]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/xfs/xfs_icache.c
gpu: host1x: Use SMMU on Tegra124 and Tegra210
[thirdparty/linux.git] / fs / xfs / xfs_icache.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_inode_item.h"
18 #include "xfs_quota.h"
19 #include "xfs_trace.h"
20 #include "xfs_icache.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_dquot_item.h"
23 #include "xfs_dquot.h"
24 #include "xfs_reflink.h"
25
26 #include <linux/iversion.h>
27
28 /*
29 * Allocate and initialise an xfs_inode.
30 */
31 struct xfs_inode *
32 xfs_inode_alloc(
33 struct xfs_mount *mp,
34 xfs_ino_t ino)
35 {
36 struct xfs_inode *ip;
37
38 /*
39 * if this didn't occur in transactions, we could use
40 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
41 * code up to do this anyway.
42 */
43 ip = kmem_zone_alloc(xfs_inode_zone, 0);
44 if (!ip)
45 return NULL;
46 if (inode_init_always(mp->m_super, VFS_I(ip))) {
47 kmem_cache_free(xfs_inode_zone, ip);
48 return NULL;
49 }
50
51 /* VFS doesn't initialise i_mode! */
52 VFS_I(ip)->i_mode = 0;
53
54 XFS_STATS_INC(mp, vn_active);
55 ASSERT(atomic_read(&ip->i_pincount) == 0);
56 ASSERT(!xfs_isiflocked(ip));
57 ASSERT(ip->i_ino == 0);
58
59 /* initialise the xfs inode */
60 ip->i_ino = ino;
61 ip->i_mount = mp;
62 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
63 ip->i_afp = NULL;
64 ip->i_cowfp = NULL;
65 ip->i_cnextents = 0;
66 ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
67 memset(&ip->i_df, 0, sizeof(ip->i_df));
68 ip->i_flags = 0;
69 ip->i_delayed_blks = 0;
70 memset(&ip->i_d, 0, sizeof(ip->i_d));
71 ip->i_sick = 0;
72 ip->i_checked = 0;
73 INIT_WORK(&ip->i_ioend_work, xfs_end_io);
74 INIT_LIST_HEAD(&ip->i_ioend_list);
75 spin_lock_init(&ip->i_ioend_lock);
76
77 return ip;
78 }
79
80 STATIC void
81 xfs_inode_free_callback(
82 struct rcu_head *head)
83 {
84 struct inode *inode = container_of(head, struct inode, i_rcu);
85 struct xfs_inode *ip = XFS_I(inode);
86
87 switch (VFS_I(ip)->i_mode & S_IFMT) {
88 case S_IFREG:
89 case S_IFDIR:
90 case S_IFLNK:
91 xfs_idestroy_fork(ip, XFS_DATA_FORK);
92 break;
93 }
94
95 if (ip->i_afp)
96 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
97 if (ip->i_cowfp)
98 xfs_idestroy_fork(ip, XFS_COW_FORK);
99
100 if (ip->i_itemp) {
101 ASSERT(!test_bit(XFS_LI_IN_AIL,
102 &ip->i_itemp->ili_item.li_flags));
103 xfs_inode_item_destroy(ip);
104 ip->i_itemp = NULL;
105 }
106
107 kmem_cache_free(xfs_inode_zone, ip);
108 }
109
110 static void
111 __xfs_inode_free(
112 struct xfs_inode *ip)
113 {
114 /* asserts to verify all state is correct here */
115 ASSERT(atomic_read(&ip->i_pincount) == 0);
116 XFS_STATS_DEC(ip->i_mount, vn_active);
117
118 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
119 }
120
121 void
122 xfs_inode_free(
123 struct xfs_inode *ip)
124 {
125 ASSERT(!xfs_isiflocked(ip));
126
127 /*
128 * Because we use RCU freeing we need to ensure the inode always
129 * appears to be reclaimed with an invalid inode number when in the
130 * free state. The ip->i_flags_lock provides the barrier against lookup
131 * races.
132 */
133 spin_lock(&ip->i_flags_lock);
134 ip->i_flags = XFS_IRECLAIM;
135 ip->i_ino = 0;
136 spin_unlock(&ip->i_flags_lock);
137
138 __xfs_inode_free(ip);
139 }
140
141 /*
142 * Queue a new inode reclaim pass if there are reclaimable inodes and there
143 * isn't a reclaim pass already in progress. By default it runs every 5s based
144 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
145 * tunable, but that can be done if this method proves to be ineffective or too
146 * aggressive.
147 */
148 static void
149 xfs_reclaim_work_queue(
150 struct xfs_mount *mp)
151 {
152
153 rcu_read_lock();
154 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
155 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
156 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
157 }
158 rcu_read_unlock();
159 }
160
161 /*
162 * This is a fast pass over the inode cache to try to get reclaim moving on as
163 * many inodes as possible in a short period of time. It kicks itself every few
164 * seconds, as well as being kicked by the inode cache shrinker when memory
165 * goes low. It scans as quickly as possible avoiding locked inodes or those
166 * already being flushed, and once done schedules a future pass.
167 */
168 void
169 xfs_reclaim_worker(
170 struct work_struct *work)
171 {
172 struct xfs_mount *mp = container_of(to_delayed_work(work),
173 struct xfs_mount, m_reclaim_work);
174
175 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
176 xfs_reclaim_work_queue(mp);
177 }
178
179 static void
180 xfs_perag_set_reclaim_tag(
181 struct xfs_perag *pag)
182 {
183 struct xfs_mount *mp = pag->pag_mount;
184
185 lockdep_assert_held(&pag->pag_ici_lock);
186 if (pag->pag_ici_reclaimable++)
187 return;
188
189 /* propagate the reclaim tag up into the perag radix tree */
190 spin_lock(&mp->m_perag_lock);
191 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
192 XFS_ICI_RECLAIM_TAG);
193 spin_unlock(&mp->m_perag_lock);
194
195 /* schedule periodic background inode reclaim */
196 xfs_reclaim_work_queue(mp);
197
198 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
199 }
200
201 static void
202 xfs_perag_clear_reclaim_tag(
203 struct xfs_perag *pag)
204 {
205 struct xfs_mount *mp = pag->pag_mount;
206
207 lockdep_assert_held(&pag->pag_ici_lock);
208 if (--pag->pag_ici_reclaimable)
209 return;
210
211 /* clear the reclaim tag from the perag radix tree */
212 spin_lock(&mp->m_perag_lock);
213 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
214 XFS_ICI_RECLAIM_TAG);
215 spin_unlock(&mp->m_perag_lock);
216 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
217 }
218
219
220 /*
221 * We set the inode flag atomically with the radix tree tag.
222 * Once we get tag lookups on the radix tree, this inode flag
223 * can go away.
224 */
225 void
226 xfs_inode_set_reclaim_tag(
227 struct xfs_inode *ip)
228 {
229 struct xfs_mount *mp = ip->i_mount;
230 struct xfs_perag *pag;
231
232 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
233 spin_lock(&pag->pag_ici_lock);
234 spin_lock(&ip->i_flags_lock);
235
236 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
237 XFS_ICI_RECLAIM_TAG);
238 xfs_perag_set_reclaim_tag(pag);
239 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
240
241 spin_unlock(&ip->i_flags_lock);
242 spin_unlock(&pag->pag_ici_lock);
243 xfs_perag_put(pag);
244 }
245
246 STATIC void
247 xfs_inode_clear_reclaim_tag(
248 struct xfs_perag *pag,
249 xfs_ino_t ino)
250 {
251 radix_tree_tag_clear(&pag->pag_ici_root,
252 XFS_INO_TO_AGINO(pag->pag_mount, ino),
253 XFS_ICI_RECLAIM_TAG);
254 xfs_perag_clear_reclaim_tag(pag);
255 }
256
257 static void
258 xfs_inew_wait(
259 struct xfs_inode *ip)
260 {
261 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
262 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
263
264 do {
265 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
266 if (!xfs_iflags_test(ip, XFS_INEW))
267 break;
268 schedule();
269 } while (true);
270 finish_wait(wq, &wait.wq_entry);
271 }
272
273 /*
274 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
275 * part of the structure. This is made more complex by the fact we store
276 * information about the on-disk values in the VFS inode and so we can't just
277 * overwrite the values unconditionally. Hence we save the parameters we
278 * need to retain across reinitialisation, and rewrite them into the VFS inode
279 * after reinitialisation even if it fails.
280 */
281 static int
282 xfs_reinit_inode(
283 struct xfs_mount *mp,
284 struct inode *inode)
285 {
286 int error;
287 uint32_t nlink = inode->i_nlink;
288 uint32_t generation = inode->i_generation;
289 uint64_t version = inode_peek_iversion(inode);
290 umode_t mode = inode->i_mode;
291 dev_t dev = inode->i_rdev;
292 kuid_t uid = inode->i_uid;
293 kgid_t gid = inode->i_gid;
294
295 error = inode_init_always(mp->m_super, inode);
296
297 set_nlink(inode, nlink);
298 inode->i_generation = generation;
299 inode_set_iversion_queried(inode, version);
300 inode->i_mode = mode;
301 inode->i_rdev = dev;
302 inode->i_uid = uid;
303 inode->i_gid = gid;
304 return error;
305 }
306
307 /*
308 * If we are allocating a new inode, then check what was returned is
309 * actually a free, empty inode. If we are not allocating an inode,
310 * then check we didn't find a free inode.
311 *
312 * Returns:
313 * 0 if the inode free state matches the lookup context
314 * -ENOENT if the inode is free and we are not allocating
315 * -EFSCORRUPTED if there is any state mismatch at all
316 */
317 static int
318 xfs_iget_check_free_state(
319 struct xfs_inode *ip,
320 int flags)
321 {
322 if (flags & XFS_IGET_CREATE) {
323 /* should be a free inode */
324 if (VFS_I(ip)->i_mode != 0) {
325 xfs_warn(ip->i_mount,
326 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
327 ip->i_ino, VFS_I(ip)->i_mode);
328 return -EFSCORRUPTED;
329 }
330
331 if (ip->i_d.di_nblocks != 0) {
332 xfs_warn(ip->i_mount,
333 "Corruption detected! Free inode 0x%llx has blocks allocated!",
334 ip->i_ino);
335 return -EFSCORRUPTED;
336 }
337 return 0;
338 }
339
340 /* should be an allocated inode */
341 if (VFS_I(ip)->i_mode == 0)
342 return -ENOENT;
343
344 return 0;
345 }
346
347 /*
348 * Check the validity of the inode we just found it the cache
349 */
350 static int
351 xfs_iget_cache_hit(
352 struct xfs_perag *pag,
353 struct xfs_inode *ip,
354 xfs_ino_t ino,
355 int flags,
356 int lock_flags) __releases(RCU)
357 {
358 struct inode *inode = VFS_I(ip);
359 struct xfs_mount *mp = ip->i_mount;
360 int error;
361
362 /*
363 * check for re-use of an inode within an RCU grace period due to the
364 * radix tree nodes not being updated yet. We monitor for this by
365 * setting the inode number to zero before freeing the inode structure.
366 * If the inode has been reallocated and set up, then the inode number
367 * will not match, so check for that, too.
368 */
369 spin_lock(&ip->i_flags_lock);
370 if (ip->i_ino != ino) {
371 trace_xfs_iget_skip(ip);
372 XFS_STATS_INC(mp, xs_ig_frecycle);
373 error = -EAGAIN;
374 goto out_error;
375 }
376
377
378 /*
379 * If we are racing with another cache hit that is currently
380 * instantiating this inode or currently recycling it out of
381 * reclaimabe state, wait for the initialisation to complete
382 * before continuing.
383 *
384 * XXX(hch): eventually we should do something equivalent to
385 * wait_on_inode to wait for these flags to be cleared
386 * instead of polling for it.
387 */
388 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
389 trace_xfs_iget_skip(ip);
390 XFS_STATS_INC(mp, xs_ig_frecycle);
391 error = -EAGAIN;
392 goto out_error;
393 }
394
395 /*
396 * Check the inode free state is valid. This also detects lookup
397 * racing with unlinks.
398 */
399 error = xfs_iget_check_free_state(ip, flags);
400 if (error)
401 goto out_error;
402
403 /*
404 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
405 * Need to carefully get it back into useable state.
406 */
407 if (ip->i_flags & XFS_IRECLAIMABLE) {
408 trace_xfs_iget_reclaim(ip);
409
410 if (flags & XFS_IGET_INCORE) {
411 error = -EAGAIN;
412 goto out_error;
413 }
414
415 /*
416 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
417 * from stomping over us while we recycle the inode. We can't
418 * clear the radix tree reclaimable tag yet as it requires
419 * pag_ici_lock to be held exclusive.
420 */
421 ip->i_flags |= XFS_IRECLAIM;
422
423 spin_unlock(&ip->i_flags_lock);
424 rcu_read_unlock();
425
426 error = xfs_reinit_inode(mp, inode);
427 if (error) {
428 bool wake;
429 /*
430 * Re-initializing the inode failed, and we are in deep
431 * trouble. Try to re-add it to the reclaim list.
432 */
433 rcu_read_lock();
434 spin_lock(&ip->i_flags_lock);
435 wake = !!__xfs_iflags_test(ip, XFS_INEW);
436 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
437 if (wake)
438 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
439 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
440 trace_xfs_iget_reclaim_fail(ip);
441 goto out_error;
442 }
443
444 spin_lock(&pag->pag_ici_lock);
445 spin_lock(&ip->i_flags_lock);
446
447 /*
448 * Clear the per-lifetime state in the inode as we are now
449 * effectively a new inode and need to return to the initial
450 * state before reuse occurs.
451 */
452 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
453 ip->i_flags |= XFS_INEW;
454 xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
455 inode->i_state = I_NEW;
456 ip->i_sick = 0;
457 ip->i_checked = 0;
458
459 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
460 init_rwsem(&inode->i_rwsem);
461
462 spin_unlock(&ip->i_flags_lock);
463 spin_unlock(&pag->pag_ici_lock);
464 } else {
465 /* If the VFS inode is being torn down, pause and try again. */
466 if (!igrab(inode)) {
467 trace_xfs_iget_skip(ip);
468 error = -EAGAIN;
469 goto out_error;
470 }
471
472 /* We've got a live one. */
473 spin_unlock(&ip->i_flags_lock);
474 rcu_read_unlock();
475 trace_xfs_iget_hit(ip);
476 }
477
478 if (lock_flags != 0)
479 xfs_ilock(ip, lock_flags);
480
481 if (!(flags & XFS_IGET_INCORE))
482 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
483 XFS_STATS_INC(mp, xs_ig_found);
484
485 return 0;
486
487 out_error:
488 spin_unlock(&ip->i_flags_lock);
489 rcu_read_unlock();
490 return error;
491 }
492
493
494 static int
495 xfs_iget_cache_miss(
496 struct xfs_mount *mp,
497 struct xfs_perag *pag,
498 xfs_trans_t *tp,
499 xfs_ino_t ino,
500 struct xfs_inode **ipp,
501 int flags,
502 int lock_flags)
503 {
504 struct xfs_inode *ip;
505 int error;
506 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
507 int iflags;
508
509 ip = xfs_inode_alloc(mp, ino);
510 if (!ip)
511 return -ENOMEM;
512
513 error = xfs_iread(mp, tp, ip, flags);
514 if (error)
515 goto out_destroy;
516
517 if (!xfs_inode_verify_forks(ip)) {
518 error = -EFSCORRUPTED;
519 goto out_destroy;
520 }
521
522 trace_xfs_iget_miss(ip);
523
524
525 /*
526 * Check the inode free state is valid. This also detects lookup
527 * racing with unlinks.
528 */
529 error = xfs_iget_check_free_state(ip, flags);
530 if (error)
531 goto out_destroy;
532
533 /*
534 * Preload the radix tree so we can insert safely under the
535 * write spinlock. Note that we cannot sleep inside the preload
536 * region. Since we can be called from transaction context, don't
537 * recurse into the file system.
538 */
539 if (radix_tree_preload(GFP_NOFS)) {
540 error = -EAGAIN;
541 goto out_destroy;
542 }
543
544 /*
545 * Because the inode hasn't been added to the radix-tree yet it can't
546 * be found by another thread, so we can do the non-sleeping lock here.
547 */
548 if (lock_flags) {
549 if (!xfs_ilock_nowait(ip, lock_flags))
550 BUG();
551 }
552
553 /*
554 * These values must be set before inserting the inode into the radix
555 * tree as the moment it is inserted a concurrent lookup (allowed by the
556 * RCU locking mechanism) can find it and that lookup must see that this
557 * is an inode currently under construction (i.e. that XFS_INEW is set).
558 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
559 * memory barrier that ensures this detection works correctly at lookup
560 * time.
561 */
562 iflags = XFS_INEW;
563 if (flags & XFS_IGET_DONTCACHE)
564 iflags |= XFS_IDONTCACHE;
565 ip->i_udquot = NULL;
566 ip->i_gdquot = NULL;
567 ip->i_pdquot = NULL;
568 xfs_iflags_set(ip, iflags);
569
570 /* insert the new inode */
571 spin_lock(&pag->pag_ici_lock);
572 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
573 if (unlikely(error)) {
574 WARN_ON(error != -EEXIST);
575 XFS_STATS_INC(mp, xs_ig_dup);
576 error = -EAGAIN;
577 goto out_preload_end;
578 }
579 spin_unlock(&pag->pag_ici_lock);
580 radix_tree_preload_end();
581
582 *ipp = ip;
583 return 0;
584
585 out_preload_end:
586 spin_unlock(&pag->pag_ici_lock);
587 radix_tree_preload_end();
588 if (lock_flags)
589 xfs_iunlock(ip, lock_flags);
590 out_destroy:
591 __destroy_inode(VFS_I(ip));
592 xfs_inode_free(ip);
593 return error;
594 }
595
596 /*
597 * Look up an inode by number in the given file system.
598 * The inode is looked up in the cache held in each AG.
599 * If the inode is found in the cache, initialise the vfs inode
600 * if necessary.
601 *
602 * If it is not in core, read it in from the file system's device,
603 * add it to the cache and initialise the vfs inode.
604 *
605 * The inode is locked according to the value of the lock_flags parameter.
606 * This flag parameter indicates how and if the inode's IO lock and inode lock
607 * should be taken.
608 *
609 * mp -- the mount point structure for the current file system. It points
610 * to the inode hash table.
611 * tp -- a pointer to the current transaction if there is one. This is
612 * simply passed through to the xfs_iread() call.
613 * ino -- the number of the inode desired. This is the unique identifier
614 * within the file system for the inode being requested.
615 * lock_flags -- flags indicating how to lock the inode. See the comment
616 * for xfs_ilock() for a list of valid values.
617 */
618 int
619 xfs_iget(
620 xfs_mount_t *mp,
621 xfs_trans_t *tp,
622 xfs_ino_t ino,
623 uint flags,
624 uint lock_flags,
625 xfs_inode_t **ipp)
626 {
627 xfs_inode_t *ip;
628 int error;
629 xfs_perag_t *pag;
630 xfs_agino_t agino;
631
632 /*
633 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
634 * doesn't get freed while it's being referenced during a
635 * radix tree traversal here. It assumes this function
636 * aqcuires only the ILOCK (and therefore it has no need to
637 * involve the IOLOCK in this synchronization).
638 */
639 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
640
641 /* reject inode numbers outside existing AGs */
642 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
643 return -EINVAL;
644
645 XFS_STATS_INC(mp, xs_ig_attempts);
646
647 /* get the perag structure and ensure that it's inode capable */
648 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
649 agino = XFS_INO_TO_AGINO(mp, ino);
650
651 again:
652 error = 0;
653 rcu_read_lock();
654 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
655
656 if (ip) {
657 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
658 if (error)
659 goto out_error_or_again;
660 } else {
661 rcu_read_unlock();
662 if (flags & XFS_IGET_INCORE) {
663 error = -ENODATA;
664 goto out_error_or_again;
665 }
666 XFS_STATS_INC(mp, xs_ig_missed);
667
668 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
669 flags, lock_flags);
670 if (error)
671 goto out_error_or_again;
672 }
673 xfs_perag_put(pag);
674
675 *ipp = ip;
676
677 /*
678 * If we have a real type for an on-disk inode, we can setup the inode
679 * now. If it's a new inode being created, xfs_ialloc will handle it.
680 */
681 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
682 xfs_setup_existing_inode(ip);
683 return 0;
684
685 out_error_or_again:
686 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
687 delay(1);
688 goto again;
689 }
690 xfs_perag_put(pag);
691 return error;
692 }
693
694 /*
695 * "Is this a cached inode that's also allocated?"
696 *
697 * Look up an inode by number in the given file system. If the inode is
698 * in cache and isn't in purgatory, return 1 if the inode is allocated
699 * and 0 if it is not. For all other cases (not in cache, being torn
700 * down, etc.), return a negative error code.
701 *
702 * The caller has to prevent inode allocation and freeing activity,
703 * presumably by locking the AGI buffer. This is to ensure that an
704 * inode cannot transition from allocated to freed until the caller is
705 * ready to allow that. If the inode is in an intermediate state (new,
706 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
707 * inode is not in the cache, -ENOENT will be returned. The caller must
708 * deal with these scenarios appropriately.
709 *
710 * This is a specialized use case for the online scrubber; if you're
711 * reading this, you probably want xfs_iget.
712 */
713 int
714 xfs_icache_inode_is_allocated(
715 struct xfs_mount *mp,
716 struct xfs_trans *tp,
717 xfs_ino_t ino,
718 bool *inuse)
719 {
720 struct xfs_inode *ip;
721 int error;
722
723 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
724 if (error)
725 return error;
726
727 *inuse = !!(VFS_I(ip)->i_mode);
728 xfs_irele(ip);
729 return 0;
730 }
731
732 /*
733 * The inode lookup is done in batches to keep the amount of lock traffic and
734 * radix tree lookups to a minimum. The batch size is a trade off between
735 * lookup reduction and stack usage. This is in the reclaim path, so we can't
736 * be too greedy.
737 */
738 #define XFS_LOOKUP_BATCH 32
739
740 STATIC int
741 xfs_inode_ag_walk_grab(
742 struct xfs_inode *ip,
743 int flags)
744 {
745 struct inode *inode = VFS_I(ip);
746 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT);
747
748 ASSERT(rcu_read_lock_held());
749
750 /*
751 * check for stale RCU freed inode
752 *
753 * If the inode has been reallocated, it doesn't matter if it's not in
754 * the AG we are walking - we are walking for writeback, so if it
755 * passes all the "valid inode" checks and is dirty, then we'll write
756 * it back anyway. If it has been reallocated and still being
757 * initialised, the XFS_INEW check below will catch it.
758 */
759 spin_lock(&ip->i_flags_lock);
760 if (!ip->i_ino)
761 goto out_unlock_noent;
762
763 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
764 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
765 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
766 goto out_unlock_noent;
767 spin_unlock(&ip->i_flags_lock);
768
769 /* nothing to sync during shutdown */
770 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
771 return -EFSCORRUPTED;
772
773 /* If we can't grab the inode, it must on it's way to reclaim. */
774 if (!igrab(inode))
775 return -ENOENT;
776
777 /* inode is valid */
778 return 0;
779
780 out_unlock_noent:
781 spin_unlock(&ip->i_flags_lock);
782 return -ENOENT;
783 }
784
785 STATIC int
786 xfs_inode_ag_walk(
787 struct xfs_mount *mp,
788 struct xfs_perag *pag,
789 int (*execute)(struct xfs_inode *ip, int flags,
790 void *args),
791 int flags,
792 void *args,
793 int tag,
794 int iter_flags)
795 {
796 uint32_t first_index;
797 int last_error = 0;
798 int skipped;
799 int done;
800 int nr_found;
801
802 restart:
803 done = 0;
804 skipped = 0;
805 first_index = 0;
806 nr_found = 0;
807 do {
808 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
809 int error = 0;
810 int i;
811
812 rcu_read_lock();
813
814 if (tag == -1)
815 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
816 (void **)batch, first_index,
817 XFS_LOOKUP_BATCH);
818 else
819 nr_found = radix_tree_gang_lookup_tag(
820 &pag->pag_ici_root,
821 (void **) batch, first_index,
822 XFS_LOOKUP_BATCH, tag);
823
824 if (!nr_found) {
825 rcu_read_unlock();
826 break;
827 }
828
829 /*
830 * Grab the inodes before we drop the lock. if we found
831 * nothing, nr == 0 and the loop will be skipped.
832 */
833 for (i = 0; i < nr_found; i++) {
834 struct xfs_inode *ip = batch[i];
835
836 if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
837 batch[i] = NULL;
838
839 /*
840 * Update the index for the next lookup. Catch
841 * overflows into the next AG range which can occur if
842 * we have inodes in the last block of the AG and we
843 * are currently pointing to the last inode.
844 *
845 * Because we may see inodes that are from the wrong AG
846 * due to RCU freeing and reallocation, only update the
847 * index if it lies in this AG. It was a race that lead
848 * us to see this inode, so another lookup from the
849 * same index will not find it again.
850 */
851 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
852 continue;
853 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
854 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
855 done = 1;
856 }
857
858 /* unlock now we've grabbed the inodes. */
859 rcu_read_unlock();
860
861 for (i = 0; i < nr_found; i++) {
862 if (!batch[i])
863 continue;
864 if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
865 xfs_iflags_test(batch[i], XFS_INEW))
866 xfs_inew_wait(batch[i]);
867 error = execute(batch[i], flags, args);
868 xfs_irele(batch[i]);
869 if (error == -EAGAIN) {
870 skipped++;
871 continue;
872 }
873 if (error && last_error != -EFSCORRUPTED)
874 last_error = error;
875 }
876
877 /* bail out if the filesystem is corrupted. */
878 if (error == -EFSCORRUPTED)
879 break;
880
881 cond_resched();
882
883 } while (nr_found && !done);
884
885 if (skipped) {
886 delay(1);
887 goto restart;
888 }
889 return last_error;
890 }
891
892 /*
893 * Background scanning to trim post-EOF preallocated space. This is queued
894 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
895 */
896 void
897 xfs_queue_eofblocks(
898 struct xfs_mount *mp)
899 {
900 rcu_read_lock();
901 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
902 queue_delayed_work(mp->m_eofblocks_workqueue,
903 &mp->m_eofblocks_work,
904 msecs_to_jiffies(xfs_eofb_secs * 1000));
905 rcu_read_unlock();
906 }
907
908 void
909 xfs_eofblocks_worker(
910 struct work_struct *work)
911 {
912 struct xfs_mount *mp = container_of(to_delayed_work(work),
913 struct xfs_mount, m_eofblocks_work);
914 xfs_icache_free_eofblocks(mp, NULL);
915 xfs_queue_eofblocks(mp);
916 }
917
918 /*
919 * Background scanning to trim preallocated CoW space. This is queued
920 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
921 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
922 */
923 void
924 xfs_queue_cowblocks(
925 struct xfs_mount *mp)
926 {
927 rcu_read_lock();
928 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
929 queue_delayed_work(mp->m_eofblocks_workqueue,
930 &mp->m_cowblocks_work,
931 msecs_to_jiffies(xfs_cowb_secs * 1000));
932 rcu_read_unlock();
933 }
934
935 void
936 xfs_cowblocks_worker(
937 struct work_struct *work)
938 {
939 struct xfs_mount *mp = container_of(to_delayed_work(work),
940 struct xfs_mount, m_cowblocks_work);
941 xfs_icache_free_cowblocks(mp, NULL);
942 xfs_queue_cowblocks(mp);
943 }
944
945 int
946 xfs_inode_ag_iterator_flags(
947 struct xfs_mount *mp,
948 int (*execute)(struct xfs_inode *ip, int flags,
949 void *args),
950 int flags,
951 void *args,
952 int iter_flags)
953 {
954 struct xfs_perag *pag;
955 int error = 0;
956 int last_error = 0;
957 xfs_agnumber_t ag;
958
959 ag = 0;
960 while ((pag = xfs_perag_get(mp, ag))) {
961 ag = pag->pag_agno + 1;
962 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
963 iter_flags);
964 xfs_perag_put(pag);
965 if (error) {
966 last_error = error;
967 if (error == -EFSCORRUPTED)
968 break;
969 }
970 }
971 return last_error;
972 }
973
974 int
975 xfs_inode_ag_iterator(
976 struct xfs_mount *mp,
977 int (*execute)(struct xfs_inode *ip, int flags,
978 void *args),
979 int flags,
980 void *args)
981 {
982 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
983 }
984
985 int
986 xfs_inode_ag_iterator_tag(
987 struct xfs_mount *mp,
988 int (*execute)(struct xfs_inode *ip, int flags,
989 void *args),
990 int flags,
991 void *args,
992 int tag)
993 {
994 struct xfs_perag *pag;
995 int error = 0;
996 int last_error = 0;
997 xfs_agnumber_t ag;
998
999 ag = 0;
1000 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
1001 ag = pag->pag_agno + 1;
1002 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
1003 0);
1004 xfs_perag_put(pag);
1005 if (error) {
1006 last_error = error;
1007 if (error == -EFSCORRUPTED)
1008 break;
1009 }
1010 }
1011 return last_error;
1012 }
1013
1014 /*
1015 * Grab the inode for reclaim exclusively.
1016 * Return 0 if we grabbed it, non-zero otherwise.
1017 */
1018 STATIC int
1019 xfs_reclaim_inode_grab(
1020 struct xfs_inode *ip,
1021 int flags)
1022 {
1023 ASSERT(rcu_read_lock_held());
1024
1025 /* quick check for stale RCU freed inode */
1026 if (!ip->i_ino)
1027 return 1;
1028
1029 /*
1030 * If we are asked for non-blocking operation, do unlocked checks to
1031 * see if the inode already is being flushed or in reclaim to avoid
1032 * lock traffic.
1033 */
1034 if ((flags & SYNC_TRYLOCK) &&
1035 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
1036 return 1;
1037
1038 /*
1039 * The radix tree lock here protects a thread in xfs_iget from racing
1040 * with us starting reclaim on the inode. Once we have the
1041 * XFS_IRECLAIM flag set it will not touch us.
1042 *
1043 * Due to RCU lookup, we may find inodes that have been freed and only
1044 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
1045 * aren't candidates for reclaim at all, so we must check the
1046 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1047 */
1048 spin_lock(&ip->i_flags_lock);
1049 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1050 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1051 /* not a reclaim candidate. */
1052 spin_unlock(&ip->i_flags_lock);
1053 return 1;
1054 }
1055 __xfs_iflags_set(ip, XFS_IRECLAIM);
1056 spin_unlock(&ip->i_flags_lock);
1057 return 0;
1058 }
1059
1060 /*
1061 * Inodes in different states need to be treated differently. The following
1062 * table lists the inode states and the reclaim actions necessary:
1063 *
1064 * inode state iflush ret required action
1065 * --------------- ---------- ---------------
1066 * bad - reclaim
1067 * shutdown EIO unpin and reclaim
1068 * clean, unpinned 0 reclaim
1069 * stale, unpinned 0 reclaim
1070 * clean, pinned(*) 0 requeue
1071 * stale, pinned EAGAIN requeue
1072 * dirty, async - requeue
1073 * dirty, sync 0 reclaim
1074 *
1075 * (*) dgc: I don't think the clean, pinned state is possible but it gets
1076 * handled anyway given the order of checks implemented.
1077 *
1078 * Also, because we get the flush lock first, we know that any inode that has
1079 * been flushed delwri has had the flush completed by the time we check that
1080 * the inode is clean.
1081 *
1082 * Note that because the inode is flushed delayed write by AIL pushing, the
1083 * flush lock may already be held here and waiting on it can result in very
1084 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
1085 * the caller should push the AIL first before trying to reclaim inodes to
1086 * minimise the amount of time spent waiting. For background relaim, we only
1087 * bother to reclaim clean inodes anyway.
1088 *
1089 * Hence the order of actions after gaining the locks should be:
1090 * bad => reclaim
1091 * shutdown => unpin and reclaim
1092 * pinned, async => requeue
1093 * pinned, sync => unpin
1094 * stale => reclaim
1095 * clean => reclaim
1096 * dirty, async => requeue
1097 * dirty, sync => flush, wait and reclaim
1098 */
1099 STATIC int
1100 xfs_reclaim_inode(
1101 struct xfs_inode *ip,
1102 struct xfs_perag *pag,
1103 int sync_mode)
1104 {
1105 struct xfs_buf *bp = NULL;
1106 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
1107 int error;
1108
1109 restart:
1110 error = 0;
1111 xfs_ilock(ip, XFS_ILOCK_EXCL);
1112 if (!xfs_iflock_nowait(ip)) {
1113 if (!(sync_mode & SYNC_WAIT))
1114 goto out;
1115 xfs_iflock(ip);
1116 }
1117
1118 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1119 xfs_iunpin_wait(ip);
1120 /* xfs_iflush_abort() drops the flush lock */
1121 xfs_iflush_abort(ip, false);
1122 goto reclaim;
1123 }
1124 if (xfs_ipincount(ip)) {
1125 if (!(sync_mode & SYNC_WAIT))
1126 goto out_ifunlock;
1127 xfs_iunpin_wait(ip);
1128 }
1129 if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1130 xfs_ifunlock(ip);
1131 goto reclaim;
1132 }
1133
1134 /*
1135 * Never flush out dirty data during non-blocking reclaim, as it would
1136 * just contend with AIL pushing trying to do the same job.
1137 */
1138 if (!(sync_mode & SYNC_WAIT))
1139 goto out_ifunlock;
1140
1141 /*
1142 * Now we have an inode that needs flushing.
1143 *
1144 * Note that xfs_iflush will never block on the inode buffer lock, as
1145 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1146 * ip->i_lock, and we are doing the exact opposite here. As a result,
1147 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1148 * result in an ABBA deadlock with xfs_ifree_cluster().
1149 *
1150 * As xfs_ifree_cluser() must gather all inodes that are active in the
1151 * cache to mark them stale, if we hit this case we don't actually want
1152 * to do IO here - we want the inode marked stale so we can simply
1153 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
1154 * inode, back off and try again. Hopefully the next pass through will
1155 * see the stale flag set on the inode.
1156 */
1157 error = xfs_iflush(ip, &bp);
1158 if (error == -EAGAIN) {
1159 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1160 /* backoff longer than in xfs_ifree_cluster */
1161 delay(2);
1162 goto restart;
1163 }
1164
1165 if (!error) {
1166 error = xfs_bwrite(bp);
1167 xfs_buf_relse(bp);
1168 }
1169
1170 reclaim:
1171 ASSERT(!xfs_isiflocked(ip));
1172
1173 /*
1174 * Because we use RCU freeing we need to ensure the inode always appears
1175 * to be reclaimed with an invalid inode number when in the free state.
1176 * We do this as early as possible under the ILOCK so that
1177 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1178 * detect races with us here. By doing this, we guarantee that once
1179 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1180 * it will see either a valid inode that will serialise correctly, or it
1181 * will see an invalid inode that it can skip.
1182 */
1183 spin_lock(&ip->i_flags_lock);
1184 ip->i_flags = XFS_IRECLAIM;
1185 ip->i_ino = 0;
1186 spin_unlock(&ip->i_flags_lock);
1187
1188 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1189
1190 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1191 /*
1192 * Remove the inode from the per-AG radix tree.
1193 *
1194 * Because radix_tree_delete won't complain even if the item was never
1195 * added to the tree assert that it's been there before to catch
1196 * problems with the inode life time early on.
1197 */
1198 spin_lock(&pag->pag_ici_lock);
1199 if (!radix_tree_delete(&pag->pag_ici_root,
1200 XFS_INO_TO_AGINO(ip->i_mount, ino)))
1201 ASSERT(0);
1202 xfs_perag_clear_reclaim_tag(pag);
1203 spin_unlock(&pag->pag_ici_lock);
1204
1205 /*
1206 * Here we do an (almost) spurious inode lock in order to coordinate
1207 * with inode cache radix tree lookups. This is because the lookup
1208 * can reference the inodes in the cache without taking references.
1209 *
1210 * We make that OK here by ensuring that we wait until the inode is
1211 * unlocked after the lookup before we go ahead and free it.
1212 */
1213 xfs_ilock(ip, XFS_ILOCK_EXCL);
1214 xfs_qm_dqdetach(ip);
1215 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1216
1217 __xfs_inode_free(ip);
1218 return error;
1219
1220 out_ifunlock:
1221 xfs_ifunlock(ip);
1222 out:
1223 xfs_iflags_clear(ip, XFS_IRECLAIM);
1224 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1225 /*
1226 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1227 * a short while. However, this just burns CPU time scanning the tree
1228 * waiting for IO to complete and the reclaim work never goes back to
1229 * the idle state. Instead, return 0 to let the next scheduled
1230 * background reclaim attempt to reclaim the inode again.
1231 */
1232 return 0;
1233 }
1234
1235 /*
1236 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1237 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1238 * then a shut down during filesystem unmount reclaim walk leak all the
1239 * unreclaimed inodes.
1240 */
1241 STATIC int
1242 xfs_reclaim_inodes_ag(
1243 struct xfs_mount *mp,
1244 int flags,
1245 int *nr_to_scan)
1246 {
1247 struct xfs_perag *pag;
1248 int error = 0;
1249 int last_error = 0;
1250 xfs_agnumber_t ag;
1251 int trylock = flags & SYNC_TRYLOCK;
1252 int skipped;
1253
1254 restart:
1255 ag = 0;
1256 skipped = 0;
1257 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1258 unsigned long first_index = 0;
1259 int done = 0;
1260 int nr_found = 0;
1261
1262 ag = pag->pag_agno + 1;
1263
1264 if (trylock) {
1265 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1266 skipped++;
1267 xfs_perag_put(pag);
1268 continue;
1269 }
1270 first_index = pag->pag_ici_reclaim_cursor;
1271 } else
1272 mutex_lock(&pag->pag_ici_reclaim_lock);
1273
1274 do {
1275 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1276 int i;
1277
1278 rcu_read_lock();
1279 nr_found = radix_tree_gang_lookup_tag(
1280 &pag->pag_ici_root,
1281 (void **)batch, first_index,
1282 XFS_LOOKUP_BATCH,
1283 XFS_ICI_RECLAIM_TAG);
1284 if (!nr_found) {
1285 done = 1;
1286 rcu_read_unlock();
1287 break;
1288 }
1289
1290 /*
1291 * Grab the inodes before we drop the lock. if we found
1292 * nothing, nr == 0 and the loop will be skipped.
1293 */
1294 for (i = 0; i < nr_found; i++) {
1295 struct xfs_inode *ip = batch[i];
1296
1297 if (done || xfs_reclaim_inode_grab(ip, flags))
1298 batch[i] = NULL;
1299
1300 /*
1301 * Update the index for the next lookup. Catch
1302 * overflows into the next AG range which can
1303 * occur if we have inodes in the last block of
1304 * the AG and we are currently pointing to the
1305 * last inode.
1306 *
1307 * Because we may see inodes that are from the
1308 * wrong AG due to RCU freeing and
1309 * reallocation, only update the index if it
1310 * lies in this AG. It was a race that lead us
1311 * to see this inode, so another lookup from
1312 * the same index will not find it again.
1313 */
1314 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1315 pag->pag_agno)
1316 continue;
1317 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1318 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1319 done = 1;
1320 }
1321
1322 /* unlock now we've grabbed the inodes. */
1323 rcu_read_unlock();
1324
1325 for (i = 0; i < nr_found; i++) {
1326 if (!batch[i])
1327 continue;
1328 error = xfs_reclaim_inode(batch[i], pag, flags);
1329 if (error && last_error != -EFSCORRUPTED)
1330 last_error = error;
1331 }
1332
1333 *nr_to_scan -= XFS_LOOKUP_BATCH;
1334
1335 cond_resched();
1336
1337 } while (nr_found && !done && *nr_to_scan > 0);
1338
1339 if (trylock && !done)
1340 pag->pag_ici_reclaim_cursor = first_index;
1341 else
1342 pag->pag_ici_reclaim_cursor = 0;
1343 mutex_unlock(&pag->pag_ici_reclaim_lock);
1344 xfs_perag_put(pag);
1345 }
1346
1347 /*
1348 * if we skipped any AG, and we still have scan count remaining, do
1349 * another pass this time using blocking reclaim semantics (i.e
1350 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1351 * ensure that when we get more reclaimers than AGs we block rather
1352 * than spin trying to execute reclaim.
1353 */
1354 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1355 trylock = 0;
1356 goto restart;
1357 }
1358 return last_error;
1359 }
1360
1361 int
1362 xfs_reclaim_inodes(
1363 xfs_mount_t *mp,
1364 int mode)
1365 {
1366 int nr_to_scan = INT_MAX;
1367
1368 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1369 }
1370
1371 /*
1372 * Scan a certain number of inodes for reclaim.
1373 *
1374 * When called we make sure that there is a background (fast) inode reclaim in
1375 * progress, while we will throttle the speed of reclaim via doing synchronous
1376 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1377 * them to be cleaned, which we hope will not be very long due to the
1378 * background walker having already kicked the IO off on those dirty inodes.
1379 */
1380 long
1381 xfs_reclaim_inodes_nr(
1382 struct xfs_mount *mp,
1383 int nr_to_scan)
1384 {
1385 /* kick background reclaimer and push the AIL */
1386 xfs_reclaim_work_queue(mp);
1387 xfs_ail_push_all(mp->m_ail);
1388
1389 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1390 }
1391
1392 /*
1393 * Return the number of reclaimable inodes in the filesystem for
1394 * the shrinker to determine how much to reclaim.
1395 */
1396 int
1397 xfs_reclaim_inodes_count(
1398 struct xfs_mount *mp)
1399 {
1400 struct xfs_perag *pag;
1401 xfs_agnumber_t ag = 0;
1402 int reclaimable = 0;
1403
1404 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1405 ag = pag->pag_agno + 1;
1406 reclaimable += pag->pag_ici_reclaimable;
1407 xfs_perag_put(pag);
1408 }
1409 return reclaimable;
1410 }
1411
1412 STATIC int
1413 xfs_inode_match_id(
1414 struct xfs_inode *ip,
1415 struct xfs_eofblocks *eofb)
1416 {
1417 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1418 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1419 return 0;
1420
1421 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1422 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1423 return 0;
1424
1425 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1426 ip->i_d.di_projid != eofb->eof_prid)
1427 return 0;
1428
1429 return 1;
1430 }
1431
1432 /*
1433 * A union-based inode filtering algorithm. Process the inode if any of the
1434 * criteria match. This is for global/internal scans only.
1435 */
1436 STATIC int
1437 xfs_inode_match_id_union(
1438 struct xfs_inode *ip,
1439 struct xfs_eofblocks *eofb)
1440 {
1441 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1442 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1443 return 1;
1444
1445 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1446 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1447 return 1;
1448
1449 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1450 ip->i_d.di_projid == eofb->eof_prid)
1451 return 1;
1452
1453 return 0;
1454 }
1455
1456 STATIC int
1457 xfs_inode_free_eofblocks(
1458 struct xfs_inode *ip,
1459 int flags,
1460 void *args)
1461 {
1462 int ret = 0;
1463 struct xfs_eofblocks *eofb = args;
1464 int match;
1465
1466 if (!xfs_can_free_eofblocks(ip, false)) {
1467 /* inode could be preallocated or append-only */
1468 trace_xfs_inode_free_eofblocks_invalid(ip);
1469 xfs_inode_clear_eofblocks_tag(ip);
1470 return 0;
1471 }
1472
1473 /*
1474 * If the mapping is dirty the operation can block and wait for some
1475 * time. Unless we are waiting, skip it.
1476 */
1477 if (!(flags & SYNC_WAIT) &&
1478 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1479 return 0;
1480
1481 if (eofb) {
1482 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1483 match = xfs_inode_match_id_union(ip, eofb);
1484 else
1485 match = xfs_inode_match_id(ip, eofb);
1486 if (!match)
1487 return 0;
1488
1489 /* skip the inode if the file size is too small */
1490 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1491 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1492 return 0;
1493 }
1494
1495 /*
1496 * If the caller is waiting, return -EAGAIN to keep the background
1497 * scanner moving and revisit the inode in a subsequent pass.
1498 */
1499 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1500 if (flags & SYNC_WAIT)
1501 ret = -EAGAIN;
1502 return ret;
1503 }
1504 ret = xfs_free_eofblocks(ip);
1505 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1506
1507 return ret;
1508 }
1509
1510 static int
1511 __xfs_icache_free_eofblocks(
1512 struct xfs_mount *mp,
1513 struct xfs_eofblocks *eofb,
1514 int (*execute)(struct xfs_inode *ip, int flags,
1515 void *args),
1516 int tag)
1517 {
1518 int flags = SYNC_TRYLOCK;
1519
1520 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1521 flags = SYNC_WAIT;
1522
1523 return xfs_inode_ag_iterator_tag(mp, execute, flags,
1524 eofb, tag);
1525 }
1526
1527 int
1528 xfs_icache_free_eofblocks(
1529 struct xfs_mount *mp,
1530 struct xfs_eofblocks *eofb)
1531 {
1532 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1533 XFS_ICI_EOFBLOCKS_TAG);
1534 }
1535
1536 /*
1537 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1538 * multiple quotas, we don't know exactly which quota caused an allocation
1539 * failure. We make a best effort by including each quota under low free space
1540 * conditions (less than 1% free space) in the scan.
1541 */
1542 static int
1543 __xfs_inode_free_quota_eofblocks(
1544 struct xfs_inode *ip,
1545 int (*execute)(struct xfs_mount *mp,
1546 struct xfs_eofblocks *eofb))
1547 {
1548 int scan = 0;
1549 struct xfs_eofblocks eofb = {0};
1550 struct xfs_dquot *dq;
1551
1552 /*
1553 * Run a sync scan to increase effectiveness and use the union filter to
1554 * cover all applicable quotas in a single scan.
1555 */
1556 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1557
1558 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1559 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1560 if (dq && xfs_dquot_lowsp(dq)) {
1561 eofb.eof_uid = VFS_I(ip)->i_uid;
1562 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1563 scan = 1;
1564 }
1565 }
1566
1567 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1568 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1569 if (dq && xfs_dquot_lowsp(dq)) {
1570 eofb.eof_gid = VFS_I(ip)->i_gid;
1571 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1572 scan = 1;
1573 }
1574 }
1575
1576 if (scan)
1577 execute(ip->i_mount, &eofb);
1578
1579 return scan;
1580 }
1581
1582 int
1583 xfs_inode_free_quota_eofblocks(
1584 struct xfs_inode *ip)
1585 {
1586 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1587 }
1588
1589 static inline unsigned long
1590 xfs_iflag_for_tag(
1591 int tag)
1592 {
1593 switch (tag) {
1594 case XFS_ICI_EOFBLOCKS_TAG:
1595 return XFS_IEOFBLOCKS;
1596 case XFS_ICI_COWBLOCKS_TAG:
1597 return XFS_ICOWBLOCKS;
1598 default:
1599 ASSERT(0);
1600 return 0;
1601 }
1602 }
1603
1604 static void
1605 __xfs_inode_set_blocks_tag(
1606 xfs_inode_t *ip,
1607 void (*execute)(struct xfs_mount *mp),
1608 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1609 int error, unsigned long caller_ip),
1610 int tag)
1611 {
1612 struct xfs_mount *mp = ip->i_mount;
1613 struct xfs_perag *pag;
1614 int tagged;
1615
1616 /*
1617 * Don't bother locking the AG and looking up in the radix trees
1618 * if we already know that we have the tag set.
1619 */
1620 if (ip->i_flags & xfs_iflag_for_tag(tag))
1621 return;
1622 spin_lock(&ip->i_flags_lock);
1623 ip->i_flags |= xfs_iflag_for_tag(tag);
1624 spin_unlock(&ip->i_flags_lock);
1625
1626 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1627 spin_lock(&pag->pag_ici_lock);
1628
1629 tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1630 radix_tree_tag_set(&pag->pag_ici_root,
1631 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1632 if (!tagged) {
1633 /* propagate the eofblocks tag up into the perag radix tree */
1634 spin_lock(&ip->i_mount->m_perag_lock);
1635 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1636 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1637 tag);
1638 spin_unlock(&ip->i_mount->m_perag_lock);
1639
1640 /* kick off background trimming */
1641 execute(ip->i_mount);
1642
1643 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1644 }
1645
1646 spin_unlock(&pag->pag_ici_lock);
1647 xfs_perag_put(pag);
1648 }
1649
1650 void
1651 xfs_inode_set_eofblocks_tag(
1652 xfs_inode_t *ip)
1653 {
1654 trace_xfs_inode_set_eofblocks_tag(ip);
1655 return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1656 trace_xfs_perag_set_eofblocks,
1657 XFS_ICI_EOFBLOCKS_TAG);
1658 }
1659
1660 static void
1661 __xfs_inode_clear_blocks_tag(
1662 xfs_inode_t *ip,
1663 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1664 int error, unsigned long caller_ip),
1665 int tag)
1666 {
1667 struct xfs_mount *mp = ip->i_mount;
1668 struct xfs_perag *pag;
1669
1670 spin_lock(&ip->i_flags_lock);
1671 ip->i_flags &= ~xfs_iflag_for_tag(tag);
1672 spin_unlock(&ip->i_flags_lock);
1673
1674 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1675 spin_lock(&pag->pag_ici_lock);
1676
1677 radix_tree_tag_clear(&pag->pag_ici_root,
1678 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1679 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1680 /* clear the eofblocks tag from the perag radix tree */
1681 spin_lock(&ip->i_mount->m_perag_lock);
1682 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1683 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1684 tag);
1685 spin_unlock(&ip->i_mount->m_perag_lock);
1686 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1687 }
1688
1689 spin_unlock(&pag->pag_ici_lock);
1690 xfs_perag_put(pag);
1691 }
1692
1693 void
1694 xfs_inode_clear_eofblocks_tag(
1695 xfs_inode_t *ip)
1696 {
1697 trace_xfs_inode_clear_eofblocks_tag(ip);
1698 return __xfs_inode_clear_blocks_tag(ip,
1699 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1700 }
1701
1702 /*
1703 * Set ourselves up to free CoW blocks from this file. If it's already clean
1704 * then we can bail out quickly, but otherwise we must back off if the file
1705 * is undergoing some kind of write.
1706 */
1707 static bool
1708 xfs_prep_free_cowblocks(
1709 struct xfs_inode *ip)
1710 {
1711 /*
1712 * Just clear the tag if we have an empty cow fork or none at all. It's
1713 * possible the inode was fully unshared since it was originally tagged.
1714 */
1715 if (!xfs_inode_has_cow_data(ip)) {
1716 trace_xfs_inode_free_cowblocks_invalid(ip);
1717 xfs_inode_clear_cowblocks_tag(ip);
1718 return false;
1719 }
1720
1721 /*
1722 * If the mapping is dirty or under writeback we cannot touch the
1723 * CoW fork. Leave it alone if we're in the midst of a directio.
1724 */
1725 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1726 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1727 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1728 atomic_read(&VFS_I(ip)->i_dio_count))
1729 return false;
1730
1731 return true;
1732 }
1733
1734 /*
1735 * Automatic CoW Reservation Freeing
1736 *
1737 * These functions automatically garbage collect leftover CoW reservations
1738 * that were made on behalf of a cowextsize hint when we start to run out
1739 * of quota or when the reservations sit around for too long. If the file
1740 * has dirty pages or is undergoing writeback, its CoW reservations will
1741 * be retained.
1742 *
1743 * The actual garbage collection piggybacks off the same code that runs
1744 * the speculative EOF preallocation garbage collector.
1745 */
1746 STATIC int
1747 xfs_inode_free_cowblocks(
1748 struct xfs_inode *ip,
1749 int flags,
1750 void *args)
1751 {
1752 struct xfs_eofblocks *eofb = args;
1753 int match;
1754 int ret = 0;
1755
1756 if (!xfs_prep_free_cowblocks(ip))
1757 return 0;
1758
1759 if (eofb) {
1760 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1761 match = xfs_inode_match_id_union(ip, eofb);
1762 else
1763 match = xfs_inode_match_id(ip, eofb);
1764 if (!match)
1765 return 0;
1766
1767 /* skip the inode if the file size is too small */
1768 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1769 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1770 return 0;
1771 }
1772
1773 /* Free the CoW blocks */
1774 xfs_ilock(ip, XFS_IOLOCK_EXCL);
1775 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1776
1777 /*
1778 * Check again, nobody else should be able to dirty blocks or change
1779 * the reflink iflag now that we have the first two locks held.
1780 */
1781 if (xfs_prep_free_cowblocks(ip))
1782 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1783
1784 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1785 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1786
1787 return ret;
1788 }
1789
1790 int
1791 xfs_icache_free_cowblocks(
1792 struct xfs_mount *mp,
1793 struct xfs_eofblocks *eofb)
1794 {
1795 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1796 XFS_ICI_COWBLOCKS_TAG);
1797 }
1798
1799 int
1800 xfs_inode_free_quota_cowblocks(
1801 struct xfs_inode *ip)
1802 {
1803 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1804 }
1805
1806 void
1807 xfs_inode_set_cowblocks_tag(
1808 xfs_inode_t *ip)
1809 {
1810 trace_xfs_inode_set_cowblocks_tag(ip);
1811 return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1812 trace_xfs_perag_set_cowblocks,
1813 XFS_ICI_COWBLOCKS_TAG);
1814 }
1815
1816 void
1817 xfs_inode_clear_cowblocks_tag(
1818 xfs_inode_t *ip)
1819 {
1820 trace_xfs_inode_clear_cowblocks_tag(ip);
1821 return __xfs_inode_clear_blocks_tag(ip,
1822 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1823 }
1824
1825 /* Disable post-EOF and CoW block auto-reclamation. */
1826 void
1827 xfs_stop_block_reaping(
1828 struct xfs_mount *mp)
1829 {
1830 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1831 cancel_delayed_work_sync(&mp->m_cowblocks_work);
1832 }
1833
1834 /* Enable post-EOF and CoW block auto-reclamation. */
1835 void
1836 xfs_start_block_reaping(
1837 struct xfs_mount *mp)
1838 {
1839 xfs_queue_eofblocks(mp);
1840 xfs_queue_cowblocks(mp);
1841 }