT_FANOUT_SHIFT;
646 nnode = ubifs_get_nnode(c, nnode, iip);
647 if (IS_ERR(nnode))
648 return ERR_CAST(nnode);
649 }
650 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
651 return ubifs_get_pnode(c, nnode, iip);
652 }
653
654 /**
655 * add_pnode_dirt - add dirty space to LPT LEB properties.
656 * @c: UBIFS file-system description object
657 * @pnode: pnode for which to add dirt
658 */
659 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
660 {
661 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
662 c->pnode_sz);
663 }
664
665 /**
666 * do_make_pnode_dirty - mark a pnode dirty.
667 * @c: UBIFS file-system description object
668 * @pnode: pnode to mark dirty
669 */
670 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
671 {
672 /* Assumes cnext list is empty i.e. not called during commit */
673 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
674 struct ubifs_nnode *nnode;
675
676 c->dirty_pn_cnt += 1;
677 add_pnode_dirt(c, pnode);
678 /* Mark parent and ancestors dirty too */
679 nnode = pnode->parent;
680 while (nnode) {
681 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
682 c->dirty_nn_cnt += 1;
683 ubifs_add_nnode_dirt(c, nnode);
684 nnode = nnode->parent;
685 } else
686 break;
687 }
688 }
689 }
690
691 /**
692 * make_tree_dirty - mark the entire LEB properties tree dirty.
693 * @c: UBIFS file-system description object
694 *
695 * This function is used by the "small" LPT model to cause the entire LEB
696 * properties tree to be written. The "small" LPT model does not use LPT
697 * garbage collection because it is more efficient to write the entire tree
698 * (because it is small).
699 *
700 * This function returns %0 on success and a negative error code on failure.
701 */
702 static int make_tree_dirty(struct ubifs_info *c)
703 {
704 struct ubifs_pnode *pnode;
705
706 pnode = pnode_lookup(c, 0);
707 if (IS_ERR(pnode))
708 return PTR_ERR(pnode);
709
710 while (pnode) {
711 do_make_pnode_dirty(c, pnode);
712 pnode = next_pnode_to_dirty(c, pnode);
713 if (IS_ERR(pnode))
714 return PTR_ERR(pnode);
715 }
716 return 0;
717 }
718
719 /**
720 * need_write_all - determine if the LPT area is running out of free space.
721 * @c: UBIFS file-system description object
722 *
723 * This function returns %1 if the LPT area is running out of free space and %0
724 * if it is not.
725 */
726 static int need_write_all(struct ubifs_info *c)
727 {
728 long long free = 0;
729 int i;
730
731 for (i = 0; i < c->lpt_lebs; i++) {
732 if (i + c->lpt_first == c->nhead_lnum)
733 free += c->leb_size - c->nhead_offs;
734 else if (c->ltab[i].free == c->leb_size)
735 free += c->leb_size;
736 else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
737 free += c->leb_size;
738 }
739 /* Less than twice the size left */
740 if (free <= c->lpt_sz * 2)
741 return 1;
742 return 0;
743 }
744
745 /**
746 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
747 * @c: UBIFS file-system description object
748 *
749 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
750 * free space and so may be reused as soon as the next commit is completed.
751 * This function is called during start commit to mark LPT LEBs for trivial GC.
752 */
753 static void lpt_tgc_start(struct ubifs_info *c)
754 {
755 int i;
756
757 for (i = 0; i < c->lpt_lebs; i++) {
758 if (i + c->lpt_first == c->nhead_lnum)
759 continue;
760 if (c->ltab[i].dirty > 0 &&
761 c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
762 c->ltab[i].tgc = 1;
763 c->ltab[i].free = c->leb_size;
764 c->ltab[i].dirty = 0;
765 dbg_lp("LEB %d", i + c->lpt_first);
766 }
767 }
768 }
769
770 /**
771 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
772 * @c: UBIFS file-system description object
773 *
774 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
775 * free space and so may be reused as soon as the next commit is completed.
776 * This function is called after the commit is completed (master node has been
777 * written) and un-maps LPT LEBs that were marked for trivial GC.
778 */
779 static int lpt_tgc_end(struct ubifs_info *c)
780 {
781 int i, err;
782
783 for (i = 0; i < c->lpt_lebs; i++)
784 if (c->ltab[i].tgc) {
785 err = ubifs_leb_unmap(c, i + c->lpt_first);
786 if (err)
787 return err;
788 c->ltab[i].tgc = 0;
789 dbg_lp("LEB %d", i + c->lpt_first);
790 }
791 return 0;
792 }
793
794 /**
795 * populate_lsave - fill the lsave array with important LEB numbers.
796 * @c: the UBIFS file-system description object
797 *
798 * This function is only called for the "big" model. It records a small number
799 * of LEB numbers of important LEBs. Important LEBs are ones that are (from
800 * most important to least important): empty, freeable, freeable index, dirty
801 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
802 * their pnodes into memory. That will stop us from having to scan the LPT
803 * straight away. For the "small" model we assume that scanning the LPT is no
804 * big deal.
805 */
806 static void populate_lsave(struct ubifs_info *c)
807 {
808 struct ubifs_lprops *lprops;
809 struct ubifs_lpt_heap *heap;
810 int i, cnt = 0;
811
812 ubifs_assert(c->big_lpt);
813 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
814 c->lpt_drty_flgs |= LSAVE_DIRTY;
815 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
816 }
817
818 #ifndef __UBOOT__
819 if (dbg_populate_lsave(c))
820 return;
821 #endif
822
823 list_for_each_entry(lprops, &c->empty_list, list) {
824 c->lsave[cnt++] = lprops->lnum;
825 if (cnt >= c->lsave_cnt)
826 return;
827 }
828 list_for_each_entry(lprops, &c->freeable_list, list) {
829 c->lsave[cnt++] = lprops->lnum;
830 if (cnt >= c->lsave_cnt)
831 return;
832 }
833 list_for_each_entry(lprops, &c->frdi_idx_list, list) {
834 c->lsave[cnt++] = lprops->lnum;
835 if (cnt >= c->lsave_cnt)
836 return;
837 }
838 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
839 for (i = 0; i < heap->cnt; i++) {
840 c->lsave[cnt++] = heap->arr[i]->lnum;
841 if (cnt >= c->lsave_cnt)
842 return;
843 }
844 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
845 for (i = 0; i < heap->cnt; i++) {
846 c->lsave[cnt++] = heap->arr[i]->lnum;
847 if (cnt >= c->lsave_cnt)
848 return;
849 }
850 heap = &c->lpt_heap[LPROPS_FREE - 1];
851 for (i = 0; i < heap->cnt; i++) {
852 c->lsave[cnt++] = heap->arr[i]->lnum;
853 if (cnt >= c->lsave_cnt)
854 return;
855 }
856 /* Fill it up completely */
857 while (cnt < c->lsave_cnt)
858 c->lsave[cnt++] = c->main_first;
859 }
860
861 /**
862 * nnode_lookup - lookup a nnode in the LPT.
863 * @c: UBIFS file-system description object
864 * @i: nnode number
865 *
866 * This function returns a pointer to the nnode on success or a negative
867 * error code on failure.
868 */
869 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
870 {
871 int err, iip;
872 struct ubifs_nnode *nnode;
873
874 if (!c->nroot) {
875 err = ubifs_read_nnode(c, NULL, 0);
876 if (err)
877 return ERR_PTR(err);
878 }
879 nnode = c->nroot;
880 while (1) {
881 iip = i & (UBIFS_LPT_FANOUT - 1);
882 i >>= UBIFS_LPT_FANOUT_SHIFT;
883 if (!i)
884 break;
885 nnode = ubifs_get_nnode(c, nnode, iip);
886 if (IS_ERR(nnode))
887 return nnode;
888 }
889 return nnode;
890 }
891
892 /**
893 * make_nnode_dirty - find a nnode and, if found, make it dirty.
894 * @c: UBIFS file-system description object
895 * @node_num: nnode number of nnode to make dirty
896 * @lnum: LEB number where nnode was written
897 * @offs: offset where nnode was written
898 *
899 * This function is used by LPT garbage collection. LPT garbage collection is
900 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
901 * simply involves marking all the nodes in the LEB being garbage-collected as
902 * dirty. The dirty nodes are written next commit, after which the LEB is free
903 * to be reused.
904 *
905 * This function returns %0 on success and a negative error code on failure.
906 */
907 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
908 int offs)
909 {
910 struct ubifs_nnode *nnode;
911
912 nnode = nnode_lookup(c, node_num);
913 if (IS_ERR(nnode))
914 return PTR_ERR(nnode);
915 if (nnode->parent) {
916 struct ubifs_nbranch *branch;
917
918 branch = &nnode->parent->nbranch[nnode->iip];
919 if (branch->lnum != lnum || branch->offs != offs)
920 return 0; /* nnode is obsolete */
921 } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
922 return 0; /* nnode is obsolete */
923 /* Assumes cnext list is empty i.e. not called during commit */
924 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
925 c->dirty_nn_cnt += 1;
926 ubifs_add_nnode_dirt(c, nnode);
927 /* Mark parent and ancestors dirty too */
928 nnode = nnode->parent;
929 while (nnode) {
930 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
931 c->dirty_nn_cnt += 1;
932 ubifs_add_nnode_dirt(c, nnode);
933 nnode = nnode->parent;
934 } else
935 break;
936 }
937 }
938 return 0;
939 }
940
941 /**
942 * make_pnode_dirty - find a pnode and, if found, make it dirty.
943 * @c: UBIFS file-system description object
944 * @node_num: pnode number of pnode to make dirty
945 * @lnum: LEB number where pnode was written
946 * @offs: offset where pnode was written
947 *
948 * This function is used by LPT garbage collection. LPT garbage collection is
949 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
950 * simply involves marking all the nodes in the LEB being garbage-collected as
951 * dirty. The dirty nodes are written next commit, after which the LEB is free
952 * to be reused.
953 *
954 * This function returns %0 on success and a negative error code on failure.
955 */
956 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
957 int offs)
958 {
959 struct ubifs_pnode *pnode;
960 struct ubifs_nbranch *branch;
961
962 pnode = pnode_lookup(c, node_num);
963 if (IS_ERR(pnode))
964 return PTR_ERR(pnode);
965 branch = &pnode->parent->nbranch[pnode->iip];
966 if (branch->lnum != lnum || branch->offs != offs)
967 return 0;
968 do_make_pnode_dirty(c, pnode);
969 return 0;
970 }
971
972 /**
973 * make_ltab_dirty - make ltab node dirty.
974 * @c: UBIFS file-system description object
975 * @lnum: LEB number where ltab was written
976 * @offs: offset where ltab was written
977 *
978 * This function is used by LPT garbage collection. LPT garbage collection is
979 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
980 * simply involves marking all the nodes in the LEB being garbage-collected as
981 * dirty. The dirty nodes are written next commit, after which the LEB is free
982 * to be reused.
983 *
984 * This function returns %0 on success and a negative error code on failure.
985 */
986 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
987 {
988 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
989 return 0; /* This ltab node is obsolete */
990 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
991 c->lpt_drty_flgs |= LTAB_DIRTY;
992 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
993 }
994 return 0;
995 }
996
997 /**
998 * make_lsave_dirty - make lsave node dirty.
999 * @c: UBIFS file-system description object
1000 * @lnum: LEB number where lsave was written
1001 * @offs: offset where lsave was written
1002 *
1003 * This function is used by LPT garbage collection. LPT garbage collection is
1004 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1005 * simply involves marking all the nodes in the LEB being garbage-collected as
1006 * dirty. The dirty nodes are written next commit, after which the LEB is free
1007 * to be reused.
1008 *
1009 * This function returns %0 on success and a negative error code on failure.
1010 */
1011 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1012 {
1013 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1014 return 0; /* This lsave node is obsolete */
1015 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1016 c->lpt_drty_flgs |= LSAVE_DIRTY;
1017 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1018 }
1019 return 0;
1020 }
1021
1022 /**
1023 * make_node_dirty - make node dirty.
1024 * @c: UBIFS file-system description object
1025 * @node_type: LPT node type
1026 * @node_num: node number
1027 * @lnum: LEB number where node was written
1028 * @offs: offset where node was written
1029 *
1030 * This function is used by LPT garbage collection. LPT garbage collection is
1031 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1032 * simply involves marking all the nodes in the LEB being garbage-collected as
1033 * dirty. The dirty nodes are written next commit, after which the LEB is free
1034 * to be reused.
1035 *
1036 * This function returns %0 on success and a negative error code on failure.
1037 */
1038 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1039 int lnum, int offs)
1040 {
1041 switch (node_type) {
1042 case UBIFS_LPT_NNODE:
1043 return make_nnode_dirty(c, node_num, lnum, offs);
1044 case UBIFS_LPT_PNODE:
1045 return make_pnode_dirty(c, node_num, lnum, offs);
1046 case UBIFS_LPT_LTAB:
1047 return make_ltab_dirty(c, lnum, offs);
1048 case UBIFS_LPT_LSAVE:
1049 return make_lsave_dirty(c, lnum, offs);
1050 }
1051 return -EINVAL;
1052 }
1053
1054 /**
1055 * get_lpt_node_len - return the length of a node based on its type.
1056 * @c: UBIFS file-system description object
1057 * @node_type: LPT node type
1058 */
1059 static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1060 {
1061 switch (node_type) {
1062 case UBIFS_LPT_NNODE:
1063 return c->nnode_sz;
1064 case UBIFS_LPT_PNODE:
1065 return c->pnode_sz;
1066 case UBIFS_LPT_LTAB:
1067 return c->ltab_sz;
1068 case UBIFS_LPT_LSAVE:
1069 return c->lsave_sz;
1070 }
1071 return 0;
1072 }
1073
1074 /**
1075 * get_pad_len - return the length of padding in a buffer.
1076 * @c: UBIFS file-system description object
1077 * @buf: buffer
1078 * @len: length of buffer
1079 */
1080 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1081 {
1082 int offs, pad_len;
1083
1084 if (c->min_io_size == 1)
1085 return 0;
1086 offs = c->leb_size - len;
1087 pad_len = ALIGN(offs, c->min_io_size) - offs;
1088 return pad_len;
1089 }
1090
1091 /**
1092 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1093 * @c: UBIFS file-system description object
1094 * @buf: buffer
1095 * @node_num: node number is returned here
1096 */
1097 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1098 int *node_num)
1099 {
1100 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1101 int pos = 0, node_type;
1102
1103 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1104 *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1105 return node_type;
1106 }
1107
1108 /**
1109 * is_a_node - determine if a buffer contains a node.
1110 * @c: UBIFS file-system description object
1111 * @buf: buffer
1112 * @len: length of buffer
1113 *
1114 * This function returns %1 if the buffer contains a node or %0 if it does not.
1115 */
1116 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1117 {
1118 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1119 int pos = 0, node_type, node_len;
1120 uint16_t crc, calc_crc;
1121
1122 if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1123 return 0;
1124 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1125 if (node_type == UBIFS_LPT_NOT_A_NODE)
1126 return 0;
1127 node_len = get_lpt_node_len(c, node_type);
1128 if (!node_len || node_len > len)
1129 return 0;
1130 pos = 0;
1131 addr = buf;
1132 crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1133 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1134 node_len - UBIFS_LPT_CRC_BYTES);
1135 if (crc != calc_crc)
1136 return 0;
1137 return 1;
1138 }
1139
1140 /**
1141 * lpt_gc_lnum - garbage collect a LPT LEB.
1142 * @c: UBIFS file-system description object
1143 * @lnum: LEB number to garbage collect
1144 *
1145 * LPT garbage collection is used only for the "big" LPT model
1146 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
1147 * in the LEB being garbage-collected as dirty. The dirty nodes are written
1148 * next commit, after which the LEB is free to be reused.
1149 *
1150 * This function returns %0 on success and a negative error code on failure.
1151 */
1152 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1153 {
1154 int err, len = c->leb_size, node_type, node_num, node_len, offs;
1155 void *buf = c->lpt_buf;
1156
1157 dbg_lp("LEB %d", lnum);
1158
1159 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1160 if (err)
1161 return err;
1162
1163 while (1) {
1164 if (!is_a_node(c, buf, len)) {
1165 int pad_len;
1166
1167 pad_len = get_pad_len(c, buf, len);
1168 if (pad_len) {
1169 buf += pad_len;
1170 len -= pad_len;
1171 continue;
1172 }
1173 return 0;
1174 }
1175 node_type = get_lpt_node_type(c, buf, &node_num);
1176 node_len = get_lpt_node_len(c, node_type);
1177 offs = c->leb_size - len;
1178 ubifs_assert(node_len != 0);
1179 mutex_lock(&c->lp_mutex);
1180 err = make_node_dirty(c, node_type, node_num, lnum, offs);
1181 mutex_unlock(&c->lp_mutex);
1182 if (err)
1183 return err;
1184 buf += node_len;
1185 len -= node_len;
1186 }
1187 return 0;
1188 }
1189
1190 /**
1191 * lpt_gc - LPT garbage collection.
1192 * @c: UBIFS file-system description object
1193 *
1194 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1195 * Returns %0 on success and a negative error code on failure.
1196 */
1197 static int lpt_gc(struct ubifs_info *c)
1198 {
1199 int i, lnum = -1, dirty = 0;
1200
1201 mutex_lock(&c->lp_mutex);
1202 for (i = 0; i < c->lpt_lebs; i++) {
1203 ubifs_assert(!c->ltab[i].tgc);
1204 if (i + c->lpt_first == c->nhead_lnum ||
1205 c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1206 continue;
1207 if (c->ltab[i].dirty > dirty) {
1208 dirty = c->ltab[i].dirty;
1209 lnum = i + c->lpt_first;
1210 }
1211 }
1212 mutex_unlock(&c->lp_mutex);
1213 if (lnum == -1)
1214 return -ENOSPC;
1215 return lpt_gc_lnum(c, lnum);
1216 }
1217
1218 /**
1219 * ubifs_lpt_start_commit - UBIFS commit starts.
1220 * @c: the UBIFS file-system description object
1221 *
1222 * This function has to be called when UBIFS starts the commit operation.
1223 * This function "freezes" all currently dirty LEB properties and does not
1224 * change them anymore. Further changes are saved and tracked separately
1225 * because they are not part of this commit. This function returns zero in case
1226 * of success and a negative error code in case of failure.
1227 */
1228 int ubifs_lpt_start_commit(struct ubifs_info *c)
1229 {
1230 int err, cnt;
1231
1232 dbg_lp("");
1233
1234 mutex_lock(&c->lp_mutex);
1235 err = dbg_chk_lpt_free_spc(c);
1236 if (err)
1237 goto out;
1238 err = dbg_check_ltab(c);
1239 if (err)
1240 goto out;
1241
1242 if (c->check_lpt_free) {
1243 /*
1244 * We ensure there is enough free space in
1245 * ubifs_lpt_post_commit() by marking nodes dirty. That
1246 * information is lost when we unmount, so we also need
1247 * to check free space once after mounting also.
1248 */
1249 c->check_lpt_free = 0;
1250 while (need_write_all(c)) {
1251 mutex_unlock(&c->lp_mutex);
1252 err = lpt_gc(c);
1253 if (err)
1254 return err;
1255 mutex_lock(&c->lp_mutex);
1256 }
1257 }
1258
1259 lpt_tgc_start(c);
1260
1261 if (!c->dirty_pn_cnt) {
1262 dbg_cmt("no cnodes to commit");
1263 err = 0;
1264 goto out;
1265 }
1266
1267 if (!c->big_lpt && need_write_all(c)) {
1268 /* If needed, write everything */
1269 err = make_tree_dirty(c);
1270 if (err)
1271 goto out;
1272 lpt_tgc_start(c);
1273 }
1274
1275 if (c->big_lpt)
1276 populate_lsave(c);
1277
1278 cnt = get_cnodes_to_commit(c);
1279 ubifs_assert(cnt != 0);
1280
1281 err = layout_cnodes(c);
1282 if (err)
1283 goto out;
1284
1285 /* Copy the LPT's own lprops for end commit to write */
1286 memcpy(c->ltab_cmt, c->ltab,
1287 sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1288 c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1289
1290 out:
1291 mutex_unlock(&c->lp_mutex);
1292 return err;
1293 }
1294
1295 /**
1296 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1297 * @c: UBIFS file-system description object
1298 */
1299 static void free_obsolete_cnodes(struct ubifs_info *c)
1300 {
1301 struct ubifs_cnode *cnode, *cnext;
1302
1303 cnext = c->lpt_cnext;
1304 if (!cnext)
1305 return;
1306 do {
1307 cnode = cnext;
1308 cnext = cnode->cnext;
1309 if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1310 kfree(cnode);
1311 else
1312 cnode->cnext = NULL;
1313 } while (cnext != c->lpt_cnext);
1314 c->lpt_cnext = NULL;
1315 }
1316
1317 #ifndef __UBOOT__
1318 /**
1319 * ubifs_lpt_end_commit - finish the commit operation.
1320 * @c: the UBIFS file-system description object
1321 *
1322 * This function has to be called when the commit operation finishes. It
1323 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1324 * the media. Returns zero in case of success and a negative error code in case
1325 * of failure.
1326 */
1327 int ubifs_lpt_end_commit(struct ubifs_info *c)
1328 {
1329 int err;
1330
1331 dbg_lp("");
1332
1333 if (!c->lpt_cnext)
1334 return 0;
1335
1336 err = write_cnodes(c);
1337 if (err)
1338 return err;
1339
1340 mutex_lock(&c->lp_mutex);
1341 free_obsolete_cnodes(c);
1342 mutex_unlock(&c->lp_mutex);
1343
1344 return 0;
1345 }
1346 #endif
1347
1348 /**
1349 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1350 * @c: UBIFS file-system description object
1351 *
1352 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1353 * commit for the "big" LPT model.
1354 */
1355 int ubifs_lpt_post_commit(struct ubifs_info *c)
1356 {
1357 int err;
1358
1359 mutex_lock(&c->lp_mutex);
1360 err = lpt_tgc_end(c);
1361 if (err)
1362 goto out;
1363 if (c->big_lpt)
1364 while (need_write_all(c)) {
1365 mutex_unlock(&c->lp_mutex);
1366 err = lpt_gc(c);
1367 if (err)
1368 return err;
1369 mutex_lock(&c->lp_mutex);
1370 }
1371 out:
1372 mutex_unlock(&c->lp_mutex);
1373 return err;
1374 }
1375
1376 /**
1377 * first_nnode - find the first nnode in memory.
1378 * @c: UBIFS file-system description object
1379 * @hght: height of tree where nnode found is returned here
1380 *
1381 * This function returns a pointer to the nnode found or %NULL if no nnode is
1382 * found. This function is a helper to 'ubifs_lpt_free()'.
1383 */
1384 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1385 {
1386 struct ubifs_nnode *nnode;
1387 int h, i, found;
1388
1389 nnode = c->nroot;
1390 *hght = 0;
1391 if (!nnode)
1392 return NULL;
1393 for (h = 1; h < c->lpt_hght; h++) {
1394 found = 0;
1395 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1396 if (nnode->nbranch[i].nnode) {
1397 found = 1;
1398 nnode = nnode->nbranch[i].nnode;
1399 *hght = h;
1400 break;
1401 }
1402 }
1403 if (!found)
1404 break;
1405 }
1406 return nnode;
1407 }
1408
1409 /**
1410 * next_nnode - find the next nnode in memory.
1411 * @c: UBIFS file-system description object
1412 * @nnode: nnode from which to start.
1413 * @hght: height of tree where nnode is, is passed and returned here
1414 *
1415 * This function returns a pointer to the nnode found or %NULL if no nnode is
1416 * found. This function is a helper to 'ubifs_lpt_free()'.
1417 */
1418 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1419 struct ubifs_nnode *nnode, int *hght)
1420 {
1421 struct ubifs_nnode *parent;
1422 int iip, h, i, found;
1423
1424 parent = nnode->parent;
1425 if (!parent)
1426 return NULL;
1427 if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1428 *hght -= 1;
1429 return parent;
1430 }
1431 for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1432 nnode = parent->nbranch[iip].nnode;
1433 if (nnode)
1434 break;
1435 }
1436 if (!nnode) {
1437 *hght -= 1;
1438 return parent;
1439 }
1440 for (h = *hght + 1; h < c->lpt_hght; h++) {
1441 found = 0;
1442 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1443 if (nnode->nbranch[i].nnode) {
1444 found = 1;
1445 nnode = nnode->nbranch[i].nnode;
1446 *hght = h;
1447 break;
1448 }
1449 }
1450 if (!found)
1451 break;
1452 }
1453 return nnode;
1454 }
1455
1456 /**
1457 * ubifs_lpt_free - free resources owned by the LPT.
1458 * @c: UBIFS file-system description object
1459 * @wr_only: free only resources used for writing
1460 */
1461 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1462 {
1463 struct ubifs_nnode *nnode;
1464 int i, hght;
1465
1466 /* Free write-only things first */
1467
1468 free_obsolete_cnodes(c); /* Leftover from a failed commit */
1469
1470 vfree(c->ltab_cmt);
1471 c->ltab_cmt = NULL;
1472 vfree(c->lpt_buf);
1473 c->lpt_buf = NULL;
1474 kfree(c->lsave);
1475 c->lsave = NULL;
1476
1477 if (wr_only)
1478 return;
1479
1480 /* Now free the rest */
1481
1482 nnode = first_nnode(c, &hght);
1483 while (nnode) {
1484 for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1485 kfree(nnode->nbranch[i].nnode);
1486 nnode = next_nnode(c, nnode, &hght);
1487 }
1488 for (i = 0; i < LPROPS_HEAP_CNT; i++)
1489 kfree(c->lpt_heap[i].arr);
1490 kfree(c->dirty_idx.arr);
1491 kfree(c->nroot);
1492 vfree(c->ltab);
1493 kfree(c->lpt_nod_buf);
1494 }
1495
1496 #ifndef __UBOOT__
1497 /*
1498 * Everything below is related to debugging.
1499 */
1500
1501 /**
1502 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1503 * @buf: buffer
1504 * @len: buffer length
1505 */
1506 static int dbg_is_all_ff(uint8_t *buf, int len)
1507 {
1508 int i;
1509
1510 for (i = 0; i < len; i++)
1511 if (buf[i] != 0xff)
1512 return 0;
1513 return 1;
1514 }
1515
1516 /**
1517 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1518 * @c: the UBIFS file-system description object
1519 * @lnum: LEB number where nnode was written
1520 * @offs: offset where nnode was written
1521 */
1522 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1523 {
1524 struct ubifs_nnode *nnode;
1525 int hght;
1526
1527 /* Entire tree is in memory so first_nnode / next_nnode are OK */
1528 nnode = first_nnode(c, &hght);
1529 for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1530 struct ubifs_nbranch *branch;
1531
1532 cond_resched();
1533 if (nnode->parent) {
1534 branch = &nnode->parent->nbranch[nnode->iip];
1535 if (branch->lnum != lnum || branch->offs != offs)
1536 continue;
1537 if (test_bit(DIRTY_CNODE, &nnode->flags))
1538 return 1;
1539 return 0;
1540 } else {
1541 if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1542 continue;
1543 if (test_bit(DIRTY_CNODE, &nnode->flags))
1544 return 1;
1545 return 0;
1546 }
1547 }
1548 return 1;
1549 }
1550
1551 /**
1552 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1553 * @c: the UBIFS file-system description object
1554 * @lnum: LEB number where pnode was written
1555 * @offs: offset where pnode was written
1556 */
1557 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1558 {
1559 int i, cnt;
1560
1561 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1562 for (i = 0; i < cnt; i++) {
1563 struct ubifs_pnode *pnode;
1564 struct ubifs_nbranch *branch;
1565
1566 cond_resched();
1567 pnode = pnode_lookup(c, i);
1568 if (IS_ERR(pnode))
1569 return PTR_ERR(pnode);
1570 branch = &pnode->parent->nbranch[pnode->iip];
1571 if (branch->lnum != lnum || branch->offs != offs)
1572 continue;
1573 if (test_bit(DIRTY_CNODE, &pnode->flags))
1574 return 1;
1575 return 0;
1576 }
1577 return 1;
1578 }
1579
1580 /**
1581 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1582 * @c: the UBIFS file-system description object
1583 * @lnum: LEB number where ltab node was written
1584 * @offs: offset where ltab node was written
1585 */
1586 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1587 {
1588 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1589 return 1;
1590 return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1591 }
1592
1593 /**
1594 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1595 * @c: the UBIFS file-system description object
1596 * @lnum: LEB number where lsave node was written
1597 * @offs: offset where lsave node was written
1598 */
1599 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1600 {
1601 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1602 return 1;
1603 return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1604 }
1605
1606 /**
1607 * dbg_is_node_dirty - determine if a node is dirty.
1608 * @c: the UBIFS file-system description object
1609 * @node_type: node type
1610 * @lnum: LEB number where node was written
1611 * @offs: offset where node was written
1612 */
1613 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1614 int offs)
1615 {
1616 switch (node_type) {
1617 case UBIFS_LPT_NNODE:
1618 return dbg_is_nnode_dirty(c, lnum, offs);
1619 case UBIFS_LPT_PNODE:
1620 return dbg_is_pnode_dirty(c, lnum, offs);
1621 case UBIFS_LPT_LTAB:
1622 return dbg_is_ltab_dirty(c, lnum, offs);
1623 case UBIFS_LPT_LSAVE:
1624 return dbg_is_lsave_dirty(c, lnum, offs);
1625 }
1626 return 1;
1627 }
1628
1629 /**
1630 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1631 * @c: the UBIFS file-system description object
1632 * @lnum: LEB number where node was written
1633 * @offs: offset where node was written
1634 *
1635 * This function returns %0 on success and a negative error code on failure.
1636 */
1637 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1638 {
1639 int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1640 int ret;
1641 void *buf, *p;
1642
1643 if (!dbg_is_chk_lprops(c))
1644 return 0;
1645
1646 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1647 if (!buf) {
1648 ubifs_err("cannot allocate memory for ltab checking");
1649 return 0;
1650 }
1651
1652 dbg_lp("LEB %d", lnum);
1653
1654 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1655 if (err)
1656 goto out;
1657
1658 while (1) {
1659 if (!is_a_node(c, p, len)) {
1660 int i, pad_len;
1661
1662 pad_len = get_pad_len(c, p, len);
1663 if (pad_len) {
1664 p += pad_len;
1665 len -= pad_len;
1666 dirty += pad_len;
1667 continue;
1668 }
1669 if (!dbg_is_all_ff(p, len)) {
1670 ubifs_err("invalid empty space in LEB %d at %d",
1671 lnum, c->leb_size - len);
1672 err = -EINVAL;
1673 }
1674 i = lnum - c->lpt_first;
1675 if (len != c->ltab[i].free) {
1676 ubifs_err("invalid free space in LEB %d (free %d, expected %d)",
1677 lnum, len, c->ltab[i].free);
1678 err = -EINVAL;
1679 }
1680 if (dirty != c->ltab[i].dirty) {
1681 ubifs_err("invalid dirty space in LEB %d (dirty %d, expected %d)",
1682 lnum, dirty, c->ltab[i].dirty);
1683 err = -EINVAL;
1684 }
1685 goto out;
1686 }
1687 node_type = get_lpt_node_type(c, p, &node_num);
1688 node_len = get_lpt_node_len(c, node_type);
1689 ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1690 if (ret == 1)
1691 dirty += node_len;
1692 p += node_len;
1693 len -= node_len;
1694 }
1695
1696 err = 0;
1697 out:
1698 vfree(buf);
1699 return err;
1700 }
1701
1702 /**
1703 * dbg_check_ltab - check the free and dirty space in the ltab.
1704 * @c: the UBIFS file-system description object
1705 *
1706 * This function returns %0 on success and a negative error code on failure.
1707 */
1708 int dbg_check_ltab(struct ubifs_info *c)
1709 {
1710 int lnum, err, i, cnt;
1711
1712 if (!dbg_is_chk_lprops(c))
1713 return 0;
1714
1715 /* Bring the entire tree into memory */
1716 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1717 for (i = 0; i < cnt; i++) {
1718 struct ubifs_pnode *pnode;
1719
1720 pnode = pnode_lookup(c, i);
1721 if (IS_ERR(pnode))
1722 return PTR_ERR(pnode);
1723 cond_resched();
1724 }
1725
1726 /* Check nodes */
1727 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1728 if (err)
1729 return err;
1730
1731 /* Check each LEB */
1732 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1733 err = dbg_check_ltab_lnum(c, lnum);
1734 if (err) {
1735 ubifs_err("failed at LEB %d", lnum);
1736 return err;
1737 }
1738 }
1739
1740 dbg_lp("succeeded");
1741 return 0;
1742 }
1743
1744 /**
1745 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1746 * @c: the UBIFS file-system description object
1747 *
1748 * This function returns %0 on success and a negative error code on failure.
1749 */
1750 int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1751 {
1752 long long free = 0;
1753 int i;
1754
1755 if (!dbg_is_chk_lprops(c))
1756 return 0;
1757
1758 for (i = 0; i < c->lpt_lebs; i++) {
1759 if (c->ltab[i].tgc || c->ltab[i].cmt)
1760 continue;
1761 if (i + c->lpt_first == c->nhead_lnum)
1762 free += c->leb_size - c->nhead_offs;
1763 else if (c->ltab[i].free == c->leb_size)
1764 free += c->leb_size;
1765 }
1766 if (free < c->lpt_sz) {
1767 ubifs_err("LPT space error: free %lld lpt_sz %lld",
1768 free, c->lpt_sz);
1769 ubifs_dump_lpt_info(c);
1770 ubifs_dump_lpt_lebs(c);
1771 dump_stack();
1772 return -EINVAL;
1773 }
1774 return 0;
1775 }
1776
1777 /**
1778 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1779 * @c: the UBIFS file-system description object
1780 * @action: what to do
1781 * @len: length written
1782 *
1783 * This function returns %0 on success and a negative error code on failure.
1784 * The @action argument may be one of:
1785 * o %0 - LPT debugging checking starts, initialize debugging variables;
1786 * o %1 - wrote an LPT node, increase LPT size by @len bytes;
1787 * o %2 - switched to a different LEB and wasted @len bytes;
1788 * o %3 - check that we've written the right number of bytes.
1789 * o %4 - wasted @len bytes;
1790 */
1791 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1792 {
1793 struct ubifs_debug_info *d = c->dbg;
1794 long long chk_lpt_sz, lpt_sz;
1795 int err = 0;
1796
1797 if (!dbg_is_chk_lprops(c))
1798 return 0;
1799
1800 switch (action) {
1801 case 0:
1802 d->chk_lpt_sz = 0;
1803 d->chk_lpt_sz2 = 0;
1804 d->chk_lpt_lebs = 0;
1805 d->chk_lpt_wastage = 0;
1806 if (c->dirty_pn_cnt > c->pnode_cnt) {
1807 ubifs_err("dirty pnodes %d exceed max %d",
1808 c->dirty_pn_cnt, c->pnode_cnt);
1809 err = -EINVAL;
1810 }
1811 if (c->dirty_nn_cnt > c->nnode_cnt) {
1812 ubifs_err("dirty nnodes %d exceed max %d",
1813 c->dirty_nn_cnt, c->nnode_cnt);
1814 err = -EINVAL;
1815 }
1816 return err;
1817 case 1:
1818 d->chk_lpt_sz += len;
1819 return 0;
1820 case 2:
1821 d->chk_lpt_sz += len;
1822 d->chk_lpt_wastage += len;
1823 d->chk_lpt_lebs += 1;
1824 return 0;
1825 case 3:
1826 chk_lpt_sz = c->leb_size;
1827 chk_lpt_sz *= d->chk_lpt_lebs;
1828 chk_lpt_sz += len - c->nhead_offs;
1829 if (d->chk_lpt_sz != chk_lpt_sz) {
1830 ubifs_err("LPT wrote %lld but space used was %lld",
1831 d->chk_lpt_sz, chk_lpt_sz);
1832 err = -EINVAL;
1833 }
1834 if (d->chk_lpt_sz > c->lpt_sz) {
1835 ubifs_err("LPT wrote %lld but lpt_sz is %lld",
1836 d->chk_lpt_sz, c->lpt_sz);
1837 err = -EINVAL;
1838 }
1839 if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1840 ubifs_err("LPT layout size %lld but wrote %lld",
1841 d->chk_lpt_sz, d->chk_lpt_sz2);
1842 err = -EINVAL;
1843 }
1844 if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1845 ubifs_err("LPT new nhead offs: expected %d was %d",
1846 d->new_nhead_offs, len);
1847 err = -EINVAL;
1848 }
1849 lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1850 lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1851 lpt_sz += c->ltab_sz;
1852 if (c->big_lpt)
1853 lpt_sz += c->lsave_sz;
1854 if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1855 ubifs_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1856 d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1857 err = -EINVAL;
1858 }
1859 if (err) {
1860 ubifs_dump_lpt_info(c);
1861 ubifs_dump_lpt_lebs(c);
1862 dump_stack();
1863 }
1864 d->chk_lpt_sz2 = d->chk_lpt_sz;
1865 d->chk_lpt_sz = 0;
1866 d->chk_lpt_wastage = 0;
1867 d->chk_lpt_lebs = 0;
1868 d->new_nhead_offs = len;
1869 return err;
1870 case 4:
1871 d->chk_lpt_sz += len;
1872 d->chk_lpt_wastage += len;
1873 return 0;
1874 default:
1875 return -EINVAL;
1876 }
1877 }
1878
1879 /**
1880 * ubifs_dump_lpt_leb - dump an LPT LEB.
1881 * @c: UBIFS file-system description object
1882 * @lnum: LEB number to dump
1883 *
1884 * This function dumps an LEB from LPT area. Nodes in this area are very
1885 * different to nodes in the main area (e.g., they do not have common headers,
1886 * they do not have 8-byte alignments, etc), so we have a separate function to
1887 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1888 */
1889 static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1890 {
1891 int err, len = c->leb_size, node_type, node_num, node_len, offs;
1892 void *buf, *p;
1893
1894 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
1895 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1896 if (!buf) {
1897 ubifs_err("cannot allocate memory to dump LPT");
1898 return;
1899 }
1900
1901 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1902 if (err)
1903 goto out;
1904
1905 while (1) {
1906 offs = c->leb_size - len;
1907 if (!is_a_node(c, p, len)) {
1908 int pad_len;
1909
1910 pad_len = get_pad_len(c, p, len);
1911 if (pad_len) {
1912 pr_err("LEB %d:%d, pad %d bytes\n",
1913 lnum, offs, pad_len);
1914 p += pad_len;
1915 len -= pad_len;
1916 continue;
1917 }
1918 if (len)
1919 pr_err("LEB %d:%d, free %d bytes\n",
1920 lnum, offs, len);
1921 break;
1922 }
1923
1924 node_type = get_lpt_node_type(c, p, &node_num);
1925 switch (node_type) {
1926 case UBIFS_LPT_PNODE:
1927 {
1928 node_len = c->pnode_sz;
1929 if (c->big_lpt)
1930 pr_err("LEB %d:%d, pnode num %d\n",
1931 lnum, offs, node_num);
1932 else
1933 pr_err("LEB %d:%d, pnode\n", lnum, offs);
1934 break;
1935 }
1936 case UBIFS_LPT_NNODE:
1937 {
1938 int i;
1939 struct ubifs_nnode nnode;
1940
1941 node_len = c->nnode_sz;
1942 if (c->big_lpt)
1943 pr_err("LEB %d:%d, nnode num %d, ",
1944 lnum, offs, node_num);
1945 else
1946 pr_err("LEB %d:%d, nnode, ",
1947 lnum, offs);
1948 err = ubifs_unpack_nnode(c, p, &nnode);
1949 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1950 pr_cont("%d:%d", nnode.nbranch[i].lnum,
1951 nnode.nbranch[i].offs);
1952 if (i != UBIFS_LPT_FANOUT - 1)
1953 pr_cont(", ");
1954 }
1955 pr_cont("\n");
1956 break;
1957 }
1958 case UBIFS_LPT_LTAB:
1959 node_len = c->ltab_sz;
1960 pr_err("LEB %d:%d, ltab\n", lnum, offs);
1961 break;
1962 case UBIFS_LPT_LSAVE:
1963 node_len = c->lsave_sz;
1964 pr_err("LEB %d:%d, lsave len\n", lnum, offs);
1965 break;
1966 default:
1967 ubifs_err("LPT node type %d not recognized", node_type);
1968 goto out;
1969 }
1970
1971 p += node_len;
1972 len -= node_len;
1973 }
1974
1975 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
1976 out:
1977 vfree(buf);
1978 return;
1979 }
1980
1981 /**
1982 * ubifs_dump_lpt_lebs - dump LPT lebs.
1983 * @c: UBIFS file-system description object
1984 *
1985 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1986 * locked.
1987 */
1988 void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
1989 {
1990 int i;
1991
1992 pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid);
1993 for (i = 0; i < c->lpt_lebs; i++)
1994 dump_lpt_leb(c, i + c->lpt_first);
1995 pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid);
1996 }
1997
1998 /**
1999 * dbg_populate_lsave - debugging version of 'populate_lsave()'
2000 * @c: UBIFS file-system description object
2001 *
2002 * This is a debugging version for 'populate_lsave()' which populates lsave
2003 * with random LEBs instead of useful LEBs, which is good for test coverage.
2004 * Returns zero if lsave has not been populated (this debugging feature is
2005 * disabled) an non-zero if lsave has been populated.
2006 */
2007 static int dbg_populate_lsave(struct ubifs_info *c)
2008 {
2009 struct ubifs_lprops *lprops;
2010 struct ubifs_lpt_heap *heap;
2011 int i;
2012
2013 if (!dbg_is_chk_gen(c))
2014 return 0;
2015 if (prandom_u32() & 3)
2016 return 0;
2017
2018 for (i = 0; i < c->lsave_cnt; i++)
2019 c->lsave[i] = c->main_first;
2020
2021 list_for_each_entry(lprops, &c->empty_list, list)
2022 c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2023 list_for_each_entry(lprops, &c->freeable_list, list)
2024 c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2025 list_for_each_entry(lprops, &c->frdi_idx_list, list)
2026 c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2027
2028 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
2029 for (i = 0; i < heap->cnt; i++)
2030 c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2031 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2032 for (i = 0; i < heap->cnt; i++)
2033 c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2034 heap = &c->lpt_heap[LPROPS_FREE - 1];
2035 for (i = 0; i < heap->cnt; i++)
2036 c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2037
2038 return 1;
2039 }
2040 #endif