]> git.ipfire.org Git - people/ms/linux.git/blob - fs/xfs/xfs_inode.c
RISC-V: Canaan devicetree fixes
[people/ms/linux.git] / fs / xfs / xfs_inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include <linux/iversion.h>
7
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_trans.h"
21 #include "xfs_buf_item.h"
22 #include "xfs_inode_item.h"
23 #include "xfs_iunlink_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 #include "xfs_ag.h"
39 #include "xfs_log_priv.h"
40
41 struct kmem_cache *xfs_inode_cache;
42
43 /*
44 * Used in xfs_itruncate_extents(). This is the maximum number of extents
45 * freed from a file in a single transaction.
46 */
47 #define XFS_ITRUNC_MAX_EXTENTS 2
48
49 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
50 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
51 struct xfs_inode *);
52
53 /*
54 * helper function to extract extent size hint from inode
55 */
56 xfs_extlen_t
57 xfs_get_extsz_hint(
58 struct xfs_inode *ip)
59 {
60 /*
61 * No point in aligning allocations if we need to COW to actually
62 * write to them.
63 */
64 if (xfs_is_always_cow_inode(ip))
65 return 0;
66 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
67 return ip->i_extsize;
68 if (XFS_IS_REALTIME_INODE(ip))
69 return ip->i_mount->m_sb.sb_rextsize;
70 return 0;
71 }
72
73 /*
74 * Helper function to extract CoW extent size hint from inode.
75 * Between the extent size hint and the CoW extent size hint, we
76 * return the greater of the two. If the value is zero (automatic),
77 * use the default size.
78 */
79 xfs_extlen_t
80 xfs_get_cowextsz_hint(
81 struct xfs_inode *ip)
82 {
83 xfs_extlen_t a, b;
84
85 a = 0;
86 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
87 a = ip->i_cowextsize;
88 b = xfs_get_extsz_hint(ip);
89
90 a = max(a, b);
91 if (a == 0)
92 return XFS_DEFAULT_COWEXTSZ_HINT;
93 return a;
94 }
95
96 /*
97 * These two are wrapper routines around the xfs_ilock() routine used to
98 * centralize some grungy code. They are used in places that wish to lock the
99 * inode solely for reading the extents. The reason these places can't just
100 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
101 * bringing in of the extents from disk for a file in b-tree format. If the
102 * inode is in b-tree format, then we need to lock the inode exclusively until
103 * the extents are read in. Locking it exclusively all the time would limit
104 * our parallelism unnecessarily, though. What we do instead is check to see
105 * if the extents have been read in yet, and only lock the inode exclusively
106 * if they have not.
107 *
108 * The functions return a value which should be given to the corresponding
109 * xfs_iunlock() call.
110 */
111 uint
112 xfs_ilock_data_map_shared(
113 struct xfs_inode *ip)
114 {
115 uint lock_mode = XFS_ILOCK_SHARED;
116
117 if (xfs_need_iread_extents(&ip->i_df))
118 lock_mode = XFS_ILOCK_EXCL;
119 xfs_ilock(ip, lock_mode);
120 return lock_mode;
121 }
122
123 uint
124 xfs_ilock_attr_map_shared(
125 struct xfs_inode *ip)
126 {
127 uint lock_mode = XFS_ILOCK_SHARED;
128
129 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
130 lock_mode = XFS_ILOCK_EXCL;
131 xfs_ilock(ip, lock_mode);
132 return lock_mode;
133 }
134
135 /*
136 * You can't set both SHARED and EXCL for the same lock,
137 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
138 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
139 * to set in lock_flags.
140 */
141 static inline void
142 xfs_lock_flags_assert(
143 uint lock_flags)
144 {
145 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
146 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
147 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
148 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
149 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
150 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
151 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
152 ASSERT(lock_flags != 0);
153 }
154
155 /*
156 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
157 * multi-reader locks: invalidate_lock and the i_lock. This routine allows
158 * various combinations of the locks to be obtained.
159 *
160 * The 3 locks should always be ordered so that the IO lock is obtained first,
161 * the mmap lock second and the ilock last in order to prevent deadlock.
162 *
163 * Basic locking order:
164 *
165 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
166 *
167 * mmap_lock locking order:
168 *
169 * i_rwsem -> page lock -> mmap_lock
170 * mmap_lock -> invalidate_lock -> page_lock
171 *
172 * The difference in mmap_lock locking order mean that we cannot hold the
173 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
174 * can fault in pages during copy in/out (for buffered IO) or require the
175 * mmap_lock in get_user_pages() to map the user pages into the kernel address
176 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
177 * fault because page faults already hold the mmap_lock.
178 *
179 * Hence to serialise fully against both syscall and mmap based IO, we need to
180 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
181 * both taken in places where we need to invalidate the page cache in a race
182 * free manner (e.g. truncate, hole punch and other extent manipulation
183 * functions).
184 */
185 void
186 xfs_ilock(
187 xfs_inode_t *ip,
188 uint lock_flags)
189 {
190 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
191
192 xfs_lock_flags_assert(lock_flags);
193
194 if (lock_flags & XFS_IOLOCK_EXCL) {
195 down_write_nested(&VFS_I(ip)->i_rwsem,
196 XFS_IOLOCK_DEP(lock_flags));
197 } else if (lock_flags & XFS_IOLOCK_SHARED) {
198 down_read_nested(&VFS_I(ip)->i_rwsem,
199 XFS_IOLOCK_DEP(lock_flags));
200 }
201
202 if (lock_flags & XFS_MMAPLOCK_EXCL) {
203 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
204 XFS_MMAPLOCK_DEP(lock_flags));
205 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
206 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
207 XFS_MMAPLOCK_DEP(lock_flags));
208 }
209
210 if (lock_flags & XFS_ILOCK_EXCL)
211 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212 else if (lock_flags & XFS_ILOCK_SHARED)
213 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
214 }
215
216 /*
217 * This is just like xfs_ilock(), except that the caller
218 * is guaranteed not to sleep. It returns 1 if it gets
219 * the requested locks and 0 otherwise. If the IO lock is
220 * obtained but the inode lock cannot be, then the IO lock
221 * is dropped before returning.
222 *
223 * ip -- the inode being locked
224 * lock_flags -- this parameter indicates the inode's locks to be
225 * to be locked. See the comment for xfs_ilock() for a list
226 * of valid values.
227 */
228 int
229 xfs_ilock_nowait(
230 xfs_inode_t *ip,
231 uint lock_flags)
232 {
233 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
234
235 xfs_lock_flags_assert(lock_flags);
236
237 if (lock_flags & XFS_IOLOCK_EXCL) {
238 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
239 goto out;
240 } else if (lock_flags & XFS_IOLOCK_SHARED) {
241 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
242 goto out;
243 }
244
245 if (lock_flags & XFS_MMAPLOCK_EXCL) {
246 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
247 goto out_undo_iolock;
248 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
249 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
250 goto out_undo_iolock;
251 }
252
253 if (lock_flags & XFS_ILOCK_EXCL) {
254 if (!mrtryupdate(&ip->i_lock))
255 goto out_undo_mmaplock;
256 } else if (lock_flags & XFS_ILOCK_SHARED) {
257 if (!mrtryaccess(&ip->i_lock))
258 goto out_undo_mmaplock;
259 }
260 return 1;
261
262 out_undo_mmaplock:
263 if (lock_flags & XFS_MMAPLOCK_EXCL)
264 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
265 else if (lock_flags & XFS_MMAPLOCK_SHARED)
266 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
267 out_undo_iolock:
268 if (lock_flags & XFS_IOLOCK_EXCL)
269 up_write(&VFS_I(ip)->i_rwsem);
270 else if (lock_flags & XFS_IOLOCK_SHARED)
271 up_read(&VFS_I(ip)->i_rwsem);
272 out:
273 return 0;
274 }
275
276 /*
277 * xfs_iunlock() is used to drop the inode locks acquired with
278 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
280 * that we know which locks to drop.
281 *
282 * ip -- the inode being unlocked
283 * lock_flags -- this parameter indicates the inode's locks to be
284 * to be unlocked. See the comment for xfs_ilock() for a list
285 * of valid values for this parameter.
286 *
287 */
288 void
289 xfs_iunlock(
290 xfs_inode_t *ip,
291 uint lock_flags)
292 {
293 xfs_lock_flags_assert(lock_flags);
294
295 if (lock_flags & XFS_IOLOCK_EXCL)
296 up_write(&VFS_I(ip)->i_rwsem);
297 else if (lock_flags & XFS_IOLOCK_SHARED)
298 up_read(&VFS_I(ip)->i_rwsem);
299
300 if (lock_flags & XFS_MMAPLOCK_EXCL)
301 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
302 else if (lock_flags & XFS_MMAPLOCK_SHARED)
303 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
304
305 if (lock_flags & XFS_ILOCK_EXCL)
306 mrunlock_excl(&ip->i_lock);
307 else if (lock_flags & XFS_ILOCK_SHARED)
308 mrunlock_shared(&ip->i_lock);
309
310 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
311 }
312
313 /*
314 * give up write locks. the i/o lock cannot be held nested
315 * if it is being demoted.
316 */
317 void
318 xfs_ilock_demote(
319 xfs_inode_t *ip,
320 uint lock_flags)
321 {
322 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
323 ASSERT((lock_flags &
324 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
325
326 if (lock_flags & XFS_ILOCK_EXCL)
327 mrdemote(&ip->i_lock);
328 if (lock_flags & XFS_MMAPLOCK_EXCL)
329 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
330 if (lock_flags & XFS_IOLOCK_EXCL)
331 downgrade_write(&VFS_I(ip)->i_rwsem);
332
333 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
334 }
335
336 #if defined(DEBUG) || defined(XFS_WARN)
337 static inline bool
338 __xfs_rwsem_islocked(
339 struct rw_semaphore *rwsem,
340 bool shared)
341 {
342 if (!debug_locks)
343 return rwsem_is_locked(rwsem);
344
345 if (!shared)
346 return lockdep_is_held_type(rwsem, 0);
347
348 /*
349 * We are checking that the lock is held at least in shared
350 * mode but don't care that it might be held exclusively
351 * (i.e. shared | excl). Hence we check if the lock is held
352 * in any mode rather than an explicit shared mode.
353 */
354 return lockdep_is_held_type(rwsem, -1);
355 }
356
357 bool
358 xfs_isilocked(
359 struct xfs_inode *ip,
360 uint lock_flags)
361 {
362 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
363 if (!(lock_flags & XFS_ILOCK_SHARED))
364 return !!ip->i_lock.mr_writer;
365 return rwsem_is_locked(&ip->i_lock.mr_lock);
366 }
367
368 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
369 return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock,
370 (lock_flags & XFS_MMAPLOCK_SHARED));
371 }
372
373 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
374 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
375 (lock_flags & XFS_IOLOCK_SHARED));
376 }
377
378 ASSERT(0);
379 return false;
380 }
381 #endif
382
383 /*
384 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
385 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
386 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
387 * errors and warnings.
388 */
389 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
390 static bool
391 xfs_lockdep_subclass_ok(
392 int subclass)
393 {
394 return subclass < MAX_LOCKDEP_SUBCLASSES;
395 }
396 #else
397 #define xfs_lockdep_subclass_ok(subclass) (true)
398 #endif
399
400 /*
401 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
402 * value. This can be called for any type of inode lock combination, including
403 * parent locking. Care must be taken to ensure we don't overrun the subclass
404 * storage fields in the class mask we build.
405 */
406 static inline uint
407 xfs_lock_inumorder(
408 uint lock_mode,
409 uint subclass)
410 {
411 uint class = 0;
412
413 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
414 XFS_ILOCK_RTSUM)));
415 ASSERT(xfs_lockdep_subclass_ok(subclass));
416
417 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
418 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
419 class += subclass << XFS_IOLOCK_SHIFT;
420 }
421
422 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
423 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
424 class += subclass << XFS_MMAPLOCK_SHIFT;
425 }
426
427 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
428 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
429 class += subclass << XFS_ILOCK_SHIFT;
430 }
431
432 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
433 }
434
435 /*
436 * The following routine will lock n inodes in exclusive mode. We assume the
437 * caller calls us with the inodes in i_ino order.
438 *
439 * We need to detect deadlock where an inode that we lock is in the AIL and we
440 * start waiting for another inode that is locked by a thread in a long running
441 * transaction (such as truncate). This can result in deadlock since the long
442 * running trans might need to wait for the inode we just locked in order to
443 * push the tail and free space in the log.
444 *
445 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
446 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
447 * lock more than one at a time, lockdep will report false positives saying we
448 * have violated locking orders.
449 */
450 static void
451 xfs_lock_inodes(
452 struct xfs_inode **ips,
453 int inodes,
454 uint lock_mode)
455 {
456 int attempts = 0;
457 uint i;
458 int j;
459 bool try_lock;
460 struct xfs_log_item *lp;
461
462 /*
463 * Currently supports between 2 and 5 inodes with exclusive locking. We
464 * support an arbitrary depth of locking here, but absolute limits on
465 * inodes depend on the type of locking and the limits placed by
466 * lockdep annotations in xfs_lock_inumorder. These are all checked by
467 * the asserts.
468 */
469 ASSERT(ips && inodes >= 2 && inodes <= 5);
470 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
471 XFS_ILOCK_EXCL));
472 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
473 XFS_ILOCK_SHARED)));
474 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
475 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
476 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
477 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
478
479 if (lock_mode & XFS_IOLOCK_EXCL) {
480 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
481 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
482 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
483
484 again:
485 try_lock = false;
486 i = 0;
487 for (; i < inodes; i++) {
488 ASSERT(ips[i]);
489
490 if (i && (ips[i] == ips[i - 1])) /* Already locked */
491 continue;
492
493 /*
494 * If try_lock is not set yet, make sure all locked inodes are
495 * not in the AIL. If any are, set try_lock to be used later.
496 */
497 if (!try_lock) {
498 for (j = (i - 1); j >= 0 && !try_lock; j--) {
499 lp = &ips[j]->i_itemp->ili_item;
500 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
501 try_lock = true;
502 }
503 }
504
505 /*
506 * If any of the previous locks we have locked is in the AIL,
507 * we must TRY to get the second and subsequent locks. If
508 * we can't get any, we must release all we have
509 * and try again.
510 */
511 if (!try_lock) {
512 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
513 continue;
514 }
515
516 /* try_lock means we have an inode locked that is in the AIL. */
517 ASSERT(i != 0);
518 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
519 continue;
520
521 /*
522 * Unlock all previous guys and try again. xfs_iunlock will try
523 * to push the tail if the inode is in the AIL.
524 */
525 attempts++;
526 for (j = i - 1; j >= 0; j--) {
527 /*
528 * Check to see if we've already unlocked this one. Not
529 * the first one going back, and the inode ptr is the
530 * same.
531 */
532 if (j != (i - 1) && ips[j] == ips[j + 1])
533 continue;
534
535 xfs_iunlock(ips[j], lock_mode);
536 }
537
538 if ((attempts % 5) == 0) {
539 delay(1); /* Don't just spin the CPU */
540 }
541 goto again;
542 }
543 }
544
545 /*
546 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
547 * mmaplock must be double-locked separately since we use i_rwsem and
548 * invalidate_lock for that. We now support taking one lock EXCL and the
549 * other SHARED.
550 */
551 void
552 xfs_lock_two_inodes(
553 struct xfs_inode *ip0,
554 uint ip0_mode,
555 struct xfs_inode *ip1,
556 uint ip1_mode)
557 {
558 int attempts = 0;
559 struct xfs_log_item *lp;
560
561 ASSERT(hweight32(ip0_mode) == 1);
562 ASSERT(hweight32(ip1_mode) == 1);
563 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
564 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
565 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
566 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
567 ASSERT(ip0->i_ino != ip1->i_ino);
568
569 if (ip0->i_ino > ip1->i_ino) {
570 swap(ip0, ip1);
571 swap(ip0_mode, ip1_mode);
572 }
573
574 again:
575 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
576
577 /*
578 * If the first lock we have locked is in the AIL, we must TRY to get
579 * the second lock. If we can't get it, we must release the first one
580 * and try again.
581 */
582 lp = &ip0->i_itemp->ili_item;
583 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
584 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
585 xfs_iunlock(ip0, ip0_mode);
586 if ((++attempts % 5) == 0)
587 delay(1); /* Don't just spin the CPU */
588 goto again;
589 }
590 } else {
591 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
592 }
593 }
594
595 uint
596 xfs_ip2xflags(
597 struct xfs_inode *ip)
598 {
599 uint flags = 0;
600
601 if (ip->i_diflags & XFS_DIFLAG_ANY) {
602 if (ip->i_diflags & XFS_DIFLAG_REALTIME)
603 flags |= FS_XFLAG_REALTIME;
604 if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
605 flags |= FS_XFLAG_PREALLOC;
606 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
607 flags |= FS_XFLAG_IMMUTABLE;
608 if (ip->i_diflags & XFS_DIFLAG_APPEND)
609 flags |= FS_XFLAG_APPEND;
610 if (ip->i_diflags & XFS_DIFLAG_SYNC)
611 flags |= FS_XFLAG_SYNC;
612 if (ip->i_diflags & XFS_DIFLAG_NOATIME)
613 flags |= FS_XFLAG_NOATIME;
614 if (ip->i_diflags & XFS_DIFLAG_NODUMP)
615 flags |= FS_XFLAG_NODUMP;
616 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
617 flags |= FS_XFLAG_RTINHERIT;
618 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
619 flags |= FS_XFLAG_PROJINHERIT;
620 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
621 flags |= FS_XFLAG_NOSYMLINKS;
622 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
623 flags |= FS_XFLAG_EXTSIZE;
624 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
625 flags |= FS_XFLAG_EXTSZINHERIT;
626 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
627 flags |= FS_XFLAG_NODEFRAG;
628 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
629 flags |= FS_XFLAG_FILESTREAM;
630 }
631
632 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
633 if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
634 flags |= FS_XFLAG_DAX;
635 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
636 flags |= FS_XFLAG_COWEXTSIZE;
637 }
638
639 if (xfs_inode_has_attr_fork(ip))
640 flags |= FS_XFLAG_HASATTR;
641 return flags;
642 }
643
644 /*
645 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
646 * is allowed, otherwise it has to be an exact match. If a CI match is found,
647 * ci_name->name will point to a the actual name (caller must free) or
648 * will be set to NULL if an exact match is found.
649 */
650 int
651 xfs_lookup(
652 struct xfs_inode *dp,
653 const struct xfs_name *name,
654 struct xfs_inode **ipp,
655 struct xfs_name *ci_name)
656 {
657 xfs_ino_t inum;
658 int error;
659
660 trace_xfs_lookup(dp, name);
661
662 if (xfs_is_shutdown(dp->i_mount))
663 return -EIO;
664
665 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
666 if (error)
667 goto out_unlock;
668
669 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
670 if (error)
671 goto out_free_name;
672
673 return 0;
674
675 out_free_name:
676 if (ci_name)
677 kmem_free(ci_name->name);
678 out_unlock:
679 *ipp = NULL;
680 return error;
681 }
682
683 /* Propagate di_flags from a parent inode to a child inode. */
684 static void
685 xfs_inode_inherit_flags(
686 struct xfs_inode *ip,
687 const struct xfs_inode *pip)
688 {
689 unsigned int di_flags = 0;
690 xfs_failaddr_t failaddr;
691 umode_t mode = VFS_I(ip)->i_mode;
692
693 if (S_ISDIR(mode)) {
694 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
695 di_flags |= XFS_DIFLAG_RTINHERIT;
696 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
697 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
698 ip->i_extsize = pip->i_extsize;
699 }
700 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
701 di_flags |= XFS_DIFLAG_PROJINHERIT;
702 } else if (S_ISREG(mode)) {
703 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
704 xfs_has_realtime(ip->i_mount))
705 di_flags |= XFS_DIFLAG_REALTIME;
706 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
707 di_flags |= XFS_DIFLAG_EXTSIZE;
708 ip->i_extsize = pip->i_extsize;
709 }
710 }
711 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
712 xfs_inherit_noatime)
713 di_flags |= XFS_DIFLAG_NOATIME;
714 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
715 xfs_inherit_nodump)
716 di_flags |= XFS_DIFLAG_NODUMP;
717 if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
718 xfs_inherit_sync)
719 di_flags |= XFS_DIFLAG_SYNC;
720 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
721 xfs_inherit_nosymlinks)
722 di_flags |= XFS_DIFLAG_NOSYMLINKS;
723 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
724 xfs_inherit_nodefrag)
725 di_flags |= XFS_DIFLAG_NODEFRAG;
726 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
727 di_flags |= XFS_DIFLAG_FILESTREAM;
728
729 ip->i_diflags |= di_flags;
730
731 /*
732 * Inode verifiers on older kernels only check that the extent size
733 * hint is an integer multiple of the rt extent size on realtime files.
734 * They did not check the hint alignment on a directory with both
735 * rtinherit and extszinherit flags set. If the misaligned hint is
736 * propagated from a directory into a new realtime file, new file
737 * allocations will fail due to math errors in the rt allocator and/or
738 * trip the verifiers. Validate the hint settings in the new file so
739 * that we don't let broken hints propagate.
740 */
741 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
742 VFS_I(ip)->i_mode, ip->i_diflags);
743 if (failaddr) {
744 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
745 XFS_DIFLAG_EXTSZINHERIT);
746 ip->i_extsize = 0;
747 }
748 }
749
750 /* Propagate di_flags2 from a parent inode to a child inode. */
751 static void
752 xfs_inode_inherit_flags2(
753 struct xfs_inode *ip,
754 const struct xfs_inode *pip)
755 {
756 xfs_failaddr_t failaddr;
757
758 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
759 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
760 ip->i_cowextsize = pip->i_cowextsize;
761 }
762 if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
763 ip->i_diflags2 |= XFS_DIFLAG2_DAX;
764
765 /* Don't let invalid cowextsize hints propagate. */
766 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
767 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
768 if (failaddr) {
769 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
770 ip->i_cowextsize = 0;
771 }
772 }
773
774 /*
775 * Initialise a newly allocated inode and return the in-core inode to the
776 * caller locked exclusively.
777 */
778 int
779 xfs_init_new_inode(
780 struct user_namespace *mnt_userns,
781 struct xfs_trans *tp,
782 struct xfs_inode *pip,
783 xfs_ino_t ino,
784 umode_t mode,
785 xfs_nlink_t nlink,
786 dev_t rdev,
787 prid_t prid,
788 bool init_xattrs,
789 struct xfs_inode **ipp)
790 {
791 struct inode *dir = pip ? VFS_I(pip) : NULL;
792 struct xfs_mount *mp = tp->t_mountp;
793 struct xfs_inode *ip;
794 unsigned int flags;
795 int error;
796 struct timespec64 tv;
797 struct inode *inode;
798
799 /*
800 * Protect against obviously corrupt allocation btree records. Later
801 * xfs_iget checks will catch re-allocation of other active in-memory
802 * and on-disk inodes. If we don't catch reallocating the parent inode
803 * here we will deadlock in xfs_iget() so we have to do these checks
804 * first.
805 */
806 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
807 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
808 return -EFSCORRUPTED;
809 }
810
811 /*
812 * Get the in-core inode with the lock held exclusively to prevent
813 * others from looking at until we're done.
814 */
815 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
816 if (error)
817 return error;
818
819 ASSERT(ip != NULL);
820 inode = VFS_I(ip);
821 set_nlink(inode, nlink);
822 inode->i_rdev = rdev;
823 ip->i_projid = prid;
824
825 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
826 inode_fsuid_set(inode, mnt_userns);
827 inode->i_gid = dir->i_gid;
828 inode->i_mode = mode;
829 } else {
830 inode_init_owner(mnt_userns, inode, dir, mode);
831 }
832
833 /*
834 * If the group ID of the new file does not match the effective group
835 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
836 * (and only if the irix_sgid_inherit compatibility variable is set).
837 */
838 if (irix_sgid_inherit &&
839 (inode->i_mode & S_ISGID) &&
840 !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
841 inode->i_mode &= ~S_ISGID;
842
843 ip->i_disk_size = 0;
844 ip->i_df.if_nextents = 0;
845 ASSERT(ip->i_nblocks == 0);
846
847 tv = current_time(inode);
848 inode->i_mtime = tv;
849 inode->i_atime = tv;
850 inode->i_ctime = tv;
851
852 ip->i_extsize = 0;
853 ip->i_diflags = 0;
854
855 if (xfs_has_v3inodes(mp)) {
856 inode_set_iversion(inode, 1);
857 ip->i_cowextsize = 0;
858 ip->i_crtime = tv;
859 }
860
861 flags = XFS_ILOG_CORE;
862 switch (mode & S_IFMT) {
863 case S_IFIFO:
864 case S_IFCHR:
865 case S_IFBLK:
866 case S_IFSOCK:
867 ip->i_df.if_format = XFS_DINODE_FMT_DEV;
868 flags |= XFS_ILOG_DEV;
869 break;
870 case S_IFREG:
871 case S_IFDIR:
872 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
873 xfs_inode_inherit_flags(ip, pip);
874 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
875 xfs_inode_inherit_flags2(ip, pip);
876 fallthrough;
877 case S_IFLNK:
878 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
879 ip->i_df.if_bytes = 0;
880 ip->i_df.if_u1.if_root = NULL;
881 break;
882 default:
883 ASSERT(0);
884 }
885
886 /*
887 * If we need to create attributes immediately after allocating the
888 * inode, initialise an empty attribute fork right now. We use the
889 * default fork offset for attributes here as we don't know exactly what
890 * size or how many attributes we might be adding. We can do this
891 * safely here because we know the data fork is completely empty and
892 * this saves us from needing to run a separate transaction to set the
893 * fork offset in the immediate future.
894 */
895 if (init_xattrs && xfs_has_attr(mp)) {
896 ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
897 xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
898 }
899
900 /*
901 * Log the new values stuffed into the inode.
902 */
903 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
904 xfs_trans_log_inode(tp, ip, flags);
905
906 /* now that we have an i_mode we can setup the inode structure */
907 xfs_setup_inode(ip);
908
909 *ipp = ip;
910 return 0;
911 }
912
913 /*
914 * Decrement the link count on an inode & log the change. If this causes the
915 * link count to go to zero, move the inode to AGI unlinked list so that it can
916 * be freed when the last active reference goes away via xfs_inactive().
917 */
918 static int /* error */
919 xfs_droplink(
920 xfs_trans_t *tp,
921 xfs_inode_t *ip)
922 {
923 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
924
925 drop_nlink(VFS_I(ip));
926 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
927
928 if (VFS_I(ip)->i_nlink)
929 return 0;
930
931 return xfs_iunlink(tp, ip);
932 }
933
934 /*
935 * Increment the link count on an inode & log the change.
936 */
937 static void
938 xfs_bumplink(
939 xfs_trans_t *tp,
940 xfs_inode_t *ip)
941 {
942 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
943
944 inc_nlink(VFS_I(ip));
945 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
946 }
947
948 int
949 xfs_create(
950 struct user_namespace *mnt_userns,
951 xfs_inode_t *dp,
952 struct xfs_name *name,
953 umode_t mode,
954 dev_t rdev,
955 bool init_xattrs,
956 xfs_inode_t **ipp)
957 {
958 int is_dir = S_ISDIR(mode);
959 struct xfs_mount *mp = dp->i_mount;
960 struct xfs_inode *ip = NULL;
961 struct xfs_trans *tp = NULL;
962 int error;
963 bool unlock_dp_on_error = false;
964 prid_t prid;
965 struct xfs_dquot *udqp = NULL;
966 struct xfs_dquot *gdqp = NULL;
967 struct xfs_dquot *pdqp = NULL;
968 struct xfs_trans_res *tres;
969 uint resblks;
970 xfs_ino_t ino;
971
972 trace_xfs_create(dp, name);
973
974 if (xfs_is_shutdown(mp))
975 return -EIO;
976
977 prid = xfs_get_initial_prid(dp);
978
979 /*
980 * Make sure that we have allocated dquot(s) on disk.
981 */
982 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
983 mapped_fsgid(mnt_userns, &init_user_ns), prid,
984 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
985 &udqp, &gdqp, &pdqp);
986 if (error)
987 return error;
988
989 if (is_dir) {
990 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
991 tres = &M_RES(mp)->tr_mkdir;
992 } else {
993 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
994 tres = &M_RES(mp)->tr_create;
995 }
996
997 /*
998 * Initially assume that the file does not exist and
999 * reserve the resources for that case. If that is not
1000 * the case we'll drop the one we have and get a more
1001 * appropriate transaction later.
1002 */
1003 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1004 &tp);
1005 if (error == -ENOSPC) {
1006 /* flush outstanding delalloc blocks and retry */
1007 xfs_flush_inodes(mp);
1008 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1009 resblks, &tp);
1010 }
1011 if (error)
1012 goto out_release_dquots;
1013
1014 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1015 unlock_dp_on_error = true;
1016
1017 /*
1018 * A newly created regular or special file just has one directory
1019 * entry pointing to them, but a directory also the "." entry
1020 * pointing to itself.
1021 */
1022 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1023 if (!error)
1024 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1025 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1026 if (error)
1027 goto out_trans_cancel;
1028
1029 /*
1030 * Now we join the directory inode to the transaction. We do not do it
1031 * earlier because xfs_dialloc might commit the previous transaction
1032 * (and release all the locks). An error from here on will result in
1033 * the transaction cancel unlocking dp so don't do it explicitly in the
1034 * error path.
1035 */
1036 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1037 unlock_dp_on_error = false;
1038
1039 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1040 resblks - XFS_IALLOC_SPACE_RES(mp));
1041 if (error) {
1042 ASSERT(error != -ENOSPC);
1043 goto out_trans_cancel;
1044 }
1045 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1046 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1047
1048 if (is_dir) {
1049 error = xfs_dir_init(tp, ip, dp);
1050 if (error)
1051 goto out_trans_cancel;
1052
1053 xfs_bumplink(tp, dp);
1054 }
1055
1056 /*
1057 * If this is a synchronous mount, make sure that the
1058 * create transaction goes to disk before returning to
1059 * the user.
1060 */
1061 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1062 xfs_trans_set_sync(tp);
1063
1064 /*
1065 * Attach the dquot(s) to the inodes and modify them incore.
1066 * These ids of the inode couldn't have changed since the new
1067 * inode has been locked ever since it was created.
1068 */
1069 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1070
1071 error = xfs_trans_commit(tp);
1072 if (error)
1073 goto out_release_inode;
1074
1075 xfs_qm_dqrele(udqp);
1076 xfs_qm_dqrele(gdqp);
1077 xfs_qm_dqrele(pdqp);
1078
1079 *ipp = ip;
1080 return 0;
1081
1082 out_trans_cancel:
1083 xfs_trans_cancel(tp);
1084 out_release_inode:
1085 /*
1086 * Wait until after the current transaction is aborted to finish the
1087 * setup of the inode and release the inode. This prevents recursive
1088 * transactions and deadlocks from xfs_inactive.
1089 */
1090 if (ip) {
1091 xfs_finish_inode_setup(ip);
1092 xfs_irele(ip);
1093 }
1094 out_release_dquots:
1095 xfs_qm_dqrele(udqp);
1096 xfs_qm_dqrele(gdqp);
1097 xfs_qm_dqrele(pdqp);
1098
1099 if (unlock_dp_on_error)
1100 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1101 return error;
1102 }
1103
1104 int
1105 xfs_create_tmpfile(
1106 struct user_namespace *mnt_userns,
1107 struct xfs_inode *dp,
1108 umode_t mode,
1109 struct xfs_inode **ipp)
1110 {
1111 struct xfs_mount *mp = dp->i_mount;
1112 struct xfs_inode *ip = NULL;
1113 struct xfs_trans *tp = NULL;
1114 int error;
1115 prid_t prid;
1116 struct xfs_dquot *udqp = NULL;
1117 struct xfs_dquot *gdqp = NULL;
1118 struct xfs_dquot *pdqp = NULL;
1119 struct xfs_trans_res *tres;
1120 uint resblks;
1121 xfs_ino_t ino;
1122
1123 if (xfs_is_shutdown(mp))
1124 return -EIO;
1125
1126 prid = xfs_get_initial_prid(dp);
1127
1128 /*
1129 * Make sure that we have allocated dquot(s) on disk.
1130 */
1131 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
1132 mapped_fsgid(mnt_userns, &init_user_ns), prid,
1133 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1134 &udqp, &gdqp, &pdqp);
1135 if (error)
1136 return error;
1137
1138 resblks = XFS_IALLOC_SPACE_RES(mp);
1139 tres = &M_RES(mp)->tr_create_tmpfile;
1140
1141 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1142 &tp);
1143 if (error)
1144 goto out_release_dquots;
1145
1146 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1147 if (!error)
1148 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1149 0, 0, prid, false, &ip);
1150 if (error)
1151 goto out_trans_cancel;
1152
1153 if (xfs_has_wsync(mp))
1154 xfs_trans_set_sync(tp);
1155
1156 /*
1157 * Attach the dquot(s) to the inodes and modify them incore.
1158 * These ids of the inode couldn't have changed since the new
1159 * inode has been locked ever since it was created.
1160 */
1161 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1162
1163 error = xfs_iunlink(tp, ip);
1164 if (error)
1165 goto out_trans_cancel;
1166
1167 error = xfs_trans_commit(tp);
1168 if (error)
1169 goto out_release_inode;
1170
1171 xfs_qm_dqrele(udqp);
1172 xfs_qm_dqrele(gdqp);
1173 xfs_qm_dqrele(pdqp);
1174
1175 *ipp = ip;
1176 return 0;
1177
1178 out_trans_cancel:
1179 xfs_trans_cancel(tp);
1180 out_release_inode:
1181 /*
1182 * Wait until after the current transaction is aborted to finish the
1183 * setup of the inode and release the inode. This prevents recursive
1184 * transactions and deadlocks from xfs_inactive.
1185 */
1186 if (ip) {
1187 xfs_finish_inode_setup(ip);
1188 xfs_irele(ip);
1189 }
1190 out_release_dquots:
1191 xfs_qm_dqrele(udqp);
1192 xfs_qm_dqrele(gdqp);
1193 xfs_qm_dqrele(pdqp);
1194
1195 return error;
1196 }
1197
1198 int
1199 xfs_link(
1200 xfs_inode_t *tdp,
1201 xfs_inode_t *sip,
1202 struct xfs_name *target_name)
1203 {
1204 xfs_mount_t *mp = tdp->i_mount;
1205 xfs_trans_t *tp;
1206 int error, nospace_error = 0;
1207 int resblks;
1208
1209 trace_xfs_link(tdp, target_name);
1210
1211 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1212
1213 if (xfs_is_shutdown(mp))
1214 return -EIO;
1215
1216 error = xfs_qm_dqattach(sip);
1217 if (error)
1218 goto std_return;
1219
1220 error = xfs_qm_dqattach(tdp);
1221 if (error)
1222 goto std_return;
1223
1224 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1225 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1226 &tp, &nospace_error);
1227 if (error)
1228 goto std_return;
1229
1230 /*
1231 * If we are using project inheritance, we only allow hard link
1232 * creation in our tree when the project IDs are the same; else
1233 * the tree quota mechanism could be circumvented.
1234 */
1235 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1236 tdp->i_projid != sip->i_projid)) {
1237 error = -EXDEV;
1238 goto error_return;
1239 }
1240
1241 if (!resblks) {
1242 error = xfs_dir_canenter(tp, tdp, target_name);
1243 if (error)
1244 goto error_return;
1245 }
1246
1247 /*
1248 * Handle initial link state of O_TMPFILE inode
1249 */
1250 if (VFS_I(sip)->i_nlink == 0) {
1251 struct xfs_perag *pag;
1252
1253 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1254 error = xfs_iunlink_remove(tp, pag, sip);
1255 xfs_perag_put(pag);
1256 if (error)
1257 goto error_return;
1258 }
1259
1260 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1261 resblks);
1262 if (error)
1263 goto error_return;
1264 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1265 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1266
1267 xfs_bumplink(tp, sip);
1268
1269 /*
1270 * If this is a synchronous mount, make sure that the
1271 * link transaction goes to disk before returning to
1272 * the user.
1273 */
1274 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1275 xfs_trans_set_sync(tp);
1276
1277 return xfs_trans_commit(tp);
1278
1279 error_return:
1280 xfs_trans_cancel(tp);
1281 std_return:
1282 if (error == -ENOSPC && nospace_error)
1283 error = nospace_error;
1284 return error;
1285 }
1286
1287 /* Clear the reflink flag and the cowblocks tag if possible. */
1288 static void
1289 xfs_itruncate_clear_reflink_flags(
1290 struct xfs_inode *ip)
1291 {
1292 struct xfs_ifork *dfork;
1293 struct xfs_ifork *cfork;
1294
1295 if (!xfs_is_reflink_inode(ip))
1296 return;
1297 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1298 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1299 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1300 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1301 if (cfork->if_bytes == 0)
1302 xfs_inode_clear_cowblocks_tag(ip);
1303 }
1304
1305 /*
1306 * Free up the underlying blocks past new_size. The new size must be smaller
1307 * than the current size. This routine can be used both for the attribute and
1308 * data fork, and does not modify the inode size, which is left to the caller.
1309 *
1310 * The transaction passed to this routine must have made a permanent log
1311 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1312 * given transaction and start new ones, so make sure everything involved in
1313 * the transaction is tidy before calling here. Some transaction will be
1314 * returned to the caller to be committed. The incoming transaction must
1315 * already include the inode, and both inode locks must be held exclusively.
1316 * The inode must also be "held" within the transaction. On return the inode
1317 * will be "held" within the returned transaction. This routine does NOT
1318 * require any disk space to be reserved for it within the transaction.
1319 *
1320 * If we get an error, we must return with the inode locked and linked into the
1321 * current transaction. This keeps things simple for the higher level code,
1322 * because it always knows that the inode is locked and held in the transaction
1323 * that returns to it whether errors occur or not. We don't mark the inode
1324 * dirty on error so that transactions can be easily aborted if possible.
1325 */
1326 int
1327 xfs_itruncate_extents_flags(
1328 struct xfs_trans **tpp,
1329 struct xfs_inode *ip,
1330 int whichfork,
1331 xfs_fsize_t new_size,
1332 int flags)
1333 {
1334 struct xfs_mount *mp = ip->i_mount;
1335 struct xfs_trans *tp = *tpp;
1336 xfs_fileoff_t first_unmap_block;
1337 xfs_filblks_t unmap_len;
1338 int error = 0;
1339
1340 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1341 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1342 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1343 ASSERT(new_size <= XFS_ISIZE(ip));
1344 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1345 ASSERT(ip->i_itemp != NULL);
1346 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1347 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1348
1349 trace_xfs_itruncate_extents_start(ip, new_size);
1350
1351 flags |= xfs_bmapi_aflag(whichfork);
1352
1353 /*
1354 * Since it is possible for space to become allocated beyond
1355 * the end of the file (in a crash where the space is allocated
1356 * but the inode size is not yet updated), simply remove any
1357 * blocks which show up between the new EOF and the maximum
1358 * possible file size.
1359 *
1360 * We have to free all the blocks to the bmbt maximum offset, even if
1361 * the page cache can't scale that far.
1362 */
1363 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1364 if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1365 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1366 return 0;
1367 }
1368
1369 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1370 while (unmap_len > 0) {
1371 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1372 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1373 flags, XFS_ITRUNC_MAX_EXTENTS);
1374 if (error)
1375 goto out;
1376
1377 /* free the just unmapped extents */
1378 error = xfs_defer_finish(&tp);
1379 if (error)
1380 goto out;
1381 }
1382
1383 if (whichfork == XFS_DATA_FORK) {
1384 /* Remove all pending CoW reservations. */
1385 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1386 first_unmap_block, XFS_MAX_FILEOFF, true);
1387 if (error)
1388 goto out;
1389
1390 xfs_itruncate_clear_reflink_flags(ip);
1391 }
1392
1393 /*
1394 * Always re-log the inode so that our permanent transaction can keep
1395 * on rolling it forward in the log.
1396 */
1397 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1398
1399 trace_xfs_itruncate_extents_end(ip, new_size);
1400
1401 out:
1402 *tpp = tp;
1403 return error;
1404 }
1405
1406 int
1407 xfs_release(
1408 xfs_inode_t *ip)
1409 {
1410 xfs_mount_t *mp = ip->i_mount;
1411 int error = 0;
1412
1413 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1414 return 0;
1415
1416 /* If this is a read-only mount, don't do this (would generate I/O) */
1417 if (xfs_is_readonly(mp))
1418 return 0;
1419
1420 if (!xfs_is_shutdown(mp)) {
1421 int truncated;
1422
1423 /*
1424 * If we previously truncated this file and removed old data
1425 * in the process, we want to initiate "early" writeout on
1426 * the last close. This is an attempt to combat the notorious
1427 * NULL files problem which is particularly noticeable from a
1428 * truncate down, buffered (re-)write (delalloc), followed by
1429 * a crash. What we are effectively doing here is
1430 * significantly reducing the time window where we'd otherwise
1431 * be exposed to that problem.
1432 */
1433 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1434 if (truncated) {
1435 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1436 if (ip->i_delayed_blks > 0) {
1437 error = filemap_flush(VFS_I(ip)->i_mapping);
1438 if (error)
1439 return error;
1440 }
1441 }
1442 }
1443
1444 if (VFS_I(ip)->i_nlink == 0)
1445 return 0;
1446
1447 /*
1448 * If we can't get the iolock just skip truncating the blocks past EOF
1449 * because we could deadlock with the mmap_lock otherwise. We'll get
1450 * another chance to drop them once the last reference to the inode is
1451 * dropped, so we'll never leak blocks permanently.
1452 */
1453 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1454 return 0;
1455
1456 if (xfs_can_free_eofblocks(ip, false)) {
1457 /*
1458 * Check if the inode is being opened, written and closed
1459 * frequently and we have delayed allocation blocks outstanding
1460 * (e.g. streaming writes from the NFS server), truncating the
1461 * blocks past EOF will cause fragmentation to occur.
1462 *
1463 * In this case don't do the truncation, but we have to be
1464 * careful how we detect this case. Blocks beyond EOF show up as
1465 * i_delayed_blks even when the inode is clean, so we need to
1466 * truncate them away first before checking for a dirty release.
1467 * Hence on the first dirty close we will still remove the
1468 * speculative allocation, but after that we will leave it in
1469 * place.
1470 */
1471 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1472 goto out_unlock;
1473
1474 error = xfs_free_eofblocks(ip);
1475 if (error)
1476 goto out_unlock;
1477
1478 /* delalloc blocks after truncation means it really is dirty */
1479 if (ip->i_delayed_blks)
1480 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1481 }
1482
1483 out_unlock:
1484 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1485 return error;
1486 }
1487
1488 /*
1489 * xfs_inactive_truncate
1490 *
1491 * Called to perform a truncate when an inode becomes unlinked.
1492 */
1493 STATIC int
1494 xfs_inactive_truncate(
1495 struct xfs_inode *ip)
1496 {
1497 struct xfs_mount *mp = ip->i_mount;
1498 struct xfs_trans *tp;
1499 int error;
1500
1501 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1502 if (error) {
1503 ASSERT(xfs_is_shutdown(mp));
1504 return error;
1505 }
1506 xfs_ilock(ip, XFS_ILOCK_EXCL);
1507 xfs_trans_ijoin(tp, ip, 0);
1508
1509 /*
1510 * Log the inode size first to prevent stale data exposure in the event
1511 * of a system crash before the truncate completes. See the related
1512 * comment in xfs_vn_setattr_size() for details.
1513 */
1514 ip->i_disk_size = 0;
1515 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1516
1517 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1518 if (error)
1519 goto error_trans_cancel;
1520
1521 ASSERT(ip->i_df.if_nextents == 0);
1522
1523 error = xfs_trans_commit(tp);
1524 if (error)
1525 goto error_unlock;
1526
1527 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1528 return 0;
1529
1530 error_trans_cancel:
1531 xfs_trans_cancel(tp);
1532 error_unlock:
1533 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1534 return error;
1535 }
1536
1537 /*
1538 * xfs_inactive_ifree()
1539 *
1540 * Perform the inode free when an inode is unlinked.
1541 */
1542 STATIC int
1543 xfs_inactive_ifree(
1544 struct xfs_inode *ip)
1545 {
1546 struct xfs_mount *mp = ip->i_mount;
1547 struct xfs_trans *tp;
1548 int error;
1549
1550 /*
1551 * We try to use a per-AG reservation for any block needed by the finobt
1552 * tree, but as the finobt feature predates the per-AG reservation
1553 * support a degraded file system might not have enough space for the
1554 * reservation at mount time. In that case try to dip into the reserved
1555 * pool and pray.
1556 *
1557 * Send a warning if the reservation does happen to fail, as the inode
1558 * now remains allocated and sits on the unlinked list until the fs is
1559 * repaired.
1560 */
1561 if (unlikely(mp->m_finobt_nores)) {
1562 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1563 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1564 &tp);
1565 } else {
1566 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1567 }
1568 if (error) {
1569 if (error == -ENOSPC) {
1570 xfs_warn_ratelimited(mp,
1571 "Failed to remove inode(s) from unlinked list. "
1572 "Please free space, unmount and run xfs_repair.");
1573 } else {
1574 ASSERT(xfs_is_shutdown(mp));
1575 }
1576 return error;
1577 }
1578
1579 /*
1580 * We do not hold the inode locked across the entire rolling transaction
1581 * here. We only need to hold it for the first transaction that
1582 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1583 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1584 * here breaks the relationship between cluster buffer invalidation and
1585 * stale inode invalidation on cluster buffer item journal commit
1586 * completion, and can result in leaving dirty stale inodes hanging
1587 * around in memory.
1588 *
1589 * We have no need for serialising this inode operation against other
1590 * operations - we freed the inode and hence reallocation is required
1591 * and that will serialise on reallocating the space the deferops need
1592 * to free. Hence we can unlock the inode on the first commit of
1593 * the transaction rather than roll it right through the deferops. This
1594 * avoids relogging the XFS_ISTALE inode.
1595 *
1596 * We check that xfs_ifree() hasn't grown an internal transaction roll
1597 * by asserting that the inode is still locked when it returns.
1598 */
1599 xfs_ilock(ip, XFS_ILOCK_EXCL);
1600 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1601
1602 error = xfs_ifree(tp, ip);
1603 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1604 if (error) {
1605 /*
1606 * If we fail to free the inode, shut down. The cancel
1607 * might do that, we need to make sure. Otherwise the
1608 * inode might be lost for a long time or forever.
1609 */
1610 if (!xfs_is_shutdown(mp)) {
1611 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1612 __func__, error);
1613 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1614 }
1615 xfs_trans_cancel(tp);
1616 return error;
1617 }
1618
1619 /*
1620 * Credit the quota account(s). The inode is gone.
1621 */
1622 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1623
1624 /*
1625 * Just ignore errors at this point. There is nothing we can do except
1626 * to try to keep going. Make sure it's not a silent error.
1627 */
1628 error = xfs_trans_commit(tp);
1629 if (error)
1630 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1631 __func__, error);
1632
1633 return 0;
1634 }
1635
1636 /*
1637 * Returns true if we need to update the on-disk metadata before we can free
1638 * the memory used by this inode. Updates include freeing post-eof
1639 * preallocations; freeing COW staging extents; and marking the inode free in
1640 * the inobt if it is on the unlinked list.
1641 */
1642 bool
1643 xfs_inode_needs_inactive(
1644 struct xfs_inode *ip)
1645 {
1646 struct xfs_mount *mp = ip->i_mount;
1647 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1648
1649 /*
1650 * If the inode is already free, then there can be nothing
1651 * to clean up here.
1652 */
1653 if (VFS_I(ip)->i_mode == 0)
1654 return false;
1655
1656 /* If this is a read-only mount, don't do this (would generate I/O) */
1657 if (xfs_is_readonly(mp))
1658 return false;
1659
1660 /* If the log isn't running, push inodes straight to reclaim. */
1661 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1662 return false;
1663
1664 /* Metadata inodes require explicit resource cleanup. */
1665 if (xfs_is_metadata_inode(ip))
1666 return false;
1667
1668 /* Want to clean out the cow blocks if there are any. */
1669 if (cow_ifp && cow_ifp->if_bytes > 0)
1670 return true;
1671
1672 /* Unlinked files must be freed. */
1673 if (VFS_I(ip)->i_nlink == 0)
1674 return true;
1675
1676 /*
1677 * This file isn't being freed, so check if there are post-eof blocks
1678 * to free. @force is true because we are evicting an inode from the
1679 * cache. Post-eof blocks must be freed, lest we end up with broken
1680 * free space accounting.
1681 *
1682 * Note: don't bother with iolock here since lockdep complains about
1683 * acquiring it in reclaim context. We have the only reference to the
1684 * inode at this point anyways.
1685 */
1686 return xfs_can_free_eofblocks(ip, true);
1687 }
1688
1689 /*
1690 * xfs_inactive
1691 *
1692 * This is called when the vnode reference count for the vnode
1693 * goes to zero. If the file has been unlinked, then it must
1694 * now be truncated. Also, we clear all of the read-ahead state
1695 * kept for the inode here since the file is now closed.
1696 */
1697 void
1698 xfs_inactive(
1699 xfs_inode_t *ip)
1700 {
1701 struct xfs_mount *mp;
1702 int error;
1703 int truncate = 0;
1704
1705 /*
1706 * If the inode is already free, then there can be nothing
1707 * to clean up here.
1708 */
1709 if (VFS_I(ip)->i_mode == 0) {
1710 ASSERT(ip->i_df.if_broot_bytes == 0);
1711 goto out;
1712 }
1713
1714 mp = ip->i_mount;
1715 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1716
1717 /* If this is a read-only mount, don't do this (would generate I/O) */
1718 if (xfs_is_readonly(mp))
1719 goto out;
1720
1721 /* Metadata inodes require explicit resource cleanup. */
1722 if (xfs_is_metadata_inode(ip))
1723 goto out;
1724
1725 /* Try to clean out the cow blocks if there are any. */
1726 if (xfs_inode_has_cow_data(ip))
1727 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1728
1729 if (VFS_I(ip)->i_nlink != 0) {
1730 /*
1731 * force is true because we are evicting an inode from the
1732 * cache. Post-eof blocks must be freed, lest we end up with
1733 * broken free space accounting.
1734 *
1735 * Note: don't bother with iolock here since lockdep complains
1736 * about acquiring it in reclaim context. We have the only
1737 * reference to the inode at this point anyways.
1738 */
1739 if (xfs_can_free_eofblocks(ip, true))
1740 xfs_free_eofblocks(ip);
1741
1742 goto out;
1743 }
1744
1745 if (S_ISREG(VFS_I(ip)->i_mode) &&
1746 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1747 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1748 truncate = 1;
1749
1750 error = xfs_qm_dqattach(ip);
1751 if (error)
1752 goto out;
1753
1754 if (S_ISLNK(VFS_I(ip)->i_mode))
1755 error = xfs_inactive_symlink(ip);
1756 else if (truncate)
1757 error = xfs_inactive_truncate(ip);
1758 if (error)
1759 goto out;
1760
1761 /*
1762 * If there are attributes associated with the file then blow them away
1763 * now. The code calls a routine that recursively deconstructs the
1764 * attribute fork. If also blows away the in-core attribute fork.
1765 */
1766 if (xfs_inode_has_attr_fork(ip)) {
1767 error = xfs_attr_inactive(ip);
1768 if (error)
1769 goto out;
1770 }
1771
1772 ASSERT(ip->i_forkoff == 0);
1773
1774 /*
1775 * Free the inode.
1776 */
1777 xfs_inactive_ifree(ip);
1778
1779 out:
1780 /*
1781 * We're done making metadata updates for this inode, so we can release
1782 * the attached dquots.
1783 */
1784 xfs_qm_dqdetach(ip);
1785 }
1786
1787 /*
1788 * In-Core Unlinked List Lookups
1789 * =============================
1790 *
1791 * Every inode is supposed to be reachable from some other piece of metadata
1792 * with the exception of the root directory. Inodes with a connection to a
1793 * file descriptor but not linked from anywhere in the on-disk directory tree
1794 * are collectively known as unlinked inodes, though the filesystem itself
1795 * maintains links to these inodes so that on-disk metadata are consistent.
1796 *
1797 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1798 * header contains a number of buckets that point to an inode, and each inode
1799 * record has a pointer to the next inode in the hash chain. This
1800 * singly-linked list causes scaling problems in the iunlink remove function
1801 * because we must walk that list to find the inode that points to the inode
1802 * being removed from the unlinked hash bucket list.
1803 *
1804 * Hence we keep an in-memory double linked list to link each inode on an
1805 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1806 * based lists would require having 64 list heads in the perag, one for each
1807 * list. This is expensive in terms of memory (think millions of AGs) and cache
1808 * misses on lookups. Instead, use the fact that inodes on the unlinked list
1809 * must be referenced at the VFS level to keep them on the list and hence we
1810 * have an existence guarantee for inodes on the unlinked list.
1811 *
1812 * Given we have an existence guarantee, we can use lockless inode cache lookups
1813 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1814 * for the double linked unlinked list, and we don't need any extra locking to
1815 * keep the list safe as all manipulations are done under the AGI buffer lock.
1816 * Keeping the list up to date does not require memory allocation, just finding
1817 * the XFS inode and updating the next/prev unlinked list aginos.
1818 */
1819
1820 /*
1821 * Find an inode on the unlinked list. This does not take references to the
1822 * inode as we have existence guarantees by holding the AGI buffer lock and that
1823 * only unlinked, referenced inodes can be on the unlinked inode list. If we
1824 * don't find the inode in cache, then let the caller handle the situation.
1825 */
1826 static struct xfs_inode *
1827 xfs_iunlink_lookup(
1828 struct xfs_perag *pag,
1829 xfs_agino_t agino)
1830 {
1831 struct xfs_inode *ip;
1832
1833 rcu_read_lock();
1834 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1835
1836 /*
1837 * Inode not in memory or in RCU freeing limbo should not happen.
1838 * Warn about this and let the caller handle the failure.
1839 */
1840 if (WARN_ON_ONCE(!ip || !ip->i_ino)) {
1841 rcu_read_unlock();
1842 return NULL;
1843 }
1844 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1845 rcu_read_unlock();
1846 return ip;
1847 }
1848
1849 /* Update the prev pointer of the next agino. */
1850 static int
1851 xfs_iunlink_update_backref(
1852 struct xfs_perag *pag,
1853 xfs_agino_t prev_agino,
1854 xfs_agino_t next_agino)
1855 {
1856 struct xfs_inode *ip;
1857
1858 /* No update necessary if we are at the end of the list. */
1859 if (next_agino == NULLAGINO)
1860 return 0;
1861
1862 ip = xfs_iunlink_lookup(pag, next_agino);
1863 if (!ip)
1864 return -EFSCORRUPTED;
1865 ip->i_prev_unlinked = prev_agino;
1866 return 0;
1867 }
1868
1869 /*
1870 * Point the AGI unlinked bucket at an inode and log the results. The caller
1871 * is responsible for validating the old value.
1872 */
1873 STATIC int
1874 xfs_iunlink_update_bucket(
1875 struct xfs_trans *tp,
1876 struct xfs_perag *pag,
1877 struct xfs_buf *agibp,
1878 unsigned int bucket_index,
1879 xfs_agino_t new_agino)
1880 {
1881 struct xfs_agi *agi = agibp->b_addr;
1882 xfs_agino_t old_value;
1883 int offset;
1884
1885 ASSERT(xfs_verify_agino_or_null(pag, new_agino));
1886
1887 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1888 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1889 old_value, new_agino);
1890
1891 /*
1892 * We should never find the head of the list already set to the value
1893 * passed in because either we're adding or removing ourselves from the
1894 * head of the list.
1895 */
1896 if (old_value == new_agino) {
1897 xfs_buf_mark_corrupt(agibp);
1898 return -EFSCORRUPTED;
1899 }
1900
1901 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1902 offset = offsetof(struct xfs_agi, agi_unlinked) +
1903 (sizeof(xfs_agino_t) * bucket_index);
1904 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
1905 return 0;
1906 }
1907
1908 static int
1909 xfs_iunlink_insert_inode(
1910 struct xfs_trans *tp,
1911 struct xfs_perag *pag,
1912 struct xfs_buf *agibp,
1913 struct xfs_inode *ip)
1914 {
1915 struct xfs_mount *mp = tp->t_mountp;
1916 struct xfs_agi *agi = agibp->b_addr;
1917 xfs_agino_t next_agino;
1918 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1919 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1920 int error;
1921
1922 /*
1923 * Get the index into the agi hash table for the list this inode will
1924 * go on. Make sure the pointer isn't garbage and that this inode
1925 * isn't already on the list.
1926 */
1927 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1928 if (next_agino == agino ||
1929 !xfs_verify_agino_or_null(pag, next_agino)) {
1930 xfs_buf_mark_corrupt(agibp);
1931 return -EFSCORRUPTED;
1932 }
1933
1934 /*
1935 * Update the prev pointer in the next inode to point back to this
1936 * inode.
1937 */
1938 error = xfs_iunlink_update_backref(pag, agino, next_agino);
1939 if (error)
1940 return error;
1941
1942 if (next_agino != NULLAGINO) {
1943 /*
1944 * There is already another inode in the bucket, so point this
1945 * inode to the current head of the list.
1946 */
1947 error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
1948 if (error)
1949 return error;
1950 ip->i_next_unlinked = next_agino;
1951 }
1952
1953 /* Point the head of the list to point to this inode. */
1954 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
1955 }
1956
1957 /*
1958 * This is called when the inode's link count has gone to 0 or we are creating
1959 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
1960 *
1961 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1962 * list when the inode is freed.
1963 */
1964 STATIC int
1965 xfs_iunlink(
1966 struct xfs_trans *tp,
1967 struct xfs_inode *ip)
1968 {
1969 struct xfs_mount *mp = tp->t_mountp;
1970 struct xfs_perag *pag;
1971 struct xfs_buf *agibp;
1972 int error;
1973
1974 ASSERT(VFS_I(ip)->i_nlink == 0);
1975 ASSERT(VFS_I(ip)->i_mode != 0);
1976 trace_xfs_iunlink(ip);
1977
1978 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1979
1980 /* Get the agi buffer first. It ensures lock ordering on the list. */
1981 error = xfs_read_agi(pag, tp, &agibp);
1982 if (error)
1983 goto out;
1984
1985 error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
1986 out:
1987 xfs_perag_put(pag);
1988 return error;
1989 }
1990
1991 static int
1992 xfs_iunlink_remove_inode(
1993 struct xfs_trans *tp,
1994 struct xfs_perag *pag,
1995 struct xfs_buf *agibp,
1996 struct xfs_inode *ip)
1997 {
1998 struct xfs_mount *mp = tp->t_mountp;
1999 struct xfs_agi *agi = agibp->b_addr;
2000 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2001 xfs_agino_t head_agino;
2002 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2003 int error;
2004
2005 trace_xfs_iunlink_remove(ip);
2006
2007 /*
2008 * Get the index into the agi hash table for the list this inode will
2009 * go on. Make sure the head pointer isn't garbage.
2010 */
2011 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2012 if (!xfs_verify_agino(pag, head_agino)) {
2013 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2014 agi, sizeof(*agi));
2015 return -EFSCORRUPTED;
2016 }
2017
2018 /*
2019 * Set our inode's next_unlinked pointer to NULL and then return
2020 * the old pointer value so that we can update whatever was previous
2021 * to us in the list to point to whatever was next in the list.
2022 */
2023 error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2024 if (error)
2025 return error;
2026
2027 /*
2028 * Update the prev pointer in the next inode to point back to previous
2029 * inode in the chain.
2030 */
2031 error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2032 ip->i_next_unlinked);
2033 if (error)
2034 return error;
2035
2036 if (head_agino != agino) {
2037 struct xfs_inode *prev_ip;
2038
2039 prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2040 if (!prev_ip)
2041 return -EFSCORRUPTED;
2042
2043 error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2044 ip->i_next_unlinked);
2045 prev_ip->i_next_unlinked = ip->i_next_unlinked;
2046 } else {
2047 /* Point the head of the list to the next unlinked inode. */
2048 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2049 ip->i_next_unlinked);
2050 }
2051
2052 ip->i_next_unlinked = NULLAGINO;
2053 ip->i_prev_unlinked = NULLAGINO;
2054 return error;
2055 }
2056
2057 /*
2058 * Pull the on-disk inode from the AGI unlinked list.
2059 */
2060 STATIC int
2061 xfs_iunlink_remove(
2062 struct xfs_trans *tp,
2063 struct xfs_perag *pag,
2064 struct xfs_inode *ip)
2065 {
2066 struct xfs_buf *agibp;
2067 int error;
2068
2069 trace_xfs_iunlink_remove(ip);
2070
2071 /* Get the agi buffer first. It ensures lock ordering on the list. */
2072 error = xfs_read_agi(pag, tp, &agibp);
2073 if (error)
2074 return error;
2075
2076 return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2077 }
2078
2079 /*
2080 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2081 * mark it stale. We should only find clean inodes in this lookup that aren't
2082 * already stale.
2083 */
2084 static void
2085 xfs_ifree_mark_inode_stale(
2086 struct xfs_perag *pag,
2087 struct xfs_inode *free_ip,
2088 xfs_ino_t inum)
2089 {
2090 struct xfs_mount *mp = pag->pag_mount;
2091 struct xfs_inode_log_item *iip;
2092 struct xfs_inode *ip;
2093
2094 retry:
2095 rcu_read_lock();
2096 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2097
2098 /* Inode not in memory, nothing to do */
2099 if (!ip) {
2100 rcu_read_unlock();
2101 return;
2102 }
2103
2104 /*
2105 * because this is an RCU protected lookup, we could find a recently
2106 * freed or even reallocated inode during the lookup. We need to check
2107 * under the i_flags_lock for a valid inode here. Skip it if it is not
2108 * valid, the wrong inode or stale.
2109 */
2110 spin_lock(&ip->i_flags_lock);
2111 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2112 goto out_iflags_unlock;
2113
2114 /*
2115 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2116 * other inodes that we did not find in the list attached to the buffer
2117 * and are not already marked stale. If we can't lock it, back off and
2118 * retry.
2119 */
2120 if (ip != free_ip) {
2121 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2122 spin_unlock(&ip->i_flags_lock);
2123 rcu_read_unlock();
2124 delay(1);
2125 goto retry;
2126 }
2127 }
2128 ip->i_flags |= XFS_ISTALE;
2129
2130 /*
2131 * If the inode is flushing, it is already attached to the buffer. All
2132 * we needed to do here is mark the inode stale so buffer IO completion
2133 * will remove it from the AIL.
2134 */
2135 iip = ip->i_itemp;
2136 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2137 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2138 ASSERT(iip->ili_last_fields);
2139 goto out_iunlock;
2140 }
2141
2142 /*
2143 * Inodes not attached to the buffer can be released immediately.
2144 * Everything else has to go through xfs_iflush_abort() on journal
2145 * commit as the flock synchronises removal of the inode from the
2146 * cluster buffer against inode reclaim.
2147 */
2148 if (!iip || list_empty(&iip->ili_item.li_bio_list))
2149 goto out_iunlock;
2150
2151 __xfs_iflags_set(ip, XFS_IFLUSHING);
2152 spin_unlock(&ip->i_flags_lock);
2153 rcu_read_unlock();
2154
2155 /* we have a dirty inode in memory that has not yet been flushed. */
2156 spin_lock(&iip->ili_lock);
2157 iip->ili_last_fields = iip->ili_fields;
2158 iip->ili_fields = 0;
2159 iip->ili_fsync_fields = 0;
2160 spin_unlock(&iip->ili_lock);
2161 ASSERT(iip->ili_last_fields);
2162
2163 if (ip != free_ip)
2164 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2165 return;
2166
2167 out_iunlock:
2168 if (ip != free_ip)
2169 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2170 out_iflags_unlock:
2171 spin_unlock(&ip->i_flags_lock);
2172 rcu_read_unlock();
2173 }
2174
2175 /*
2176 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2177 * inodes that are in memory - they all must be marked stale and attached to
2178 * the cluster buffer.
2179 */
2180 static int
2181 xfs_ifree_cluster(
2182 struct xfs_trans *tp,
2183 struct xfs_perag *pag,
2184 struct xfs_inode *free_ip,
2185 struct xfs_icluster *xic)
2186 {
2187 struct xfs_mount *mp = free_ip->i_mount;
2188 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2189 struct xfs_buf *bp;
2190 xfs_daddr_t blkno;
2191 xfs_ino_t inum = xic->first_ino;
2192 int nbufs;
2193 int i, j;
2194 int ioffset;
2195 int error;
2196
2197 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2198
2199 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2200 /*
2201 * The allocation bitmap tells us which inodes of the chunk were
2202 * physically allocated. Skip the cluster if an inode falls into
2203 * a sparse region.
2204 */
2205 ioffset = inum - xic->first_ino;
2206 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2207 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2208 continue;
2209 }
2210
2211 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2212 XFS_INO_TO_AGBNO(mp, inum));
2213
2214 /*
2215 * We obtain and lock the backing buffer first in the process
2216 * here to ensure dirty inodes attached to the buffer remain in
2217 * the flushing state while we mark them stale.
2218 *
2219 * If we scan the in-memory inodes first, then buffer IO can
2220 * complete before we get a lock on it, and hence we may fail
2221 * to mark all the active inodes on the buffer stale.
2222 */
2223 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2224 mp->m_bsize * igeo->blocks_per_cluster,
2225 XBF_UNMAPPED, &bp);
2226 if (error)
2227 return error;
2228
2229 /*
2230 * This buffer may not have been correctly initialised as we
2231 * didn't read it from disk. That's not important because we are
2232 * only using to mark the buffer as stale in the log, and to
2233 * attach stale cached inodes on it. That means it will never be
2234 * dispatched for IO. If it is, we want to know about it, and we
2235 * want it to fail. We can acheive this by adding a write
2236 * verifier to the buffer.
2237 */
2238 bp->b_ops = &xfs_inode_buf_ops;
2239
2240 /*
2241 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2242 * too. This requires lookups, and will skip inodes that we've
2243 * already marked XFS_ISTALE.
2244 */
2245 for (i = 0; i < igeo->inodes_per_cluster; i++)
2246 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2247
2248 xfs_trans_stale_inode_buf(tp, bp);
2249 xfs_trans_binval(tp, bp);
2250 }
2251 return 0;
2252 }
2253
2254 /*
2255 * This is called to return an inode to the inode free list. The inode should
2256 * already be truncated to 0 length and have no pages associated with it. This
2257 * routine also assumes that the inode is already a part of the transaction.
2258 *
2259 * The on-disk copy of the inode will have been added to the list of unlinked
2260 * inodes in the AGI. We need to remove the inode from that list atomically with
2261 * respect to freeing it here.
2262 */
2263 int
2264 xfs_ifree(
2265 struct xfs_trans *tp,
2266 struct xfs_inode *ip)
2267 {
2268 struct xfs_mount *mp = ip->i_mount;
2269 struct xfs_perag *pag;
2270 struct xfs_icluster xic = { 0 };
2271 struct xfs_inode_log_item *iip = ip->i_itemp;
2272 int error;
2273
2274 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2275 ASSERT(VFS_I(ip)->i_nlink == 0);
2276 ASSERT(ip->i_df.if_nextents == 0);
2277 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2278 ASSERT(ip->i_nblocks == 0);
2279
2280 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2281
2282 /*
2283 * Free the inode first so that we guarantee that the AGI lock is going
2284 * to be taken before we remove the inode from the unlinked list. This
2285 * makes the AGI lock -> unlinked list modification order the same as
2286 * used in O_TMPFILE creation.
2287 */
2288 error = xfs_difree(tp, pag, ip->i_ino, &xic);
2289 if (error)
2290 goto out;
2291
2292 error = xfs_iunlink_remove(tp, pag, ip);
2293 if (error)
2294 goto out;
2295
2296 /*
2297 * Free any local-format data sitting around before we reset the
2298 * data fork to extents format. Note that the attr fork data has
2299 * already been freed by xfs_attr_inactive.
2300 */
2301 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2302 kmem_free(ip->i_df.if_u1.if_data);
2303 ip->i_df.if_u1.if_data = NULL;
2304 ip->i_df.if_bytes = 0;
2305 }
2306
2307 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2308 ip->i_diflags = 0;
2309 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2310 ip->i_forkoff = 0; /* mark the attr fork not in use */
2311 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2312 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2313 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2314
2315 /* Don't attempt to replay owner changes for a deleted inode */
2316 spin_lock(&iip->ili_lock);
2317 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2318 spin_unlock(&iip->ili_lock);
2319
2320 /*
2321 * Bump the generation count so no one will be confused
2322 * by reincarnations of this inode.
2323 */
2324 VFS_I(ip)->i_generation++;
2325 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2326
2327 if (xic.deleted)
2328 error = xfs_ifree_cluster(tp, pag, ip, &xic);
2329 out:
2330 xfs_perag_put(pag);
2331 return error;
2332 }
2333
2334 /*
2335 * This is called to unpin an inode. The caller must have the inode locked
2336 * in at least shared mode so that the buffer cannot be subsequently pinned
2337 * once someone is waiting for it to be unpinned.
2338 */
2339 static void
2340 xfs_iunpin(
2341 struct xfs_inode *ip)
2342 {
2343 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2344
2345 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2346
2347 /* Give the log a push to start the unpinning I/O */
2348 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2349
2350 }
2351
2352 static void
2353 __xfs_iunpin_wait(
2354 struct xfs_inode *ip)
2355 {
2356 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2357 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2358
2359 xfs_iunpin(ip);
2360
2361 do {
2362 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2363 if (xfs_ipincount(ip))
2364 io_schedule();
2365 } while (xfs_ipincount(ip));
2366 finish_wait(wq, &wait.wq_entry);
2367 }
2368
2369 void
2370 xfs_iunpin_wait(
2371 struct xfs_inode *ip)
2372 {
2373 if (xfs_ipincount(ip))
2374 __xfs_iunpin_wait(ip);
2375 }
2376
2377 /*
2378 * Removing an inode from the namespace involves removing the directory entry
2379 * and dropping the link count on the inode. Removing the directory entry can
2380 * result in locking an AGF (directory blocks were freed) and removing a link
2381 * count can result in placing the inode on an unlinked list which results in
2382 * locking an AGI.
2383 *
2384 * The big problem here is that we have an ordering constraint on AGF and AGI
2385 * locking - inode allocation locks the AGI, then can allocate a new extent for
2386 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2387 * removes the inode from the unlinked list, requiring that we lock the AGI
2388 * first, and then freeing the inode can result in an inode chunk being freed
2389 * and hence freeing disk space requiring that we lock an AGF.
2390 *
2391 * Hence the ordering that is imposed by other parts of the code is AGI before
2392 * AGF. This means we cannot remove the directory entry before we drop the inode
2393 * reference count and put it on the unlinked list as this results in a lock
2394 * order of AGF then AGI, and this can deadlock against inode allocation and
2395 * freeing. Therefore we must drop the link counts before we remove the
2396 * directory entry.
2397 *
2398 * This is still safe from a transactional point of view - it is not until we
2399 * get to xfs_defer_finish() that we have the possibility of multiple
2400 * transactions in this operation. Hence as long as we remove the directory
2401 * entry and drop the link count in the first transaction of the remove
2402 * operation, there are no transactional constraints on the ordering here.
2403 */
2404 int
2405 xfs_remove(
2406 xfs_inode_t *dp,
2407 struct xfs_name *name,
2408 xfs_inode_t *ip)
2409 {
2410 xfs_mount_t *mp = dp->i_mount;
2411 xfs_trans_t *tp = NULL;
2412 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2413 int dontcare;
2414 int error = 0;
2415 uint resblks;
2416
2417 trace_xfs_remove(dp, name);
2418
2419 if (xfs_is_shutdown(mp))
2420 return -EIO;
2421
2422 error = xfs_qm_dqattach(dp);
2423 if (error)
2424 goto std_return;
2425
2426 error = xfs_qm_dqattach(ip);
2427 if (error)
2428 goto std_return;
2429
2430 /*
2431 * We try to get the real space reservation first, allowing for
2432 * directory btree deletion(s) implying possible bmap insert(s). If we
2433 * can't get the space reservation then we use 0 instead, and avoid the
2434 * bmap btree insert(s) in the directory code by, if the bmap insert
2435 * tries to happen, instead trimming the LAST block from the directory.
2436 *
2437 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2438 * the directory code can handle a reservationless update and we don't
2439 * want to prevent a user from trying to free space by deleting things.
2440 */
2441 resblks = XFS_REMOVE_SPACE_RES(mp);
2442 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2443 &tp, &dontcare);
2444 if (error) {
2445 ASSERT(error != -ENOSPC);
2446 goto std_return;
2447 }
2448
2449 /*
2450 * If we're removing a directory perform some additional validation.
2451 */
2452 if (is_dir) {
2453 ASSERT(VFS_I(ip)->i_nlink >= 2);
2454 if (VFS_I(ip)->i_nlink != 2) {
2455 error = -ENOTEMPTY;
2456 goto out_trans_cancel;
2457 }
2458 if (!xfs_dir_isempty(ip)) {
2459 error = -ENOTEMPTY;
2460 goto out_trans_cancel;
2461 }
2462
2463 /* Drop the link from ip's "..". */
2464 error = xfs_droplink(tp, dp);
2465 if (error)
2466 goto out_trans_cancel;
2467
2468 /* Drop the "." link from ip to self. */
2469 error = xfs_droplink(tp, ip);
2470 if (error)
2471 goto out_trans_cancel;
2472
2473 /*
2474 * Point the unlinked child directory's ".." entry to the root
2475 * directory to eliminate back-references to inodes that may
2476 * get freed before the child directory is closed. If the fs
2477 * gets shrunk, this can lead to dirent inode validation errors.
2478 */
2479 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2480 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2481 tp->t_mountp->m_sb.sb_rootino, 0);
2482 if (error)
2483 return error;
2484 }
2485 } else {
2486 /*
2487 * When removing a non-directory we need to log the parent
2488 * inode here. For a directory this is done implicitly
2489 * by the xfs_droplink call for the ".." entry.
2490 */
2491 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2492 }
2493 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2494
2495 /* Drop the link from dp to ip. */
2496 error = xfs_droplink(tp, ip);
2497 if (error)
2498 goto out_trans_cancel;
2499
2500 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2501 if (error) {
2502 ASSERT(error != -ENOENT);
2503 goto out_trans_cancel;
2504 }
2505
2506 /*
2507 * If this is a synchronous mount, make sure that the
2508 * remove transaction goes to disk before returning to
2509 * the user.
2510 */
2511 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2512 xfs_trans_set_sync(tp);
2513
2514 error = xfs_trans_commit(tp);
2515 if (error)
2516 goto std_return;
2517
2518 if (is_dir && xfs_inode_is_filestream(ip))
2519 xfs_filestream_deassociate(ip);
2520
2521 return 0;
2522
2523 out_trans_cancel:
2524 xfs_trans_cancel(tp);
2525 std_return:
2526 return error;
2527 }
2528
2529 /*
2530 * Enter all inodes for a rename transaction into a sorted array.
2531 */
2532 #define __XFS_SORT_INODES 5
2533 STATIC void
2534 xfs_sort_for_rename(
2535 struct xfs_inode *dp1, /* in: old (source) directory inode */
2536 struct xfs_inode *dp2, /* in: new (target) directory inode */
2537 struct xfs_inode *ip1, /* in: inode of old entry */
2538 struct xfs_inode *ip2, /* in: inode of new entry */
2539 struct xfs_inode *wip, /* in: whiteout inode */
2540 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2541 int *num_inodes) /* in/out: inodes in array */
2542 {
2543 int i, j;
2544
2545 ASSERT(*num_inodes == __XFS_SORT_INODES);
2546 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2547
2548 /*
2549 * i_tab contains a list of pointers to inodes. We initialize
2550 * the table here & we'll sort it. We will then use it to
2551 * order the acquisition of the inode locks.
2552 *
2553 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2554 */
2555 i = 0;
2556 i_tab[i++] = dp1;
2557 i_tab[i++] = dp2;
2558 i_tab[i++] = ip1;
2559 if (ip2)
2560 i_tab[i++] = ip2;
2561 if (wip)
2562 i_tab[i++] = wip;
2563 *num_inodes = i;
2564
2565 /*
2566 * Sort the elements via bubble sort. (Remember, there are at
2567 * most 5 elements to sort, so this is adequate.)
2568 */
2569 for (i = 0; i < *num_inodes; i++) {
2570 for (j = 1; j < *num_inodes; j++) {
2571 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2572 struct xfs_inode *temp = i_tab[j];
2573 i_tab[j] = i_tab[j-1];
2574 i_tab[j-1] = temp;
2575 }
2576 }
2577 }
2578 }
2579
2580 static int
2581 xfs_finish_rename(
2582 struct xfs_trans *tp)
2583 {
2584 /*
2585 * If this is a synchronous mount, make sure that the rename transaction
2586 * goes to disk before returning to the user.
2587 */
2588 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2589 xfs_trans_set_sync(tp);
2590
2591 return xfs_trans_commit(tp);
2592 }
2593
2594 /*
2595 * xfs_cross_rename()
2596 *
2597 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2598 */
2599 STATIC int
2600 xfs_cross_rename(
2601 struct xfs_trans *tp,
2602 struct xfs_inode *dp1,
2603 struct xfs_name *name1,
2604 struct xfs_inode *ip1,
2605 struct xfs_inode *dp2,
2606 struct xfs_name *name2,
2607 struct xfs_inode *ip2,
2608 int spaceres)
2609 {
2610 int error = 0;
2611 int ip1_flags = 0;
2612 int ip2_flags = 0;
2613 int dp2_flags = 0;
2614
2615 /* Swap inode number for dirent in first parent */
2616 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2617 if (error)
2618 goto out_trans_abort;
2619
2620 /* Swap inode number for dirent in second parent */
2621 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2622 if (error)
2623 goto out_trans_abort;
2624
2625 /*
2626 * If we're renaming one or more directories across different parents,
2627 * update the respective ".." entries (and link counts) to match the new
2628 * parents.
2629 */
2630 if (dp1 != dp2) {
2631 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2632
2633 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2634 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2635 dp1->i_ino, spaceres);
2636 if (error)
2637 goto out_trans_abort;
2638
2639 /* transfer ip2 ".." reference to dp1 */
2640 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2641 error = xfs_droplink(tp, dp2);
2642 if (error)
2643 goto out_trans_abort;
2644 xfs_bumplink(tp, dp1);
2645 }
2646
2647 /*
2648 * Although ip1 isn't changed here, userspace needs
2649 * to be warned about the change, so that applications
2650 * relying on it (like backup ones), will properly
2651 * notify the change
2652 */
2653 ip1_flags |= XFS_ICHGTIME_CHG;
2654 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2655 }
2656
2657 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2658 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2659 dp2->i_ino, spaceres);
2660 if (error)
2661 goto out_trans_abort;
2662
2663 /* transfer ip1 ".." reference to dp2 */
2664 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2665 error = xfs_droplink(tp, dp1);
2666 if (error)
2667 goto out_trans_abort;
2668 xfs_bumplink(tp, dp2);
2669 }
2670
2671 /*
2672 * Although ip2 isn't changed here, userspace needs
2673 * to be warned about the change, so that applications
2674 * relying on it (like backup ones), will properly
2675 * notify the change
2676 */
2677 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2678 ip2_flags |= XFS_ICHGTIME_CHG;
2679 }
2680 }
2681
2682 if (ip1_flags) {
2683 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2684 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2685 }
2686 if (ip2_flags) {
2687 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2688 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2689 }
2690 if (dp2_flags) {
2691 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2692 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2693 }
2694 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2695 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2696 return xfs_finish_rename(tp);
2697
2698 out_trans_abort:
2699 xfs_trans_cancel(tp);
2700 return error;
2701 }
2702
2703 /*
2704 * xfs_rename_alloc_whiteout()
2705 *
2706 * Return a referenced, unlinked, unlocked inode that can be used as a
2707 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2708 * crash between allocating the inode and linking it into the rename transaction
2709 * recovery will free the inode and we won't leak it.
2710 */
2711 static int
2712 xfs_rename_alloc_whiteout(
2713 struct user_namespace *mnt_userns,
2714 struct xfs_name *src_name,
2715 struct xfs_inode *dp,
2716 struct xfs_inode **wip)
2717 {
2718 struct xfs_inode *tmpfile;
2719 struct qstr name;
2720 int error;
2721
2722 error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
2723 &tmpfile);
2724 if (error)
2725 return error;
2726
2727 name.name = src_name->name;
2728 name.len = src_name->len;
2729 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2730 if (error) {
2731 xfs_finish_inode_setup(tmpfile);
2732 xfs_irele(tmpfile);
2733 return error;
2734 }
2735
2736 /*
2737 * Prepare the tmpfile inode as if it were created through the VFS.
2738 * Complete the inode setup and flag it as linkable. nlink is already
2739 * zero, so we can skip the drop_nlink.
2740 */
2741 xfs_setup_iops(tmpfile);
2742 xfs_finish_inode_setup(tmpfile);
2743 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2744
2745 *wip = tmpfile;
2746 return 0;
2747 }
2748
2749 /*
2750 * xfs_rename
2751 */
2752 int
2753 xfs_rename(
2754 struct user_namespace *mnt_userns,
2755 struct xfs_inode *src_dp,
2756 struct xfs_name *src_name,
2757 struct xfs_inode *src_ip,
2758 struct xfs_inode *target_dp,
2759 struct xfs_name *target_name,
2760 struct xfs_inode *target_ip,
2761 unsigned int flags)
2762 {
2763 struct xfs_mount *mp = src_dp->i_mount;
2764 struct xfs_trans *tp;
2765 struct xfs_inode *wip = NULL; /* whiteout inode */
2766 struct xfs_inode *inodes[__XFS_SORT_INODES];
2767 int i;
2768 int num_inodes = __XFS_SORT_INODES;
2769 bool new_parent = (src_dp != target_dp);
2770 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2771 int spaceres;
2772 bool retried = false;
2773 int error, nospace_error = 0;
2774
2775 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2776
2777 if ((flags & RENAME_EXCHANGE) && !target_ip)
2778 return -EINVAL;
2779
2780 /*
2781 * If we are doing a whiteout operation, allocate the whiteout inode
2782 * we will be placing at the target and ensure the type is set
2783 * appropriately.
2784 */
2785 if (flags & RENAME_WHITEOUT) {
2786 error = xfs_rename_alloc_whiteout(mnt_userns, src_name,
2787 target_dp, &wip);
2788 if (error)
2789 return error;
2790
2791 /* setup target dirent info as whiteout */
2792 src_name->type = XFS_DIR3_FT_CHRDEV;
2793 }
2794
2795 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2796 inodes, &num_inodes);
2797
2798 retry:
2799 nospace_error = 0;
2800 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2801 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2802 if (error == -ENOSPC) {
2803 nospace_error = error;
2804 spaceres = 0;
2805 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2806 &tp);
2807 }
2808 if (error)
2809 goto out_release_wip;
2810
2811 /*
2812 * Attach the dquots to the inodes
2813 */
2814 error = xfs_qm_vop_rename_dqattach(inodes);
2815 if (error)
2816 goto out_trans_cancel;
2817
2818 /*
2819 * Lock all the participating inodes. Depending upon whether
2820 * the target_name exists in the target directory, and
2821 * whether the target directory is the same as the source
2822 * directory, we can lock from 2 to 4 inodes.
2823 */
2824 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2825
2826 /*
2827 * Join all the inodes to the transaction. From this point on,
2828 * we can rely on either trans_commit or trans_cancel to unlock
2829 * them.
2830 */
2831 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2832 if (new_parent)
2833 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2834 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2835 if (target_ip)
2836 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2837 if (wip)
2838 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2839
2840 /*
2841 * If we are using project inheritance, we only allow renames
2842 * into our tree when the project IDs are the same; else the
2843 * tree quota mechanism would be circumvented.
2844 */
2845 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2846 target_dp->i_projid != src_ip->i_projid)) {
2847 error = -EXDEV;
2848 goto out_trans_cancel;
2849 }
2850
2851 /* RENAME_EXCHANGE is unique from here on. */
2852 if (flags & RENAME_EXCHANGE)
2853 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2854 target_dp, target_name, target_ip,
2855 spaceres);
2856
2857 /*
2858 * Try to reserve quota to handle an expansion of the target directory.
2859 * We'll allow the rename to continue in reservationless mode if we hit
2860 * a space usage constraint. If we trigger reservationless mode, save
2861 * the errno if there isn't any free space in the target directory.
2862 */
2863 if (spaceres != 0) {
2864 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2865 0, false);
2866 if (error == -EDQUOT || error == -ENOSPC) {
2867 if (!retried) {
2868 xfs_trans_cancel(tp);
2869 xfs_blockgc_free_quota(target_dp, 0);
2870 retried = true;
2871 goto retry;
2872 }
2873
2874 nospace_error = error;
2875 spaceres = 0;
2876 error = 0;
2877 }
2878 if (error)
2879 goto out_trans_cancel;
2880 }
2881
2882 /*
2883 * Check for expected errors before we dirty the transaction
2884 * so we can return an error without a transaction abort.
2885 */
2886 if (target_ip == NULL) {
2887 /*
2888 * If there's no space reservation, check the entry will
2889 * fit before actually inserting it.
2890 */
2891 if (!spaceres) {
2892 error = xfs_dir_canenter(tp, target_dp, target_name);
2893 if (error)
2894 goto out_trans_cancel;
2895 }
2896 } else {
2897 /*
2898 * If target exists and it's a directory, check that whether
2899 * it can be destroyed.
2900 */
2901 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
2902 (!xfs_dir_isempty(target_ip) ||
2903 (VFS_I(target_ip)->i_nlink > 2))) {
2904 error = -EEXIST;
2905 goto out_trans_cancel;
2906 }
2907 }
2908
2909 /*
2910 * Lock the AGI buffers we need to handle bumping the nlink of the
2911 * whiteout inode off the unlinked list and to handle dropping the
2912 * nlink of the target inode. Per locking order rules, do this in
2913 * increasing AG order and before directory block allocation tries to
2914 * grab AGFs because we grab AGIs before AGFs.
2915 *
2916 * The (vfs) caller must ensure that if src is a directory then
2917 * target_ip is either null or an empty directory.
2918 */
2919 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2920 if (inodes[i] == wip ||
2921 (inodes[i] == target_ip &&
2922 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2923 struct xfs_perag *pag;
2924 struct xfs_buf *bp;
2925
2926 pag = xfs_perag_get(mp,
2927 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2928 error = xfs_read_agi(pag, tp, &bp);
2929 xfs_perag_put(pag);
2930 if (error)
2931 goto out_trans_cancel;
2932 }
2933 }
2934
2935 /*
2936 * Directory entry creation below may acquire the AGF. Remove
2937 * the whiteout from the unlinked list first to preserve correct
2938 * AGI/AGF locking order. This dirties the transaction so failures
2939 * after this point will abort and log recovery will clean up the
2940 * mess.
2941 *
2942 * For whiteouts, we need to bump the link count on the whiteout
2943 * inode. After this point, we have a real link, clear the tmpfile
2944 * state flag from the inode so it doesn't accidentally get misused
2945 * in future.
2946 */
2947 if (wip) {
2948 struct xfs_perag *pag;
2949
2950 ASSERT(VFS_I(wip)->i_nlink == 0);
2951
2952 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
2953 error = xfs_iunlink_remove(tp, pag, wip);
2954 xfs_perag_put(pag);
2955 if (error)
2956 goto out_trans_cancel;
2957
2958 xfs_bumplink(tp, wip);
2959 VFS_I(wip)->i_state &= ~I_LINKABLE;
2960 }
2961
2962 /*
2963 * Set up the target.
2964 */
2965 if (target_ip == NULL) {
2966 /*
2967 * If target does not exist and the rename crosses
2968 * directories, adjust the target directory link count
2969 * to account for the ".." reference from the new entry.
2970 */
2971 error = xfs_dir_createname(tp, target_dp, target_name,
2972 src_ip->i_ino, spaceres);
2973 if (error)
2974 goto out_trans_cancel;
2975
2976 xfs_trans_ichgtime(tp, target_dp,
2977 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2978
2979 if (new_parent && src_is_directory) {
2980 xfs_bumplink(tp, target_dp);
2981 }
2982 } else { /* target_ip != NULL */
2983 /*
2984 * Link the source inode under the target name.
2985 * If the source inode is a directory and we are moving
2986 * it across directories, its ".." entry will be
2987 * inconsistent until we replace that down below.
2988 *
2989 * In case there is already an entry with the same
2990 * name at the destination directory, remove it first.
2991 */
2992 error = xfs_dir_replace(tp, target_dp, target_name,
2993 src_ip->i_ino, spaceres);
2994 if (error)
2995 goto out_trans_cancel;
2996
2997 xfs_trans_ichgtime(tp, target_dp,
2998 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2999
3000 /*
3001 * Decrement the link count on the target since the target
3002 * dir no longer points to it.
3003 */
3004 error = xfs_droplink(tp, target_ip);
3005 if (error)
3006 goto out_trans_cancel;
3007
3008 if (src_is_directory) {
3009 /*
3010 * Drop the link from the old "." entry.
3011 */
3012 error = xfs_droplink(tp, target_ip);
3013 if (error)
3014 goto out_trans_cancel;
3015 }
3016 } /* target_ip != NULL */
3017
3018 /*
3019 * Remove the source.
3020 */
3021 if (new_parent && src_is_directory) {
3022 /*
3023 * Rewrite the ".." entry to point to the new
3024 * directory.
3025 */
3026 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3027 target_dp->i_ino, spaceres);
3028 ASSERT(error != -EEXIST);
3029 if (error)
3030 goto out_trans_cancel;
3031 }
3032
3033 /*
3034 * We always want to hit the ctime on the source inode.
3035 *
3036 * This isn't strictly required by the standards since the source
3037 * inode isn't really being changed, but old unix file systems did
3038 * it and some incremental backup programs won't work without it.
3039 */
3040 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3041 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3042
3043 /*
3044 * Adjust the link count on src_dp. This is necessary when
3045 * renaming a directory, either within one parent when
3046 * the target existed, or across two parent directories.
3047 */
3048 if (src_is_directory && (new_parent || target_ip != NULL)) {
3049
3050 /*
3051 * Decrement link count on src_directory since the
3052 * entry that's moved no longer points to it.
3053 */
3054 error = xfs_droplink(tp, src_dp);
3055 if (error)
3056 goto out_trans_cancel;
3057 }
3058
3059 /*
3060 * For whiteouts, we only need to update the source dirent with the
3061 * inode number of the whiteout inode rather than removing it
3062 * altogether.
3063 */
3064 if (wip)
3065 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3066 spaceres);
3067 else
3068 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3069 spaceres);
3070
3071 if (error)
3072 goto out_trans_cancel;
3073
3074 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3075 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3076 if (new_parent)
3077 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3078
3079 error = xfs_finish_rename(tp);
3080 if (wip)
3081 xfs_irele(wip);
3082 return error;
3083
3084 out_trans_cancel:
3085 xfs_trans_cancel(tp);
3086 out_release_wip:
3087 if (wip)
3088 xfs_irele(wip);
3089 if (error == -ENOSPC && nospace_error)
3090 error = nospace_error;
3091 return error;
3092 }
3093
3094 static int
3095 xfs_iflush(
3096 struct xfs_inode *ip,
3097 struct xfs_buf *bp)
3098 {
3099 struct xfs_inode_log_item *iip = ip->i_itemp;
3100 struct xfs_dinode *dip;
3101 struct xfs_mount *mp = ip->i_mount;
3102 int error;
3103
3104 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3105 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3106 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3107 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3108 ASSERT(iip->ili_item.li_buf == bp);
3109
3110 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3111
3112 /*
3113 * We don't flush the inode if any of the following checks fail, but we
3114 * do still update the log item and attach to the backing buffer as if
3115 * the flush happened. This is a formality to facilitate predictable
3116 * error handling as the caller will shutdown and fail the buffer.
3117 */
3118 error = -EFSCORRUPTED;
3119 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3120 mp, XFS_ERRTAG_IFLUSH_1)) {
3121 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3122 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3123 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3124 goto flush_out;
3125 }
3126 if (S_ISREG(VFS_I(ip)->i_mode)) {
3127 if (XFS_TEST_ERROR(
3128 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3129 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3130 mp, XFS_ERRTAG_IFLUSH_3)) {
3131 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3132 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3133 __func__, ip->i_ino, ip);
3134 goto flush_out;
3135 }
3136 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3137 if (XFS_TEST_ERROR(
3138 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3139 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3140 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3141 mp, XFS_ERRTAG_IFLUSH_4)) {
3142 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3143 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3144 __func__, ip->i_ino, ip);
3145 goto flush_out;
3146 }
3147 }
3148 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3149 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3150 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3151 "%s: detected corrupt incore inode %llu, "
3152 "total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3153 __func__, ip->i_ino,
3154 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3155 ip->i_nblocks, ip);
3156 goto flush_out;
3157 }
3158 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3159 mp, XFS_ERRTAG_IFLUSH_6)) {
3160 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3161 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3162 __func__, ip->i_ino, ip->i_forkoff, ip);
3163 goto flush_out;
3164 }
3165
3166 /*
3167 * Inode item log recovery for v2 inodes are dependent on the flushiter
3168 * count for correct sequencing. We bump the flush iteration count so
3169 * we can detect flushes which postdate a log record during recovery.
3170 * This is redundant as we now log every change and hence this can't
3171 * happen but we need to still do it to ensure backwards compatibility
3172 * with old kernels that predate logging all inode changes.
3173 */
3174 if (!xfs_has_v3inodes(mp))
3175 ip->i_flushiter++;
3176
3177 /*
3178 * If there are inline format data / attr forks attached to this inode,
3179 * make sure they are not corrupt.
3180 */
3181 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3182 xfs_ifork_verify_local_data(ip))
3183 goto flush_out;
3184 if (xfs_inode_has_attr_fork(ip) &&
3185 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3186 xfs_ifork_verify_local_attr(ip))
3187 goto flush_out;
3188
3189 /*
3190 * Copy the dirty parts of the inode into the on-disk inode. We always
3191 * copy out the core of the inode, because if the inode is dirty at all
3192 * the core must be.
3193 */
3194 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3195
3196 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3197 if (!xfs_has_v3inodes(mp)) {
3198 if (ip->i_flushiter == DI_MAX_FLUSH)
3199 ip->i_flushiter = 0;
3200 }
3201
3202 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3203 if (xfs_inode_has_attr_fork(ip))
3204 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3205
3206 /*
3207 * We've recorded everything logged in the inode, so we'd like to clear
3208 * the ili_fields bits so we don't log and flush things unnecessarily.
3209 * However, we can't stop logging all this information until the data
3210 * we've copied into the disk buffer is written to disk. If we did we
3211 * might overwrite the copy of the inode in the log with all the data
3212 * after re-logging only part of it, and in the face of a crash we
3213 * wouldn't have all the data we need to recover.
3214 *
3215 * What we do is move the bits to the ili_last_fields field. When
3216 * logging the inode, these bits are moved back to the ili_fields field.
3217 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3218 * we know that the information those bits represent is permanently on
3219 * disk. As long as the flush completes before the inode is logged
3220 * again, then both ili_fields and ili_last_fields will be cleared.
3221 */
3222 error = 0;
3223 flush_out:
3224 spin_lock(&iip->ili_lock);
3225 iip->ili_last_fields = iip->ili_fields;
3226 iip->ili_fields = 0;
3227 iip->ili_fsync_fields = 0;
3228 spin_unlock(&iip->ili_lock);
3229
3230 /*
3231 * Store the current LSN of the inode so that we can tell whether the
3232 * item has moved in the AIL from xfs_buf_inode_iodone().
3233 */
3234 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3235 &iip->ili_item.li_lsn);
3236
3237 /* generate the checksum. */
3238 xfs_dinode_calc_crc(mp, dip);
3239 return error;
3240 }
3241
3242 /*
3243 * Non-blocking flush of dirty inode metadata into the backing buffer.
3244 *
3245 * The caller must have a reference to the inode and hold the cluster buffer
3246 * locked. The function will walk across all the inodes on the cluster buffer it
3247 * can find and lock without blocking, and flush them to the cluster buffer.
3248 *
3249 * On successful flushing of at least one inode, the caller must write out the
3250 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3251 * the caller needs to release the buffer. On failure, the filesystem will be
3252 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3253 * will be returned.
3254 */
3255 int
3256 xfs_iflush_cluster(
3257 struct xfs_buf *bp)
3258 {
3259 struct xfs_mount *mp = bp->b_mount;
3260 struct xfs_log_item *lip, *n;
3261 struct xfs_inode *ip;
3262 struct xfs_inode_log_item *iip;
3263 int clcount = 0;
3264 int error = 0;
3265
3266 /*
3267 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3268 * will remove itself from the list.
3269 */
3270 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3271 iip = (struct xfs_inode_log_item *)lip;
3272 ip = iip->ili_inode;
3273
3274 /*
3275 * Quick and dirty check to avoid locks if possible.
3276 */
3277 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3278 continue;
3279 if (xfs_ipincount(ip))
3280 continue;
3281
3282 /*
3283 * The inode is still attached to the buffer, which means it is
3284 * dirty but reclaim might try to grab it. Check carefully for
3285 * that, and grab the ilock while still holding the i_flags_lock
3286 * to guarantee reclaim will not be able to reclaim this inode
3287 * once we drop the i_flags_lock.
3288 */
3289 spin_lock(&ip->i_flags_lock);
3290 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3291 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3292 spin_unlock(&ip->i_flags_lock);
3293 continue;
3294 }
3295
3296 /*
3297 * ILOCK will pin the inode against reclaim and prevent
3298 * concurrent transactions modifying the inode while we are
3299 * flushing the inode. If we get the lock, set the flushing
3300 * state before we drop the i_flags_lock.
3301 */
3302 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3303 spin_unlock(&ip->i_flags_lock);
3304 continue;
3305 }
3306 __xfs_iflags_set(ip, XFS_IFLUSHING);
3307 spin_unlock(&ip->i_flags_lock);
3308
3309 /*
3310 * Abort flushing this inode if we are shut down because the
3311 * inode may not currently be in the AIL. This can occur when
3312 * log I/O failure unpins the inode without inserting into the
3313 * AIL, leaving a dirty/unpinned inode attached to the buffer
3314 * that otherwise looks like it should be flushed.
3315 */
3316 if (xlog_is_shutdown(mp->m_log)) {
3317 xfs_iunpin_wait(ip);
3318 xfs_iflush_abort(ip);
3319 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3320 error = -EIO;
3321 continue;
3322 }
3323
3324 /* don't block waiting on a log force to unpin dirty inodes */
3325 if (xfs_ipincount(ip)) {
3326 xfs_iflags_clear(ip, XFS_IFLUSHING);
3327 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3328 continue;
3329 }
3330
3331 if (!xfs_inode_clean(ip))
3332 error = xfs_iflush(ip, bp);
3333 else
3334 xfs_iflags_clear(ip, XFS_IFLUSHING);
3335 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3336 if (error)
3337 break;
3338 clcount++;
3339 }
3340
3341 if (error) {
3342 /*
3343 * Shutdown first so we kill the log before we release this
3344 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3345 * of the log, failing it before the _log_ is shut down can
3346 * result in the log tail being moved forward in the journal
3347 * on disk because log writes can still be taking place. Hence
3348 * unpinning the tail will allow the ICREATE intent to be
3349 * removed from the log an recovery will fail with uninitialised
3350 * inode cluster buffers.
3351 */
3352 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3353 bp->b_flags |= XBF_ASYNC;
3354 xfs_buf_ioend_fail(bp);
3355 return error;
3356 }
3357
3358 if (!clcount)
3359 return -EAGAIN;
3360
3361 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3362 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3363 return 0;
3364
3365 }
3366
3367 /* Release an inode. */
3368 void
3369 xfs_irele(
3370 struct xfs_inode *ip)
3371 {
3372 trace_xfs_irele(ip, _RET_IP_);
3373 iput(VFS_I(ip));
3374 }
3375
3376 /*
3377 * Ensure all commited transactions touching the inode are written to the log.
3378 */
3379 int
3380 xfs_log_force_inode(
3381 struct xfs_inode *ip)
3382 {
3383 xfs_csn_t seq = 0;
3384
3385 xfs_ilock(ip, XFS_ILOCK_SHARED);
3386 if (xfs_ipincount(ip))
3387 seq = ip->i_itemp->ili_commit_seq;
3388 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3389
3390 if (!seq)
3391 return 0;
3392 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3393 }
3394
3395 /*
3396 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3397 * abide vfs locking order (lowest pointer value goes first) and breaking the
3398 * layout leases before proceeding. The loop is needed because we cannot call
3399 * the blocking break_layout() with the iolocks held, and therefore have to
3400 * back out both locks.
3401 */
3402 static int
3403 xfs_iolock_two_inodes_and_break_layout(
3404 struct inode *src,
3405 struct inode *dest)
3406 {
3407 int error;
3408
3409 if (src > dest)
3410 swap(src, dest);
3411
3412 retry:
3413 /* Wait to break both inodes' layouts before we start locking. */
3414 error = break_layout(src, true);
3415 if (error)
3416 return error;
3417 if (src != dest) {
3418 error = break_layout(dest, true);
3419 if (error)
3420 return error;
3421 }
3422
3423 /* Lock one inode and make sure nobody got in and leased it. */
3424 inode_lock(src);
3425 error = break_layout(src, false);
3426 if (error) {
3427 inode_unlock(src);
3428 if (error == -EWOULDBLOCK)
3429 goto retry;
3430 return error;
3431 }
3432
3433 if (src == dest)
3434 return 0;
3435
3436 /* Lock the other inode and make sure nobody got in and leased it. */
3437 inode_lock_nested(dest, I_MUTEX_NONDIR2);
3438 error = break_layout(dest, false);
3439 if (error) {
3440 inode_unlock(src);
3441 inode_unlock(dest);
3442 if (error == -EWOULDBLOCK)
3443 goto retry;
3444 return error;
3445 }
3446
3447 return 0;
3448 }
3449
3450 static int
3451 xfs_mmaplock_two_inodes_and_break_dax_layout(
3452 struct xfs_inode *ip1,
3453 struct xfs_inode *ip2)
3454 {
3455 int error;
3456 bool retry;
3457 struct page *page;
3458
3459 if (ip1->i_ino > ip2->i_ino)
3460 swap(ip1, ip2);
3461
3462 again:
3463 retry = false;
3464 /* Lock the first inode */
3465 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3466 error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3467 if (error || retry) {
3468 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3469 if (error == 0 && retry)
3470 goto again;
3471 return error;
3472 }
3473
3474 if (ip1 == ip2)
3475 return 0;
3476
3477 /* Nested lock the second inode */
3478 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3479 /*
3480 * We cannot use xfs_break_dax_layouts() directly here because it may
3481 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3482 * for this nested lock case.
3483 */
3484 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3485 if (page && page_ref_count(page) != 1) {
3486 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3487 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3488 goto again;
3489 }
3490
3491 return 0;
3492 }
3493
3494 /*
3495 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3496 * mmap activity.
3497 */
3498 int
3499 xfs_ilock2_io_mmap(
3500 struct xfs_inode *ip1,
3501 struct xfs_inode *ip2)
3502 {
3503 int ret;
3504
3505 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3506 if (ret)
3507 return ret;
3508
3509 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3510 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3511 if (ret) {
3512 inode_unlock(VFS_I(ip2));
3513 if (ip1 != ip2)
3514 inode_unlock(VFS_I(ip1));
3515 return ret;
3516 }
3517 } else
3518 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3519 VFS_I(ip2)->i_mapping);
3520
3521 return 0;
3522 }
3523
3524 /* Unlock both inodes to allow IO and mmap activity. */
3525 void
3526 xfs_iunlock2_io_mmap(
3527 struct xfs_inode *ip1,
3528 struct xfs_inode *ip2)
3529 {
3530 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3531 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3532 if (ip1 != ip2)
3533 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3534 } else
3535 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3536 VFS_I(ip2)->i_mapping);
3537
3538 inode_unlock(VFS_I(ip2));
3539 if (ip1 != ip2)
3540 inode_unlock(VFS_I(ip1));
3541 }