]> git.ipfire.org Git - thirdparty/u-boot.git/blob - fs/ubifs/super.c
fs: ubifs: Add missing newlines in super.c
[thirdparty/u-boot.git] / fs / ubifs / super.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11 /*
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
15 */
16
17 #ifndef __UBOOT__
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/ctype.h>
22 #include <linux/kthread.h>
23 #include <linux/parser.h>
24 #include <linux/seq_file.h>
25 #include <linux/mount.h>
26 #include <linux/math64.h>
27 #include <linux/writeback.h>
28 #else
29
30 #include <common.h>
31 #include <malloc.h>
32 #include <memalign.h>
33 #include <linux/bug.h>
34 #include <linux/log2.h>
35 #include <linux/stat.h>
36 #include <linux/err.h>
37 #include "ubifs.h"
38 #include <ubi_uboot.h>
39 #include <mtd/ubi-user.h>
40
41 struct dentry;
42 struct file;
43 struct iattr;
44 struct kstat;
45 struct vfsmount;
46
47 #define INODE_LOCKED_MAX 64
48
49 struct super_block *ubifs_sb;
50
51 static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
52
53 int set_anon_super(struct super_block *s, void *data)
54 {
55 return 0;
56 }
57
58 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
59 {
60 struct inode *inode;
61
62 inode = (struct inode *)malloc_cache_aligned(
63 sizeof(struct ubifs_inode));
64 if (inode) {
65 inode->i_ino = ino;
66 inode->i_sb = sb;
67 list_add(&inode->i_sb_list, &sb->s_inodes);
68 inode->i_state = I_LOCK | I_NEW;
69 }
70
71 return inode;
72 }
73
74 void iget_failed(struct inode *inode)
75 {
76 }
77
78 int ubifs_iput(struct inode *inode)
79 {
80 list_del_init(&inode->i_sb_list);
81
82 free(inode);
83 return 0;
84 }
85
86 /*
87 * Lock (save) inode in inode array for readback after recovery
88 */
89 void iput(struct inode *inode)
90 {
91 int i;
92 struct inode *ino;
93
94 /*
95 * Search end of list
96 */
97 for (i = 0; i < INODE_LOCKED_MAX; i++) {
98 if (inodes_locked_down[i] == NULL)
99 break;
100 }
101
102 if (i >= INODE_LOCKED_MAX) {
103 dbg_gen("Error, can't lock (save) more inodes while recovery!!!");
104 return;
105 }
106
107 /*
108 * Allocate and use new inode
109 */
110 ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode));
111 memcpy(ino, inode, sizeof(struct ubifs_inode));
112
113 /*
114 * Finally save inode in array
115 */
116 inodes_locked_down[i] = ino;
117 }
118
119 /* from fs/inode.c */
120 /**
121 * clear_nlink - directly zero an inode's link count
122 * @inode: inode
123 *
124 * This is a low-level filesystem helper to replace any
125 * direct filesystem manipulation of i_nlink. See
126 * drop_nlink() for why we care about i_nlink hitting zero.
127 */
128 void clear_nlink(struct inode *inode)
129 {
130 if (inode->i_nlink) {
131 inode->__i_nlink = 0;
132 atomic_long_inc(&inode->i_sb->s_remove_count);
133 }
134 }
135 EXPORT_SYMBOL(clear_nlink);
136
137 /**
138 * set_nlink - directly set an inode's link count
139 * @inode: inode
140 * @nlink: new nlink (should be non-zero)
141 *
142 * This is a low-level filesystem helper to replace any
143 * direct filesystem manipulation of i_nlink.
144 */
145 void set_nlink(struct inode *inode, unsigned int nlink)
146 {
147 if (!nlink) {
148 clear_nlink(inode);
149 } else {
150 /* Yes, some filesystems do change nlink from zero to one */
151 if (inode->i_nlink == 0)
152 atomic_long_dec(&inode->i_sb->s_remove_count);
153
154 inode->__i_nlink = nlink;
155 }
156 }
157 EXPORT_SYMBOL(set_nlink);
158
159 /* from include/linux/fs.h */
160 static inline void i_uid_write(struct inode *inode, uid_t uid)
161 {
162 inode->i_uid.val = uid;
163 }
164
165 static inline void i_gid_write(struct inode *inode, gid_t gid)
166 {
167 inode->i_gid.val = gid;
168 }
169
170 void unlock_new_inode(struct inode *inode)
171 {
172 return;
173 }
174 #endif
175
176 /*
177 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
178 * allocating too much.
179 */
180 #define UBIFS_KMALLOC_OK (128*1024)
181
182 /* Slab cache for UBIFS inodes */
183 struct kmem_cache *ubifs_inode_slab;
184
185 #ifndef __UBOOT__
186 /* UBIFS TNC shrinker description */
187 static struct shrinker ubifs_shrinker_info = {
188 .scan_objects = ubifs_shrink_scan,
189 .count_objects = ubifs_shrink_count,
190 .seeks = DEFAULT_SEEKS,
191 };
192 #endif
193
194 /**
195 * validate_inode - validate inode.
196 * @c: UBIFS file-system description object
197 * @inode: the inode to validate
198 *
199 * This is a helper function for 'ubifs_iget()' which validates various fields
200 * of a newly built inode to make sure they contain sane values and prevent
201 * possible vulnerabilities. Returns zero if the inode is all right and
202 * a non-zero error code if not.
203 */
204 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
205 {
206 int err;
207 const struct ubifs_inode *ui = ubifs_inode(inode);
208
209 if (inode->i_size > c->max_inode_sz) {
210 ubifs_err(c, "inode is too large (%lld)",
211 (long long)inode->i_size);
212 return 1;
213 }
214
215 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
216 ubifs_err(c, "unknown compression type %d", ui->compr_type);
217 return 2;
218 }
219
220 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
221 return 3;
222
223 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
224 return 4;
225
226 if (ui->xattr && !S_ISREG(inode->i_mode))
227 return 5;
228
229 if (!ubifs_compr_present(ui->compr_type)) {
230 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
231 inode->i_ino, ubifs_compr_name(ui->compr_type));
232 }
233
234 err = dbg_check_dir(c, inode);
235 return err;
236 }
237
238 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
239 {
240 int err;
241 union ubifs_key key;
242 struct ubifs_ino_node *ino;
243 struct ubifs_info *c = sb->s_fs_info;
244 struct inode *inode;
245 struct ubifs_inode *ui;
246 #ifdef __UBOOT__
247 int i;
248 #endif
249
250 dbg_gen("inode %lu", inum);
251
252 #ifdef __UBOOT__
253 /*
254 * U-Boot special handling of locked down inodes via recovery
255 * e.g. ubifs_recover_size()
256 */
257 for (i = 0; i < INODE_LOCKED_MAX; i++) {
258 /*
259 * Exit on last entry (NULL), inode not found in list
260 */
261 if (inodes_locked_down[i] == NULL)
262 break;
263
264 if (inodes_locked_down[i]->i_ino == inum) {
265 /*
266 * We found the locked down inode in our array,
267 * so just return this pointer instead of creating
268 * a new one.
269 */
270 return inodes_locked_down[i];
271 }
272 }
273 #endif
274
275 inode = iget_locked(sb, inum);
276 if (!inode)
277 return ERR_PTR(-ENOMEM);
278 if (!(inode->i_state & I_NEW))
279 return inode;
280 ui = ubifs_inode(inode);
281
282 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
283 if (!ino) {
284 err = -ENOMEM;
285 goto out;
286 }
287
288 ino_key_init(c, &key, inode->i_ino);
289
290 err = ubifs_tnc_lookup(c, &key, ino);
291 if (err)
292 goto out_ino;
293
294 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
295 set_nlink(inode, le32_to_cpu(ino->nlink));
296 i_uid_write(inode, le32_to_cpu(ino->uid));
297 i_gid_write(inode, le32_to_cpu(ino->gid));
298 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
299 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
300 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
301 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
302 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
303 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
304 inode->i_mode = le32_to_cpu(ino->mode);
305 inode->i_size = le64_to_cpu(ino->size);
306
307 ui->data_len = le32_to_cpu(ino->data_len);
308 ui->flags = le32_to_cpu(ino->flags);
309 ui->compr_type = le16_to_cpu(ino->compr_type);
310 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
311 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
312 ui->xattr_size = le32_to_cpu(ino->xattr_size);
313 ui->xattr_names = le32_to_cpu(ino->xattr_names);
314 ui->synced_i_size = ui->ui_size = inode->i_size;
315
316 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
317
318 err = validate_inode(c, inode);
319 if (err)
320 goto out_invalid;
321
322 #ifndef __UBOOT__
323 switch (inode->i_mode & S_IFMT) {
324 case S_IFREG:
325 inode->i_mapping->a_ops = &ubifs_file_address_operations;
326 inode->i_op = &ubifs_file_inode_operations;
327 inode->i_fop = &ubifs_file_operations;
328 if (ui->xattr) {
329 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
330 if (!ui->data) {
331 err = -ENOMEM;
332 goto out_ino;
333 }
334 memcpy(ui->data, ino->data, ui->data_len);
335 ((char *)ui->data)[ui->data_len] = '\0';
336 } else if (ui->data_len != 0) {
337 err = 10;
338 goto out_invalid;
339 }
340 break;
341 case S_IFDIR:
342 inode->i_op = &ubifs_dir_inode_operations;
343 inode->i_fop = &ubifs_dir_operations;
344 if (ui->data_len != 0) {
345 err = 11;
346 goto out_invalid;
347 }
348 break;
349 case S_IFLNK:
350 inode->i_op = &ubifs_symlink_inode_operations;
351 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
352 err = 12;
353 goto out_invalid;
354 }
355 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
356 if (!ui->data) {
357 err = -ENOMEM;
358 goto out_ino;
359 }
360 memcpy(ui->data, ino->data, ui->data_len);
361 ((char *)ui->data)[ui->data_len] = '\0';
362 inode->i_link = ui->data;
363 break;
364 case S_IFBLK:
365 case S_IFCHR:
366 {
367 dev_t rdev;
368 union ubifs_dev_desc *dev;
369
370 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
371 if (!ui->data) {
372 err = -ENOMEM;
373 goto out_ino;
374 }
375
376 dev = (union ubifs_dev_desc *)ino->data;
377 if (ui->data_len == sizeof(dev->new))
378 rdev = new_decode_dev(le32_to_cpu(dev->new));
379 else if (ui->data_len == sizeof(dev->huge))
380 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
381 else {
382 err = 13;
383 goto out_invalid;
384 }
385 memcpy(ui->data, ino->data, ui->data_len);
386 inode->i_op = &ubifs_file_inode_operations;
387 init_special_inode(inode, inode->i_mode, rdev);
388 break;
389 }
390 case S_IFSOCK:
391 case S_IFIFO:
392 inode->i_op = &ubifs_file_inode_operations;
393 init_special_inode(inode, inode->i_mode, 0);
394 if (ui->data_len != 0) {
395 err = 14;
396 goto out_invalid;
397 }
398 break;
399 default:
400 err = 15;
401 goto out_invalid;
402 }
403 #else
404 if ((inode->i_mode & S_IFMT) == S_IFLNK) {
405 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
406 err = 12;
407 goto out_invalid;
408 }
409 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
410 if (!ui->data) {
411 err = -ENOMEM;
412 goto out_ino;
413 }
414 memcpy(ui->data, ino->data, ui->data_len);
415 ((char *)ui->data)[ui->data_len] = '\0';
416 }
417 #endif
418
419 kfree(ino);
420 #ifndef __UBOOT__
421 ubifs_set_inode_flags(inode);
422 #endif
423 unlock_new_inode(inode);
424 return inode;
425
426 out_invalid:
427 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
428 ubifs_dump_node(c, ino);
429 ubifs_dump_inode(c, inode);
430 err = -EINVAL;
431 out_ino:
432 kfree(ino);
433 out:
434 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
435 iget_failed(inode);
436 return ERR_PTR(err);
437 }
438
439 static struct inode *ubifs_alloc_inode(struct super_block *sb)
440 {
441 struct ubifs_inode *ui;
442
443 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
444 if (!ui)
445 return NULL;
446
447 memset((void *)ui + sizeof(struct inode), 0,
448 sizeof(struct ubifs_inode) - sizeof(struct inode));
449 mutex_init(&ui->ui_mutex);
450 spin_lock_init(&ui->ui_lock);
451 return &ui->vfs_inode;
452 };
453
454 #ifndef __UBOOT__
455 static void ubifs_i_callback(struct rcu_head *head)
456 {
457 struct inode *inode = container_of(head, struct inode, i_rcu);
458 struct ubifs_inode *ui = ubifs_inode(inode);
459 kmem_cache_free(ubifs_inode_slab, ui);
460 }
461
462 static void ubifs_destroy_inode(struct inode *inode)
463 {
464 struct ubifs_inode *ui = ubifs_inode(inode);
465
466 kfree(ui->data);
467 call_rcu(&inode->i_rcu, ubifs_i_callback);
468 }
469
470 /*
471 * Note, Linux write-back code calls this without 'i_mutex'.
472 */
473 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
474 {
475 int err = 0;
476 struct ubifs_info *c = inode->i_sb->s_fs_info;
477 struct ubifs_inode *ui = ubifs_inode(inode);
478
479 ubifs_assert(!ui->xattr);
480 if (is_bad_inode(inode))
481 return 0;
482
483 mutex_lock(&ui->ui_mutex);
484 /*
485 * Due to races between write-back forced by budgeting
486 * (see 'sync_some_inodes()') and background write-back, the inode may
487 * have already been synchronized, do not do this again. This might
488 * also happen if it was synchronized in an VFS operation, e.g.
489 * 'ubifs_link()'.
490 */
491 if (!ui->dirty) {
492 mutex_unlock(&ui->ui_mutex);
493 return 0;
494 }
495
496 /*
497 * As an optimization, do not write orphan inodes to the media just
498 * because this is not needed.
499 */
500 dbg_gen("inode %lu, mode %#x, nlink %u",
501 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
502 if (inode->i_nlink) {
503 err = ubifs_jnl_write_inode(c, inode);
504 if (err)
505 ubifs_err(c, "can't write inode %lu, error %d",
506 inode->i_ino, err);
507 else
508 err = dbg_check_inode_size(c, inode, ui->ui_size);
509 }
510
511 ui->dirty = 0;
512 mutex_unlock(&ui->ui_mutex);
513 ubifs_release_dirty_inode_budget(c, ui);
514 return err;
515 }
516
517 static void ubifs_evict_inode(struct inode *inode)
518 {
519 int err;
520 struct ubifs_info *c = inode->i_sb->s_fs_info;
521 struct ubifs_inode *ui = ubifs_inode(inode);
522
523 if (ui->xattr)
524 /*
525 * Extended attribute inode deletions are fully handled in
526 * 'ubifs_removexattr()'. These inodes are special and have
527 * limited usage, so there is nothing to do here.
528 */
529 goto out;
530
531 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
532 ubifs_assert(!atomic_read(&inode->i_count));
533
534 truncate_inode_pages_final(&inode->i_data);
535
536 if (inode->i_nlink)
537 goto done;
538
539 if (is_bad_inode(inode))
540 goto out;
541
542 ui->ui_size = inode->i_size = 0;
543 err = ubifs_jnl_delete_inode(c, inode);
544 if (err)
545 /*
546 * Worst case we have a lost orphan inode wasting space, so a
547 * simple error message is OK here.
548 */
549 ubifs_err(c, "can't delete inode %lu, error %d",
550 inode->i_ino, err);
551
552 out:
553 if (ui->dirty)
554 ubifs_release_dirty_inode_budget(c, ui);
555 else {
556 /* We've deleted something - clean the "no space" flags */
557 c->bi.nospace = c->bi.nospace_rp = 0;
558 smp_wmb();
559 }
560 done:
561 clear_inode(inode);
562 }
563 #endif
564
565 static void ubifs_dirty_inode(struct inode *inode, int flags)
566 {
567 struct ubifs_inode *ui = ubifs_inode(inode);
568
569 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
570 if (!ui->dirty) {
571 ui->dirty = 1;
572 dbg_gen("inode %lu", inode->i_ino);
573 }
574 }
575
576 #ifndef __UBOOT__
577 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
578 {
579 struct ubifs_info *c = dentry->d_sb->s_fs_info;
580 unsigned long long free;
581 __le32 *uuid = (__le32 *)c->uuid;
582
583 free = ubifs_get_free_space(c);
584 dbg_gen("free space %lld bytes (%lld blocks)",
585 free, free >> UBIFS_BLOCK_SHIFT);
586
587 buf->f_type = UBIFS_SUPER_MAGIC;
588 buf->f_bsize = UBIFS_BLOCK_SIZE;
589 buf->f_blocks = c->block_cnt;
590 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
591 if (free > c->report_rp_size)
592 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
593 else
594 buf->f_bavail = 0;
595 buf->f_files = 0;
596 buf->f_ffree = 0;
597 buf->f_namelen = UBIFS_MAX_NLEN;
598 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
599 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
600 ubifs_assert(buf->f_bfree <= c->block_cnt);
601 return 0;
602 }
603
604 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
605 {
606 struct ubifs_info *c = root->d_sb->s_fs_info;
607
608 if (c->mount_opts.unmount_mode == 2)
609 seq_puts(s, ",fast_unmount");
610 else if (c->mount_opts.unmount_mode == 1)
611 seq_puts(s, ",norm_unmount");
612
613 if (c->mount_opts.bulk_read == 2)
614 seq_puts(s, ",bulk_read");
615 else if (c->mount_opts.bulk_read == 1)
616 seq_puts(s, ",no_bulk_read");
617
618 if (c->mount_opts.chk_data_crc == 2)
619 seq_puts(s, ",chk_data_crc");
620 else if (c->mount_opts.chk_data_crc == 1)
621 seq_puts(s, ",no_chk_data_crc");
622
623 if (c->mount_opts.override_compr) {
624 seq_printf(s, ",compr=%s",
625 ubifs_compr_name(c->mount_opts.compr_type));
626 }
627
628 return 0;
629 }
630
631 static int ubifs_sync_fs(struct super_block *sb, int wait)
632 {
633 int i, err;
634 struct ubifs_info *c = sb->s_fs_info;
635
636 /*
637 * Zero @wait is just an advisory thing to help the file system shove
638 * lots of data into the queues, and there will be the second
639 * '->sync_fs()' call, with non-zero @wait.
640 */
641 if (!wait)
642 return 0;
643
644 /*
645 * Synchronize write buffers, because 'ubifs_run_commit()' does not
646 * do this if it waits for an already running commit.
647 */
648 for (i = 0; i < c->jhead_cnt; i++) {
649 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
650 if (err)
651 return err;
652 }
653
654 /*
655 * Strictly speaking, it is not necessary to commit the journal here,
656 * synchronizing write-buffers would be enough. But committing makes
657 * UBIFS free space predictions much more accurate, so we want to let
658 * the user be able to get more accurate results of 'statfs()' after
659 * they synchronize the file system.
660 */
661 err = ubifs_run_commit(c);
662 if (err)
663 return err;
664
665 return ubi_sync(c->vi.ubi_num);
666 }
667 #endif
668
669 /**
670 * init_constants_early - initialize UBIFS constants.
671 * @c: UBIFS file-system description object
672 *
673 * This function initialize UBIFS constants which do not need the superblock to
674 * be read. It also checks that the UBI volume satisfies basic UBIFS
675 * requirements. Returns zero in case of success and a negative error code in
676 * case of failure.
677 */
678 static int init_constants_early(struct ubifs_info *c)
679 {
680 if (c->vi.corrupted) {
681 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
682 c->ro_media = 1;
683 }
684
685 if (c->di.ro_mode) {
686 ubifs_msg(c, "read-only UBI device");
687 c->ro_media = 1;
688 }
689
690 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
691 ubifs_msg(c, "static UBI volume - read-only mode");
692 c->ro_media = 1;
693 }
694
695 c->leb_cnt = c->vi.size;
696 c->leb_size = c->vi.usable_leb_size;
697 c->leb_start = c->di.leb_start;
698 c->half_leb_size = c->leb_size / 2;
699 c->min_io_size = c->di.min_io_size;
700 c->min_io_shift = fls(c->min_io_size) - 1;
701 c->max_write_size = c->di.max_write_size;
702 c->max_write_shift = fls(c->max_write_size) - 1;
703
704 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
705 ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes",
706 c->leb_size, UBIFS_MIN_LEB_SZ);
707 return -EINVAL;
708 }
709
710 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
711 ubifs_err(c, "too few LEBs (%d), min. is %d",
712 c->leb_cnt, UBIFS_MIN_LEB_CNT);
713 return -EINVAL;
714 }
715
716 if (!is_power_of_2(c->min_io_size)) {
717 ubifs_err(c, "bad min. I/O size %d", c->min_io_size);
718 return -EINVAL;
719 }
720
721 /*
722 * Maximum write size has to be greater or equivalent to min. I/O
723 * size, and be multiple of min. I/O size.
724 */
725 if (c->max_write_size < c->min_io_size ||
726 c->max_write_size % c->min_io_size ||
727 !is_power_of_2(c->max_write_size)) {
728 ubifs_err(c, "bad write buffer size %d for %d min. I/O unit",
729 c->max_write_size, c->min_io_size);
730 return -EINVAL;
731 }
732
733 /*
734 * UBIFS aligns all node to 8-byte boundary, so to make function in
735 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
736 * less than 8.
737 */
738 if (c->min_io_size < 8) {
739 c->min_io_size = 8;
740 c->min_io_shift = 3;
741 if (c->max_write_size < c->min_io_size) {
742 c->max_write_size = c->min_io_size;
743 c->max_write_shift = c->min_io_shift;
744 }
745 }
746
747 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
748 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
749
750 /*
751 * Initialize node length ranges which are mostly needed for node
752 * length validation.
753 */
754 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
755 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
756 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
757 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
758 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
759 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
760
761 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
762 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
763 c->ranges[UBIFS_ORPH_NODE].min_len =
764 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
765 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
766 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
767 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
768 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
769 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
770 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
771 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
772 /*
773 * Minimum indexing node size is amended later when superblock is
774 * read and the key length is known.
775 */
776 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
777 /*
778 * Maximum indexing node size is amended later when superblock is
779 * read and the fanout is known.
780 */
781 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
782
783 /*
784 * Initialize dead and dark LEB space watermarks. See gc.c for comments
785 * about these values.
786 */
787 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
788 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
789
790 /*
791 * Calculate how many bytes would be wasted at the end of LEB if it was
792 * fully filled with data nodes of maximum size. This is used in
793 * calculations when reporting free space.
794 */
795 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
796
797 /* Buffer size for bulk-reads */
798 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
799 if (c->max_bu_buf_len > c->leb_size)
800 c->max_bu_buf_len = c->leb_size;
801 return 0;
802 }
803
804 /**
805 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
806 * @c: UBIFS file-system description object
807 * @lnum: LEB the write-buffer was synchronized to
808 * @free: how many free bytes left in this LEB
809 * @pad: how many bytes were padded
810 *
811 * This is a callback function which is called by the I/O unit when the
812 * write-buffer is synchronized. We need this to correctly maintain space
813 * accounting in bud logical eraseblocks. This function returns zero in case of
814 * success and a negative error code in case of failure.
815 *
816 * This function actually belongs to the journal, but we keep it here because
817 * we want to keep it static.
818 */
819 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
820 {
821 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
822 }
823
824 /*
825 * init_constants_sb - initialize UBIFS constants.
826 * @c: UBIFS file-system description object
827 *
828 * This is a helper function which initializes various UBIFS constants after
829 * the superblock has been read. It also checks various UBIFS parameters and
830 * makes sure they are all right. Returns zero in case of success and a
831 * negative error code in case of failure.
832 */
833 static int init_constants_sb(struct ubifs_info *c)
834 {
835 int tmp, err;
836 long long tmp64;
837
838 c->main_bytes = (long long)c->main_lebs * c->leb_size;
839 c->max_znode_sz = sizeof(struct ubifs_znode) +
840 c->fanout * sizeof(struct ubifs_zbranch);
841
842 tmp = ubifs_idx_node_sz(c, 1);
843 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
844 c->min_idx_node_sz = ALIGN(tmp, 8);
845
846 tmp = ubifs_idx_node_sz(c, c->fanout);
847 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
848 c->max_idx_node_sz = ALIGN(tmp, 8);
849
850 /* Make sure LEB size is large enough to fit full commit */
851 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
852 tmp = ALIGN(tmp, c->min_io_size);
853 if (tmp > c->leb_size) {
854 ubifs_err(c, "too small LEB size %d, at least %d needed",
855 c->leb_size, tmp);
856 return -EINVAL;
857 }
858
859 /*
860 * Make sure that the log is large enough to fit reference nodes for
861 * all buds plus one reserved LEB.
862 */
863 tmp64 = c->max_bud_bytes + c->leb_size - 1;
864 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
865 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
866 tmp /= c->leb_size;
867 tmp += 1;
868 if (c->log_lebs < tmp) {
869 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
870 c->log_lebs, tmp);
871 return -EINVAL;
872 }
873
874 /*
875 * When budgeting we assume worst-case scenarios when the pages are not
876 * be compressed and direntries are of the maximum size.
877 *
878 * Note, data, which may be stored in inodes is budgeted separately, so
879 * it is not included into 'c->bi.inode_budget'.
880 */
881 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
882 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
883 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
884
885 /*
886 * When the amount of flash space used by buds becomes
887 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
888 * The writers are unblocked when the commit is finished. To avoid
889 * writers to be blocked UBIFS initiates background commit in advance,
890 * when number of bud bytes becomes above the limit defined below.
891 */
892 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
893
894 /*
895 * Ensure minimum journal size. All the bytes in the journal heads are
896 * considered to be used, when calculating the current journal usage.
897 * Consequently, if the journal is too small, UBIFS will treat it as
898 * always full.
899 */
900 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
901 if (c->bg_bud_bytes < tmp64)
902 c->bg_bud_bytes = tmp64;
903 if (c->max_bud_bytes < tmp64 + c->leb_size)
904 c->max_bud_bytes = tmp64 + c->leb_size;
905
906 err = ubifs_calc_lpt_geom(c);
907 if (err)
908 return err;
909
910 /* Initialize effective LEB size used in budgeting calculations */
911 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
912 return 0;
913 }
914
915 /*
916 * init_constants_master - initialize UBIFS constants.
917 * @c: UBIFS file-system description object
918 *
919 * This is a helper function which initializes various UBIFS constants after
920 * the master node has been read. It also checks various UBIFS parameters and
921 * makes sure they are all right.
922 */
923 static void init_constants_master(struct ubifs_info *c)
924 {
925 long long tmp64;
926
927 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
928 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
929
930 /*
931 * Calculate total amount of FS blocks. This number is not used
932 * internally because it does not make much sense for UBIFS, but it is
933 * necessary to report something for the 'statfs()' call.
934 *
935 * Subtract the LEB reserved for GC, the LEB which is reserved for
936 * deletions, minimum LEBs for the index, and assume only one journal
937 * head is available.
938 */
939 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
940 tmp64 *= (long long)c->leb_size - c->leb_overhead;
941 tmp64 = ubifs_reported_space(c, tmp64);
942 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
943 }
944
945 /**
946 * take_gc_lnum - reserve GC LEB.
947 * @c: UBIFS file-system description object
948 *
949 * This function ensures that the LEB reserved for garbage collection is marked
950 * as "taken" in lprops. We also have to set free space to LEB size and dirty
951 * space to zero, because lprops may contain out-of-date information if the
952 * file-system was un-mounted before it has been committed. This function
953 * returns zero in case of success and a negative error code in case of
954 * failure.
955 */
956 static int take_gc_lnum(struct ubifs_info *c)
957 {
958 int err;
959
960 if (c->gc_lnum == -1) {
961 ubifs_err(c, "no LEB for GC");
962 return -EINVAL;
963 }
964
965 /* And we have to tell lprops that this LEB is taken */
966 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
967 LPROPS_TAKEN, 0, 0);
968 return err;
969 }
970
971 /**
972 * alloc_wbufs - allocate write-buffers.
973 * @c: UBIFS file-system description object
974 *
975 * This helper function allocates and initializes UBIFS write-buffers. Returns
976 * zero in case of success and %-ENOMEM in case of failure.
977 */
978 static int alloc_wbufs(struct ubifs_info *c)
979 {
980 int i, err;
981
982 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
983 GFP_KERNEL);
984 if (!c->jheads)
985 return -ENOMEM;
986
987 /* Initialize journal heads */
988 for (i = 0; i < c->jhead_cnt; i++) {
989 INIT_LIST_HEAD(&c->jheads[i].buds_list);
990 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
991 if (err)
992 return err;
993
994 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
995 c->jheads[i].wbuf.jhead = i;
996 c->jheads[i].grouped = 1;
997 }
998
999 /*
1000 * Garbage Collector head does not need to be synchronized by timer.
1001 * Also GC head nodes are not grouped.
1002 */
1003 c->jheads[GCHD].wbuf.no_timer = 1;
1004 c->jheads[GCHD].grouped = 0;
1005
1006 return 0;
1007 }
1008
1009 /**
1010 * free_wbufs - free write-buffers.
1011 * @c: UBIFS file-system description object
1012 */
1013 static void free_wbufs(struct ubifs_info *c)
1014 {
1015 int i;
1016
1017 if (c->jheads) {
1018 for (i = 0; i < c->jhead_cnt; i++) {
1019 kfree(c->jheads[i].wbuf.buf);
1020 kfree(c->jheads[i].wbuf.inodes);
1021 }
1022 kfree(c->jheads);
1023 c->jheads = NULL;
1024 }
1025 }
1026
1027 /**
1028 * free_orphans - free orphans.
1029 * @c: UBIFS file-system description object
1030 */
1031 static void free_orphans(struct ubifs_info *c)
1032 {
1033 struct ubifs_orphan *orph;
1034
1035 while (c->orph_dnext) {
1036 orph = c->orph_dnext;
1037 c->orph_dnext = orph->dnext;
1038 list_del(&orph->list);
1039 kfree(orph);
1040 }
1041
1042 while (!list_empty(&c->orph_list)) {
1043 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
1044 list_del(&orph->list);
1045 kfree(orph);
1046 ubifs_err(c, "orphan list not empty at unmount");
1047 }
1048
1049 vfree(c->orph_buf);
1050 c->orph_buf = NULL;
1051 }
1052
1053 /**
1054 * free_buds - free per-bud objects.
1055 * @c: UBIFS file-system description object
1056 */
1057 static void free_buds(struct ubifs_info *c)
1058 {
1059 struct ubifs_bud *bud, *n;
1060
1061 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
1062 kfree(bud);
1063 }
1064
1065 /**
1066 * check_volume_empty - check if the UBI volume is empty.
1067 * @c: UBIFS file-system description object
1068 *
1069 * This function checks if the UBIFS volume is empty by looking if its LEBs are
1070 * mapped or not. The result of checking is stored in the @c->empty variable.
1071 * Returns zero in case of success and a negative error code in case of
1072 * failure.
1073 */
1074 static int check_volume_empty(struct ubifs_info *c)
1075 {
1076 int lnum, err;
1077
1078 c->empty = 1;
1079 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
1080 err = ubifs_is_mapped(c, lnum);
1081 if (unlikely(err < 0))
1082 return err;
1083 if (err == 1) {
1084 c->empty = 0;
1085 break;
1086 }
1087
1088 cond_resched();
1089 }
1090
1091 return 0;
1092 }
1093
1094 /*
1095 * UBIFS mount options.
1096 *
1097 * Opt_fast_unmount: do not run a journal commit before un-mounting
1098 * Opt_norm_unmount: run a journal commit before un-mounting
1099 * Opt_bulk_read: enable bulk-reads
1100 * Opt_no_bulk_read: disable bulk-reads
1101 * Opt_chk_data_crc: check CRCs when reading data nodes
1102 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1103 * Opt_override_compr: override default compressor
1104 * Opt_err: just end of array marker
1105 */
1106 enum {
1107 Opt_fast_unmount,
1108 Opt_norm_unmount,
1109 Opt_bulk_read,
1110 Opt_no_bulk_read,
1111 Opt_chk_data_crc,
1112 Opt_no_chk_data_crc,
1113 Opt_override_compr,
1114 Opt_err,
1115 };
1116
1117 #ifndef __UBOOT__
1118 static const match_table_t tokens = {
1119 {Opt_fast_unmount, "fast_unmount"},
1120 {Opt_norm_unmount, "norm_unmount"},
1121 {Opt_bulk_read, "bulk_read"},
1122 {Opt_no_bulk_read, "no_bulk_read"},
1123 {Opt_chk_data_crc, "chk_data_crc"},
1124 {Opt_no_chk_data_crc, "no_chk_data_crc"},
1125 {Opt_override_compr, "compr=%s"},
1126 {Opt_err, NULL},
1127 };
1128
1129 /**
1130 * parse_standard_option - parse a standard mount option.
1131 * @option: the option to parse
1132 *
1133 * Normally, standard mount options like "sync" are passed to file-systems as
1134 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1135 * be present in the options string. This function tries to deal with this
1136 * situation and parse standard options. Returns 0 if the option was not
1137 * recognized, and the corresponding integer flag if it was.
1138 *
1139 * UBIFS is only interested in the "sync" option, so do not check for anything
1140 * else.
1141 */
1142 static int parse_standard_option(const char *option)
1143 {
1144
1145 pr_notice("UBIFS: parse %s\n", option);
1146 if (!strcmp(option, "sync"))
1147 return MS_SYNCHRONOUS;
1148 return 0;
1149 }
1150
1151 /**
1152 * ubifs_parse_options - parse mount parameters.
1153 * @c: UBIFS file-system description object
1154 * @options: parameters to parse
1155 * @is_remount: non-zero if this is FS re-mount
1156 *
1157 * This function parses UBIFS mount options and returns zero in case success
1158 * and a negative error code in case of failure.
1159 */
1160 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1161 int is_remount)
1162 {
1163 char *p;
1164 substring_t args[MAX_OPT_ARGS];
1165
1166 if (!options)
1167 return 0;
1168
1169 while ((p = strsep(&options, ","))) {
1170 int token;
1171
1172 if (!*p)
1173 continue;
1174
1175 token = match_token(p, tokens, args);
1176 switch (token) {
1177 /*
1178 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1179 * We accept them in order to be backward-compatible. But this
1180 * should be removed at some point.
1181 */
1182 case Opt_fast_unmount:
1183 c->mount_opts.unmount_mode = 2;
1184 break;
1185 case Opt_norm_unmount:
1186 c->mount_opts.unmount_mode = 1;
1187 break;
1188 case Opt_bulk_read:
1189 c->mount_opts.bulk_read = 2;
1190 c->bulk_read = 1;
1191 break;
1192 case Opt_no_bulk_read:
1193 c->mount_opts.bulk_read = 1;
1194 c->bulk_read = 0;
1195 break;
1196 case Opt_chk_data_crc:
1197 c->mount_opts.chk_data_crc = 2;
1198 c->no_chk_data_crc = 0;
1199 break;
1200 case Opt_no_chk_data_crc:
1201 c->mount_opts.chk_data_crc = 1;
1202 c->no_chk_data_crc = 1;
1203 break;
1204 case Opt_override_compr:
1205 {
1206 char *name = match_strdup(&args[0]);
1207
1208 if (!name)
1209 return -ENOMEM;
1210 if (!strcmp(name, "none"))
1211 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1212 else if (!strcmp(name, "lzo"))
1213 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1214 else if (!strcmp(name, "zlib"))
1215 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1216 else {
1217 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1218 kfree(name);
1219 return -EINVAL;
1220 }
1221 kfree(name);
1222 c->mount_opts.override_compr = 1;
1223 c->default_compr = c->mount_opts.compr_type;
1224 break;
1225 }
1226 default:
1227 {
1228 unsigned long flag;
1229 struct super_block *sb = c->vfs_sb;
1230
1231 flag = parse_standard_option(p);
1232 if (!flag) {
1233 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1234 p);
1235 return -EINVAL;
1236 }
1237 sb->s_flags |= flag;
1238 break;
1239 }
1240 }
1241 }
1242
1243 return 0;
1244 }
1245 #endif
1246
1247 /**
1248 * destroy_journal - destroy journal data structures.
1249 * @c: UBIFS file-system description object
1250 *
1251 * This function destroys journal data structures including those that may have
1252 * been created by recovery functions.
1253 */
1254 static void destroy_journal(struct ubifs_info *c)
1255 {
1256 while (!list_empty(&c->unclean_leb_list)) {
1257 struct ubifs_unclean_leb *ucleb;
1258
1259 ucleb = list_entry(c->unclean_leb_list.next,
1260 struct ubifs_unclean_leb, list);
1261 list_del(&ucleb->list);
1262 kfree(ucleb);
1263 }
1264 while (!list_empty(&c->old_buds)) {
1265 struct ubifs_bud *bud;
1266
1267 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1268 list_del(&bud->list);
1269 kfree(bud);
1270 }
1271 ubifs_destroy_idx_gc(c);
1272 ubifs_destroy_size_tree(c);
1273 ubifs_tnc_close(c);
1274 free_buds(c);
1275 }
1276
1277 /**
1278 * bu_init - initialize bulk-read information.
1279 * @c: UBIFS file-system description object
1280 */
1281 static void bu_init(struct ubifs_info *c)
1282 {
1283 ubifs_assert(c->bulk_read == 1);
1284
1285 if (c->bu.buf)
1286 return; /* Already initialized */
1287
1288 again:
1289 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1290 if (!c->bu.buf) {
1291 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1292 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1293 goto again;
1294 }
1295
1296 /* Just disable bulk-read */
1297 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1298 c->max_bu_buf_len);
1299 c->mount_opts.bulk_read = 1;
1300 c->bulk_read = 0;
1301 return;
1302 }
1303 }
1304
1305 #ifndef __UBOOT__
1306 /**
1307 * check_free_space - check if there is enough free space to mount.
1308 * @c: UBIFS file-system description object
1309 *
1310 * This function makes sure UBIFS has enough free space to be mounted in
1311 * read/write mode. UBIFS must always have some free space to allow deletions.
1312 */
1313 static int check_free_space(struct ubifs_info *c)
1314 {
1315 ubifs_assert(c->dark_wm > 0);
1316 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1317 ubifs_err(c, "insufficient free space to mount in R/W mode");
1318 ubifs_dump_budg(c, &c->bi);
1319 ubifs_dump_lprops(c);
1320 return -ENOSPC;
1321 }
1322 return 0;
1323 }
1324 #endif
1325
1326 /**
1327 * mount_ubifs - mount UBIFS file-system.
1328 * @c: UBIFS file-system description object
1329 *
1330 * This function mounts UBIFS file system. Returns zero in case of success and
1331 * a negative error code in case of failure.
1332 */
1333 static int mount_ubifs(struct ubifs_info *c)
1334 {
1335 int err;
1336 long long x;
1337 #ifndef CONFIG_UBIFS_SILENCE_MSG
1338 long long y;
1339 #endif
1340 size_t sz;
1341
1342 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1343 /* Suppress error messages while probing if MS_SILENT is set */
1344 c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1345 #ifdef __UBOOT__
1346 if (!c->ro_mount) {
1347 printf("UBIFS: only ro mode in U-Boot allowed.\n");
1348 return -EACCES;
1349 }
1350 #endif
1351
1352 err = init_constants_early(c);
1353 if (err)
1354 return err;
1355
1356 err = ubifs_debugging_init(c);
1357 if (err)
1358 return err;
1359
1360 err = check_volume_empty(c);
1361 if (err)
1362 goto out_free;
1363
1364 if (c->empty && (c->ro_mount || c->ro_media)) {
1365 /*
1366 * This UBI volume is empty, and read-only, or the file system
1367 * is mounted read-only - we cannot format it.
1368 */
1369 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1370 c->ro_media ? "UBI volume" : "mount");
1371 err = -EROFS;
1372 goto out_free;
1373 }
1374
1375 if (c->ro_media && !c->ro_mount) {
1376 ubifs_err(c, "cannot mount read-write - read-only media");
1377 err = -EROFS;
1378 goto out_free;
1379 }
1380
1381 /*
1382 * The requirement for the buffer is that it should fit indexing B-tree
1383 * height amount of integers. We assume the height if the TNC tree will
1384 * never exceed 64.
1385 */
1386 err = -ENOMEM;
1387 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1388 if (!c->bottom_up_buf)
1389 goto out_free;
1390
1391 c->sbuf = vmalloc(c->leb_size);
1392 if (!c->sbuf)
1393 goto out_free;
1394
1395 #ifndef __UBOOT__
1396 if (!c->ro_mount) {
1397 c->ileb_buf = vmalloc(c->leb_size);
1398 if (!c->ileb_buf)
1399 goto out_free;
1400 }
1401 #endif
1402
1403 if (c->bulk_read == 1)
1404 bu_init(c);
1405
1406 #ifndef __UBOOT__
1407 if (!c->ro_mount) {
1408 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1409 GFP_KERNEL);
1410 if (!c->write_reserve_buf)
1411 goto out_free;
1412 }
1413 #endif
1414
1415 c->mounting = 1;
1416
1417 err = ubifs_read_superblock(c);
1418 if (err)
1419 goto out_free;
1420
1421 c->probing = 0;
1422
1423 /*
1424 * Make sure the compressor which is set as default in the superblock
1425 * or overridden by mount options is actually compiled in.
1426 */
1427 if (!ubifs_compr_present(c->default_compr)) {
1428 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1429 ubifs_compr_name(c->default_compr));
1430 err = -ENOTSUPP;
1431 goto out_free;
1432 }
1433
1434 err = init_constants_sb(c);
1435 if (err)
1436 goto out_free;
1437
1438 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1439 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1440 c->cbuf = kmalloc(sz, GFP_NOFS);
1441 if (!c->cbuf) {
1442 err = -ENOMEM;
1443 goto out_free;
1444 }
1445
1446 err = alloc_wbufs(c);
1447 if (err)
1448 goto out_cbuf;
1449
1450 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1451 #ifndef __UBOOT__
1452 if (!c->ro_mount) {
1453 /* Create background thread */
1454 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1455 if (IS_ERR(c->bgt)) {
1456 err = PTR_ERR(c->bgt);
1457 c->bgt = NULL;
1458 ubifs_err(c, "cannot spawn \"%s\", error %d",
1459 c->bgt_name, err);
1460 goto out_wbufs;
1461 }
1462 wake_up_process(c->bgt);
1463 }
1464 #endif
1465
1466 err = ubifs_read_master(c);
1467 if (err)
1468 goto out_master;
1469
1470 init_constants_master(c);
1471
1472 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1473 ubifs_msg(c, "recovery needed");
1474 c->need_recovery = 1;
1475 }
1476
1477 #ifndef __UBOOT__
1478 if (c->need_recovery && !c->ro_mount) {
1479 err = ubifs_recover_inl_heads(c, c->sbuf);
1480 if (err)
1481 goto out_master;
1482 }
1483 #endif
1484
1485 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1486 if (err)
1487 goto out_master;
1488
1489 #ifndef __UBOOT__
1490 if (!c->ro_mount && c->space_fixup) {
1491 err = ubifs_fixup_free_space(c);
1492 if (err)
1493 goto out_lpt;
1494 }
1495
1496 if (!c->ro_mount && !c->need_recovery) {
1497 /*
1498 * Set the "dirty" flag so that if we reboot uncleanly we
1499 * will notice this immediately on the next mount.
1500 */
1501 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1502 err = ubifs_write_master(c);
1503 if (err)
1504 goto out_lpt;
1505 }
1506 #endif
1507
1508 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1509 if (err)
1510 goto out_lpt;
1511
1512 err = ubifs_replay_journal(c);
1513 if (err)
1514 goto out_journal;
1515
1516 /* Calculate 'min_idx_lebs' after journal replay */
1517 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1518
1519 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1520 if (err)
1521 goto out_orphans;
1522
1523 if (!c->ro_mount) {
1524 #ifndef __UBOOT__
1525 int lnum;
1526
1527 err = check_free_space(c);
1528 if (err)
1529 goto out_orphans;
1530
1531 /* Check for enough log space */
1532 lnum = c->lhead_lnum + 1;
1533 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1534 lnum = UBIFS_LOG_LNUM;
1535 if (lnum == c->ltail_lnum) {
1536 err = ubifs_consolidate_log(c);
1537 if (err)
1538 goto out_orphans;
1539 }
1540
1541 if (c->need_recovery) {
1542 err = ubifs_recover_size(c);
1543 if (err)
1544 goto out_orphans;
1545 err = ubifs_rcvry_gc_commit(c);
1546 if (err)
1547 goto out_orphans;
1548 } else {
1549 err = take_gc_lnum(c);
1550 if (err)
1551 goto out_orphans;
1552
1553 /*
1554 * GC LEB may contain garbage if there was an unclean
1555 * reboot, and it should be un-mapped.
1556 */
1557 err = ubifs_leb_unmap(c, c->gc_lnum);
1558 if (err)
1559 goto out_orphans;
1560 }
1561
1562 err = dbg_check_lprops(c);
1563 if (err)
1564 goto out_orphans;
1565 #endif
1566 } else if (c->need_recovery) {
1567 err = ubifs_recover_size(c);
1568 if (err)
1569 goto out_orphans;
1570 } else {
1571 /*
1572 * Even if we mount read-only, we have to set space in GC LEB
1573 * to proper value because this affects UBIFS free space
1574 * reporting. We do not want to have a situation when
1575 * re-mounting from R/O to R/W changes amount of free space.
1576 */
1577 err = take_gc_lnum(c);
1578 if (err)
1579 goto out_orphans;
1580 }
1581
1582 #ifndef __UBOOT__
1583 spin_lock(&ubifs_infos_lock);
1584 list_add_tail(&c->infos_list, &ubifs_infos);
1585 spin_unlock(&ubifs_infos_lock);
1586 #endif
1587
1588 if (c->need_recovery) {
1589 if (c->ro_mount)
1590 ubifs_msg(c, "recovery deferred");
1591 else {
1592 c->need_recovery = 0;
1593 ubifs_msg(c, "recovery completed");
1594 /*
1595 * GC LEB has to be empty and taken at this point. But
1596 * the journal head LEBs may also be accounted as
1597 * "empty taken" if they are empty.
1598 */
1599 ubifs_assert(c->lst.taken_empty_lebs > 0);
1600 }
1601 } else
1602 ubifs_assert(c->lst.taken_empty_lebs > 0);
1603
1604 err = dbg_check_filesystem(c);
1605 if (err)
1606 goto out_infos;
1607
1608 err = dbg_debugfs_init_fs(c);
1609 if (err)
1610 goto out_infos;
1611
1612 c->mounting = 0;
1613
1614 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1615 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1616 c->ro_mount ? ", R/O mode" : "");
1617 x = (long long)c->main_lebs * c->leb_size;
1618 #ifndef CONFIG_UBIFS_SILENCE_MSG
1619 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1620 #endif
1621 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1622 c->leb_size, c->leb_size >> 10, c->min_io_size,
1623 c->max_write_size);
1624 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1625 x, x >> 20, c->main_lebs,
1626 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1627 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1628 c->report_rp_size, c->report_rp_size >> 10);
1629 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1630 c->fmt_version, c->ro_compat_version,
1631 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1632 c->big_lpt ? ", big LPT model" : ", small LPT model");
1633
1634 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr));
1635 dbg_gen("data journal heads: %d",
1636 c->jhead_cnt - NONDATA_JHEADS_CNT);
1637 dbg_gen("log LEBs: %d (%d - %d)",
1638 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1639 dbg_gen("LPT area LEBs: %d (%d - %d)",
1640 c->lpt_lebs, c->lpt_first, c->lpt_last);
1641 dbg_gen("orphan area LEBs: %d (%d - %d)",
1642 c->orph_lebs, c->orph_first, c->orph_last);
1643 dbg_gen("main area LEBs: %d (%d - %d)",
1644 c->main_lebs, c->main_first, c->leb_cnt - 1);
1645 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1646 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1647 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1648 c->bi.old_idx_sz >> 20);
1649 dbg_gen("key hash type: %d", c->key_hash_type);
1650 dbg_gen("tree fanout: %d", c->fanout);
1651 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1652 dbg_gen("max. znode size %d", c->max_znode_sz);
1653 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1654 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1655 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1656 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1657 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1658 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1659 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1660 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1661 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1662 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1663 dbg_gen("dead watermark: %d", c->dead_wm);
1664 dbg_gen("dark watermark: %d", c->dark_wm);
1665 dbg_gen("LEB overhead: %d", c->leb_overhead);
1666 x = (long long)c->main_lebs * c->dark_wm;
1667 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1668 x, x >> 10, x >> 20);
1669 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1670 c->max_bud_bytes, c->max_bud_bytes >> 10,
1671 c->max_bud_bytes >> 20);
1672 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1673 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1674 c->bg_bud_bytes >> 20);
1675 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1676 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1677 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1678 dbg_gen("commit number: %llu", c->cmt_no);
1679
1680 return 0;
1681
1682 out_infos:
1683 spin_lock(&ubifs_infos_lock);
1684 list_del(&c->infos_list);
1685 spin_unlock(&ubifs_infos_lock);
1686 out_orphans:
1687 free_orphans(c);
1688 out_journal:
1689 destroy_journal(c);
1690 out_lpt:
1691 ubifs_lpt_free(c, 0);
1692 out_master:
1693 kfree(c->mst_node);
1694 kfree(c->rcvrd_mst_node);
1695 if (c->bgt)
1696 kthread_stop(c->bgt);
1697 #ifndef __UBOOT__
1698 out_wbufs:
1699 #endif
1700 free_wbufs(c);
1701 out_cbuf:
1702 kfree(c->cbuf);
1703 out_free:
1704 kfree(c->write_reserve_buf);
1705 kfree(c->bu.buf);
1706 vfree(c->ileb_buf);
1707 vfree(c->sbuf);
1708 kfree(c->bottom_up_buf);
1709 ubifs_debugging_exit(c);
1710 return err;
1711 }
1712
1713 /**
1714 * ubifs_umount - un-mount UBIFS file-system.
1715 * @c: UBIFS file-system description object
1716 *
1717 * Note, this function is called to free allocated resourced when un-mounting,
1718 * as well as free resources when an error occurred while we were half way
1719 * through mounting (error path cleanup function). So it has to make sure the
1720 * resource was actually allocated before freeing it.
1721 */
1722 #ifndef __UBOOT__
1723 static void ubifs_umount(struct ubifs_info *c)
1724 #else
1725 void ubifs_umount(struct ubifs_info *c)
1726 #endif
1727 {
1728 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1729 c->vi.vol_id);
1730
1731 dbg_debugfs_exit_fs(c);
1732 spin_lock(&ubifs_infos_lock);
1733 list_del(&c->infos_list);
1734 spin_unlock(&ubifs_infos_lock);
1735
1736 #ifndef __UBOOT__
1737 if (c->bgt)
1738 kthread_stop(c->bgt);
1739
1740 destroy_journal(c);
1741 #endif
1742 free_wbufs(c);
1743 free_orphans(c);
1744 ubifs_lpt_free(c, 0);
1745
1746 kfree(c->cbuf);
1747 kfree(c->rcvrd_mst_node);
1748 kfree(c->mst_node);
1749 kfree(c->write_reserve_buf);
1750 kfree(c->bu.buf);
1751 vfree(c->ileb_buf);
1752 vfree(c->sbuf);
1753 kfree(c->bottom_up_buf);
1754 ubifs_debugging_exit(c);
1755 #ifdef __UBOOT__
1756 /* Finally free U-Boot's global copy of superblock */
1757 if (ubifs_sb != NULL) {
1758 free(ubifs_sb->s_fs_info);
1759 free(ubifs_sb);
1760 }
1761 #endif
1762 }
1763
1764 #ifndef __UBOOT__
1765 /**
1766 * ubifs_remount_rw - re-mount in read-write mode.
1767 * @c: UBIFS file-system description object
1768 *
1769 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1770 * mode. This function allocates the needed resources and re-mounts UBIFS in
1771 * read-write mode.
1772 */
1773 static int ubifs_remount_rw(struct ubifs_info *c)
1774 {
1775 int err, lnum;
1776
1777 if (c->rw_incompat) {
1778 ubifs_err(c, "the file-system is not R/W-compatible");
1779 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1780 c->fmt_version, c->ro_compat_version,
1781 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1782 return -EROFS;
1783 }
1784
1785 mutex_lock(&c->umount_mutex);
1786 dbg_save_space_info(c);
1787 c->remounting_rw = 1;
1788 c->ro_mount = 0;
1789
1790 if (c->space_fixup) {
1791 err = ubifs_fixup_free_space(c);
1792 if (err)
1793 goto out;
1794 }
1795
1796 err = check_free_space(c);
1797 if (err)
1798 goto out;
1799
1800 if (c->old_leb_cnt != c->leb_cnt) {
1801 struct ubifs_sb_node *sup;
1802
1803 sup = ubifs_read_sb_node(c);
1804 if (IS_ERR(sup)) {
1805 err = PTR_ERR(sup);
1806 goto out;
1807 }
1808 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1809 err = ubifs_write_sb_node(c, sup);
1810 kfree(sup);
1811 if (err)
1812 goto out;
1813 }
1814
1815 if (c->need_recovery) {
1816 ubifs_msg(c, "completing deferred recovery");
1817 err = ubifs_write_rcvrd_mst_node(c);
1818 if (err)
1819 goto out;
1820 err = ubifs_recover_size(c);
1821 if (err)
1822 goto out;
1823 err = ubifs_clean_lebs(c, c->sbuf);
1824 if (err)
1825 goto out;
1826 err = ubifs_recover_inl_heads(c, c->sbuf);
1827 if (err)
1828 goto out;
1829 } else {
1830 /* A readonly mount is not allowed to have orphans */
1831 ubifs_assert(c->tot_orphans == 0);
1832 err = ubifs_clear_orphans(c);
1833 if (err)
1834 goto out;
1835 }
1836
1837 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1838 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1839 err = ubifs_write_master(c);
1840 if (err)
1841 goto out;
1842 }
1843
1844 c->ileb_buf = vmalloc(c->leb_size);
1845 if (!c->ileb_buf) {
1846 err = -ENOMEM;
1847 goto out;
1848 }
1849
1850 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1851 if (!c->write_reserve_buf) {
1852 err = -ENOMEM;
1853 goto out;
1854 }
1855
1856 err = ubifs_lpt_init(c, 0, 1);
1857 if (err)
1858 goto out;
1859
1860 /* Create background thread */
1861 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1862 if (IS_ERR(c->bgt)) {
1863 err = PTR_ERR(c->bgt);
1864 c->bgt = NULL;
1865 ubifs_err(c, "cannot spawn \"%s\", error %d",
1866 c->bgt_name, err);
1867 goto out;
1868 }
1869 wake_up_process(c->bgt);
1870
1871 c->orph_buf = vmalloc(c->leb_size);
1872 if (!c->orph_buf) {
1873 err = -ENOMEM;
1874 goto out;
1875 }
1876
1877 /* Check for enough log space */
1878 lnum = c->lhead_lnum + 1;
1879 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1880 lnum = UBIFS_LOG_LNUM;
1881 if (lnum == c->ltail_lnum) {
1882 err = ubifs_consolidate_log(c);
1883 if (err)
1884 goto out;
1885 }
1886
1887 if (c->need_recovery)
1888 err = ubifs_rcvry_gc_commit(c);
1889 else
1890 err = ubifs_leb_unmap(c, c->gc_lnum);
1891 if (err)
1892 goto out;
1893
1894 dbg_gen("re-mounted read-write");
1895 c->remounting_rw = 0;
1896
1897 if (c->need_recovery) {
1898 c->need_recovery = 0;
1899 ubifs_msg(c, "deferred recovery completed");
1900 } else {
1901 /*
1902 * Do not run the debugging space check if the were doing
1903 * recovery, because when we saved the information we had the
1904 * file-system in a state where the TNC and lprops has been
1905 * modified in memory, but all the I/O operations (including a
1906 * commit) were deferred. So the file-system was in
1907 * "non-committed" state. Now the file-system is in committed
1908 * state, and of course the amount of free space will change
1909 * because, for example, the old index size was imprecise.
1910 */
1911 err = dbg_check_space_info(c);
1912 }
1913
1914 mutex_unlock(&c->umount_mutex);
1915 return err;
1916
1917 out:
1918 c->ro_mount = 1;
1919 vfree(c->orph_buf);
1920 c->orph_buf = NULL;
1921 if (c->bgt) {
1922 kthread_stop(c->bgt);
1923 c->bgt = NULL;
1924 }
1925 free_wbufs(c);
1926 kfree(c->write_reserve_buf);
1927 c->write_reserve_buf = NULL;
1928 vfree(c->ileb_buf);
1929 c->ileb_buf = NULL;
1930 ubifs_lpt_free(c, 1);
1931 c->remounting_rw = 0;
1932 mutex_unlock(&c->umount_mutex);
1933 return err;
1934 }
1935
1936 /**
1937 * ubifs_remount_ro - re-mount in read-only mode.
1938 * @c: UBIFS file-system description object
1939 *
1940 * We assume VFS has stopped writing. Possibly the background thread could be
1941 * running a commit, however kthread_stop will wait in that case.
1942 */
1943 static void ubifs_remount_ro(struct ubifs_info *c)
1944 {
1945 int i, err;
1946
1947 ubifs_assert(!c->need_recovery);
1948 ubifs_assert(!c->ro_mount);
1949
1950 mutex_lock(&c->umount_mutex);
1951 if (c->bgt) {
1952 kthread_stop(c->bgt);
1953 c->bgt = NULL;
1954 }
1955
1956 dbg_save_space_info(c);
1957
1958 for (i = 0; i < c->jhead_cnt; i++)
1959 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1960
1961 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1962 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1963 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1964 err = ubifs_write_master(c);
1965 if (err)
1966 ubifs_ro_mode(c, err);
1967
1968 vfree(c->orph_buf);
1969 c->orph_buf = NULL;
1970 kfree(c->write_reserve_buf);
1971 c->write_reserve_buf = NULL;
1972 vfree(c->ileb_buf);
1973 c->ileb_buf = NULL;
1974 ubifs_lpt_free(c, 1);
1975 c->ro_mount = 1;
1976 err = dbg_check_space_info(c);
1977 if (err)
1978 ubifs_ro_mode(c, err);
1979 mutex_unlock(&c->umount_mutex);
1980 }
1981
1982 static void ubifs_put_super(struct super_block *sb)
1983 {
1984 int i;
1985 struct ubifs_info *c = sb->s_fs_info;
1986
1987 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1988
1989 /*
1990 * The following asserts are only valid if there has not been a failure
1991 * of the media. For example, there will be dirty inodes if we failed
1992 * to write them back because of I/O errors.
1993 */
1994 if (!c->ro_error) {
1995 ubifs_assert(c->bi.idx_growth == 0);
1996 ubifs_assert(c->bi.dd_growth == 0);
1997 ubifs_assert(c->bi.data_growth == 0);
1998 }
1999
2000 /*
2001 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
2002 * and file system un-mount. Namely, it prevents the shrinker from
2003 * picking this superblock for shrinking - it will be just skipped if
2004 * the mutex is locked.
2005 */
2006 mutex_lock(&c->umount_mutex);
2007 if (!c->ro_mount) {
2008 /*
2009 * First of all kill the background thread to make sure it does
2010 * not interfere with un-mounting and freeing resources.
2011 */
2012 if (c->bgt) {
2013 kthread_stop(c->bgt);
2014 c->bgt = NULL;
2015 }
2016
2017 /*
2018 * On fatal errors c->ro_error is set to 1, in which case we do
2019 * not write the master node.
2020 */
2021 if (!c->ro_error) {
2022 int err;
2023
2024 /* Synchronize write-buffers */
2025 for (i = 0; i < c->jhead_cnt; i++)
2026 ubifs_wbuf_sync(&c->jheads[i].wbuf);
2027
2028 /*
2029 * We are being cleanly unmounted which means the
2030 * orphans were killed - indicate this in the master
2031 * node. Also save the reserved GC LEB number.
2032 */
2033 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
2034 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
2035 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
2036 err = ubifs_write_master(c);
2037 if (err)
2038 /*
2039 * Recovery will attempt to fix the master area
2040 * next mount, so we just print a message and
2041 * continue to unmount normally.
2042 */
2043 ubifs_err(c, "failed to write master node, error %d",
2044 err);
2045 } else {
2046 #ifndef __UBOOT__
2047 for (i = 0; i < c->jhead_cnt; i++)
2048 /* Make sure write-buffer timers are canceled */
2049 hrtimer_cancel(&c->jheads[i].wbuf.timer);
2050 #endif
2051 }
2052 }
2053
2054 ubifs_umount(c);
2055 #ifndef __UBOOT__
2056 bdi_destroy(&c->bdi);
2057 #endif
2058 ubi_close_volume(c->ubi);
2059 mutex_unlock(&c->umount_mutex);
2060 }
2061 #endif
2062
2063 #ifndef __UBOOT__
2064 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2065 {
2066 int err;
2067 struct ubifs_info *c = sb->s_fs_info;
2068
2069 sync_filesystem(sb);
2070 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2071
2072 err = ubifs_parse_options(c, data, 1);
2073 if (err) {
2074 ubifs_err(c, "invalid or unknown remount parameter");
2075 return err;
2076 }
2077
2078 if (c->ro_mount && !(*flags & MS_RDONLY)) {
2079 if (c->ro_error) {
2080 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2081 return -EROFS;
2082 }
2083 if (c->ro_media) {
2084 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2085 return -EROFS;
2086 }
2087 err = ubifs_remount_rw(c);
2088 if (err)
2089 return err;
2090 } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
2091 if (c->ro_error) {
2092 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2093 return -EROFS;
2094 }
2095 ubifs_remount_ro(c);
2096 }
2097
2098 if (c->bulk_read == 1)
2099 bu_init(c);
2100 else {
2101 dbg_gen("disable bulk-read");
2102 kfree(c->bu.buf);
2103 c->bu.buf = NULL;
2104 }
2105
2106 ubifs_assert(c->lst.taken_empty_lebs > 0);
2107 return 0;
2108 }
2109 #endif
2110
2111 const struct super_operations ubifs_super_operations = {
2112 .alloc_inode = ubifs_alloc_inode,
2113 #ifndef __UBOOT__
2114 .destroy_inode = ubifs_destroy_inode,
2115 .put_super = ubifs_put_super,
2116 .write_inode = ubifs_write_inode,
2117 .evict_inode = ubifs_evict_inode,
2118 .statfs = ubifs_statfs,
2119 #endif
2120 .dirty_inode = ubifs_dirty_inode,
2121 #ifndef __UBOOT__
2122 .remount_fs = ubifs_remount_fs,
2123 .show_options = ubifs_show_options,
2124 .sync_fs = ubifs_sync_fs,
2125 #endif
2126 };
2127
2128 /**
2129 * open_ubi - parse UBI device name string and open the UBI device.
2130 * @name: UBI volume name
2131 * @mode: UBI volume open mode
2132 *
2133 * The primary method of mounting UBIFS is by specifying the UBI volume
2134 * character device node path. However, UBIFS may also be mounted withoug any
2135 * character device node using one of the following methods:
2136 *
2137 * o ubiX_Y - mount UBI device number X, volume Y;
2138 * o ubiY - mount UBI device number 0, volume Y;
2139 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2140 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2141 *
2142 * Alternative '!' separator may be used instead of ':' (because some shells
2143 * like busybox may interpret ':' as an NFS host name separator). This function
2144 * returns UBI volume description object in case of success and a negative
2145 * error code in case of failure.
2146 */
2147 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2148 {
2149 #ifndef __UBOOT__
2150 struct ubi_volume_desc *ubi;
2151 #endif
2152 int dev, vol;
2153 char *endptr;
2154
2155 #ifndef __UBOOT__
2156 /* First, try to open using the device node path method */
2157 ubi = ubi_open_volume_path(name, mode);
2158 if (!IS_ERR(ubi))
2159 return ubi;
2160 #endif
2161
2162 /* Try the "nodev" method */
2163 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2164 return ERR_PTR(-EINVAL);
2165
2166 /* ubi:NAME method */
2167 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2168 return ubi_open_volume_nm(0, name + 4, mode);
2169
2170 if (!isdigit(name[3]))
2171 return ERR_PTR(-EINVAL);
2172
2173 dev = simple_strtoul(name + 3, &endptr, 0);
2174
2175 /* ubiY method */
2176 if (*endptr == '\0')
2177 return ubi_open_volume(0, dev, mode);
2178
2179 /* ubiX_Y method */
2180 if (*endptr == '_' && isdigit(endptr[1])) {
2181 vol = simple_strtoul(endptr + 1, &endptr, 0);
2182 if (*endptr != '\0')
2183 return ERR_PTR(-EINVAL);
2184 return ubi_open_volume(dev, vol, mode);
2185 }
2186
2187 /* ubiX:NAME method */
2188 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2189 return ubi_open_volume_nm(dev, ++endptr, mode);
2190
2191 return ERR_PTR(-EINVAL);
2192 }
2193
2194 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2195 {
2196 struct ubifs_info *c;
2197
2198 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2199 if (c) {
2200 spin_lock_init(&c->cnt_lock);
2201 spin_lock_init(&c->cs_lock);
2202 spin_lock_init(&c->buds_lock);
2203 spin_lock_init(&c->space_lock);
2204 spin_lock_init(&c->orphan_lock);
2205 init_rwsem(&c->commit_sem);
2206 mutex_init(&c->lp_mutex);
2207 mutex_init(&c->tnc_mutex);
2208 mutex_init(&c->log_mutex);
2209 mutex_init(&c->umount_mutex);
2210 mutex_init(&c->bu_mutex);
2211 mutex_init(&c->write_reserve_mutex);
2212 init_waitqueue_head(&c->cmt_wq);
2213 c->buds = RB_ROOT;
2214 c->old_idx = RB_ROOT;
2215 c->size_tree = RB_ROOT;
2216 c->orph_tree = RB_ROOT;
2217 INIT_LIST_HEAD(&c->infos_list);
2218 INIT_LIST_HEAD(&c->idx_gc);
2219 INIT_LIST_HEAD(&c->replay_list);
2220 INIT_LIST_HEAD(&c->replay_buds);
2221 INIT_LIST_HEAD(&c->uncat_list);
2222 INIT_LIST_HEAD(&c->empty_list);
2223 INIT_LIST_HEAD(&c->freeable_list);
2224 INIT_LIST_HEAD(&c->frdi_idx_list);
2225 INIT_LIST_HEAD(&c->unclean_leb_list);
2226 INIT_LIST_HEAD(&c->old_buds);
2227 INIT_LIST_HEAD(&c->orph_list);
2228 INIT_LIST_HEAD(&c->orph_new);
2229 c->no_chk_data_crc = 1;
2230
2231 c->highest_inum = UBIFS_FIRST_INO;
2232 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2233
2234 ubi_get_volume_info(ubi, &c->vi);
2235 ubi_get_device_info(c->vi.ubi_num, &c->di);
2236 }
2237 return c;
2238 }
2239
2240 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2241 {
2242 struct ubifs_info *c = sb->s_fs_info;
2243 struct inode *root;
2244 int err;
2245
2246 c->vfs_sb = sb;
2247 #ifndef __UBOOT__
2248 /* Re-open the UBI device in read-write mode */
2249 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2250 #else
2251 /* U-Boot read only mode */
2252 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
2253 #endif
2254
2255 if (IS_ERR(c->ubi)) {
2256 err = PTR_ERR(c->ubi);
2257 goto out;
2258 }
2259
2260 #ifndef __UBOOT__
2261 /*
2262 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2263 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2264 * which means the user would have to wait not just for their own I/O
2265 * but the read-ahead I/O as well i.e. completely pointless.
2266 *
2267 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2268 */
2269 c->bdi.name = "ubifs",
2270 c->bdi.capabilities = 0;
2271 err = bdi_init(&c->bdi);
2272 if (err)
2273 goto out_close;
2274 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2275 c->vi.ubi_num, c->vi.vol_id);
2276 if (err)
2277 goto out_bdi;
2278
2279 err = ubifs_parse_options(c, data, 0);
2280 if (err)
2281 goto out_bdi;
2282
2283 sb->s_bdi = &c->bdi;
2284 #endif
2285 sb->s_fs_info = c;
2286 sb->s_magic = UBIFS_SUPER_MAGIC;
2287 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2288 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2289 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2290 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2291 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2292 sb->s_op = &ubifs_super_operations;
2293 #ifndef __UBOOT__
2294 sb->s_xattr = ubifs_xattr_handlers;
2295 #endif
2296
2297 mutex_lock(&c->umount_mutex);
2298 err = mount_ubifs(c);
2299 if (err) {
2300 ubifs_assert(err < 0);
2301 goto out_unlock;
2302 }
2303
2304 /* Read the root inode */
2305 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2306 if (IS_ERR(root)) {
2307 err = PTR_ERR(root);
2308 goto out_umount;
2309 }
2310
2311 #ifndef __UBOOT__
2312 sb->s_root = d_make_root(root);
2313 if (!sb->s_root) {
2314 err = -ENOMEM;
2315 goto out_umount;
2316 }
2317 #else
2318 sb->s_root = NULL;
2319 #endif
2320
2321 mutex_unlock(&c->umount_mutex);
2322 return 0;
2323
2324 out_umount:
2325 ubifs_umount(c);
2326 out_unlock:
2327 mutex_unlock(&c->umount_mutex);
2328 #ifndef __UBOOT__
2329 out_bdi:
2330 bdi_destroy(&c->bdi);
2331 out_close:
2332 #endif
2333 ubi_close_volume(c->ubi);
2334 out:
2335 return err;
2336 }
2337
2338 static int sb_test(struct super_block *sb, void *data)
2339 {
2340 struct ubifs_info *c1 = data;
2341 struct ubifs_info *c = sb->s_fs_info;
2342
2343 return c->vi.cdev == c1->vi.cdev;
2344 }
2345
2346 static int sb_set(struct super_block *sb, void *data)
2347 {
2348 sb->s_fs_info = data;
2349 return set_anon_super(sb, NULL);
2350 }
2351
2352 static struct super_block *alloc_super(struct file_system_type *type, int flags)
2353 {
2354 struct super_block *s;
2355 int err;
2356
2357 s = kzalloc(sizeof(struct super_block), GFP_USER);
2358 if (!s) {
2359 err = -ENOMEM;
2360 return ERR_PTR(err);
2361 }
2362
2363 #ifndef __UBOOT__
2364 INIT_HLIST_NODE(&s->s_instances);
2365 #endif
2366 INIT_LIST_HEAD(&s->s_inodes);
2367 s->s_time_gran = 1000000000;
2368 s->s_flags = flags;
2369
2370 return s;
2371 }
2372
2373 /**
2374 * sget - find or create a superblock
2375 * @type: filesystem type superblock should belong to
2376 * @test: comparison callback
2377 * @set: setup callback
2378 * @flags: mount flags
2379 * @data: argument to each of them
2380 */
2381 struct super_block *sget(struct file_system_type *type,
2382 int (*test)(struct super_block *,void *),
2383 int (*set)(struct super_block *,void *),
2384 int flags,
2385 void *data)
2386 {
2387 struct super_block *s = NULL;
2388 #ifndef __UBOOT__
2389 struct super_block *old;
2390 #endif
2391 int err;
2392
2393 #ifndef __UBOOT__
2394 retry:
2395 spin_lock(&sb_lock);
2396 if (test) {
2397 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
2398 if (!test(old, data))
2399 continue;
2400 if (!grab_super(old))
2401 goto retry;
2402 if (s) {
2403 up_write(&s->s_umount);
2404 destroy_super(s);
2405 s = NULL;
2406 }
2407 return old;
2408 }
2409 }
2410 #endif
2411 if (!s) {
2412 spin_unlock(&sb_lock);
2413 s = alloc_super(type, flags);
2414 if (!s)
2415 return ERR_PTR(-ENOMEM);
2416 #ifndef __UBOOT__
2417 goto retry;
2418 #endif
2419 }
2420
2421 err = set(s, data);
2422 if (err) {
2423 #ifndef __UBOOT__
2424 spin_unlock(&sb_lock);
2425 up_write(&s->s_umount);
2426 destroy_super(s);
2427 #endif
2428 return ERR_PTR(err);
2429 }
2430 s->s_type = type;
2431 #ifndef __UBOOT__
2432 strlcpy(s->s_id, type->name, sizeof(s->s_id));
2433 list_add_tail(&s->s_list, &super_blocks);
2434 hlist_add_head(&s->s_instances, &type->fs_supers);
2435 spin_unlock(&sb_lock);
2436 get_filesystem(type);
2437 register_shrinker(&s->s_shrink);
2438 #else
2439 strncpy(s->s_id, type->name, sizeof(s->s_id));
2440 #endif
2441 return s;
2442 }
2443
2444 EXPORT_SYMBOL(sget);
2445
2446
2447 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2448 const char *name, void *data)
2449 {
2450 struct ubi_volume_desc *ubi;
2451 struct ubifs_info *c;
2452 struct super_block *sb;
2453 int err;
2454
2455 dbg_gen("name %s, flags %#x", name, flags);
2456
2457 /*
2458 * Get UBI device number and volume ID. Mount it read-only so far
2459 * because this might be a new mount point, and UBI allows only one
2460 * read-write user at a time.
2461 */
2462 ubi = open_ubi(name, UBI_READONLY);
2463 if (IS_ERR(ubi)) {
2464 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d\n",
2465 current->pid, name, (int)PTR_ERR(ubi));
2466 return ERR_CAST(ubi);
2467 }
2468
2469 c = alloc_ubifs_info(ubi);
2470 if (!c) {
2471 err = -ENOMEM;
2472 goto out_close;
2473 }
2474
2475 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2476
2477 sb = sget(fs_type, sb_test, sb_set, flags, c);
2478 if (IS_ERR(sb)) {
2479 err = PTR_ERR(sb);
2480 kfree(c);
2481 goto out_close;
2482 }
2483
2484 if (sb->s_root) {
2485 struct ubifs_info *c1 = sb->s_fs_info;
2486 kfree(c);
2487 /* A new mount point for already mounted UBIFS */
2488 dbg_gen("this ubi volume is already mounted");
2489 if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2490 err = -EBUSY;
2491 goto out_deact;
2492 }
2493 } else {
2494 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2495 if (err)
2496 goto out_deact;
2497 /* We do not support atime */
2498 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2499 }
2500
2501 /* 'fill_super()' opens ubi again so we must close it here */
2502 ubi_close_volume(ubi);
2503
2504 #ifdef __UBOOT__
2505 ubifs_sb = sb;
2506 return 0;
2507 #else
2508 return dget(sb->s_root);
2509 #endif
2510
2511 out_deact:
2512 #ifndef __UBOOT__
2513 deactivate_locked_super(sb);
2514 #endif
2515 out_close:
2516 ubi_close_volume(ubi);
2517 return ERR_PTR(err);
2518 }
2519
2520 static void kill_ubifs_super(struct super_block *s)
2521 {
2522 struct ubifs_info *c = s->s_fs_info;
2523 #ifndef __UBOOT__
2524 kill_anon_super(s);
2525 #endif
2526 kfree(c);
2527 }
2528
2529 static struct file_system_type ubifs_fs_type = {
2530 .name = "ubifs",
2531 .owner = THIS_MODULE,
2532 .mount = ubifs_mount,
2533 .kill_sb = kill_ubifs_super,
2534 };
2535 #ifndef __UBOOT__
2536 MODULE_ALIAS_FS("ubifs");
2537
2538 /*
2539 * Inode slab cache constructor.
2540 */
2541 static void inode_slab_ctor(void *obj)
2542 {
2543 struct ubifs_inode *ui = obj;
2544 inode_init_once(&ui->vfs_inode);
2545 }
2546
2547 static int __init ubifs_init(void)
2548 #else
2549 int ubifs_init(void)
2550 #endif
2551 {
2552 int err;
2553
2554 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2555
2556 /* Make sure node sizes are 8-byte aligned */
2557 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2558 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2559 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2560 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2561 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2562 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2563 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2564 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2565 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2566 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2567 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2568
2569 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2570 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2571 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2572 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2573 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2574 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2575
2576 /* Check min. node size */
2577 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2578 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2579 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2580 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2581
2582 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2583 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2584 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2585 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2586
2587 /* Defined node sizes */
2588 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2589 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2590 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2591 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2592
2593 /*
2594 * We use 2 bit wide bit-fields to store compression type, which should
2595 * be amended if more compressors are added. The bit-fields are:
2596 * @compr_type in 'struct ubifs_inode', @default_compr in
2597 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2598 */
2599 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2600
2601 /*
2602 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2603 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2604 */
2605 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2606 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes\n",
2607 current->pid, (unsigned int)PAGE_CACHE_SIZE);
2608 return -EINVAL;
2609 }
2610
2611 #ifndef __UBOOT__
2612 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2613 sizeof(struct ubifs_inode), 0,
2614 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2615 &inode_slab_ctor);
2616 if (!ubifs_inode_slab)
2617 return -ENOMEM;
2618
2619 err = register_shrinker(&ubifs_shrinker_info);
2620 if (err)
2621 goto out_slab;
2622 #endif
2623
2624 err = ubifs_compressors_init();
2625 if (err)
2626 goto out_shrinker;
2627
2628 #ifndef __UBOOT__
2629 err = dbg_debugfs_init();
2630 if (err)
2631 goto out_compr;
2632
2633 err = register_filesystem(&ubifs_fs_type);
2634 if (err) {
2635 pr_err("UBIFS error (pid %d): cannot register file system, error %d\n",
2636 current->pid, err);
2637 goto out_dbg;
2638 }
2639 #endif
2640 return 0;
2641
2642 #ifndef __UBOOT__
2643 out_dbg:
2644 dbg_debugfs_exit();
2645 out_compr:
2646 ubifs_compressors_exit();
2647 #endif
2648 out_shrinker:
2649 #ifndef __UBOOT__
2650 unregister_shrinker(&ubifs_shrinker_info);
2651 out_slab:
2652 #endif
2653 kmem_cache_destroy(ubifs_inode_slab);
2654 return err;
2655 }
2656 /* late_initcall to let compressors initialize first */
2657 late_initcall(ubifs_init);
2658
2659 #ifndef __UBOOT__
2660 static void __exit ubifs_exit(void)
2661 {
2662 ubifs_assert(list_empty(&ubifs_infos));
2663 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2664
2665 dbg_debugfs_exit();
2666 ubifs_compressors_exit();
2667 unregister_shrinker(&ubifs_shrinker_info);
2668
2669 /*
2670 * Make sure all delayed rcu free inodes are flushed before we
2671 * destroy cache.
2672 */
2673 rcu_barrier();
2674 kmem_cache_destroy(ubifs_inode_slab);
2675 unregister_filesystem(&ubifs_fs_type);
2676 }
2677 module_exit(ubifs_exit);
2678
2679 MODULE_LICENSE("GPL");
2680 MODULE_VERSION(__stringify(UBIFS_VERSION));
2681 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2682 MODULE_DESCRIPTION("UBIFS - UBI File System");
2683 #else
2684 int uboot_ubifs_mount(char *vol_name)
2685 {
2686 struct dentry *ret;
2687 int flags;
2688
2689 /*
2690 * First unmount if allready mounted
2691 */
2692 if (ubifs_sb)
2693 ubifs_umount(ubifs_sb->s_fs_info);
2694
2695 /*
2696 * Mount in read-only mode
2697 */
2698 flags = MS_RDONLY;
2699 ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
2700 if (IS_ERR(ret)) {
2701 printf("Error reading superblock on volume '%s' " \
2702 "errno=%d!\n", vol_name, (int)PTR_ERR(ret));
2703 return -1;
2704 }
2705
2706 return 0;
2707 }
2708 #endif