]> git.ipfire.org Git - thirdparty/u-boot.git/blob - fs/ubifs/tnc_misc.c
Merge https://gitlab.denx.de/u-boot/custodians/u-boot-samsung.git
[thirdparty/u-boot.git] / fs / ubifs / tnc_misc.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
9 */
10
11 /*
12 * This file contains miscelanious TNC-related functions shared betweend
13 * different files. This file does not form any logically separate TNC
14 * sub-system. The file was created because there is a lot of TNC code and
15 * putting it all in one file would make that file too big and unreadable.
16 */
17
18 #ifdef __UBOOT__
19 #include <log.h>
20 #include <dm/devres.h>
21 #include <linux/err.h>
22 #endif
23 #include "ubifs.h"
24
25 /**
26 * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
27 * @zr: root of the subtree to traverse
28 * @znode: previous znode
29 *
30 * This function implements levelorder TNC traversal. The LNC is ignored.
31 * Returns the next element or %NULL if @znode is already the last one.
32 */
33 struct ubifs_znode *ubifs_tnc_levelorder_next(struct ubifs_znode *zr,
34 struct ubifs_znode *znode)
35 {
36 int level, iip, level_search = 0;
37 struct ubifs_znode *zn;
38
39 ubifs_assert(zr);
40
41 if (unlikely(!znode))
42 return zr;
43
44 if (unlikely(znode == zr)) {
45 if (znode->level == 0)
46 return NULL;
47 return ubifs_tnc_find_child(zr, 0);
48 }
49
50 level = znode->level;
51
52 iip = znode->iip;
53 while (1) {
54 ubifs_assert(znode->level <= zr->level);
55
56 /*
57 * First walk up until there is a znode with next branch to
58 * look at.
59 */
60 while (znode->parent != zr && iip >= znode->parent->child_cnt) {
61 znode = znode->parent;
62 iip = znode->iip;
63 }
64
65 if (unlikely(znode->parent == zr &&
66 iip >= znode->parent->child_cnt)) {
67 /* This level is done, switch to the lower one */
68 level -= 1;
69 if (level_search || level < 0)
70 /*
71 * We were already looking for znode at lower
72 * level ('level_search'). As we are here
73 * again, it just does not exist. Or all levels
74 * were finished ('level < 0').
75 */
76 return NULL;
77
78 level_search = 1;
79 iip = -1;
80 znode = ubifs_tnc_find_child(zr, 0);
81 ubifs_assert(znode);
82 }
83
84 /* Switch to the next index */
85 zn = ubifs_tnc_find_child(znode->parent, iip + 1);
86 if (!zn) {
87 /* No more children to look at, we have walk up */
88 iip = znode->parent->child_cnt;
89 continue;
90 }
91
92 /* Walk back down to the level we came from ('level') */
93 while (zn->level != level) {
94 znode = zn;
95 zn = ubifs_tnc_find_child(zn, 0);
96 if (!zn) {
97 /*
98 * This path is not too deep so it does not
99 * reach 'level'. Try next path.
100 */
101 iip = znode->iip;
102 break;
103 }
104 }
105
106 if (zn) {
107 ubifs_assert(zn->level >= 0);
108 return zn;
109 }
110 }
111 }
112
113 /**
114 * ubifs_search_zbranch - search znode branch.
115 * @c: UBIFS file-system description object
116 * @znode: znode to search in
117 * @key: key to search for
118 * @n: znode branch slot number is returned here
119 *
120 * This is a helper function which search branch with key @key in @znode using
121 * binary search. The result of the search may be:
122 * o exact match, then %1 is returned, and the slot number of the branch is
123 * stored in @n;
124 * o no exact match, then %0 is returned and the slot number of the left
125 * closest branch is returned in @n; the slot if all keys in this znode are
126 * greater than @key, then %-1 is returned in @n.
127 */
128 int ubifs_search_zbranch(const struct ubifs_info *c,
129 const struct ubifs_znode *znode,
130 const union ubifs_key *key, int *n)
131 {
132 int beg = 0, end = znode->child_cnt, uninitialized_var(mid);
133 int uninitialized_var(cmp);
134 const struct ubifs_zbranch *zbr = &znode->zbranch[0];
135
136 ubifs_assert(end > beg);
137
138 while (end > beg) {
139 mid = (beg + end) >> 1;
140 cmp = keys_cmp(c, key, &zbr[mid].key);
141 if (cmp > 0)
142 beg = mid + 1;
143 else if (cmp < 0)
144 end = mid;
145 else {
146 *n = mid;
147 return 1;
148 }
149 }
150
151 *n = end - 1;
152
153 /* The insert point is after *n */
154 ubifs_assert(*n >= -1 && *n < znode->child_cnt);
155 if (*n == -1)
156 ubifs_assert(keys_cmp(c, key, &zbr[0].key) < 0);
157 else
158 ubifs_assert(keys_cmp(c, key, &zbr[*n].key) > 0);
159 if (*n + 1 < znode->child_cnt)
160 ubifs_assert(keys_cmp(c, key, &zbr[*n + 1].key) < 0);
161
162 return 0;
163 }
164
165 /**
166 * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
167 * @znode: znode to start at (root of the sub-tree to traverse)
168 *
169 * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
170 * ignored.
171 */
172 struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode)
173 {
174 if (unlikely(!znode))
175 return NULL;
176
177 while (znode->level > 0) {
178 struct ubifs_znode *child;
179
180 child = ubifs_tnc_find_child(znode, 0);
181 if (!child)
182 return znode;
183 znode = child;
184 }
185
186 return znode;
187 }
188
189 /**
190 * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
191 * @znode: previous znode
192 *
193 * This function implements postorder TNC traversal. The LNC is ignored.
194 * Returns the next element or %NULL if @znode is already the last one.
195 */
196 struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode)
197 {
198 struct ubifs_znode *zn;
199
200 ubifs_assert(znode);
201 if (unlikely(!znode->parent))
202 return NULL;
203
204 /* Switch to the next index in the parent */
205 zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1);
206 if (!zn)
207 /* This is in fact the last child, return parent */
208 return znode->parent;
209
210 /* Go to the first znode in this new subtree */
211 return ubifs_tnc_postorder_first(zn);
212 }
213
214 /**
215 * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
216 * @znode: znode defining subtree to destroy
217 *
218 * This function destroys subtree of the TNC tree. Returns number of clean
219 * znodes in the subtree.
220 */
221 long ubifs_destroy_tnc_subtree(struct ubifs_znode *znode)
222 {
223 struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode);
224 long clean_freed = 0;
225 int n;
226
227 ubifs_assert(zn);
228 while (1) {
229 for (n = 0; n < zn->child_cnt; n++) {
230 if (!zn->zbranch[n].znode)
231 continue;
232
233 if (zn->level > 0 &&
234 !ubifs_zn_dirty(zn->zbranch[n].znode))
235 clean_freed += 1;
236
237 cond_resched();
238 kfree(zn->zbranch[n].znode);
239 }
240
241 if (zn == znode) {
242 if (!ubifs_zn_dirty(zn))
243 clean_freed += 1;
244 kfree(zn);
245 return clean_freed;
246 }
247
248 zn = ubifs_tnc_postorder_next(zn);
249 }
250 }
251
252 /**
253 * read_znode - read an indexing node from flash and fill znode.
254 * @c: UBIFS file-system description object
255 * @lnum: LEB of the indexing node to read
256 * @offs: node offset
257 * @len: node length
258 * @znode: znode to read to
259 *
260 * This function reads an indexing node from the flash media and fills znode
261 * with the read data. Returns zero in case of success and a negative error
262 * code in case of failure. The read indexing node is validated and if anything
263 * is wrong with it, this function prints complaint messages and returns
264 * %-EINVAL.
265 */
266 static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
267 struct ubifs_znode *znode)
268 {
269 int i, err, type, cmp;
270 struct ubifs_idx_node *idx;
271
272 idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
273 if (!idx)
274 return -ENOMEM;
275
276 err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
277 if (err < 0) {
278 kfree(idx);
279 return err;
280 }
281
282 znode->child_cnt = le16_to_cpu(idx->child_cnt);
283 znode->level = le16_to_cpu(idx->level);
284
285 dbg_tnc("LEB %d:%d, level %d, %d branch",
286 lnum, offs, znode->level, znode->child_cnt);
287
288 if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
289 ubifs_err(c, "current fanout %d, branch count %d",
290 c->fanout, znode->child_cnt);
291 ubifs_err(c, "max levels %d, znode level %d",
292 UBIFS_MAX_LEVELS, znode->level);
293 err = 1;
294 goto out_dump;
295 }
296
297 for (i = 0; i < znode->child_cnt; i++) {
298 const struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
299 struct ubifs_zbranch *zbr = &znode->zbranch[i];
300
301 key_read(c, &br->key, &zbr->key);
302 zbr->lnum = le32_to_cpu(br->lnum);
303 zbr->offs = le32_to_cpu(br->offs);
304 zbr->len = le32_to_cpu(br->len);
305 zbr->znode = NULL;
306
307 /* Validate branch */
308
309 if (zbr->lnum < c->main_first ||
310 zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
311 zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
312 ubifs_err(c, "bad branch %d", i);
313 err = 2;
314 goto out_dump;
315 }
316
317 switch (key_type(c, &zbr->key)) {
318 case UBIFS_INO_KEY:
319 case UBIFS_DATA_KEY:
320 case UBIFS_DENT_KEY:
321 case UBIFS_XENT_KEY:
322 break;
323 default:
324 ubifs_err(c, "bad key type at slot %d: %d",
325 i, key_type(c, &zbr->key));
326 err = 3;
327 goto out_dump;
328 }
329
330 if (znode->level)
331 continue;
332
333 type = key_type(c, &zbr->key);
334 if (c->ranges[type].max_len == 0) {
335 if (zbr->len != c->ranges[type].len) {
336 ubifs_err(c, "bad target node (type %d) length (%d)",
337 type, zbr->len);
338 ubifs_err(c, "have to be %d", c->ranges[type].len);
339 err = 4;
340 goto out_dump;
341 }
342 } else if (zbr->len < c->ranges[type].min_len ||
343 zbr->len > c->ranges[type].max_len) {
344 ubifs_err(c, "bad target node (type %d) length (%d)",
345 type, zbr->len);
346 ubifs_err(c, "have to be in range of %d-%d",
347 c->ranges[type].min_len,
348 c->ranges[type].max_len);
349 err = 5;
350 goto out_dump;
351 }
352 }
353
354 /*
355 * Ensure that the next key is greater or equivalent to the
356 * previous one.
357 */
358 for (i = 0; i < znode->child_cnt - 1; i++) {
359 const union ubifs_key *key1, *key2;
360
361 key1 = &znode->zbranch[i].key;
362 key2 = &znode->zbranch[i + 1].key;
363
364 cmp = keys_cmp(c, key1, key2);
365 if (cmp > 0) {
366 ubifs_err(c, "bad key order (keys %d and %d)", i, i + 1);
367 err = 6;
368 goto out_dump;
369 } else if (cmp == 0 && !is_hash_key(c, key1)) {
370 /* These can only be keys with colliding hash */
371 ubifs_err(c, "keys %d and %d are not hashed but equivalent",
372 i, i + 1);
373 err = 7;
374 goto out_dump;
375 }
376 }
377
378 kfree(idx);
379 return 0;
380
381 out_dump:
382 ubifs_err(c, "bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
383 ubifs_dump_node(c, idx);
384 kfree(idx);
385 return -EINVAL;
386 }
387
388 /**
389 * ubifs_load_znode - load znode to TNC cache.
390 * @c: UBIFS file-system description object
391 * @zbr: znode branch
392 * @parent: znode's parent
393 * @iip: index in parent
394 *
395 * This function loads znode pointed to by @zbr into the TNC cache and
396 * returns pointer to it in case of success and a negative error code in case
397 * of failure.
398 */
399 struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
400 struct ubifs_zbranch *zbr,
401 struct ubifs_znode *parent, int iip)
402 {
403 int err;
404 struct ubifs_znode *znode;
405
406 ubifs_assert(!zbr->znode);
407 /*
408 * A slab cache is not presently used for znodes because the znode size
409 * depends on the fanout which is stored in the superblock.
410 */
411 znode = kzalloc(c->max_znode_sz, GFP_NOFS);
412 if (!znode)
413 return ERR_PTR(-ENOMEM);
414
415 err = read_znode(c, zbr->lnum, zbr->offs, zbr->len, znode);
416 if (err)
417 goto out;
418
419 atomic_long_inc(&c->clean_zn_cnt);
420
421 /*
422 * Increment the global clean znode counter as well. It is OK that
423 * global and per-FS clean znode counters may be inconsistent for some
424 * short time (because we might be preempted at this point), the global
425 * one is only used in shrinker.
426 */
427 atomic_long_inc(&ubifs_clean_zn_cnt);
428
429 zbr->znode = znode;
430 znode->parent = parent;
431 znode->time = get_seconds();
432 znode->iip = iip;
433
434 return znode;
435
436 out:
437 kfree(znode);
438 return ERR_PTR(err);
439 }
440
441 /**
442 * ubifs_tnc_read_node - read a leaf node from the flash media.
443 * @c: UBIFS file-system description object
444 * @zbr: key and position of the node
445 * @node: node is returned here
446 *
447 * This function reads a node defined by @zbr from the flash media. Returns
448 * zero in case of success or a negative negative error code in case of
449 * failure.
450 */
451 int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
452 void *node)
453 {
454 union ubifs_key key1, *key = &zbr->key;
455 int err, type = key_type(c, key);
456 struct ubifs_wbuf *wbuf;
457
458 /*
459 * 'zbr' has to point to on-flash node. The node may sit in a bud and
460 * may even be in a write buffer, so we have to take care about this.
461 */
462 wbuf = ubifs_get_wbuf(c, zbr->lnum);
463 if (wbuf)
464 err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len,
465 zbr->lnum, zbr->offs);
466 else
467 err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum,
468 zbr->offs);
469
470 if (err) {
471 dbg_tnck(key, "key ");
472 return err;
473 }
474
475 /* Make sure the key of the read node is correct */
476 key_read(c, node + UBIFS_KEY_OFFSET, &key1);
477 if (!keys_eq(c, key, &key1)) {
478 ubifs_err(c, "bad key in node at LEB %d:%d",
479 zbr->lnum, zbr->offs);
480 dbg_tnck(key, "looked for key ");
481 dbg_tnck(&key1, "but found node's key ");
482 ubifs_dump_node(c, node);
483 return -EINVAL;
484 }
485
486 return 0;
487 }