]> git.ipfire.org Git - people/ms/u-boot.git/blob - fs/ubifs/tnc.c
Merge branch 'master' of git://git.denx.de/u-boot-ti
[people/ms/u-boot.git] / fs / ubifs / tnc.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * SPDX-License-Identifier: GPL-2.0+
7 *
8 * Authors: Adrian Hunter
9 * Artem Bityutskiy (Битюцкий Артём)
10 */
11
12 /*
13 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
14 * the UBIFS B-tree.
15 *
16 * At the moment the locking rules of the TNC tree are quite simple and
17 * straightforward. We just have a mutex and lock it when we traverse the
18 * tree. If a znode is not in memory, we read it from flash while still having
19 * the mutex locked.
20 */
21
22 #define __UBOOT__
23 #ifndef __UBOOT__
24 #include <linux/crc32.h>
25 #include <linux/slab.h>
26 #else
27 #include <linux/compat.h>
28 #include <linux/err.h>
29 #include <linux/stat.h>
30 #endif
31 #include "ubifs.h"
32
33 /*
34 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
35 * @NAME_LESS: name corresponding to the first argument is less than second
36 * @NAME_MATCHES: names match
37 * @NAME_GREATER: name corresponding to the second argument is greater than
38 * first
39 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
40 *
41 * These constants were introduce to improve readability.
42 */
43 enum {
44 NAME_LESS = 0,
45 NAME_MATCHES = 1,
46 NAME_GREATER = 2,
47 NOT_ON_MEDIA = 3,
48 };
49
50 /**
51 * insert_old_idx - record an index node obsoleted since the last commit start.
52 * @c: UBIFS file-system description object
53 * @lnum: LEB number of obsoleted index node
54 * @offs: offset of obsoleted index node
55 *
56 * Returns %0 on success, and a negative error code on failure.
57 *
58 * For recovery, there must always be a complete intact version of the index on
59 * flash at all times. That is called the "old index". It is the index as at the
60 * time of the last successful commit. Many of the index nodes in the old index
61 * may be dirty, but they must not be erased until the next successful commit
62 * (at which point that index becomes the old index).
63 *
64 * That means that the garbage collection and the in-the-gaps method of
65 * committing must be able to determine if an index node is in the old index.
66 * Most of the old index nodes can be found by looking up the TNC using the
67 * 'lookup_znode()' function. However, some of the old index nodes may have
68 * been deleted from the current index or may have been changed so much that
69 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
70 * That is what this function does. The RB-tree is ordered by LEB number and
71 * offset because they uniquely identify the old index node.
72 */
73 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
74 {
75 struct ubifs_old_idx *old_idx, *o;
76 struct rb_node **p, *parent = NULL;
77
78 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
79 if (unlikely(!old_idx))
80 return -ENOMEM;
81 old_idx->lnum = lnum;
82 old_idx->offs = offs;
83
84 p = &c->old_idx.rb_node;
85 while (*p) {
86 parent = *p;
87 o = rb_entry(parent, struct ubifs_old_idx, rb);
88 if (lnum < o->lnum)
89 p = &(*p)->rb_left;
90 else if (lnum > o->lnum)
91 p = &(*p)->rb_right;
92 else if (offs < o->offs)
93 p = &(*p)->rb_left;
94 else if (offs > o->offs)
95 p = &(*p)->rb_right;
96 else {
97 ubifs_err("old idx added twice!");
98 kfree(old_idx);
99 return 0;
100 }
101 }
102 rb_link_node(&old_idx->rb, parent, p);
103 rb_insert_color(&old_idx->rb, &c->old_idx);
104 return 0;
105 }
106
107 /**
108 * insert_old_idx_znode - record a znode obsoleted since last commit start.
109 * @c: UBIFS file-system description object
110 * @znode: znode of obsoleted index node
111 *
112 * Returns %0 on success, and a negative error code on failure.
113 */
114 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
115 {
116 if (znode->parent) {
117 struct ubifs_zbranch *zbr;
118
119 zbr = &znode->parent->zbranch[znode->iip];
120 if (zbr->len)
121 return insert_old_idx(c, zbr->lnum, zbr->offs);
122 } else
123 if (c->zroot.len)
124 return insert_old_idx(c, c->zroot.lnum,
125 c->zroot.offs);
126 return 0;
127 }
128
129 /**
130 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
131 * @c: UBIFS file-system description object
132 * @znode: znode of obsoleted index node
133 *
134 * Returns %0 on success, and a negative error code on failure.
135 */
136 static int ins_clr_old_idx_znode(struct ubifs_info *c,
137 struct ubifs_znode *znode)
138 {
139 int err;
140
141 if (znode->parent) {
142 struct ubifs_zbranch *zbr;
143
144 zbr = &znode->parent->zbranch[znode->iip];
145 if (zbr->len) {
146 err = insert_old_idx(c, zbr->lnum, zbr->offs);
147 if (err)
148 return err;
149 zbr->lnum = 0;
150 zbr->offs = 0;
151 zbr->len = 0;
152 }
153 } else
154 if (c->zroot.len) {
155 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
156 if (err)
157 return err;
158 c->zroot.lnum = 0;
159 c->zroot.offs = 0;
160 c->zroot.len = 0;
161 }
162 return 0;
163 }
164
165 /**
166 * destroy_old_idx - destroy the old_idx RB-tree.
167 * @c: UBIFS file-system description object
168 *
169 * During start commit, the old_idx RB-tree is used to avoid overwriting index
170 * nodes that were in the index last commit but have since been deleted. This
171 * is necessary for recovery i.e. the old index must be kept intact until the
172 * new index is successfully written. The old-idx RB-tree is used for the
173 * in-the-gaps method of writing index nodes and is destroyed every commit.
174 */
175 void destroy_old_idx(struct ubifs_info *c)
176 {
177 struct ubifs_old_idx *old_idx, *n;
178
179 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
180 kfree(old_idx);
181
182 c->old_idx = RB_ROOT;
183 }
184
185 /**
186 * copy_znode - copy a dirty znode.
187 * @c: UBIFS file-system description object
188 * @znode: znode to copy
189 *
190 * A dirty znode being committed may not be changed, so it is copied.
191 */
192 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
193 struct ubifs_znode *znode)
194 {
195 struct ubifs_znode *zn;
196
197 zn = kmalloc(c->max_znode_sz, GFP_NOFS);
198 if (unlikely(!zn))
199 return ERR_PTR(-ENOMEM);
200
201 memcpy(zn, znode, c->max_znode_sz);
202 zn->cnext = NULL;
203 __set_bit(DIRTY_ZNODE, &zn->flags);
204 __clear_bit(COW_ZNODE, &zn->flags);
205
206 ubifs_assert(!ubifs_zn_obsolete(znode));
207 __set_bit(OBSOLETE_ZNODE, &znode->flags);
208
209 if (znode->level != 0) {
210 int i;
211 const int n = zn->child_cnt;
212
213 /* The children now have new parent */
214 for (i = 0; i < n; i++) {
215 struct ubifs_zbranch *zbr = &zn->zbranch[i];
216
217 if (zbr->znode)
218 zbr->znode->parent = zn;
219 }
220 }
221
222 atomic_long_inc(&c->dirty_zn_cnt);
223 return zn;
224 }
225
226 /**
227 * add_idx_dirt - add dirt due to a dirty znode.
228 * @c: UBIFS file-system description object
229 * @lnum: LEB number of index node
230 * @dirt: size of index node
231 *
232 * This function updates lprops dirty space and the new size of the index.
233 */
234 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
235 {
236 c->calc_idx_sz -= ALIGN(dirt, 8);
237 return ubifs_add_dirt(c, lnum, dirt);
238 }
239
240 /**
241 * dirty_cow_znode - ensure a znode is not being committed.
242 * @c: UBIFS file-system description object
243 * @zbr: branch of znode to check
244 *
245 * Returns dirtied znode on success or negative error code on failure.
246 */
247 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
248 struct ubifs_zbranch *zbr)
249 {
250 struct ubifs_znode *znode = zbr->znode;
251 struct ubifs_znode *zn;
252 int err;
253
254 if (!ubifs_zn_cow(znode)) {
255 /* znode is not being committed */
256 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
257 atomic_long_inc(&c->dirty_zn_cnt);
258 atomic_long_dec(&c->clean_zn_cnt);
259 atomic_long_dec(&ubifs_clean_zn_cnt);
260 err = add_idx_dirt(c, zbr->lnum, zbr->len);
261 if (unlikely(err))
262 return ERR_PTR(err);
263 }
264 return znode;
265 }
266
267 zn = copy_znode(c, znode);
268 if (IS_ERR(zn))
269 return zn;
270
271 if (zbr->len) {
272 err = insert_old_idx(c, zbr->lnum, zbr->offs);
273 if (unlikely(err))
274 return ERR_PTR(err);
275 err = add_idx_dirt(c, zbr->lnum, zbr->len);
276 } else
277 err = 0;
278
279 zbr->znode = zn;
280 zbr->lnum = 0;
281 zbr->offs = 0;
282 zbr->len = 0;
283
284 if (unlikely(err))
285 return ERR_PTR(err);
286 return zn;
287 }
288
289 /**
290 * lnc_add - add a leaf node to the leaf node cache.
291 * @c: UBIFS file-system description object
292 * @zbr: zbranch of leaf node
293 * @node: leaf node
294 *
295 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
296 * purpose of the leaf node cache is to save re-reading the same leaf node over
297 * and over again. Most things are cached by VFS, however the file system must
298 * cache directory entries for readdir and for resolving hash collisions. The
299 * present implementation of the leaf node cache is extremely simple, and
300 * allows for error returns that are not used but that may be needed if a more
301 * complex implementation is created.
302 *
303 * Note, this function does not add the @node object to LNC directly, but
304 * allocates a copy of the object and adds the copy to LNC. The reason for this
305 * is that @node has been allocated outside of the TNC subsystem and will be
306 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
307 * may be changed at any time, e.g. freed by the shrinker.
308 */
309 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
310 const void *node)
311 {
312 int err;
313 void *lnc_node;
314 const struct ubifs_dent_node *dent = node;
315
316 ubifs_assert(!zbr->leaf);
317 ubifs_assert(zbr->len != 0);
318 ubifs_assert(is_hash_key(c, &zbr->key));
319
320 err = ubifs_validate_entry(c, dent);
321 if (err) {
322 dump_stack();
323 ubifs_dump_node(c, dent);
324 return err;
325 }
326
327 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
328 if (!lnc_node)
329 /* We don't have to have the cache, so no error */
330 return 0;
331
332 zbr->leaf = lnc_node;
333 return 0;
334 }
335
336 /**
337 * lnc_add_directly - add a leaf node to the leaf-node-cache.
338 * @c: UBIFS file-system description object
339 * @zbr: zbranch of leaf node
340 * @node: leaf node
341 *
342 * This function is similar to 'lnc_add()', but it does not create a copy of
343 * @node but inserts @node to TNC directly.
344 */
345 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
346 void *node)
347 {
348 int err;
349
350 ubifs_assert(!zbr->leaf);
351 ubifs_assert(zbr->len != 0);
352
353 err = ubifs_validate_entry(c, node);
354 if (err) {
355 dump_stack();
356 ubifs_dump_node(c, node);
357 return err;
358 }
359
360 zbr->leaf = node;
361 return 0;
362 }
363
364 /**
365 * lnc_free - remove a leaf node from the leaf node cache.
366 * @zbr: zbranch of leaf node
367 * @node: leaf node
368 */
369 static void lnc_free(struct ubifs_zbranch *zbr)
370 {
371 if (!zbr->leaf)
372 return;
373 kfree(zbr->leaf);
374 zbr->leaf = NULL;
375 }
376
377 /**
378 * tnc_read_node_nm - read a "hashed" leaf node.
379 * @c: UBIFS file-system description object
380 * @zbr: key and position of the node
381 * @node: node is returned here
382 *
383 * This function reads a "hashed" node defined by @zbr from the leaf node cache
384 * (in it is there) or from the hash media, in which case the node is also
385 * added to LNC. Returns zero in case of success or a negative negative error
386 * code in case of failure.
387 */
388 static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
389 void *node)
390 {
391 int err;
392
393 ubifs_assert(is_hash_key(c, &zbr->key));
394
395 if (zbr->leaf) {
396 /* Read from the leaf node cache */
397 ubifs_assert(zbr->len != 0);
398 memcpy(node, zbr->leaf, zbr->len);
399 return 0;
400 }
401
402 err = ubifs_tnc_read_node(c, zbr, node);
403 if (err)
404 return err;
405
406 /* Add the node to the leaf node cache */
407 err = lnc_add(c, zbr, node);
408 return err;
409 }
410
411 /**
412 * try_read_node - read a node if it is a node.
413 * @c: UBIFS file-system description object
414 * @buf: buffer to read to
415 * @type: node type
416 * @len: node length (not aligned)
417 * @lnum: LEB number of node to read
418 * @offs: offset of node to read
419 *
420 * This function tries to read a node of known type and length, checks it and
421 * stores it in @buf. This function returns %1 if a node is present and %0 if
422 * a node is not present. A negative error code is returned for I/O errors.
423 * This function performs that same function as ubifs_read_node except that
424 * it does not require that there is actually a node present and instead
425 * the return code indicates if a node was read.
426 *
427 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
428 * is true (it is controlled by corresponding mount option). However, if
429 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
430 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
431 * because during mounting or re-mounting from R/O mode to R/W mode we may read
432 * journal nodes (when replying the journal or doing the recovery) and the
433 * journal nodes may potentially be corrupted, so checking is required.
434 */
435 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
436 int len, int lnum, int offs)
437 {
438 int err, node_len;
439 struct ubifs_ch *ch = buf;
440 uint32_t crc, node_crc;
441
442 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
443
444 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
445 if (err) {
446 ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
447 type, lnum, offs, err);
448 return err;
449 }
450
451 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
452 return 0;
453
454 if (ch->node_type != type)
455 return 0;
456
457 node_len = le32_to_cpu(ch->len);
458 if (node_len != len)
459 return 0;
460
461 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
462 !c->remounting_rw)
463 return 1;
464
465 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
466 node_crc = le32_to_cpu(ch->crc);
467 if (crc != node_crc)
468 return 0;
469
470 return 1;
471 }
472
473 /**
474 * fallible_read_node - try to read a leaf node.
475 * @c: UBIFS file-system description object
476 * @key: key of node to read
477 * @zbr: position of node
478 * @node: node returned
479 *
480 * This function tries to read a node and returns %1 if the node is read, %0
481 * if the node is not present, and a negative error code in the case of error.
482 */
483 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
484 struct ubifs_zbranch *zbr, void *node)
485 {
486 int ret;
487
488 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
489
490 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
491 zbr->offs);
492 if (ret == 1) {
493 union ubifs_key node_key;
494 struct ubifs_dent_node *dent = node;
495
496 /* All nodes have key in the same place */
497 key_read(c, &dent->key, &node_key);
498 if (keys_cmp(c, key, &node_key) != 0)
499 ret = 0;
500 }
501 if (ret == 0 && c->replaying)
502 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
503 zbr->lnum, zbr->offs, zbr->len);
504 return ret;
505 }
506
507 /**
508 * matches_name - determine if a direntry or xattr entry matches a given name.
509 * @c: UBIFS file-system description object
510 * @zbr: zbranch of dent
511 * @nm: name to match
512 *
513 * This function checks if xentry/direntry referred by zbranch @zbr matches name
514 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
515 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
516 * of failure, a negative error code is returned.
517 */
518 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
519 const struct qstr *nm)
520 {
521 struct ubifs_dent_node *dent;
522 int nlen, err;
523
524 /* If possible, match against the dent in the leaf node cache */
525 if (!zbr->leaf) {
526 dent = kmalloc(zbr->len, GFP_NOFS);
527 if (!dent)
528 return -ENOMEM;
529
530 err = ubifs_tnc_read_node(c, zbr, dent);
531 if (err)
532 goto out_free;
533
534 /* Add the node to the leaf node cache */
535 err = lnc_add_directly(c, zbr, dent);
536 if (err)
537 goto out_free;
538 } else
539 dent = zbr->leaf;
540
541 nlen = le16_to_cpu(dent->nlen);
542 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
543 if (err == 0) {
544 if (nlen == nm->len)
545 return NAME_MATCHES;
546 else if (nlen < nm->len)
547 return NAME_LESS;
548 else
549 return NAME_GREATER;
550 } else if (err < 0)
551 return NAME_LESS;
552 else
553 return NAME_GREATER;
554
555 out_free:
556 kfree(dent);
557 return err;
558 }
559
560 /**
561 * get_znode - get a TNC znode that may not be loaded yet.
562 * @c: UBIFS file-system description object
563 * @znode: parent znode
564 * @n: znode branch slot number
565 *
566 * This function returns the znode or a negative error code.
567 */
568 static struct ubifs_znode *get_znode(struct ubifs_info *c,
569 struct ubifs_znode *znode, int n)
570 {
571 struct ubifs_zbranch *zbr;
572
573 zbr = &znode->zbranch[n];
574 if (zbr->znode)
575 znode = zbr->znode;
576 else
577 znode = ubifs_load_znode(c, zbr, znode, n);
578 return znode;
579 }
580
581 /**
582 * tnc_next - find next TNC entry.
583 * @c: UBIFS file-system description object
584 * @zn: znode is passed and returned here
585 * @n: znode branch slot number is passed and returned here
586 *
587 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
588 * no next entry, or a negative error code otherwise.
589 */
590 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
591 {
592 struct ubifs_znode *znode = *zn;
593 int nn = *n;
594
595 nn += 1;
596 if (nn < znode->child_cnt) {
597 *n = nn;
598 return 0;
599 }
600 while (1) {
601 struct ubifs_znode *zp;
602
603 zp = znode->parent;
604 if (!zp)
605 return -ENOENT;
606 nn = znode->iip + 1;
607 znode = zp;
608 if (nn < znode->child_cnt) {
609 znode = get_znode(c, znode, nn);
610 if (IS_ERR(znode))
611 return PTR_ERR(znode);
612 while (znode->level != 0) {
613 znode = get_znode(c, znode, 0);
614 if (IS_ERR(znode))
615 return PTR_ERR(znode);
616 }
617 nn = 0;
618 break;
619 }
620 }
621 *zn = znode;
622 *n = nn;
623 return 0;
624 }
625
626 /**
627 * tnc_prev - find previous TNC entry.
628 * @c: UBIFS file-system description object
629 * @zn: znode is returned here
630 * @n: znode branch slot number is passed and returned here
631 *
632 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
633 * there is no next entry, or a negative error code otherwise.
634 */
635 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
636 {
637 struct ubifs_znode *znode = *zn;
638 int nn = *n;
639
640 if (nn > 0) {
641 *n = nn - 1;
642 return 0;
643 }
644 while (1) {
645 struct ubifs_znode *zp;
646
647 zp = znode->parent;
648 if (!zp)
649 return -ENOENT;
650 nn = znode->iip - 1;
651 znode = zp;
652 if (nn >= 0) {
653 znode = get_znode(c, znode, nn);
654 if (IS_ERR(znode))
655 return PTR_ERR(znode);
656 while (znode->level != 0) {
657 nn = znode->child_cnt - 1;
658 znode = get_znode(c, znode, nn);
659 if (IS_ERR(znode))
660 return PTR_ERR(znode);
661 }
662 nn = znode->child_cnt - 1;
663 break;
664 }
665 }
666 *zn = znode;
667 *n = nn;
668 return 0;
669 }
670
671 /**
672 * resolve_collision - resolve a collision.
673 * @c: UBIFS file-system description object
674 * @key: key of a directory or extended attribute entry
675 * @zn: znode is returned here
676 * @n: zbranch number is passed and returned here
677 * @nm: name of the entry
678 *
679 * This function is called for "hashed" keys to make sure that the found key
680 * really corresponds to the looked up node (directory or extended attribute
681 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
682 * %0 is returned if @nm is not found and @zn and @n are set to the previous
683 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
684 * This means that @n may be set to %-1 if the leftmost key in @zn is the
685 * previous one. A negative error code is returned on failures.
686 */
687 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
688 struct ubifs_znode **zn, int *n,
689 const struct qstr *nm)
690 {
691 int err;
692
693 err = matches_name(c, &(*zn)->zbranch[*n], nm);
694 if (unlikely(err < 0))
695 return err;
696 if (err == NAME_MATCHES)
697 return 1;
698
699 if (err == NAME_GREATER) {
700 /* Look left */
701 while (1) {
702 err = tnc_prev(c, zn, n);
703 if (err == -ENOENT) {
704 ubifs_assert(*n == 0);
705 *n = -1;
706 return 0;
707 }
708 if (err < 0)
709 return err;
710 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
711 /*
712 * We have found the branch after which we would
713 * like to insert, but inserting in this znode
714 * may still be wrong. Consider the following 3
715 * znodes, in the case where we are resolving a
716 * collision with Key2.
717 *
718 * znode zp
719 * ----------------------
720 * level 1 | Key0 | Key1 |
721 * -----------------------
722 * | |
723 * znode za | | znode zb
724 * ------------ ------------
725 * level 0 | Key0 | | Key2 |
726 * ------------ ------------
727 *
728 * The lookup finds Key2 in znode zb. Lets say
729 * there is no match and the name is greater so
730 * we look left. When we find Key0, we end up
731 * here. If we return now, we will insert into
732 * znode za at slot n = 1. But that is invalid
733 * according to the parent's keys. Key2 must
734 * be inserted into znode zb.
735 *
736 * Note, this problem is not relevant for the
737 * case when we go right, because
738 * 'tnc_insert()' would correct the parent key.
739 */
740 if (*n == (*zn)->child_cnt - 1) {
741 err = tnc_next(c, zn, n);
742 if (err) {
743 /* Should be impossible */
744 ubifs_assert(0);
745 if (err == -ENOENT)
746 err = -EINVAL;
747 return err;
748 }
749 ubifs_assert(*n == 0);
750 *n = -1;
751 }
752 return 0;
753 }
754 err = matches_name(c, &(*zn)->zbranch[*n], nm);
755 if (err < 0)
756 return err;
757 if (err == NAME_LESS)
758 return 0;
759 if (err == NAME_MATCHES)
760 return 1;
761 ubifs_assert(err == NAME_GREATER);
762 }
763 } else {
764 int nn = *n;
765 struct ubifs_znode *znode = *zn;
766
767 /* Look right */
768 while (1) {
769 err = tnc_next(c, &znode, &nn);
770 if (err == -ENOENT)
771 return 0;
772 if (err < 0)
773 return err;
774 if (keys_cmp(c, &znode->zbranch[nn].key, key))
775 return 0;
776 err = matches_name(c, &znode->zbranch[nn], nm);
777 if (err < 0)
778 return err;
779 if (err == NAME_GREATER)
780 return 0;
781 *zn = znode;
782 *n = nn;
783 if (err == NAME_MATCHES)
784 return 1;
785 ubifs_assert(err == NAME_LESS);
786 }
787 }
788 }
789
790 /**
791 * fallible_matches_name - determine if a dent matches a given name.
792 * @c: UBIFS file-system description object
793 * @zbr: zbranch of dent
794 * @nm: name to match
795 *
796 * This is a "fallible" version of 'matches_name()' function which does not
797 * panic if the direntry/xentry referred by @zbr does not exist on the media.
798 *
799 * This function checks if xentry/direntry referred by zbranch @zbr matches name
800 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
801 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
802 * if xentry/direntry referred by @zbr does not exist on the media. A negative
803 * error code is returned in case of failure.
804 */
805 static int fallible_matches_name(struct ubifs_info *c,
806 struct ubifs_zbranch *zbr,
807 const struct qstr *nm)
808 {
809 struct ubifs_dent_node *dent;
810 int nlen, err;
811
812 /* If possible, match against the dent in the leaf node cache */
813 if (!zbr->leaf) {
814 dent = kmalloc(zbr->len, GFP_NOFS);
815 if (!dent)
816 return -ENOMEM;
817
818 err = fallible_read_node(c, &zbr->key, zbr, dent);
819 if (err < 0)
820 goto out_free;
821 if (err == 0) {
822 /* The node was not present */
823 err = NOT_ON_MEDIA;
824 goto out_free;
825 }
826 ubifs_assert(err == 1);
827
828 err = lnc_add_directly(c, zbr, dent);
829 if (err)
830 goto out_free;
831 } else
832 dent = zbr->leaf;
833
834 nlen = le16_to_cpu(dent->nlen);
835 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
836 if (err == 0) {
837 if (nlen == nm->len)
838 return NAME_MATCHES;
839 else if (nlen < nm->len)
840 return NAME_LESS;
841 else
842 return NAME_GREATER;
843 } else if (err < 0)
844 return NAME_LESS;
845 else
846 return NAME_GREATER;
847
848 out_free:
849 kfree(dent);
850 return err;
851 }
852
853 /**
854 * fallible_resolve_collision - resolve a collision even if nodes are missing.
855 * @c: UBIFS file-system description object
856 * @key: key
857 * @zn: znode is returned here
858 * @n: branch number is passed and returned here
859 * @nm: name of directory entry
860 * @adding: indicates caller is adding a key to the TNC
861 *
862 * This is a "fallible" version of the 'resolve_collision()' function which
863 * does not panic if one of the nodes referred to by TNC does not exist on the
864 * media. This may happen when replaying the journal if a deleted node was
865 * Garbage-collected and the commit was not done. A branch that refers to a node
866 * that is not present is called a dangling branch. The following are the return
867 * codes for this function:
868 * o if @nm was found, %1 is returned and @zn and @n are set to the found
869 * branch;
870 * o if we are @adding and @nm was not found, %0 is returned;
871 * o if we are not @adding and @nm was not found, but a dangling branch was
872 * found, then %1 is returned and @zn and @n are set to the dangling branch;
873 * o a negative error code is returned in case of failure.
874 */
875 static int fallible_resolve_collision(struct ubifs_info *c,
876 const union ubifs_key *key,
877 struct ubifs_znode **zn, int *n,
878 const struct qstr *nm, int adding)
879 {
880 struct ubifs_znode *o_znode = NULL, *znode = *zn;
881 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
882
883 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
884 if (unlikely(cmp < 0))
885 return cmp;
886 if (cmp == NAME_MATCHES)
887 return 1;
888 if (cmp == NOT_ON_MEDIA) {
889 o_znode = znode;
890 o_n = nn;
891 /*
892 * We are unlucky and hit a dangling branch straight away.
893 * Now we do not really know where to go to find the needed
894 * branch - to the left or to the right. Well, let's try left.
895 */
896 unsure = 1;
897 } else if (!adding)
898 unsure = 1; /* Remove a dangling branch wherever it is */
899
900 if (cmp == NAME_GREATER || unsure) {
901 /* Look left */
902 while (1) {
903 err = tnc_prev(c, zn, n);
904 if (err == -ENOENT) {
905 ubifs_assert(*n == 0);
906 *n = -1;
907 break;
908 }
909 if (err < 0)
910 return err;
911 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
912 /* See comments in 'resolve_collision()' */
913 if (*n == (*zn)->child_cnt - 1) {
914 err = tnc_next(c, zn, n);
915 if (err) {
916 /* Should be impossible */
917 ubifs_assert(0);
918 if (err == -ENOENT)
919 err = -EINVAL;
920 return err;
921 }
922 ubifs_assert(*n == 0);
923 *n = -1;
924 }
925 break;
926 }
927 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
928 if (err < 0)
929 return err;
930 if (err == NAME_MATCHES)
931 return 1;
932 if (err == NOT_ON_MEDIA) {
933 o_znode = *zn;
934 o_n = *n;
935 continue;
936 }
937 if (!adding)
938 continue;
939 if (err == NAME_LESS)
940 break;
941 else
942 unsure = 0;
943 }
944 }
945
946 if (cmp == NAME_LESS || unsure) {
947 /* Look right */
948 *zn = znode;
949 *n = nn;
950 while (1) {
951 err = tnc_next(c, &znode, &nn);
952 if (err == -ENOENT)
953 break;
954 if (err < 0)
955 return err;
956 if (keys_cmp(c, &znode->zbranch[nn].key, key))
957 break;
958 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
959 if (err < 0)
960 return err;
961 if (err == NAME_GREATER)
962 break;
963 *zn = znode;
964 *n = nn;
965 if (err == NAME_MATCHES)
966 return 1;
967 if (err == NOT_ON_MEDIA) {
968 o_znode = znode;
969 o_n = nn;
970 }
971 }
972 }
973
974 /* Never match a dangling branch when adding */
975 if (adding || !o_znode)
976 return 0;
977
978 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
979 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
980 o_znode->zbranch[o_n].len);
981 *zn = o_znode;
982 *n = o_n;
983 return 1;
984 }
985
986 /**
987 * matches_position - determine if a zbranch matches a given position.
988 * @zbr: zbranch of dent
989 * @lnum: LEB number of dent to match
990 * @offs: offset of dent to match
991 *
992 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
993 */
994 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
995 {
996 if (zbr->lnum == lnum && zbr->offs == offs)
997 return 1;
998 else
999 return 0;
1000 }
1001
1002 /**
1003 * resolve_collision_directly - resolve a collision directly.
1004 * @c: UBIFS file-system description object
1005 * @key: key of directory entry
1006 * @zn: znode is passed and returned here
1007 * @n: zbranch number is passed and returned here
1008 * @lnum: LEB number of dent node to match
1009 * @offs: offset of dent node to match
1010 *
1011 * This function is used for "hashed" keys to make sure the found directory or
1012 * extended attribute entry node is what was looked for. It is used when the
1013 * flash address of the right node is known (@lnum:@offs) which makes it much
1014 * easier to resolve collisions (no need to read entries and match full
1015 * names). This function returns %1 and sets @zn and @n if the collision is
1016 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1017 * previous directory entry. Otherwise a negative error code is returned.
1018 */
1019 static int resolve_collision_directly(struct ubifs_info *c,
1020 const union ubifs_key *key,
1021 struct ubifs_znode **zn, int *n,
1022 int lnum, int offs)
1023 {
1024 struct ubifs_znode *znode;
1025 int nn, err;
1026
1027 znode = *zn;
1028 nn = *n;
1029 if (matches_position(&znode->zbranch[nn], lnum, offs))
1030 return 1;
1031
1032 /* Look left */
1033 while (1) {
1034 err = tnc_prev(c, &znode, &nn);
1035 if (err == -ENOENT)
1036 break;
1037 if (err < 0)
1038 return err;
1039 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1040 break;
1041 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1042 *zn = znode;
1043 *n = nn;
1044 return 1;
1045 }
1046 }
1047
1048 /* Look right */
1049 znode = *zn;
1050 nn = *n;
1051 while (1) {
1052 err = tnc_next(c, &znode, &nn);
1053 if (err == -ENOENT)
1054 return 0;
1055 if (err < 0)
1056 return err;
1057 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1058 return 0;
1059 *zn = znode;
1060 *n = nn;
1061 if (matches_position(&znode->zbranch[nn], lnum, offs))
1062 return 1;
1063 }
1064 }
1065
1066 /**
1067 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1068 * @c: UBIFS file-system description object
1069 * @znode: znode to dirty
1070 *
1071 * If we do not have a unique key that resides in a znode, then we cannot
1072 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1073 * This function records the path back to the last dirty ancestor, and then
1074 * dirties the znodes on that path.
1075 */
1076 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1077 struct ubifs_znode *znode)
1078 {
1079 struct ubifs_znode *zp;
1080 int *path = c->bottom_up_buf, p = 0;
1081
1082 ubifs_assert(c->zroot.znode);
1083 ubifs_assert(znode);
1084 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1085 kfree(c->bottom_up_buf);
1086 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1087 GFP_NOFS);
1088 if (!c->bottom_up_buf)
1089 return ERR_PTR(-ENOMEM);
1090 path = c->bottom_up_buf;
1091 }
1092 if (c->zroot.znode->level) {
1093 /* Go up until parent is dirty */
1094 while (1) {
1095 int n;
1096
1097 zp = znode->parent;
1098 if (!zp)
1099 break;
1100 n = znode->iip;
1101 ubifs_assert(p < c->zroot.znode->level);
1102 path[p++] = n;
1103 if (!zp->cnext && ubifs_zn_dirty(znode))
1104 break;
1105 znode = zp;
1106 }
1107 }
1108
1109 /* Come back down, dirtying as we go */
1110 while (1) {
1111 struct ubifs_zbranch *zbr;
1112
1113 zp = znode->parent;
1114 if (zp) {
1115 ubifs_assert(path[p - 1] >= 0);
1116 ubifs_assert(path[p - 1] < zp->child_cnt);
1117 zbr = &zp->zbranch[path[--p]];
1118 znode = dirty_cow_znode(c, zbr);
1119 } else {
1120 ubifs_assert(znode == c->zroot.znode);
1121 znode = dirty_cow_znode(c, &c->zroot);
1122 }
1123 if (IS_ERR(znode) || !p)
1124 break;
1125 ubifs_assert(path[p - 1] >= 0);
1126 ubifs_assert(path[p - 1] < znode->child_cnt);
1127 znode = znode->zbranch[path[p - 1]].znode;
1128 }
1129
1130 return znode;
1131 }
1132
1133 /**
1134 * ubifs_lookup_level0 - search for zero-level znode.
1135 * @c: UBIFS file-system description object
1136 * @key: key to lookup
1137 * @zn: znode is returned here
1138 * @n: znode branch slot number is returned here
1139 *
1140 * This function looks up the TNC tree and search for zero-level znode which
1141 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1142 * cases:
1143 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1144 * is returned and slot number of the matched branch is stored in @n;
1145 * o not exact match, which means that zero-level znode does not contain
1146 * @key, then %0 is returned and slot number of the closest branch is stored
1147 * in @n;
1148 * o @key is so small that it is even less than the lowest key of the
1149 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1150 *
1151 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1152 * function reads corresponding indexing nodes and inserts them to TNC. In
1153 * case of failure, a negative error code is returned.
1154 */
1155 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1156 struct ubifs_znode **zn, int *n)
1157 {
1158 int err, exact;
1159 struct ubifs_znode *znode;
1160 unsigned long time = get_seconds();
1161
1162 dbg_tnck(key, "search key ");
1163 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1164
1165 znode = c->zroot.znode;
1166 if (unlikely(!znode)) {
1167 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1168 if (IS_ERR(znode))
1169 return PTR_ERR(znode);
1170 }
1171
1172 znode->time = time;
1173
1174 while (1) {
1175 struct ubifs_zbranch *zbr;
1176
1177 exact = ubifs_search_zbranch(c, znode, key, n);
1178
1179 if (znode->level == 0)
1180 break;
1181
1182 if (*n < 0)
1183 *n = 0;
1184 zbr = &znode->zbranch[*n];
1185
1186 if (zbr->znode) {
1187 znode->time = time;
1188 znode = zbr->znode;
1189 continue;
1190 }
1191
1192 /* znode is not in TNC cache, load it from the media */
1193 znode = ubifs_load_znode(c, zbr, znode, *n);
1194 if (IS_ERR(znode))
1195 return PTR_ERR(znode);
1196 }
1197
1198 *zn = znode;
1199 if (exact || !is_hash_key(c, key) || *n != -1) {
1200 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1201 return exact;
1202 }
1203
1204 /*
1205 * Here is a tricky place. We have not found the key and this is a
1206 * "hashed" key, which may collide. The rest of the code deals with
1207 * situations like this:
1208 *
1209 * | 3 | 5 |
1210 * / \
1211 * | 3 | 5 | | 6 | 7 | (x)
1212 *
1213 * Or more a complex example:
1214 *
1215 * | 1 | 5 |
1216 * / \
1217 * | 1 | 3 | | 5 | 8 |
1218 * \ /
1219 * | 5 | 5 | | 6 | 7 | (x)
1220 *
1221 * In the examples, if we are looking for key "5", we may reach nodes
1222 * marked with "(x)". In this case what we have do is to look at the
1223 * left and see if there is "5" key there. If there is, we have to
1224 * return it.
1225 *
1226 * Note, this whole situation is possible because we allow to have
1227 * elements which are equivalent to the next key in the parent in the
1228 * children of current znode. For example, this happens if we split a
1229 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1230 * like this:
1231 * | 3 | 5 |
1232 * / \
1233 * | 3 | 5 | | 5 | 6 | 7 |
1234 * ^
1235 * And this becomes what is at the first "picture" after key "5" marked
1236 * with "^" is removed. What could be done is we could prohibit
1237 * splitting in the middle of the colliding sequence. Also, when
1238 * removing the leftmost key, we would have to correct the key of the
1239 * parent node, which would introduce additional complications. Namely,
1240 * if we changed the leftmost key of the parent znode, the garbage
1241 * collector would be unable to find it (GC is doing this when GC'ing
1242 * indexing LEBs). Although we already have an additional RB-tree where
1243 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1244 * after the commit. But anyway, this does not look easy to implement
1245 * so we did not try this.
1246 */
1247 err = tnc_prev(c, &znode, n);
1248 if (err == -ENOENT) {
1249 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1250 *n = -1;
1251 return 0;
1252 }
1253 if (unlikely(err < 0))
1254 return err;
1255 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1256 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1257 *n = -1;
1258 return 0;
1259 }
1260
1261 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1262 *zn = znode;
1263 return 1;
1264 }
1265
1266 /**
1267 * lookup_level0_dirty - search for zero-level znode dirtying.
1268 * @c: UBIFS file-system description object
1269 * @key: key to lookup
1270 * @zn: znode is returned here
1271 * @n: znode branch slot number is returned here
1272 *
1273 * This function looks up the TNC tree and search for zero-level znode which
1274 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1275 * cases:
1276 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1277 * is returned and slot number of the matched branch is stored in @n;
1278 * o not exact match, which means that zero-level znode does not contain @key
1279 * then %0 is returned and slot number of the closed branch is stored in
1280 * @n;
1281 * o @key is so small that it is even less than the lowest key of the
1282 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1283 *
1284 * Additionally all znodes in the path from the root to the located zero-level
1285 * znode are marked as dirty.
1286 *
1287 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1288 * function reads corresponding indexing nodes and inserts them to TNC. In
1289 * case of failure, a negative error code is returned.
1290 */
1291 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1292 struct ubifs_znode **zn, int *n)
1293 {
1294 int err, exact;
1295 struct ubifs_znode *znode;
1296 unsigned long time = get_seconds();
1297
1298 dbg_tnck(key, "search and dirty key ");
1299
1300 znode = c->zroot.znode;
1301 if (unlikely(!znode)) {
1302 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1303 if (IS_ERR(znode))
1304 return PTR_ERR(znode);
1305 }
1306
1307 znode = dirty_cow_znode(c, &c->zroot);
1308 if (IS_ERR(znode))
1309 return PTR_ERR(znode);
1310
1311 znode->time = time;
1312
1313 while (1) {
1314 struct ubifs_zbranch *zbr;
1315
1316 exact = ubifs_search_zbranch(c, znode, key, n);
1317
1318 if (znode->level == 0)
1319 break;
1320
1321 if (*n < 0)
1322 *n = 0;
1323 zbr = &znode->zbranch[*n];
1324
1325 if (zbr->znode) {
1326 znode->time = time;
1327 znode = dirty_cow_znode(c, zbr);
1328 if (IS_ERR(znode))
1329 return PTR_ERR(znode);
1330 continue;
1331 }
1332
1333 /* znode is not in TNC cache, load it from the media */
1334 znode = ubifs_load_znode(c, zbr, znode, *n);
1335 if (IS_ERR(znode))
1336 return PTR_ERR(znode);
1337 znode = dirty_cow_znode(c, zbr);
1338 if (IS_ERR(znode))
1339 return PTR_ERR(znode);
1340 }
1341
1342 *zn = znode;
1343 if (exact || !is_hash_key(c, key) || *n != -1) {
1344 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1345 return exact;
1346 }
1347
1348 /*
1349 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1350 * code.
1351 */
1352 err = tnc_prev(c, &znode, n);
1353 if (err == -ENOENT) {
1354 *n = -1;
1355 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1356 return 0;
1357 }
1358 if (unlikely(err < 0))
1359 return err;
1360 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1361 *n = -1;
1362 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1363 return 0;
1364 }
1365
1366 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1367 znode = dirty_cow_bottom_up(c, znode);
1368 if (IS_ERR(znode))
1369 return PTR_ERR(znode);
1370 }
1371
1372 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1373 *zn = znode;
1374 return 1;
1375 }
1376
1377 /**
1378 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1379 * @c: UBIFS file-system description object
1380 * @lnum: LEB number
1381 * @gc_seq1: garbage collection sequence number
1382 *
1383 * This function determines if @lnum may have been garbage collected since
1384 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1385 * %0 is returned.
1386 */
1387 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1388 {
1389 #ifndef __UBOOT__
1390 int gc_seq2, gced_lnum;
1391
1392 gced_lnum = c->gced_lnum;
1393 smp_rmb();
1394 gc_seq2 = c->gc_seq;
1395 /* Same seq means no GC */
1396 if (gc_seq1 == gc_seq2)
1397 return 0;
1398 /* Different by more than 1 means we don't know */
1399 if (gc_seq1 + 1 != gc_seq2)
1400 return 1;
1401 /*
1402 * We have seen the sequence number has increased by 1. Now we need to
1403 * be sure we read the right LEB number, so read it again.
1404 */
1405 smp_rmb();
1406 if (gced_lnum != c->gced_lnum)
1407 return 1;
1408 /* Finally we can check lnum */
1409 if (gced_lnum == lnum)
1410 return 1;
1411 #else
1412 /* No garbage collection in the read-only U-Boot implementation */
1413 #endif
1414 return 0;
1415 }
1416
1417 /**
1418 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1419 * @c: UBIFS file-system description object
1420 * @key: node key to lookup
1421 * @node: the node is returned here
1422 * @lnum: LEB number is returned here
1423 * @offs: offset is returned here
1424 *
1425 * This function looks up and reads node with key @key. The caller has to make
1426 * sure the @node buffer is large enough to fit the node. Returns zero in case
1427 * of success, %-ENOENT if the node was not found, and a negative error code in
1428 * case of failure. The node location can be returned in @lnum and @offs.
1429 */
1430 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1431 void *node, int *lnum, int *offs)
1432 {
1433 int found, n, err, safely = 0, gc_seq1;
1434 struct ubifs_znode *znode;
1435 struct ubifs_zbranch zbr, *zt;
1436
1437 again:
1438 mutex_lock(&c->tnc_mutex);
1439 found = ubifs_lookup_level0(c, key, &znode, &n);
1440 if (!found) {
1441 err = -ENOENT;
1442 goto out;
1443 } else if (found < 0) {
1444 err = found;
1445 goto out;
1446 }
1447 zt = &znode->zbranch[n];
1448 if (lnum) {
1449 *lnum = zt->lnum;
1450 *offs = zt->offs;
1451 }
1452 if (is_hash_key(c, key)) {
1453 /*
1454 * In this case the leaf node cache gets used, so we pass the
1455 * address of the zbranch and keep the mutex locked
1456 */
1457 err = tnc_read_node_nm(c, zt, node);
1458 goto out;
1459 }
1460 if (safely) {
1461 err = ubifs_tnc_read_node(c, zt, node);
1462 goto out;
1463 }
1464 /* Drop the TNC mutex prematurely and race with garbage collection */
1465 zbr = znode->zbranch[n];
1466 gc_seq1 = c->gc_seq;
1467 mutex_unlock(&c->tnc_mutex);
1468
1469 if (ubifs_get_wbuf(c, zbr.lnum)) {
1470 /* We do not GC journal heads */
1471 err = ubifs_tnc_read_node(c, &zbr, node);
1472 return err;
1473 }
1474
1475 err = fallible_read_node(c, key, &zbr, node);
1476 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1477 /*
1478 * The node may have been GC'ed out from under us so try again
1479 * while keeping the TNC mutex locked.
1480 */
1481 safely = 1;
1482 goto again;
1483 }
1484 return 0;
1485
1486 out:
1487 mutex_unlock(&c->tnc_mutex);
1488 return err;
1489 }
1490
1491 /**
1492 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1493 * @c: UBIFS file-system description object
1494 * @bu: bulk-read parameters and results
1495 *
1496 * Lookup consecutive data node keys for the same inode that reside
1497 * consecutively in the same LEB. This function returns zero in case of success
1498 * and a negative error code in case of failure.
1499 *
1500 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1501 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1502 * maximum possible amount of nodes for bulk-read.
1503 */
1504 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1505 {
1506 int n, err = 0, lnum = -1, uninitialized_var(offs);
1507 int uninitialized_var(len);
1508 unsigned int block = key_block(c, &bu->key);
1509 struct ubifs_znode *znode;
1510
1511 bu->cnt = 0;
1512 bu->blk_cnt = 0;
1513 bu->eof = 0;
1514
1515 mutex_lock(&c->tnc_mutex);
1516 /* Find first key */
1517 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1518 if (err < 0)
1519 goto out;
1520 if (err) {
1521 /* Key found */
1522 len = znode->zbranch[n].len;
1523 /* The buffer must be big enough for at least 1 node */
1524 if (len > bu->buf_len) {
1525 err = -EINVAL;
1526 goto out;
1527 }
1528 /* Add this key */
1529 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1530 bu->blk_cnt += 1;
1531 lnum = znode->zbranch[n].lnum;
1532 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1533 }
1534 while (1) {
1535 struct ubifs_zbranch *zbr;
1536 union ubifs_key *key;
1537 unsigned int next_block;
1538
1539 /* Find next key */
1540 err = tnc_next(c, &znode, &n);
1541 if (err)
1542 goto out;
1543 zbr = &znode->zbranch[n];
1544 key = &zbr->key;
1545 /* See if there is another data key for this file */
1546 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1547 key_type(c, key) != UBIFS_DATA_KEY) {
1548 err = -ENOENT;
1549 goto out;
1550 }
1551 if (lnum < 0) {
1552 /* First key found */
1553 lnum = zbr->lnum;
1554 offs = ALIGN(zbr->offs + zbr->len, 8);
1555 len = zbr->len;
1556 if (len > bu->buf_len) {
1557 err = -EINVAL;
1558 goto out;
1559 }
1560 } else {
1561 /*
1562 * The data nodes must be in consecutive positions in
1563 * the same LEB.
1564 */
1565 if (zbr->lnum != lnum || zbr->offs != offs)
1566 goto out;
1567 offs += ALIGN(zbr->len, 8);
1568 len = ALIGN(len, 8) + zbr->len;
1569 /* Must not exceed buffer length */
1570 if (len > bu->buf_len)
1571 goto out;
1572 }
1573 /* Allow for holes */
1574 next_block = key_block(c, key);
1575 bu->blk_cnt += (next_block - block - 1);
1576 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1577 goto out;
1578 block = next_block;
1579 /* Add this key */
1580 bu->zbranch[bu->cnt++] = *zbr;
1581 bu->blk_cnt += 1;
1582 /* See if we have room for more */
1583 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1584 goto out;
1585 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1586 goto out;
1587 }
1588 out:
1589 if (err == -ENOENT) {
1590 bu->eof = 1;
1591 err = 0;
1592 }
1593 bu->gc_seq = c->gc_seq;
1594 mutex_unlock(&c->tnc_mutex);
1595 if (err)
1596 return err;
1597 /*
1598 * An enormous hole could cause bulk-read to encompass too many
1599 * page cache pages, so limit the number here.
1600 */
1601 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1602 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1603 /*
1604 * Ensure that bulk-read covers a whole number of page cache
1605 * pages.
1606 */
1607 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1608 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1609 return 0;
1610 if (bu->eof) {
1611 /* At the end of file we can round up */
1612 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1613 return 0;
1614 }
1615 /* Exclude data nodes that do not make up a whole page cache page */
1616 block = key_block(c, &bu->key) + bu->blk_cnt;
1617 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1618 while (bu->cnt) {
1619 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1620 break;
1621 bu->cnt -= 1;
1622 }
1623 return 0;
1624 }
1625
1626 /**
1627 * read_wbuf - bulk-read from a LEB with a wbuf.
1628 * @wbuf: wbuf that may overlap the read
1629 * @buf: buffer into which to read
1630 * @len: read length
1631 * @lnum: LEB number from which to read
1632 * @offs: offset from which to read
1633 *
1634 * This functions returns %0 on success or a negative error code on failure.
1635 */
1636 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1637 int offs)
1638 {
1639 const struct ubifs_info *c = wbuf->c;
1640 int rlen, overlap;
1641
1642 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1643 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1644 ubifs_assert(!(offs & 7) && offs < c->leb_size);
1645 ubifs_assert(offs + len <= c->leb_size);
1646
1647 spin_lock(&wbuf->lock);
1648 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1649 if (!overlap) {
1650 /* We may safely unlock the write-buffer and read the data */
1651 spin_unlock(&wbuf->lock);
1652 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1653 }
1654
1655 /* Don't read under wbuf */
1656 rlen = wbuf->offs - offs;
1657 if (rlen < 0)
1658 rlen = 0;
1659
1660 /* Copy the rest from the write-buffer */
1661 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1662 spin_unlock(&wbuf->lock);
1663
1664 if (rlen > 0)
1665 /* Read everything that goes before write-buffer */
1666 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1667
1668 return 0;
1669 }
1670
1671 /**
1672 * validate_data_node - validate data nodes for bulk-read.
1673 * @c: UBIFS file-system description object
1674 * @buf: buffer containing data node to validate
1675 * @zbr: zbranch of data node to validate
1676 *
1677 * This functions returns %0 on success or a negative error code on failure.
1678 */
1679 static int validate_data_node(struct ubifs_info *c, void *buf,
1680 struct ubifs_zbranch *zbr)
1681 {
1682 union ubifs_key key1;
1683 struct ubifs_ch *ch = buf;
1684 int err, len;
1685
1686 if (ch->node_type != UBIFS_DATA_NODE) {
1687 ubifs_err("bad node type (%d but expected %d)",
1688 ch->node_type, UBIFS_DATA_NODE);
1689 goto out_err;
1690 }
1691
1692 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1693 if (err) {
1694 ubifs_err("expected node type %d", UBIFS_DATA_NODE);
1695 goto out;
1696 }
1697
1698 len = le32_to_cpu(ch->len);
1699 if (len != zbr->len) {
1700 ubifs_err("bad node length %d, expected %d", len, zbr->len);
1701 goto out_err;
1702 }
1703
1704 /* Make sure the key of the read node is correct */
1705 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1706 if (!keys_eq(c, &zbr->key, &key1)) {
1707 ubifs_err("bad key in node at LEB %d:%d",
1708 zbr->lnum, zbr->offs);
1709 dbg_tnck(&zbr->key, "looked for key ");
1710 dbg_tnck(&key1, "found node's key ");
1711 goto out_err;
1712 }
1713
1714 return 0;
1715
1716 out_err:
1717 err = -EINVAL;
1718 out:
1719 ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1720 ubifs_dump_node(c, buf);
1721 dump_stack();
1722 return err;
1723 }
1724
1725 /**
1726 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1727 * @c: UBIFS file-system description object
1728 * @bu: bulk-read parameters and results
1729 *
1730 * This functions reads and validates the data nodes that were identified by the
1731 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1732 * -EAGAIN to indicate a race with GC, or another negative error code on
1733 * failure.
1734 */
1735 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1736 {
1737 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1738 struct ubifs_wbuf *wbuf;
1739 void *buf;
1740
1741 len = bu->zbranch[bu->cnt - 1].offs;
1742 len += bu->zbranch[bu->cnt - 1].len - offs;
1743 if (len > bu->buf_len) {
1744 ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
1745 return -EINVAL;
1746 }
1747
1748 /* Do the read */
1749 wbuf = ubifs_get_wbuf(c, lnum);
1750 if (wbuf)
1751 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1752 else
1753 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1754
1755 /* Check for a race with GC */
1756 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1757 return -EAGAIN;
1758
1759 if (err && err != -EBADMSG) {
1760 ubifs_err("failed to read from LEB %d:%d, error %d",
1761 lnum, offs, err);
1762 dump_stack();
1763 dbg_tnck(&bu->key, "key ");
1764 return err;
1765 }
1766
1767 /* Validate the nodes read */
1768 buf = bu->buf;
1769 for (i = 0; i < bu->cnt; i++) {
1770 err = validate_data_node(c, buf, &bu->zbranch[i]);
1771 if (err)
1772 return err;
1773 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1774 }
1775
1776 return 0;
1777 }
1778
1779 /**
1780 * do_lookup_nm- look up a "hashed" node.
1781 * @c: UBIFS file-system description object
1782 * @key: node key to lookup
1783 * @node: the node is returned here
1784 * @nm: node name
1785 *
1786 * This function look up and reads a node which contains name hash in the key.
1787 * Since the hash may have collisions, there may be many nodes with the same
1788 * key, so we have to sequentially look to all of them until the needed one is
1789 * found. This function returns zero in case of success, %-ENOENT if the node
1790 * was not found, and a negative error code in case of failure.
1791 */
1792 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1793 void *node, const struct qstr *nm)
1794 {
1795 int found, n, err;
1796 struct ubifs_znode *znode;
1797
1798 dbg_tnck(key, "name '%.*s' key ", nm->len, nm->name);
1799 mutex_lock(&c->tnc_mutex);
1800 found = ubifs_lookup_level0(c, key, &znode, &n);
1801 if (!found) {
1802 err = -ENOENT;
1803 goto out_unlock;
1804 } else if (found < 0) {
1805 err = found;
1806 goto out_unlock;
1807 }
1808
1809 ubifs_assert(n >= 0);
1810
1811 err = resolve_collision(c, key, &znode, &n, nm);
1812 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1813 if (unlikely(err < 0))
1814 goto out_unlock;
1815 if (err == 0) {
1816 err = -ENOENT;
1817 goto out_unlock;
1818 }
1819
1820 err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1821
1822 out_unlock:
1823 mutex_unlock(&c->tnc_mutex);
1824 return err;
1825 }
1826
1827 /**
1828 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1829 * @c: UBIFS file-system description object
1830 * @key: node key to lookup
1831 * @node: the node is returned here
1832 * @nm: node name
1833 *
1834 * This function look up and reads a node which contains name hash in the key.
1835 * Since the hash may have collisions, there may be many nodes with the same
1836 * key, so we have to sequentially look to all of them until the needed one is
1837 * found. This function returns zero in case of success, %-ENOENT if the node
1838 * was not found, and a negative error code in case of failure.
1839 */
1840 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1841 void *node, const struct qstr *nm)
1842 {
1843 int err, len;
1844 const struct ubifs_dent_node *dent = node;
1845
1846 /*
1847 * We assume that in most of the cases there are no name collisions and
1848 * 'ubifs_tnc_lookup()' returns us the right direntry.
1849 */
1850 err = ubifs_tnc_lookup(c, key, node);
1851 if (err)
1852 return err;
1853
1854 len = le16_to_cpu(dent->nlen);
1855 if (nm->len == len && !memcmp(dent->name, nm->name, len))
1856 return 0;
1857
1858 /*
1859 * Unluckily, there are hash collisions and we have to iterate over
1860 * them look at each direntry with colliding name hash sequentially.
1861 */
1862 return do_lookup_nm(c, key, node, nm);
1863 }
1864
1865 /**
1866 * correct_parent_keys - correct parent znodes' keys.
1867 * @c: UBIFS file-system description object
1868 * @znode: znode to correct parent znodes for
1869 *
1870 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1871 * zbranch changes, keys of parent znodes have to be corrected. This helper
1872 * function is called in such situations and corrects the keys if needed.
1873 */
1874 static void correct_parent_keys(const struct ubifs_info *c,
1875 struct ubifs_znode *znode)
1876 {
1877 union ubifs_key *key, *key1;
1878
1879 ubifs_assert(znode->parent);
1880 ubifs_assert(znode->iip == 0);
1881
1882 key = &znode->zbranch[0].key;
1883 key1 = &znode->parent->zbranch[0].key;
1884
1885 while (keys_cmp(c, key, key1) < 0) {
1886 key_copy(c, key, key1);
1887 znode = znode->parent;
1888 znode->alt = 1;
1889 if (!znode->parent || znode->iip)
1890 break;
1891 key1 = &znode->parent->zbranch[0].key;
1892 }
1893 }
1894
1895 /**
1896 * insert_zbranch - insert a zbranch into a znode.
1897 * @znode: znode into which to insert
1898 * @zbr: zbranch to insert
1899 * @n: slot number to insert to
1900 *
1901 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1902 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1903 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1904 * slot, zbranches starting from @n have to be moved right.
1905 */
1906 static void insert_zbranch(struct ubifs_znode *znode,
1907 const struct ubifs_zbranch *zbr, int n)
1908 {
1909 int i;
1910
1911 ubifs_assert(ubifs_zn_dirty(znode));
1912
1913 if (znode->level) {
1914 for (i = znode->child_cnt; i > n; i--) {
1915 znode->zbranch[i] = znode->zbranch[i - 1];
1916 if (znode->zbranch[i].znode)
1917 znode->zbranch[i].znode->iip = i;
1918 }
1919 if (zbr->znode)
1920 zbr->znode->iip = n;
1921 } else
1922 for (i = znode->child_cnt; i > n; i--)
1923 znode->zbranch[i] = znode->zbranch[i - 1];
1924
1925 znode->zbranch[n] = *zbr;
1926 znode->child_cnt += 1;
1927
1928 /*
1929 * After inserting at slot zero, the lower bound of the key range of
1930 * this znode may have changed. If this znode is subsequently split
1931 * then the upper bound of the key range may change, and furthermore
1932 * it could change to be lower than the original lower bound. If that
1933 * happens, then it will no longer be possible to find this znode in the
1934 * TNC using the key from the index node on flash. That is bad because
1935 * if it is not found, we will assume it is obsolete and may overwrite
1936 * it. Then if there is an unclean unmount, we will start using the
1937 * old index which will be broken.
1938 *
1939 * So we first mark znodes that have insertions at slot zero, and then
1940 * if they are split we add their lnum/offs to the old_idx tree.
1941 */
1942 if (n == 0)
1943 znode->alt = 1;
1944 }
1945
1946 /**
1947 * tnc_insert - insert a node into TNC.
1948 * @c: UBIFS file-system description object
1949 * @znode: znode to insert into
1950 * @zbr: branch to insert
1951 * @n: slot number to insert new zbranch to
1952 *
1953 * This function inserts a new node described by @zbr into znode @znode. If
1954 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1955 * are splat as well if needed. Returns zero in case of success or a negative
1956 * error code in case of failure.
1957 */
1958 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1959 struct ubifs_zbranch *zbr, int n)
1960 {
1961 struct ubifs_znode *zn, *zi, *zp;
1962 int i, keep, move, appending = 0;
1963 union ubifs_key *key = &zbr->key, *key1;
1964
1965 ubifs_assert(n >= 0 && n <= c->fanout);
1966
1967 /* Implement naive insert for now */
1968 again:
1969 zp = znode->parent;
1970 if (znode->child_cnt < c->fanout) {
1971 ubifs_assert(n != c->fanout);
1972 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
1973
1974 insert_zbranch(znode, zbr, n);
1975
1976 /* Ensure parent's key is correct */
1977 if (n == 0 && zp && znode->iip == 0)
1978 correct_parent_keys(c, znode);
1979
1980 return 0;
1981 }
1982
1983 /*
1984 * Unfortunately, @znode does not have more empty slots and we have to
1985 * split it.
1986 */
1987 dbg_tnck(key, "splitting level %d, key ", znode->level);
1988
1989 if (znode->alt)
1990 /*
1991 * We can no longer be sure of finding this znode by key, so we
1992 * record it in the old_idx tree.
1993 */
1994 ins_clr_old_idx_znode(c, znode);
1995
1996 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
1997 if (!zn)
1998 return -ENOMEM;
1999 zn->parent = zp;
2000 zn->level = znode->level;
2001
2002 /* Decide where to split */
2003 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2004 /* Try not to split consecutive data keys */
2005 if (n == c->fanout) {
2006 key1 = &znode->zbranch[n - 1].key;
2007 if (key_inum(c, key1) == key_inum(c, key) &&
2008 key_type(c, key1) == UBIFS_DATA_KEY)
2009 appending = 1;
2010 } else
2011 goto check_split;
2012 } else if (appending && n != c->fanout) {
2013 /* Try not to split consecutive data keys */
2014 appending = 0;
2015 check_split:
2016 if (n >= (c->fanout + 1) / 2) {
2017 key1 = &znode->zbranch[0].key;
2018 if (key_inum(c, key1) == key_inum(c, key) &&
2019 key_type(c, key1) == UBIFS_DATA_KEY) {
2020 key1 = &znode->zbranch[n].key;
2021 if (key_inum(c, key1) != key_inum(c, key) ||
2022 key_type(c, key1) != UBIFS_DATA_KEY) {
2023 keep = n;
2024 move = c->fanout - keep;
2025 zi = znode;
2026 goto do_split;
2027 }
2028 }
2029 }
2030 }
2031
2032 if (appending) {
2033 keep = c->fanout;
2034 move = 0;
2035 } else {
2036 keep = (c->fanout + 1) / 2;
2037 move = c->fanout - keep;
2038 }
2039
2040 /*
2041 * Although we don't at present, we could look at the neighbors and see
2042 * if we can move some zbranches there.
2043 */
2044
2045 if (n < keep) {
2046 /* Insert into existing znode */
2047 zi = znode;
2048 move += 1;
2049 keep -= 1;
2050 } else {
2051 /* Insert into new znode */
2052 zi = zn;
2053 n -= keep;
2054 /* Re-parent */
2055 if (zn->level != 0)
2056 zbr->znode->parent = zn;
2057 }
2058
2059 do_split:
2060
2061 __set_bit(DIRTY_ZNODE, &zn->flags);
2062 atomic_long_inc(&c->dirty_zn_cnt);
2063
2064 zn->child_cnt = move;
2065 znode->child_cnt = keep;
2066
2067 dbg_tnc("moving %d, keeping %d", move, keep);
2068
2069 /* Move zbranch */
2070 for (i = 0; i < move; i++) {
2071 zn->zbranch[i] = znode->zbranch[keep + i];
2072 /* Re-parent */
2073 if (zn->level != 0)
2074 if (zn->zbranch[i].znode) {
2075 zn->zbranch[i].znode->parent = zn;
2076 zn->zbranch[i].znode->iip = i;
2077 }
2078 }
2079
2080 /* Insert new key and branch */
2081 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2082
2083 insert_zbranch(zi, zbr, n);
2084
2085 /* Insert new znode (produced by spitting) into the parent */
2086 if (zp) {
2087 if (n == 0 && zi == znode && znode->iip == 0)
2088 correct_parent_keys(c, znode);
2089
2090 /* Locate insertion point */
2091 n = znode->iip + 1;
2092
2093 /* Tail recursion */
2094 zbr->key = zn->zbranch[0].key;
2095 zbr->znode = zn;
2096 zbr->lnum = 0;
2097 zbr->offs = 0;
2098 zbr->len = 0;
2099 znode = zp;
2100
2101 goto again;
2102 }
2103
2104 /* We have to split root znode */
2105 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2106
2107 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2108 if (!zi)
2109 return -ENOMEM;
2110
2111 zi->child_cnt = 2;
2112 zi->level = znode->level + 1;
2113
2114 __set_bit(DIRTY_ZNODE, &zi->flags);
2115 atomic_long_inc(&c->dirty_zn_cnt);
2116
2117 zi->zbranch[0].key = znode->zbranch[0].key;
2118 zi->zbranch[0].znode = znode;
2119 zi->zbranch[0].lnum = c->zroot.lnum;
2120 zi->zbranch[0].offs = c->zroot.offs;
2121 zi->zbranch[0].len = c->zroot.len;
2122 zi->zbranch[1].key = zn->zbranch[0].key;
2123 zi->zbranch[1].znode = zn;
2124
2125 c->zroot.lnum = 0;
2126 c->zroot.offs = 0;
2127 c->zroot.len = 0;
2128 c->zroot.znode = zi;
2129
2130 zn->parent = zi;
2131 zn->iip = 1;
2132 znode->parent = zi;
2133 znode->iip = 0;
2134
2135 return 0;
2136 }
2137
2138 /**
2139 * ubifs_tnc_add - add a node to TNC.
2140 * @c: UBIFS file-system description object
2141 * @key: key to add
2142 * @lnum: LEB number of node
2143 * @offs: node offset
2144 * @len: node length
2145 *
2146 * This function adds a node with key @key to TNC. The node may be new or it may
2147 * obsolete some existing one. Returns %0 on success or negative error code on
2148 * failure.
2149 */
2150 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2151 int offs, int len)
2152 {
2153 int found, n, err = 0;
2154 struct ubifs_znode *znode;
2155
2156 mutex_lock(&c->tnc_mutex);
2157 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2158 found = lookup_level0_dirty(c, key, &znode, &n);
2159 if (!found) {
2160 struct ubifs_zbranch zbr;
2161
2162 zbr.znode = NULL;
2163 zbr.lnum = lnum;
2164 zbr.offs = offs;
2165 zbr.len = len;
2166 key_copy(c, key, &zbr.key);
2167 err = tnc_insert(c, znode, &zbr, n + 1);
2168 } else if (found == 1) {
2169 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2170
2171 lnc_free(zbr);
2172 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2173 zbr->lnum = lnum;
2174 zbr->offs = offs;
2175 zbr->len = len;
2176 } else
2177 err = found;
2178 if (!err)
2179 err = dbg_check_tnc(c, 0);
2180 mutex_unlock(&c->tnc_mutex);
2181
2182 return err;
2183 }
2184
2185 /**
2186 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2187 * @c: UBIFS file-system description object
2188 * @key: key to add
2189 * @old_lnum: LEB number of old node
2190 * @old_offs: old node offset
2191 * @lnum: LEB number of node
2192 * @offs: node offset
2193 * @len: node length
2194 *
2195 * This function replaces a node with key @key in the TNC only if the old node
2196 * is found. This function is called by garbage collection when node are moved.
2197 * Returns %0 on success or negative error code on failure.
2198 */
2199 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2200 int old_lnum, int old_offs, int lnum, int offs, int len)
2201 {
2202 int found, n, err = 0;
2203 struct ubifs_znode *znode;
2204
2205 mutex_lock(&c->tnc_mutex);
2206 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2207 old_offs, lnum, offs, len);
2208 found = lookup_level0_dirty(c, key, &znode, &n);
2209 if (found < 0) {
2210 err = found;
2211 goto out_unlock;
2212 }
2213
2214 if (found == 1) {
2215 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2216
2217 found = 0;
2218 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2219 lnc_free(zbr);
2220 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2221 if (err)
2222 goto out_unlock;
2223 zbr->lnum = lnum;
2224 zbr->offs = offs;
2225 zbr->len = len;
2226 found = 1;
2227 } else if (is_hash_key(c, key)) {
2228 found = resolve_collision_directly(c, key, &znode, &n,
2229 old_lnum, old_offs);
2230 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2231 found, znode, n, old_lnum, old_offs);
2232 if (found < 0) {
2233 err = found;
2234 goto out_unlock;
2235 }
2236
2237 if (found) {
2238 /* Ensure the znode is dirtied */
2239 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2240 znode = dirty_cow_bottom_up(c, znode);
2241 if (IS_ERR(znode)) {
2242 err = PTR_ERR(znode);
2243 goto out_unlock;
2244 }
2245 }
2246 zbr = &znode->zbranch[n];
2247 lnc_free(zbr);
2248 err = ubifs_add_dirt(c, zbr->lnum,
2249 zbr->len);
2250 if (err)
2251 goto out_unlock;
2252 zbr->lnum = lnum;
2253 zbr->offs = offs;
2254 zbr->len = len;
2255 }
2256 }
2257 }
2258
2259 if (!found)
2260 err = ubifs_add_dirt(c, lnum, len);
2261
2262 if (!err)
2263 err = dbg_check_tnc(c, 0);
2264
2265 out_unlock:
2266 mutex_unlock(&c->tnc_mutex);
2267 return err;
2268 }
2269
2270 /**
2271 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2272 * @c: UBIFS file-system description object
2273 * @key: key to add
2274 * @lnum: LEB number of node
2275 * @offs: node offset
2276 * @len: node length
2277 * @nm: node name
2278 *
2279 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2280 * may have collisions, like directory entry keys.
2281 */
2282 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2283 int lnum, int offs, int len, const struct qstr *nm)
2284 {
2285 int found, n, err = 0;
2286 struct ubifs_znode *znode;
2287
2288 mutex_lock(&c->tnc_mutex);
2289 dbg_tnck(key, "LEB %d:%d, name '%.*s', key ",
2290 lnum, offs, nm->len, nm->name);
2291 found = lookup_level0_dirty(c, key, &znode, &n);
2292 if (found < 0) {
2293 err = found;
2294 goto out_unlock;
2295 }
2296
2297 if (found == 1) {
2298 if (c->replaying)
2299 found = fallible_resolve_collision(c, key, &znode, &n,
2300 nm, 1);
2301 else
2302 found = resolve_collision(c, key, &znode, &n, nm);
2303 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2304 if (found < 0) {
2305 err = found;
2306 goto out_unlock;
2307 }
2308
2309 /* Ensure the znode is dirtied */
2310 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2311 znode = dirty_cow_bottom_up(c, znode);
2312 if (IS_ERR(znode)) {
2313 err = PTR_ERR(znode);
2314 goto out_unlock;
2315 }
2316 }
2317
2318 if (found == 1) {
2319 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2320
2321 lnc_free(zbr);
2322 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2323 zbr->lnum = lnum;
2324 zbr->offs = offs;
2325 zbr->len = len;
2326 goto out_unlock;
2327 }
2328 }
2329
2330 if (!found) {
2331 struct ubifs_zbranch zbr;
2332
2333 zbr.znode = NULL;
2334 zbr.lnum = lnum;
2335 zbr.offs = offs;
2336 zbr.len = len;
2337 key_copy(c, key, &zbr.key);
2338 err = tnc_insert(c, znode, &zbr, n + 1);
2339 if (err)
2340 goto out_unlock;
2341 if (c->replaying) {
2342 /*
2343 * We did not find it in the index so there may be a
2344 * dangling branch still in the index. So we remove it
2345 * by passing 'ubifs_tnc_remove_nm()' the same key but
2346 * an unmatchable name.
2347 */
2348 struct qstr noname = { .name = "" };
2349
2350 err = dbg_check_tnc(c, 0);
2351 mutex_unlock(&c->tnc_mutex);
2352 if (err)
2353 return err;
2354 return ubifs_tnc_remove_nm(c, key, &noname);
2355 }
2356 }
2357
2358 out_unlock:
2359 if (!err)
2360 err = dbg_check_tnc(c, 0);
2361 mutex_unlock(&c->tnc_mutex);
2362 return err;
2363 }
2364
2365 /**
2366 * tnc_delete - delete a znode form TNC.
2367 * @c: UBIFS file-system description object
2368 * @znode: znode to delete from
2369 * @n: zbranch slot number to delete
2370 *
2371 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2372 * case of success and a negative error code in case of failure.
2373 */
2374 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2375 {
2376 struct ubifs_zbranch *zbr;
2377 struct ubifs_znode *zp;
2378 int i, err;
2379
2380 /* Delete without merge for now */
2381 ubifs_assert(znode->level == 0);
2382 ubifs_assert(n >= 0 && n < c->fanout);
2383 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2384
2385 zbr = &znode->zbranch[n];
2386 lnc_free(zbr);
2387
2388 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2389 if (err) {
2390 ubifs_dump_znode(c, znode);
2391 return err;
2392 }
2393
2394 /* We do not "gap" zbranch slots */
2395 for (i = n; i < znode->child_cnt - 1; i++)
2396 znode->zbranch[i] = znode->zbranch[i + 1];
2397 znode->child_cnt -= 1;
2398
2399 if (znode->child_cnt > 0)
2400 return 0;
2401
2402 /*
2403 * This was the last zbranch, we have to delete this znode from the
2404 * parent.
2405 */
2406
2407 do {
2408 ubifs_assert(!ubifs_zn_obsolete(znode));
2409 ubifs_assert(ubifs_zn_dirty(znode));
2410
2411 zp = znode->parent;
2412 n = znode->iip;
2413
2414 atomic_long_dec(&c->dirty_zn_cnt);
2415
2416 err = insert_old_idx_znode(c, znode);
2417 if (err)
2418 return err;
2419
2420 if (znode->cnext) {
2421 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2422 atomic_long_inc(&c->clean_zn_cnt);
2423 atomic_long_inc(&ubifs_clean_zn_cnt);
2424 } else
2425 kfree(znode);
2426 znode = zp;
2427 } while (znode->child_cnt == 1); /* while removing last child */
2428
2429 /* Remove from znode, entry n - 1 */
2430 znode->child_cnt -= 1;
2431 ubifs_assert(znode->level != 0);
2432 for (i = n; i < znode->child_cnt; i++) {
2433 znode->zbranch[i] = znode->zbranch[i + 1];
2434 if (znode->zbranch[i].znode)
2435 znode->zbranch[i].znode->iip = i;
2436 }
2437
2438 /*
2439 * If this is the root and it has only 1 child then
2440 * collapse the tree.
2441 */
2442 if (!znode->parent) {
2443 while (znode->child_cnt == 1 && znode->level != 0) {
2444 zp = znode;
2445 zbr = &znode->zbranch[0];
2446 znode = get_znode(c, znode, 0);
2447 if (IS_ERR(znode))
2448 return PTR_ERR(znode);
2449 znode = dirty_cow_znode(c, zbr);
2450 if (IS_ERR(znode))
2451 return PTR_ERR(znode);
2452 znode->parent = NULL;
2453 znode->iip = 0;
2454 if (c->zroot.len) {
2455 err = insert_old_idx(c, c->zroot.lnum,
2456 c->zroot.offs);
2457 if (err)
2458 return err;
2459 }
2460 c->zroot.lnum = zbr->lnum;
2461 c->zroot.offs = zbr->offs;
2462 c->zroot.len = zbr->len;
2463 c->zroot.znode = znode;
2464 ubifs_assert(!ubifs_zn_obsolete(zp));
2465 ubifs_assert(ubifs_zn_dirty(zp));
2466 atomic_long_dec(&c->dirty_zn_cnt);
2467
2468 if (zp->cnext) {
2469 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2470 atomic_long_inc(&c->clean_zn_cnt);
2471 atomic_long_inc(&ubifs_clean_zn_cnt);
2472 } else
2473 kfree(zp);
2474 }
2475 }
2476
2477 return 0;
2478 }
2479
2480 /**
2481 * ubifs_tnc_remove - remove an index entry of a node.
2482 * @c: UBIFS file-system description object
2483 * @key: key of node
2484 *
2485 * Returns %0 on success or negative error code on failure.
2486 */
2487 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2488 {
2489 int found, n, err = 0;
2490 struct ubifs_znode *znode;
2491
2492 mutex_lock(&c->tnc_mutex);
2493 dbg_tnck(key, "key ");
2494 found = lookup_level0_dirty(c, key, &znode, &n);
2495 if (found < 0) {
2496 err = found;
2497 goto out_unlock;
2498 }
2499 if (found == 1)
2500 err = tnc_delete(c, znode, n);
2501 if (!err)
2502 err = dbg_check_tnc(c, 0);
2503
2504 out_unlock:
2505 mutex_unlock(&c->tnc_mutex);
2506 return err;
2507 }
2508
2509 /**
2510 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2511 * @c: UBIFS file-system description object
2512 * @key: key of node
2513 * @nm: directory entry name
2514 *
2515 * Returns %0 on success or negative error code on failure.
2516 */
2517 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2518 const struct qstr *nm)
2519 {
2520 int n, err;
2521 struct ubifs_znode *znode;
2522
2523 mutex_lock(&c->tnc_mutex);
2524 dbg_tnck(key, "%.*s, key ", nm->len, nm->name);
2525 err = lookup_level0_dirty(c, key, &znode, &n);
2526 if (err < 0)
2527 goto out_unlock;
2528
2529 if (err) {
2530 if (c->replaying)
2531 err = fallible_resolve_collision(c, key, &znode, &n,
2532 nm, 0);
2533 else
2534 err = resolve_collision(c, key, &znode, &n, nm);
2535 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2536 if (err < 0)
2537 goto out_unlock;
2538 if (err) {
2539 /* Ensure the znode is dirtied */
2540 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2541 znode = dirty_cow_bottom_up(c, znode);
2542 if (IS_ERR(znode)) {
2543 err = PTR_ERR(znode);
2544 goto out_unlock;
2545 }
2546 }
2547 err = tnc_delete(c, znode, n);
2548 }
2549 }
2550
2551 out_unlock:
2552 if (!err)
2553 err = dbg_check_tnc(c, 0);
2554 mutex_unlock(&c->tnc_mutex);
2555 return err;
2556 }
2557
2558 /**
2559 * key_in_range - determine if a key falls within a range of keys.
2560 * @c: UBIFS file-system description object
2561 * @key: key to check
2562 * @from_key: lowest key in range
2563 * @to_key: highest key in range
2564 *
2565 * This function returns %1 if the key is in range and %0 otherwise.
2566 */
2567 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2568 union ubifs_key *from_key, union ubifs_key *to_key)
2569 {
2570 if (keys_cmp(c, key, from_key) < 0)
2571 return 0;
2572 if (keys_cmp(c, key, to_key) > 0)
2573 return 0;
2574 return 1;
2575 }
2576
2577 /**
2578 * ubifs_tnc_remove_range - remove index entries in range.
2579 * @c: UBIFS file-system description object
2580 * @from_key: lowest key to remove
2581 * @to_key: highest key to remove
2582 *
2583 * This function removes index entries starting at @from_key and ending at
2584 * @to_key. This function returns zero in case of success and a negative error
2585 * code in case of failure.
2586 */
2587 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2588 union ubifs_key *to_key)
2589 {
2590 int i, n, k, err = 0;
2591 struct ubifs_znode *znode;
2592 union ubifs_key *key;
2593
2594 mutex_lock(&c->tnc_mutex);
2595 while (1) {
2596 /* Find first level 0 znode that contains keys to remove */
2597 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2598 if (err < 0)
2599 goto out_unlock;
2600
2601 if (err)
2602 key = from_key;
2603 else {
2604 err = tnc_next(c, &znode, &n);
2605 if (err == -ENOENT) {
2606 err = 0;
2607 goto out_unlock;
2608 }
2609 if (err < 0)
2610 goto out_unlock;
2611 key = &znode->zbranch[n].key;
2612 if (!key_in_range(c, key, from_key, to_key)) {
2613 err = 0;
2614 goto out_unlock;
2615 }
2616 }
2617
2618 /* Ensure the znode is dirtied */
2619 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2620 znode = dirty_cow_bottom_up(c, znode);
2621 if (IS_ERR(znode)) {
2622 err = PTR_ERR(znode);
2623 goto out_unlock;
2624 }
2625 }
2626
2627 /* Remove all keys in range except the first */
2628 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2629 key = &znode->zbranch[i].key;
2630 if (!key_in_range(c, key, from_key, to_key))
2631 break;
2632 lnc_free(&znode->zbranch[i]);
2633 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2634 znode->zbranch[i].len);
2635 if (err) {
2636 ubifs_dump_znode(c, znode);
2637 goto out_unlock;
2638 }
2639 dbg_tnck(key, "removing key ");
2640 }
2641 if (k) {
2642 for (i = n + 1 + k; i < znode->child_cnt; i++)
2643 znode->zbranch[i - k] = znode->zbranch[i];
2644 znode->child_cnt -= k;
2645 }
2646
2647 /* Now delete the first */
2648 err = tnc_delete(c, znode, n);
2649 if (err)
2650 goto out_unlock;
2651 }
2652
2653 out_unlock:
2654 if (!err)
2655 err = dbg_check_tnc(c, 0);
2656 mutex_unlock(&c->tnc_mutex);
2657 return err;
2658 }
2659
2660 /**
2661 * ubifs_tnc_remove_ino - remove an inode from TNC.
2662 * @c: UBIFS file-system description object
2663 * @inum: inode number to remove
2664 *
2665 * This function remove inode @inum and all the extended attributes associated
2666 * with the anode from TNC and returns zero in case of success or a negative
2667 * error code in case of failure.
2668 */
2669 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2670 {
2671 union ubifs_key key1, key2;
2672 struct ubifs_dent_node *xent, *pxent = NULL;
2673 struct qstr nm = { .name = NULL };
2674
2675 dbg_tnc("ino %lu", (unsigned long)inum);
2676
2677 /*
2678 * Walk all extended attribute entries and remove them together with
2679 * corresponding extended attribute inodes.
2680 */
2681 lowest_xent_key(c, &key1, inum);
2682 while (1) {
2683 ino_t xattr_inum;
2684 int err;
2685
2686 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2687 if (IS_ERR(xent)) {
2688 err = PTR_ERR(xent);
2689 if (err == -ENOENT)
2690 break;
2691 return err;
2692 }
2693
2694 xattr_inum = le64_to_cpu(xent->inum);
2695 dbg_tnc("xent '%s', ino %lu", xent->name,
2696 (unsigned long)xattr_inum);
2697
2698 nm.name = xent->name;
2699 nm.len = le16_to_cpu(xent->nlen);
2700 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2701 if (err) {
2702 kfree(xent);
2703 return err;
2704 }
2705
2706 lowest_ino_key(c, &key1, xattr_inum);
2707 highest_ino_key(c, &key2, xattr_inum);
2708 err = ubifs_tnc_remove_range(c, &key1, &key2);
2709 if (err) {
2710 kfree(xent);
2711 return err;
2712 }
2713
2714 kfree(pxent);
2715 pxent = xent;
2716 key_read(c, &xent->key, &key1);
2717 }
2718
2719 kfree(pxent);
2720 lowest_ino_key(c, &key1, inum);
2721 highest_ino_key(c, &key2, inum);
2722
2723 return ubifs_tnc_remove_range(c, &key1, &key2);
2724 }
2725
2726 /**
2727 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2728 * @c: UBIFS file-system description object
2729 * @key: key of last entry
2730 * @nm: name of last entry found or %NULL
2731 *
2732 * This function finds and reads the next directory or extended attribute entry
2733 * after the given key (@key) if there is one. @nm is used to resolve
2734 * collisions.
2735 *
2736 * If the name of the current entry is not known and only the key is known,
2737 * @nm->name has to be %NULL. In this case the semantics of this function is a
2738 * little bit different and it returns the entry corresponding to this key, not
2739 * the next one. If the key was not found, the closest "right" entry is
2740 * returned.
2741 *
2742 * If the fist entry has to be found, @key has to contain the lowest possible
2743 * key value for this inode and @name has to be %NULL.
2744 *
2745 * This function returns the found directory or extended attribute entry node
2746 * in case of success, %-ENOENT is returned if no entry was found, and a
2747 * negative error code is returned in case of failure.
2748 */
2749 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2750 union ubifs_key *key,
2751 const struct qstr *nm)
2752 {
2753 int n, err, type = key_type(c, key);
2754 struct ubifs_znode *znode;
2755 struct ubifs_dent_node *dent;
2756 struct ubifs_zbranch *zbr;
2757 union ubifs_key *dkey;
2758
2759 dbg_tnck(key, "%s ", nm->name ? (char *)nm->name : "(lowest)");
2760 ubifs_assert(is_hash_key(c, key));
2761
2762 mutex_lock(&c->tnc_mutex);
2763 err = ubifs_lookup_level0(c, key, &znode, &n);
2764 if (unlikely(err < 0))
2765 goto out_unlock;
2766
2767 if (nm->name) {
2768 if (err) {
2769 /* Handle collisions */
2770 err = resolve_collision(c, key, &znode, &n, nm);
2771 dbg_tnc("rc returned %d, znode %p, n %d",
2772 err, znode, n);
2773 if (unlikely(err < 0))
2774 goto out_unlock;
2775 }
2776
2777 /* Now find next entry */
2778 err = tnc_next(c, &znode, &n);
2779 if (unlikely(err))
2780 goto out_unlock;
2781 } else {
2782 /*
2783 * The full name of the entry was not given, in which case the
2784 * behavior of this function is a little different and it
2785 * returns current entry, not the next one.
2786 */
2787 if (!err) {
2788 /*
2789 * However, the given key does not exist in the TNC
2790 * tree and @znode/@n variables contain the closest
2791 * "preceding" element. Switch to the next one.
2792 */
2793 err = tnc_next(c, &znode, &n);
2794 if (err)
2795 goto out_unlock;
2796 }
2797 }
2798
2799 zbr = &znode->zbranch[n];
2800 dent = kmalloc(zbr->len, GFP_NOFS);
2801 if (unlikely(!dent)) {
2802 err = -ENOMEM;
2803 goto out_unlock;
2804 }
2805
2806 /*
2807 * The above 'tnc_next()' call could lead us to the next inode, check
2808 * this.
2809 */
2810 dkey = &zbr->key;
2811 if (key_inum(c, dkey) != key_inum(c, key) ||
2812 key_type(c, dkey) != type) {
2813 err = -ENOENT;
2814 goto out_free;
2815 }
2816
2817 err = tnc_read_node_nm(c, zbr, dent);
2818 if (unlikely(err))
2819 goto out_free;
2820
2821 mutex_unlock(&c->tnc_mutex);
2822 return dent;
2823
2824 out_free:
2825 kfree(dent);
2826 out_unlock:
2827 mutex_unlock(&c->tnc_mutex);
2828 return ERR_PTR(err);
2829 }
2830
2831 #ifndef __UBOOT__
2832 /**
2833 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2834 * @c: UBIFS file-system description object
2835 *
2836 * Destroy left-over obsolete znodes from a failed commit.
2837 */
2838 static void tnc_destroy_cnext(struct ubifs_info *c)
2839 {
2840 struct ubifs_znode *cnext;
2841
2842 if (!c->cnext)
2843 return;
2844 ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2845 cnext = c->cnext;
2846 do {
2847 struct ubifs_znode *znode = cnext;
2848
2849 cnext = cnext->cnext;
2850 if (ubifs_zn_obsolete(znode))
2851 kfree(znode);
2852 } while (cnext && cnext != c->cnext);
2853 }
2854
2855 /**
2856 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2857 * @c: UBIFS file-system description object
2858 */
2859 void ubifs_tnc_close(struct ubifs_info *c)
2860 {
2861 tnc_destroy_cnext(c);
2862 if (c->zroot.znode) {
2863 long n;
2864
2865 ubifs_destroy_tnc_subtree(c->zroot.znode);
2866 n = atomic_long_read(&c->clean_zn_cnt);
2867 atomic_long_sub(n, &ubifs_clean_zn_cnt);
2868 }
2869 kfree(c->gap_lebs);
2870 kfree(c->ilebs);
2871 destroy_old_idx(c);
2872 }
2873 #endif
2874
2875 /**
2876 * left_znode - get the znode to the left.
2877 * @c: UBIFS file-system description object
2878 * @znode: znode
2879 *
2880 * This function returns a pointer to the znode to the left of @znode or NULL if
2881 * there is not one. A negative error code is returned on failure.
2882 */
2883 static struct ubifs_znode *left_znode(struct ubifs_info *c,
2884 struct ubifs_znode *znode)
2885 {
2886 int level = znode->level;
2887
2888 while (1) {
2889 int n = znode->iip - 1;
2890
2891 /* Go up until we can go left */
2892 znode = znode->parent;
2893 if (!znode)
2894 return NULL;
2895 if (n >= 0) {
2896 /* Now go down the rightmost branch to 'level' */
2897 znode = get_znode(c, znode, n);
2898 if (IS_ERR(znode))
2899 return znode;
2900 while (znode->level != level) {
2901 n = znode->child_cnt - 1;
2902 znode = get_znode(c, znode, n);
2903 if (IS_ERR(znode))
2904 return znode;
2905 }
2906 break;
2907 }
2908 }
2909 return znode;
2910 }
2911
2912 /**
2913 * right_znode - get the znode to the right.
2914 * @c: UBIFS file-system description object
2915 * @znode: znode
2916 *
2917 * This function returns a pointer to the znode to the right of @znode or NULL
2918 * if there is not one. A negative error code is returned on failure.
2919 */
2920 static struct ubifs_znode *right_znode(struct ubifs_info *c,
2921 struct ubifs_znode *znode)
2922 {
2923 int level = znode->level;
2924
2925 while (1) {
2926 int n = znode->iip + 1;
2927
2928 /* Go up until we can go right */
2929 znode = znode->parent;
2930 if (!znode)
2931 return NULL;
2932 if (n < znode->child_cnt) {
2933 /* Now go down the leftmost branch to 'level' */
2934 znode = get_znode(c, znode, n);
2935 if (IS_ERR(znode))
2936 return znode;
2937 while (znode->level != level) {
2938 znode = get_znode(c, znode, 0);
2939 if (IS_ERR(znode))
2940 return znode;
2941 }
2942 break;
2943 }
2944 }
2945 return znode;
2946 }
2947
2948 /**
2949 * lookup_znode - find a particular indexing node from TNC.
2950 * @c: UBIFS file-system description object
2951 * @key: index node key to lookup
2952 * @level: index node level
2953 * @lnum: index node LEB number
2954 * @offs: index node offset
2955 *
2956 * This function searches an indexing node by its first key @key and its
2957 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2958 * nodes it traverses to TNC. This function is called for indexing nodes which
2959 * were found on the media by scanning, for example when garbage-collecting or
2960 * when doing in-the-gaps commit. This means that the indexing node which is
2961 * looked for does not have to have exactly the same leftmost key @key, because
2962 * the leftmost key may have been changed, in which case TNC will contain a
2963 * dirty znode which still refers the same @lnum:@offs. This function is clever
2964 * enough to recognize such indexing nodes.
2965 *
2966 * Note, if a znode was deleted or changed too much, then this function will
2967 * not find it. For situations like this UBIFS has the old index RB-tree
2968 * (indexed by @lnum:@offs).
2969 *
2970 * This function returns a pointer to the znode found or %NULL if it is not
2971 * found. A negative error code is returned on failure.
2972 */
2973 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2974 union ubifs_key *key, int level,
2975 int lnum, int offs)
2976 {
2977 struct ubifs_znode *znode, *zn;
2978 int n, nn;
2979
2980 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
2981
2982 /*
2983 * The arguments have probably been read off flash, so don't assume
2984 * they are valid.
2985 */
2986 if (level < 0)
2987 return ERR_PTR(-EINVAL);
2988
2989 /* Get the root znode */
2990 znode = c->zroot.znode;
2991 if (!znode) {
2992 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2993 if (IS_ERR(znode))
2994 return znode;
2995 }
2996 /* Check if it is the one we are looking for */
2997 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
2998 return znode;
2999 /* Descend to the parent level i.e. (level + 1) */
3000 if (level >= znode->level)
3001 return NULL;
3002 while (1) {
3003 ubifs_search_zbranch(c, znode, key, &n);
3004 if (n < 0) {
3005 /*
3006 * We reached a znode where the leftmost key is greater
3007 * than the key we are searching for. This is the same
3008 * situation as the one described in a huge comment at
3009 * the end of the 'ubifs_lookup_level0()' function. And
3010 * for exactly the same reasons we have to try to look
3011 * left before giving up.
3012 */
3013 znode = left_znode(c, znode);
3014 if (!znode)
3015 return NULL;
3016 if (IS_ERR(znode))
3017 return znode;
3018 ubifs_search_zbranch(c, znode, key, &n);
3019 ubifs_assert(n >= 0);
3020 }
3021 if (znode->level == level + 1)
3022 break;
3023 znode = get_znode(c, znode, n);
3024 if (IS_ERR(znode))
3025 return znode;
3026 }
3027 /* Check if the child is the one we are looking for */
3028 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3029 return get_znode(c, znode, n);
3030 /* If the key is unique, there is nowhere else to look */
3031 if (!is_hash_key(c, key))
3032 return NULL;
3033 /*
3034 * The key is not unique and so may be also in the znodes to either
3035 * side.
3036 */
3037 zn = znode;
3038 nn = n;
3039 /* Look left */
3040 while (1) {
3041 /* Move one branch to the left */
3042 if (n)
3043 n -= 1;
3044 else {
3045 znode = left_znode(c, znode);
3046 if (!znode)
3047 break;
3048 if (IS_ERR(znode))
3049 return znode;
3050 n = znode->child_cnt - 1;
3051 }
3052 /* Check it */
3053 if (znode->zbranch[n].lnum == lnum &&
3054 znode->zbranch[n].offs == offs)
3055 return get_znode(c, znode, n);
3056 /* Stop if the key is less than the one we are looking for */
3057 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3058 break;
3059 }
3060 /* Back to the middle */
3061 znode = zn;
3062 n = nn;
3063 /* Look right */
3064 while (1) {
3065 /* Move one branch to the right */
3066 if (++n >= znode->child_cnt) {
3067 znode = right_znode(c, znode);
3068 if (!znode)
3069 break;
3070 if (IS_ERR(znode))
3071 return znode;
3072 n = 0;
3073 }
3074 /* Check it */
3075 if (znode->zbranch[n].lnum == lnum &&
3076 znode->zbranch[n].offs == offs)
3077 return get_znode(c, znode, n);
3078 /* Stop if the key is greater than the one we are looking for */
3079 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3080 break;
3081 }
3082 return NULL;
3083 }
3084
3085 /**
3086 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3087 * @c: UBIFS file-system description object
3088 * @key: key of index node
3089 * @level: index node level
3090 * @lnum: LEB number of index node
3091 * @offs: offset of index node
3092 *
3093 * This function returns %0 if the index node is not referred to in the TNC, %1
3094 * if the index node is referred to in the TNC and the corresponding znode is
3095 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3096 * znode is clean, and a negative error code in case of failure.
3097 *
3098 * Note, the @key argument has to be the key of the first child. Also note,
3099 * this function relies on the fact that 0:0 is never a valid LEB number and
3100 * offset for a main-area node.
3101 */
3102 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3103 int lnum, int offs)
3104 {
3105 struct ubifs_znode *znode;
3106
3107 znode = lookup_znode(c, key, level, lnum, offs);
3108 if (!znode)
3109 return 0;
3110 if (IS_ERR(znode))
3111 return PTR_ERR(znode);
3112
3113 return ubifs_zn_dirty(znode) ? 1 : 2;
3114 }
3115
3116 /**
3117 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3118 * @c: UBIFS file-system description object
3119 * @key: node key
3120 * @lnum: node LEB number
3121 * @offs: node offset
3122 *
3123 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3124 * not, and a negative error code in case of failure.
3125 *
3126 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3127 * and offset for a main-area node.
3128 */
3129 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3130 int lnum, int offs)
3131 {
3132 struct ubifs_zbranch *zbr;
3133 struct ubifs_znode *znode, *zn;
3134 int n, found, err, nn;
3135 const int unique = !is_hash_key(c, key);
3136
3137 found = ubifs_lookup_level0(c, key, &znode, &n);
3138 if (found < 0)
3139 return found; /* Error code */
3140 if (!found)
3141 return 0;
3142 zbr = &znode->zbranch[n];
3143 if (lnum == zbr->lnum && offs == zbr->offs)
3144 return 1; /* Found it */
3145 if (unique)
3146 return 0;
3147 /*
3148 * Because the key is not unique, we have to look left
3149 * and right as well
3150 */
3151 zn = znode;
3152 nn = n;
3153 /* Look left */
3154 while (1) {
3155 err = tnc_prev(c, &znode, &n);
3156 if (err == -ENOENT)
3157 break;
3158 if (err)
3159 return err;
3160 if (keys_cmp(c, key, &znode->zbranch[n].key))
3161 break;
3162 zbr = &znode->zbranch[n];
3163 if (lnum == zbr->lnum && offs == zbr->offs)
3164 return 1; /* Found it */
3165 }
3166 /* Look right */
3167 znode = zn;
3168 n = nn;
3169 while (1) {
3170 err = tnc_next(c, &znode, &n);
3171 if (err) {
3172 if (err == -ENOENT)
3173 return 0;
3174 return err;
3175 }
3176 if (keys_cmp(c, key, &znode->zbranch[n].key))
3177 break;
3178 zbr = &znode->zbranch[n];
3179 if (lnum == zbr->lnum && offs == zbr->offs)
3180 return 1; /* Found it */
3181 }
3182 return 0;
3183 }
3184
3185 /**
3186 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3187 * @c: UBIFS file-system description object
3188 * @key: node key
3189 * @level: index node level (if it is an index node)
3190 * @lnum: node LEB number
3191 * @offs: node offset
3192 * @is_idx: non-zero if the node is an index node
3193 *
3194 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3195 * negative error code in case of failure. For index nodes, @key has to be the
3196 * key of the first child. An index node is considered to be in the TNC only if
3197 * the corresponding znode is clean or has not been loaded.
3198 */
3199 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3200 int lnum, int offs, int is_idx)
3201 {
3202 int err;
3203
3204 mutex_lock(&c->tnc_mutex);
3205 if (is_idx) {
3206 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3207 if (err < 0)
3208 goto out_unlock;
3209 if (err == 1)
3210 /* The index node was found but it was dirty */
3211 err = 0;
3212 else if (err == 2)
3213 /* The index node was found and it was clean */
3214 err = 1;
3215 else
3216 BUG_ON(err != 0);
3217 } else
3218 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3219
3220 out_unlock:
3221 mutex_unlock(&c->tnc_mutex);
3222 return err;
3223 }
3224
3225 /**
3226 * ubifs_dirty_idx_node - dirty an index node.
3227 * @c: UBIFS file-system description object
3228 * @key: index node key
3229 * @level: index node level
3230 * @lnum: index node LEB number
3231 * @offs: index node offset
3232 *
3233 * This function loads and dirties an index node so that it can be garbage
3234 * collected. The @key argument has to be the key of the first child. This
3235 * function relies on the fact that 0:0 is never a valid LEB number and offset
3236 * for a main-area node. Returns %0 on success and a negative error code on
3237 * failure.
3238 */
3239 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3240 int lnum, int offs)
3241 {
3242 struct ubifs_znode *znode;
3243 int err = 0;
3244
3245 mutex_lock(&c->tnc_mutex);
3246 znode = lookup_znode(c, key, level, lnum, offs);
3247 if (!znode)
3248 goto out_unlock;
3249 if (IS_ERR(znode)) {
3250 err = PTR_ERR(znode);
3251 goto out_unlock;
3252 }
3253 znode = dirty_cow_bottom_up(c, znode);
3254 if (IS_ERR(znode)) {
3255 err = PTR_ERR(znode);
3256 goto out_unlock;
3257 }
3258
3259 out_unlock:
3260 mutex_unlock(&c->tnc_mutex);
3261 return err;
3262 }
3263
3264 /**
3265 * dbg_check_inode_size - check if inode size is correct.
3266 * @c: UBIFS file-system description object
3267 * @inum: inode number
3268 * @size: inode size
3269 *
3270 * This function makes sure that the inode size (@size) is correct and it does
3271 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3272 * if it has a data page beyond @size, and other negative error code in case of
3273 * other errors.
3274 */
3275 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3276 loff_t size)
3277 {
3278 int err, n;
3279 union ubifs_key from_key, to_key, *key;
3280 struct ubifs_znode *znode;
3281 unsigned int block;
3282
3283 if (!S_ISREG(inode->i_mode))
3284 return 0;
3285 if (!dbg_is_chk_gen(c))
3286 return 0;
3287
3288 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3289 data_key_init(c, &from_key, inode->i_ino, block);
3290 highest_data_key(c, &to_key, inode->i_ino);
3291
3292 mutex_lock(&c->tnc_mutex);
3293 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3294 if (err < 0)
3295 goto out_unlock;
3296
3297 if (err) {
3298 err = -EINVAL;
3299 key = &from_key;
3300 goto out_dump;
3301 }
3302
3303 err = tnc_next(c, &znode, &n);
3304 if (err == -ENOENT) {
3305 err = 0;
3306 goto out_unlock;
3307 }
3308 if (err < 0)
3309 goto out_unlock;
3310
3311 ubifs_assert(err == 0);
3312 key = &znode->zbranch[n].key;
3313 if (!key_in_range(c, key, &from_key, &to_key))
3314 goto out_unlock;
3315
3316 out_dump:
3317 block = key_block(c, key);
3318 ubifs_err("inode %lu has size %lld, but there are data at offset %lld",
3319 (unsigned long)inode->i_ino, size,
3320 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3321 mutex_unlock(&c->tnc_mutex);
3322 ubifs_dump_inode(c, inode);
3323 dump_stack();
3324 return -EINVAL;
3325
3326 out_unlock:
3327 mutex_unlock(&c->tnc_mutex);
3328 return err;
3329 }