]> git.ipfire.org Git - people/ms/u-boot.git/blob - fs/ubifs/replay.c
Merge branch 'master' of git://git.denx.de/u-boot-arc
[people/ms/u-boot.git] / fs / ubifs / replay.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 *
8 * Authors: Adrian Hunter
9 * Artem Bityutskiy (Битюцкий Артём)
10 */
11
12 /*
13 * This file contains journal replay code. It runs when the file-system is being
14 * mounted and requires no locking.
15 *
16 * The larger is the journal, the longer it takes to scan it, so the longer it
17 * takes to mount UBIFS. This is why the journal has limited size which may be
18 * changed depending on the system requirements. But a larger journal gives
19 * faster I/O speed because it writes the index less frequently. So this is a
20 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
21 * larger is the journal, the more memory its index may consume.
22 */
23
24 #define __UBOOT__
25 #ifdef __UBOOT__
26 #include <linux/compat.h>
27 #include <linux/err.h>
28 #endif
29 #include "ubifs.h"
30 #include <linux/list_sort.h>
31
32 /**
33 * struct replay_entry - replay list entry.
34 * @lnum: logical eraseblock number of the node
35 * @offs: node offset
36 * @len: node length
37 * @deletion: non-zero if this entry corresponds to a node deletion
38 * @sqnum: node sequence number
39 * @list: links the replay list
40 * @key: node key
41 * @nm: directory entry name
42 * @old_size: truncation old size
43 * @new_size: truncation new size
44 *
45 * The replay process first scans all buds and builds the replay list, then
46 * sorts the replay list in nodes sequence number order, and then inserts all
47 * the replay entries to the TNC.
48 */
49 struct replay_entry {
50 int lnum;
51 int offs;
52 int len;
53 unsigned int deletion:1;
54 unsigned long long sqnum;
55 struct list_head list;
56 union ubifs_key key;
57 union {
58 struct qstr nm;
59 struct {
60 loff_t old_size;
61 loff_t new_size;
62 };
63 };
64 };
65
66 /**
67 * struct bud_entry - entry in the list of buds to replay.
68 * @list: next bud in the list
69 * @bud: bud description object
70 * @sqnum: reference node sequence number
71 * @free: free bytes in the bud
72 * @dirty: dirty bytes in the bud
73 */
74 struct bud_entry {
75 struct list_head list;
76 struct ubifs_bud *bud;
77 unsigned long long sqnum;
78 int free;
79 int dirty;
80 };
81
82 #ifndef __UBOOT__
83 /**
84 * set_bud_lprops - set free and dirty space used by a bud.
85 * @c: UBIFS file-system description object
86 * @b: bud entry which describes the bud
87 *
88 * This function makes sure the LEB properties of bud @b are set correctly
89 * after the replay. Returns zero in case of success and a negative error code
90 * in case of failure.
91 */
92 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
93 {
94 const struct ubifs_lprops *lp;
95 int err = 0, dirty;
96
97 ubifs_get_lprops(c);
98
99 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
100 if (IS_ERR(lp)) {
101 err = PTR_ERR(lp);
102 goto out;
103 }
104
105 dirty = lp->dirty;
106 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
107 /*
108 * The LEB was added to the journal with a starting offset of
109 * zero which means the LEB must have been empty. The LEB
110 * property values should be @lp->free == @c->leb_size and
111 * @lp->dirty == 0, but that is not the case. The reason is that
112 * the LEB had been garbage collected before it became the bud,
113 * and there was not commit inbetween. The garbage collector
114 * resets the free and dirty space without recording it
115 * anywhere except lprops, so if there was no commit then
116 * lprops does not have that information.
117 *
118 * We do not need to adjust free space because the scan has told
119 * us the exact value which is recorded in the replay entry as
120 * @b->free.
121 *
122 * However we do need to subtract from the dirty space the
123 * amount of space that the garbage collector reclaimed, which
124 * is the whole LEB minus the amount of space that was free.
125 */
126 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
127 lp->free, lp->dirty);
128 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
129 lp->free, lp->dirty);
130 dirty -= c->leb_size - lp->free;
131 /*
132 * If the replay order was perfect the dirty space would now be
133 * zero. The order is not perfect because the journal heads
134 * race with each other. This is not a problem but is does mean
135 * that the dirty space may temporarily exceed c->leb_size
136 * during the replay.
137 */
138 if (dirty != 0)
139 dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
140 b->bud->lnum, lp->free, lp->dirty, b->free,
141 b->dirty);
142 }
143 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
144 lp->flags | LPROPS_TAKEN, 0);
145 if (IS_ERR(lp)) {
146 err = PTR_ERR(lp);
147 goto out;
148 }
149
150 /* Make sure the journal head points to the latest bud */
151 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
152 b->bud->lnum, c->leb_size - b->free);
153
154 out:
155 ubifs_release_lprops(c);
156 return err;
157 }
158
159 /**
160 * set_buds_lprops - set free and dirty space for all replayed buds.
161 * @c: UBIFS file-system description object
162 *
163 * This function sets LEB properties for all replayed buds. Returns zero in
164 * case of success and a negative error code in case of failure.
165 */
166 static int set_buds_lprops(struct ubifs_info *c)
167 {
168 struct bud_entry *b;
169 int err;
170
171 list_for_each_entry(b, &c->replay_buds, list) {
172 err = set_bud_lprops(c, b);
173 if (err)
174 return err;
175 }
176
177 return 0;
178 }
179
180 /**
181 * trun_remove_range - apply a replay entry for a truncation to the TNC.
182 * @c: UBIFS file-system description object
183 * @r: replay entry of truncation
184 */
185 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
186 {
187 unsigned min_blk, max_blk;
188 union ubifs_key min_key, max_key;
189 ino_t ino;
190
191 min_blk = r->new_size / UBIFS_BLOCK_SIZE;
192 if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
193 min_blk += 1;
194
195 max_blk = r->old_size / UBIFS_BLOCK_SIZE;
196 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
197 max_blk -= 1;
198
199 ino = key_inum(c, &r->key);
200
201 data_key_init(c, &min_key, ino, min_blk);
202 data_key_init(c, &max_key, ino, max_blk);
203
204 return ubifs_tnc_remove_range(c, &min_key, &max_key);
205 }
206
207 /**
208 * apply_replay_entry - apply a replay entry to the TNC.
209 * @c: UBIFS file-system description object
210 * @r: replay entry to apply
211 *
212 * Apply a replay entry to the TNC.
213 */
214 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
215 {
216 int err;
217
218 dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
219 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
220
221 /* Set c->replay_sqnum to help deal with dangling branches. */
222 c->replay_sqnum = r->sqnum;
223
224 if (is_hash_key(c, &r->key)) {
225 if (r->deletion)
226 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
227 else
228 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
229 r->len, &r->nm);
230 } else {
231 if (r->deletion)
232 switch (key_type(c, &r->key)) {
233 case UBIFS_INO_KEY:
234 {
235 ino_t inum = key_inum(c, &r->key);
236
237 err = ubifs_tnc_remove_ino(c, inum);
238 break;
239 }
240 case UBIFS_TRUN_KEY:
241 err = trun_remove_range(c, r);
242 break;
243 default:
244 err = ubifs_tnc_remove(c, &r->key);
245 break;
246 }
247 else
248 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
249 r->len);
250 if (err)
251 return err;
252
253 if (c->need_recovery)
254 err = ubifs_recover_size_accum(c, &r->key, r->deletion,
255 r->new_size);
256 }
257
258 return err;
259 }
260
261 /**
262 * replay_entries_cmp - compare 2 replay entries.
263 * @priv: UBIFS file-system description object
264 * @a: first replay entry
265 * @a: second replay entry
266 *
267 * This is a comparios function for 'list_sort()' which compares 2 replay
268 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has
269 * greater sequence number and %-1 otherwise.
270 */
271 static int replay_entries_cmp(void *priv, struct list_head *a,
272 struct list_head *b)
273 {
274 struct replay_entry *ra, *rb;
275
276 cond_resched();
277 if (a == b)
278 return 0;
279
280 ra = list_entry(a, struct replay_entry, list);
281 rb = list_entry(b, struct replay_entry, list);
282 ubifs_assert(ra->sqnum != rb->sqnum);
283 if (ra->sqnum > rb->sqnum)
284 return 1;
285 return -1;
286 }
287
288 /**
289 * apply_replay_list - apply the replay list to the TNC.
290 * @c: UBIFS file-system description object
291 *
292 * Apply all entries in the replay list to the TNC. Returns zero in case of
293 * success and a negative error code in case of failure.
294 */
295 static int apply_replay_list(struct ubifs_info *c)
296 {
297 struct replay_entry *r;
298 int err;
299
300 list_sort(c, &c->replay_list, &replay_entries_cmp);
301
302 list_for_each_entry(r, &c->replay_list, list) {
303 cond_resched();
304
305 err = apply_replay_entry(c, r);
306 if (err)
307 return err;
308 }
309
310 return 0;
311 }
312
313 /**
314 * destroy_replay_list - destroy the replay.
315 * @c: UBIFS file-system description object
316 *
317 * Destroy the replay list.
318 */
319 static void destroy_replay_list(struct ubifs_info *c)
320 {
321 struct replay_entry *r, *tmp;
322
323 list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
324 if (is_hash_key(c, &r->key))
325 kfree(r->nm.name);
326 list_del(&r->list);
327 kfree(r);
328 }
329 }
330
331 /**
332 * insert_node - insert a node to the replay list
333 * @c: UBIFS file-system description object
334 * @lnum: node logical eraseblock number
335 * @offs: node offset
336 * @len: node length
337 * @key: node key
338 * @sqnum: sequence number
339 * @deletion: non-zero if this is a deletion
340 * @used: number of bytes in use in a LEB
341 * @old_size: truncation old size
342 * @new_size: truncation new size
343 *
344 * This function inserts a scanned non-direntry node to the replay list. The
345 * replay list contains @struct replay_entry elements, and we sort this list in
346 * sequence number order before applying it. The replay list is applied at the
347 * very end of the replay process. Since the list is sorted in sequence number
348 * order, the older modifications are applied first. This function returns zero
349 * in case of success and a negative error code in case of failure.
350 */
351 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
352 union ubifs_key *key, unsigned long long sqnum,
353 int deletion, int *used, loff_t old_size,
354 loff_t new_size)
355 {
356 struct replay_entry *r;
357
358 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
359
360 if (key_inum(c, key) >= c->highest_inum)
361 c->highest_inum = key_inum(c, key);
362
363 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
364 if (!r)
365 return -ENOMEM;
366
367 if (!deletion)
368 *used += ALIGN(len, 8);
369 r->lnum = lnum;
370 r->offs = offs;
371 r->len = len;
372 r->deletion = !!deletion;
373 r->sqnum = sqnum;
374 key_copy(c, key, &r->key);
375 r->old_size = old_size;
376 r->new_size = new_size;
377
378 list_add_tail(&r->list, &c->replay_list);
379 return 0;
380 }
381
382 /**
383 * insert_dent - insert a directory entry node into the replay list.
384 * @c: UBIFS file-system description object
385 * @lnum: node logical eraseblock number
386 * @offs: node offset
387 * @len: node length
388 * @key: node key
389 * @name: directory entry name
390 * @nlen: directory entry name length
391 * @sqnum: sequence number
392 * @deletion: non-zero if this is a deletion
393 * @used: number of bytes in use in a LEB
394 *
395 * This function inserts a scanned directory entry node or an extended
396 * attribute entry to the replay list. Returns zero in case of success and a
397 * negative error code in case of failure.
398 */
399 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
400 union ubifs_key *key, const char *name, int nlen,
401 unsigned long long sqnum, int deletion, int *used)
402 {
403 struct replay_entry *r;
404 char *nbuf;
405
406 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
407 if (key_inum(c, key) >= c->highest_inum)
408 c->highest_inum = key_inum(c, key);
409
410 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
411 if (!r)
412 return -ENOMEM;
413
414 nbuf = kmalloc(nlen + 1, GFP_KERNEL);
415 if (!nbuf) {
416 kfree(r);
417 return -ENOMEM;
418 }
419
420 if (!deletion)
421 *used += ALIGN(len, 8);
422 r->lnum = lnum;
423 r->offs = offs;
424 r->len = len;
425 r->deletion = !!deletion;
426 r->sqnum = sqnum;
427 key_copy(c, key, &r->key);
428 r->nm.len = nlen;
429 memcpy(nbuf, name, nlen);
430 nbuf[nlen] = '\0';
431 r->nm.name = nbuf;
432
433 list_add_tail(&r->list, &c->replay_list);
434 return 0;
435 }
436 #endif
437
438 /**
439 * ubifs_validate_entry - validate directory or extended attribute entry node.
440 * @c: UBIFS file-system description object
441 * @dent: the node to validate
442 *
443 * This function validates directory or extended attribute entry node @dent.
444 * Returns zero if the node is all right and a %-EINVAL if not.
445 */
446 int ubifs_validate_entry(struct ubifs_info *c,
447 const struct ubifs_dent_node *dent)
448 {
449 int key_type = key_type_flash(c, dent->key);
450 int nlen = le16_to_cpu(dent->nlen);
451
452 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
453 dent->type >= UBIFS_ITYPES_CNT ||
454 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
455 strnlen(dent->name, nlen) != nlen ||
456 le64_to_cpu(dent->inum) > MAX_INUM) {
457 ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ?
458 "directory entry" : "extended attribute entry");
459 return -EINVAL;
460 }
461
462 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
463 ubifs_err("bad key type %d", key_type);
464 return -EINVAL;
465 }
466
467 return 0;
468 }
469
470 #ifndef __UBOOT__
471 /**
472 * is_last_bud - check if the bud is the last in the journal head.
473 * @c: UBIFS file-system description object
474 * @bud: bud description object
475 *
476 * This function checks if bud @bud is the last bud in its journal head. This
477 * information is then used by 'replay_bud()' to decide whether the bud can
478 * have corruptions or not. Indeed, only last buds can be corrupted by power
479 * cuts. Returns %1 if this is the last bud, and %0 if not.
480 */
481 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
482 {
483 struct ubifs_jhead *jh = &c->jheads[bud->jhead];
484 struct ubifs_bud *next;
485 uint32_t data;
486 int err;
487
488 if (list_is_last(&bud->list, &jh->buds_list))
489 return 1;
490
491 /*
492 * The following is a quirk to make sure we work correctly with UBIFS
493 * images used with older UBIFS.
494 *
495 * Normally, the last bud will be the last in the journal head's list
496 * of bud. However, there is one exception if the UBIFS image belongs
497 * to older UBIFS. This is fairly unlikely: one would need to use old
498 * UBIFS, then have a power cut exactly at the right point, and then
499 * try to mount this image with new UBIFS.
500 *
501 * The exception is: it is possible to have 2 buds A and B, A goes
502 * before B, and B is the last, bud B is contains no data, and bud A is
503 * corrupted at the end. The reason is that in older versions when the
504 * journal code switched the next bud (from A to B), it first added a
505 * log reference node for the new bud (B), and only after this it
506 * synchronized the write-buffer of current bud (A). But later this was
507 * changed and UBIFS started to always synchronize the write-buffer of
508 * the bud (A) before writing the log reference for the new bud (B).
509 *
510 * But because older UBIFS always synchronized A's write-buffer before
511 * writing to B, we can recognize this exceptional situation but
512 * checking the contents of bud B - if it is empty, then A can be
513 * treated as the last and we can recover it.
514 *
515 * TODO: remove this piece of code in a couple of years (today it is
516 * 16.05.2011).
517 */
518 next = list_entry(bud->list.next, struct ubifs_bud, list);
519 if (!list_is_last(&next->list, &jh->buds_list))
520 return 0;
521
522 err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
523 if (err)
524 return 0;
525
526 return data == 0xFFFFFFFF;
527 }
528
529 /**
530 * replay_bud - replay a bud logical eraseblock.
531 * @c: UBIFS file-system description object
532 * @b: bud entry which describes the bud
533 *
534 * This function replays bud @bud, recovers it if needed, and adds all nodes
535 * from this bud to the replay list. Returns zero in case of success and a
536 * negative error code in case of failure.
537 */
538 static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
539 {
540 int is_last = is_last_bud(c, b->bud);
541 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
542 struct ubifs_scan_leb *sleb;
543 struct ubifs_scan_node *snod;
544
545 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
546 lnum, b->bud->jhead, offs, is_last);
547
548 if (c->need_recovery && is_last)
549 /*
550 * Recover only last LEBs in the journal heads, because power
551 * cuts may cause corruptions only in these LEBs, because only
552 * these LEBs could possibly be written to at the power cut
553 * time.
554 */
555 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
556 else
557 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
558 if (IS_ERR(sleb))
559 return PTR_ERR(sleb);
560
561 /*
562 * The bud does not have to start from offset zero - the beginning of
563 * the 'lnum' LEB may contain previously committed data. One of the
564 * things we have to do in replay is to correctly update lprops with
565 * newer information about this LEB.
566 *
567 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
568 * bytes of free space because it only contain information about
569 * committed data.
570 *
571 * But we know that real amount of free space is 'c->leb_size -
572 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
573 * 'sleb->endpt' is used by bud data. We have to correctly calculate
574 * how much of these data are dirty and update lprops with this
575 * information.
576 *
577 * The dirt in that LEB region is comprised of padding nodes, deletion
578 * nodes, truncation nodes and nodes which are obsoleted by subsequent
579 * nodes in this LEB. So instead of calculating clean space, we
580 * calculate used space ('used' variable).
581 */
582
583 list_for_each_entry(snod, &sleb->nodes, list) {
584 int deletion = 0;
585
586 cond_resched();
587
588 if (snod->sqnum >= SQNUM_WATERMARK) {
589 ubifs_err("file system's life ended");
590 goto out_dump;
591 }
592
593 if (snod->sqnum > c->max_sqnum)
594 c->max_sqnum = snod->sqnum;
595
596 switch (snod->type) {
597 case UBIFS_INO_NODE:
598 {
599 struct ubifs_ino_node *ino = snod->node;
600 loff_t new_size = le64_to_cpu(ino->size);
601
602 if (le32_to_cpu(ino->nlink) == 0)
603 deletion = 1;
604 err = insert_node(c, lnum, snod->offs, snod->len,
605 &snod->key, snod->sqnum, deletion,
606 &used, 0, new_size);
607 break;
608 }
609 case UBIFS_DATA_NODE:
610 {
611 struct ubifs_data_node *dn = snod->node;
612 loff_t new_size = le32_to_cpu(dn->size) +
613 key_block(c, &snod->key) *
614 UBIFS_BLOCK_SIZE;
615
616 err = insert_node(c, lnum, snod->offs, snod->len,
617 &snod->key, snod->sqnum, deletion,
618 &used, 0, new_size);
619 break;
620 }
621 case UBIFS_DENT_NODE:
622 case UBIFS_XENT_NODE:
623 {
624 struct ubifs_dent_node *dent = snod->node;
625
626 err = ubifs_validate_entry(c, dent);
627 if (err)
628 goto out_dump;
629
630 err = insert_dent(c, lnum, snod->offs, snod->len,
631 &snod->key, dent->name,
632 le16_to_cpu(dent->nlen), snod->sqnum,
633 !le64_to_cpu(dent->inum), &used);
634 break;
635 }
636 case UBIFS_TRUN_NODE:
637 {
638 struct ubifs_trun_node *trun = snod->node;
639 loff_t old_size = le64_to_cpu(trun->old_size);
640 loff_t new_size = le64_to_cpu(trun->new_size);
641 union ubifs_key key;
642
643 /* Validate truncation node */
644 if (old_size < 0 || old_size > c->max_inode_sz ||
645 new_size < 0 || new_size > c->max_inode_sz ||
646 old_size <= new_size) {
647 ubifs_err("bad truncation node");
648 goto out_dump;
649 }
650
651 /*
652 * Create a fake truncation key just to use the same
653 * functions which expect nodes to have keys.
654 */
655 trun_key_init(c, &key, le32_to_cpu(trun->inum));
656 err = insert_node(c, lnum, snod->offs, snod->len,
657 &key, snod->sqnum, 1, &used,
658 old_size, new_size);
659 break;
660 }
661 default:
662 ubifs_err("unexpected node type %d in bud LEB %d:%d",
663 snod->type, lnum, snod->offs);
664 err = -EINVAL;
665 goto out_dump;
666 }
667 if (err)
668 goto out;
669 }
670
671 ubifs_assert(ubifs_search_bud(c, lnum));
672 ubifs_assert(sleb->endpt - offs >= used);
673 ubifs_assert(sleb->endpt % c->min_io_size == 0);
674
675 b->dirty = sleb->endpt - offs - used;
676 b->free = c->leb_size - sleb->endpt;
677 dbg_mnt("bud LEB %d replied: dirty %d, free %d",
678 lnum, b->dirty, b->free);
679
680 out:
681 ubifs_scan_destroy(sleb);
682 return err;
683
684 out_dump:
685 ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs);
686 ubifs_dump_node(c, snod->node);
687 ubifs_scan_destroy(sleb);
688 return -EINVAL;
689 }
690
691 /**
692 * replay_buds - replay all buds.
693 * @c: UBIFS file-system description object
694 *
695 * This function returns zero in case of success and a negative error code in
696 * case of failure.
697 */
698 static int replay_buds(struct ubifs_info *c)
699 {
700 struct bud_entry *b;
701 int err;
702 unsigned long long prev_sqnum = 0;
703
704 list_for_each_entry(b, &c->replay_buds, list) {
705 err = replay_bud(c, b);
706 if (err)
707 return err;
708
709 ubifs_assert(b->sqnum > prev_sqnum);
710 prev_sqnum = b->sqnum;
711 }
712
713 return 0;
714 }
715
716 /**
717 * destroy_bud_list - destroy the list of buds to replay.
718 * @c: UBIFS file-system description object
719 */
720 static void destroy_bud_list(struct ubifs_info *c)
721 {
722 struct bud_entry *b;
723
724 while (!list_empty(&c->replay_buds)) {
725 b = list_entry(c->replay_buds.next, struct bud_entry, list);
726 list_del(&b->list);
727 kfree(b);
728 }
729 }
730
731 /**
732 * add_replay_bud - add a bud to the list of buds to replay.
733 * @c: UBIFS file-system description object
734 * @lnum: bud logical eraseblock number to replay
735 * @offs: bud start offset
736 * @jhead: journal head to which this bud belongs
737 * @sqnum: reference node sequence number
738 *
739 * This function returns zero in case of success and a negative error code in
740 * case of failure.
741 */
742 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
743 unsigned long long sqnum)
744 {
745 struct ubifs_bud *bud;
746 struct bud_entry *b;
747
748 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
749
750 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
751 if (!bud)
752 return -ENOMEM;
753
754 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
755 if (!b) {
756 kfree(bud);
757 return -ENOMEM;
758 }
759
760 bud->lnum = lnum;
761 bud->start = offs;
762 bud->jhead = jhead;
763 ubifs_add_bud(c, bud);
764
765 b->bud = bud;
766 b->sqnum = sqnum;
767 list_add_tail(&b->list, &c->replay_buds);
768
769 return 0;
770 }
771
772 /**
773 * validate_ref - validate a reference node.
774 * @c: UBIFS file-system description object
775 * @ref: the reference node to validate
776 * @ref_lnum: LEB number of the reference node
777 * @ref_offs: reference node offset
778 *
779 * This function returns %1 if a bud reference already exists for the LEB. %0 is
780 * returned if the reference node is new, otherwise %-EINVAL is returned if
781 * validation failed.
782 */
783 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
784 {
785 struct ubifs_bud *bud;
786 int lnum = le32_to_cpu(ref->lnum);
787 unsigned int offs = le32_to_cpu(ref->offs);
788 unsigned int jhead = le32_to_cpu(ref->jhead);
789
790 /*
791 * ref->offs may point to the end of LEB when the journal head points
792 * to the end of LEB and we write reference node for it during commit.
793 * So this is why we require 'offs > c->leb_size'.
794 */
795 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
796 lnum < c->main_first || offs > c->leb_size ||
797 offs & (c->min_io_size - 1))
798 return -EINVAL;
799
800 /* Make sure we have not already looked at this bud */
801 bud = ubifs_search_bud(c, lnum);
802 if (bud) {
803 if (bud->jhead == jhead && bud->start <= offs)
804 return 1;
805 ubifs_err("bud at LEB %d:%d was already referred", lnum, offs);
806 return -EINVAL;
807 }
808
809 return 0;
810 }
811
812 /**
813 * replay_log_leb - replay a log logical eraseblock.
814 * @c: UBIFS file-system description object
815 * @lnum: log logical eraseblock to replay
816 * @offs: offset to start replaying from
817 * @sbuf: scan buffer
818 *
819 * This function replays a log LEB and returns zero in case of success, %1 if
820 * this is the last LEB in the log, and a negative error code in case of
821 * failure.
822 */
823 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
824 {
825 int err;
826 struct ubifs_scan_leb *sleb;
827 struct ubifs_scan_node *snod;
828 const struct ubifs_cs_node *node;
829
830 dbg_mnt("replay log LEB %d:%d", lnum, offs);
831 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
832 if (IS_ERR(sleb)) {
833 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
834 return PTR_ERR(sleb);
835 /*
836 * Note, the below function will recover this log LEB only if
837 * it is the last, because unclean reboots can possibly corrupt
838 * only the tail of the log.
839 */
840 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
841 if (IS_ERR(sleb))
842 return PTR_ERR(sleb);
843 }
844
845 if (sleb->nodes_cnt == 0) {
846 err = 1;
847 goto out;
848 }
849
850 node = sleb->buf;
851 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
852 if (c->cs_sqnum == 0) {
853 /*
854 * This is the first log LEB we are looking at, make sure that
855 * the first node is a commit start node. Also record its
856 * sequence number so that UBIFS can determine where the log
857 * ends, because all nodes which were have higher sequence
858 * numbers.
859 */
860 if (snod->type != UBIFS_CS_NODE) {
861 ubifs_err("first log node at LEB %d:%d is not CS node",
862 lnum, offs);
863 goto out_dump;
864 }
865 if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
866 ubifs_err("first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
867 lnum, offs,
868 (unsigned long long)le64_to_cpu(node->cmt_no),
869 c->cmt_no);
870 goto out_dump;
871 }
872
873 c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
874 dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
875 }
876
877 if (snod->sqnum < c->cs_sqnum) {
878 /*
879 * This means that we reached end of log and now
880 * look to the older log data, which was already
881 * committed but the eraseblock was not erased (UBIFS
882 * only un-maps it). So this basically means we have to
883 * exit with "end of log" code.
884 */
885 err = 1;
886 goto out;
887 }
888
889 /* Make sure the first node sits at offset zero of the LEB */
890 if (snod->offs != 0) {
891 ubifs_err("first node is not at zero offset");
892 goto out_dump;
893 }
894
895 list_for_each_entry(snod, &sleb->nodes, list) {
896 cond_resched();
897
898 if (snod->sqnum >= SQNUM_WATERMARK) {
899 ubifs_err("file system's life ended");
900 goto out_dump;
901 }
902
903 if (snod->sqnum < c->cs_sqnum) {
904 ubifs_err("bad sqnum %llu, commit sqnum %llu",
905 snod->sqnum, c->cs_sqnum);
906 goto out_dump;
907 }
908
909 if (snod->sqnum > c->max_sqnum)
910 c->max_sqnum = snod->sqnum;
911
912 switch (snod->type) {
913 case UBIFS_REF_NODE: {
914 const struct ubifs_ref_node *ref = snod->node;
915
916 err = validate_ref(c, ref);
917 if (err == 1)
918 break; /* Already have this bud */
919 if (err)
920 goto out_dump;
921
922 err = add_replay_bud(c, le32_to_cpu(ref->lnum),
923 le32_to_cpu(ref->offs),
924 le32_to_cpu(ref->jhead),
925 snod->sqnum);
926 if (err)
927 goto out;
928
929 break;
930 }
931 case UBIFS_CS_NODE:
932 /* Make sure it sits at the beginning of LEB */
933 if (snod->offs != 0) {
934 ubifs_err("unexpected node in log");
935 goto out_dump;
936 }
937 break;
938 default:
939 ubifs_err("unexpected node in log");
940 goto out_dump;
941 }
942 }
943
944 if (sleb->endpt || c->lhead_offs >= c->leb_size) {
945 c->lhead_lnum = lnum;
946 c->lhead_offs = sleb->endpt;
947 }
948
949 err = !sleb->endpt;
950 out:
951 ubifs_scan_destroy(sleb);
952 return err;
953
954 out_dump:
955 ubifs_err("log error detected while replaying the log at LEB %d:%d",
956 lnum, offs + snod->offs);
957 ubifs_dump_node(c, snod->node);
958 ubifs_scan_destroy(sleb);
959 return -EINVAL;
960 }
961
962 /**
963 * take_ihead - update the status of the index head in lprops to 'taken'.
964 * @c: UBIFS file-system description object
965 *
966 * This function returns the amount of free space in the index head LEB or a
967 * negative error code.
968 */
969 static int take_ihead(struct ubifs_info *c)
970 {
971 const struct ubifs_lprops *lp;
972 int err, free;
973
974 ubifs_get_lprops(c);
975
976 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
977 if (IS_ERR(lp)) {
978 err = PTR_ERR(lp);
979 goto out;
980 }
981
982 free = lp->free;
983
984 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
985 lp->flags | LPROPS_TAKEN, 0);
986 if (IS_ERR(lp)) {
987 err = PTR_ERR(lp);
988 goto out;
989 }
990
991 err = free;
992 out:
993 ubifs_release_lprops(c);
994 return err;
995 }
996
997 /**
998 * ubifs_replay_journal - replay journal.
999 * @c: UBIFS file-system description object
1000 *
1001 * This function scans the journal, replays and cleans it up. It makes sure all
1002 * memory data structures related to uncommitted journal are built (dirty TNC
1003 * tree, tree of buds, modified lprops, etc).
1004 */
1005 int ubifs_replay_journal(struct ubifs_info *c)
1006 {
1007 int err, lnum, free;
1008
1009 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1010
1011 /* Update the status of the index head in lprops to 'taken' */
1012 free = take_ihead(c);
1013 if (free < 0)
1014 return free; /* Error code */
1015
1016 if (c->ihead_offs != c->leb_size - free) {
1017 ubifs_err("bad index head LEB %d:%d", c->ihead_lnum,
1018 c->ihead_offs);
1019 return -EINVAL;
1020 }
1021
1022 dbg_mnt("start replaying the journal");
1023 c->replaying = 1;
1024 lnum = c->ltail_lnum = c->lhead_lnum;
1025
1026 do {
1027 err = replay_log_leb(c, lnum, 0, c->sbuf);
1028 if (err == 1)
1029 /* We hit the end of the log */
1030 break;
1031 if (err)
1032 goto out;
1033 lnum = ubifs_next_log_lnum(c, lnum);
1034 } while (lnum != c->ltail_lnum);
1035
1036 err = replay_buds(c);
1037 if (err)
1038 goto out;
1039
1040 err = apply_replay_list(c);
1041 if (err)
1042 goto out;
1043
1044 err = set_buds_lprops(c);
1045 if (err)
1046 goto out;
1047
1048 /*
1049 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1050 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1051 * depend on it. This means we have to initialize it to make sure
1052 * budgeting works properly.
1053 */
1054 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1055 c->bi.uncommitted_idx *= c->max_idx_node_sz;
1056
1057 ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1058 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1059 c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1060 (unsigned long)c->highest_inum);
1061 out:
1062 destroy_replay_list(c);
1063 destroy_bud_list(c);
1064 c->replaying = 0;
1065 return err;
1066 }
1067 #endif