]> git.ipfire.org Git - people/arne_f/kernel.git/blob - fs/xfs/xfs_file.c
xfs: add clone file and clone range vfs functions
[people/arne_f/kernel.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
42
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47
48 static const struct vm_operations_struct xfs_file_vm_ops;
49
50 /*
51 * Locking primitives for read and write IO paths to ensure we consistently use
52 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
53 */
54 static inline void
55 xfs_rw_ilock(
56 struct xfs_inode *ip,
57 int type)
58 {
59 if (type & XFS_IOLOCK_EXCL)
60 inode_lock(VFS_I(ip));
61 xfs_ilock(ip, type);
62 }
63
64 static inline void
65 xfs_rw_iunlock(
66 struct xfs_inode *ip,
67 int type)
68 {
69 xfs_iunlock(ip, type);
70 if (type & XFS_IOLOCK_EXCL)
71 inode_unlock(VFS_I(ip));
72 }
73
74 static inline void
75 xfs_rw_ilock_demote(
76 struct xfs_inode *ip,
77 int type)
78 {
79 xfs_ilock_demote(ip, type);
80 if (type & XFS_IOLOCK_EXCL)
81 inode_unlock(VFS_I(ip));
82 }
83
84 /*
85 * Clear the specified ranges to zero through either the pagecache or DAX.
86 * Holes and unwritten extents will be left as-is as they already are zeroed.
87 */
88 int
89 xfs_zero_range(
90 struct xfs_inode *ip,
91 xfs_off_t pos,
92 xfs_off_t count,
93 bool *did_zero)
94 {
95 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
96 }
97
98 int
99 xfs_update_prealloc_flags(
100 struct xfs_inode *ip,
101 enum xfs_prealloc_flags flags)
102 {
103 struct xfs_trans *tp;
104 int error;
105
106 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
107 0, 0, 0, &tp);
108 if (error)
109 return error;
110
111 xfs_ilock(ip, XFS_ILOCK_EXCL);
112 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
113
114 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
115 VFS_I(ip)->i_mode &= ~S_ISUID;
116 if (VFS_I(ip)->i_mode & S_IXGRP)
117 VFS_I(ip)->i_mode &= ~S_ISGID;
118 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
119 }
120
121 if (flags & XFS_PREALLOC_SET)
122 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
123 if (flags & XFS_PREALLOC_CLEAR)
124 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
125
126 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
127 if (flags & XFS_PREALLOC_SYNC)
128 xfs_trans_set_sync(tp);
129 return xfs_trans_commit(tp);
130 }
131
132 /*
133 * Fsync operations on directories are much simpler than on regular files,
134 * as there is no file data to flush, and thus also no need for explicit
135 * cache flush operations, and there are no non-transaction metadata updates
136 * on directories either.
137 */
138 STATIC int
139 xfs_dir_fsync(
140 struct file *file,
141 loff_t start,
142 loff_t end,
143 int datasync)
144 {
145 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
146 struct xfs_mount *mp = ip->i_mount;
147 xfs_lsn_t lsn = 0;
148
149 trace_xfs_dir_fsync(ip);
150
151 xfs_ilock(ip, XFS_ILOCK_SHARED);
152 if (xfs_ipincount(ip))
153 lsn = ip->i_itemp->ili_last_lsn;
154 xfs_iunlock(ip, XFS_ILOCK_SHARED);
155
156 if (!lsn)
157 return 0;
158 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159 }
160
161 STATIC int
162 xfs_file_fsync(
163 struct file *file,
164 loff_t start,
165 loff_t end,
166 int datasync)
167 {
168 struct inode *inode = file->f_mapping->host;
169 struct xfs_inode *ip = XFS_I(inode);
170 struct xfs_mount *mp = ip->i_mount;
171 int error = 0;
172 int log_flushed = 0;
173 xfs_lsn_t lsn = 0;
174
175 trace_xfs_file_fsync(ip);
176
177 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 if (error)
179 return error;
180
181 if (XFS_FORCED_SHUTDOWN(mp))
182 return -EIO;
183
184 xfs_iflags_clear(ip, XFS_ITRUNCATED);
185
186 if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 /*
188 * If we have an RT and/or log subvolume we need to make sure
189 * to flush the write cache the device used for file data
190 * first. This is to ensure newly written file data make
191 * it to disk before logging the new inode size in case of
192 * an extending write.
193 */
194 if (XFS_IS_REALTIME_INODE(ip))
195 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 }
199
200 /*
201 * All metadata updates are logged, which means that we just have to
202 * flush the log up to the latest LSN that touched the inode. If we have
203 * concurrent fsync/fdatasync() calls, we need them to all block on the
204 * log force before we clear the ili_fsync_fields field. This ensures
205 * that we don't get a racing sync operation that does not wait for the
206 * metadata to hit the journal before returning. If we race with
207 * clearing the ili_fsync_fields, then all that will happen is the log
208 * force will do nothing as the lsn will already be on disk. We can't
209 * race with setting ili_fsync_fields because that is done under
210 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
211 * until after the ili_fsync_fields is cleared.
212 */
213 xfs_ilock(ip, XFS_ILOCK_SHARED);
214 if (xfs_ipincount(ip)) {
215 if (!datasync ||
216 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
217 lsn = ip->i_itemp->ili_last_lsn;
218 }
219
220 if (lsn) {
221 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
222 ip->i_itemp->ili_fsync_fields = 0;
223 }
224 xfs_iunlock(ip, XFS_ILOCK_SHARED);
225
226 /*
227 * If we only have a single device, and the log force about was
228 * a no-op we might have to flush the data device cache here.
229 * This can only happen for fdatasync/O_DSYNC if we were overwriting
230 * an already allocated file and thus do not have any metadata to
231 * commit.
232 */
233 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
234 mp->m_logdev_targp == mp->m_ddev_targp &&
235 !XFS_IS_REALTIME_INODE(ip) &&
236 !log_flushed)
237 xfs_blkdev_issue_flush(mp->m_ddev_targp);
238
239 return error;
240 }
241
242 STATIC ssize_t
243 xfs_file_dio_aio_read(
244 struct kiocb *iocb,
245 struct iov_iter *to)
246 {
247 struct address_space *mapping = iocb->ki_filp->f_mapping;
248 struct inode *inode = mapping->host;
249 struct xfs_inode *ip = XFS_I(inode);
250 loff_t isize = i_size_read(inode);
251 size_t count = iov_iter_count(to);
252 struct iov_iter data;
253 struct xfs_buftarg *target;
254 ssize_t ret = 0;
255
256 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
257
258 if (!count)
259 return 0; /* skip atime */
260
261 if (XFS_IS_REALTIME_INODE(ip))
262 target = ip->i_mount->m_rtdev_targp;
263 else
264 target = ip->i_mount->m_ddev_targp;
265
266 /* DIO must be aligned to device logical sector size */
267 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
268 if (iocb->ki_pos == isize)
269 return 0;
270 return -EINVAL;
271 }
272
273 file_accessed(iocb->ki_filp);
274
275 /*
276 * Locking is a bit tricky here. If we take an exclusive lock for direct
277 * IO, we effectively serialise all new concurrent read IO to this file
278 * and block it behind IO that is currently in progress because IO in
279 * progress holds the IO lock shared. We only need to hold the lock
280 * exclusive to blow away the page cache, so only take lock exclusively
281 * if the page cache needs invalidation. This allows the normal direct
282 * IO case of no page cache pages to proceeed concurrently without
283 * serialisation.
284 */
285 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
286 if (mapping->nrpages) {
287 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
288 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
289
290 /*
291 * The generic dio code only flushes the range of the particular
292 * I/O. Because we take an exclusive lock here, this whole
293 * sequence is considerably more expensive for us. This has a
294 * noticeable performance impact for any file with cached pages,
295 * even when outside of the range of the particular I/O.
296 *
297 * Hence, amortize the cost of the lock against a full file
298 * flush and reduce the chances of repeated iolock cycles going
299 * forward.
300 */
301 if (mapping->nrpages) {
302 ret = filemap_write_and_wait(mapping);
303 if (ret) {
304 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
305 return ret;
306 }
307
308 /*
309 * Invalidate whole pages. This can return an error if
310 * we fail to invalidate a page, but this should never
311 * happen on XFS. Warn if it does fail.
312 */
313 ret = invalidate_inode_pages2(mapping);
314 WARN_ON_ONCE(ret);
315 ret = 0;
316 }
317 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
318 }
319
320 data = *to;
321 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
322 xfs_get_blocks_direct, NULL, NULL, 0);
323 if (ret > 0) {
324 iocb->ki_pos += ret;
325 iov_iter_advance(to, ret);
326 }
327 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
328
329 return ret;
330 }
331
332 static noinline ssize_t
333 xfs_file_dax_read(
334 struct kiocb *iocb,
335 struct iov_iter *to)
336 {
337 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
338 size_t count = iov_iter_count(to);
339 ssize_t ret = 0;
340
341 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
342
343 if (!count)
344 return 0; /* skip atime */
345
346 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
347 ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops);
348 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
349
350 file_accessed(iocb->ki_filp);
351 return ret;
352 }
353
354 STATIC ssize_t
355 xfs_file_buffered_aio_read(
356 struct kiocb *iocb,
357 struct iov_iter *to)
358 {
359 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
360 ssize_t ret;
361
362 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
363
364 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
365 ret = generic_file_read_iter(iocb, to);
366 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
367
368 return ret;
369 }
370
371 STATIC ssize_t
372 xfs_file_read_iter(
373 struct kiocb *iocb,
374 struct iov_iter *to)
375 {
376 struct inode *inode = file_inode(iocb->ki_filp);
377 struct xfs_mount *mp = XFS_I(inode)->i_mount;
378 ssize_t ret = 0;
379
380 XFS_STATS_INC(mp, xs_read_calls);
381
382 if (XFS_FORCED_SHUTDOWN(mp))
383 return -EIO;
384
385 if (IS_DAX(inode))
386 ret = xfs_file_dax_read(iocb, to);
387 else if (iocb->ki_flags & IOCB_DIRECT)
388 ret = xfs_file_dio_aio_read(iocb, to);
389 else
390 ret = xfs_file_buffered_aio_read(iocb, to);
391
392 if (ret > 0)
393 XFS_STATS_ADD(mp, xs_read_bytes, ret);
394 return ret;
395 }
396
397 STATIC ssize_t
398 xfs_file_splice_read(
399 struct file *infilp,
400 loff_t *ppos,
401 struct pipe_inode_info *pipe,
402 size_t count,
403 unsigned int flags)
404 {
405 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
406 ssize_t ret;
407
408 XFS_STATS_INC(ip->i_mount, xs_read_calls);
409
410 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
411 return -EIO;
412
413 trace_xfs_file_splice_read(ip, count, *ppos);
414
415 /*
416 * DAX inodes cannot ues the page cache for splice, so we have to push
417 * them through the VFS IO path. This means it goes through
418 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
419 * cannot lock the splice operation at this level for DAX inodes.
420 */
421 if (IS_DAX(VFS_I(ip))) {
422 ret = default_file_splice_read(infilp, ppos, pipe, count,
423 flags);
424 goto out;
425 }
426
427 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
428 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
429 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
430 out:
431 if (ret > 0)
432 XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
433 return ret;
434 }
435
436 /*
437 * Zero any on disk space between the current EOF and the new, larger EOF.
438 *
439 * This handles the normal case of zeroing the remainder of the last block in
440 * the file and the unusual case of zeroing blocks out beyond the size of the
441 * file. This second case only happens with fixed size extents and when the
442 * system crashes before the inode size was updated but after blocks were
443 * allocated.
444 *
445 * Expects the iolock to be held exclusive, and will take the ilock internally.
446 */
447 int /* error (positive) */
448 xfs_zero_eof(
449 struct xfs_inode *ip,
450 xfs_off_t offset, /* starting I/O offset */
451 xfs_fsize_t isize, /* current inode size */
452 bool *did_zeroing)
453 {
454 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
455 ASSERT(offset > isize);
456
457 trace_xfs_zero_eof(ip, isize, offset - isize);
458 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
459 }
460
461 /*
462 * Common pre-write limit and setup checks.
463 *
464 * Called with the iolocked held either shared and exclusive according to
465 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
466 * if called for a direct write beyond i_size.
467 */
468 STATIC ssize_t
469 xfs_file_aio_write_checks(
470 struct kiocb *iocb,
471 struct iov_iter *from,
472 int *iolock)
473 {
474 struct file *file = iocb->ki_filp;
475 struct inode *inode = file->f_mapping->host;
476 struct xfs_inode *ip = XFS_I(inode);
477 ssize_t error = 0;
478 size_t count = iov_iter_count(from);
479 bool drained_dio = false;
480
481 restart:
482 error = generic_write_checks(iocb, from);
483 if (error <= 0)
484 return error;
485
486 error = xfs_break_layouts(inode, iolock, true);
487 if (error)
488 return error;
489
490 /* For changing security info in file_remove_privs() we need i_mutex */
491 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
492 xfs_rw_iunlock(ip, *iolock);
493 *iolock = XFS_IOLOCK_EXCL;
494 xfs_rw_ilock(ip, *iolock);
495 goto restart;
496 }
497 /*
498 * If the offset is beyond the size of the file, we need to zero any
499 * blocks that fall between the existing EOF and the start of this
500 * write. If zeroing is needed and we are currently holding the
501 * iolock shared, we need to update it to exclusive which implies
502 * having to redo all checks before.
503 *
504 * We need to serialise against EOF updates that occur in IO
505 * completions here. We want to make sure that nobody is changing the
506 * size while we do this check until we have placed an IO barrier (i.e.
507 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
508 * The spinlock effectively forms a memory barrier once we have the
509 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
510 * and hence be able to correctly determine if we need to run zeroing.
511 */
512 spin_lock(&ip->i_flags_lock);
513 if (iocb->ki_pos > i_size_read(inode)) {
514 bool zero = false;
515
516 spin_unlock(&ip->i_flags_lock);
517 if (!drained_dio) {
518 if (*iolock == XFS_IOLOCK_SHARED) {
519 xfs_rw_iunlock(ip, *iolock);
520 *iolock = XFS_IOLOCK_EXCL;
521 xfs_rw_ilock(ip, *iolock);
522 iov_iter_reexpand(from, count);
523 }
524 /*
525 * We now have an IO submission barrier in place, but
526 * AIO can do EOF updates during IO completion and hence
527 * we now need to wait for all of them to drain. Non-AIO
528 * DIO will have drained before we are given the
529 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
530 * no-op.
531 */
532 inode_dio_wait(inode);
533 drained_dio = true;
534 goto restart;
535 }
536 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
537 if (error)
538 return error;
539 } else
540 spin_unlock(&ip->i_flags_lock);
541
542 /*
543 * Updating the timestamps will grab the ilock again from
544 * xfs_fs_dirty_inode, so we have to call it after dropping the
545 * lock above. Eventually we should look into a way to avoid
546 * the pointless lock roundtrip.
547 */
548 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
549 error = file_update_time(file);
550 if (error)
551 return error;
552 }
553
554 /*
555 * If we're writing the file then make sure to clear the setuid and
556 * setgid bits if the process is not being run by root. This keeps
557 * people from modifying setuid and setgid binaries.
558 */
559 if (!IS_NOSEC(inode))
560 return file_remove_privs(file);
561 return 0;
562 }
563
564 /*
565 * xfs_file_dio_aio_write - handle direct IO writes
566 *
567 * Lock the inode appropriately to prepare for and issue a direct IO write.
568 * By separating it from the buffered write path we remove all the tricky to
569 * follow locking changes and looping.
570 *
571 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
572 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
573 * pages are flushed out.
574 *
575 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
576 * allowing them to be done in parallel with reads and other direct IO writes.
577 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
578 * needs to do sub-block zeroing and that requires serialisation against other
579 * direct IOs to the same block. In this case we need to serialise the
580 * submission of the unaligned IOs so that we don't get racing block zeroing in
581 * the dio layer. To avoid the problem with aio, we also need to wait for
582 * outstanding IOs to complete so that unwritten extent conversion is completed
583 * before we try to map the overlapping block. This is currently implemented by
584 * hitting it with a big hammer (i.e. inode_dio_wait()).
585 *
586 * Returns with locks held indicated by @iolock and errors indicated by
587 * negative return values.
588 */
589 STATIC ssize_t
590 xfs_file_dio_aio_write(
591 struct kiocb *iocb,
592 struct iov_iter *from)
593 {
594 struct file *file = iocb->ki_filp;
595 struct address_space *mapping = file->f_mapping;
596 struct inode *inode = mapping->host;
597 struct xfs_inode *ip = XFS_I(inode);
598 struct xfs_mount *mp = ip->i_mount;
599 ssize_t ret = 0;
600 int unaligned_io = 0;
601 int iolock;
602 size_t count = iov_iter_count(from);
603 loff_t end;
604 struct iov_iter data;
605 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
606 mp->m_rtdev_targp : mp->m_ddev_targp;
607
608 /* DIO must be aligned to device logical sector size */
609 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
610 return -EINVAL;
611
612 /* "unaligned" here means not aligned to a filesystem block */
613 if ((iocb->ki_pos & mp->m_blockmask) ||
614 ((iocb->ki_pos + count) & mp->m_blockmask))
615 unaligned_io = 1;
616
617 /*
618 * We don't need to take an exclusive lock unless there page cache needs
619 * to be invalidated or unaligned IO is being executed. We don't need to
620 * consider the EOF extension case here because
621 * xfs_file_aio_write_checks() will relock the inode as necessary for
622 * EOF zeroing cases and fill out the new inode size as appropriate.
623 */
624 if (unaligned_io || mapping->nrpages)
625 iolock = XFS_IOLOCK_EXCL;
626 else
627 iolock = XFS_IOLOCK_SHARED;
628 xfs_rw_ilock(ip, iolock);
629
630 /*
631 * Recheck if there are cached pages that need invalidate after we got
632 * the iolock to protect against other threads adding new pages while
633 * we were waiting for the iolock.
634 */
635 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
636 xfs_rw_iunlock(ip, iolock);
637 iolock = XFS_IOLOCK_EXCL;
638 xfs_rw_ilock(ip, iolock);
639 }
640
641 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
642 if (ret)
643 goto out;
644 count = iov_iter_count(from);
645 end = iocb->ki_pos + count - 1;
646
647 /*
648 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
649 */
650 if (mapping->nrpages) {
651 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
652 if (ret)
653 goto out;
654 /*
655 * Invalidate whole pages. This can return an error if we fail
656 * to invalidate a page, but this should never happen on XFS.
657 * Warn if it does fail.
658 */
659 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
660 WARN_ON_ONCE(ret);
661 ret = 0;
662 }
663
664 /*
665 * If we are doing unaligned IO, wait for all other IO to drain,
666 * otherwise demote the lock if we had to flush cached pages
667 */
668 if (unaligned_io)
669 inode_dio_wait(inode);
670 else if (iolock == XFS_IOLOCK_EXCL) {
671 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
672 iolock = XFS_IOLOCK_SHARED;
673 }
674
675 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
676
677 /* If this is a block-aligned directio CoW, remap immediately. */
678 if (xfs_is_reflink_inode(ip) && !unaligned_io) {
679 ret = xfs_reflink_allocate_cow_range(ip, iocb->ki_pos, count);
680 if (ret)
681 goto out;
682 }
683
684 data = *from;
685 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
686 xfs_get_blocks_direct, xfs_end_io_direct_write,
687 NULL, DIO_ASYNC_EXTEND);
688
689 /* see generic_file_direct_write() for why this is necessary */
690 if (mapping->nrpages) {
691 invalidate_inode_pages2_range(mapping,
692 iocb->ki_pos >> PAGE_SHIFT,
693 end >> PAGE_SHIFT);
694 }
695
696 if (ret > 0) {
697 iocb->ki_pos += ret;
698 iov_iter_advance(from, ret);
699 }
700 out:
701 xfs_rw_iunlock(ip, iolock);
702
703 /*
704 * No fallback to buffered IO on errors for XFS, direct IO will either
705 * complete fully or fail.
706 */
707 ASSERT(ret < 0 || ret == count);
708 return ret;
709 }
710
711 static noinline ssize_t
712 xfs_file_dax_write(
713 struct kiocb *iocb,
714 struct iov_iter *from)
715 {
716 struct inode *inode = iocb->ki_filp->f_mapping->host;
717 struct xfs_inode *ip = XFS_I(inode);
718 int iolock = XFS_IOLOCK_EXCL;
719 ssize_t ret, error = 0;
720 size_t count;
721 loff_t pos;
722
723 xfs_rw_ilock(ip, iolock);
724 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
725 if (ret)
726 goto out;
727
728 pos = iocb->ki_pos;
729 count = iov_iter_count(from);
730
731 trace_xfs_file_dax_write(ip, count, pos);
732
733 ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops);
734 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
735 i_size_write(inode, iocb->ki_pos);
736 error = xfs_setfilesize(ip, pos, ret);
737 }
738
739 out:
740 xfs_rw_iunlock(ip, iolock);
741 return error ? error : ret;
742 }
743
744 STATIC ssize_t
745 xfs_file_buffered_aio_write(
746 struct kiocb *iocb,
747 struct iov_iter *from)
748 {
749 struct file *file = iocb->ki_filp;
750 struct address_space *mapping = file->f_mapping;
751 struct inode *inode = mapping->host;
752 struct xfs_inode *ip = XFS_I(inode);
753 ssize_t ret;
754 int enospc = 0;
755 int iolock = XFS_IOLOCK_EXCL;
756
757 xfs_rw_ilock(ip, iolock);
758
759 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
760 if (ret)
761 goto out;
762
763 /* We can write back this queue in page reclaim */
764 current->backing_dev_info = inode_to_bdi(inode);
765
766 write_retry:
767 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
768 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
769 if (likely(ret >= 0))
770 iocb->ki_pos += ret;
771
772 /*
773 * If we hit a space limit, try to free up some lingering preallocated
774 * space before returning an error. In the case of ENOSPC, first try to
775 * write back all dirty inodes to free up some of the excess reserved
776 * metadata space. This reduces the chances that the eofblocks scan
777 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
778 * also behaves as a filter to prevent too many eofblocks scans from
779 * running at the same time.
780 */
781 if (ret == -EDQUOT && !enospc) {
782 enospc = xfs_inode_free_quota_eofblocks(ip);
783 if (enospc)
784 goto write_retry;
785 } else if (ret == -ENOSPC && !enospc) {
786 struct xfs_eofblocks eofb = {0};
787
788 enospc = 1;
789 xfs_flush_inodes(ip->i_mount);
790 eofb.eof_scan_owner = ip->i_ino; /* for locking */
791 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
792 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
793 goto write_retry;
794 }
795
796 current->backing_dev_info = NULL;
797 out:
798 xfs_rw_iunlock(ip, iolock);
799 return ret;
800 }
801
802 STATIC ssize_t
803 xfs_file_write_iter(
804 struct kiocb *iocb,
805 struct iov_iter *from)
806 {
807 struct file *file = iocb->ki_filp;
808 struct address_space *mapping = file->f_mapping;
809 struct inode *inode = mapping->host;
810 struct xfs_inode *ip = XFS_I(inode);
811 ssize_t ret;
812 size_t ocount = iov_iter_count(from);
813
814 XFS_STATS_INC(ip->i_mount, xs_write_calls);
815
816 if (ocount == 0)
817 return 0;
818
819 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
820 return -EIO;
821
822 if (IS_DAX(inode))
823 ret = xfs_file_dax_write(iocb, from);
824 else if (iocb->ki_flags & IOCB_DIRECT) {
825 /*
826 * Allow a directio write to fall back to a buffered
827 * write *only* in the case that we're doing a reflink
828 * CoW. In all other directio scenarios we do not
829 * allow an operation to fall back to buffered mode.
830 */
831 ret = xfs_file_dio_aio_write(iocb, from);
832 if (ret == -EREMCHG)
833 goto buffered;
834 } else {
835 buffered:
836 ret = xfs_file_buffered_aio_write(iocb, from);
837 }
838
839 if (ret > 0) {
840 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
841
842 /* Handle various SYNC-type writes */
843 ret = generic_write_sync(iocb, ret);
844 }
845 return ret;
846 }
847
848 #define XFS_FALLOC_FL_SUPPORTED \
849 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
850 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
851 FALLOC_FL_INSERT_RANGE)
852
853 STATIC long
854 xfs_file_fallocate(
855 struct file *file,
856 int mode,
857 loff_t offset,
858 loff_t len)
859 {
860 struct inode *inode = file_inode(file);
861 struct xfs_inode *ip = XFS_I(inode);
862 long error;
863 enum xfs_prealloc_flags flags = 0;
864 uint iolock = XFS_IOLOCK_EXCL;
865 loff_t new_size = 0;
866 bool do_file_insert = 0;
867
868 if (!S_ISREG(inode->i_mode))
869 return -EINVAL;
870 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
871 return -EOPNOTSUPP;
872
873 xfs_ilock(ip, iolock);
874 error = xfs_break_layouts(inode, &iolock, false);
875 if (error)
876 goto out_unlock;
877
878 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
879 iolock |= XFS_MMAPLOCK_EXCL;
880
881 if (mode & FALLOC_FL_PUNCH_HOLE) {
882 error = xfs_free_file_space(ip, offset, len);
883 if (error)
884 goto out_unlock;
885 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
886 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
887
888 if (offset & blksize_mask || len & blksize_mask) {
889 error = -EINVAL;
890 goto out_unlock;
891 }
892
893 /*
894 * There is no need to overlap collapse range with EOF,
895 * in which case it is effectively a truncate operation
896 */
897 if (offset + len >= i_size_read(inode)) {
898 error = -EINVAL;
899 goto out_unlock;
900 }
901
902 new_size = i_size_read(inode) - len;
903
904 error = xfs_collapse_file_space(ip, offset, len);
905 if (error)
906 goto out_unlock;
907 } else if (mode & FALLOC_FL_INSERT_RANGE) {
908 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
909
910 new_size = i_size_read(inode) + len;
911 if (offset & blksize_mask || len & blksize_mask) {
912 error = -EINVAL;
913 goto out_unlock;
914 }
915
916 /* check the new inode size does not wrap through zero */
917 if (new_size > inode->i_sb->s_maxbytes) {
918 error = -EFBIG;
919 goto out_unlock;
920 }
921
922 /* Offset should be less than i_size */
923 if (offset >= i_size_read(inode)) {
924 error = -EINVAL;
925 goto out_unlock;
926 }
927 do_file_insert = 1;
928 } else {
929 flags |= XFS_PREALLOC_SET;
930
931 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
932 offset + len > i_size_read(inode)) {
933 new_size = offset + len;
934 error = inode_newsize_ok(inode, new_size);
935 if (error)
936 goto out_unlock;
937 }
938
939 if (mode & FALLOC_FL_ZERO_RANGE)
940 error = xfs_zero_file_space(ip, offset, len);
941 else
942 error = xfs_alloc_file_space(ip, offset, len,
943 XFS_BMAPI_PREALLOC);
944 if (error)
945 goto out_unlock;
946 }
947
948 if (file->f_flags & O_DSYNC)
949 flags |= XFS_PREALLOC_SYNC;
950
951 error = xfs_update_prealloc_flags(ip, flags);
952 if (error)
953 goto out_unlock;
954
955 /* Change file size if needed */
956 if (new_size) {
957 struct iattr iattr;
958
959 iattr.ia_valid = ATTR_SIZE;
960 iattr.ia_size = new_size;
961 error = xfs_setattr_size(ip, &iattr);
962 if (error)
963 goto out_unlock;
964 }
965
966 /*
967 * Perform hole insertion now that the file size has been
968 * updated so that if we crash during the operation we don't
969 * leave shifted extents past EOF and hence losing access to
970 * the data that is contained within them.
971 */
972 if (do_file_insert)
973 error = xfs_insert_file_space(ip, offset, len);
974
975 out_unlock:
976 xfs_iunlock(ip, iolock);
977 return error;
978 }
979
980 /*
981 * Flush all file writes out to disk.
982 */
983 static int
984 xfs_file_wait_for_io(
985 struct inode *inode,
986 loff_t offset,
987 size_t len)
988 {
989 loff_t rounding;
990 loff_t ioffset;
991 loff_t iendoffset;
992 loff_t bs;
993 int ret;
994
995 bs = inode->i_sb->s_blocksize;
996 inode_dio_wait(inode);
997
998 rounding = max_t(xfs_off_t, bs, PAGE_SIZE);
999 ioffset = round_down(offset, rounding);
1000 iendoffset = round_up(offset + len, rounding) - 1;
1001 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
1002 iendoffset);
1003 return ret;
1004 }
1005
1006 /* Hook up to the VFS reflink function */
1007 STATIC int
1008 xfs_file_share_range(
1009 struct file *file_in,
1010 loff_t pos_in,
1011 struct file *file_out,
1012 loff_t pos_out,
1013 u64 len)
1014 {
1015 struct inode *inode_in;
1016 struct inode *inode_out;
1017 ssize_t ret;
1018 loff_t bs;
1019 loff_t isize;
1020 int same_inode;
1021 loff_t blen;
1022
1023 inode_in = file_inode(file_in);
1024 inode_out = file_inode(file_out);
1025 bs = inode_out->i_sb->s_blocksize;
1026
1027 /* Don't touch certain kinds of inodes */
1028 if (IS_IMMUTABLE(inode_out))
1029 return -EPERM;
1030 if (IS_SWAPFILE(inode_in) ||
1031 IS_SWAPFILE(inode_out))
1032 return -ETXTBSY;
1033
1034 /* Reflink only works within this filesystem. */
1035 if (inode_in->i_sb != inode_out->i_sb)
1036 return -EXDEV;
1037 same_inode = (inode_in->i_ino == inode_out->i_ino);
1038
1039 /* Don't reflink dirs, pipes, sockets... */
1040 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
1041 return -EISDIR;
1042 if (S_ISFIFO(inode_in->i_mode) || S_ISFIFO(inode_out->i_mode))
1043 return -EINVAL;
1044 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
1045 return -EINVAL;
1046
1047 /* Are we going all the way to the end? */
1048 isize = i_size_read(inode_in);
1049 if (isize == 0)
1050 return 0;
1051 if (len == 0)
1052 len = isize - pos_in;
1053
1054 /* Ensure offsets don't wrap and the input is inside i_size */
1055 if (pos_in + len < pos_in || pos_out + len < pos_out ||
1056 pos_in + len > isize)
1057 return -EINVAL;
1058
1059 /* If we're linking to EOF, continue to the block boundary. */
1060 if (pos_in + len == isize)
1061 blen = ALIGN(isize, bs) - pos_in;
1062 else
1063 blen = len;
1064
1065 /* Only reflink if we're aligned to block boundaries */
1066 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_in + blen, bs) ||
1067 !IS_ALIGNED(pos_out, bs) || !IS_ALIGNED(pos_out + blen, bs))
1068 return -EINVAL;
1069
1070 /* Don't allow overlapped reflink within the same file */
1071 if (same_inode && pos_out + blen > pos_in && pos_out < pos_in + blen)
1072 return -EINVAL;
1073
1074 /* Wait for the completion of any pending IOs on srcfile */
1075 ret = xfs_file_wait_for_io(inode_in, pos_in, len);
1076 if (ret)
1077 goto out_unlock;
1078 ret = xfs_file_wait_for_io(inode_out, pos_out, len);
1079 if (ret)
1080 goto out_unlock;
1081
1082 ret = xfs_reflink_remap_range(XFS_I(inode_in), pos_in, XFS_I(inode_out),
1083 pos_out, len);
1084 if (ret < 0)
1085 goto out_unlock;
1086
1087 out_unlock:
1088 return ret;
1089 }
1090
1091 STATIC ssize_t
1092 xfs_file_copy_range(
1093 struct file *file_in,
1094 loff_t pos_in,
1095 struct file *file_out,
1096 loff_t pos_out,
1097 size_t len,
1098 unsigned int flags)
1099 {
1100 int error;
1101
1102 error = xfs_file_share_range(file_in, pos_in, file_out, pos_out,
1103 len);
1104 if (error)
1105 return error;
1106 return len;
1107 }
1108
1109 STATIC int
1110 xfs_file_clone_range(
1111 struct file *file_in,
1112 loff_t pos_in,
1113 struct file *file_out,
1114 loff_t pos_out,
1115 u64 len)
1116 {
1117 return xfs_file_share_range(file_in, pos_in, file_out, pos_out,
1118 len);
1119 }
1120
1121 STATIC int
1122 xfs_file_open(
1123 struct inode *inode,
1124 struct file *file)
1125 {
1126 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1127 return -EFBIG;
1128 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1129 return -EIO;
1130 return 0;
1131 }
1132
1133 STATIC int
1134 xfs_dir_open(
1135 struct inode *inode,
1136 struct file *file)
1137 {
1138 struct xfs_inode *ip = XFS_I(inode);
1139 int mode;
1140 int error;
1141
1142 error = xfs_file_open(inode, file);
1143 if (error)
1144 return error;
1145
1146 /*
1147 * If there are any blocks, read-ahead block 0 as we're almost
1148 * certain to have the next operation be a read there.
1149 */
1150 mode = xfs_ilock_data_map_shared(ip);
1151 if (ip->i_d.di_nextents > 0)
1152 xfs_dir3_data_readahead(ip, 0, -1);
1153 xfs_iunlock(ip, mode);
1154 return 0;
1155 }
1156
1157 STATIC int
1158 xfs_file_release(
1159 struct inode *inode,
1160 struct file *filp)
1161 {
1162 return xfs_release(XFS_I(inode));
1163 }
1164
1165 STATIC int
1166 xfs_file_readdir(
1167 struct file *file,
1168 struct dir_context *ctx)
1169 {
1170 struct inode *inode = file_inode(file);
1171 xfs_inode_t *ip = XFS_I(inode);
1172 size_t bufsize;
1173
1174 /*
1175 * The Linux API doesn't pass down the total size of the buffer
1176 * we read into down to the filesystem. With the filldir concept
1177 * it's not needed for correct information, but the XFS dir2 leaf
1178 * code wants an estimate of the buffer size to calculate it's
1179 * readahead window and size the buffers used for mapping to
1180 * physical blocks.
1181 *
1182 * Try to give it an estimate that's good enough, maybe at some
1183 * point we can change the ->readdir prototype to include the
1184 * buffer size. For now we use the current glibc buffer size.
1185 */
1186 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1187
1188 return xfs_readdir(ip, ctx, bufsize);
1189 }
1190
1191 /*
1192 * This type is designed to indicate the type of offset we would like
1193 * to search from page cache for xfs_seek_hole_data().
1194 */
1195 enum {
1196 HOLE_OFF = 0,
1197 DATA_OFF,
1198 };
1199
1200 /*
1201 * Lookup the desired type of offset from the given page.
1202 *
1203 * On success, return true and the offset argument will point to the
1204 * start of the region that was found. Otherwise this function will
1205 * return false and keep the offset argument unchanged.
1206 */
1207 STATIC bool
1208 xfs_lookup_buffer_offset(
1209 struct page *page,
1210 loff_t *offset,
1211 unsigned int type)
1212 {
1213 loff_t lastoff = page_offset(page);
1214 bool found = false;
1215 struct buffer_head *bh, *head;
1216
1217 bh = head = page_buffers(page);
1218 do {
1219 /*
1220 * Unwritten extents that have data in the page
1221 * cache covering them can be identified by the
1222 * BH_Unwritten state flag. Pages with multiple
1223 * buffers might have a mix of holes, data and
1224 * unwritten extents - any buffer with valid
1225 * data in it should have BH_Uptodate flag set
1226 * on it.
1227 */
1228 if (buffer_unwritten(bh) ||
1229 buffer_uptodate(bh)) {
1230 if (type == DATA_OFF)
1231 found = true;
1232 } else {
1233 if (type == HOLE_OFF)
1234 found = true;
1235 }
1236
1237 if (found) {
1238 *offset = lastoff;
1239 break;
1240 }
1241 lastoff += bh->b_size;
1242 } while ((bh = bh->b_this_page) != head);
1243
1244 return found;
1245 }
1246
1247 /*
1248 * This routine is called to find out and return a data or hole offset
1249 * from the page cache for unwritten extents according to the desired
1250 * type for xfs_seek_hole_data().
1251 *
1252 * The argument offset is used to tell where we start to search from the
1253 * page cache. Map is used to figure out the end points of the range to
1254 * lookup pages.
1255 *
1256 * Return true if the desired type of offset was found, and the argument
1257 * offset is filled with that address. Otherwise, return false and keep
1258 * offset unchanged.
1259 */
1260 STATIC bool
1261 xfs_find_get_desired_pgoff(
1262 struct inode *inode,
1263 struct xfs_bmbt_irec *map,
1264 unsigned int type,
1265 loff_t *offset)
1266 {
1267 struct xfs_inode *ip = XFS_I(inode);
1268 struct xfs_mount *mp = ip->i_mount;
1269 struct pagevec pvec;
1270 pgoff_t index;
1271 pgoff_t end;
1272 loff_t endoff;
1273 loff_t startoff = *offset;
1274 loff_t lastoff = startoff;
1275 bool found = false;
1276
1277 pagevec_init(&pvec, 0);
1278
1279 index = startoff >> PAGE_SHIFT;
1280 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1281 end = endoff >> PAGE_SHIFT;
1282 do {
1283 int want;
1284 unsigned nr_pages;
1285 unsigned int i;
1286
1287 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1288 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1289 want);
1290 /*
1291 * No page mapped into given range. If we are searching holes
1292 * and if this is the first time we got into the loop, it means
1293 * that the given offset is landed in a hole, return it.
1294 *
1295 * If we have already stepped through some block buffers to find
1296 * holes but they all contains data. In this case, the last
1297 * offset is already updated and pointed to the end of the last
1298 * mapped page, if it does not reach the endpoint to search,
1299 * that means there should be a hole between them.
1300 */
1301 if (nr_pages == 0) {
1302 /* Data search found nothing */
1303 if (type == DATA_OFF)
1304 break;
1305
1306 ASSERT(type == HOLE_OFF);
1307 if (lastoff == startoff || lastoff < endoff) {
1308 found = true;
1309 *offset = lastoff;
1310 }
1311 break;
1312 }
1313
1314 /*
1315 * At lease we found one page. If this is the first time we
1316 * step into the loop, and if the first page index offset is
1317 * greater than the given search offset, a hole was found.
1318 */
1319 if (type == HOLE_OFF && lastoff == startoff &&
1320 lastoff < page_offset(pvec.pages[0])) {
1321 found = true;
1322 break;
1323 }
1324
1325 for (i = 0; i < nr_pages; i++) {
1326 struct page *page = pvec.pages[i];
1327 loff_t b_offset;
1328
1329 /*
1330 * At this point, the page may be truncated or
1331 * invalidated (changing page->mapping to NULL),
1332 * or even swizzled back from swapper_space to tmpfs
1333 * file mapping. However, page->index will not change
1334 * because we have a reference on the page.
1335 *
1336 * Searching done if the page index is out of range.
1337 * If the current offset is not reaches the end of
1338 * the specified search range, there should be a hole
1339 * between them.
1340 */
1341 if (page->index > end) {
1342 if (type == HOLE_OFF && lastoff < endoff) {
1343 *offset = lastoff;
1344 found = true;
1345 }
1346 goto out;
1347 }
1348
1349 lock_page(page);
1350 /*
1351 * Page truncated or invalidated(page->mapping == NULL).
1352 * We can freely skip it and proceed to check the next
1353 * page.
1354 */
1355 if (unlikely(page->mapping != inode->i_mapping)) {
1356 unlock_page(page);
1357 continue;
1358 }
1359
1360 if (!page_has_buffers(page)) {
1361 unlock_page(page);
1362 continue;
1363 }
1364
1365 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1366 if (found) {
1367 /*
1368 * The found offset may be less than the start
1369 * point to search if this is the first time to
1370 * come here.
1371 */
1372 *offset = max_t(loff_t, startoff, b_offset);
1373 unlock_page(page);
1374 goto out;
1375 }
1376
1377 /*
1378 * We either searching data but nothing was found, or
1379 * searching hole but found a data buffer. In either
1380 * case, probably the next page contains the desired
1381 * things, update the last offset to it so.
1382 */
1383 lastoff = page_offset(page) + PAGE_SIZE;
1384 unlock_page(page);
1385 }
1386
1387 /*
1388 * The number of returned pages less than our desired, search
1389 * done. In this case, nothing was found for searching data,
1390 * but we found a hole behind the last offset.
1391 */
1392 if (nr_pages < want) {
1393 if (type == HOLE_OFF) {
1394 *offset = lastoff;
1395 found = true;
1396 }
1397 break;
1398 }
1399
1400 index = pvec.pages[i - 1]->index + 1;
1401 pagevec_release(&pvec);
1402 } while (index <= end);
1403
1404 out:
1405 pagevec_release(&pvec);
1406 return found;
1407 }
1408
1409 /*
1410 * caller must lock inode with xfs_ilock_data_map_shared,
1411 * can we craft an appropriate ASSERT?
1412 *
1413 * end is because the VFS-level lseek interface is defined such that any
1414 * offset past i_size shall return -ENXIO, but we use this for quota code
1415 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1416 */
1417 loff_t
1418 __xfs_seek_hole_data(
1419 struct inode *inode,
1420 loff_t start,
1421 loff_t end,
1422 int whence)
1423 {
1424 struct xfs_inode *ip = XFS_I(inode);
1425 struct xfs_mount *mp = ip->i_mount;
1426 loff_t uninitialized_var(offset);
1427 xfs_fileoff_t fsbno;
1428 xfs_filblks_t lastbno;
1429 int error;
1430
1431 if (start >= end) {
1432 error = -ENXIO;
1433 goto out_error;
1434 }
1435
1436 /*
1437 * Try to read extents from the first block indicated
1438 * by fsbno to the end block of the file.
1439 */
1440 fsbno = XFS_B_TO_FSBT(mp, start);
1441 lastbno = XFS_B_TO_FSB(mp, end);
1442
1443 for (;;) {
1444 struct xfs_bmbt_irec map[2];
1445 int nmap = 2;
1446 unsigned int i;
1447
1448 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1449 XFS_BMAPI_ENTIRE);
1450 if (error)
1451 goto out_error;
1452
1453 /* No extents at given offset, must be beyond EOF */
1454 if (nmap == 0) {
1455 error = -ENXIO;
1456 goto out_error;
1457 }
1458
1459 for (i = 0; i < nmap; i++) {
1460 offset = max_t(loff_t, start,
1461 XFS_FSB_TO_B(mp, map[i].br_startoff));
1462
1463 /* Landed in the hole we wanted? */
1464 if (whence == SEEK_HOLE &&
1465 map[i].br_startblock == HOLESTARTBLOCK)
1466 goto out;
1467
1468 /* Landed in the data extent we wanted? */
1469 if (whence == SEEK_DATA &&
1470 (map[i].br_startblock == DELAYSTARTBLOCK ||
1471 (map[i].br_state == XFS_EXT_NORM &&
1472 !isnullstartblock(map[i].br_startblock))))
1473 goto out;
1474
1475 /*
1476 * Landed in an unwritten extent, try to search
1477 * for hole or data from page cache.
1478 */
1479 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1480 if (xfs_find_get_desired_pgoff(inode, &map[i],
1481 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1482 &offset))
1483 goto out;
1484 }
1485 }
1486
1487 /*
1488 * We only received one extent out of the two requested. This
1489 * means we've hit EOF and didn't find what we are looking for.
1490 */
1491 if (nmap == 1) {
1492 /*
1493 * If we were looking for a hole, set offset to
1494 * the end of the file (i.e., there is an implicit
1495 * hole at the end of any file).
1496 */
1497 if (whence == SEEK_HOLE) {
1498 offset = end;
1499 break;
1500 }
1501 /*
1502 * If we were looking for data, it's nowhere to be found
1503 */
1504 ASSERT(whence == SEEK_DATA);
1505 error = -ENXIO;
1506 goto out_error;
1507 }
1508
1509 ASSERT(i > 1);
1510
1511 /*
1512 * Nothing was found, proceed to the next round of search
1513 * if the next reading offset is not at or beyond EOF.
1514 */
1515 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1516 start = XFS_FSB_TO_B(mp, fsbno);
1517 if (start >= end) {
1518 if (whence == SEEK_HOLE) {
1519 offset = end;
1520 break;
1521 }
1522 ASSERT(whence == SEEK_DATA);
1523 error = -ENXIO;
1524 goto out_error;
1525 }
1526 }
1527
1528 out:
1529 /*
1530 * If at this point we have found the hole we wanted, the returned
1531 * offset may be bigger than the file size as it may be aligned to
1532 * page boundary for unwritten extents. We need to deal with this
1533 * situation in particular.
1534 */
1535 if (whence == SEEK_HOLE)
1536 offset = min_t(loff_t, offset, end);
1537
1538 return offset;
1539
1540 out_error:
1541 return error;
1542 }
1543
1544 STATIC loff_t
1545 xfs_seek_hole_data(
1546 struct file *file,
1547 loff_t start,
1548 int whence)
1549 {
1550 struct inode *inode = file->f_mapping->host;
1551 struct xfs_inode *ip = XFS_I(inode);
1552 struct xfs_mount *mp = ip->i_mount;
1553 uint lock;
1554 loff_t offset, end;
1555 int error = 0;
1556
1557 if (XFS_FORCED_SHUTDOWN(mp))
1558 return -EIO;
1559
1560 lock = xfs_ilock_data_map_shared(ip);
1561
1562 end = i_size_read(inode);
1563 offset = __xfs_seek_hole_data(inode, start, end, whence);
1564 if (offset < 0) {
1565 error = offset;
1566 goto out_unlock;
1567 }
1568
1569 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1570
1571 out_unlock:
1572 xfs_iunlock(ip, lock);
1573
1574 if (error)
1575 return error;
1576 return offset;
1577 }
1578
1579 STATIC loff_t
1580 xfs_file_llseek(
1581 struct file *file,
1582 loff_t offset,
1583 int whence)
1584 {
1585 switch (whence) {
1586 case SEEK_END:
1587 case SEEK_CUR:
1588 case SEEK_SET:
1589 return generic_file_llseek(file, offset, whence);
1590 case SEEK_HOLE:
1591 case SEEK_DATA:
1592 return xfs_seek_hole_data(file, offset, whence);
1593 default:
1594 return -EINVAL;
1595 }
1596 }
1597
1598 /*
1599 * Locking for serialisation of IO during page faults. This results in a lock
1600 * ordering of:
1601 *
1602 * mmap_sem (MM)
1603 * sb_start_pagefault(vfs, freeze)
1604 * i_mmaplock (XFS - truncate serialisation)
1605 * page_lock (MM)
1606 * i_lock (XFS - extent map serialisation)
1607 */
1608
1609 /*
1610 * mmap()d file has taken write protection fault and is being made writable. We
1611 * can set the page state up correctly for a writable page, which means we can
1612 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1613 * mapping.
1614 */
1615 STATIC int
1616 xfs_filemap_page_mkwrite(
1617 struct vm_area_struct *vma,
1618 struct vm_fault *vmf)
1619 {
1620 struct inode *inode = file_inode(vma->vm_file);
1621 int ret;
1622
1623 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1624
1625 sb_start_pagefault(inode->i_sb);
1626 file_update_time(vma->vm_file);
1627 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1628
1629 if (IS_DAX(inode)) {
1630 ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1631 } else {
1632 ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
1633 ret = block_page_mkwrite_return(ret);
1634 }
1635
1636 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1637 sb_end_pagefault(inode->i_sb);
1638
1639 return ret;
1640 }
1641
1642 STATIC int
1643 xfs_filemap_fault(
1644 struct vm_area_struct *vma,
1645 struct vm_fault *vmf)
1646 {
1647 struct inode *inode = file_inode(vma->vm_file);
1648 int ret;
1649
1650 trace_xfs_filemap_fault(XFS_I(inode));
1651
1652 /* DAX can shortcut the normal fault path on write faults! */
1653 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1654 return xfs_filemap_page_mkwrite(vma, vmf);
1655
1656 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1657 if (IS_DAX(inode)) {
1658 /*
1659 * we do not want to trigger unwritten extent conversion on read
1660 * faults - that is unnecessary overhead and would also require
1661 * changes to xfs_get_blocks_direct() to map unwritten extent
1662 * ioend for conversion on read-only mappings.
1663 */
1664 ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1665 } else
1666 ret = filemap_fault(vma, vmf);
1667 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1668
1669 return ret;
1670 }
1671
1672 /*
1673 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1674 * both read and write faults. Hence we need to handle both cases. There is no
1675 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1676 * handle both cases here. @flags carries the information on the type of fault
1677 * occuring.
1678 */
1679 STATIC int
1680 xfs_filemap_pmd_fault(
1681 struct vm_area_struct *vma,
1682 unsigned long addr,
1683 pmd_t *pmd,
1684 unsigned int flags)
1685 {
1686 struct inode *inode = file_inode(vma->vm_file);
1687 struct xfs_inode *ip = XFS_I(inode);
1688 int ret;
1689
1690 if (!IS_DAX(inode))
1691 return VM_FAULT_FALLBACK;
1692
1693 trace_xfs_filemap_pmd_fault(ip);
1694
1695 if (flags & FAULT_FLAG_WRITE) {
1696 sb_start_pagefault(inode->i_sb);
1697 file_update_time(vma->vm_file);
1698 }
1699
1700 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1701 ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
1702 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1703
1704 if (flags & FAULT_FLAG_WRITE)
1705 sb_end_pagefault(inode->i_sb);
1706
1707 return ret;
1708 }
1709
1710 /*
1711 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1712 * updates on write faults. In reality, it's need to serialise against
1713 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1714 * to ensure we serialise the fault barrier in place.
1715 */
1716 static int
1717 xfs_filemap_pfn_mkwrite(
1718 struct vm_area_struct *vma,
1719 struct vm_fault *vmf)
1720 {
1721
1722 struct inode *inode = file_inode(vma->vm_file);
1723 struct xfs_inode *ip = XFS_I(inode);
1724 int ret = VM_FAULT_NOPAGE;
1725 loff_t size;
1726
1727 trace_xfs_filemap_pfn_mkwrite(ip);
1728
1729 sb_start_pagefault(inode->i_sb);
1730 file_update_time(vma->vm_file);
1731
1732 /* check if the faulting page hasn't raced with truncate */
1733 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1734 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1735 if (vmf->pgoff >= size)
1736 ret = VM_FAULT_SIGBUS;
1737 else if (IS_DAX(inode))
1738 ret = dax_pfn_mkwrite(vma, vmf);
1739 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1740 sb_end_pagefault(inode->i_sb);
1741 return ret;
1742
1743 }
1744
1745 static const struct vm_operations_struct xfs_file_vm_ops = {
1746 .fault = xfs_filemap_fault,
1747 .pmd_fault = xfs_filemap_pmd_fault,
1748 .map_pages = filemap_map_pages,
1749 .page_mkwrite = xfs_filemap_page_mkwrite,
1750 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1751 };
1752
1753 STATIC int
1754 xfs_file_mmap(
1755 struct file *filp,
1756 struct vm_area_struct *vma)
1757 {
1758 file_accessed(filp);
1759 vma->vm_ops = &xfs_file_vm_ops;
1760 if (IS_DAX(file_inode(filp)))
1761 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1762 return 0;
1763 }
1764
1765 const struct file_operations xfs_file_operations = {
1766 .llseek = xfs_file_llseek,
1767 .read_iter = xfs_file_read_iter,
1768 .write_iter = xfs_file_write_iter,
1769 .splice_read = xfs_file_splice_read,
1770 .splice_write = iter_file_splice_write,
1771 .unlocked_ioctl = xfs_file_ioctl,
1772 #ifdef CONFIG_COMPAT
1773 .compat_ioctl = xfs_file_compat_ioctl,
1774 #endif
1775 .mmap = xfs_file_mmap,
1776 .open = xfs_file_open,
1777 .release = xfs_file_release,
1778 .fsync = xfs_file_fsync,
1779 .fallocate = xfs_file_fallocate,
1780 .copy_file_range = xfs_file_copy_range,
1781 .clone_file_range = xfs_file_clone_range,
1782 };
1783
1784 const struct file_operations xfs_dir_file_operations = {
1785 .open = xfs_dir_open,
1786 .read = generic_read_dir,
1787 .iterate_shared = xfs_file_readdir,
1788 .llseek = generic_file_llseek,
1789 .unlocked_ioctl = xfs_file_ioctl,
1790 #ifdef CONFIG_COMPAT
1791 .compat_ioctl = xfs_file_compat_ioctl,
1792 #endif
1793 .fsync = xfs_dir_fsync,
1794 };