]> git.ipfire.org Git - people/ms/u-boot.git/blob - fs/ubifs/super.c
dcf3a479479d6e786462ff9af60b807a5288117d
[people/ms/u-boot.git] / fs / ubifs / super.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 *
8 * Authors: Artem Bityutskiy (Битюцкий Артём)
9 * Adrian Hunter
10 */
11
12 /*
13 * This file implements UBIFS initialization and VFS superblock operations. Some
14 * initialization stuff which is rather large and complex is placed at
15 * corresponding subsystems, but most of it is here.
16 */
17
18 #ifndef __UBOOT__
19 #include <linux/init.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/kthread.h>
24 #include <linux/parser.h>
25 #include <linux/seq_file.h>
26 #include <linux/mount.h>
27 #include <linux/math64.h>
28 #include <linux/writeback.h>
29 #else
30
31 #include <common.h>
32 #include <malloc.h>
33 #include <memalign.h>
34 #include <linux/bug.h>
35 #include <linux/log2.h>
36 #include <linux/stat.h>
37 #include <linux/err.h>
38 #include "ubifs.h"
39 #include <ubi_uboot.h>
40 #include <mtd/ubi-user.h>
41
42 struct dentry;
43 struct file;
44 struct iattr;
45 struct kstat;
46 struct vfsmount;
47
48 #define INODE_LOCKED_MAX 64
49
50 struct super_block *ubifs_sb;
51 LIST_HEAD(super_blocks);
52
53 static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
54
55 int set_anon_super(struct super_block *s, void *data)
56 {
57 return 0;
58 }
59
60 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
61 {
62 struct inode *inode;
63
64 inode = (struct inode *)malloc_cache_aligned(
65 sizeof(struct ubifs_inode));
66 if (inode) {
67 inode->i_ino = ino;
68 inode->i_sb = sb;
69 list_add(&inode->i_sb_list, &sb->s_inodes);
70 inode->i_state = I_LOCK | I_NEW;
71 }
72
73 return inode;
74 }
75
76 void iget_failed(struct inode *inode)
77 {
78 }
79
80 int ubifs_iput(struct inode *inode)
81 {
82 list_del_init(&inode->i_sb_list);
83
84 free(inode);
85 return 0;
86 }
87
88 /*
89 * Lock (save) inode in inode array for readback after recovery
90 */
91 void iput(struct inode *inode)
92 {
93 int i;
94 struct inode *ino;
95
96 /*
97 * Search end of list
98 */
99 for (i = 0; i < INODE_LOCKED_MAX; i++) {
100 if (inodes_locked_down[i] == NULL)
101 break;
102 }
103
104 if (i >= INODE_LOCKED_MAX) {
105 dbg_gen("Error, can't lock (save) more inodes while recovery!!!");
106 return;
107 }
108
109 /*
110 * Allocate and use new inode
111 */
112 ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode));
113 memcpy(ino, inode, sizeof(struct ubifs_inode));
114
115 /*
116 * Finally save inode in array
117 */
118 inodes_locked_down[i] = ino;
119 }
120
121 /* from fs/inode.c */
122 /**
123 * clear_nlink - directly zero an inode's link count
124 * @inode: inode
125 *
126 * This is a low-level filesystem helper to replace any
127 * direct filesystem manipulation of i_nlink. See
128 * drop_nlink() for why we care about i_nlink hitting zero.
129 */
130 void clear_nlink(struct inode *inode)
131 {
132 if (inode->i_nlink) {
133 inode->__i_nlink = 0;
134 atomic_long_inc(&inode->i_sb->s_remove_count);
135 }
136 }
137 EXPORT_SYMBOL(clear_nlink);
138
139 /**
140 * set_nlink - directly set an inode's link count
141 * @inode: inode
142 * @nlink: new nlink (should be non-zero)
143 *
144 * This is a low-level filesystem helper to replace any
145 * direct filesystem manipulation of i_nlink.
146 */
147 void set_nlink(struct inode *inode, unsigned int nlink)
148 {
149 if (!nlink) {
150 clear_nlink(inode);
151 } else {
152 /* Yes, some filesystems do change nlink from zero to one */
153 if (inode->i_nlink == 0)
154 atomic_long_dec(&inode->i_sb->s_remove_count);
155
156 inode->__i_nlink = nlink;
157 }
158 }
159 EXPORT_SYMBOL(set_nlink);
160
161 /* from include/linux/fs.h */
162 static inline void i_uid_write(struct inode *inode, uid_t uid)
163 {
164 inode->i_uid.val = uid;
165 }
166
167 static inline void i_gid_write(struct inode *inode, gid_t gid)
168 {
169 inode->i_gid.val = gid;
170 }
171
172 void unlock_new_inode(struct inode *inode)
173 {
174 return;
175 }
176 #endif
177
178 /*
179 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
180 * allocating too much.
181 */
182 #define UBIFS_KMALLOC_OK (128*1024)
183
184 /* Slab cache for UBIFS inodes */
185 struct kmem_cache *ubifs_inode_slab;
186
187 #ifndef __UBOOT__
188 /* UBIFS TNC shrinker description */
189 static struct shrinker ubifs_shrinker_info = {
190 .scan_objects = ubifs_shrink_scan,
191 .count_objects = ubifs_shrink_count,
192 .seeks = DEFAULT_SEEKS,
193 };
194 #endif
195
196 /**
197 * validate_inode - validate inode.
198 * @c: UBIFS file-system description object
199 * @inode: the inode to validate
200 *
201 * This is a helper function for 'ubifs_iget()' which validates various fields
202 * of a newly built inode to make sure they contain sane values and prevent
203 * possible vulnerabilities. Returns zero if the inode is all right and
204 * a non-zero error code if not.
205 */
206 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
207 {
208 int err;
209 const struct ubifs_inode *ui = ubifs_inode(inode);
210
211 if (inode->i_size > c->max_inode_sz) {
212 ubifs_err(c, "inode is too large (%lld)",
213 (long long)inode->i_size);
214 return 1;
215 }
216
217 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
218 ubifs_err(c, "unknown compression type %d", ui->compr_type);
219 return 2;
220 }
221
222 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
223 return 3;
224
225 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
226 return 4;
227
228 if (ui->xattr && !S_ISREG(inode->i_mode))
229 return 5;
230
231 if (!ubifs_compr_present(ui->compr_type)) {
232 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
233 inode->i_ino, ubifs_compr_name(ui->compr_type));
234 }
235
236 err = dbg_check_dir(c, inode);
237 return err;
238 }
239
240 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
241 {
242 int err;
243 union ubifs_key key;
244 struct ubifs_ino_node *ino;
245 struct ubifs_info *c = sb->s_fs_info;
246 struct inode *inode;
247 struct ubifs_inode *ui;
248 #ifdef __UBOOT__
249 int i;
250 #endif
251
252 dbg_gen("inode %lu", inum);
253
254 #ifdef __UBOOT__
255 /*
256 * U-Boot special handling of locked down inodes via recovery
257 * e.g. ubifs_recover_size()
258 */
259 for (i = 0; i < INODE_LOCKED_MAX; i++) {
260 /*
261 * Exit on last entry (NULL), inode not found in list
262 */
263 if (inodes_locked_down[i] == NULL)
264 break;
265
266 if (inodes_locked_down[i]->i_ino == inum) {
267 /*
268 * We found the locked down inode in our array,
269 * so just return this pointer instead of creating
270 * a new one.
271 */
272 return inodes_locked_down[i];
273 }
274 }
275 #endif
276
277 inode = iget_locked(sb, inum);
278 if (!inode)
279 return ERR_PTR(-ENOMEM);
280 if (!(inode->i_state & I_NEW))
281 return inode;
282 ui = ubifs_inode(inode);
283
284 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
285 if (!ino) {
286 err = -ENOMEM;
287 goto out;
288 }
289
290 ino_key_init(c, &key, inode->i_ino);
291
292 err = ubifs_tnc_lookup(c, &key, ino);
293 if (err)
294 goto out_ino;
295
296 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
297 set_nlink(inode, le32_to_cpu(ino->nlink));
298 i_uid_write(inode, le32_to_cpu(ino->uid));
299 i_gid_write(inode, le32_to_cpu(ino->gid));
300 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
301 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
302 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
303 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
304 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
305 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
306 inode->i_mode = le32_to_cpu(ino->mode);
307 inode->i_size = le64_to_cpu(ino->size);
308
309 ui->data_len = le32_to_cpu(ino->data_len);
310 ui->flags = le32_to_cpu(ino->flags);
311 ui->compr_type = le16_to_cpu(ino->compr_type);
312 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
313 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
314 ui->xattr_size = le32_to_cpu(ino->xattr_size);
315 ui->xattr_names = le32_to_cpu(ino->xattr_names);
316 ui->synced_i_size = ui->ui_size = inode->i_size;
317
318 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
319
320 err = validate_inode(c, inode);
321 if (err)
322 goto out_invalid;
323
324 #ifndef __UBOOT__
325 switch (inode->i_mode & S_IFMT) {
326 case S_IFREG:
327 inode->i_mapping->a_ops = &ubifs_file_address_operations;
328 inode->i_op = &ubifs_file_inode_operations;
329 inode->i_fop = &ubifs_file_operations;
330 if (ui->xattr) {
331 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
332 if (!ui->data) {
333 err = -ENOMEM;
334 goto out_ino;
335 }
336 memcpy(ui->data, ino->data, ui->data_len);
337 ((char *)ui->data)[ui->data_len] = '\0';
338 } else if (ui->data_len != 0) {
339 err = 10;
340 goto out_invalid;
341 }
342 break;
343 case S_IFDIR:
344 inode->i_op = &ubifs_dir_inode_operations;
345 inode->i_fop = &ubifs_dir_operations;
346 if (ui->data_len != 0) {
347 err = 11;
348 goto out_invalid;
349 }
350 break;
351 case S_IFLNK:
352 inode->i_op = &ubifs_symlink_inode_operations;
353 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
354 err = 12;
355 goto out_invalid;
356 }
357 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
358 if (!ui->data) {
359 err = -ENOMEM;
360 goto out_ino;
361 }
362 memcpy(ui->data, ino->data, ui->data_len);
363 ((char *)ui->data)[ui->data_len] = '\0';
364 inode->i_link = ui->data;
365 break;
366 case S_IFBLK:
367 case S_IFCHR:
368 {
369 dev_t rdev;
370 union ubifs_dev_desc *dev;
371
372 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
373 if (!ui->data) {
374 err = -ENOMEM;
375 goto out_ino;
376 }
377
378 dev = (union ubifs_dev_desc *)ino->data;
379 if (ui->data_len == sizeof(dev->new))
380 rdev = new_decode_dev(le32_to_cpu(dev->new));
381 else if (ui->data_len == sizeof(dev->huge))
382 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
383 else {
384 err = 13;
385 goto out_invalid;
386 }
387 memcpy(ui->data, ino->data, ui->data_len);
388 inode->i_op = &ubifs_file_inode_operations;
389 init_special_inode(inode, inode->i_mode, rdev);
390 break;
391 }
392 case S_IFSOCK:
393 case S_IFIFO:
394 inode->i_op = &ubifs_file_inode_operations;
395 init_special_inode(inode, inode->i_mode, 0);
396 if (ui->data_len != 0) {
397 err = 14;
398 goto out_invalid;
399 }
400 break;
401 default:
402 err = 15;
403 goto out_invalid;
404 }
405 #else
406 if ((inode->i_mode & S_IFMT) == S_IFLNK) {
407 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
408 err = 12;
409 goto out_invalid;
410 }
411 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
412 if (!ui->data) {
413 err = -ENOMEM;
414 goto out_ino;
415 }
416 memcpy(ui->data, ino->data, ui->data_len);
417 ((char *)ui->data)[ui->data_len] = '\0';
418 }
419 #endif
420
421 kfree(ino);
422 #ifndef __UBOOT__
423 ubifs_set_inode_flags(inode);
424 #endif
425 unlock_new_inode(inode);
426 return inode;
427
428 out_invalid:
429 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
430 ubifs_dump_node(c, ino);
431 ubifs_dump_inode(c, inode);
432 err = -EINVAL;
433 out_ino:
434 kfree(ino);
435 out:
436 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
437 iget_failed(inode);
438 return ERR_PTR(err);
439 }
440
441 static struct inode *ubifs_alloc_inode(struct super_block *sb)
442 {
443 struct ubifs_inode *ui;
444
445 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
446 if (!ui)
447 return NULL;
448
449 memset((void *)ui + sizeof(struct inode), 0,
450 sizeof(struct ubifs_inode) - sizeof(struct inode));
451 mutex_init(&ui->ui_mutex);
452 spin_lock_init(&ui->ui_lock);
453 return &ui->vfs_inode;
454 };
455
456 #ifndef __UBOOT__
457 static void ubifs_i_callback(struct rcu_head *head)
458 {
459 struct inode *inode = container_of(head, struct inode, i_rcu);
460 struct ubifs_inode *ui = ubifs_inode(inode);
461 kmem_cache_free(ubifs_inode_slab, ui);
462 }
463
464 static void ubifs_destroy_inode(struct inode *inode)
465 {
466 struct ubifs_inode *ui = ubifs_inode(inode);
467
468 kfree(ui->data);
469 call_rcu(&inode->i_rcu, ubifs_i_callback);
470 }
471
472 /*
473 * Note, Linux write-back code calls this without 'i_mutex'.
474 */
475 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
476 {
477 int err = 0;
478 struct ubifs_info *c = inode->i_sb->s_fs_info;
479 struct ubifs_inode *ui = ubifs_inode(inode);
480
481 ubifs_assert(!ui->xattr);
482 if (is_bad_inode(inode))
483 return 0;
484
485 mutex_lock(&ui->ui_mutex);
486 /*
487 * Due to races between write-back forced by budgeting
488 * (see 'sync_some_inodes()') and background write-back, the inode may
489 * have already been synchronized, do not do this again. This might
490 * also happen if it was synchronized in an VFS operation, e.g.
491 * 'ubifs_link()'.
492 */
493 if (!ui->dirty) {
494 mutex_unlock(&ui->ui_mutex);
495 return 0;
496 }
497
498 /*
499 * As an optimization, do not write orphan inodes to the media just
500 * because this is not needed.
501 */
502 dbg_gen("inode %lu, mode %#x, nlink %u",
503 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
504 if (inode->i_nlink) {
505 err = ubifs_jnl_write_inode(c, inode);
506 if (err)
507 ubifs_err(c, "can't write inode %lu, error %d",
508 inode->i_ino, err);
509 else
510 err = dbg_check_inode_size(c, inode, ui->ui_size);
511 }
512
513 ui->dirty = 0;
514 mutex_unlock(&ui->ui_mutex);
515 ubifs_release_dirty_inode_budget(c, ui);
516 return err;
517 }
518
519 static void ubifs_evict_inode(struct inode *inode)
520 {
521 int err;
522 struct ubifs_info *c = inode->i_sb->s_fs_info;
523 struct ubifs_inode *ui = ubifs_inode(inode);
524
525 if (ui->xattr)
526 /*
527 * Extended attribute inode deletions are fully handled in
528 * 'ubifs_removexattr()'. These inodes are special and have
529 * limited usage, so there is nothing to do here.
530 */
531 goto out;
532
533 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
534 ubifs_assert(!atomic_read(&inode->i_count));
535
536 truncate_inode_pages_final(&inode->i_data);
537
538 if (inode->i_nlink)
539 goto done;
540
541 if (is_bad_inode(inode))
542 goto out;
543
544 ui->ui_size = inode->i_size = 0;
545 err = ubifs_jnl_delete_inode(c, inode);
546 if (err)
547 /*
548 * Worst case we have a lost orphan inode wasting space, so a
549 * simple error message is OK here.
550 */
551 ubifs_err(c, "can't delete inode %lu, error %d",
552 inode->i_ino, err);
553
554 out:
555 if (ui->dirty)
556 ubifs_release_dirty_inode_budget(c, ui);
557 else {
558 /* We've deleted something - clean the "no space" flags */
559 c->bi.nospace = c->bi.nospace_rp = 0;
560 smp_wmb();
561 }
562 done:
563 clear_inode(inode);
564 }
565 #endif
566
567 static void ubifs_dirty_inode(struct inode *inode, int flags)
568 {
569 struct ubifs_inode *ui = ubifs_inode(inode);
570
571 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
572 if (!ui->dirty) {
573 ui->dirty = 1;
574 dbg_gen("inode %lu", inode->i_ino);
575 }
576 }
577
578 #ifndef __UBOOT__
579 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
580 {
581 struct ubifs_info *c = dentry->d_sb->s_fs_info;
582 unsigned long long free;
583 __le32 *uuid = (__le32 *)c->uuid;
584
585 free = ubifs_get_free_space(c);
586 dbg_gen("free space %lld bytes (%lld blocks)",
587 free, free >> UBIFS_BLOCK_SHIFT);
588
589 buf->f_type = UBIFS_SUPER_MAGIC;
590 buf->f_bsize = UBIFS_BLOCK_SIZE;
591 buf->f_blocks = c->block_cnt;
592 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
593 if (free > c->report_rp_size)
594 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
595 else
596 buf->f_bavail = 0;
597 buf->f_files = 0;
598 buf->f_ffree = 0;
599 buf->f_namelen = UBIFS_MAX_NLEN;
600 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
601 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
602 ubifs_assert(buf->f_bfree <= c->block_cnt);
603 return 0;
604 }
605
606 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
607 {
608 struct ubifs_info *c = root->d_sb->s_fs_info;
609
610 if (c->mount_opts.unmount_mode == 2)
611 seq_puts(s, ",fast_unmount");
612 else if (c->mount_opts.unmount_mode == 1)
613 seq_puts(s, ",norm_unmount");
614
615 if (c->mount_opts.bulk_read == 2)
616 seq_puts(s, ",bulk_read");
617 else if (c->mount_opts.bulk_read == 1)
618 seq_puts(s, ",no_bulk_read");
619
620 if (c->mount_opts.chk_data_crc == 2)
621 seq_puts(s, ",chk_data_crc");
622 else if (c->mount_opts.chk_data_crc == 1)
623 seq_puts(s, ",no_chk_data_crc");
624
625 if (c->mount_opts.override_compr) {
626 seq_printf(s, ",compr=%s",
627 ubifs_compr_name(c->mount_opts.compr_type));
628 }
629
630 return 0;
631 }
632
633 static int ubifs_sync_fs(struct super_block *sb, int wait)
634 {
635 int i, err;
636 struct ubifs_info *c = sb->s_fs_info;
637
638 /*
639 * Zero @wait is just an advisory thing to help the file system shove
640 * lots of data into the queues, and there will be the second
641 * '->sync_fs()' call, with non-zero @wait.
642 */
643 if (!wait)
644 return 0;
645
646 /*
647 * Synchronize write buffers, because 'ubifs_run_commit()' does not
648 * do this if it waits for an already running commit.
649 */
650 for (i = 0; i < c->jhead_cnt; i++) {
651 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
652 if (err)
653 return err;
654 }
655
656 /*
657 * Strictly speaking, it is not necessary to commit the journal here,
658 * synchronizing write-buffers would be enough. But committing makes
659 * UBIFS free space predictions much more accurate, so we want to let
660 * the user be able to get more accurate results of 'statfs()' after
661 * they synchronize the file system.
662 */
663 err = ubifs_run_commit(c);
664 if (err)
665 return err;
666
667 return ubi_sync(c->vi.ubi_num);
668 }
669 #endif
670
671 /**
672 * init_constants_early - initialize UBIFS constants.
673 * @c: UBIFS file-system description object
674 *
675 * This function initialize UBIFS constants which do not need the superblock to
676 * be read. It also checks that the UBI volume satisfies basic UBIFS
677 * requirements. Returns zero in case of success and a negative error code in
678 * case of failure.
679 */
680 static int init_constants_early(struct ubifs_info *c)
681 {
682 if (c->vi.corrupted) {
683 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
684 c->ro_media = 1;
685 }
686
687 if (c->di.ro_mode) {
688 ubifs_msg(c, "read-only UBI device");
689 c->ro_media = 1;
690 }
691
692 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
693 ubifs_msg(c, "static UBI volume - read-only mode");
694 c->ro_media = 1;
695 }
696
697 c->leb_cnt = c->vi.size;
698 c->leb_size = c->vi.usable_leb_size;
699 c->leb_start = c->di.leb_start;
700 c->half_leb_size = c->leb_size / 2;
701 c->min_io_size = c->di.min_io_size;
702 c->min_io_shift = fls(c->min_io_size) - 1;
703 c->max_write_size = c->di.max_write_size;
704 c->max_write_shift = fls(c->max_write_size) - 1;
705
706 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
707 ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes",
708 c->leb_size, UBIFS_MIN_LEB_SZ);
709 return -EINVAL;
710 }
711
712 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
713 ubifs_err(c, "too few LEBs (%d), min. is %d",
714 c->leb_cnt, UBIFS_MIN_LEB_CNT);
715 return -EINVAL;
716 }
717
718 if (!is_power_of_2(c->min_io_size)) {
719 ubifs_err(c, "bad min. I/O size %d", c->min_io_size);
720 return -EINVAL;
721 }
722
723 /*
724 * Maximum write size has to be greater or equivalent to min. I/O
725 * size, and be multiple of min. I/O size.
726 */
727 if (c->max_write_size < c->min_io_size ||
728 c->max_write_size % c->min_io_size ||
729 !is_power_of_2(c->max_write_size)) {
730 ubifs_err(c, "bad write buffer size %d for %d min. I/O unit",
731 c->max_write_size, c->min_io_size);
732 return -EINVAL;
733 }
734
735 /*
736 * UBIFS aligns all node to 8-byte boundary, so to make function in
737 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
738 * less than 8.
739 */
740 if (c->min_io_size < 8) {
741 c->min_io_size = 8;
742 c->min_io_shift = 3;
743 if (c->max_write_size < c->min_io_size) {
744 c->max_write_size = c->min_io_size;
745 c->max_write_shift = c->min_io_shift;
746 }
747 }
748
749 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
750 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
751
752 /*
753 * Initialize node length ranges which are mostly needed for node
754 * length validation.
755 */
756 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
757 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
758 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
759 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
760 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
761 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
762
763 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
764 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
765 c->ranges[UBIFS_ORPH_NODE].min_len =
766 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
767 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
768 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
769 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
770 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
771 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
772 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
773 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
774 /*
775 * Minimum indexing node size is amended later when superblock is
776 * read and the key length is known.
777 */
778 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
779 /*
780 * Maximum indexing node size is amended later when superblock is
781 * read and the fanout is known.
782 */
783 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
784
785 /*
786 * Initialize dead and dark LEB space watermarks. See gc.c for comments
787 * about these values.
788 */
789 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
790 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
791
792 /*
793 * Calculate how many bytes would be wasted at the end of LEB if it was
794 * fully filled with data nodes of maximum size. This is used in
795 * calculations when reporting free space.
796 */
797 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
798
799 /* Buffer size for bulk-reads */
800 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
801 if (c->max_bu_buf_len > c->leb_size)
802 c->max_bu_buf_len = c->leb_size;
803 return 0;
804 }
805
806 /**
807 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
808 * @c: UBIFS file-system description object
809 * @lnum: LEB the write-buffer was synchronized to
810 * @free: how many free bytes left in this LEB
811 * @pad: how many bytes were padded
812 *
813 * This is a callback function which is called by the I/O unit when the
814 * write-buffer is synchronized. We need this to correctly maintain space
815 * accounting in bud logical eraseblocks. This function returns zero in case of
816 * success and a negative error code in case of failure.
817 *
818 * This function actually belongs to the journal, but we keep it here because
819 * we want to keep it static.
820 */
821 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
822 {
823 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
824 }
825
826 /*
827 * init_constants_sb - initialize UBIFS constants.
828 * @c: UBIFS file-system description object
829 *
830 * This is a helper function which initializes various UBIFS constants after
831 * the superblock has been read. It also checks various UBIFS parameters and
832 * makes sure they are all right. Returns zero in case of success and a
833 * negative error code in case of failure.
834 */
835 static int init_constants_sb(struct ubifs_info *c)
836 {
837 int tmp, err;
838 long long tmp64;
839
840 c->main_bytes = (long long)c->main_lebs * c->leb_size;
841 c->max_znode_sz = sizeof(struct ubifs_znode) +
842 c->fanout * sizeof(struct ubifs_zbranch);
843
844 tmp = ubifs_idx_node_sz(c, 1);
845 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
846 c->min_idx_node_sz = ALIGN(tmp, 8);
847
848 tmp = ubifs_idx_node_sz(c, c->fanout);
849 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
850 c->max_idx_node_sz = ALIGN(tmp, 8);
851
852 /* Make sure LEB size is large enough to fit full commit */
853 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
854 tmp = ALIGN(tmp, c->min_io_size);
855 if (tmp > c->leb_size) {
856 ubifs_err(c, "too small LEB size %d, at least %d needed",
857 c->leb_size, tmp);
858 return -EINVAL;
859 }
860
861 /*
862 * Make sure that the log is large enough to fit reference nodes for
863 * all buds plus one reserved LEB.
864 */
865 tmp64 = c->max_bud_bytes + c->leb_size - 1;
866 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
867 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
868 tmp /= c->leb_size;
869 tmp += 1;
870 if (c->log_lebs < tmp) {
871 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
872 c->log_lebs, tmp);
873 return -EINVAL;
874 }
875
876 /*
877 * When budgeting we assume worst-case scenarios when the pages are not
878 * be compressed and direntries are of the maximum size.
879 *
880 * Note, data, which may be stored in inodes is budgeted separately, so
881 * it is not included into 'c->bi.inode_budget'.
882 */
883 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
884 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
885 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
886
887 /*
888 * When the amount of flash space used by buds becomes
889 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
890 * The writers are unblocked when the commit is finished. To avoid
891 * writers to be blocked UBIFS initiates background commit in advance,
892 * when number of bud bytes becomes above the limit defined below.
893 */
894 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
895
896 /*
897 * Ensure minimum journal size. All the bytes in the journal heads are
898 * considered to be used, when calculating the current journal usage.
899 * Consequently, if the journal is too small, UBIFS will treat it as
900 * always full.
901 */
902 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
903 if (c->bg_bud_bytes < tmp64)
904 c->bg_bud_bytes = tmp64;
905 if (c->max_bud_bytes < tmp64 + c->leb_size)
906 c->max_bud_bytes = tmp64 + c->leb_size;
907
908 err = ubifs_calc_lpt_geom(c);
909 if (err)
910 return err;
911
912 /* Initialize effective LEB size used in budgeting calculations */
913 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
914 return 0;
915 }
916
917 /*
918 * init_constants_master - initialize UBIFS constants.
919 * @c: UBIFS file-system description object
920 *
921 * This is a helper function which initializes various UBIFS constants after
922 * the master node has been read. It also checks various UBIFS parameters and
923 * makes sure they are all right.
924 */
925 static void init_constants_master(struct ubifs_info *c)
926 {
927 long long tmp64;
928
929 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
930 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
931
932 /*
933 * Calculate total amount of FS blocks. This number is not used
934 * internally because it does not make much sense for UBIFS, but it is
935 * necessary to report something for the 'statfs()' call.
936 *
937 * Subtract the LEB reserved for GC, the LEB which is reserved for
938 * deletions, minimum LEBs for the index, and assume only one journal
939 * head is available.
940 */
941 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
942 tmp64 *= (long long)c->leb_size - c->leb_overhead;
943 tmp64 = ubifs_reported_space(c, tmp64);
944 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
945 }
946
947 /**
948 * take_gc_lnum - reserve GC LEB.
949 * @c: UBIFS file-system description object
950 *
951 * This function ensures that the LEB reserved for garbage collection is marked
952 * as "taken" in lprops. We also have to set free space to LEB size and dirty
953 * space to zero, because lprops may contain out-of-date information if the
954 * file-system was un-mounted before it has been committed. This function
955 * returns zero in case of success and a negative error code in case of
956 * failure.
957 */
958 static int take_gc_lnum(struct ubifs_info *c)
959 {
960 int err;
961
962 if (c->gc_lnum == -1) {
963 ubifs_err(c, "no LEB for GC");
964 return -EINVAL;
965 }
966
967 /* And we have to tell lprops that this LEB is taken */
968 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
969 LPROPS_TAKEN, 0, 0);
970 return err;
971 }
972
973 /**
974 * alloc_wbufs - allocate write-buffers.
975 * @c: UBIFS file-system description object
976 *
977 * This helper function allocates and initializes UBIFS write-buffers. Returns
978 * zero in case of success and %-ENOMEM in case of failure.
979 */
980 static int alloc_wbufs(struct ubifs_info *c)
981 {
982 int i, err;
983
984 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
985 GFP_KERNEL);
986 if (!c->jheads)
987 return -ENOMEM;
988
989 /* Initialize journal heads */
990 for (i = 0; i < c->jhead_cnt; i++) {
991 INIT_LIST_HEAD(&c->jheads[i].buds_list);
992 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
993 if (err)
994 return err;
995
996 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
997 c->jheads[i].wbuf.jhead = i;
998 c->jheads[i].grouped = 1;
999 }
1000
1001 /*
1002 * Garbage Collector head does not need to be synchronized by timer.
1003 * Also GC head nodes are not grouped.
1004 */
1005 c->jheads[GCHD].wbuf.no_timer = 1;
1006 c->jheads[GCHD].grouped = 0;
1007
1008 return 0;
1009 }
1010
1011 /**
1012 * free_wbufs - free write-buffers.
1013 * @c: UBIFS file-system description object
1014 */
1015 static void free_wbufs(struct ubifs_info *c)
1016 {
1017 int i;
1018
1019 if (c->jheads) {
1020 for (i = 0; i < c->jhead_cnt; i++) {
1021 kfree(c->jheads[i].wbuf.buf);
1022 kfree(c->jheads[i].wbuf.inodes);
1023 }
1024 kfree(c->jheads);
1025 c->jheads = NULL;
1026 }
1027 }
1028
1029 /**
1030 * free_orphans - free orphans.
1031 * @c: UBIFS file-system description object
1032 */
1033 static void free_orphans(struct ubifs_info *c)
1034 {
1035 struct ubifs_orphan *orph;
1036
1037 while (c->orph_dnext) {
1038 orph = c->orph_dnext;
1039 c->orph_dnext = orph->dnext;
1040 list_del(&orph->list);
1041 kfree(orph);
1042 }
1043
1044 while (!list_empty(&c->orph_list)) {
1045 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
1046 list_del(&orph->list);
1047 kfree(orph);
1048 ubifs_err(c, "orphan list not empty at unmount");
1049 }
1050
1051 vfree(c->orph_buf);
1052 c->orph_buf = NULL;
1053 }
1054
1055 /**
1056 * free_buds - free per-bud objects.
1057 * @c: UBIFS file-system description object
1058 */
1059 static void free_buds(struct ubifs_info *c)
1060 {
1061 struct ubifs_bud *bud, *n;
1062
1063 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
1064 kfree(bud);
1065 }
1066
1067 /**
1068 * check_volume_empty - check if the UBI volume is empty.
1069 * @c: UBIFS file-system description object
1070 *
1071 * This function checks if the UBIFS volume is empty by looking if its LEBs are
1072 * mapped or not. The result of checking is stored in the @c->empty variable.
1073 * Returns zero in case of success and a negative error code in case of
1074 * failure.
1075 */
1076 static int check_volume_empty(struct ubifs_info *c)
1077 {
1078 int lnum, err;
1079
1080 c->empty = 1;
1081 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
1082 err = ubifs_is_mapped(c, lnum);
1083 if (unlikely(err < 0))
1084 return err;
1085 if (err == 1) {
1086 c->empty = 0;
1087 break;
1088 }
1089
1090 cond_resched();
1091 }
1092
1093 return 0;
1094 }
1095
1096 /*
1097 * UBIFS mount options.
1098 *
1099 * Opt_fast_unmount: do not run a journal commit before un-mounting
1100 * Opt_norm_unmount: run a journal commit before un-mounting
1101 * Opt_bulk_read: enable bulk-reads
1102 * Opt_no_bulk_read: disable bulk-reads
1103 * Opt_chk_data_crc: check CRCs when reading data nodes
1104 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1105 * Opt_override_compr: override default compressor
1106 * Opt_err: just end of array marker
1107 */
1108 enum {
1109 Opt_fast_unmount,
1110 Opt_norm_unmount,
1111 Opt_bulk_read,
1112 Opt_no_bulk_read,
1113 Opt_chk_data_crc,
1114 Opt_no_chk_data_crc,
1115 Opt_override_compr,
1116 Opt_err,
1117 };
1118
1119 #ifndef __UBOOT__
1120 static const match_table_t tokens = {
1121 {Opt_fast_unmount, "fast_unmount"},
1122 {Opt_norm_unmount, "norm_unmount"},
1123 {Opt_bulk_read, "bulk_read"},
1124 {Opt_no_bulk_read, "no_bulk_read"},
1125 {Opt_chk_data_crc, "chk_data_crc"},
1126 {Opt_no_chk_data_crc, "no_chk_data_crc"},
1127 {Opt_override_compr, "compr=%s"},
1128 {Opt_err, NULL},
1129 };
1130
1131 /**
1132 * parse_standard_option - parse a standard mount option.
1133 * @option: the option to parse
1134 *
1135 * Normally, standard mount options like "sync" are passed to file-systems as
1136 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1137 * be present in the options string. This function tries to deal with this
1138 * situation and parse standard options. Returns 0 if the option was not
1139 * recognized, and the corresponding integer flag if it was.
1140 *
1141 * UBIFS is only interested in the "sync" option, so do not check for anything
1142 * else.
1143 */
1144 static int parse_standard_option(const char *option)
1145 {
1146
1147 pr_notice("UBIFS: parse %s\n", option);
1148 if (!strcmp(option, "sync"))
1149 return MS_SYNCHRONOUS;
1150 return 0;
1151 }
1152
1153 /**
1154 * ubifs_parse_options - parse mount parameters.
1155 * @c: UBIFS file-system description object
1156 * @options: parameters to parse
1157 * @is_remount: non-zero if this is FS re-mount
1158 *
1159 * This function parses UBIFS mount options and returns zero in case success
1160 * and a negative error code in case of failure.
1161 */
1162 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1163 int is_remount)
1164 {
1165 char *p;
1166 substring_t args[MAX_OPT_ARGS];
1167
1168 if (!options)
1169 return 0;
1170
1171 while ((p = strsep(&options, ","))) {
1172 int token;
1173
1174 if (!*p)
1175 continue;
1176
1177 token = match_token(p, tokens, args);
1178 switch (token) {
1179 /*
1180 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1181 * We accept them in order to be backward-compatible. But this
1182 * should be removed at some point.
1183 */
1184 case Opt_fast_unmount:
1185 c->mount_opts.unmount_mode = 2;
1186 break;
1187 case Opt_norm_unmount:
1188 c->mount_opts.unmount_mode = 1;
1189 break;
1190 case Opt_bulk_read:
1191 c->mount_opts.bulk_read = 2;
1192 c->bulk_read = 1;
1193 break;
1194 case Opt_no_bulk_read:
1195 c->mount_opts.bulk_read = 1;
1196 c->bulk_read = 0;
1197 break;
1198 case Opt_chk_data_crc:
1199 c->mount_opts.chk_data_crc = 2;
1200 c->no_chk_data_crc = 0;
1201 break;
1202 case Opt_no_chk_data_crc:
1203 c->mount_opts.chk_data_crc = 1;
1204 c->no_chk_data_crc = 1;
1205 break;
1206 case Opt_override_compr:
1207 {
1208 char *name = match_strdup(&args[0]);
1209
1210 if (!name)
1211 return -ENOMEM;
1212 if (!strcmp(name, "none"))
1213 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1214 else if (!strcmp(name, "lzo"))
1215 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1216 else if (!strcmp(name, "zlib"))
1217 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1218 else {
1219 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1220 kfree(name);
1221 return -EINVAL;
1222 }
1223 kfree(name);
1224 c->mount_opts.override_compr = 1;
1225 c->default_compr = c->mount_opts.compr_type;
1226 break;
1227 }
1228 default:
1229 {
1230 unsigned long flag;
1231 struct super_block *sb = c->vfs_sb;
1232
1233 flag = parse_standard_option(p);
1234 if (!flag) {
1235 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1236 p);
1237 return -EINVAL;
1238 }
1239 sb->s_flags |= flag;
1240 break;
1241 }
1242 }
1243 }
1244
1245 return 0;
1246 }
1247 #endif
1248
1249 /**
1250 * destroy_journal - destroy journal data structures.
1251 * @c: UBIFS file-system description object
1252 *
1253 * This function destroys journal data structures including those that may have
1254 * been created by recovery functions.
1255 */
1256 static void destroy_journal(struct ubifs_info *c)
1257 {
1258 while (!list_empty(&c->unclean_leb_list)) {
1259 struct ubifs_unclean_leb *ucleb;
1260
1261 ucleb = list_entry(c->unclean_leb_list.next,
1262 struct ubifs_unclean_leb, list);
1263 list_del(&ucleb->list);
1264 kfree(ucleb);
1265 }
1266 while (!list_empty(&c->old_buds)) {
1267 struct ubifs_bud *bud;
1268
1269 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1270 list_del(&bud->list);
1271 kfree(bud);
1272 }
1273 ubifs_destroy_idx_gc(c);
1274 ubifs_destroy_size_tree(c);
1275 ubifs_tnc_close(c);
1276 free_buds(c);
1277 }
1278
1279 /**
1280 * bu_init - initialize bulk-read information.
1281 * @c: UBIFS file-system description object
1282 */
1283 static void bu_init(struct ubifs_info *c)
1284 {
1285 ubifs_assert(c->bulk_read == 1);
1286
1287 if (c->bu.buf)
1288 return; /* Already initialized */
1289
1290 again:
1291 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1292 if (!c->bu.buf) {
1293 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1294 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1295 goto again;
1296 }
1297
1298 /* Just disable bulk-read */
1299 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1300 c->max_bu_buf_len);
1301 c->mount_opts.bulk_read = 1;
1302 c->bulk_read = 0;
1303 return;
1304 }
1305 }
1306
1307 #ifndef __UBOOT__
1308 /**
1309 * check_free_space - check if there is enough free space to mount.
1310 * @c: UBIFS file-system description object
1311 *
1312 * This function makes sure UBIFS has enough free space to be mounted in
1313 * read/write mode. UBIFS must always have some free space to allow deletions.
1314 */
1315 static int check_free_space(struct ubifs_info *c)
1316 {
1317 ubifs_assert(c->dark_wm > 0);
1318 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1319 ubifs_err(c, "insufficient free space to mount in R/W mode");
1320 ubifs_dump_budg(c, &c->bi);
1321 ubifs_dump_lprops(c);
1322 return -ENOSPC;
1323 }
1324 return 0;
1325 }
1326 #endif
1327
1328 /**
1329 * mount_ubifs - mount UBIFS file-system.
1330 * @c: UBIFS file-system description object
1331 *
1332 * This function mounts UBIFS file system. Returns zero in case of success and
1333 * a negative error code in case of failure.
1334 */
1335 static int mount_ubifs(struct ubifs_info *c)
1336 {
1337 int err;
1338 long long x, y;
1339 size_t sz;
1340
1341 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1342 /* Suppress error messages while probing if MS_SILENT is set */
1343 c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1344 #ifdef __UBOOT__
1345 if (!c->ro_mount) {
1346 printf("UBIFS: only ro mode in U-Boot allowed.\n");
1347 return -EACCES;
1348 }
1349 #endif
1350
1351 err = init_constants_early(c);
1352 if (err)
1353 return err;
1354
1355 err = ubifs_debugging_init(c);
1356 if (err)
1357 return err;
1358
1359 err = check_volume_empty(c);
1360 if (err)
1361 goto out_free;
1362
1363 if (c->empty && (c->ro_mount || c->ro_media)) {
1364 /*
1365 * This UBI volume is empty, and read-only, or the file system
1366 * is mounted read-only - we cannot format it.
1367 */
1368 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1369 c->ro_media ? "UBI volume" : "mount");
1370 err = -EROFS;
1371 goto out_free;
1372 }
1373
1374 if (c->ro_media && !c->ro_mount) {
1375 ubifs_err(c, "cannot mount read-write - read-only media");
1376 err = -EROFS;
1377 goto out_free;
1378 }
1379
1380 /*
1381 * The requirement for the buffer is that it should fit indexing B-tree
1382 * height amount of integers. We assume the height if the TNC tree will
1383 * never exceed 64.
1384 */
1385 err = -ENOMEM;
1386 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1387 if (!c->bottom_up_buf)
1388 goto out_free;
1389
1390 c->sbuf = vmalloc(c->leb_size);
1391 if (!c->sbuf)
1392 goto out_free;
1393
1394 #ifndef __UBOOT__
1395 if (!c->ro_mount) {
1396 c->ileb_buf = vmalloc(c->leb_size);
1397 if (!c->ileb_buf)
1398 goto out_free;
1399 }
1400 #endif
1401
1402 if (c->bulk_read == 1)
1403 bu_init(c);
1404
1405 #ifndef __UBOOT__
1406 if (!c->ro_mount) {
1407 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1408 GFP_KERNEL);
1409 if (!c->write_reserve_buf)
1410 goto out_free;
1411 }
1412 #endif
1413
1414 c->mounting = 1;
1415
1416 err = ubifs_read_superblock(c);
1417 if (err)
1418 goto out_free;
1419
1420 c->probing = 0;
1421
1422 /*
1423 * Make sure the compressor which is set as default in the superblock
1424 * or overridden by mount options is actually compiled in.
1425 */
1426 if (!ubifs_compr_present(c->default_compr)) {
1427 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1428 ubifs_compr_name(c->default_compr));
1429 err = -ENOTSUPP;
1430 goto out_free;
1431 }
1432
1433 err = init_constants_sb(c);
1434 if (err)
1435 goto out_free;
1436
1437 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1438 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1439 c->cbuf = kmalloc(sz, GFP_NOFS);
1440 if (!c->cbuf) {
1441 err = -ENOMEM;
1442 goto out_free;
1443 }
1444
1445 err = alloc_wbufs(c);
1446 if (err)
1447 goto out_cbuf;
1448
1449 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1450 #ifndef __UBOOT__
1451 if (!c->ro_mount) {
1452 /* Create background thread */
1453 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1454 if (IS_ERR(c->bgt)) {
1455 err = PTR_ERR(c->bgt);
1456 c->bgt = NULL;
1457 ubifs_err(c, "cannot spawn \"%s\", error %d",
1458 c->bgt_name, err);
1459 goto out_wbufs;
1460 }
1461 wake_up_process(c->bgt);
1462 }
1463 #endif
1464
1465 err = ubifs_read_master(c);
1466 if (err)
1467 goto out_master;
1468
1469 init_constants_master(c);
1470
1471 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1472 ubifs_msg(c, "recovery needed");
1473 c->need_recovery = 1;
1474 }
1475
1476 #ifndef __UBOOT__
1477 if (c->need_recovery && !c->ro_mount) {
1478 err = ubifs_recover_inl_heads(c, c->sbuf);
1479 if (err)
1480 goto out_master;
1481 }
1482 #endif
1483
1484 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1485 if (err)
1486 goto out_master;
1487
1488 #ifndef __UBOOT__
1489 if (!c->ro_mount && c->space_fixup) {
1490 err = ubifs_fixup_free_space(c);
1491 if (err)
1492 goto out_lpt;
1493 }
1494
1495 if (!c->ro_mount && !c->need_recovery) {
1496 /*
1497 * Set the "dirty" flag so that if we reboot uncleanly we
1498 * will notice this immediately on the next mount.
1499 */
1500 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1501 err = ubifs_write_master(c);
1502 if (err)
1503 goto out_lpt;
1504 }
1505 #endif
1506
1507 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1508 if (err)
1509 goto out_lpt;
1510
1511 err = ubifs_replay_journal(c);
1512 if (err)
1513 goto out_journal;
1514
1515 /* Calculate 'min_idx_lebs' after journal replay */
1516 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1517
1518 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1519 if (err)
1520 goto out_orphans;
1521
1522 if (!c->ro_mount) {
1523 #ifndef __UBOOT__
1524 int lnum;
1525
1526 err = check_free_space(c);
1527 if (err)
1528 goto out_orphans;
1529
1530 /* Check for enough log space */
1531 lnum = c->lhead_lnum + 1;
1532 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1533 lnum = UBIFS_LOG_LNUM;
1534 if (lnum == c->ltail_lnum) {
1535 err = ubifs_consolidate_log(c);
1536 if (err)
1537 goto out_orphans;
1538 }
1539
1540 if (c->need_recovery) {
1541 err = ubifs_recover_size(c);
1542 if (err)
1543 goto out_orphans;
1544 err = ubifs_rcvry_gc_commit(c);
1545 if (err)
1546 goto out_orphans;
1547 } else {
1548 err = take_gc_lnum(c);
1549 if (err)
1550 goto out_orphans;
1551
1552 /*
1553 * GC LEB may contain garbage if there was an unclean
1554 * reboot, and it should be un-mapped.
1555 */
1556 err = ubifs_leb_unmap(c, c->gc_lnum);
1557 if (err)
1558 goto out_orphans;
1559 }
1560
1561 err = dbg_check_lprops(c);
1562 if (err)
1563 goto out_orphans;
1564 #endif
1565 } else if (c->need_recovery) {
1566 err = ubifs_recover_size(c);
1567 if (err)
1568 goto out_orphans;
1569 } else {
1570 /*
1571 * Even if we mount read-only, we have to set space in GC LEB
1572 * to proper value because this affects UBIFS free space
1573 * reporting. We do not want to have a situation when
1574 * re-mounting from R/O to R/W changes amount of free space.
1575 */
1576 err = take_gc_lnum(c);
1577 if (err)
1578 goto out_orphans;
1579 }
1580
1581 #ifndef __UBOOT__
1582 spin_lock(&ubifs_infos_lock);
1583 list_add_tail(&c->infos_list, &ubifs_infos);
1584 spin_unlock(&ubifs_infos_lock);
1585 #endif
1586
1587 if (c->need_recovery) {
1588 if (c->ro_mount)
1589 ubifs_msg(c, "recovery deferred");
1590 else {
1591 c->need_recovery = 0;
1592 ubifs_msg(c, "recovery completed");
1593 /*
1594 * GC LEB has to be empty and taken at this point. But
1595 * the journal head LEBs may also be accounted as
1596 * "empty taken" if they are empty.
1597 */
1598 ubifs_assert(c->lst.taken_empty_lebs > 0);
1599 }
1600 } else
1601 ubifs_assert(c->lst.taken_empty_lebs > 0);
1602
1603 err = dbg_check_filesystem(c);
1604 if (err)
1605 goto out_infos;
1606
1607 err = dbg_debugfs_init_fs(c);
1608 if (err)
1609 goto out_infos;
1610
1611 c->mounting = 0;
1612
1613 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1614 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1615 c->ro_mount ? ", R/O mode" : "");
1616 x = (long long)c->main_lebs * c->leb_size;
1617 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1618 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1619 c->leb_size, c->leb_size >> 10, c->min_io_size,
1620 c->max_write_size);
1621 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1622 x, x >> 20, c->main_lebs,
1623 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1624 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1625 c->report_rp_size, c->report_rp_size >> 10);
1626 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1627 c->fmt_version, c->ro_compat_version,
1628 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1629 c->big_lpt ? ", big LPT model" : ", small LPT model");
1630
1631 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr));
1632 dbg_gen("data journal heads: %d",
1633 c->jhead_cnt - NONDATA_JHEADS_CNT);
1634 dbg_gen("log LEBs: %d (%d - %d)",
1635 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1636 dbg_gen("LPT area LEBs: %d (%d - %d)",
1637 c->lpt_lebs, c->lpt_first, c->lpt_last);
1638 dbg_gen("orphan area LEBs: %d (%d - %d)",
1639 c->orph_lebs, c->orph_first, c->orph_last);
1640 dbg_gen("main area LEBs: %d (%d - %d)",
1641 c->main_lebs, c->main_first, c->leb_cnt - 1);
1642 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1643 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1644 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1645 c->bi.old_idx_sz >> 20);
1646 dbg_gen("key hash type: %d", c->key_hash_type);
1647 dbg_gen("tree fanout: %d", c->fanout);
1648 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1649 dbg_gen("max. znode size %d", c->max_znode_sz);
1650 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1651 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1652 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1653 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1654 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1655 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1656 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1657 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1658 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1659 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1660 dbg_gen("dead watermark: %d", c->dead_wm);
1661 dbg_gen("dark watermark: %d", c->dark_wm);
1662 dbg_gen("LEB overhead: %d", c->leb_overhead);
1663 x = (long long)c->main_lebs * c->dark_wm;
1664 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1665 x, x >> 10, x >> 20);
1666 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1667 c->max_bud_bytes, c->max_bud_bytes >> 10,
1668 c->max_bud_bytes >> 20);
1669 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1670 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1671 c->bg_bud_bytes >> 20);
1672 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1673 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1674 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1675 dbg_gen("commit number: %llu", c->cmt_no);
1676
1677 return 0;
1678
1679 out_infos:
1680 spin_lock(&ubifs_infos_lock);
1681 list_del(&c->infos_list);
1682 spin_unlock(&ubifs_infos_lock);
1683 out_orphans:
1684 free_orphans(c);
1685 out_journal:
1686 destroy_journal(c);
1687 out_lpt:
1688 ubifs_lpt_free(c, 0);
1689 out_master:
1690 kfree(c->mst_node);
1691 kfree(c->rcvrd_mst_node);
1692 if (c->bgt)
1693 kthread_stop(c->bgt);
1694 #ifndef __UBOOT__
1695 out_wbufs:
1696 #endif
1697 free_wbufs(c);
1698 out_cbuf:
1699 kfree(c->cbuf);
1700 out_free:
1701 kfree(c->write_reserve_buf);
1702 kfree(c->bu.buf);
1703 vfree(c->ileb_buf);
1704 vfree(c->sbuf);
1705 kfree(c->bottom_up_buf);
1706 ubifs_debugging_exit(c);
1707 return err;
1708 }
1709
1710 /**
1711 * ubifs_umount - un-mount UBIFS file-system.
1712 * @c: UBIFS file-system description object
1713 *
1714 * Note, this function is called to free allocated resourced when un-mounting,
1715 * as well as free resources when an error occurred while we were half way
1716 * through mounting (error path cleanup function). So it has to make sure the
1717 * resource was actually allocated before freeing it.
1718 */
1719 #ifndef __UBOOT__
1720 static void ubifs_umount(struct ubifs_info *c)
1721 #else
1722 void ubifs_umount(struct ubifs_info *c)
1723 #endif
1724 {
1725 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1726 c->vi.vol_id);
1727
1728 dbg_debugfs_exit_fs(c);
1729 spin_lock(&ubifs_infos_lock);
1730 list_del(&c->infos_list);
1731 spin_unlock(&ubifs_infos_lock);
1732
1733 #ifndef __UBOOT__
1734 if (c->bgt)
1735 kthread_stop(c->bgt);
1736
1737 destroy_journal(c);
1738 #endif
1739 free_wbufs(c);
1740 free_orphans(c);
1741 ubifs_lpt_free(c, 0);
1742
1743 kfree(c->cbuf);
1744 kfree(c->rcvrd_mst_node);
1745 kfree(c->mst_node);
1746 kfree(c->write_reserve_buf);
1747 kfree(c->bu.buf);
1748 vfree(c->ileb_buf);
1749 vfree(c->sbuf);
1750 kfree(c->bottom_up_buf);
1751 ubifs_debugging_exit(c);
1752 #ifdef __UBOOT__
1753 /* Finally free U-Boot's global copy of superblock */
1754 if (ubifs_sb != NULL) {
1755 free(ubifs_sb->s_fs_info);
1756 free(ubifs_sb);
1757 }
1758 #endif
1759 }
1760
1761 #ifndef __UBOOT__
1762 /**
1763 * ubifs_remount_rw - re-mount in read-write mode.
1764 * @c: UBIFS file-system description object
1765 *
1766 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1767 * mode. This function allocates the needed resources and re-mounts UBIFS in
1768 * read-write mode.
1769 */
1770 static int ubifs_remount_rw(struct ubifs_info *c)
1771 {
1772 int err, lnum;
1773
1774 if (c->rw_incompat) {
1775 ubifs_err(c, "the file-system is not R/W-compatible");
1776 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1777 c->fmt_version, c->ro_compat_version,
1778 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1779 return -EROFS;
1780 }
1781
1782 mutex_lock(&c->umount_mutex);
1783 dbg_save_space_info(c);
1784 c->remounting_rw = 1;
1785 c->ro_mount = 0;
1786
1787 if (c->space_fixup) {
1788 err = ubifs_fixup_free_space(c);
1789 if (err)
1790 goto out;
1791 }
1792
1793 err = check_free_space(c);
1794 if (err)
1795 goto out;
1796
1797 if (c->old_leb_cnt != c->leb_cnt) {
1798 struct ubifs_sb_node *sup;
1799
1800 sup = ubifs_read_sb_node(c);
1801 if (IS_ERR(sup)) {
1802 err = PTR_ERR(sup);
1803 goto out;
1804 }
1805 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1806 err = ubifs_write_sb_node(c, sup);
1807 kfree(sup);
1808 if (err)
1809 goto out;
1810 }
1811
1812 if (c->need_recovery) {
1813 ubifs_msg(c, "completing deferred recovery");
1814 err = ubifs_write_rcvrd_mst_node(c);
1815 if (err)
1816 goto out;
1817 err = ubifs_recover_size(c);
1818 if (err)
1819 goto out;
1820 err = ubifs_clean_lebs(c, c->sbuf);
1821 if (err)
1822 goto out;
1823 err = ubifs_recover_inl_heads(c, c->sbuf);
1824 if (err)
1825 goto out;
1826 } else {
1827 /* A readonly mount is not allowed to have orphans */
1828 ubifs_assert(c->tot_orphans == 0);
1829 err = ubifs_clear_orphans(c);
1830 if (err)
1831 goto out;
1832 }
1833
1834 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1835 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1836 err = ubifs_write_master(c);
1837 if (err)
1838 goto out;
1839 }
1840
1841 c->ileb_buf = vmalloc(c->leb_size);
1842 if (!c->ileb_buf) {
1843 err = -ENOMEM;
1844 goto out;
1845 }
1846
1847 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1848 if (!c->write_reserve_buf) {
1849 err = -ENOMEM;
1850 goto out;
1851 }
1852
1853 err = ubifs_lpt_init(c, 0, 1);
1854 if (err)
1855 goto out;
1856
1857 /* Create background thread */
1858 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1859 if (IS_ERR(c->bgt)) {
1860 err = PTR_ERR(c->bgt);
1861 c->bgt = NULL;
1862 ubifs_err(c, "cannot spawn \"%s\", error %d",
1863 c->bgt_name, err);
1864 goto out;
1865 }
1866 wake_up_process(c->bgt);
1867
1868 c->orph_buf = vmalloc(c->leb_size);
1869 if (!c->orph_buf) {
1870 err = -ENOMEM;
1871 goto out;
1872 }
1873
1874 /* Check for enough log space */
1875 lnum = c->lhead_lnum + 1;
1876 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1877 lnum = UBIFS_LOG_LNUM;
1878 if (lnum == c->ltail_lnum) {
1879 err = ubifs_consolidate_log(c);
1880 if (err)
1881 goto out;
1882 }
1883
1884 if (c->need_recovery)
1885 err = ubifs_rcvry_gc_commit(c);
1886 else
1887 err = ubifs_leb_unmap(c, c->gc_lnum);
1888 if (err)
1889 goto out;
1890
1891 dbg_gen("re-mounted read-write");
1892 c->remounting_rw = 0;
1893
1894 if (c->need_recovery) {
1895 c->need_recovery = 0;
1896 ubifs_msg(c, "deferred recovery completed");
1897 } else {
1898 /*
1899 * Do not run the debugging space check if the were doing
1900 * recovery, because when we saved the information we had the
1901 * file-system in a state where the TNC and lprops has been
1902 * modified in memory, but all the I/O operations (including a
1903 * commit) were deferred. So the file-system was in
1904 * "non-committed" state. Now the file-system is in committed
1905 * state, and of course the amount of free space will change
1906 * because, for example, the old index size was imprecise.
1907 */
1908 err = dbg_check_space_info(c);
1909 }
1910
1911 mutex_unlock(&c->umount_mutex);
1912 return err;
1913
1914 out:
1915 c->ro_mount = 1;
1916 vfree(c->orph_buf);
1917 c->orph_buf = NULL;
1918 if (c->bgt) {
1919 kthread_stop(c->bgt);
1920 c->bgt = NULL;
1921 }
1922 free_wbufs(c);
1923 kfree(c->write_reserve_buf);
1924 c->write_reserve_buf = NULL;
1925 vfree(c->ileb_buf);
1926 c->ileb_buf = NULL;
1927 ubifs_lpt_free(c, 1);
1928 c->remounting_rw = 0;
1929 mutex_unlock(&c->umount_mutex);
1930 return err;
1931 }
1932
1933 /**
1934 * ubifs_remount_ro - re-mount in read-only mode.
1935 * @c: UBIFS file-system description object
1936 *
1937 * We assume VFS has stopped writing. Possibly the background thread could be
1938 * running a commit, however kthread_stop will wait in that case.
1939 */
1940 static void ubifs_remount_ro(struct ubifs_info *c)
1941 {
1942 int i, err;
1943
1944 ubifs_assert(!c->need_recovery);
1945 ubifs_assert(!c->ro_mount);
1946
1947 mutex_lock(&c->umount_mutex);
1948 if (c->bgt) {
1949 kthread_stop(c->bgt);
1950 c->bgt = NULL;
1951 }
1952
1953 dbg_save_space_info(c);
1954
1955 for (i = 0; i < c->jhead_cnt; i++)
1956 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1957
1958 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1959 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1960 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1961 err = ubifs_write_master(c);
1962 if (err)
1963 ubifs_ro_mode(c, err);
1964
1965 vfree(c->orph_buf);
1966 c->orph_buf = NULL;
1967 kfree(c->write_reserve_buf);
1968 c->write_reserve_buf = NULL;
1969 vfree(c->ileb_buf);
1970 c->ileb_buf = NULL;
1971 ubifs_lpt_free(c, 1);
1972 c->ro_mount = 1;
1973 err = dbg_check_space_info(c);
1974 if (err)
1975 ubifs_ro_mode(c, err);
1976 mutex_unlock(&c->umount_mutex);
1977 }
1978
1979 static void ubifs_put_super(struct super_block *sb)
1980 {
1981 int i;
1982 struct ubifs_info *c = sb->s_fs_info;
1983
1984 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1985
1986 /*
1987 * The following asserts are only valid if there has not been a failure
1988 * of the media. For example, there will be dirty inodes if we failed
1989 * to write them back because of I/O errors.
1990 */
1991 if (!c->ro_error) {
1992 ubifs_assert(c->bi.idx_growth == 0);
1993 ubifs_assert(c->bi.dd_growth == 0);
1994 ubifs_assert(c->bi.data_growth == 0);
1995 }
1996
1997 /*
1998 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1999 * and file system un-mount. Namely, it prevents the shrinker from
2000 * picking this superblock for shrinking - it will be just skipped if
2001 * the mutex is locked.
2002 */
2003 mutex_lock(&c->umount_mutex);
2004 if (!c->ro_mount) {
2005 /*
2006 * First of all kill the background thread to make sure it does
2007 * not interfere with un-mounting and freeing resources.
2008 */
2009 if (c->bgt) {
2010 kthread_stop(c->bgt);
2011 c->bgt = NULL;
2012 }
2013
2014 /*
2015 * On fatal errors c->ro_error is set to 1, in which case we do
2016 * not write the master node.
2017 */
2018 if (!c->ro_error) {
2019 int err;
2020
2021 /* Synchronize write-buffers */
2022 for (i = 0; i < c->jhead_cnt; i++)
2023 ubifs_wbuf_sync(&c->jheads[i].wbuf);
2024
2025 /*
2026 * We are being cleanly unmounted which means the
2027 * orphans were killed - indicate this in the master
2028 * node. Also save the reserved GC LEB number.
2029 */
2030 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
2031 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
2032 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
2033 err = ubifs_write_master(c);
2034 if (err)
2035 /*
2036 * Recovery will attempt to fix the master area
2037 * next mount, so we just print a message and
2038 * continue to unmount normally.
2039 */
2040 ubifs_err(c, "failed to write master node, error %d",
2041 err);
2042 } else {
2043 #ifndef __UBOOT__
2044 for (i = 0; i < c->jhead_cnt; i++)
2045 /* Make sure write-buffer timers are canceled */
2046 hrtimer_cancel(&c->jheads[i].wbuf.timer);
2047 #endif
2048 }
2049 }
2050
2051 ubifs_umount(c);
2052 #ifndef __UBOOT__
2053 bdi_destroy(&c->bdi);
2054 #endif
2055 ubi_close_volume(c->ubi);
2056 mutex_unlock(&c->umount_mutex);
2057 }
2058 #endif
2059
2060 #ifndef __UBOOT__
2061 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2062 {
2063 int err;
2064 struct ubifs_info *c = sb->s_fs_info;
2065
2066 sync_filesystem(sb);
2067 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2068
2069 err = ubifs_parse_options(c, data, 1);
2070 if (err) {
2071 ubifs_err(c, "invalid or unknown remount parameter");
2072 return err;
2073 }
2074
2075 if (c->ro_mount && !(*flags & MS_RDONLY)) {
2076 if (c->ro_error) {
2077 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2078 return -EROFS;
2079 }
2080 if (c->ro_media) {
2081 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2082 return -EROFS;
2083 }
2084 err = ubifs_remount_rw(c);
2085 if (err)
2086 return err;
2087 } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
2088 if (c->ro_error) {
2089 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2090 return -EROFS;
2091 }
2092 ubifs_remount_ro(c);
2093 }
2094
2095 if (c->bulk_read == 1)
2096 bu_init(c);
2097 else {
2098 dbg_gen("disable bulk-read");
2099 kfree(c->bu.buf);
2100 c->bu.buf = NULL;
2101 }
2102
2103 ubifs_assert(c->lst.taken_empty_lebs > 0);
2104 return 0;
2105 }
2106 #endif
2107
2108 const struct super_operations ubifs_super_operations = {
2109 .alloc_inode = ubifs_alloc_inode,
2110 #ifndef __UBOOT__
2111 .destroy_inode = ubifs_destroy_inode,
2112 .put_super = ubifs_put_super,
2113 .write_inode = ubifs_write_inode,
2114 .evict_inode = ubifs_evict_inode,
2115 .statfs = ubifs_statfs,
2116 #endif
2117 .dirty_inode = ubifs_dirty_inode,
2118 #ifndef __UBOOT__
2119 .remount_fs = ubifs_remount_fs,
2120 .show_options = ubifs_show_options,
2121 .sync_fs = ubifs_sync_fs,
2122 #endif
2123 };
2124
2125 /**
2126 * open_ubi - parse UBI device name string and open the UBI device.
2127 * @name: UBI volume name
2128 * @mode: UBI volume open mode
2129 *
2130 * The primary method of mounting UBIFS is by specifying the UBI volume
2131 * character device node path. However, UBIFS may also be mounted withoug any
2132 * character device node using one of the following methods:
2133 *
2134 * o ubiX_Y - mount UBI device number X, volume Y;
2135 * o ubiY - mount UBI device number 0, volume Y;
2136 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2137 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2138 *
2139 * Alternative '!' separator may be used instead of ':' (because some shells
2140 * like busybox may interpret ':' as an NFS host name separator). This function
2141 * returns UBI volume description object in case of success and a negative
2142 * error code in case of failure.
2143 */
2144 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2145 {
2146 #ifndef __UBOOT__
2147 struct ubi_volume_desc *ubi;
2148 #endif
2149 int dev, vol;
2150 char *endptr;
2151
2152 #ifndef __UBOOT__
2153 /* First, try to open using the device node path method */
2154 ubi = ubi_open_volume_path(name, mode);
2155 if (!IS_ERR(ubi))
2156 return ubi;
2157 #endif
2158
2159 /* Try the "nodev" method */
2160 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2161 return ERR_PTR(-EINVAL);
2162
2163 /* ubi:NAME method */
2164 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2165 return ubi_open_volume_nm(0, name + 4, mode);
2166
2167 if (!isdigit(name[3]))
2168 return ERR_PTR(-EINVAL);
2169
2170 dev = simple_strtoul(name + 3, &endptr, 0);
2171
2172 /* ubiY method */
2173 if (*endptr == '\0')
2174 return ubi_open_volume(0, dev, mode);
2175
2176 /* ubiX_Y method */
2177 if (*endptr == '_' && isdigit(endptr[1])) {
2178 vol = simple_strtoul(endptr + 1, &endptr, 0);
2179 if (*endptr != '\0')
2180 return ERR_PTR(-EINVAL);
2181 return ubi_open_volume(dev, vol, mode);
2182 }
2183
2184 /* ubiX:NAME method */
2185 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2186 return ubi_open_volume_nm(dev, ++endptr, mode);
2187
2188 return ERR_PTR(-EINVAL);
2189 }
2190
2191 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2192 {
2193 struct ubifs_info *c;
2194
2195 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2196 if (c) {
2197 spin_lock_init(&c->cnt_lock);
2198 spin_lock_init(&c->cs_lock);
2199 spin_lock_init(&c->buds_lock);
2200 spin_lock_init(&c->space_lock);
2201 spin_lock_init(&c->orphan_lock);
2202 init_rwsem(&c->commit_sem);
2203 mutex_init(&c->lp_mutex);
2204 mutex_init(&c->tnc_mutex);
2205 mutex_init(&c->log_mutex);
2206 mutex_init(&c->umount_mutex);
2207 mutex_init(&c->bu_mutex);
2208 mutex_init(&c->write_reserve_mutex);
2209 init_waitqueue_head(&c->cmt_wq);
2210 c->buds = RB_ROOT;
2211 c->old_idx = RB_ROOT;
2212 c->size_tree = RB_ROOT;
2213 c->orph_tree = RB_ROOT;
2214 INIT_LIST_HEAD(&c->infos_list);
2215 INIT_LIST_HEAD(&c->idx_gc);
2216 INIT_LIST_HEAD(&c->replay_list);
2217 INIT_LIST_HEAD(&c->replay_buds);
2218 INIT_LIST_HEAD(&c->uncat_list);
2219 INIT_LIST_HEAD(&c->empty_list);
2220 INIT_LIST_HEAD(&c->freeable_list);
2221 INIT_LIST_HEAD(&c->frdi_idx_list);
2222 INIT_LIST_HEAD(&c->unclean_leb_list);
2223 INIT_LIST_HEAD(&c->old_buds);
2224 INIT_LIST_HEAD(&c->orph_list);
2225 INIT_LIST_HEAD(&c->orph_new);
2226 c->no_chk_data_crc = 1;
2227
2228 c->highest_inum = UBIFS_FIRST_INO;
2229 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2230
2231 ubi_get_volume_info(ubi, &c->vi);
2232 ubi_get_device_info(c->vi.ubi_num, &c->di);
2233 }
2234 return c;
2235 }
2236
2237 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2238 {
2239 struct ubifs_info *c = sb->s_fs_info;
2240 struct inode *root;
2241 int err;
2242
2243 c->vfs_sb = sb;
2244 #ifndef __UBOOT__
2245 /* Re-open the UBI device in read-write mode */
2246 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2247 #else
2248 /* U-Boot read only mode */
2249 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
2250 #endif
2251
2252 if (IS_ERR(c->ubi)) {
2253 err = PTR_ERR(c->ubi);
2254 goto out;
2255 }
2256
2257 #ifndef __UBOOT__
2258 /*
2259 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2260 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2261 * which means the user would have to wait not just for their own I/O
2262 * but the read-ahead I/O as well i.e. completely pointless.
2263 *
2264 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2265 */
2266 c->bdi.name = "ubifs",
2267 c->bdi.capabilities = 0;
2268 err = bdi_init(&c->bdi);
2269 if (err)
2270 goto out_close;
2271 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2272 c->vi.ubi_num, c->vi.vol_id);
2273 if (err)
2274 goto out_bdi;
2275
2276 err = ubifs_parse_options(c, data, 0);
2277 if (err)
2278 goto out_bdi;
2279
2280 sb->s_bdi = &c->bdi;
2281 #endif
2282 sb->s_fs_info = c;
2283 sb->s_magic = UBIFS_SUPER_MAGIC;
2284 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2285 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2286 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2287 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2288 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2289 sb->s_op = &ubifs_super_operations;
2290 #ifndef __UBOOT__
2291 sb->s_xattr = ubifs_xattr_handlers;
2292 #endif
2293
2294 mutex_lock(&c->umount_mutex);
2295 err = mount_ubifs(c);
2296 if (err) {
2297 ubifs_assert(err < 0);
2298 goto out_unlock;
2299 }
2300
2301 /* Read the root inode */
2302 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2303 if (IS_ERR(root)) {
2304 err = PTR_ERR(root);
2305 goto out_umount;
2306 }
2307
2308 #ifndef __UBOOT__
2309 sb->s_root = d_make_root(root);
2310 if (!sb->s_root) {
2311 err = -ENOMEM;
2312 goto out_umount;
2313 }
2314 #else
2315 sb->s_root = NULL;
2316 #endif
2317
2318 mutex_unlock(&c->umount_mutex);
2319 return 0;
2320
2321 out_umount:
2322 ubifs_umount(c);
2323 out_unlock:
2324 mutex_unlock(&c->umount_mutex);
2325 #ifndef __UBOOT__
2326 out_bdi:
2327 bdi_destroy(&c->bdi);
2328 out_close:
2329 #endif
2330 ubi_close_volume(c->ubi);
2331 out:
2332 return err;
2333 }
2334
2335 static int sb_test(struct super_block *sb, void *data)
2336 {
2337 struct ubifs_info *c1 = data;
2338 struct ubifs_info *c = sb->s_fs_info;
2339
2340 return c->vi.cdev == c1->vi.cdev;
2341 }
2342
2343 static int sb_set(struct super_block *sb, void *data)
2344 {
2345 sb->s_fs_info = data;
2346 return set_anon_super(sb, NULL);
2347 }
2348
2349 static struct super_block *alloc_super(struct file_system_type *type, int flags)
2350 {
2351 struct super_block *s;
2352 int err;
2353
2354 s = kzalloc(sizeof(struct super_block), GFP_USER);
2355 if (!s) {
2356 err = -ENOMEM;
2357 return ERR_PTR(err);
2358 }
2359
2360 INIT_HLIST_NODE(&s->s_instances);
2361 INIT_LIST_HEAD(&s->s_inodes);
2362 s->s_time_gran = 1000000000;
2363 s->s_flags = flags;
2364
2365 return s;
2366 }
2367
2368 /**
2369 * sget - find or create a superblock
2370 * @type: filesystem type superblock should belong to
2371 * @test: comparison callback
2372 * @set: setup callback
2373 * @flags: mount flags
2374 * @data: argument to each of them
2375 */
2376 struct super_block *sget(struct file_system_type *type,
2377 int (*test)(struct super_block *,void *),
2378 int (*set)(struct super_block *,void *),
2379 int flags,
2380 void *data)
2381 {
2382 struct super_block *s = NULL;
2383 #ifndef __UBOOT__
2384 struct super_block *old;
2385 #endif
2386 int err;
2387
2388 #ifndef __UBOOT__
2389 retry:
2390 spin_lock(&sb_lock);
2391 if (test) {
2392 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
2393 if (!test(old, data))
2394 continue;
2395 if (!grab_super(old))
2396 goto retry;
2397 if (s) {
2398 up_write(&s->s_umount);
2399 destroy_super(s);
2400 s = NULL;
2401 }
2402 return old;
2403 }
2404 }
2405 #endif
2406 if (!s) {
2407 spin_unlock(&sb_lock);
2408 s = alloc_super(type, flags);
2409 if (!s)
2410 return ERR_PTR(-ENOMEM);
2411 #ifndef __UBOOT__
2412 goto retry;
2413 #endif
2414 }
2415
2416 err = set(s, data);
2417 if (err) {
2418 #ifndef __UBOOT__
2419 spin_unlock(&sb_lock);
2420 up_write(&s->s_umount);
2421 destroy_super(s);
2422 #endif
2423 return ERR_PTR(err);
2424 }
2425 s->s_type = type;
2426 #ifndef __UBOOT__
2427 strlcpy(s->s_id, type->name, sizeof(s->s_id));
2428 #else
2429 strncpy(s->s_id, type->name, sizeof(s->s_id));
2430 #endif
2431 list_add_tail(&s->s_list, &super_blocks);
2432 hlist_add_head(&s->s_instances, &type->fs_supers);
2433 #ifndef __UBOOT__
2434 spin_unlock(&sb_lock);
2435 get_filesystem(type);
2436 register_shrinker(&s->s_shrink);
2437 #endif
2438 return s;
2439 }
2440
2441 EXPORT_SYMBOL(sget);
2442
2443
2444 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2445 const char *name, void *data)
2446 {
2447 struct ubi_volume_desc *ubi;
2448 struct ubifs_info *c;
2449 struct super_block *sb;
2450 int err;
2451
2452 dbg_gen("name %s, flags %#x", name, flags);
2453
2454 /*
2455 * Get UBI device number and volume ID. Mount it read-only so far
2456 * because this might be a new mount point, and UBI allows only one
2457 * read-write user at a time.
2458 */
2459 ubi = open_ubi(name, UBI_READONLY);
2460 if (IS_ERR(ubi)) {
2461 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2462 current->pid, name, (int)PTR_ERR(ubi));
2463 return ERR_CAST(ubi);
2464 }
2465
2466 c = alloc_ubifs_info(ubi);
2467 if (!c) {
2468 err = -ENOMEM;
2469 goto out_close;
2470 }
2471
2472 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2473
2474 sb = sget(fs_type, sb_test, sb_set, flags, c);
2475 if (IS_ERR(sb)) {
2476 err = PTR_ERR(sb);
2477 kfree(c);
2478 goto out_close;
2479 }
2480
2481 if (sb->s_root) {
2482 struct ubifs_info *c1 = sb->s_fs_info;
2483 kfree(c);
2484 /* A new mount point for already mounted UBIFS */
2485 dbg_gen("this ubi volume is already mounted");
2486 if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2487 err = -EBUSY;
2488 goto out_deact;
2489 }
2490 } else {
2491 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2492 if (err)
2493 goto out_deact;
2494 /* We do not support atime */
2495 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2496 }
2497
2498 /* 'fill_super()' opens ubi again so we must close it here */
2499 ubi_close_volume(ubi);
2500
2501 #ifdef __UBOOT__
2502 ubifs_sb = sb;
2503 return 0;
2504 #else
2505 return dget(sb->s_root);
2506 #endif
2507
2508 out_deact:
2509 #ifndef __UBOOT__
2510 deactivate_locked_super(sb);
2511 #endif
2512 out_close:
2513 ubi_close_volume(ubi);
2514 return ERR_PTR(err);
2515 }
2516
2517 static void kill_ubifs_super(struct super_block *s)
2518 {
2519 struct ubifs_info *c = s->s_fs_info;
2520 #ifndef __UBOOT__
2521 kill_anon_super(s);
2522 #endif
2523 kfree(c);
2524 }
2525
2526 static struct file_system_type ubifs_fs_type = {
2527 .name = "ubifs",
2528 .owner = THIS_MODULE,
2529 .mount = ubifs_mount,
2530 .kill_sb = kill_ubifs_super,
2531 };
2532 #ifndef __UBOOT__
2533 MODULE_ALIAS_FS("ubifs");
2534
2535 /*
2536 * Inode slab cache constructor.
2537 */
2538 static void inode_slab_ctor(void *obj)
2539 {
2540 struct ubifs_inode *ui = obj;
2541 inode_init_once(&ui->vfs_inode);
2542 }
2543
2544 static int __init ubifs_init(void)
2545 #else
2546 int ubifs_init(void)
2547 #endif
2548 {
2549 int err;
2550
2551 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2552
2553 /* Make sure node sizes are 8-byte aligned */
2554 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2555 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2556 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2557 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2558 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2559 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2560 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2561 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2562 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2563 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2564 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2565
2566 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2567 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2568 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2569 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2570 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2571 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2572
2573 /* Check min. node size */
2574 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2575 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2576 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2577 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2578
2579 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2580 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2581 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2582 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2583
2584 /* Defined node sizes */
2585 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2586 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2587 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2588 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2589
2590 /*
2591 * We use 2 bit wide bit-fields to store compression type, which should
2592 * be amended if more compressors are added. The bit-fields are:
2593 * @compr_type in 'struct ubifs_inode', @default_compr in
2594 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2595 */
2596 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2597
2598 /*
2599 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2600 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2601 */
2602 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2603 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2604 current->pid, (unsigned int)PAGE_CACHE_SIZE);
2605 return -EINVAL;
2606 }
2607
2608 #ifndef __UBOOT__
2609 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2610 sizeof(struct ubifs_inode), 0,
2611 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2612 &inode_slab_ctor);
2613 if (!ubifs_inode_slab)
2614 return -ENOMEM;
2615
2616 err = register_shrinker(&ubifs_shrinker_info);
2617 if (err)
2618 goto out_slab;
2619 #endif
2620
2621 err = ubifs_compressors_init();
2622 if (err)
2623 goto out_shrinker;
2624
2625 #ifndef __UBOOT__
2626 err = dbg_debugfs_init();
2627 if (err)
2628 goto out_compr;
2629
2630 err = register_filesystem(&ubifs_fs_type);
2631 if (err) {
2632 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2633 current->pid, err);
2634 goto out_dbg;
2635 }
2636 #endif
2637 return 0;
2638
2639 #ifndef __UBOOT__
2640 out_dbg:
2641 dbg_debugfs_exit();
2642 out_compr:
2643 ubifs_compressors_exit();
2644 #endif
2645 out_shrinker:
2646 #ifndef __UBOOT__
2647 unregister_shrinker(&ubifs_shrinker_info);
2648 out_slab:
2649 #endif
2650 kmem_cache_destroy(ubifs_inode_slab);
2651 return err;
2652 }
2653 /* late_initcall to let compressors initialize first */
2654 late_initcall(ubifs_init);
2655
2656 #ifndef __UBOOT__
2657 static void __exit ubifs_exit(void)
2658 {
2659 ubifs_assert(list_empty(&ubifs_infos));
2660 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2661
2662 dbg_debugfs_exit();
2663 ubifs_compressors_exit();
2664 unregister_shrinker(&ubifs_shrinker_info);
2665
2666 /*
2667 * Make sure all delayed rcu free inodes are flushed before we
2668 * destroy cache.
2669 */
2670 rcu_barrier();
2671 kmem_cache_destroy(ubifs_inode_slab);
2672 unregister_filesystem(&ubifs_fs_type);
2673 }
2674 module_exit(ubifs_exit);
2675
2676 MODULE_LICENSE("GPL");
2677 MODULE_VERSION(__stringify(UBIFS_VERSION));
2678 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2679 MODULE_DESCRIPTION("UBIFS - UBI File System");
2680 #else
2681 int uboot_ubifs_mount(char *vol_name)
2682 {
2683 struct dentry *ret;
2684 int flags;
2685
2686 /*
2687 * First unmount if allready mounted
2688 */
2689 if (ubifs_sb)
2690 ubifs_umount(ubifs_sb->s_fs_info);
2691
2692 /*
2693 * Mount in read-only mode
2694 */
2695 flags = MS_RDONLY;
2696 ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
2697 if (IS_ERR(ret)) {
2698 printf("Error reading superblock on volume '%s' " \
2699 "errno=%d!\n", vol_name, (int)PTR_ERR(ret));
2700 return -1;
2701 }
2702
2703 return 0;
2704 }
2705 #endif