]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/userfaultfd.c
Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/kernel/linux.git] / fs / userfaultfd.c
1 /*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38 };
39
40 /*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
44 struct userfaultfd_ctx {
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
55 /* pseudo fd refcounting */
56 refcount_t refcount;
57 /* userfaultfd syscall flags */
58 unsigned int flags;
59 /* features requested from the userspace */
60 unsigned int features;
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* memory mappings are changing because of non-cooperative event */
66 bool mmap_changing;
67 /* mm with one ore more vmas attached to this userfaultfd_ctx */
68 struct mm_struct *mm;
69 };
70
71 struct userfaultfd_fork_ctx {
72 struct userfaultfd_ctx *orig;
73 struct userfaultfd_ctx *new;
74 struct list_head list;
75 };
76
77 struct userfaultfd_unmap_ctx {
78 struct userfaultfd_ctx *ctx;
79 unsigned long start;
80 unsigned long end;
81 struct list_head list;
82 };
83
84 struct userfaultfd_wait_queue {
85 struct uffd_msg msg;
86 wait_queue_entry_t wq;
87 struct userfaultfd_ctx *ctx;
88 bool waken;
89 };
90
91 struct userfaultfd_wake_range {
92 unsigned long start;
93 unsigned long len;
94 };
95
96 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
97 int wake_flags, void *key)
98 {
99 struct userfaultfd_wake_range *range = key;
100 int ret;
101 struct userfaultfd_wait_queue *uwq;
102 unsigned long start, len;
103
104 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
105 ret = 0;
106 /* len == 0 means wake all */
107 start = range->start;
108 len = range->len;
109 if (len && (start > uwq->msg.arg.pagefault.address ||
110 start + len <= uwq->msg.arg.pagefault.address))
111 goto out;
112 WRITE_ONCE(uwq->waken, true);
113 /*
114 * The Program-Order guarantees provided by the scheduler
115 * ensure uwq->waken is visible before the task is woken.
116 */
117 ret = wake_up_state(wq->private, mode);
118 if (ret) {
119 /*
120 * Wake only once, autoremove behavior.
121 *
122 * After the effect of list_del_init is visible to the other
123 * CPUs, the waitqueue may disappear from under us, see the
124 * !list_empty_careful() in handle_userfault().
125 *
126 * try_to_wake_up() has an implicit smp_mb(), and the
127 * wq->private is read before calling the extern function
128 * "wake_up_state" (which in turns calls try_to_wake_up).
129 */
130 list_del_init(&wq->entry);
131 }
132 out:
133 return ret;
134 }
135
136 /**
137 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
138 * context.
139 * @ctx: [in] Pointer to the userfaultfd context.
140 */
141 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
142 {
143 refcount_inc(&ctx->refcount);
144 }
145
146 /**
147 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
148 * context.
149 * @ctx: [in] Pointer to userfaultfd context.
150 *
151 * The userfaultfd context reference must have been previously acquired either
152 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
153 */
154 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
155 {
156 if (refcount_dec_and_test(&ctx->refcount)) {
157 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
158 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
159 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
160 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
161 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
162 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
163 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
164 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
165 mmdrop(ctx->mm);
166 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
167 }
168 }
169
170 static inline void msg_init(struct uffd_msg *msg)
171 {
172 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
173 /*
174 * Must use memset to zero out the paddings or kernel data is
175 * leaked to userland.
176 */
177 memset(msg, 0, sizeof(struct uffd_msg));
178 }
179
180 static inline struct uffd_msg userfault_msg(unsigned long address,
181 unsigned int flags,
182 unsigned long reason,
183 unsigned int features)
184 {
185 struct uffd_msg msg;
186 msg_init(&msg);
187 msg.event = UFFD_EVENT_PAGEFAULT;
188 msg.arg.pagefault.address = address;
189 if (flags & FAULT_FLAG_WRITE)
190 /*
191 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
192 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
193 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
194 * was a read fault, otherwise if set it means it's
195 * a write fault.
196 */
197 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
198 if (reason & VM_UFFD_WP)
199 /*
200 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
201 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
202 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
203 * a missing fault, otherwise if set it means it's a
204 * write protect fault.
205 */
206 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
207 if (features & UFFD_FEATURE_THREAD_ID)
208 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
209 return msg;
210 }
211
212 #ifdef CONFIG_HUGETLB_PAGE
213 /*
214 * Same functionality as userfaultfd_must_wait below with modifications for
215 * hugepmd ranges.
216 */
217 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
218 struct vm_area_struct *vma,
219 unsigned long address,
220 unsigned long flags,
221 unsigned long reason)
222 {
223 struct mm_struct *mm = ctx->mm;
224 pte_t *ptep, pte;
225 bool ret = true;
226
227 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
228
229 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
230
231 if (!ptep)
232 goto out;
233
234 ret = false;
235 pte = huge_ptep_get(ptep);
236
237 /*
238 * Lockless access: we're in a wait_event so it's ok if it
239 * changes under us.
240 */
241 if (huge_pte_none(pte))
242 ret = true;
243 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
244 ret = true;
245 out:
246 return ret;
247 }
248 #else
249 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
250 struct vm_area_struct *vma,
251 unsigned long address,
252 unsigned long flags,
253 unsigned long reason)
254 {
255 return false; /* should never get here */
256 }
257 #endif /* CONFIG_HUGETLB_PAGE */
258
259 /*
260 * Verify the pagetables are still not ok after having reigstered into
261 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
262 * userfault that has already been resolved, if userfaultfd_read and
263 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
264 * threads.
265 */
266 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
267 unsigned long address,
268 unsigned long flags,
269 unsigned long reason)
270 {
271 struct mm_struct *mm = ctx->mm;
272 pgd_t *pgd;
273 p4d_t *p4d;
274 pud_t *pud;
275 pmd_t *pmd, _pmd;
276 pte_t *pte;
277 bool ret = true;
278
279 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
280
281 pgd = pgd_offset(mm, address);
282 if (!pgd_present(*pgd))
283 goto out;
284 p4d = p4d_offset(pgd, address);
285 if (!p4d_present(*p4d))
286 goto out;
287 pud = pud_offset(p4d, address);
288 if (!pud_present(*pud))
289 goto out;
290 pmd = pmd_offset(pud, address);
291 /*
292 * READ_ONCE must function as a barrier with narrower scope
293 * and it must be equivalent to:
294 * _pmd = *pmd; barrier();
295 *
296 * This is to deal with the instability (as in
297 * pmd_trans_unstable) of the pmd.
298 */
299 _pmd = READ_ONCE(*pmd);
300 if (pmd_none(_pmd))
301 goto out;
302
303 ret = false;
304 if (!pmd_present(_pmd))
305 goto out;
306
307 if (pmd_trans_huge(_pmd))
308 goto out;
309
310 /*
311 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
312 * and use the standard pte_offset_map() instead of parsing _pmd.
313 */
314 pte = pte_offset_map(pmd, address);
315 /*
316 * Lockless access: we're in a wait_event so it's ok if it
317 * changes under us.
318 */
319 if (pte_none(*pte))
320 ret = true;
321 pte_unmap(pte);
322
323 out:
324 return ret;
325 }
326
327 /*
328 * The locking rules involved in returning VM_FAULT_RETRY depending on
329 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
330 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
331 * recommendation in __lock_page_or_retry is not an understatement.
332 *
333 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
334 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
335 * not set.
336 *
337 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
338 * set, VM_FAULT_RETRY can still be returned if and only if there are
339 * fatal_signal_pending()s, and the mmap_sem must be released before
340 * returning it.
341 */
342 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
343 {
344 struct mm_struct *mm = vmf->vma->vm_mm;
345 struct userfaultfd_ctx *ctx;
346 struct userfaultfd_wait_queue uwq;
347 vm_fault_t ret = VM_FAULT_SIGBUS;
348 bool must_wait, return_to_userland;
349 long blocking_state;
350
351 /*
352 * We don't do userfault handling for the final child pid update.
353 *
354 * We also don't do userfault handling during
355 * coredumping. hugetlbfs has the special
356 * follow_hugetlb_page() to skip missing pages in the
357 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
358 * the no_page_table() helper in follow_page_mask(), but the
359 * shmem_vm_ops->fault method is invoked even during
360 * coredumping without mmap_sem and it ends up here.
361 */
362 if (current->flags & (PF_EXITING|PF_DUMPCORE))
363 goto out;
364
365 /*
366 * Coredumping runs without mmap_sem so we can only check that
367 * the mmap_sem is held, if PF_DUMPCORE was not set.
368 */
369 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
370
371 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
372 if (!ctx)
373 goto out;
374
375 BUG_ON(ctx->mm != mm);
376
377 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
378 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
379
380 if (ctx->features & UFFD_FEATURE_SIGBUS)
381 goto out;
382
383 /*
384 * If it's already released don't get it. This avoids to loop
385 * in __get_user_pages if userfaultfd_release waits on the
386 * caller of handle_userfault to release the mmap_sem.
387 */
388 if (unlikely(READ_ONCE(ctx->released))) {
389 /*
390 * Don't return VM_FAULT_SIGBUS in this case, so a non
391 * cooperative manager can close the uffd after the
392 * last UFFDIO_COPY, without risking to trigger an
393 * involuntary SIGBUS if the process was starting the
394 * userfaultfd while the userfaultfd was still armed
395 * (but after the last UFFDIO_COPY). If the uffd
396 * wasn't already closed when the userfault reached
397 * this point, that would normally be solved by
398 * userfaultfd_must_wait returning 'false'.
399 *
400 * If we were to return VM_FAULT_SIGBUS here, the non
401 * cooperative manager would be instead forced to
402 * always call UFFDIO_UNREGISTER before it can safely
403 * close the uffd.
404 */
405 ret = VM_FAULT_NOPAGE;
406 goto out;
407 }
408
409 /*
410 * Check that we can return VM_FAULT_RETRY.
411 *
412 * NOTE: it should become possible to return VM_FAULT_RETRY
413 * even if FAULT_FLAG_TRIED is set without leading to gup()
414 * -EBUSY failures, if the userfaultfd is to be extended for
415 * VM_UFFD_WP tracking and we intend to arm the userfault
416 * without first stopping userland access to the memory. For
417 * VM_UFFD_MISSING userfaults this is enough for now.
418 */
419 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
420 /*
421 * Validate the invariant that nowait must allow retry
422 * to be sure not to return SIGBUS erroneously on
423 * nowait invocations.
424 */
425 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
426 #ifdef CONFIG_DEBUG_VM
427 if (printk_ratelimit()) {
428 printk(KERN_WARNING
429 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
430 vmf->flags);
431 dump_stack();
432 }
433 #endif
434 goto out;
435 }
436
437 /*
438 * Handle nowait, not much to do other than tell it to retry
439 * and wait.
440 */
441 ret = VM_FAULT_RETRY;
442 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
443 goto out;
444
445 /* take the reference before dropping the mmap_sem */
446 userfaultfd_ctx_get(ctx);
447
448 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
449 uwq.wq.private = current;
450 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
451 ctx->features);
452 uwq.ctx = ctx;
453 uwq.waken = false;
454
455 return_to_userland =
456 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
457 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
458 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
459 TASK_KILLABLE;
460
461 spin_lock(&ctx->fault_pending_wqh.lock);
462 /*
463 * After the __add_wait_queue the uwq is visible to userland
464 * through poll/read().
465 */
466 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
467 /*
468 * The smp_mb() after __set_current_state prevents the reads
469 * following the spin_unlock to happen before the list_add in
470 * __add_wait_queue.
471 */
472 set_current_state(blocking_state);
473 spin_unlock(&ctx->fault_pending_wqh.lock);
474
475 if (!is_vm_hugetlb_page(vmf->vma))
476 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
477 reason);
478 else
479 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
480 vmf->address,
481 vmf->flags, reason);
482 up_read(&mm->mmap_sem);
483
484 if (likely(must_wait && !READ_ONCE(ctx->released) &&
485 (return_to_userland ? !signal_pending(current) :
486 !fatal_signal_pending(current)))) {
487 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
488 schedule();
489 ret |= VM_FAULT_MAJOR;
490
491 /*
492 * False wakeups can orginate even from rwsem before
493 * up_read() however userfaults will wait either for a
494 * targeted wakeup on the specific uwq waitqueue from
495 * wake_userfault() or for signals or for uffd
496 * release.
497 */
498 while (!READ_ONCE(uwq.waken)) {
499 /*
500 * This needs the full smp_store_mb()
501 * guarantee as the state write must be
502 * visible to other CPUs before reading
503 * uwq.waken from other CPUs.
504 */
505 set_current_state(blocking_state);
506 if (READ_ONCE(uwq.waken) ||
507 READ_ONCE(ctx->released) ||
508 (return_to_userland ? signal_pending(current) :
509 fatal_signal_pending(current)))
510 break;
511 schedule();
512 }
513 }
514
515 __set_current_state(TASK_RUNNING);
516
517 if (return_to_userland) {
518 if (signal_pending(current) &&
519 !fatal_signal_pending(current)) {
520 /*
521 * If we got a SIGSTOP or SIGCONT and this is
522 * a normal userland page fault, just let
523 * userland return so the signal will be
524 * handled and gdb debugging works. The page
525 * fault code immediately after we return from
526 * this function is going to release the
527 * mmap_sem and it's not depending on it
528 * (unlike gup would if we were not to return
529 * VM_FAULT_RETRY).
530 *
531 * If a fatal signal is pending we still take
532 * the streamlined VM_FAULT_RETRY failure path
533 * and there's no need to retake the mmap_sem
534 * in such case.
535 */
536 down_read(&mm->mmap_sem);
537 ret = VM_FAULT_NOPAGE;
538 }
539 }
540
541 /*
542 * Here we race with the list_del; list_add in
543 * userfaultfd_ctx_read(), however because we don't ever run
544 * list_del_init() to refile across the two lists, the prev
545 * and next pointers will never point to self. list_add also
546 * would never let any of the two pointers to point to
547 * self. So list_empty_careful won't risk to see both pointers
548 * pointing to self at any time during the list refile. The
549 * only case where list_del_init() is called is the full
550 * removal in the wake function and there we don't re-list_add
551 * and it's fine not to block on the spinlock. The uwq on this
552 * kernel stack can be released after the list_del_init.
553 */
554 if (!list_empty_careful(&uwq.wq.entry)) {
555 spin_lock(&ctx->fault_pending_wqh.lock);
556 /*
557 * No need of list_del_init(), the uwq on the stack
558 * will be freed shortly anyway.
559 */
560 list_del(&uwq.wq.entry);
561 spin_unlock(&ctx->fault_pending_wqh.lock);
562 }
563
564 /*
565 * ctx may go away after this if the userfault pseudo fd is
566 * already released.
567 */
568 userfaultfd_ctx_put(ctx);
569
570 out:
571 return ret;
572 }
573
574 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
575 struct userfaultfd_wait_queue *ewq)
576 {
577 struct userfaultfd_ctx *release_new_ctx;
578
579 if (WARN_ON_ONCE(current->flags & PF_EXITING))
580 goto out;
581
582 ewq->ctx = ctx;
583 init_waitqueue_entry(&ewq->wq, current);
584 release_new_ctx = NULL;
585
586 spin_lock(&ctx->event_wqh.lock);
587 /*
588 * After the __add_wait_queue the uwq is visible to userland
589 * through poll/read().
590 */
591 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
592 for (;;) {
593 set_current_state(TASK_KILLABLE);
594 if (ewq->msg.event == 0)
595 break;
596 if (READ_ONCE(ctx->released) ||
597 fatal_signal_pending(current)) {
598 /*
599 * &ewq->wq may be queued in fork_event, but
600 * __remove_wait_queue ignores the head
601 * parameter. It would be a problem if it
602 * didn't.
603 */
604 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
605 if (ewq->msg.event == UFFD_EVENT_FORK) {
606 struct userfaultfd_ctx *new;
607
608 new = (struct userfaultfd_ctx *)
609 (unsigned long)
610 ewq->msg.arg.reserved.reserved1;
611 release_new_ctx = new;
612 }
613 break;
614 }
615
616 spin_unlock(&ctx->event_wqh.lock);
617
618 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
619 schedule();
620
621 spin_lock(&ctx->event_wqh.lock);
622 }
623 __set_current_state(TASK_RUNNING);
624 spin_unlock(&ctx->event_wqh.lock);
625
626 if (release_new_ctx) {
627 struct vm_area_struct *vma;
628 struct mm_struct *mm = release_new_ctx->mm;
629
630 /* the various vma->vm_userfaultfd_ctx still points to it */
631 down_write(&mm->mmap_sem);
632 for (vma = mm->mmap; vma; vma = vma->vm_next)
633 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
634 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
635 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
636 }
637 up_write(&mm->mmap_sem);
638
639 userfaultfd_ctx_put(release_new_ctx);
640 }
641
642 /*
643 * ctx may go away after this if the userfault pseudo fd is
644 * already released.
645 */
646 out:
647 WRITE_ONCE(ctx->mmap_changing, false);
648 userfaultfd_ctx_put(ctx);
649 }
650
651 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
652 struct userfaultfd_wait_queue *ewq)
653 {
654 ewq->msg.event = 0;
655 wake_up_locked(&ctx->event_wqh);
656 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
657 }
658
659 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
660 {
661 struct userfaultfd_ctx *ctx = NULL, *octx;
662 struct userfaultfd_fork_ctx *fctx;
663
664 octx = vma->vm_userfaultfd_ctx.ctx;
665 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
666 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
667 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
668 return 0;
669 }
670
671 list_for_each_entry(fctx, fcs, list)
672 if (fctx->orig == octx) {
673 ctx = fctx->new;
674 break;
675 }
676
677 if (!ctx) {
678 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
679 if (!fctx)
680 return -ENOMEM;
681
682 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
683 if (!ctx) {
684 kfree(fctx);
685 return -ENOMEM;
686 }
687
688 refcount_set(&ctx->refcount, 1);
689 ctx->flags = octx->flags;
690 ctx->state = UFFD_STATE_RUNNING;
691 ctx->features = octx->features;
692 ctx->released = false;
693 ctx->mmap_changing = false;
694 ctx->mm = vma->vm_mm;
695 mmgrab(ctx->mm);
696
697 userfaultfd_ctx_get(octx);
698 WRITE_ONCE(octx->mmap_changing, true);
699 fctx->orig = octx;
700 fctx->new = ctx;
701 list_add_tail(&fctx->list, fcs);
702 }
703
704 vma->vm_userfaultfd_ctx.ctx = ctx;
705 return 0;
706 }
707
708 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
709 {
710 struct userfaultfd_ctx *ctx = fctx->orig;
711 struct userfaultfd_wait_queue ewq;
712
713 msg_init(&ewq.msg);
714
715 ewq.msg.event = UFFD_EVENT_FORK;
716 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
717
718 userfaultfd_event_wait_completion(ctx, &ewq);
719 }
720
721 void dup_userfaultfd_complete(struct list_head *fcs)
722 {
723 struct userfaultfd_fork_ctx *fctx, *n;
724
725 list_for_each_entry_safe(fctx, n, fcs, list) {
726 dup_fctx(fctx);
727 list_del(&fctx->list);
728 kfree(fctx);
729 }
730 }
731
732 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
733 struct vm_userfaultfd_ctx *vm_ctx)
734 {
735 struct userfaultfd_ctx *ctx;
736
737 ctx = vma->vm_userfaultfd_ctx.ctx;
738
739 if (!ctx)
740 return;
741
742 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
743 vm_ctx->ctx = ctx;
744 userfaultfd_ctx_get(ctx);
745 WRITE_ONCE(ctx->mmap_changing, true);
746 } else {
747 /* Drop uffd context if remap feature not enabled */
748 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
749 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
750 }
751 }
752
753 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
754 unsigned long from, unsigned long to,
755 unsigned long len)
756 {
757 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
758 struct userfaultfd_wait_queue ewq;
759
760 if (!ctx)
761 return;
762
763 if (to & ~PAGE_MASK) {
764 userfaultfd_ctx_put(ctx);
765 return;
766 }
767
768 msg_init(&ewq.msg);
769
770 ewq.msg.event = UFFD_EVENT_REMAP;
771 ewq.msg.arg.remap.from = from;
772 ewq.msg.arg.remap.to = to;
773 ewq.msg.arg.remap.len = len;
774
775 userfaultfd_event_wait_completion(ctx, &ewq);
776 }
777
778 bool userfaultfd_remove(struct vm_area_struct *vma,
779 unsigned long start, unsigned long end)
780 {
781 struct mm_struct *mm = vma->vm_mm;
782 struct userfaultfd_ctx *ctx;
783 struct userfaultfd_wait_queue ewq;
784
785 ctx = vma->vm_userfaultfd_ctx.ctx;
786 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
787 return true;
788
789 userfaultfd_ctx_get(ctx);
790 WRITE_ONCE(ctx->mmap_changing, true);
791 up_read(&mm->mmap_sem);
792
793 msg_init(&ewq.msg);
794
795 ewq.msg.event = UFFD_EVENT_REMOVE;
796 ewq.msg.arg.remove.start = start;
797 ewq.msg.arg.remove.end = end;
798
799 userfaultfd_event_wait_completion(ctx, &ewq);
800
801 return false;
802 }
803
804 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
805 unsigned long start, unsigned long end)
806 {
807 struct userfaultfd_unmap_ctx *unmap_ctx;
808
809 list_for_each_entry(unmap_ctx, unmaps, list)
810 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
811 unmap_ctx->end == end)
812 return true;
813
814 return false;
815 }
816
817 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
818 unsigned long start, unsigned long end,
819 struct list_head *unmaps)
820 {
821 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
822 struct userfaultfd_unmap_ctx *unmap_ctx;
823 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
824
825 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
826 has_unmap_ctx(ctx, unmaps, start, end))
827 continue;
828
829 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
830 if (!unmap_ctx)
831 return -ENOMEM;
832
833 userfaultfd_ctx_get(ctx);
834 WRITE_ONCE(ctx->mmap_changing, true);
835 unmap_ctx->ctx = ctx;
836 unmap_ctx->start = start;
837 unmap_ctx->end = end;
838 list_add_tail(&unmap_ctx->list, unmaps);
839 }
840
841 return 0;
842 }
843
844 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
845 {
846 struct userfaultfd_unmap_ctx *ctx, *n;
847 struct userfaultfd_wait_queue ewq;
848
849 list_for_each_entry_safe(ctx, n, uf, list) {
850 msg_init(&ewq.msg);
851
852 ewq.msg.event = UFFD_EVENT_UNMAP;
853 ewq.msg.arg.remove.start = ctx->start;
854 ewq.msg.arg.remove.end = ctx->end;
855
856 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
857
858 list_del(&ctx->list);
859 kfree(ctx);
860 }
861 }
862
863 static int userfaultfd_release(struct inode *inode, struct file *file)
864 {
865 struct userfaultfd_ctx *ctx = file->private_data;
866 struct mm_struct *mm = ctx->mm;
867 struct vm_area_struct *vma, *prev;
868 /* len == 0 means wake all */
869 struct userfaultfd_wake_range range = { .len = 0, };
870 unsigned long new_flags;
871
872 WRITE_ONCE(ctx->released, true);
873
874 if (!mmget_not_zero(mm))
875 goto wakeup;
876
877 /*
878 * Flush page faults out of all CPUs. NOTE: all page faults
879 * must be retried without returning VM_FAULT_SIGBUS if
880 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
881 * changes while handle_userfault released the mmap_sem. So
882 * it's critical that released is set to true (above), before
883 * taking the mmap_sem for writing.
884 */
885 down_write(&mm->mmap_sem);
886 prev = NULL;
887 for (vma = mm->mmap; vma; vma = vma->vm_next) {
888 cond_resched();
889 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
890 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
891 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
892 prev = vma;
893 continue;
894 }
895 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
896 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
897 new_flags, vma->anon_vma,
898 vma->vm_file, vma->vm_pgoff,
899 vma_policy(vma),
900 NULL_VM_UFFD_CTX);
901 if (prev)
902 vma = prev;
903 else
904 prev = vma;
905 vma->vm_flags = new_flags;
906 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
907 }
908 up_write(&mm->mmap_sem);
909 mmput(mm);
910 wakeup:
911 /*
912 * After no new page faults can wait on this fault_*wqh, flush
913 * the last page faults that may have been already waiting on
914 * the fault_*wqh.
915 */
916 spin_lock(&ctx->fault_pending_wqh.lock);
917 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
918 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
919 spin_unlock(&ctx->fault_pending_wqh.lock);
920
921 /* Flush pending events that may still wait on event_wqh */
922 wake_up_all(&ctx->event_wqh);
923
924 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
925 userfaultfd_ctx_put(ctx);
926 return 0;
927 }
928
929 /* fault_pending_wqh.lock must be hold by the caller */
930 static inline struct userfaultfd_wait_queue *find_userfault_in(
931 wait_queue_head_t *wqh)
932 {
933 wait_queue_entry_t *wq;
934 struct userfaultfd_wait_queue *uwq;
935
936 lockdep_assert_held(&wqh->lock);
937
938 uwq = NULL;
939 if (!waitqueue_active(wqh))
940 goto out;
941 /* walk in reverse to provide FIFO behavior to read userfaults */
942 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
943 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
944 out:
945 return uwq;
946 }
947
948 static inline struct userfaultfd_wait_queue *find_userfault(
949 struct userfaultfd_ctx *ctx)
950 {
951 return find_userfault_in(&ctx->fault_pending_wqh);
952 }
953
954 static inline struct userfaultfd_wait_queue *find_userfault_evt(
955 struct userfaultfd_ctx *ctx)
956 {
957 return find_userfault_in(&ctx->event_wqh);
958 }
959
960 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
961 {
962 struct userfaultfd_ctx *ctx = file->private_data;
963 __poll_t ret;
964
965 poll_wait(file, &ctx->fd_wqh, wait);
966
967 switch (ctx->state) {
968 case UFFD_STATE_WAIT_API:
969 return EPOLLERR;
970 case UFFD_STATE_RUNNING:
971 /*
972 * poll() never guarantees that read won't block.
973 * userfaults can be waken before they're read().
974 */
975 if (unlikely(!(file->f_flags & O_NONBLOCK)))
976 return EPOLLERR;
977 /*
978 * lockless access to see if there are pending faults
979 * __pollwait last action is the add_wait_queue but
980 * the spin_unlock would allow the waitqueue_active to
981 * pass above the actual list_add inside
982 * add_wait_queue critical section. So use a full
983 * memory barrier to serialize the list_add write of
984 * add_wait_queue() with the waitqueue_active read
985 * below.
986 */
987 ret = 0;
988 smp_mb();
989 if (waitqueue_active(&ctx->fault_pending_wqh))
990 ret = EPOLLIN;
991 else if (waitqueue_active(&ctx->event_wqh))
992 ret = EPOLLIN;
993
994 return ret;
995 default:
996 WARN_ON_ONCE(1);
997 return EPOLLERR;
998 }
999 }
1000
1001 static const struct file_operations userfaultfd_fops;
1002
1003 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1004 struct userfaultfd_ctx *new,
1005 struct uffd_msg *msg)
1006 {
1007 int fd;
1008
1009 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1010 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1011 if (fd < 0)
1012 return fd;
1013
1014 msg->arg.reserved.reserved1 = 0;
1015 msg->arg.fork.ufd = fd;
1016 return 0;
1017 }
1018
1019 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1020 struct uffd_msg *msg)
1021 {
1022 ssize_t ret;
1023 DECLARE_WAITQUEUE(wait, current);
1024 struct userfaultfd_wait_queue *uwq;
1025 /*
1026 * Handling fork event requires sleeping operations, so
1027 * we drop the event_wqh lock, then do these ops, then
1028 * lock it back and wake up the waiter. While the lock is
1029 * dropped the ewq may go away so we keep track of it
1030 * carefully.
1031 */
1032 LIST_HEAD(fork_event);
1033 struct userfaultfd_ctx *fork_nctx = NULL;
1034
1035 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1036 spin_lock_irq(&ctx->fd_wqh.lock);
1037 __add_wait_queue(&ctx->fd_wqh, &wait);
1038 for (;;) {
1039 set_current_state(TASK_INTERRUPTIBLE);
1040 spin_lock(&ctx->fault_pending_wqh.lock);
1041 uwq = find_userfault(ctx);
1042 if (uwq) {
1043 /*
1044 * Use a seqcount to repeat the lockless check
1045 * in wake_userfault() to avoid missing
1046 * wakeups because during the refile both
1047 * waitqueue could become empty if this is the
1048 * only userfault.
1049 */
1050 write_seqcount_begin(&ctx->refile_seq);
1051
1052 /*
1053 * The fault_pending_wqh.lock prevents the uwq
1054 * to disappear from under us.
1055 *
1056 * Refile this userfault from
1057 * fault_pending_wqh to fault_wqh, it's not
1058 * pending anymore after we read it.
1059 *
1060 * Use list_del() by hand (as
1061 * userfaultfd_wake_function also uses
1062 * list_del_init() by hand) to be sure nobody
1063 * changes __remove_wait_queue() to use
1064 * list_del_init() in turn breaking the
1065 * !list_empty_careful() check in
1066 * handle_userfault(). The uwq->wq.head list
1067 * must never be empty at any time during the
1068 * refile, or the waitqueue could disappear
1069 * from under us. The "wait_queue_head_t"
1070 * parameter of __remove_wait_queue() is unused
1071 * anyway.
1072 */
1073 list_del(&uwq->wq.entry);
1074 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1075
1076 write_seqcount_end(&ctx->refile_seq);
1077
1078 /* careful to always initialize msg if ret == 0 */
1079 *msg = uwq->msg;
1080 spin_unlock(&ctx->fault_pending_wqh.lock);
1081 ret = 0;
1082 break;
1083 }
1084 spin_unlock(&ctx->fault_pending_wqh.lock);
1085
1086 spin_lock(&ctx->event_wqh.lock);
1087 uwq = find_userfault_evt(ctx);
1088 if (uwq) {
1089 *msg = uwq->msg;
1090
1091 if (uwq->msg.event == UFFD_EVENT_FORK) {
1092 fork_nctx = (struct userfaultfd_ctx *)
1093 (unsigned long)
1094 uwq->msg.arg.reserved.reserved1;
1095 list_move(&uwq->wq.entry, &fork_event);
1096 /*
1097 * fork_nctx can be freed as soon as
1098 * we drop the lock, unless we take a
1099 * reference on it.
1100 */
1101 userfaultfd_ctx_get(fork_nctx);
1102 spin_unlock(&ctx->event_wqh.lock);
1103 ret = 0;
1104 break;
1105 }
1106
1107 userfaultfd_event_complete(ctx, uwq);
1108 spin_unlock(&ctx->event_wqh.lock);
1109 ret = 0;
1110 break;
1111 }
1112 spin_unlock(&ctx->event_wqh.lock);
1113
1114 if (signal_pending(current)) {
1115 ret = -ERESTARTSYS;
1116 break;
1117 }
1118 if (no_wait) {
1119 ret = -EAGAIN;
1120 break;
1121 }
1122 spin_unlock_irq(&ctx->fd_wqh.lock);
1123 schedule();
1124 spin_lock_irq(&ctx->fd_wqh.lock);
1125 }
1126 __remove_wait_queue(&ctx->fd_wqh, &wait);
1127 __set_current_state(TASK_RUNNING);
1128 spin_unlock_irq(&ctx->fd_wqh.lock);
1129
1130 if (!ret && msg->event == UFFD_EVENT_FORK) {
1131 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1132 spin_lock(&ctx->event_wqh.lock);
1133 if (!list_empty(&fork_event)) {
1134 /*
1135 * The fork thread didn't abort, so we can
1136 * drop the temporary refcount.
1137 */
1138 userfaultfd_ctx_put(fork_nctx);
1139
1140 uwq = list_first_entry(&fork_event,
1141 typeof(*uwq),
1142 wq.entry);
1143 /*
1144 * If fork_event list wasn't empty and in turn
1145 * the event wasn't already released by fork
1146 * (the event is allocated on fork kernel
1147 * stack), put the event back to its place in
1148 * the event_wq. fork_event head will be freed
1149 * as soon as we return so the event cannot
1150 * stay queued there no matter the current
1151 * "ret" value.
1152 */
1153 list_del(&uwq->wq.entry);
1154 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1155
1156 /*
1157 * Leave the event in the waitqueue and report
1158 * error to userland if we failed to resolve
1159 * the userfault fork.
1160 */
1161 if (likely(!ret))
1162 userfaultfd_event_complete(ctx, uwq);
1163 } else {
1164 /*
1165 * Here the fork thread aborted and the
1166 * refcount from the fork thread on fork_nctx
1167 * has already been released. We still hold
1168 * the reference we took before releasing the
1169 * lock above. If resolve_userfault_fork
1170 * failed we've to drop it because the
1171 * fork_nctx has to be freed in such case. If
1172 * it succeeded we'll hold it because the new
1173 * uffd references it.
1174 */
1175 if (ret)
1176 userfaultfd_ctx_put(fork_nctx);
1177 }
1178 spin_unlock(&ctx->event_wqh.lock);
1179 }
1180
1181 return ret;
1182 }
1183
1184 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1185 size_t count, loff_t *ppos)
1186 {
1187 struct userfaultfd_ctx *ctx = file->private_data;
1188 ssize_t _ret, ret = 0;
1189 struct uffd_msg msg;
1190 int no_wait = file->f_flags & O_NONBLOCK;
1191
1192 if (ctx->state == UFFD_STATE_WAIT_API)
1193 return -EINVAL;
1194
1195 for (;;) {
1196 if (count < sizeof(msg))
1197 return ret ? ret : -EINVAL;
1198 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1199 if (_ret < 0)
1200 return ret ? ret : _ret;
1201 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1202 return ret ? ret : -EFAULT;
1203 ret += sizeof(msg);
1204 buf += sizeof(msg);
1205 count -= sizeof(msg);
1206 /*
1207 * Allow to read more than one fault at time but only
1208 * block if waiting for the very first one.
1209 */
1210 no_wait = O_NONBLOCK;
1211 }
1212 }
1213
1214 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1215 struct userfaultfd_wake_range *range)
1216 {
1217 spin_lock(&ctx->fault_pending_wqh.lock);
1218 /* wake all in the range and autoremove */
1219 if (waitqueue_active(&ctx->fault_pending_wqh))
1220 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1221 range);
1222 if (waitqueue_active(&ctx->fault_wqh))
1223 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1224 spin_unlock(&ctx->fault_pending_wqh.lock);
1225 }
1226
1227 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1228 struct userfaultfd_wake_range *range)
1229 {
1230 unsigned seq;
1231 bool need_wakeup;
1232
1233 /*
1234 * To be sure waitqueue_active() is not reordered by the CPU
1235 * before the pagetable update, use an explicit SMP memory
1236 * barrier here. PT lock release or up_read(mmap_sem) still
1237 * have release semantics that can allow the
1238 * waitqueue_active() to be reordered before the pte update.
1239 */
1240 smp_mb();
1241
1242 /*
1243 * Use waitqueue_active because it's very frequent to
1244 * change the address space atomically even if there are no
1245 * userfaults yet. So we take the spinlock only when we're
1246 * sure we've userfaults to wake.
1247 */
1248 do {
1249 seq = read_seqcount_begin(&ctx->refile_seq);
1250 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1251 waitqueue_active(&ctx->fault_wqh);
1252 cond_resched();
1253 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1254 if (need_wakeup)
1255 __wake_userfault(ctx, range);
1256 }
1257
1258 static __always_inline int validate_range(struct mm_struct *mm,
1259 __u64 start, __u64 len)
1260 {
1261 __u64 task_size = mm->task_size;
1262
1263 if (start & ~PAGE_MASK)
1264 return -EINVAL;
1265 if (len & ~PAGE_MASK)
1266 return -EINVAL;
1267 if (!len)
1268 return -EINVAL;
1269 if (start < mmap_min_addr)
1270 return -EINVAL;
1271 if (start >= task_size)
1272 return -EINVAL;
1273 if (len > task_size - start)
1274 return -EINVAL;
1275 return 0;
1276 }
1277
1278 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1279 {
1280 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1281 vma_is_shmem(vma);
1282 }
1283
1284 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1285 unsigned long arg)
1286 {
1287 struct mm_struct *mm = ctx->mm;
1288 struct vm_area_struct *vma, *prev, *cur;
1289 int ret;
1290 struct uffdio_register uffdio_register;
1291 struct uffdio_register __user *user_uffdio_register;
1292 unsigned long vm_flags, new_flags;
1293 bool found;
1294 bool basic_ioctls;
1295 unsigned long start, end, vma_end;
1296
1297 user_uffdio_register = (struct uffdio_register __user *) arg;
1298
1299 ret = -EFAULT;
1300 if (copy_from_user(&uffdio_register, user_uffdio_register,
1301 sizeof(uffdio_register)-sizeof(__u64)))
1302 goto out;
1303
1304 ret = -EINVAL;
1305 if (!uffdio_register.mode)
1306 goto out;
1307 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1308 UFFDIO_REGISTER_MODE_WP))
1309 goto out;
1310 vm_flags = 0;
1311 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1312 vm_flags |= VM_UFFD_MISSING;
1313 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1314 vm_flags |= VM_UFFD_WP;
1315 /*
1316 * FIXME: remove the below error constraint by
1317 * implementing the wprotect tracking mode.
1318 */
1319 ret = -EINVAL;
1320 goto out;
1321 }
1322
1323 ret = validate_range(mm, uffdio_register.range.start,
1324 uffdio_register.range.len);
1325 if (ret)
1326 goto out;
1327
1328 start = uffdio_register.range.start;
1329 end = start + uffdio_register.range.len;
1330
1331 ret = -ENOMEM;
1332 if (!mmget_not_zero(mm))
1333 goto out;
1334
1335 down_write(&mm->mmap_sem);
1336 vma = find_vma_prev(mm, start, &prev);
1337 if (!vma)
1338 goto out_unlock;
1339
1340 /* check that there's at least one vma in the range */
1341 ret = -EINVAL;
1342 if (vma->vm_start >= end)
1343 goto out_unlock;
1344
1345 /*
1346 * If the first vma contains huge pages, make sure start address
1347 * is aligned to huge page size.
1348 */
1349 if (is_vm_hugetlb_page(vma)) {
1350 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1351
1352 if (start & (vma_hpagesize - 1))
1353 goto out_unlock;
1354 }
1355
1356 /*
1357 * Search for not compatible vmas.
1358 */
1359 found = false;
1360 basic_ioctls = false;
1361 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1362 cond_resched();
1363
1364 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1365 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1366
1367 /* check not compatible vmas */
1368 ret = -EINVAL;
1369 if (!vma_can_userfault(cur))
1370 goto out_unlock;
1371
1372 /*
1373 * UFFDIO_COPY will fill file holes even without
1374 * PROT_WRITE. This check enforces that if this is a
1375 * MAP_SHARED, the process has write permission to the backing
1376 * file. If VM_MAYWRITE is set it also enforces that on a
1377 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1378 * F_WRITE_SEAL can be taken until the vma is destroyed.
1379 */
1380 ret = -EPERM;
1381 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1382 goto out_unlock;
1383
1384 /*
1385 * If this vma contains ending address, and huge pages
1386 * check alignment.
1387 */
1388 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1389 end > cur->vm_start) {
1390 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1391
1392 ret = -EINVAL;
1393
1394 if (end & (vma_hpagesize - 1))
1395 goto out_unlock;
1396 }
1397
1398 /*
1399 * Check that this vma isn't already owned by a
1400 * different userfaultfd. We can't allow more than one
1401 * userfaultfd to own a single vma simultaneously or we
1402 * wouldn't know which one to deliver the userfaults to.
1403 */
1404 ret = -EBUSY;
1405 if (cur->vm_userfaultfd_ctx.ctx &&
1406 cur->vm_userfaultfd_ctx.ctx != ctx)
1407 goto out_unlock;
1408
1409 /*
1410 * Note vmas containing huge pages
1411 */
1412 if (is_vm_hugetlb_page(cur))
1413 basic_ioctls = true;
1414
1415 found = true;
1416 }
1417 BUG_ON(!found);
1418
1419 if (vma->vm_start < start)
1420 prev = vma;
1421
1422 ret = 0;
1423 do {
1424 cond_resched();
1425
1426 BUG_ON(!vma_can_userfault(vma));
1427 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1428 vma->vm_userfaultfd_ctx.ctx != ctx);
1429 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1430
1431 /*
1432 * Nothing to do: this vma is already registered into this
1433 * userfaultfd and with the right tracking mode too.
1434 */
1435 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1436 (vma->vm_flags & vm_flags) == vm_flags)
1437 goto skip;
1438
1439 if (vma->vm_start > start)
1440 start = vma->vm_start;
1441 vma_end = min(end, vma->vm_end);
1442
1443 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1444 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1445 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1446 vma_policy(vma),
1447 ((struct vm_userfaultfd_ctx){ ctx }));
1448 if (prev) {
1449 vma = prev;
1450 goto next;
1451 }
1452 if (vma->vm_start < start) {
1453 ret = split_vma(mm, vma, start, 1);
1454 if (ret)
1455 break;
1456 }
1457 if (vma->vm_end > end) {
1458 ret = split_vma(mm, vma, end, 0);
1459 if (ret)
1460 break;
1461 }
1462 next:
1463 /*
1464 * In the vma_merge() successful mprotect-like case 8:
1465 * the next vma was merged into the current one and
1466 * the current one has not been updated yet.
1467 */
1468 vma->vm_flags = new_flags;
1469 vma->vm_userfaultfd_ctx.ctx = ctx;
1470
1471 skip:
1472 prev = vma;
1473 start = vma->vm_end;
1474 vma = vma->vm_next;
1475 } while (vma && vma->vm_start < end);
1476 out_unlock:
1477 up_write(&mm->mmap_sem);
1478 mmput(mm);
1479 if (!ret) {
1480 /*
1481 * Now that we scanned all vmas we can already tell
1482 * userland which ioctls methods are guaranteed to
1483 * succeed on this range.
1484 */
1485 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1486 UFFD_API_RANGE_IOCTLS,
1487 &user_uffdio_register->ioctls))
1488 ret = -EFAULT;
1489 }
1490 out:
1491 return ret;
1492 }
1493
1494 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1495 unsigned long arg)
1496 {
1497 struct mm_struct *mm = ctx->mm;
1498 struct vm_area_struct *vma, *prev, *cur;
1499 int ret;
1500 struct uffdio_range uffdio_unregister;
1501 unsigned long new_flags;
1502 bool found;
1503 unsigned long start, end, vma_end;
1504 const void __user *buf = (void __user *)arg;
1505
1506 ret = -EFAULT;
1507 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1508 goto out;
1509
1510 ret = validate_range(mm, uffdio_unregister.start,
1511 uffdio_unregister.len);
1512 if (ret)
1513 goto out;
1514
1515 start = uffdio_unregister.start;
1516 end = start + uffdio_unregister.len;
1517
1518 ret = -ENOMEM;
1519 if (!mmget_not_zero(mm))
1520 goto out;
1521
1522 down_write(&mm->mmap_sem);
1523 vma = find_vma_prev(mm, start, &prev);
1524 if (!vma)
1525 goto out_unlock;
1526
1527 /* check that there's at least one vma in the range */
1528 ret = -EINVAL;
1529 if (vma->vm_start >= end)
1530 goto out_unlock;
1531
1532 /*
1533 * If the first vma contains huge pages, make sure start address
1534 * is aligned to huge page size.
1535 */
1536 if (is_vm_hugetlb_page(vma)) {
1537 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1538
1539 if (start & (vma_hpagesize - 1))
1540 goto out_unlock;
1541 }
1542
1543 /*
1544 * Search for not compatible vmas.
1545 */
1546 found = false;
1547 ret = -EINVAL;
1548 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1549 cond_resched();
1550
1551 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1552 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1553
1554 /*
1555 * Check not compatible vmas, not strictly required
1556 * here as not compatible vmas cannot have an
1557 * userfaultfd_ctx registered on them, but this
1558 * provides for more strict behavior to notice
1559 * unregistration errors.
1560 */
1561 if (!vma_can_userfault(cur))
1562 goto out_unlock;
1563
1564 found = true;
1565 }
1566 BUG_ON(!found);
1567
1568 if (vma->vm_start < start)
1569 prev = vma;
1570
1571 ret = 0;
1572 do {
1573 cond_resched();
1574
1575 BUG_ON(!vma_can_userfault(vma));
1576
1577 /*
1578 * Nothing to do: this vma is already registered into this
1579 * userfaultfd and with the right tracking mode too.
1580 */
1581 if (!vma->vm_userfaultfd_ctx.ctx)
1582 goto skip;
1583
1584 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1585
1586 if (vma->vm_start > start)
1587 start = vma->vm_start;
1588 vma_end = min(end, vma->vm_end);
1589
1590 if (userfaultfd_missing(vma)) {
1591 /*
1592 * Wake any concurrent pending userfault while
1593 * we unregister, so they will not hang
1594 * permanently and it avoids userland to call
1595 * UFFDIO_WAKE explicitly.
1596 */
1597 struct userfaultfd_wake_range range;
1598 range.start = start;
1599 range.len = vma_end - start;
1600 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1601 }
1602
1603 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1604 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1605 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1606 vma_policy(vma),
1607 NULL_VM_UFFD_CTX);
1608 if (prev) {
1609 vma = prev;
1610 goto next;
1611 }
1612 if (vma->vm_start < start) {
1613 ret = split_vma(mm, vma, start, 1);
1614 if (ret)
1615 break;
1616 }
1617 if (vma->vm_end > end) {
1618 ret = split_vma(mm, vma, end, 0);
1619 if (ret)
1620 break;
1621 }
1622 next:
1623 /*
1624 * In the vma_merge() successful mprotect-like case 8:
1625 * the next vma was merged into the current one and
1626 * the current one has not been updated yet.
1627 */
1628 vma->vm_flags = new_flags;
1629 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1630
1631 skip:
1632 prev = vma;
1633 start = vma->vm_end;
1634 vma = vma->vm_next;
1635 } while (vma && vma->vm_start < end);
1636 out_unlock:
1637 up_write(&mm->mmap_sem);
1638 mmput(mm);
1639 out:
1640 return ret;
1641 }
1642
1643 /*
1644 * userfaultfd_wake may be used in combination with the
1645 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1646 */
1647 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1648 unsigned long arg)
1649 {
1650 int ret;
1651 struct uffdio_range uffdio_wake;
1652 struct userfaultfd_wake_range range;
1653 const void __user *buf = (void __user *)arg;
1654
1655 ret = -EFAULT;
1656 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1657 goto out;
1658
1659 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1660 if (ret)
1661 goto out;
1662
1663 range.start = uffdio_wake.start;
1664 range.len = uffdio_wake.len;
1665
1666 /*
1667 * len == 0 means wake all and we don't want to wake all here,
1668 * so check it again to be sure.
1669 */
1670 VM_BUG_ON(!range.len);
1671
1672 wake_userfault(ctx, &range);
1673 ret = 0;
1674
1675 out:
1676 return ret;
1677 }
1678
1679 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1680 unsigned long arg)
1681 {
1682 __s64 ret;
1683 struct uffdio_copy uffdio_copy;
1684 struct uffdio_copy __user *user_uffdio_copy;
1685 struct userfaultfd_wake_range range;
1686
1687 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1688
1689 ret = -EAGAIN;
1690 if (READ_ONCE(ctx->mmap_changing))
1691 goto out;
1692
1693 ret = -EFAULT;
1694 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1695 /* don't copy "copy" last field */
1696 sizeof(uffdio_copy)-sizeof(__s64)))
1697 goto out;
1698
1699 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1700 if (ret)
1701 goto out;
1702 /*
1703 * double check for wraparound just in case. copy_from_user()
1704 * will later check uffdio_copy.src + uffdio_copy.len to fit
1705 * in the userland range.
1706 */
1707 ret = -EINVAL;
1708 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1709 goto out;
1710 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1711 goto out;
1712 if (mmget_not_zero(ctx->mm)) {
1713 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1714 uffdio_copy.len, &ctx->mmap_changing);
1715 mmput(ctx->mm);
1716 } else {
1717 return -ESRCH;
1718 }
1719 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1720 return -EFAULT;
1721 if (ret < 0)
1722 goto out;
1723 BUG_ON(!ret);
1724 /* len == 0 would wake all */
1725 range.len = ret;
1726 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1727 range.start = uffdio_copy.dst;
1728 wake_userfault(ctx, &range);
1729 }
1730 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1731 out:
1732 return ret;
1733 }
1734
1735 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1736 unsigned long arg)
1737 {
1738 __s64 ret;
1739 struct uffdio_zeropage uffdio_zeropage;
1740 struct uffdio_zeropage __user *user_uffdio_zeropage;
1741 struct userfaultfd_wake_range range;
1742
1743 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1744
1745 ret = -EAGAIN;
1746 if (READ_ONCE(ctx->mmap_changing))
1747 goto out;
1748
1749 ret = -EFAULT;
1750 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1751 /* don't copy "zeropage" last field */
1752 sizeof(uffdio_zeropage)-sizeof(__s64)))
1753 goto out;
1754
1755 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1756 uffdio_zeropage.range.len);
1757 if (ret)
1758 goto out;
1759 ret = -EINVAL;
1760 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1761 goto out;
1762
1763 if (mmget_not_zero(ctx->mm)) {
1764 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1765 uffdio_zeropage.range.len,
1766 &ctx->mmap_changing);
1767 mmput(ctx->mm);
1768 } else {
1769 return -ESRCH;
1770 }
1771 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1772 return -EFAULT;
1773 if (ret < 0)
1774 goto out;
1775 /* len == 0 would wake all */
1776 BUG_ON(!ret);
1777 range.len = ret;
1778 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1779 range.start = uffdio_zeropage.range.start;
1780 wake_userfault(ctx, &range);
1781 }
1782 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1783 out:
1784 return ret;
1785 }
1786
1787 static inline unsigned int uffd_ctx_features(__u64 user_features)
1788 {
1789 /*
1790 * For the current set of features the bits just coincide
1791 */
1792 return (unsigned int)user_features;
1793 }
1794
1795 /*
1796 * userland asks for a certain API version and we return which bits
1797 * and ioctl commands are implemented in this kernel for such API
1798 * version or -EINVAL if unknown.
1799 */
1800 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1801 unsigned long arg)
1802 {
1803 struct uffdio_api uffdio_api;
1804 void __user *buf = (void __user *)arg;
1805 int ret;
1806 __u64 features;
1807
1808 ret = -EINVAL;
1809 if (ctx->state != UFFD_STATE_WAIT_API)
1810 goto out;
1811 ret = -EFAULT;
1812 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1813 goto out;
1814 features = uffdio_api.features;
1815 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1816 memset(&uffdio_api, 0, sizeof(uffdio_api));
1817 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1818 goto out;
1819 ret = -EINVAL;
1820 goto out;
1821 }
1822 /* report all available features and ioctls to userland */
1823 uffdio_api.features = UFFD_API_FEATURES;
1824 uffdio_api.ioctls = UFFD_API_IOCTLS;
1825 ret = -EFAULT;
1826 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1827 goto out;
1828 ctx->state = UFFD_STATE_RUNNING;
1829 /* only enable the requested features for this uffd context */
1830 ctx->features = uffd_ctx_features(features);
1831 ret = 0;
1832 out:
1833 return ret;
1834 }
1835
1836 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1837 unsigned long arg)
1838 {
1839 int ret = -EINVAL;
1840 struct userfaultfd_ctx *ctx = file->private_data;
1841
1842 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1843 return -EINVAL;
1844
1845 switch(cmd) {
1846 case UFFDIO_API:
1847 ret = userfaultfd_api(ctx, arg);
1848 break;
1849 case UFFDIO_REGISTER:
1850 ret = userfaultfd_register(ctx, arg);
1851 break;
1852 case UFFDIO_UNREGISTER:
1853 ret = userfaultfd_unregister(ctx, arg);
1854 break;
1855 case UFFDIO_WAKE:
1856 ret = userfaultfd_wake(ctx, arg);
1857 break;
1858 case UFFDIO_COPY:
1859 ret = userfaultfd_copy(ctx, arg);
1860 break;
1861 case UFFDIO_ZEROPAGE:
1862 ret = userfaultfd_zeropage(ctx, arg);
1863 break;
1864 }
1865 return ret;
1866 }
1867
1868 #ifdef CONFIG_PROC_FS
1869 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1870 {
1871 struct userfaultfd_ctx *ctx = f->private_data;
1872 wait_queue_entry_t *wq;
1873 unsigned long pending = 0, total = 0;
1874
1875 spin_lock(&ctx->fault_pending_wqh.lock);
1876 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1877 pending++;
1878 total++;
1879 }
1880 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1881 total++;
1882 }
1883 spin_unlock(&ctx->fault_pending_wqh.lock);
1884
1885 /*
1886 * If more protocols will be added, there will be all shown
1887 * separated by a space. Like this:
1888 * protocols: aa:... bb:...
1889 */
1890 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1891 pending, total, UFFD_API, ctx->features,
1892 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1893 }
1894 #endif
1895
1896 static const struct file_operations userfaultfd_fops = {
1897 #ifdef CONFIG_PROC_FS
1898 .show_fdinfo = userfaultfd_show_fdinfo,
1899 #endif
1900 .release = userfaultfd_release,
1901 .poll = userfaultfd_poll,
1902 .read = userfaultfd_read,
1903 .unlocked_ioctl = userfaultfd_ioctl,
1904 .compat_ioctl = userfaultfd_ioctl,
1905 .llseek = noop_llseek,
1906 };
1907
1908 static void init_once_userfaultfd_ctx(void *mem)
1909 {
1910 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1911
1912 init_waitqueue_head(&ctx->fault_pending_wqh);
1913 init_waitqueue_head(&ctx->fault_wqh);
1914 init_waitqueue_head(&ctx->event_wqh);
1915 init_waitqueue_head(&ctx->fd_wqh);
1916 seqcount_init(&ctx->refile_seq);
1917 }
1918
1919 SYSCALL_DEFINE1(userfaultfd, int, flags)
1920 {
1921 struct userfaultfd_ctx *ctx;
1922 int fd;
1923
1924 BUG_ON(!current->mm);
1925
1926 /* Check the UFFD_* constants for consistency. */
1927 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1928 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1929
1930 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1931 return -EINVAL;
1932
1933 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1934 if (!ctx)
1935 return -ENOMEM;
1936
1937 refcount_set(&ctx->refcount, 1);
1938 ctx->flags = flags;
1939 ctx->features = 0;
1940 ctx->state = UFFD_STATE_WAIT_API;
1941 ctx->released = false;
1942 ctx->mmap_changing = false;
1943 ctx->mm = current->mm;
1944 /* prevent the mm struct to be freed */
1945 mmgrab(ctx->mm);
1946
1947 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1948 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1949 if (fd < 0) {
1950 mmdrop(ctx->mm);
1951 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1952 }
1953 return fd;
1954 }
1955
1956 static int __init userfaultfd_init(void)
1957 {
1958 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1959 sizeof(struct userfaultfd_ctx),
1960 0,
1961 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1962 init_once_userfaultfd_ctx);
1963 return 0;
1964 }
1965 __initcall(userfaultfd_init);