]> git.ipfire.org Git - people/ms/u-boot.git/blob - fs/ubifs/recovery.c
Merge branch 'master' of git://git.denx.de/u-boot-ti
[people/ms/u-boot.git] / fs / ubifs / recovery.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 *
8 * Authors: Adrian Hunter
9 * Artem Bityutskiy (Битюцкий Артём)
10 */
11
12 /*
13 * This file implements functions needed to recover from unclean un-mounts.
14 * When UBIFS is mounted, it checks a flag on the master node to determine if
15 * an un-mount was completed successfully. If not, the process of mounting
16 * incorporates additional checking and fixing of on-flash data structures.
17 * UBIFS always cleans away all remnants of an unclean un-mount, so that
18 * errors do not accumulate. However UBIFS defers recovery if it is mounted
19 * read-only, and the flash is not modified in that case.
20 *
21 * The general UBIFS approach to the recovery is that it recovers from
22 * corruptions which could be caused by power cuts, but it refuses to recover
23 * from corruption caused by other reasons. And UBIFS tries to distinguish
24 * between these 2 reasons of corruptions and silently recover in the former
25 * case and loudly complain in the latter case.
26 *
27 * UBIFS writes only to erased LEBs, so it writes only to the flash space
28 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
29 * of the LEB to the end. And UBIFS assumes that the underlying flash media
30 * writes in @c->max_write_size bytes at a time.
31 *
32 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
33 * I/O unit corresponding to offset X to contain corrupted data, all the
34 * following min. I/O units have to contain empty space (all 0xFFs). If this is
35 * not true, the corruption cannot be the result of a power cut, and UBIFS
36 * refuses to mount.
37 */
38
39 #define __UBOOT__
40 #ifndef __UBOOT__
41 #include <linux/crc32.h>
42 #include <linux/slab.h>
43 #else
44 #include <linux/err.h>
45 #endif
46 #include "ubifs.h"
47
48 /**
49 * is_empty - determine whether a buffer is empty (contains all 0xff).
50 * @buf: buffer to clean
51 * @len: length of buffer
52 *
53 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
54 * %0 is returned.
55 */
56 static int is_empty(void *buf, int len)
57 {
58 uint8_t *p = buf;
59 int i;
60
61 for (i = 0; i < len; i++)
62 if (*p++ != 0xff)
63 return 0;
64 return 1;
65 }
66
67 /**
68 * first_non_ff - find offset of the first non-0xff byte.
69 * @buf: buffer to search in
70 * @len: length of buffer
71 *
72 * This function returns offset of the first non-0xff byte in @buf or %-1 if
73 * the buffer contains only 0xff bytes.
74 */
75 static int first_non_ff(void *buf, int len)
76 {
77 uint8_t *p = buf;
78 int i;
79
80 for (i = 0; i < len; i++)
81 if (*p++ != 0xff)
82 return i;
83 return -1;
84 }
85
86 /**
87 * get_master_node - get the last valid master node allowing for corruption.
88 * @c: UBIFS file-system description object
89 * @lnum: LEB number
90 * @pbuf: buffer containing the LEB read, is returned here
91 * @mst: master node, if found, is returned here
92 * @cor: corruption, if found, is returned here
93 *
94 * This function allocates a buffer, reads the LEB into it, and finds and
95 * returns the last valid master node allowing for one area of corruption.
96 * The corrupt area, if there is one, must be consistent with the assumption
97 * that it is the result of an unclean unmount while the master node was being
98 * written. Under those circumstances, it is valid to use the previously written
99 * master node.
100 *
101 * This function returns %0 on success and a negative error code on failure.
102 */
103 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
104 struct ubifs_mst_node **mst, void **cor)
105 {
106 const int sz = c->mst_node_alsz;
107 int err, offs, len;
108 void *sbuf, *buf;
109
110 sbuf = vmalloc(c->leb_size);
111 if (!sbuf)
112 return -ENOMEM;
113
114 err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
115 if (err && err != -EBADMSG)
116 goto out_free;
117
118 /* Find the first position that is definitely not a node */
119 offs = 0;
120 buf = sbuf;
121 len = c->leb_size;
122 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
123 struct ubifs_ch *ch = buf;
124
125 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
126 break;
127 offs += sz;
128 buf += sz;
129 len -= sz;
130 }
131 /* See if there was a valid master node before that */
132 if (offs) {
133 int ret;
134
135 offs -= sz;
136 buf -= sz;
137 len += sz;
138 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
139 if (ret != SCANNED_A_NODE && offs) {
140 /* Could have been corruption so check one place back */
141 offs -= sz;
142 buf -= sz;
143 len += sz;
144 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
145 if (ret != SCANNED_A_NODE)
146 /*
147 * We accept only one area of corruption because
148 * we are assuming that it was caused while
149 * trying to write a master node.
150 */
151 goto out_err;
152 }
153 if (ret == SCANNED_A_NODE) {
154 struct ubifs_ch *ch = buf;
155
156 if (ch->node_type != UBIFS_MST_NODE)
157 goto out_err;
158 dbg_rcvry("found a master node at %d:%d", lnum, offs);
159 *mst = buf;
160 offs += sz;
161 buf += sz;
162 len -= sz;
163 }
164 }
165 /* Check for corruption */
166 if (offs < c->leb_size) {
167 if (!is_empty(buf, min_t(int, len, sz))) {
168 *cor = buf;
169 dbg_rcvry("found corruption at %d:%d", lnum, offs);
170 }
171 offs += sz;
172 buf += sz;
173 len -= sz;
174 }
175 /* Check remaining empty space */
176 if (offs < c->leb_size)
177 if (!is_empty(buf, len))
178 goto out_err;
179 *pbuf = sbuf;
180 return 0;
181
182 out_err:
183 err = -EINVAL;
184 out_free:
185 vfree(sbuf);
186 *mst = NULL;
187 *cor = NULL;
188 return err;
189 }
190
191 /**
192 * write_rcvrd_mst_node - write recovered master node.
193 * @c: UBIFS file-system description object
194 * @mst: master node
195 *
196 * This function returns %0 on success and a negative error code on failure.
197 */
198 static int write_rcvrd_mst_node(struct ubifs_info *c,
199 struct ubifs_mst_node *mst)
200 {
201 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
202 __le32 save_flags;
203
204 dbg_rcvry("recovery");
205
206 save_flags = mst->flags;
207 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
208
209 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
210 err = ubifs_leb_change(c, lnum, mst, sz);
211 if (err)
212 goto out;
213 err = ubifs_leb_change(c, lnum + 1, mst, sz);
214 if (err)
215 goto out;
216 out:
217 mst->flags = save_flags;
218 return err;
219 }
220
221 /**
222 * ubifs_recover_master_node - recover the master node.
223 * @c: UBIFS file-system description object
224 *
225 * This function recovers the master node from corruption that may occur due to
226 * an unclean unmount.
227 *
228 * This function returns %0 on success and a negative error code on failure.
229 */
230 int ubifs_recover_master_node(struct ubifs_info *c)
231 {
232 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
233 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
234 const int sz = c->mst_node_alsz;
235 int err, offs1, offs2;
236
237 dbg_rcvry("recovery");
238
239 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
240 if (err)
241 goto out_free;
242
243 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
244 if (err)
245 goto out_free;
246
247 if (mst1) {
248 offs1 = (void *)mst1 - buf1;
249 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
250 (offs1 == 0 && !cor1)) {
251 /*
252 * mst1 was written by recovery at offset 0 with no
253 * corruption.
254 */
255 dbg_rcvry("recovery recovery");
256 mst = mst1;
257 } else if (mst2) {
258 offs2 = (void *)mst2 - buf2;
259 if (offs1 == offs2) {
260 /* Same offset, so must be the same */
261 if (memcmp((void *)mst1 + UBIFS_CH_SZ,
262 (void *)mst2 + UBIFS_CH_SZ,
263 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
264 goto out_err;
265 mst = mst1;
266 } else if (offs2 + sz == offs1) {
267 /* 1st LEB was written, 2nd was not */
268 if (cor1)
269 goto out_err;
270 mst = mst1;
271 } else if (offs1 == 0 &&
272 c->leb_size - offs2 - sz < sz) {
273 /* 1st LEB was unmapped and written, 2nd not */
274 if (cor1)
275 goto out_err;
276 mst = mst1;
277 } else
278 goto out_err;
279 } else {
280 /*
281 * 2nd LEB was unmapped and about to be written, so
282 * there must be only one master node in the first LEB
283 * and no corruption.
284 */
285 if (offs1 != 0 || cor1)
286 goto out_err;
287 mst = mst1;
288 }
289 } else {
290 if (!mst2)
291 goto out_err;
292 /*
293 * 1st LEB was unmapped and about to be written, so there must
294 * be no room left in 2nd LEB.
295 */
296 offs2 = (void *)mst2 - buf2;
297 if (offs2 + sz + sz <= c->leb_size)
298 goto out_err;
299 mst = mst2;
300 }
301
302 ubifs_msg("recovered master node from LEB %d",
303 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
304
305 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
306
307 if (c->ro_mount) {
308 /* Read-only mode. Keep a copy for switching to rw mode */
309 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
310 if (!c->rcvrd_mst_node) {
311 err = -ENOMEM;
312 goto out_free;
313 }
314 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
315
316 /*
317 * We had to recover the master node, which means there was an
318 * unclean reboot. However, it is possible that the master node
319 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
320 * E.g., consider the following chain of events:
321 *
322 * 1. UBIFS was cleanly unmounted, so the master node is clean
323 * 2. UBIFS is being mounted R/W and starts changing the master
324 * node in the first (%UBIFS_MST_LNUM). A power cut happens,
325 * so this LEB ends up with some amount of garbage at the
326 * end.
327 * 3. UBIFS is being mounted R/O. We reach this place and
328 * recover the master node from the second LEB
329 * (%UBIFS_MST_LNUM + 1). But we cannot update the media
330 * because we are being mounted R/O. We have to defer the
331 * operation.
332 * 4. However, this master node (@c->mst_node) is marked as
333 * clean (since the step 1). And if we just return, the
334 * mount code will be confused and won't recover the master
335 * node when it is re-mounter R/W later.
336 *
337 * Thus, to force the recovery by marking the master node as
338 * dirty.
339 */
340 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
341 #ifndef __UBOOT__
342 } else {
343 /* Write the recovered master node */
344 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
345 err = write_rcvrd_mst_node(c, c->mst_node);
346 if (err)
347 goto out_free;
348 #endif
349 }
350
351 vfree(buf2);
352 vfree(buf1);
353
354 return 0;
355
356 out_err:
357 err = -EINVAL;
358 out_free:
359 ubifs_err("failed to recover master node");
360 if (mst1) {
361 ubifs_err("dumping first master node");
362 ubifs_dump_node(c, mst1);
363 }
364 if (mst2) {
365 ubifs_err("dumping second master node");
366 ubifs_dump_node(c, mst2);
367 }
368 vfree(buf2);
369 vfree(buf1);
370 return err;
371 }
372
373 /**
374 * ubifs_write_rcvrd_mst_node - write the recovered master node.
375 * @c: UBIFS file-system description object
376 *
377 * This function writes the master node that was recovered during mounting in
378 * read-only mode and must now be written because we are remounting rw.
379 *
380 * This function returns %0 on success and a negative error code on failure.
381 */
382 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
383 {
384 int err;
385
386 if (!c->rcvrd_mst_node)
387 return 0;
388 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
389 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
390 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
391 if (err)
392 return err;
393 kfree(c->rcvrd_mst_node);
394 c->rcvrd_mst_node = NULL;
395 return 0;
396 }
397
398 /**
399 * is_last_write - determine if an offset was in the last write to a LEB.
400 * @c: UBIFS file-system description object
401 * @buf: buffer to check
402 * @offs: offset to check
403 *
404 * This function returns %1 if @offs was in the last write to the LEB whose data
405 * is in @buf, otherwise %0 is returned. The determination is made by checking
406 * for subsequent empty space starting from the next @c->max_write_size
407 * boundary.
408 */
409 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
410 {
411 int empty_offs, check_len;
412 uint8_t *p;
413
414 /*
415 * Round up to the next @c->max_write_size boundary i.e. @offs is in
416 * the last wbuf written. After that should be empty space.
417 */
418 empty_offs = ALIGN(offs + 1, c->max_write_size);
419 check_len = c->leb_size - empty_offs;
420 p = buf + empty_offs - offs;
421 return is_empty(p, check_len);
422 }
423
424 /**
425 * clean_buf - clean the data from an LEB sitting in a buffer.
426 * @c: UBIFS file-system description object
427 * @buf: buffer to clean
428 * @lnum: LEB number to clean
429 * @offs: offset from which to clean
430 * @len: length of buffer
431 *
432 * This function pads up to the next min_io_size boundary (if there is one) and
433 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
434 * @c->min_io_size boundary.
435 */
436 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
437 int *offs, int *len)
438 {
439 int empty_offs, pad_len;
440
441 lnum = lnum;
442 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
443
444 ubifs_assert(!(*offs & 7));
445 empty_offs = ALIGN(*offs, c->min_io_size);
446 pad_len = empty_offs - *offs;
447 ubifs_pad(c, *buf, pad_len);
448 *offs += pad_len;
449 *buf += pad_len;
450 *len -= pad_len;
451 memset(*buf, 0xff, c->leb_size - empty_offs);
452 }
453
454 /**
455 * no_more_nodes - determine if there are no more nodes in a buffer.
456 * @c: UBIFS file-system description object
457 * @buf: buffer to check
458 * @len: length of buffer
459 * @lnum: LEB number of the LEB from which @buf was read
460 * @offs: offset from which @buf was read
461 *
462 * This function ensures that the corrupted node at @offs is the last thing
463 * written to a LEB. This function returns %1 if more data is not found and
464 * %0 if more data is found.
465 */
466 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
467 int lnum, int offs)
468 {
469 struct ubifs_ch *ch = buf;
470 int skip, dlen = le32_to_cpu(ch->len);
471
472 /* Check for empty space after the corrupt node's common header */
473 skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
474 if (is_empty(buf + skip, len - skip))
475 return 1;
476 /*
477 * The area after the common header size is not empty, so the common
478 * header must be intact. Check it.
479 */
480 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
481 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
482 return 0;
483 }
484 /* Now we know the corrupt node's length we can skip over it */
485 skip = ALIGN(offs + dlen, c->max_write_size) - offs;
486 /* After which there should be empty space */
487 if (is_empty(buf + skip, len - skip))
488 return 1;
489 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
490 return 0;
491 }
492
493 /**
494 * fix_unclean_leb - fix an unclean LEB.
495 * @c: UBIFS file-system description object
496 * @sleb: scanned LEB information
497 * @start: offset where scan started
498 */
499 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
500 int start)
501 {
502 int lnum = sleb->lnum, endpt = start;
503
504 /* Get the end offset of the last node we are keeping */
505 if (!list_empty(&sleb->nodes)) {
506 struct ubifs_scan_node *snod;
507
508 snod = list_entry(sleb->nodes.prev,
509 struct ubifs_scan_node, list);
510 endpt = snod->offs + snod->len;
511 }
512
513 if (c->ro_mount && !c->remounting_rw) {
514 /* Add to recovery list */
515 struct ubifs_unclean_leb *ucleb;
516
517 dbg_rcvry("need to fix LEB %d start %d endpt %d",
518 lnum, start, sleb->endpt);
519 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
520 if (!ucleb)
521 return -ENOMEM;
522 ucleb->lnum = lnum;
523 ucleb->endpt = endpt;
524 list_add_tail(&ucleb->list, &c->unclean_leb_list);
525 #ifndef __UBOOT__
526 } else {
527 /* Write the fixed LEB back to flash */
528 int err;
529
530 dbg_rcvry("fixing LEB %d start %d endpt %d",
531 lnum, start, sleb->endpt);
532 if (endpt == 0) {
533 err = ubifs_leb_unmap(c, lnum);
534 if (err)
535 return err;
536 } else {
537 int len = ALIGN(endpt, c->min_io_size);
538
539 if (start) {
540 err = ubifs_leb_read(c, lnum, sleb->buf, 0,
541 start, 1);
542 if (err)
543 return err;
544 }
545 /* Pad to min_io_size */
546 if (len > endpt) {
547 int pad_len = len - ALIGN(endpt, 8);
548
549 if (pad_len > 0) {
550 void *buf = sleb->buf + len - pad_len;
551
552 ubifs_pad(c, buf, pad_len);
553 }
554 }
555 err = ubifs_leb_change(c, lnum, sleb->buf, len);
556 if (err)
557 return err;
558 }
559 #endif
560 }
561 return 0;
562 }
563
564 /**
565 * drop_last_group - drop the last group of nodes.
566 * @sleb: scanned LEB information
567 * @offs: offset of dropped nodes is returned here
568 *
569 * This is a helper function for 'ubifs_recover_leb()' which drops the last
570 * group of nodes of the scanned LEB.
571 */
572 static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
573 {
574 while (!list_empty(&sleb->nodes)) {
575 struct ubifs_scan_node *snod;
576 struct ubifs_ch *ch;
577
578 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
579 list);
580 ch = snod->node;
581 if (ch->group_type != UBIFS_IN_NODE_GROUP)
582 break;
583
584 dbg_rcvry("dropping grouped node at %d:%d",
585 sleb->lnum, snod->offs);
586 *offs = snod->offs;
587 list_del(&snod->list);
588 kfree(snod);
589 sleb->nodes_cnt -= 1;
590 }
591 }
592
593 /**
594 * drop_last_node - drop the last node.
595 * @sleb: scanned LEB information
596 * @offs: offset of dropped nodes is returned here
597 * @grouped: non-zero if whole group of nodes have to be dropped
598 *
599 * This is a helper function for 'ubifs_recover_leb()' which drops the last
600 * node of the scanned LEB.
601 */
602 static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
603 {
604 struct ubifs_scan_node *snod;
605
606 if (!list_empty(&sleb->nodes)) {
607 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
608 list);
609
610 dbg_rcvry("dropping last node at %d:%d",
611 sleb->lnum, snod->offs);
612 *offs = snod->offs;
613 list_del(&snod->list);
614 kfree(snod);
615 sleb->nodes_cnt -= 1;
616 }
617 }
618
619 /**
620 * ubifs_recover_leb - scan and recover a LEB.
621 * @c: UBIFS file-system description object
622 * @lnum: LEB number
623 * @offs: offset
624 * @sbuf: LEB-sized buffer to use
625 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
626 * belong to any journal head)
627 *
628 * This function does a scan of a LEB, but caters for errors that might have
629 * been caused by the unclean unmount from which we are attempting to recover.
630 * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
631 * found, and a negative error code in case of failure.
632 */
633 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
634 int offs, void *sbuf, int jhead)
635 {
636 int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
637 int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
638 struct ubifs_scan_leb *sleb;
639 void *buf = sbuf + offs;
640
641 dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
642
643 sleb = ubifs_start_scan(c, lnum, offs, sbuf);
644 if (IS_ERR(sleb))
645 return sleb;
646
647 ubifs_assert(len >= 8);
648 while (len >= 8) {
649 dbg_scan("look at LEB %d:%d (%d bytes left)",
650 lnum, offs, len);
651
652 cond_resched();
653
654 /*
655 * Scan quietly until there is an error from which we cannot
656 * recover
657 */
658 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
659 if (ret == SCANNED_A_NODE) {
660 /* A valid node, and not a padding node */
661 struct ubifs_ch *ch = buf;
662 int node_len;
663
664 err = ubifs_add_snod(c, sleb, buf, offs);
665 if (err)
666 goto error;
667 node_len = ALIGN(le32_to_cpu(ch->len), 8);
668 offs += node_len;
669 buf += node_len;
670 len -= node_len;
671 } else if (ret > 0) {
672 /* Padding bytes or a valid padding node */
673 offs += ret;
674 buf += ret;
675 len -= ret;
676 } else if (ret == SCANNED_EMPTY_SPACE ||
677 ret == SCANNED_GARBAGE ||
678 ret == SCANNED_A_BAD_PAD_NODE ||
679 ret == SCANNED_A_CORRUPT_NODE) {
680 dbg_rcvry("found corruption (%d) at %d:%d",
681 ret, lnum, offs);
682 break;
683 } else {
684 ubifs_err("unexpected return value %d", ret);
685 err = -EINVAL;
686 goto error;
687 }
688 }
689
690 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
691 if (!is_last_write(c, buf, offs))
692 goto corrupted_rescan;
693 } else if (ret == SCANNED_A_CORRUPT_NODE) {
694 if (!no_more_nodes(c, buf, len, lnum, offs))
695 goto corrupted_rescan;
696 } else if (!is_empty(buf, len)) {
697 if (!is_last_write(c, buf, offs)) {
698 int corruption = first_non_ff(buf, len);
699
700 /*
701 * See header comment for this file for more
702 * explanations about the reasons we have this check.
703 */
704 ubifs_err("corrupt empty space LEB %d:%d, corruption starts at %d",
705 lnum, offs, corruption);
706 /* Make sure we dump interesting non-0xFF data */
707 offs += corruption;
708 buf += corruption;
709 goto corrupted;
710 }
711 }
712
713 min_io_unit = round_down(offs, c->min_io_size);
714 if (grouped)
715 /*
716 * If nodes are grouped, always drop the incomplete group at
717 * the end.
718 */
719 drop_last_group(sleb, &offs);
720
721 if (jhead == GCHD) {
722 /*
723 * If this LEB belongs to the GC head then while we are in the
724 * middle of the same min. I/O unit keep dropping nodes. So
725 * basically, what we want is to make sure that the last min.
726 * I/O unit where we saw the corruption is dropped completely
727 * with all the uncorrupted nodes which may possibly sit there.
728 *
729 * In other words, let's name the min. I/O unit where the
730 * corruption starts B, and the previous min. I/O unit A. The
731 * below code tries to deal with a situation when half of B
732 * contains valid nodes or the end of a valid node, and the
733 * second half of B contains corrupted data or garbage. This
734 * means that UBIFS had been writing to B just before the power
735 * cut happened. I do not know how realistic is this scenario
736 * that half of the min. I/O unit had been written successfully
737 * and the other half not, but this is possible in our 'failure
738 * mode emulation' infrastructure at least.
739 *
740 * So what is the problem, why we need to drop those nodes? Why
741 * can't we just clean-up the second half of B by putting a
742 * padding node there? We can, and this works fine with one
743 * exception which was reproduced with power cut emulation
744 * testing and happens extremely rarely.
745 *
746 * Imagine the file-system is full, we run GC which starts
747 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
748 * the current GC head LEB). The @c->gc_lnum is -1, which means
749 * that GC will retain LEB X and will try to continue. Imagine
750 * that LEB X is currently the dirtiest LEB, and the amount of
751 * used space in LEB Y is exactly the same as amount of free
752 * space in LEB X.
753 *
754 * And a power cut happens when nodes are moved from LEB X to
755 * LEB Y. We are here trying to recover LEB Y which is the GC
756 * head LEB. We find the min. I/O unit B as described above.
757 * Then we clean-up LEB Y by padding min. I/O unit. And later
758 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
759 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
760 * does not match because the amount of valid nodes there does
761 * not fit the free space in LEB Y any more! And this is
762 * because of the padding node which we added to LEB Y. The
763 * user-visible effect of this which I once observed and
764 * analysed is that we cannot mount the file-system with
765 * -ENOSPC error.
766 *
767 * So obviously, to make sure that situation does not happen we
768 * should free min. I/O unit B in LEB Y completely and the last
769 * used min. I/O unit in LEB Y should be A. This is basically
770 * what the below code tries to do.
771 */
772 while (offs > min_io_unit)
773 drop_last_node(sleb, &offs);
774 }
775
776 buf = sbuf + offs;
777 len = c->leb_size - offs;
778
779 clean_buf(c, &buf, lnum, &offs, &len);
780 ubifs_end_scan(c, sleb, lnum, offs);
781
782 err = fix_unclean_leb(c, sleb, start);
783 if (err)
784 goto error;
785
786 return sleb;
787
788 corrupted_rescan:
789 /* Re-scan the corrupted data with verbose messages */
790 ubifs_err("corruption %d", ret);
791 ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
792 corrupted:
793 ubifs_scanned_corruption(c, lnum, offs, buf);
794 err = -EUCLEAN;
795 error:
796 ubifs_err("LEB %d scanning failed", lnum);
797 ubifs_scan_destroy(sleb);
798 return ERR_PTR(err);
799 }
800
801 /**
802 * get_cs_sqnum - get commit start sequence number.
803 * @c: UBIFS file-system description object
804 * @lnum: LEB number of commit start node
805 * @offs: offset of commit start node
806 * @cs_sqnum: commit start sequence number is returned here
807 *
808 * This function returns %0 on success and a negative error code on failure.
809 */
810 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
811 unsigned long long *cs_sqnum)
812 {
813 struct ubifs_cs_node *cs_node = NULL;
814 int err, ret;
815
816 dbg_rcvry("at %d:%d", lnum, offs);
817 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
818 if (!cs_node)
819 return -ENOMEM;
820 if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
821 goto out_err;
822 err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
823 UBIFS_CS_NODE_SZ, 0);
824 if (err && err != -EBADMSG)
825 goto out_free;
826 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
827 if (ret != SCANNED_A_NODE) {
828 ubifs_err("Not a valid node");
829 goto out_err;
830 }
831 if (cs_node->ch.node_type != UBIFS_CS_NODE) {
832 ubifs_err("Node a CS node, type is %d", cs_node->ch.node_type);
833 goto out_err;
834 }
835 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
836 ubifs_err("CS node cmt_no %llu != current cmt_no %llu",
837 (unsigned long long)le64_to_cpu(cs_node->cmt_no),
838 c->cmt_no);
839 goto out_err;
840 }
841 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
842 dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
843 kfree(cs_node);
844 return 0;
845
846 out_err:
847 err = -EINVAL;
848 out_free:
849 ubifs_err("failed to get CS sqnum");
850 kfree(cs_node);
851 return err;
852 }
853
854 /**
855 * ubifs_recover_log_leb - scan and recover a log LEB.
856 * @c: UBIFS file-system description object
857 * @lnum: LEB number
858 * @offs: offset
859 * @sbuf: LEB-sized buffer to use
860 *
861 * This function does a scan of a LEB, but caters for errors that might have
862 * been caused by unclean reboots from which we are attempting to recover
863 * (assume that only the last log LEB can be corrupted by an unclean reboot).
864 *
865 * This function returns %0 on success and a negative error code on failure.
866 */
867 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
868 int offs, void *sbuf)
869 {
870 struct ubifs_scan_leb *sleb;
871 int next_lnum;
872
873 dbg_rcvry("LEB %d", lnum);
874 next_lnum = lnum + 1;
875 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
876 next_lnum = UBIFS_LOG_LNUM;
877 if (next_lnum != c->ltail_lnum) {
878 /*
879 * We can only recover at the end of the log, so check that the
880 * next log LEB is empty or out of date.
881 */
882 sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
883 if (IS_ERR(sleb))
884 return sleb;
885 if (sleb->nodes_cnt) {
886 struct ubifs_scan_node *snod;
887 unsigned long long cs_sqnum = c->cs_sqnum;
888
889 snod = list_entry(sleb->nodes.next,
890 struct ubifs_scan_node, list);
891 if (cs_sqnum == 0) {
892 int err;
893
894 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
895 if (err) {
896 ubifs_scan_destroy(sleb);
897 return ERR_PTR(err);
898 }
899 }
900 if (snod->sqnum > cs_sqnum) {
901 ubifs_err("unrecoverable log corruption in LEB %d",
902 lnum);
903 ubifs_scan_destroy(sleb);
904 return ERR_PTR(-EUCLEAN);
905 }
906 }
907 ubifs_scan_destroy(sleb);
908 }
909 return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
910 }
911
912 /**
913 * recover_head - recover a head.
914 * @c: UBIFS file-system description object
915 * @lnum: LEB number of head to recover
916 * @offs: offset of head to recover
917 * @sbuf: LEB-sized buffer to use
918 *
919 * This function ensures that there is no data on the flash at a head location.
920 *
921 * This function returns %0 on success and a negative error code on failure.
922 */
923 static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
924 {
925 int len = c->max_write_size, err;
926
927 if (offs + len > c->leb_size)
928 len = c->leb_size - offs;
929
930 if (!len)
931 return 0;
932
933 /* Read at the head location and check it is empty flash */
934 err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
935 if (err || !is_empty(sbuf, len)) {
936 dbg_rcvry("cleaning head at %d:%d", lnum, offs);
937 if (offs == 0)
938 return ubifs_leb_unmap(c, lnum);
939 err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
940 if (err)
941 return err;
942 return ubifs_leb_change(c, lnum, sbuf, offs);
943 }
944
945 return 0;
946 }
947
948 /**
949 * ubifs_recover_inl_heads - recover index and LPT heads.
950 * @c: UBIFS file-system description object
951 * @sbuf: LEB-sized buffer to use
952 *
953 * This function ensures that there is no data on the flash at the index and
954 * LPT head locations.
955 *
956 * This deals with the recovery of a half-completed journal commit. UBIFS is
957 * careful never to overwrite the last version of the index or the LPT. Because
958 * the index and LPT are wandering trees, data from a half-completed commit will
959 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
960 * assumed to be empty and will be unmapped anyway before use, or in the index
961 * and LPT heads.
962 *
963 * This function returns %0 on success and a negative error code on failure.
964 */
965 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
966 {
967 int err;
968
969 ubifs_assert(!c->ro_mount || c->remounting_rw);
970
971 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
972 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
973 if (err)
974 return err;
975
976 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
977 err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
978 if (err)
979 return err;
980
981 return 0;
982 }
983
984 /**
985 * clean_an_unclean_leb - read and write a LEB to remove corruption.
986 * @c: UBIFS file-system description object
987 * @ucleb: unclean LEB information
988 * @sbuf: LEB-sized buffer to use
989 *
990 * This function reads a LEB up to a point pre-determined by the mount recovery,
991 * checks the nodes, and writes the result back to the flash, thereby cleaning
992 * off any following corruption, or non-fatal ECC errors.
993 *
994 * This function returns %0 on success and a negative error code on failure.
995 */
996 static int clean_an_unclean_leb(struct ubifs_info *c,
997 struct ubifs_unclean_leb *ucleb, void *sbuf)
998 {
999 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
1000 void *buf = sbuf;
1001
1002 dbg_rcvry("LEB %d len %d", lnum, len);
1003
1004 if (len == 0) {
1005 /* Nothing to read, just unmap it */
1006 err = ubifs_leb_unmap(c, lnum);
1007 if (err)
1008 return err;
1009 return 0;
1010 }
1011
1012 err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1013 if (err && err != -EBADMSG)
1014 return err;
1015
1016 while (len >= 8) {
1017 int ret;
1018
1019 cond_resched();
1020
1021 /* Scan quietly until there is an error */
1022 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1023
1024 if (ret == SCANNED_A_NODE) {
1025 /* A valid node, and not a padding node */
1026 struct ubifs_ch *ch = buf;
1027 int node_len;
1028
1029 node_len = ALIGN(le32_to_cpu(ch->len), 8);
1030 offs += node_len;
1031 buf += node_len;
1032 len -= node_len;
1033 continue;
1034 }
1035
1036 if (ret > 0) {
1037 /* Padding bytes or a valid padding node */
1038 offs += ret;
1039 buf += ret;
1040 len -= ret;
1041 continue;
1042 }
1043
1044 if (ret == SCANNED_EMPTY_SPACE) {
1045 ubifs_err("unexpected empty space at %d:%d",
1046 lnum, offs);
1047 return -EUCLEAN;
1048 }
1049
1050 if (quiet) {
1051 /* Redo the last scan but noisily */
1052 quiet = 0;
1053 continue;
1054 }
1055
1056 ubifs_scanned_corruption(c, lnum, offs, buf);
1057 return -EUCLEAN;
1058 }
1059
1060 /* Pad to min_io_size */
1061 len = ALIGN(ucleb->endpt, c->min_io_size);
1062 if (len > ucleb->endpt) {
1063 int pad_len = len - ALIGN(ucleb->endpt, 8);
1064
1065 if (pad_len > 0) {
1066 buf = c->sbuf + len - pad_len;
1067 ubifs_pad(c, buf, pad_len);
1068 }
1069 }
1070
1071 /* Write back the LEB atomically */
1072 err = ubifs_leb_change(c, lnum, sbuf, len);
1073 if (err)
1074 return err;
1075
1076 dbg_rcvry("cleaned LEB %d", lnum);
1077
1078 return 0;
1079 }
1080
1081 /**
1082 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1083 * @c: UBIFS file-system description object
1084 * @sbuf: LEB-sized buffer to use
1085 *
1086 * This function cleans a LEB identified during recovery that needs to be
1087 * written but was not because UBIFS was mounted read-only. This happens when
1088 * remounting to read-write mode.
1089 *
1090 * This function returns %0 on success and a negative error code on failure.
1091 */
1092 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
1093 {
1094 dbg_rcvry("recovery");
1095 while (!list_empty(&c->unclean_leb_list)) {
1096 struct ubifs_unclean_leb *ucleb;
1097 int err;
1098
1099 ucleb = list_entry(c->unclean_leb_list.next,
1100 struct ubifs_unclean_leb, list);
1101 err = clean_an_unclean_leb(c, ucleb, sbuf);
1102 if (err)
1103 return err;
1104 list_del(&ucleb->list);
1105 kfree(ucleb);
1106 }
1107 return 0;
1108 }
1109
1110 #ifndef __UBOOT__
1111 /**
1112 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1113 * @c: UBIFS file-system description object
1114 *
1115 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1116 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1117 * zero in case of success and a negative error code in case of failure.
1118 */
1119 static int grab_empty_leb(struct ubifs_info *c)
1120 {
1121 int lnum, err;
1122
1123 /*
1124 * Note, it is very important to first search for an empty LEB and then
1125 * run the commit, not vice-versa. The reason is that there might be
1126 * only one empty LEB at the moment, the one which has been the
1127 * @c->gc_lnum just before the power cut happened. During the regular
1128 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1129 * one but GC can grab it. But at this moment this single empty LEB is
1130 * not marked as taken, so if we run commit - what happens? Right, the
1131 * commit will grab it and write the index there. Remember that the
1132 * index always expands as long as there is free space, and it only
1133 * starts consolidating when we run out of space.
1134 *
1135 * IOW, if we run commit now, we might not be able to find a free LEB
1136 * after this.
1137 */
1138 lnum = ubifs_find_free_leb_for_idx(c);
1139 if (lnum < 0) {
1140 ubifs_err("could not find an empty LEB");
1141 ubifs_dump_lprops(c);
1142 ubifs_dump_budg(c, &c->bi);
1143 return lnum;
1144 }
1145
1146 /* Reset the index flag */
1147 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1148 LPROPS_INDEX, 0);
1149 if (err)
1150 return err;
1151
1152 c->gc_lnum = lnum;
1153 dbg_rcvry("found empty LEB %d, run commit", lnum);
1154
1155 return ubifs_run_commit(c);
1156 }
1157
1158 /**
1159 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1160 * @c: UBIFS file-system description object
1161 *
1162 * Out-of-place garbage collection requires always one empty LEB with which to
1163 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1164 * written to the master node on unmounting. In the case of an unclean unmount
1165 * the value of gc_lnum recorded in the master node is out of date and cannot
1166 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1167 * However, there may not be enough empty space, in which case it must be
1168 * possible to GC the dirtiest LEB into the GC head LEB.
1169 *
1170 * This function also runs the commit which causes the TNC updates from
1171 * size-recovery and orphans to be written to the flash. That is important to
1172 * ensure correct replay order for subsequent mounts.
1173 *
1174 * This function returns %0 on success and a negative error code on failure.
1175 */
1176 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1177 {
1178 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1179 struct ubifs_lprops lp;
1180 int err;
1181
1182 dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1183
1184 c->gc_lnum = -1;
1185 if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1186 return grab_empty_leb(c);
1187
1188 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1189 if (err) {
1190 if (err != -ENOSPC)
1191 return err;
1192
1193 dbg_rcvry("could not find a dirty LEB");
1194 return grab_empty_leb(c);
1195 }
1196
1197 ubifs_assert(!(lp.flags & LPROPS_INDEX));
1198 ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
1199
1200 /*
1201 * We run the commit before garbage collection otherwise subsequent
1202 * mounts will see the GC and orphan deletion in a different order.
1203 */
1204 dbg_rcvry("committing");
1205 err = ubifs_run_commit(c);
1206 if (err)
1207 return err;
1208
1209 dbg_rcvry("GC'ing LEB %d", lp.lnum);
1210 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1211 err = ubifs_garbage_collect_leb(c, &lp);
1212 if (err >= 0) {
1213 int err2 = ubifs_wbuf_sync_nolock(wbuf);
1214
1215 if (err2)
1216 err = err2;
1217 }
1218 mutex_unlock(&wbuf->io_mutex);
1219 if (err < 0) {
1220 ubifs_err("GC failed, error %d", err);
1221 if (err == -EAGAIN)
1222 err = -EINVAL;
1223 return err;
1224 }
1225
1226 ubifs_assert(err == LEB_RETAINED);
1227 if (err != LEB_RETAINED)
1228 return -EINVAL;
1229
1230 err = ubifs_leb_unmap(c, c->gc_lnum);
1231 if (err)
1232 return err;
1233
1234 dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1235 return 0;
1236 }
1237 #else
1238 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1239 {
1240 return 0;
1241 }
1242 #endif
1243
1244 /**
1245 * struct size_entry - inode size information for recovery.
1246 * @rb: link in the RB-tree of sizes
1247 * @inum: inode number
1248 * @i_size: size on inode
1249 * @d_size: maximum size based on data nodes
1250 * @exists: indicates whether the inode exists
1251 * @inode: inode if pinned in memory awaiting rw mode to fix it
1252 */
1253 struct size_entry {
1254 struct rb_node rb;
1255 ino_t inum;
1256 loff_t i_size;
1257 loff_t d_size;
1258 int exists;
1259 struct inode *inode;
1260 };
1261
1262 /**
1263 * add_ino - add an entry to the size tree.
1264 * @c: UBIFS file-system description object
1265 * @inum: inode number
1266 * @i_size: size on inode
1267 * @d_size: maximum size based on data nodes
1268 * @exists: indicates whether the inode exists
1269 */
1270 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1271 loff_t d_size, int exists)
1272 {
1273 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1274 struct size_entry *e;
1275
1276 while (*p) {
1277 parent = *p;
1278 e = rb_entry(parent, struct size_entry, rb);
1279 if (inum < e->inum)
1280 p = &(*p)->rb_left;
1281 else
1282 p = &(*p)->rb_right;
1283 }
1284
1285 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1286 if (!e)
1287 return -ENOMEM;
1288
1289 e->inum = inum;
1290 e->i_size = i_size;
1291 e->d_size = d_size;
1292 e->exists = exists;
1293
1294 rb_link_node(&e->rb, parent, p);
1295 rb_insert_color(&e->rb, &c->size_tree);
1296
1297 return 0;
1298 }
1299
1300 /**
1301 * find_ino - find an entry on the size tree.
1302 * @c: UBIFS file-system description object
1303 * @inum: inode number
1304 */
1305 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1306 {
1307 struct rb_node *p = c->size_tree.rb_node;
1308 struct size_entry *e;
1309
1310 while (p) {
1311 e = rb_entry(p, struct size_entry, rb);
1312 if (inum < e->inum)
1313 p = p->rb_left;
1314 else if (inum > e->inum)
1315 p = p->rb_right;
1316 else
1317 return e;
1318 }
1319 return NULL;
1320 }
1321
1322 /**
1323 * remove_ino - remove an entry from the size tree.
1324 * @c: UBIFS file-system description object
1325 * @inum: inode number
1326 */
1327 static void remove_ino(struct ubifs_info *c, ino_t inum)
1328 {
1329 struct size_entry *e = find_ino(c, inum);
1330
1331 if (!e)
1332 return;
1333 rb_erase(&e->rb, &c->size_tree);
1334 kfree(e);
1335 }
1336
1337 /**
1338 * ubifs_destroy_size_tree - free resources related to the size tree.
1339 * @c: UBIFS file-system description object
1340 */
1341 void ubifs_destroy_size_tree(struct ubifs_info *c)
1342 {
1343 struct size_entry *e, *n;
1344
1345 rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
1346 if (e->inode)
1347 iput(e->inode);
1348 kfree(e);
1349 }
1350
1351 c->size_tree = RB_ROOT;
1352 }
1353
1354 /**
1355 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1356 * @c: UBIFS file-system description object
1357 * @key: node key
1358 * @deletion: node is for a deletion
1359 * @new_size: inode size
1360 *
1361 * This function has two purposes:
1362 * 1) to ensure there are no data nodes that fall outside the inode size
1363 * 2) to ensure there are no data nodes for inodes that do not exist
1364 * To accomplish those purposes, a rb-tree is constructed containing an entry
1365 * for each inode number in the journal that has not been deleted, and recording
1366 * the size from the inode node, the maximum size of any data node (also altered
1367 * by truncations) and a flag indicating a inode number for which no inode node
1368 * was present in the journal.
1369 *
1370 * Note that there is still the possibility that there are data nodes that have
1371 * been committed that are beyond the inode size, however the only way to find
1372 * them would be to scan the entire index. Alternatively, some provision could
1373 * be made to record the size of inodes at the start of commit, which would seem
1374 * very cumbersome for a scenario that is quite unlikely and the only negative
1375 * consequence of which is wasted space.
1376 *
1377 * This functions returns %0 on success and a negative error code on failure.
1378 */
1379 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1380 int deletion, loff_t new_size)
1381 {
1382 ino_t inum = key_inum(c, key);
1383 struct size_entry *e;
1384 int err;
1385
1386 switch (key_type(c, key)) {
1387 case UBIFS_INO_KEY:
1388 if (deletion)
1389 remove_ino(c, inum);
1390 else {
1391 e = find_ino(c, inum);
1392 if (e) {
1393 e->i_size = new_size;
1394 e->exists = 1;
1395 } else {
1396 err = add_ino(c, inum, new_size, 0, 1);
1397 if (err)
1398 return err;
1399 }
1400 }
1401 break;
1402 case UBIFS_DATA_KEY:
1403 e = find_ino(c, inum);
1404 if (e) {
1405 if (new_size > e->d_size)
1406 e->d_size = new_size;
1407 } else {
1408 err = add_ino(c, inum, 0, new_size, 0);
1409 if (err)
1410 return err;
1411 }
1412 break;
1413 case UBIFS_TRUN_KEY:
1414 e = find_ino(c, inum);
1415 if (e)
1416 e->d_size = new_size;
1417 break;
1418 }
1419 return 0;
1420 }
1421
1422 #ifndef __UBOOT__
1423 /**
1424 * fix_size_in_place - fix inode size in place on flash.
1425 * @c: UBIFS file-system description object
1426 * @e: inode size information for recovery
1427 */
1428 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1429 {
1430 struct ubifs_ino_node *ino = c->sbuf;
1431 unsigned char *p;
1432 union ubifs_key key;
1433 int err, lnum, offs, len;
1434 loff_t i_size;
1435 uint32_t crc;
1436
1437 /* Locate the inode node LEB number and offset */
1438 ino_key_init(c, &key, e->inum);
1439 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1440 if (err)
1441 goto out;
1442 /*
1443 * If the size recorded on the inode node is greater than the size that
1444 * was calculated from nodes in the journal then don't change the inode.
1445 */
1446 i_size = le64_to_cpu(ino->size);
1447 if (i_size >= e->d_size)
1448 return 0;
1449 /* Read the LEB */
1450 err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
1451 if (err)
1452 goto out;
1453 /* Change the size field and recalculate the CRC */
1454 ino = c->sbuf + offs;
1455 ino->size = cpu_to_le64(e->d_size);
1456 len = le32_to_cpu(ino->ch.len);
1457 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1458 ino->ch.crc = cpu_to_le32(crc);
1459 /* Work out where data in the LEB ends and free space begins */
1460 p = c->sbuf;
1461 len = c->leb_size - 1;
1462 while (p[len] == 0xff)
1463 len -= 1;
1464 len = ALIGN(len + 1, c->min_io_size);
1465 /* Atomically write the fixed LEB back again */
1466 err = ubifs_leb_change(c, lnum, c->sbuf, len);
1467 if (err)
1468 goto out;
1469 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1470 (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1471 return 0;
1472
1473 out:
1474 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1475 (unsigned long)e->inum, e->i_size, e->d_size, err);
1476 return err;
1477 }
1478 #endif
1479
1480 /**
1481 * ubifs_recover_size - recover inode size.
1482 * @c: UBIFS file-system description object
1483 *
1484 * This function attempts to fix inode size discrepancies identified by the
1485 * 'ubifs_recover_size_accum()' function.
1486 *
1487 * This functions returns %0 on success and a negative error code on failure.
1488 */
1489 int ubifs_recover_size(struct ubifs_info *c)
1490 {
1491 struct rb_node *this = rb_first(&c->size_tree);
1492
1493 while (this) {
1494 struct size_entry *e;
1495 int err;
1496
1497 e = rb_entry(this, struct size_entry, rb);
1498 if (!e->exists) {
1499 union ubifs_key key;
1500
1501 ino_key_init(c, &key, e->inum);
1502 err = ubifs_tnc_lookup(c, &key, c->sbuf);
1503 if (err && err != -ENOENT)
1504 return err;
1505 if (err == -ENOENT) {
1506 /* Remove data nodes that have no inode */
1507 dbg_rcvry("removing ino %lu",
1508 (unsigned long)e->inum);
1509 err = ubifs_tnc_remove_ino(c, e->inum);
1510 if (err)
1511 return err;
1512 } else {
1513 struct ubifs_ino_node *ino = c->sbuf;
1514
1515 e->exists = 1;
1516 e->i_size = le64_to_cpu(ino->size);
1517 }
1518 }
1519
1520 if (e->exists && e->i_size < e->d_size) {
1521 if (c->ro_mount) {
1522 /* Fix the inode size and pin it in memory */
1523 struct inode *inode;
1524 struct ubifs_inode *ui;
1525
1526 ubifs_assert(!e->inode);
1527
1528 inode = ubifs_iget(c->vfs_sb, e->inum);
1529 if (IS_ERR(inode))
1530 return PTR_ERR(inode);
1531
1532 ui = ubifs_inode(inode);
1533 if (inode->i_size < e->d_size) {
1534 dbg_rcvry("ino %lu size %lld -> %lld",
1535 (unsigned long)e->inum,
1536 inode->i_size, e->d_size);
1537 inode->i_size = e->d_size;
1538 ui->ui_size = e->d_size;
1539 ui->synced_i_size = e->d_size;
1540 e->inode = inode;
1541 this = rb_next(this);
1542 continue;
1543 }
1544 iput(inode);
1545 #ifndef __UBOOT__
1546 } else {
1547 /* Fix the size in place */
1548 err = fix_size_in_place(c, e);
1549 if (err)
1550 return err;
1551 if (e->inode)
1552 iput(e->inode);
1553 #endif
1554 }
1555 }
1556
1557 this = rb_next(this);
1558 rb_erase(&e->rb, &c->size_tree);
1559 kfree(e);
1560 }
1561
1562 return 0;
1563 }