]> git.ipfire.org Git - people/ms/linux.git/blob - fs/xfs/xfs_icache.c
Merge tag 'ntb-5.20' of https://github.com/jonmason/ntb
[people/ms/linux.git] / fs / xfs / xfs_icache.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 #include "xfs_log_priv.h"
27
28 #include <linux/iversion.h>
29
30 /* Radix tree tags for incore inode tree. */
31
32 /* inode is to be reclaimed */
33 #define XFS_ICI_RECLAIM_TAG 0
34 /* Inode has speculative preallocations (posteof or cow) to clean. */
35 #define XFS_ICI_BLOCKGC_TAG 1
36
37 /*
38 * The goal for walking incore inodes. These can correspond with incore inode
39 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace.
40 */
41 enum xfs_icwalk_goal {
42 /* Goals directly associated with tagged inodes. */
43 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG,
44 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG,
45 };
46
47 static int xfs_icwalk(struct xfs_mount *mp,
48 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
49 static int xfs_icwalk_ag(struct xfs_perag *pag,
50 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
51
52 /*
53 * Private inode cache walk flags for struct xfs_icwalk. Must not
54 * coincide with XFS_ICWALK_FLAGS_VALID.
55 */
56
57 /* Stop scanning after icw_scan_limit inodes. */
58 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28)
59
60 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27)
61 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */
62
63 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \
64 XFS_ICWALK_FLAG_RECLAIM_SICK | \
65 XFS_ICWALK_FLAG_UNION)
66
67 /*
68 * Allocate and initialise an xfs_inode.
69 */
70 struct xfs_inode *
71 xfs_inode_alloc(
72 struct xfs_mount *mp,
73 xfs_ino_t ino)
74 {
75 struct xfs_inode *ip;
76
77 /*
78 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
79 * and return NULL here on ENOMEM.
80 */
81 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
82
83 if (inode_init_always(mp->m_super, VFS_I(ip))) {
84 kmem_cache_free(xfs_inode_cache, ip);
85 return NULL;
86 }
87
88 /* VFS doesn't initialise i_mode or i_state! */
89 VFS_I(ip)->i_mode = 0;
90 VFS_I(ip)->i_state = 0;
91 mapping_set_large_folios(VFS_I(ip)->i_mapping);
92
93 XFS_STATS_INC(mp, vn_active);
94 ASSERT(atomic_read(&ip->i_pincount) == 0);
95 ASSERT(ip->i_ino == 0);
96
97 /* initialise the xfs inode */
98 ip->i_ino = ino;
99 ip->i_mount = mp;
100 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
101 ip->i_cowfp = NULL;
102 memset(&ip->i_af, 0, sizeof(ip->i_af));
103 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
104 memset(&ip->i_df, 0, sizeof(ip->i_df));
105 ip->i_flags = 0;
106 ip->i_delayed_blks = 0;
107 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
108 ip->i_nblocks = 0;
109 ip->i_forkoff = 0;
110 ip->i_sick = 0;
111 ip->i_checked = 0;
112 INIT_WORK(&ip->i_ioend_work, xfs_end_io);
113 INIT_LIST_HEAD(&ip->i_ioend_list);
114 spin_lock_init(&ip->i_ioend_lock);
115 ip->i_next_unlinked = NULLAGINO;
116 ip->i_prev_unlinked = NULLAGINO;
117
118 return ip;
119 }
120
121 STATIC void
122 xfs_inode_free_callback(
123 struct rcu_head *head)
124 {
125 struct inode *inode = container_of(head, struct inode, i_rcu);
126 struct xfs_inode *ip = XFS_I(inode);
127
128 switch (VFS_I(ip)->i_mode & S_IFMT) {
129 case S_IFREG:
130 case S_IFDIR:
131 case S_IFLNK:
132 xfs_idestroy_fork(&ip->i_df);
133 break;
134 }
135
136 xfs_ifork_zap_attr(ip);
137
138 if (ip->i_cowfp) {
139 xfs_idestroy_fork(ip->i_cowfp);
140 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
141 }
142 if (ip->i_itemp) {
143 ASSERT(!test_bit(XFS_LI_IN_AIL,
144 &ip->i_itemp->ili_item.li_flags));
145 xfs_inode_item_destroy(ip);
146 ip->i_itemp = NULL;
147 }
148
149 kmem_cache_free(xfs_inode_cache, ip);
150 }
151
152 static void
153 __xfs_inode_free(
154 struct xfs_inode *ip)
155 {
156 /* asserts to verify all state is correct here */
157 ASSERT(atomic_read(&ip->i_pincount) == 0);
158 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
159 XFS_STATS_DEC(ip->i_mount, vn_active);
160
161 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
162 }
163
164 void
165 xfs_inode_free(
166 struct xfs_inode *ip)
167 {
168 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
169
170 /*
171 * Because we use RCU freeing we need to ensure the inode always
172 * appears to be reclaimed with an invalid inode number when in the
173 * free state. The ip->i_flags_lock provides the barrier against lookup
174 * races.
175 */
176 spin_lock(&ip->i_flags_lock);
177 ip->i_flags = XFS_IRECLAIM;
178 ip->i_ino = 0;
179 spin_unlock(&ip->i_flags_lock);
180
181 __xfs_inode_free(ip);
182 }
183
184 /*
185 * Queue background inode reclaim work if there are reclaimable inodes and there
186 * isn't reclaim work already scheduled or in progress.
187 */
188 static void
189 xfs_reclaim_work_queue(
190 struct xfs_mount *mp)
191 {
192
193 rcu_read_lock();
194 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
195 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
196 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
197 }
198 rcu_read_unlock();
199 }
200
201 /*
202 * Background scanning to trim preallocated space. This is queued based on the
203 * 'speculative_prealloc_lifetime' tunable (5m by default).
204 */
205 static inline void
206 xfs_blockgc_queue(
207 struct xfs_perag *pag)
208 {
209 struct xfs_mount *mp = pag->pag_mount;
210
211 if (!xfs_is_blockgc_enabled(mp))
212 return;
213
214 rcu_read_lock();
215 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
216 queue_delayed_work(pag->pag_mount->m_blockgc_wq,
217 &pag->pag_blockgc_work,
218 msecs_to_jiffies(xfs_blockgc_secs * 1000));
219 rcu_read_unlock();
220 }
221
222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
223 static void
224 xfs_perag_set_inode_tag(
225 struct xfs_perag *pag,
226 xfs_agino_t agino,
227 unsigned int tag)
228 {
229 struct xfs_mount *mp = pag->pag_mount;
230 bool was_tagged;
231
232 lockdep_assert_held(&pag->pag_ici_lock);
233
234 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
235 radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
236
237 if (tag == XFS_ICI_RECLAIM_TAG)
238 pag->pag_ici_reclaimable++;
239
240 if (was_tagged)
241 return;
242
243 /* propagate the tag up into the perag radix tree */
244 spin_lock(&mp->m_perag_lock);
245 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
246 spin_unlock(&mp->m_perag_lock);
247
248 /* start background work */
249 switch (tag) {
250 case XFS_ICI_RECLAIM_TAG:
251 xfs_reclaim_work_queue(mp);
252 break;
253 case XFS_ICI_BLOCKGC_TAG:
254 xfs_blockgc_queue(pag);
255 break;
256 }
257
258 trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
259 }
260
261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
262 static void
263 xfs_perag_clear_inode_tag(
264 struct xfs_perag *pag,
265 xfs_agino_t agino,
266 unsigned int tag)
267 {
268 struct xfs_mount *mp = pag->pag_mount;
269
270 lockdep_assert_held(&pag->pag_ici_lock);
271
272 /*
273 * Reclaim can signal (with a null agino) that it cleared its own tag
274 * by removing the inode from the radix tree.
275 */
276 if (agino != NULLAGINO)
277 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
278 else
279 ASSERT(tag == XFS_ICI_RECLAIM_TAG);
280
281 if (tag == XFS_ICI_RECLAIM_TAG)
282 pag->pag_ici_reclaimable--;
283
284 if (radix_tree_tagged(&pag->pag_ici_root, tag))
285 return;
286
287 /* clear the tag from the perag radix tree */
288 spin_lock(&mp->m_perag_lock);
289 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
290 spin_unlock(&mp->m_perag_lock);
291
292 trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
293 }
294
295 /*
296 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
297 * part of the structure. This is made more complex by the fact we store
298 * information about the on-disk values in the VFS inode and so we can't just
299 * overwrite the values unconditionally. Hence we save the parameters we
300 * need to retain across reinitialisation, and rewrite them into the VFS inode
301 * after reinitialisation even if it fails.
302 */
303 static int
304 xfs_reinit_inode(
305 struct xfs_mount *mp,
306 struct inode *inode)
307 {
308 int error;
309 uint32_t nlink = inode->i_nlink;
310 uint32_t generation = inode->i_generation;
311 uint64_t version = inode_peek_iversion(inode);
312 umode_t mode = inode->i_mode;
313 dev_t dev = inode->i_rdev;
314 kuid_t uid = inode->i_uid;
315 kgid_t gid = inode->i_gid;
316
317 error = inode_init_always(mp->m_super, inode);
318
319 set_nlink(inode, nlink);
320 inode->i_generation = generation;
321 inode_set_iversion_queried(inode, version);
322 inode->i_mode = mode;
323 inode->i_rdev = dev;
324 inode->i_uid = uid;
325 inode->i_gid = gid;
326 mapping_set_large_folios(inode->i_mapping);
327 return error;
328 }
329
330 /*
331 * Carefully nudge an inode whose VFS state has been torn down back into a
332 * usable state. Drops the i_flags_lock and the rcu read lock.
333 */
334 static int
335 xfs_iget_recycle(
336 struct xfs_perag *pag,
337 struct xfs_inode *ip) __releases(&ip->i_flags_lock)
338 {
339 struct xfs_mount *mp = ip->i_mount;
340 struct inode *inode = VFS_I(ip);
341 int error;
342
343 trace_xfs_iget_recycle(ip);
344
345 /*
346 * We need to make it look like the inode is being reclaimed to prevent
347 * the actual reclaim workers from stomping over us while we recycle
348 * the inode. We can't clear the radix tree tag yet as it requires
349 * pag_ici_lock to be held exclusive.
350 */
351 ip->i_flags |= XFS_IRECLAIM;
352
353 spin_unlock(&ip->i_flags_lock);
354 rcu_read_unlock();
355
356 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
357 error = xfs_reinit_inode(mp, inode);
358 if (error) {
359 /*
360 * Re-initializing the inode failed, and we are in deep
361 * trouble. Try to re-add it to the reclaim list.
362 */
363 rcu_read_lock();
364 spin_lock(&ip->i_flags_lock);
365 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
366 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
367 spin_unlock(&ip->i_flags_lock);
368 rcu_read_unlock();
369
370 trace_xfs_iget_recycle_fail(ip);
371 return error;
372 }
373
374 spin_lock(&pag->pag_ici_lock);
375 spin_lock(&ip->i_flags_lock);
376
377 /*
378 * Clear the per-lifetime state in the inode as we are now effectively
379 * a new inode and need to return to the initial state before reuse
380 * occurs.
381 */
382 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
383 ip->i_flags |= XFS_INEW;
384 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
385 XFS_ICI_RECLAIM_TAG);
386 inode->i_state = I_NEW;
387 spin_unlock(&ip->i_flags_lock);
388 spin_unlock(&pag->pag_ici_lock);
389
390 return 0;
391 }
392
393 /*
394 * If we are allocating a new inode, then check what was returned is
395 * actually a free, empty inode. If we are not allocating an inode,
396 * then check we didn't find a free inode.
397 *
398 * Returns:
399 * 0 if the inode free state matches the lookup context
400 * -ENOENT if the inode is free and we are not allocating
401 * -EFSCORRUPTED if there is any state mismatch at all
402 */
403 static int
404 xfs_iget_check_free_state(
405 struct xfs_inode *ip,
406 int flags)
407 {
408 if (flags & XFS_IGET_CREATE) {
409 /* should be a free inode */
410 if (VFS_I(ip)->i_mode != 0) {
411 xfs_warn(ip->i_mount,
412 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
413 ip->i_ino, VFS_I(ip)->i_mode);
414 return -EFSCORRUPTED;
415 }
416
417 if (ip->i_nblocks != 0) {
418 xfs_warn(ip->i_mount,
419 "Corruption detected! Free inode 0x%llx has blocks allocated!",
420 ip->i_ino);
421 return -EFSCORRUPTED;
422 }
423 return 0;
424 }
425
426 /* should be an allocated inode */
427 if (VFS_I(ip)->i_mode == 0)
428 return -ENOENT;
429
430 return 0;
431 }
432
433 /* Make all pending inactivation work start immediately. */
434 static void
435 xfs_inodegc_queue_all(
436 struct xfs_mount *mp)
437 {
438 struct xfs_inodegc *gc;
439 int cpu;
440
441 for_each_online_cpu(cpu) {
442 gc = per_cpu_ptr(mp->m_inodegc, cpu);
443 if (!llist_empty(&gc->list))
444 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
445 }
446 }
447
448 /*
449 * Check the validity of the inode we just found it the cache
450 */
451 static int
452 xfs_iget_cache_hit(
453 struct xfs_perag *pag,
454 struct xfs_inode *ip,
455 xfs_ino_t ino,
456 int flags,
457 int lock_flags) __releases(RCU)
458 {
459 struct inode *inode = VFS_I(ip);
460 struct xfs_mount *mp = ip->i_mount;
461 int error;
462
463 /*
464 * check for re-use of an inode within an RCU grace period due to the
465 * radix tree nodes not being updated yet. We monitor for this by
466 * setting the inode number to zero before freeing the inode structure.
467 * If the inode has been reallocated and set up, then the inode number
468 * will not match, so check for that, too.
469 */
470 spin_lock(&ip->i_flags_lock);
471 if (ip->i_ino != ino)
472 goto out_skip;
473
474 /*
475 * If we are racing with another cache hit that is currently
476 * instantiating this inode or currently recycling it out of
477 * reclaimable state, wait for the initialisation to complete
478 * before continuing.
479 *
480 * If we're racing with the inactivation worker we also want to wait.
481 * If we're creating a new file, it's possible that the worker
482 * previously marked the inode as free on disk but hasn't finished
483 * updating the incore state yet. The AGI buffer will be dirty and
484 * locked to the icreate transaction, so a synchronous push of the
485 * inodegc workers would result in deadlock. For a regular iget, the
486 * worker is running already, so we might as well wait.
487 *
488 * XXX(hch): eventually we should do something equivalent to
489 * wait_on_inode to wait for these flags to be cleared
490 * instead of polling for it.
491 */
492 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
493 goto out_skip;
494
495 if (ip->i_flags & XFS_NEED_INACTIVE) {
496 /* Unlinked inodes cannot be re-grabbed. */
497 if (VFS_I(ip)->i_nlink == 0) {
498 error = -ENOENT;
499 goto out_error;
500 }
501 goto out_inodegc_flush;
502 }
503
504 /*
505 * Check the inode free state is valid. This also detects lookup
506 * racing with unlinks.
507 */
508 error = xfs_iget_check_free_state(ip, flags);
509 if (error)
510 goto out_error;
511
512 /* Skip inodes that have no vfs state. */
513 if ((flags & XFS_IGET_INCORE) &&
514 (ip->i_flags & XFS_IRECLAIMABLE))
515 goto out_skip;
516
517 /* The inode fits the selection criteria; process it. */
518 if (ip->i_flags & XFS_IRECLAIMABLE) {
519 /* Drops i_flags_lock and RCU read lock. */
520 error = xfs_iget_recycle(pag, ip);
521 if (error)
522 return error;
523 } else {
524 /* If the VFS inode is being torn down, pause and try again. */
525 if (!igrab(inode))
526 goto out_skip;
527
528 /* We've got a live one. */
529 spin_unlock(&ip->i_flags_lock);
530 rcu_read_unlock();
531 trace_xfs_iget_hit(ip);
532 }
533
534 if (lock_flags != 0)
535 xfs_ilock(ip, lock_flags);
536
537 if (!(flags & XFS_IGET_INCORE))
538 xfs_iflags_clear(ip, XFS_ISTALE);
539 XFS_STATS_INC(mp, xs_ig_found);
540
541 return 0;
542
543 out_skip:
544 trace_xfs_iget_skip(ip);
545 XFS_STATS_INC(mp, xs_ig_frecycle);
546 error = -EAGAIN;
547 out_error:
548 spin_unlock(&ip->i_flags_lock);
549 rcu_read_unlock();
550 return error;
551
552 out_inodegc_flush:
553 spin_unlock(&ip->i_flags_lock);
554 rcu_read_unlock();
555 /*
556 * Do not wait for the workers, because the caller could hold an AGI
557 * buffer lock. We're just going to sleep in a loop anyway.
558 */
559 if (xfs_is_inodegc_enabled(mp))
560 xfs_inodegc_queue_all(mp);
561 return -EAGAIN;
562 }
563
564 static int
565 xfs_iget_cache_miss(
566 struct xfs_mount *mp,
567 struct xfs_perag *pag,
568 xfs_trans_t *tp,
569 xfs_ino_t ino,
570 struct xfs_inode **ipp,
571 int flags,
572 int lock_flags)
573 {
574 struct xfs_inode *ip;
575 int error;
576 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
577 int iflags;
578
579 ip = xfs_inode_alloc(mp, ino);
580 if (!ip)
581 return -ENOMEM;
582
583 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
584 if (error)
585 goto out_destroy;
586
587 /*
588 * For version 5 superblocks, if we are initialising a new inode and we
589 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
590 * simply build the new inode core with a random generation number.
591 *
592 * For version 4 (and older) superblocks, log recovery is dependent on
593 * the i_flushiter field being initialised from the current on-disk
594 * value and hence we must also read the inode off disk even when
595 * initializing new inodes.
596 */
597 if (xfs_has_v3inodes(mp) &&
598 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
599 VFS_I(ip)->i_generation = prandom_u32();
600 } else {
601 struct xfs_buf *bp;
602
603 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
604 if (error)
605 goto out_destroy;
606
607 error = xfs_inode_from_disk(ip,
608 xfs_buf_offset(bp, ip->i_imap.im_boffset));
609 if (!error)
610 xfs_buf_set_ref(bp, XFS_INO_REF);
611 xfs_trans_brelse(tp, bp);
612
613 if (error)
614 goto out_destroy;
615 }
616
617 trace_xfs_iget_miss(ip);
618
619 /*
620 * Check the inode free state is valid. This also detects lookup
621 * racing with unlinks.
622 */
623 error = xfs_iget_check_free_state(ip, flags);
624 if (error)
625 goto out_destroy;
626
627 /*
628 * Preload the radix tree so we can insert safely under the
629 * write spinlock. Note that we cannot sleep inside the preload
630 * region. Since we can be called from transaction context, don't
631 * recurse into the file system.
632 */
633 if (radix_tree_preload(GFP_NOFS)) {
634 error = -EAGAIN;
635 goto out_destroy;
636 }
637
638 /*
639 * Because the inode hasn't been added to the radix-tree yet it can't
640 * be found by another thread, so we can do the non-sleeping lock here.
641 */
642 if (lock_flags) {
643 if (!xfs_ilock_nowait(ip, lock_flags))
644 BUG();
645 }
646
647 /*
648 * These values must be set before inserting the inode into the radix
649 * tree as the moment it is inserted a concurrent lookup (allowed by the
650 * RCU locking mechanism) can find it and that lookup must see that this
651 * is an inode currently under construction (i.e. that XFS_INEW is set).
652 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
653 * memory barrier that ensures this detection works correctly at lookup
654 * time.
655 */
656 iflags = XFS_INEW;
657 if (flags & XFS_IGET_DONTCACHE)
658 d_mark_dontcache(VFS_I(ip));
659 ip->i_udquot = NULL;
660 ip->i_gdquot = NULL;
661 ip->i_pdquot = NULL;
662 xfs_iflags_set(ip, iflags);
663
664 /* insert the new inode */
665 spin_lock(&pag->pag_ici_lock);
666 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
667 if (unlikely(error)) {
668 WARN_ON(error != -EEXIST);
669 XFS_STATS_INC(mp, xs_ig_dup);
670 error = -EAGAIN;
671 goto out_preload_end;
672 }
673 spin_unlock(&pag->pag_ici_lock);
674 radix_tree_preload_end();
675
676 *ipp = ip;
677 return 0;
678
679 out_preload_end:
680 spin_unlock(&pag->pag_ici_lock);
681 radix_tree_preload_end();
682 if (lock_flags)
683 xfs_iunlock(ip, lock_flags);
684 out_destroy:
685 __destroy_inode(VFS_I(ip));
686 xfs_inode_free(ip);
687 return error;
688 }
689
690 /*
691 * Look up an inode by number in the given file system. The inode is looked up
692 * in the cache held in each AG. If the inode is found in the cache, initialise
693 * the vfs inode if necessary.
694 *
695 * If it is not in core, read it in from the file system's device, add it to the
696 * cache and initialise the vfs inode.
697 *
698 * The inode is locked according to the value of the lock_flags parameter.
699 * Inode lookup is only done during metadata operations and not as part of the
700 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
701 */
702 int
703 xfs_iget(
704 struct xfs_mount *mp,
705 struct xfs_trans *tp,
706 xfs_ino_t ino,
707 uint flags,
708 uint lock_flags,
709 struct xfs_inode **ipp)
710 {
711 struct xfs_inode *ip;
712 struct xfs_perag *pag;
713 xfs_agino_t agino;
714 int error;
715
716 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
717
718 /* reject inode numbers outside existing AGs */
719 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
720 return -EINVAL;
721
722 XFS_STATS_INC(mp, xs_ig_attempts);
723
724 /* get the perag structure and ensure that it's inode capable */
725 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
726 agino = XFS_INO_TO_AGINO(mp, ino);
727
728 again:
729 error = 0;
730 rcu_read_lock();
731 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
732
733 if (ip) {
734 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
735 if (error)
736 goto out_error_or_again;
737 } else {
738 rcu_read_unlock();
739 if (flags & XFS_IGET_INCORE) {
740 error = -ENODATA;
741 goto out_error_or_again;
742 }
743 XFS_STATS_INC(mp, xs_ig_missed);
744
745 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
746 flags, lock_flags);
747 if (error)
748 goto out_error_or_again;
749 }
750 xfs_perag_put(pag);
751
752 *ipp = ip;
753
754 /*
755 * If we have a real type for an on-disk inode, we can setup the inode
756 * now. If it's a new inode being created, xfs_init_new_inode will
757 * handle it.
758 */
759 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
760 xfs_setup_existing_inode(ip);
761 return 0;
762
763 out_error_or_again:
764 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
765 delay(1);
766 goto again;
767 }
768 xfs_perag_put(pag);
769 return error;
770 }
771
772 /*
773 * "Is this a cached inode that's also allocated?"
774 *
775 * Look up an inode by number in the given file system. If the inode is
776 * in cache and isn't in purgatory, return 1 if the inode is allocated
777 * and 0 if it is not. For all other cases (not in cache, being torn
778 * down, etc.), return a negative error code.
779 *
780 * The caller has to prevent inode allocation and freeing activity,
781 * presumably by locking the AGI buffer. This is to ensure that an
782 * inode cannot transition from allocated to freed until the caller is
783 * ready to allow that. If the inode is in an intermediate state (new,
784 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
785 * inode is not in the cache, -ENOENT will be returned. The caller must
786 * deal with these scenarios appropriately.
787 *
788 * This is a specialized use case for the online scrubber; if you're
789 * reading this, you probably want xfs_iget.
790 */
791 int
792 xfs_icache_inode_is_allocated(
793 struct xfs_mount *mp,
794 struct xfs_trans *tp,
795 xfs_ino_t ino,
796 bool *inuse)
797 {
798 struct xfs_inode *ip;
799 int error;
800
801 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
802 if (error)
803 return error;
804
805 *inuse = !!(VFS_I(ip)->i_mode);
806 xfs_irele(ip);
807 return 0;
808 }
809
810 /*
811 * Grab the inode for reclaim exclusively.
812 *
813 * We have found this inode via a lookup under RCU, so the inode may have
814 * already been freed, or it may be in the process of being recycled by
815 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
816 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
817 * will not be set. Hence we need to check for both these flag conditions to
818 * avoid inodes that are no longer reclaim candidates.
819 *
820 * Note: checking for other state flags here, under the i_flags_lock or not, is
821 * racy and should be avoided. Those races should be resolved only after we have
822 * ensured that we are able to reclaim this inode and the world can see that we
823 * are going to reclaim it.
824 *
825 * Return true if we grabbed it, false otherwise.
826 */
827 static bool
828 xfs_reclaim_igrab(
829 struct xfs_inode *ip,
830 struct xfs_icwalk *icw)
831 {
832 ASSERT(rcu_read_lock_held());
833
834 spin_lock(&ip->i_flags_lock);
835 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
836 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
837 /* not a reclaim candidate. */
838 spin_unlock(&ip->i_flags_lock);
839 return false;
840 }
841
842 /* Don't reclaim a sick inode unless the caller asked for it. */
843 if (ip->i_sick &&
844 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
845 spin_unlock(&ip->i_flags_lock);
846 return false;
847 }
848
849 __xfs_iflags_set(ip, XFS_IRECLAIM);
850 spin_unlock(&ip->i_flags_lock);
851 return true;
852 }
853
854 /*
855 * Inode reclaim is non-blocking, so the default action if progress cannot be
856 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
857 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
858 * blocking anymore and hence we can wait for the inode to be able to reclaim
859 * it.
860 *
861 * We do no IO here - if callers require inodes to be cleaned they must push the
862 * AIL first to trigger writeback of dirty inodes. This enables writeback to be
863 * done in the background in a non-blocking manner, and enables memory reclaim
864 * to make progress without blocking.
865 */
866 static void
867 xfs_reclaim_inode(
868 struct xfs_inode *ip,
869 struct xfs_perag *pag)
870 {
871 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
872
873 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
874 goto out;
875 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
876 goto out_iunlock;
877
878 /*
879 * Check for log shutdown because aborting the inode can move the log
880 * tail and corrupt in memory state. This is fine if the log is shut
881 * down, but if the log is still active and only the mount is shut down
882 * then the in-memory log tail movement caused by the abort can be
883 * incorrectly propagated to disk.
884 */
885 if (xlog_is_shutdown(ip->i_mount->m_log)) {
886 xfs_iunpin_wait(ip);
887 xfs_iflush_shutdown_abort(ip);
888 goto reclaim;
889 }
890 if (xfs_ipincount(ip))
891 goto out_clear_flush;
892 if (!xfs_inode_clean(ip))
893 goto out_clear_flush;
894
895 xfs_iflags_clear(ip, XFS_IFLUSHING);
896 reclaim:
897 trace_xfs_inode_reclaiming(ip);
898
899 /*
900 * Because we use RCU freeing we need to ensure the inode always appears
901 * to be reclaimed with an invalid inode number when in the free state.
902 * We do this as early as possible under the ILOCK so that
903 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
904 * detect races with us here. By doing this, we guarantee that once
905 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
906 * it will see either a valid inode that will serialise correctly, or it
907 * will see an invalid inode that it can skip.
908 */
909 spin_lock(&ip->i_flags_lock);
910 ip->i_flags = XFS_IRECLAIM;
911 ip->i_ino = 0;
912 ip->i_sick = 0;
913 ip->i_checked = 0;
914 spin_unlock(&ip->i_flags_lock);
915
916 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
917 xfs_iunlock(ip, XFS_ILOCK_EXCL);
918
919 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
920 /*
921 * Remove the inode from the per-AG radix tree.
922 *
923 * Because radix_tree_delete won't complain even if the item was never
924 * added to the tree assert that it's been there before to catch
925 * problems with the inode life time early on.
926 */
927 spin_lock(&pag->pag_ici_lock);
928 if (!radix_tree_delete(&pag->pag_ici_root,
929 XFS_INO_TO_AGINO(ip->i_mount, ino)))
930 ASSERT(0);
931 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
932 spin_unlock(&pag->pag_ici_lock);
933
934 /*
935 * Here we do an (almost) spurious inode lock in order to coordinate
936 * with inode cache radix tree lookups. This is because the lookup
937 * can reference the inodes in the cache without taking references.
938 *
939 * We make that OK here by ensuring that we wait until the inode is
940 * unlocked after the lookup before we go ahead and free it.
941 */
942 xfs_ilock(ip, XFS_ILOCK_EXCL);
943 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
944 xfs_iunlock(ip, XFS_ILOCK_EXCL);
945 ASSERT(xfs_inode_clean(ip));
946
947 __xfs_inode_free(ip);
948 return;
949
950 out_clear_flush:
951 xfs_iflags_clear(ip, XFS_IFLUSHING);
952 out_iunlock:
953 xfs_iunlock(ip, XFS_ILOCK_EXCL);
954 out:
955 xfs_iflags_clear(ip, XFS_IRECLAIM);
956 }
957
958 /* Reclaim sick inodes if we're unmounting or the fs went down. */
959 static inline bool
960 xfs_want_reclaim_sick(
961 struct xfs_mount *mp)
962 {
963 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
964 xfs_is_shutdown(mp);
965 }
966
967 void
968 xfs_reclaim_inodes(
969 struct xfs_mount *mp)
970 {
971 struct xfs_icwalk icw = {
972 .icw_flags = 0,
973 };
974
975 if (xfs_want_reclaim_sick(mp))
976 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
977
978 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
979 xfs_ail_push_all_sync(mp->m_ail);
980 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
981 }
982 }
983
984 /*
985 * The shrinker infrastructure determines how many inodes we should scan for
986 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
987 * push the AIL here. We also want to proactively free up memory if we can to
988 * minimise the amount of work memory reclaim has to do so we kick the
989 * background reclaim if it isn't already scheduled.
990 */
991 long
992 xfs_reclaim_inodes_nr(
993 struct xfs_mount *mp,
994 unsigned long nr_to_scan)
995 {
996 struct xfs_icwalk icw = {
997 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT,
998 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan),
999 };
1000
1001 if (xfs_want_reclaim_sick(mp))
1002 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1003
1004 /* kick background reclaimer and push the AIL */
1005 xfs_reclaim_work_queue(mp);
1006 xfs_ail_push_all(mp->m_ail);
1007
1008 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1009 return 0;
1010 }
1011
1012 /*
1013 * Return the number of reclaimable inodes in the filesystem for
1014 * the shrinker to determine how much to reclaim.
1015 */
1016 long
1017 xfs_reclaim_inodes_count(
1018 struct xfs_mount *mp)
1019 {
1020 struct xfs_perag *pag;
1021 xfs_agnumber_t ag = 0;
1022 long reclaimable = 0;
1023
1024 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1025 ag = pag->pag_agno + 1;
1026 reclaimable += pag->pag_ici_reclaimable;
1027 xfs_perag_put(pag);
1028 }
1029 return reclaimable;
1030 }
1031
1032 STATIC bool
1033 xfs_icwalk_match_id(
1034 struct xfs_inode *ip,
1035 struct xfs_icwalk *icw)
1036 {
1037 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1038 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1039 return false;
1040
1041 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1042 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1043 return false;
1044
1045 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1046 ip->i_projid != icw->icw_prid)
1047 return false;
1048
1049 return true;
1050 }
1051
1052 /*
1053 * A union-based inode filtering algorithm. Process the inode if any of the
1054 * criteria match. This is for global/internal scans only.
1055 */
1056 STATIC bool
1057 xfs_icwalk_match_id_union(
1058 struct xfs_inode *ip,
1059 struct xfs_icwalk *icw)
1060 {
1061 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1062 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1063 return true;
1064
1065 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1066 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1067 return true;
1068
1069 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1070 ip->i_projid == icw->icw_prid)
1071 return true;
1072
1073 return false;
1074 }
1075
1076 /*
1077 * Is this inode @ip eligible for eof/cow block reclamation, given some
1078 * filtering parameters @icw? The inode is eligible if @icw is null or
1079 * if the predicate functions match.
1080 */
1081 static bool
1082 xfs_icwalk_match(
1083 struct xfs_inode *ip,
1084 struct xfs_icwalk *icw)
1085 {
1086 bool match;
1087
1088 if (!icw)
1089 return true;
1090
1091 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1092 match = xfs_icwalk_match_id_union(ip, icw);
1093 else
1094 match = xfs_icwalk_match_id(ip, icw);
1095 if (!match)
1096 return false;
1097
1098 /* skip the inode if the file size is too small */
1099 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1100 XFS_ISIZE(ip) < icw->icw_min_file_size)
1101 return false;
1102
1103 return true;
1104 }
1105
1106 /*
1107 * This is a fast pass over the inode cache to try to get reclaim moving on as
1108 * many inodes as possible in a short period of time. It kicks itself every few
1109 * seconds, as well as being kicked by the inode cache shrinker when memory
1110 * goes low.
1111 */
1112 void
1113 xfs_reclaim_worker(
1114 struct work_struct *work)
1115 {
1116 struct xfs_mount *mp = container_of(to_delayed_work(work),
1117 struct xfs_mount, m_reclaim_work);
1118
1119 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1120 xfs_reclaim_work_queue(mp);
1121 }
1122
1123 STATIC int
1124 xfs_inode_free_eofblocks(
1125 struct xfs_inode *ip,
1126 struct xfs_icwalk *icw,
1127 unsigned int *lockflags)
1128 {
1129 bool wait;
1130
1131 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1132
1133 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1134 return 0;
1135
1136 /*
1137 * If the mapping is dirty the operation can block and wait for some
1138 * time. Unless we are waiting, skip it.
1139 */
1140 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1141 return 0;
1142
1143 if (!xfs_icwalk_match(ip, icw))
1144 return 0;
1145
1146 /*
1147 * If the caller is waiting, return -EAGAIN to keep the background
1148 * scanner moving and revisit the inode in a subsequent pass.
1149 */
1150 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1151 if (wait)
1152 return -EAGAIN;
1153 return 0;
1154 }
1155 *lockflags |= XFS_IOLOCK_EXCL;
1156
1157 if (xfs_can_free_eofblocks(ip, false))
1158 return xfs_free_eofblocks(ip);
1159
1160 /* inode could be preallocated or append-only */
1161 trace_xfs_inode_free_eofblocks_invalid(ip);
1162 xfs_inode_clear_eofblocks_tag(ip);
1163 return 0;
1164 }
1165
1166 static void
1167 xfs_blockgc_set_iflag(
1168 struct xfs_inode *ip,
1169 unsigned long iflag)
1170 {
1171 struct xfs_mount *mp = ip->i_mount;
1172 struct xfs_perag *pag;
1173
1174 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1175
1176 /*
1177 * Don't bother locking the AG and looking up in the radix trees
1178 * if we already know that we have the tag set.
1179 */
1180 if (ip->i_flags & iflag)
1181 return;
1182 spin_lock(&ip->i_flags_lock);
1183 ip->i_flags |= iflag;
1184 spin_unlock(&ip->i_flags_lock);
1185
1186 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1187 spin_lock(&pag->pag_ici_lock);
1188
1189 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1190 XFS_ICI_BLOCKGC_TAG);
1191
1192 spin_unlock(&pag->pag_ici_lock);
1193 xfs_perag_put(pag);
1194 }
1195
1196 void
1197 xfs_inode_set_eofblocks_tag(
1198 xfs_inode_t *ip)
1199 {
1200 trace_xfs_inode_set_eofblocks_tag(ip);
1201 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1202 }
1203
1204 static void
1205 xfs_blockgc_clear_iflag(
1206 struct xfs_inode *ip,
1207 unsigned long iflag)
1208 {
1209 struct xfs_mount *mp = ip->i_mount;
1210 struct xfs_perag *pag;
1211 bool clear_tag;
1212
1213 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1214
1215 spin_lock(&ip->i_flags_lock);
1216 ip->i_flags &= ~iflag;
1217 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1218 spin_unlock(&ip->i_flags_lock);
1219
1220 if (!clear_tag)
1221 return;
1222
1223 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1224 spin_lock(&pag->pag_ici_lock);
1225
1226 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1227 XFS_ICI_BLOCKGC_TAG);
1228
1229 spin_unlock(&pag->pag_ici_lock);
1230 xfs_perag_put(pag);
1231 }
1232
1233 void
1234 xfs_inode_clear_eofblocks_tag(
1235 xfs_inode_t *ip)
1236 {
1237 trace_xfs_inode_clear_eofblocks_tag(ip);
1238 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1239 }
1240
1241 /*
1242 * Set ourselves up to free CoW blocks from this file. If it's already clean
1243 * then we can bail out quickly, but otherwise we must back off if the file
1244 * is undergoing some kind of write.
1245 */
1246 static bool
1247 xfs_prep_free_cowblocks(
1248 struct xfs_inode *ip)
1249 {
1250 /*
1251 * Just clear the tag if we have an empty cow fork or none at all. It's
1252 * possible the inode was fully unshared since it was originally tagged.
1253 */
1254 if (!xfs_inode_has_cow_data(ip)) {
1255 trace_xfs_inode_free_cowblocks_invalid(ip);
1256 xfs_inode_clear_cowblocks_tag(ip);
1257 return false;
1258 }
1259
1260 /*
1261 * If the mapping is dirty or under writeback we cannot touch the
1262 * CoW fork. Leave it alone if we're in the midst of a directio.
1263 */
1264 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1265 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1266 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1267 atomic_read(&VFS_I(ip)->i_dio_count))
1268 return false;
1269
1270 return true;
1271 }
1272
1273 /*
1274 * Automatic CoW Reservation Freeing
1275 *
1276 * These functions automatically garbage collect leftover CoW reservations
1277 * that were made on behalf of a cowextsize hint when we start to run out
1278 * of quota or when the reservations sit around for too long. If the file
1279 * has dirty pages or is undergoing writeback, its CoW reservations will
1280 * be retained.
1281 *
1282 * The actual garbage collection piggybacks off the same code that runs
1283 * the speculative EOF preallocation garbage collector.
1284 */
1285 STATIC int
1286 xfs_inode_free_cowblocks(
1287 struct xfs_inode *ip,
1288 struct xfs_icwalk *icw,
1289 unsigned int *lockflags)
1290 {
1291 bool wait;
1292 int ret = 0;
1293
1294 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1295
1296 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1297 return 0;
1298
1299 if (!xfs_prep_free_cowblocks(ip))
1300 return 0;
1301
1302 if (!xfs_icwalk_match(ip, icw))
1303 return 0;
1304
1305 /*
1306 * If the caller is waiting, return -EAGAIN to keep the background
1307 * scanner moving and revisit the inode in a subsequent pass.
1308 */
1309 if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1310 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1311 if (wait)
1312 return -EAGAIN;
1313 return 0;
1314 }
1315 *lockflags |= XFS_IOLOCK_EXCL;
1316
1317 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1318 if (wait)
1319 return -EAGAIN;
1320 return 0;
1321 }
1322 *lockflags |= XFS_MMAPLOCK_EXCL;
1323
1324 /*
1325 * Check again, nobody else should be able to dirty blocks or change
1326 * the reflink iflag now that we have the first two locks held.
1327 */
1328 if (xfs_prep_free_cowblocks(ip))
1329 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1330 return ret;
1331 }
1332
1333 void
1334 xfs_inode_set_cowblocks_tag(
1335 xfs_inode_t *ip)
1336 {
1337 trace_xfs_inode_set_cowblocks_tag(ip);
1338 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1339 }
1340
1341 void
1342 xfs_inode_clear_cowblocks_tag(
1343 xfs_inode_t *ip)
1344 {
1345 trace_xfs_inode_clear_cowblocks_tag(ip);
1346 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1347 }
1348
1349 /* Disable post-EOF and CoW block auto-reclamation. */
1350 void
1351 xfs_blockgc_stop(
1352 struct xfs_mount *mp)
1353 {
1354 struct xfs_perag *pag;
1355 xfs_agnumber_t agno;
1356
1357 if (!xfs_clear_blockgc_enabled(mp))
1358 return;
1359
1360 for_each_perag(mp, agno, pag)
1361 cancel_delayed_work_sync(&pag->pag_blockgc_work);
1362 trace_xfs_blockgc_stop(mp, __return_address);
1363 }
1364
1365 /* Enable post-EOF and CoW block auto-reclamation. */
1366 void
1367 xfs_blockgc_start(
1368 struct xfs_mount *mp)
1369 {
1370 struct xfs_perag *pag;
1371 xfs_agnumber_t agno;
1372
1373 if (xfs_set_blockgc_enabled(mp))
1374 return;
1375
1376 trace_xfs_blockgc_start(mp, __return_address);
1377 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1378 xfs_blockgc_queue(pag);
1379 }
1380
1381 /* Don't try to run block gc on an inode that's in any of these states. */
1382 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \
1383 XFS_NEED_INACTIVE | \
1384 XFS_INACTIVATING | \
1385 XFS_IRECLAIMABLE | \
1386 XFS_IRECLAIM)
1387 /*
1388 * Decide if the given @ip is eligible for garbage collection of speculative
1389 * preallocations, and grab it if so. Returns true if it's ready to go or
1390 * false if we should just ignore it.
1391 */
1392 static bool
1393 xfs_blockgc_igrab(
1394 struct xfs_inode *ip)
1395 {
1396 struct inode *inode = VFS_I(ip);
1397
1398 ASSERT(rcu_read_lock_held());
1399
1400 /* Check for stale RCU freed inode */
1401 spin_lock(&ip->i_flags_lock);
1402 if (!ip->i_ino)
1403 goto out_unlock_noent;
1404
1405 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1406 goto out_unlock_noent;
1407 spin_unlock(&ip->i_flags_lock);
1408
1409 /* nothing to sync during shutdown */
1410 if (xfs_is_shutdown(ip->i_mount))
1411 return false;
1412
1413 /* If we can't grab the inode, it must on it's way to reclaim. */
1414 if (!igrab(inode))
1415 return false;
1416
1417 /* inode is valid */
1418 return true;
1419
1420 out_unlock_noent:
1421 spin_unlock(&ip->i_flags_lock);
1422 return false;
1423 }
1424
1425 /* Scan one incore inode for block preallocations that we can remove. */
1426 static int
1427 xfs_blockgc_scan_inode(
1428 struct xfs_inode *ip,
1429 struct xfs_icwalk *icw)
1430 {
1431 unsigned int lockflags = 0;
1432 int error;
1433
1434 error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1435 if (error)
1436 goto unlock;
1437
1438 error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1439 unlock:
1440 if (lockflags)
1441 xfs_iunlock(ip, lockflags);
1442 xfs_irele(ip);
1443 return error;
1444 }
1445
1446 /* Background worker that trims preallocated space. */
1447 void
1448 xfs_blockgc_worker(
1449 struct work_struct *work)
1450 {
1451 struct xfs_perag *pag = container_of(to_delayed_work(work),
1452 struct xfs_perag, pag_blockgc_work);
1453 struct xfs_mount *mp = pag->pag_mount;
1454 int error;
1455
1456 trace_xfs_blockgc_worker(mp, __return_address);
1457
1458 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1459 if (error)
1460 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1461 pag->pag_agno, error);
1462 xfs_blockgc_queue(pag);
1463 }
1464
1465 /*
1466 * Try to free space in the filesystem by purging inactive inodes, eofblocks
1467 * and cowblocks.
1468 */
1469 int
1470 xfs_blockgc_free_space(
1471 struct xfs_mount *mp,
1472 struct xfs_icwalk *icw)
1473 {
1474 int error;
1475
1476 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1477
1478 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1479 if (error)
1480 return error;
1481
1482 xfs_inodegc_flush(mp);
1483 return 0;
1484 }
1485
1486 /*
1487 * Reclaim all the free space that we can by scheduling the background blockgc
1488 * and inodegc workers immediately and waiting for them all to clear.
1489 */
1490 void
1491 xfs_blockgc_flush_all(
1492 struct xfs_mount *mp)
1493 {
1494 struct xfs_perag *pag;
1495 xfs_agnumber_t agno;
1496
1497 trace_xfs_blockgc_flush_all(mp, __return_address);
1498
1499 /*
1500 * For each blockgc worker, move its queue time up to now. If it
1501 * wasn't queued, it will not be requeued. Then flush whatever's
1502 * left.
1503 */
1504 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1505 mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1506 &pag->pag_blockgc_work, 0);
1507
1508 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1509 flush_delayed_work(&pag->pag_blockgc_work);
1510
1511 xfs_inodegc_flush(mp);
1512 }
1513
1514 /*
1515 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
1516 * quota caused an allocation failure, so we make a best effort by including
1517 * each quota under low free space conditions (less than 1% free space) in the
1518 * scan.
1519 *
1520 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan
1521 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1522 * MMAPLOCK.
1523 */
1524 int
1525 xfs_blockgc_free_dquots(
1526 struct xfs_mount *mp,
1527 struct xfs_dquot *udqp,
1528 struct xfs_dquot *gdqp,
1529 struct xfs_dquot *pdqp,
1530 unsigned int iwalk_flags)
1531 {
1532 struct xfs_icwalk icw = {0};
1533 bool do_work = false;
1534
1535 if (!udqp && !gdqp && !pdqp)
1536 return 0;
1537
1538 /*
1539 * Run a scan to free blocks using the union filter to cover all
1540 * applicable quotas in a single scan.
1541 */
1542 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1543
1544 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1545 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1546 icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1547 do_work = true;
1548 }
1549
1550 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1551 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1552 icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1553 do_work = true;
1554 }
1555
1556 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1557 icw.icw_prid = pdqp->q_id;
1558 icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1559 do_work = true;
1560 }
1561
1562 if (!do_work)
1563 return 0;
1564
1565 return xfs_blockgc_free_space(mp, &icw);
1566 }
1567
1568 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1569 int
1570 xfs_blockgc_free_quota(
1571 struct xfs_inode *ip,
1572 unsigned int iwalk_flags)
1573 {
1574 return xfs_blockgc_free_dquots(ip->i_mount,
1575 xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1576 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1577 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1578 }
1579
1580 /* XFS Inode Cache Walking Code */
1581
1582 /*
1583 * The inode lookup is done in batches to keep the amount of lock traffic and
1584 * radix tree lookups to a minimum. The batch size is a trade off between
1585 * lookup reduction and stack usage. This is in the reclaim path, so we can't
1586 * be too greedy.
1587 */
1588 #define XFS_LOOKUP_BATCH 32
1589
1590
1591 /*
1592 * Decide if we want to grab this inode in anticipation of doing work towards
1593 * the goal.
1594 */
1595 static inline bool
1596 xfs_icwalk_igrab(
1597 enum xfs_icwalk_goal goal,
1598 struct xfs_inode *ip,
1599 struct xfs_icwalk *icw)
1600 {
1601 switch (goal) {
1602 case XFS_ICWALK_BLOCKGC:
1603 return xfs_blockgc_igrab(ip);
1604 case XFS_ICWALK_RECLAIM:
1605 return xfs_reclaim_igrab(ip, icw);
1606 default:
1607 return false;
1608 }
1609 }
1610
1611 /*
1612 * Process an inode. Each processing function must handle any state changes
1613 * made by the icwalk igrab function. Return -EAGAIN to skip an inode.
1614 */
1615 static inline int
1616 xfs_icwalk_process_inode(
1617 enum xfs_icwalk_goal goal,
1618 struct xfs_inode *ip,
1619 struct xfs_perag *pag,
1620 struct xfs_icwalk *icw)
1621 {
1622 int error = 0;
1623
1624 switch (goal) {
1625 case XFS_ICWALK_BLOCKGC:
1626 error = xfs_blockgc_scan_inode(ip, icw);
1627 break;
1628 case XFS_ICWALK_RECLAIM:
1629 xfs_reclaim_inode(ip, pag);
1630 break;
1631 }
1632 return error;
1633 }
1634
1635 /*
1636 * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1637 * process them in some manner.
1638 */
1639 static int
1640 xfs_icwalk_ag(
1641 struct xfs_perag *pag,
1642 enum xfs_icwalk_goal goal,
1643 struct xfs_icwalk *icw)
1644 {
1645 struct xfs_mount *mp = pag->pag_mount;
1646 uint32_t first_index;
1647 int last_error = 0;
1648 int skipped;
1649 bool done;
1650 int nr_found;
1651
1652 restart:
1653 done = false;
1654 skipped = 0;
1655 if (goal == XFS_ICWALK_RECLAIM)
1656 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1657 else
1658 first_index = 0;
1659 nr_found = 0;
1660 do {
1661 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1662 int error = 0;
1663 int i;
1664
1665 rcu_read_lock();
1666
1667 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1668 (void **) batch, first_index,
1669 XFS_LOOKUP_BATCH, goal);
1670 if (!nr_found) {
1671 done = true;
1672 rcu_read_unlock();
1673 break;
1674 }
1675
1676 /*
1677 * Grab the inodes before we drop the lock. if we found
1678 * nothing, nr == 0 and the loop will be skipped.
1679 */
1680 for (i = 0; i < nr_found; i++) {
1681 struct xfs_inode *ip = batch[i];
1682
1683 if (done || !xfs_icwalk_igrab(goal, ip, icw))
1684 batch[i] = NULL;
1685
1686 /*
1687 * Update the index for the next lookup. Catch
1688 * overflows into the next AG range which can occur if
1689 * we have inodes in the last block of the AG and we
1690 * are currently pointing to the last inode.
1691 *
1692 * Because we may see inodes that are from the wrong AG
1693 * due to RCU freeing and reallocation, only update the
1694 * index if it lies in this AG. It was a race that lead
1695 * us to see this inode, so another lookup from the
1696 * same index will not find it again.
1697 */
1698 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1699 continue;
1700 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1701 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1702 done = true;
1703 }
1704
1705 /* unlock now we've grabbed the inodes. */
1706 rcu_read_unlock();
1707
1708 for (i = 0; i < nr_found; i++) {
1709 if (!batch[i])
1710 continue;
1711 error = xfs_icwalk_process_inode(goal, batch[i], pag,
1712 icw);
1713 if (error == -EAGAIN) {
1714 skipped++;
1715 continue;
1716 }
1717 if (error && last_error != -EFSCORRUPTED)
1718 last_error = error;
1719 }
1720
1721 /* bail out if the filesystem is corrupted. */
1722 if (error == -EFSCORRUPTED)
1723 break;
1724
1725 cond_resched();
1726
1727 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1728 icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1729 if (icw->icw_scan_limit <= 0)
1730 break;
1731 }
1732 } while (nr_found && !done);
1733
1734 if (goal == XFS_ICWALK_RECLAIM) {
1735 if (done)
1736 first_index = 0;
1737 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1738 }
1739
1740 if (skipped) {
1741 delay(1);
1742 goto restart;
1743 }
1744 return last_error;
1745 }
1746
1747 /* Walk all incore inodes to achieve a given goal. */
1748 static int
1749 xfs_icwalk(
1750 struct xfs_mount *mp,
1751 enum xfs_icwalk_goal goal,
1752 struct xfs_icwalk *icw)
1753 {
1754 struct xfs_perag *pag;
1755 int error = 0;
1756 int last_error = 0;
1757 xfs_agnumber_t agno;
1758
1759 for_each_perag_tag(mp, agno, pag, goal) {
1760 error = xfs_icwalk_ag(pag, goal, icw);
1761 if (error) {
1762 last_error = error;
1763 if (error == -EFSCORRUPTED) {
1764 xfs_perag_put(pag);
1765 break;
1766 }
1767 }
1768 }
1769 return last_error;
1770 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1771 }
1772
1773 #ifdef DEBUG
1774 static void
1775 xfs_check_delalloc(
1776 struct xfs_inode *ip,
1777 int whichfork)
1778 {
1779 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
1780 struct xfs_bmbt_irec got;
1781 struct xfs_iext_cursor icur;
1782
1783 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1784 return;
1785 do {
1786 if (isnullstartblock(got.br_startblock)) {
1787 xfs_warn(ip->i_mount,
1788 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1789 ip->i_ino,
1790 whichfork == XFS_DATA_FORK ? "data" : "cow",
1791 got.br_startoff, got.br_blockcount);
1792 }
1793 } while (xfs_iext_next_extent(ifp, &icur, &got));
1794 }
1795 #else
1796 #define xfs_check_delalloc(ip, whichfork) do { } while (0)
1797 #endif
1798
1799 /* Schedule the inode for reclaim. */
1800 static void
1801 xfs_inodegc_set_reclaimable(
1802 struct xfs_inode *ip)
1803 {
1804 struct xfs_mount *mp = ip->i_mount;
1805 struct xfs_perag *pag;
1806
1807 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1808 xfs_check_delalloc(ip, XFS_DATA_FORK);
1809 xfs_check_delalloc(ip, XFS_COW_FORK);
1810 ASSERT(0);
1811 }
1812
1813 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1814 spin_lock(&pag->pag_ici_lock);
1815 spin_lock(&ip->i_flags_lock);
1816
1817 trace_xfs_inode_set_reclaimable(ip);
1818 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1819 ip->i_flags |= XFS_IRECLAIMABLE;
1820 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1821 XFS_ICI_RECLAIM_TAG);
1822
1823 spin_unlock(&ip->i_flags_lock);
1824 spin_unlock(&pag->pag_ici_lock);
1825 xfs_perag_put(pag);
1826 }
1827
1828 /*
1829 * Free all speculative preallocations and possibly even the inode itself.
1830 * This is the last chance to make changes to an otherwise unreferenced file
1831 * before incore reclamation happens.
1832 */
1833 static void
1834 xfs_inodegc_inactivate(
1835 struct xfs_inode *ip)
1836 {
1837 trace_xfs_inode_inactivating(ip);
1838 xfs_inactive(ip);
1839 xfs_inodegc_set_reclaimable(ip);
1840 }
1841
1842 void
1843 xfs_inodegc_worker(
1844 struct work_struct *work)
1845 {
1846 struct xfs_inodegc *gc = container_of(to_delayed_work(work),
1847 struct xfs_inodegc, work);
1848 struct llist_node *node = llist_del_all(&gc->list);
1849 struct xfs_inode *ip, *n;
1850
1851 WRITE_ONCE(gc->items, 0);
1852
1853 if (!node)
1854 return;
1855
1856 ip = llist_entry(node, struct xfs_inode, i_gclist);
1857 trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits));
1858
1859 WRITE_ONCE(gc->shrinker_hits, 0);
1860 llist_for_each_entry_safe(ip, n, node, i_gclist) {
1861 xfs_iflags_set(ip, XFS_INACTIVATING);
1862 xfs_inodegc_inactivate(ip);
1863 }
1864 }
1865
1866 /*
1867 * Expedite all pending inodegc work to run immediately. This does not wait for
1868 * completion of the work.
1869 */
1870 void
1871 xfs_inodegc_push(
1872 struct xfs_mount *mp)
1873 {
1874 if (!xfs_is_inodegc_enabled(mp))
1875 return;
1876 trace_xfs_inodegc_push(mp, __return_address);
1877 xfs_inodegc_queue_all(mp);
1878 }
1879
1880 /*
1881 * Force all currently queued inode inactivation work to run immediately and
1882 * wait for the work to finish.
1883 */
1884 void
1885 xfs_inodegc_flush(
1886 struct xfs_mount *mp)
1887 {
1888 xfs_inodegc_push(mp);
1889 trace_xfs_inodegc_flush(mp, __return_address);
1890 flush_workqueue(mp->m_inodegc_wq);
1891 }
1892
1893 /*
1894 * Flush all the pending work and then disable the inode inactivation background
1895 * workers and wait for them to stop.
1896 */
1897 void
1898 xfs_inodegc_stop(
1899 struct xfs_mount *mp)
1900 {
1901 if (!xfs_clear_inodegc_enabled(mp))
1902 return;
1903
1904 xfs_inodegc_queue_all(mp);
1905 drain_workqueue(mp->m_inodegc_wq);
1906
1907 trace_xfs_inodegc_stop(mp, __return_address);
1908 }
1909
1910 /*
1911 * Enable the inode inactivation background workers and schedule deferred inode
1912 * inactivation work if there is any.
1913 */
1914 void
1915 xfs_inodegc_start(
1916 struct xfs_mount *mp)
1917 {
1918 if (xfs_set_inodegc_enabled(mp))
1919 return;
1920
1921 trace_xfs_inodegc_start(mp, __return_address);
1922 xfs_inodegc_queue_all(mp);
1923 }
1924
1925 #ifdef CONFIG_XFS_RT
1926 static inline bool
1927 xfs_inodegc_want_queue_rt_file(
1928 struct xfs_inode *ip)
1929 {
1930 struct xfs_mount *mp = ip->i_mount;
1931
1932 if (!XFS_IS_REALTIME_INODE(ip))
1933 return false;
1934
1935 if (__percpu_counter_compare(&mp->m_frextents,
1936 mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1937 XFS_FDBLOCKS_BATCH) < 0)
1938 return true;
1939
1940 return false;
1941 }
1942 #else
1943 # define xfs_inodegc_want_queue_rt_file(ip) (false)
1944 #endif /* CONFIG_XFS_RT */
1945
1946 /*
1947 * Schedule the inactivation worker when:
1948 *
1949 * - We've accumulated more than one inode cluster buffer's worth of inodes.
1950 * - There is less than 5% free space left.
1951 * - Any of the quotas for this inode are near an enforcement limit.
1952 */
1953 static inline bool
1954 xfs_inodegc_want_queue_work(
1955 struct xfs_inode *ip,
1956 unsigned int items)
1957 {
1958 struct xfs_mount *mp = ip->i_mount;
1959
1960 if (items > mp->m_ino_geo.inodes_per_cluster)
1961 return true;
1962
1963 if (__percpu_counter_compare(&mp->m_fdblocks,
1964 mp->m_low_space[XFS_LOWSP_5_PCNT],
1965 XFS_FDBLOCKS_BATCH) < 0)
1966 return true;
1967
1968 if (xfs_inodegc_want_queue_rt_file(ip))
1969 return true;
1970
1971 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
1972 return true;
1973
1974 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
1975 return true;
1976
1977 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
1978 return true;
1979
1980 return false;
1981 }
1982
1983 /*
1984 * Upper bound on the number of inodes in each AG that can be queued for
1985 * inactivation at any given time, to avoid monopolizing the workqueue.
1986 */
1987 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK)
1988
1989 /*
1990 * Make the frontend wait for inactivations when:
1991 *
1992 * - Memory shrinkers queued the inactivation worker and it hasn't finished.
1993 * - The queue depth exceeds the maximum allowable percpu backlog.
1994 *
1995 * Note: If the current thread is running a transaction, we don't ever want to
1996 * wait for other transactions because that could introduce a deadlock.
1997 */
1998 static inline bool
1999 xfs_inodegc_want_flush_work(
2000 struct xfs_inode *ip,
2001 unsigned int items,
2002 unsigned int shrinker_hits)
2003 {
2004 if (current->journal_info)
2005 return false;
2006
2007 if (shrinker_hits > 0)
2008 return true;
2009
2010 if (items > XFS_INODEGC_MAX_BACKLOG)
2011 return true;
2012
2013 return false;
2014 }
2015
2016 /*
2017 * Queue a background inactivation worker if there are inodes that need to be
2018 * inactivated and higher level xfs code hasn't disabled the background
2019 * workers.
2020 */
2021 static void
2022 xfs_inodegc_queue(
2023 struct xfs_inode *ip)
2024 {
2025 struct xfs_mount *mp = ip->i_mount;
2026 struct xfs_inodegc *gc;
2027 int items;
2028 unsigned int shrinker_hits;
2029 unsigned long queue_delay = 1;
2030
2031 trace_xfs_inode_set_need_inactive(ip);
2032 spin_lock(&ip->i_flags_lock);
2033 ip->i_flags |= XFS_NEED_INACTIVE;
2034 spin_unlock(&ip->i_flags_lock);
2035
2036 gc = get_cpu_ptr(mp->m_inodegc);
2037 llist_add(&ip->i_gclist, &gc->list);
2038 items = READ_ONCE(gc->items);
2039 WRITE_ONCE(gc->items, items + 1);
2040 shrinker_hits = READ_ONCE(gc->shrinker_hits);
2041
2042 /*
2043 * We queue the work while holding the current CPU so that the work
2044 * is scheduled to run on this CPU.
2045 */
2046 if (!xfs_is_inodegc_enabled(mp)) {
2047 put_cpu_ptr(gc);
2048 return;
2049 }
2050
2051 if (xfs_inodegc_want_queue_work(ip, items))
2052 queue_delay = 0;
2053
2054 trace_xfs_inodegc_queue(mp, __return_address);
2055 mod_delayed_work(mp->m_inodegc_wq, &gc->work, queue_delay);
2056 put_cpu_ptr(gc);
2057
2058 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2059 trace_xfs_inodegc_throttle(mp, __return_address);
2060 flush_delayed_work(&gc->work);
2061 }
2062 }
2063
2064 /*
2065 * Fold the dead CPU inodegc queue into the current CPUs queue.
2066 */
2067 void
2068 xfs_inodegc_cpu_dead(
2069 struct xfs_mount *mp,
2070 unsigned int dead_cpu)
2071 {
2072 struct xfs_inodegc *dead_gc, *gc;
2073 struct llist_node *first, *last;
2074 unsigned int count = 0;
2075
2076 dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu);
2077 cancel_delayed_work_sync(&dead_gc->work);
2078
2079 if (llist_empty(&dead_gc->list))
2080 return;
2081
2082 first = dead_gc->list.first;
2083 last = first;
2084 while (last->next) {
2085 last = last->next;
2086 count++;
2087 }
2088 dead_gc->list.first = NULL;
2089 dead_gc->items = 0;
2090
2091 /* Add pending work to current CPU */
2092 gc = get_cpu_ptr(mp->m_inodegc);
2093 llist_add_batch(first, last, &gc->list);
2094 count += READ_ONCE(gc->items);
2095 WRITE_ONCE(gc->items, count);
2096
2097 if (xfs_is_inodegc_enabled(mp)) {
2098 trace_xfs_inodegc_queue(mp, __return_address);
2099 mod_delayed_work(mp->m_inodegc_wq, &gc->work, 0);
2100 }
2101 put_cpu_ptr(gc);
2102 }
2103
2104 /*
2105 * We set the inode flag atomically with the radix tree tag. Once we get tag
2106 * lookups on the radix tree, this inode flag can go away.
2107 *
2108 * We always use background reclaim here because even if the inode is clean, it
2109 * still may be under IO and hence we have wait for IO completion to occur
2110 * before we can reclaim the inode. The background reclaim path handles this
2111 * more efficiently than we can here, so simply let background reclaim tear down
2112 * all inodes.
2113 */
2114 void
2115 xfs_inode_mark_reclaimable(
2116 struct xfs_inode *ip)
2117 {
2118 struct xfs_mount *mp = ip->i_mount;
2119 bool need_inactive;
2120
2121 XFS_STATS_INC(mp, vn_reclaim);
2122
2123 /*
2124 * We should never get here with any of the reclaim flags already set.
2125 */
2126 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2127
2128 need_inactive = xfs_inode_needs_inactive(ip);
2129 if (need_inactive) {
2130 xfs_inodegc_queue(ip);
2131 return;
2132 }
2133
2134 /* Going straight to reclaim, so drop the dquots. */
2135 xfs_qm_dqdetach(ip);
2136 xfs_inodegc_set_reclaimable(ip);
2137 }
2138
2139 /*
2140 * Register a phony shrinker so that we can run background inodegc sooner when
2141 * there's memory pressure. Inactivation does not itself free any memory but
2142 * it does make inodes reclaimable, which eventually frees memory.
2143 *
2144 * The count function, seek value, and batch value are crafted to trigger the
2145 * scan function during the second round of scanning. Hopefully this means
2146 * that we reclaimed enough memory that initiating metadata transactions won't
2147 * make things worse.
2148 */
2149 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY)
2150 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2151
2152 static unsigned long
2153 xfs_inodegc_shrinker_count(
2154 struct shrinker *shrink,
2155 struct shrink_control *sc)
2156 {
2157 struct xfs_mount *mp = container_of(shrink, struct xfs_mount,
2158 m_inodegc_shrinker);
2159 struct xfs_inodegc *gc;
2160 int cpu;
2161
2162 if (!xfs_is_inodegc_enabled(mp))
2163 return 0;
2164
2165 for_each_online_cpu(cpu) {
2166 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2167 if (!llist_empty(&gc->list))
2168 return XFS_INODEGC_SHRINKER_COUNT;
2169 }
2170
2171 return 0;
2172 }
2173
2174 static unsigned long
2175 xfs_inodegc_shrinker_scan(
2176 struct shrinker *shrink,
2177 struct shrink_control *sc)
2178 {
2179 struct xfs_mount *mp = container_of(shrink, struct xfs_mount,
2180 m_inodegc_shrinker);
2181 struct xfs_inodegc *gc;
2182 int cpu;
2183 bool no_items = true;
2184
2185 if (!xfs_is_inodegc_enabled(mp))
2186 return SHRINK_STOP;
2187
2188 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2189
2190 for_each_online_cpu(cpu) {
2191 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2192 if (!llist_empty(&gc->list)) {
2193 unsigned int h = READ_ONCE(gc->shrinker_hits);
2194
2195 WRITE_ONCE(gc->shrinker_hits, h + 1);
2196 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2197 no_items = false;
2198 }
2199 }
2200
2201 /*
2202 * If there are no inodes to inactivate, we don't want the shrinker
2203 * to think there's deferred work to call us back about.
2204 */
2205 if (no_items)
2206 return LONG_MAX;
2207
2208 return SHRINK_STOP;
2209 }
2210
2211 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2212 int
2213 xfs_inodegc_register_shrinker(
2214 struct xfs_mount *mp)
2215 {
2216 struct shrinker *shrink = &mp->m_inodegc_shrinker;
2217
2218 shrink->count_objects = xfs_inodegc_shrinker_count;
2219 shrink->scan_objects = xfs_inodegc_shrinker_scan;
2220 shrink->seeks = 0;
2221 shrink->flags = SHRINKER_NONSLAB;
2222 shrink->batch = XFS_INODEGC_SHRINKER_BATCH;
2223
2224 return register_shrinker(shrink, "xfs-inodegc:%s", mp->m_super->s_id);
2225 }