]> git.ipfire.org Git - people/ms/linux.git/blob - fs/xfs/xfs_mount.c
Merge tag 'soc-fixes-6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[people/ms/linux.git] / fs / xfs / xfs_mount.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37
38 static DEFINE_MUTEX(xfs_uuid_table_mutex);
39 static int xfs_uuid_table_size;
40 static uuid_t *xfs_uuid_table;
41
42 void
43 xfs_uuid_table_free(void)
44 {
45 if (xfs_uuid_table_size == 0)
46 return;
47 kmem_free(xfs_uuid_table);
48 xfs_uuid_table = NULL;
49 xfs_uuid_table_size = 0;
50 }
51
52 /*
53 * See if the UUID is unique among mounted XFS filesystems.
54 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
55 */
56 STATIC int
57 xfs_uuid_mount(
58 struct xfs_mount *mp)
59 {
60 uuid_t *uuid = &mp->m_sb.sb_uuid;
61 int hole, i;
62
63 /* Publish UUID in struct super_block */
64 uuid_copy(&mp->m_super->s_uuid, uuid);
65
66 if (xfs_has_nouuid(mp))
67 return 0;
68
69 if (uuid_is_null(uuid)) {
70 xfs_warn(mp, "Filesystem has null UUID - can't mount");
71 return -EINVAL;
72 }
73
74 mutex_lock(&xfs_uuid_table_mutex);
75 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
76 if (uuid_is_null(&xfs_uuid_table[i])) {
77 hole = i;
78 continue;
79 }
80 if (uuid_equal(uuid, &xfs_uuid_table[i]))
81 goto out_duplicate;
82 }
83
84 if (hole < 0) {
85 xfs_uuid_table = krealloc(xfs_uuid_table,
86 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
87 GFP_KERNEL | __GFP_NOFAIL);
88 hole = xfs_uuid_table_size++;
89 }
90 xfs_uuid_table[hole] = *uuid;
91 mutex_unlock(&xfs_uuid_table_mutex);
92
93 return 0;
94
95 out_duplicate:
96 mutex_unlock(&xfs_uuid_table_mutex);
97 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
98 return -EINVAL;
99 }
100
101 STATIC void
102 xfs_uuid_unmount(
103 struct xfs_mount *mp)
104 {
105 uuid_t *uuid = &mp->m_sb.sb_uuid;
106 int i;
107
108 if (xfs_has_nouuid(mp))
109 return;
110
111 mutex_lock(&xfs_uuid_table_mutex);
112 for (i = 0; i < xfs_uuid_table_size; i++) {
113 if (uuid_is_null(&xfs_uuid_table[i]))
114 continue;
115 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
116 continue;
117 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
118 break;
119 }
120 ASSERT(i < xfs_uuid_table_size);
121 mutex_unlock(&xfs_uuid_table_mutex);
122 }
123
124 /*
125 * Check size of device based on the (data/realtime) block count.
126 * Note: this check is used by the growfs code as well as mount.
127 */
128 int
129 xfs_sb_validate_fsb_count(
130 xfs_sb_t *sbp,
131 uint64_t nblocks)
132 {
133 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
134 ASSERT(sbp->sb_blocklog >= BBSHIFT);
135
136 /* Limited by ULONG_MAX of page cache index */
137 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
138 return -EFBIG;
139 return 0;
140 }
141
142 /*
143 * xfs_readsb
144 *
145 * Does the initial read of the superblock.
146 */
147 int
148 xfs_readsb(
149 struct xfs_mount *mp,
150 int flags)
151 {
152 unsigned int sector_size;
153 struct xfs_buf *bp;
154 struct xfs_sb *sbp = &mp->m_sb;
155 int error;
156 int loud = !(flags & XFS_MFSI_QUIET);
157 const struct xfs_buf_ops *buf_ops;
158
159 ASSERT(mp->m_sb_bp == NULL);
160 ASSERT(mp->m_ddev_targp != NULL);
161
162 /*
163 * For the initial read, we must guess at the sector
164 * size based on the block device. It's enough to
165 * get the sb_sectsize out of the superblock and
166 * then reread with the proper length.
167 * We don't verify it yet, because it may not be complete.
168 */
169 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
170 buf_ops = NULL;
171
172 /*
173 * Allocate a (locked) buffer to hold the superblock. This will be kept
174 * around at all times to optimize access to the superblock. Therefore,
175 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
176 * elevated.
177 */
178 reread:
179 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
180 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
181 buf_ops);
182 if (error) {
183 if (loud)
184 xfs_warn(mp, "SB validate failed with error %d.", error);
185 /* bad CRC means corrupted metadata */
186 if (error == -EFSBADCRC)
187 error = -EFSCORRUPTED;
188 return error;
189 }
190
191 /*
192 * Initialize the mount structure from the superblock.
193 */
194 xfs_sb_from_disk(sbp, bp->b_addr);
195
196 /*
197 * If we haven't validated the superblock, do so now before we try
198 * to check the sector size and reread the superblock appropriately.
199 */
200 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
201 if (loud)
202 xfs_warn(mp, "Invalid superblock magic number");
203 error = -EINVAL;
204 goto release_buf;
205 }
206
207 /*
208 * We must be able to do sector-sized and sector-aligned IO.
209 */
210 if (sector_size > sbp->sb_sectsize) {
211 if (loud)
212 xfs_warn(mp, "device supports %u byte sectors (not %u)",
213 sector_size, sbp->sb_sectsize);
214 error = -ENOSYS;
215 goto release_buf;
216 }
217
218 if (buf_ops == NULL) {
219 /*
220 * Re-read the superblock so the buffer is correctly sized,
221 * and properly verified.
222 */
223 xfs_buf_relse(bp);
224 sector_size = sbp->sb_sectsize;
225 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
226 goto reread;
227 }
228
229 mp->m_features |= xfs_sb_version_to_features(sbp);
230 xfs_reinit_percpu_counters(mp);
231
232 /* no need to be quiet anymore, so reset the buf ops */
233 bp->b_ops = &xfs_sb_buf_ops;
234
235 mp->m_sb_bp = bp;
236 xfs_buf_unlock(bp);
237 return 0;
238
239 release_buf:
240 xfs_buf_relse(bp);
241 return error;
242 }
243
244 /*
245 * If the sunit/swidth change would move the precomputed root inode value, we
246 * must reject the ondisk change because repair will stumble over that.
247 * However, we allow the mount to proceed because we never rejected this
248 * combination before. Returns true to update the sb, false otherwise.
249 */
250 static inline int
251 xfs_check_new_dalign(
252 struct xfs_mount *mp,
253 int new_dalign,
254 bool *update_sb)
255 {
256 struct xfs_sb *sbp = &mp->m_sb;
257 xfs_ino_t calc_ino;
258
259 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
260 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
261
262 if (sbp->sb_rootino == calc_ino) {
263 *update_sb = true;
264 return 0;
265 }
266
267 xfs_warn(mp,
268 "Cannot change stripe alignment; would require moving root inode.");
269
270 /*
271 * XXX: Next time we add a new incompat feature, this should start
272 * returning -EINVAL to fail the mount. Until then, spit out a warning
273 * that we're ignoring the administrator's instructions.
274 */
275 xfs_warn(mp, "Skipping superblock stripe alignment update.");
276 *update_sb = false;
277 return 0;
278 }
279
280 /*
281 * If we were provided with new sunit/swidth values as mount options, make sure
282 * that they pass basic alignment and superblock feature checks, and convert
283 * them into the same units (FSB) that everything else expects. This step
284 * /must/ be done before computing the inode geometry.
285 */
286 STATIC int
287 xfs_validate_new_dalign(
288 struct xfs_mount *mp)
289 {
290 if (mp->m_dalign == 0)
291 return 0;
292
293 /*
294 * If stripe unit and stripe width are not multiples
295 * of the fs blocksize turn off alignment.
296 */
297 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
298 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
299 xfs_warn(mp,
300 "alignment check failed: sunit/swidth vs. blocksize(%d)",
301 mp->m_sb.sb_blocksize);
302 return -EINVAL;
303 } else {
304 /*
305 * Convert the stripe unit and width to FSBs.
306 */
307 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
308 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
309 xfs_warn(mp,
310 "alignment check failed: sunit/swidth vs. agsize(%d)",
311 mp->m_sb.sb_agblocks);
312 return -EINVAL;
313 } else if (mp->m_dalign) {
314 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
315 } else {
316 xfs_warn(mp,
317 "alignment check failed: sunit(%d) less than bsize(%d)",
318 mp->m_dalign, mp->m_sb.sb_blocksize);
319 return -EINVAL;
320 }
321 }
322
323 if (!xfs_has_dalign(mp)) {
324 xfs_warn(mp,
325 "cannot change alignment: superblock does not support data alignment");
326 return -EINVAL;
327 }
328
329 return 0;
330 }
331
332 /* Update alignment values based on mount options and sb values. */
333 STATIC int
334 xfs_update_alignment(
335 struct xfs_mount *mp)
336 {
337 struct xfs_sb *sbp = &mp->m_sb;
338
339 if (mp->m_dalign) {
340 bool update_sb;
341 int error;
342
343 if (sbp->sb_unit == mp->m_dalign &&
344 sbp->sb_width == mp->m_swidth)
345 return 0;
346
347 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
348 if (error || !update_sb)
349 return error;
350
351 sbp->sb_unit = mp->m_dalign;
352 sbp->sb_width = mp->m_swidth;
353 mp->m_update_sb = true;
354 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
355 mp->m_dalign = sbp->sb_unit;
356 mp->m_swidth = sbp->sb_width;
357 }
358
359 return 0;
360 }
361
362 /*
363 * precalculate the low space thresholds for dynamic speculative preallocation.
364 */
365 void
366 xfs_set_low_space_thresholds(
367 struct xfs_mount *mp)
368 {
369 uint64_t dblocks = mp->m_sb.sb_dblocks;
370 uint64_t rtexts = mp->m_sb.sb_rextents;
371 int i;
372
373 do_div(dblocks, 100);
374 do_div(rtexts, 100);
375
376 for (i = 0; i < XFS_LOWSP_MAX; i++) {
377 mp->m_low_space[i] = dblocks * (i + 1);
378 mp->m_low_rtexts[i] = rtexts * (i + 1);
379 }
380 }
381
382 /*
383 * Check that the data (and log if separate) is an ok size.
384 */
385 STATIC int
386 xfs_check_sizes(
387 struct xfs_mount *mp)
388 {
389 struct xfs_buf *bp;
390 xfs_daddr_t d;
391 int error;
392
393 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
394 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
395 xfs_warn(mp, "filesystem size mismatch detected");
396 return -EFBIG;
397 }
398 error = xfs_buf_read_uncached(mp->m_ddev_targp,
399 d - XFS_FSS_TO_BB(mp, 1),
400 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
401 if (error) {
402 xfs_warn(mp, "last sector read failed");
403 return error;
404 }
405 xfs_buf_relse(bp);
406
407 if (mp->m_logdev_targp == mp->m_ddev_targp)
408 return 0;
409
410 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
411 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
412 xfs_warn(mp, "log size mismatch detected");
413 return -EFBIG;
414 }
415 error = xfs_buf_read_uncached(mp->m_logdev_targp,
416 d - XFS_FSB_TO_BB(mp, 1),
417 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
418 if (error) {
419 xfs_warn(mp, "log device read failed");
420 return error;
421 }
422 xfs_buf_relse(bp);
423 return 0;
424 }
425
426 /*
427 * Clear the quotaflags in memory and in the superblock.
428 */
429 int
430 xfs_mount_reset_sbqflags(
431 struct xfs_mount *mp)
432 {
433 mp->m_qflags = 0;
434
435 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
436 if (mp->m_sb.sb_qflags == 0)
437 return 0;
438 spin_lock(&mp->m_sb_lock);
439 mp->m_sb.sb_qflags = 0;
440 spin_unlock(&mp->m_sb_lock);
441
442 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
443 return 0;
444
445 return xfs_sync_sb(mp, false);
446 }
447
448 uint64_t
449 xfs_default_resblks(xfs_mount_t *mp)
450 {
451 uint64_t resblks;
452
453 /*
454 * We default to 5% or 8192 fsbs of space reserved, whichever is
455 * smaller. This is intended to cover concurrent allocation
456 * transactions when we initially hit enospc. These each require a 4
457 * block reservation. Hence by default we cover roughly 2000 concurrent
458 * allocation reservations.
459 */
460 resblks = mp->m_sb.sb_dblocks;
461 do_div(resblks, 20);
462 resblks = min_t(uint64_t, resblks, 8192);
463 return resblks;
464 }
465
466 /* Ensure the summary counts are correct. */
467 STATIC int
468 xfs_check_summary_counts(
469 struct xfs_mount *mp)
470 {
471 int error = 0;
472
473 /*
474 * The AG0 superblock verifier rejects in-progress filesystems,
475 * so we should never see the flag set this far into mounting.
476 */
477 if (mp->m_sb.sb_inprogress) {
478 xfs_err(mp, "sb_inprogress set after log recovery??");
479 WARN_ON(1);
480 return -EFSCORRUPTED;
481 }
482
483 /*
484 * Now the log is mounted, we know if it was an unclean shutdown or
485 * not. If it was, with the first phase of recovery has completed, we
486 * have consistent AG blocks on disk. We have not recovered EFIs yet,
487 * but they are recovered transactionally in the second recovery phase
488 * later.
489 *
490 * If the log was clean when we mounted, we can check the summary
491 * counters. If any of them are obviously incorrect, we can recompute
492 * them from the AGF headers in the next step.
493 */
494 if (xfs_is_clean(mp) &&
495 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
496 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
497 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
498 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
499
500 /*
501 * We can safely re-initialise incore superblock counters from the
502 * per-ag data. These may not be correct if the filesystem was not
503 * cleanly unmounted, so we waited for recovery to finish before doing
504 * this.
505 *
506 * If the filesystem was cleanly unmounted or the previous check did
507 * not flag anything weird, then we can trust the values in the
508 * superblock to be correct and we don't need to do anything here.
509 * Otherwise, recalculate the summary counters.
510 */
511 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
512 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
513 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
514 if (error)
515 return error;
516 }
517
518 /*
519 * Older kernels misused sb_frextents to reflect both incore
520 * reservations made by running transactions and the actual count of
521 * free rt extents in the ondisk metadata. Transactions committed
522 * during runtime can therefore contain a superblock update that
523 * undercounts the number of free rt extents tracked in the rt bitmap.
524 * A clean unmount record will have the correct frextents value since
525 * there can be no other transactions running at that point.
526 *
527 * If we're mounting the rt volume after recovering the log, recompute
528 * frextents from the rtbitmap file to fix the inconsistency.
529 */
530 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
531 error = xfs_rtalloc_reinit_frextents(mp);
532 if (error)
533 return error;
534 }
535
536 return 0;
537 }
538
539 /*
540 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
541 * internal inode structures can be sitting in the CIL and AIL at this point,
542 * so we need to unpin them, write them back and/or reclaim them before unmount
543 * can proceed. In other words, callers are required to have inactivated all
544 * inodes.
545 *
546 * An inode cluster that has been freed can have its buffer still pinned in
547 * memory because the transaction is still sitting in a iclog. The stale inodes
548 * on that buffer will be pinned to the buffer until the transaction hits the
549 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
550 * may never see the pinned buffer, so nothing will push out the iclog and
551 * unpin the buffer.
552 *
553 * Hence we need to force the log to unpin everything first. However, log
554 * forces don't wait for the discards they issue to complete, so we have to
555 * explicitly wait for them to complete here as well.
556 *
557 * Then we can tell the world we are unmounting so that error handling knows
558 * that the filesystem is going away and we should error out anything that we
559 * have been retrying in the background. This will prevent never-ending
560 * retries in AIL pushing from hanging the unmount.
561 *
562 * Finally, we can push the AIL to clean all the remaining dirty objects, then
563 * reclaim the remaining inodes that are still in memory at this point in time.
564 */
565 static void
566 xfs_unmount_flush_inodes(
567 struct xfs_mount *mp)
568 {
569 xfs_log_force(mp, XFS_LOG_SYNC);
570 xfs_extent_busy_wait_all(mp);
571 flush_workqueue(xfs_discard_wq);
572
573 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
574
575 xfs_ail_push_all_sync(mp->m_ail);
576 xfs_inodegc_stop(mp);
577 cancel_delayed_work_sync(&mp->m_reclaim_work);
578 xfs_reclaim_inodes(mp);
579 xfs_health_unmount(mp);
580 }
581
582 static void
583 xfs_mount_setup_inode_geom(
584 struct xfs_mount *mp)
585 {
586 struct xfs_ino_geometry *igeo = M_IGEO(mp);
587
588 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
589 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
590
591 xfs_ialloc_setup_geometry(mp);
592 }
593
594 /* Compute maximum possible height for per-AG btree types for this fs. */
595 static inline void
596 xfs_agbtree_compute_maxlevels(
597 struct xfs_mount *mp)
598 {
599 unsigned int levels;
600
601 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
602 levels = max(levels, mp->m_rmap_maxlevels);
603 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
604 }
605
606 /*
607 * This function does the following on an initial mount of a file system:
608 * - reads the superblock from disk and init the mount struct
609 * - if we're a 32-bit kernel, do a size check on the superblock
610 * so we don't mount terabyte filesystems
611 * - init mount struct realtime fields
612 * - allocate inode hash table for fs
613 * - init directory manager
614 * - perform recovery and init the log manager
615 */
616 int
617 xfs_mountfs(
618 struct xfs_mount *mp)
619 {
620 struct xfs_sb *sbp = &(mp->m_sb);
621 struct xfs_inode *rip;
622 struct xfs_ino_geometry *igeo = M_IGEO(mp);
623 uint64_t resblks;
624 uint quotamount = 0;
625 uint quotaflags = 0;
626 int error = 0;
627
628 xfs_sb_mount_common(mp, sbp);
629
630 /*
631 * Check for a mismatched features2 values. Older kernels read & wrote
632 * into the wrong sb offset for sb_features2 on some platforms due to
633 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
634 * which made older superblock reading/writing routines swap it as a
635 * 64-bit value.
636 *
637 * For backwards compatibility, we make both slots equal.
638 *
639 * If we detect a mismatched field, we OR the set bits into the existing
640 * features2 field in case it has already been modified; we don't want
641 * to lose any features. We then update the bad location with the ORed
642 * value so that older kernels will see any features2 flags. The
643 * superblock writeback code ensures the new sb_features2 is copied to
644 * sb_bad_features2 before it is logged or written to disk.
645 */
646 if (xfs_sb_has_mismatched_features2(sbp)) {
647 xfs_warn(mp, "correcting sb_features alignment problem");
648 sbp->sb_features2 |= sbp->sb_bad_features2;
649 mp->m_update_sb = true;
650 }
651
652
653 /* always use v2 inodes by default now */
654 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
655 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
656 mp->m_features |= XFS_FEAT_NLINK;
657 mp->m_update_sb = true;
658 }
659
660 /*
661 * If we were given new sunit/swidth options, do some basic validation
662 * checks and convert the incore dalign and swidth values to the
663 * same units (FSB) that everything else uses. This /must/ happen
664 * before computing the inode geometry.
665 */
666 error = xfs_validate_new_dalign(mp);
667 if (error)
668 goto out;
669
670 xfs_alloc_compute_maxlevels(mp);
671 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
672 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
673 xfs_mount_setup_inode_geom(mp);
674 xfs_rmapbt_compute_maxlevels(mp);
675 xfs_refcountbt_compute_maxlevels(mp);
676
677 xfs_agbtree_compute_maxlevels(mp);
678
679 /*
680 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
681 * is NOT aligned turn off m_dalign since allocator alignment is within
682 * an ag, therefore ag has to be aligned at stripe boundary. Note that
683 * we must compute the free space and rmap btree geometry before doing
684 * this.
685 */
686 error = xfs_update_alignment(mp);
687 if (error)
688 goto out;
689
690 /* enable fail_at_unmount as default */
691 mp->m_fail_unmount = true;
692
693 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
694 NULL, mp->m_super->s_id);
695 if (error)
696 goto out;
697
698 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
699 &mp->m_kobj, "stats");
700 if (error)
701 goto out_remove_sysfs;
702
703 error = xfs_error_sysfs_init(mp);
704 if (error)
705 goto out_del_stats;
706
707 error = xfs_errortag_init(mp);
708 if (error)
709 goto out_remove_error_sysfs;
710
711 error = xfs_uuid_mount(mp);
712 if (error)
713 goto out_remove_errortag;
714
715 /*
716 * Update the preferred write size based on the information from the
717 * on-disk superblock.
718 */
719 mp->m_allocsize_log =
720 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
721 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
722
723 /* set the low space thresholds for dynamic preallocation */
724 xfs_set_low_space_thresholds(mp);
725
726 /*
727 * If enabled, sparse inode chunk alignment is expected to match the
728 * cluster size. Full inode chunk alignment must match the chunk size,
729 * but that is checked on sb read verification...
730 */
731 if (xfs_has_sparseinodes(mp) &&
732 mp->m_sb.sb_spino_align !=
733 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
734 xfs_warn(mp,
735 "Sparse inode block alignment (%u) must match cluster size (%llu).",
736 mp->m_sb.sb_spino_align,
737 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
738 error = -EINVAL;
739 goto out_remove_uuid;
740 }
741
742 /*
743 * Check that the data (and log if separate) is an ok size.
744 */
745 error = xfs_check_sizes(mp);
746 if (error)
747 goto out_remove_uuid;
748
749 /*
750 * Initialize realtime fields in the mount structure
751 */
752 error = xfs_rtmount_init(mp);
753 if (error) {
754 xfs_warn(mp, "RT mount failed");
755 goto out_remove_uuid;
756 }
757
758 /*
759 * Copies the low order bits of the timestamp and the randomly
760 * set "sequence" number out of a UUID.
761 */
762 mp->m_fixedfsid[0] =
763 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
764 get_unaligned_be16(&sbp->sb_uuid.b[4]);
765 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
766
767 error = xfs_da_mount(mp);
768 if (error) {
769 xfs_warn(mp, "Failed dir/attr init: %d", error);
770 goto out_remove_uuid;
771 }
772
773 /*
774 * Initialize the precomputed transaction reservations values.
775 */
776 xfs_trans_init(mp);
777
778 /*
779 * Allocate and initialize the per-ag data.
780 */
781 error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
782 &mp->m_maxagi);
783 if (error) {
784 xfs_warn(mp, "Failed per-ag init: %d", error);
785 goto out_free_dir;
786 }
787
788 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
789 xfs_warn(mp, "no log defined");
790 error = -EFSCORRUPTED;
791 goto out_free_perag;
792 }
793
794 error = xfs_inodegc_register_shrinker(mp);
795 if (error)
796 goto out_fail_wait;
797
798 /*
799 * Log's mount-time initialization. The first part of recovery can place
800 * some items on the AIL, to be handled when recovery is finished or
801 * cancelled.
802 */
803 error = xfs_log_mount(mp, mp->m_logdev_targp,
804 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
805 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
806 if (error) {
807 xfs_warn(mp, "log mount failed");
808 goto out_inodegc_shrinker;
809 }
810
811 /* Enable background inode inactivation workers. */
812 xfs_inodegc_start(mp);
813 xfs_blockgc_start(mp);
814
815 /*
816 * Now that we've recovered any pending superblock feature bit
817 * additions, we can finish setting up the attr2 behaviour for the
818 * mount. The noattr2 option overrides the superblock flag, so only
819 * check the superblock feature flag if the mount option is not set.
820 */
821 if (xfs_has_noattr2(mp)) {
822 mp->m_features &= ~XFS_FEAT_ATTR2;
823 } else if (!xfs_has_attr2(mp) &&
824 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
825 mp->m_features |= XFS_FEAT_ATTR2;
826 }
827
828 /*
829 * Get and sanity-check the root inode.
830 * Save the pointer to it in the mount structure.
831 */
832 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
833 XFS_ILOCK_EXCL, &rip);
834 if (error) {
835 xfs_warn(mp,
836 "Failed to read root inode 0x%llx, error %d",
837 sbp->sb_rootino, -error);
838 goto out_log_dealloc;
839 }
840
841 ASSERT(rip != NULL);
842
843 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
844 xfs_warn(mp, "corrupted root inode %llu: not a directory",
845 (unsigned long long)rip->i_ino);
846 xfs_iunlock(rip, XFS_ILOCK_EXCL);
847 error = -EFSCORRUPTED;
848 goto out_rele_rip;
849 }
850 mp->m_rootip = rip; /* save it */
851
852 xfs_iunlock(rip, XFS_ILOCK_EXCL);
853
854 /*
855 * Initialize realtime inode pointers in the mount structure
856 */
857 error = xfs_rtmount_inodes(mp);
858 if (error) {
859 /*
860 * Free up the root inode.
861 */
862 xfs_warn(mp, "failed to read RT inodes");
863 goto out_rele_rip;
864 }
865
866 /* Make sure the summary counts are ok. */
867 error = xfs_check_summary_counts(mp);
868 if (error)
869 goto out_rtunmount;
870
871 /*
872 * If this is a read-only mount defer the superblock updates until
873 * the next remount into writeable mode. Otherwise we would never
874 * perform the update e.g. for the root filesystem.
875 */
876 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
877 error = xfs_sync_sb(mp, false);
878 if (error) {
879 xfs_warn(mp, "failed to write sb changes");
880 goto out_rtunmount;
881 }
882 }
883
884 /*
885 * Initialise the XFS quota management subsystem for this mount
886 */
887 if (XFS_IS_QUOTA_ON(mp)) {
888 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
889 if (error)
890 goto out_rtunmount;
891 } else {
892 /*
893 * If a file system had quotas running earlier, but decided to
894 * mount without -o uquota/pquota/gquota options, revoke the
895 * quotachecked license.
896 */
897 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
898 xfs_notice(mp, "resetting quota flags");
899 error = xfs_mount_reset_sbqflags(mp);
900 if (error)
901 goto out_rtunmount;
902 }
903 }
904
905 /*
906 * Finish recovering the file system. This part needed to be delayed
907 * until after the root and real-time bitmap inodes were consistently
908 * read in. Temporarily create per-AG space reservations for metadata
909 * btree shape changes because space freeing transactions (for inode
910 * inactivation) require the per-AG reservation in lieu of reserving
911 * blocks.
912 */
913 error = xfs_fs_reserve_ag_blocks(mp);
914 if (error && error == -ENOSPC)
915 xfs_warn(mp,
916 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
917 error = xfs_log_mount_finish(mp);
918 xfs_fs_unreserve_ag_blocks(mp);
919 if (error) {
920 xfs_warn(mp, "log mount finish failed");
921 goto out_rtunmount;
922 }
923
924 /*
925 * Now the log is fully replayed, we can transition to full read-only
926 * mode for read-only mounts. This will sync all the metadata and clean
927 * the log so that the recovery we just performed does not have to be
928 * replayed again on the next mount.
929 *
930 * We use the same quiesce mechanism as the rw->ro remount, as they are
931 * semantically identical operations.
932 */
933 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
934 xfs_log_clean(mp);
935
936 /*
937 * Complete the quota initialisation, post-log-replay component.
938 */
939 if (quotamount) {
940 ASSERT(mp->m_qflags == 0);
941 mp->m_qflags = quotaflags;
942
943 xfs_qm_mount_quotas(mp);
944 }
945
946 /*
947 * Now we are mounted, reserve a small amount of unused space for
948 * privileged transactions. This is needed so that transaction
949 * space required for critical operations can dip into this pool
950 * when at ENOSPC. This is needed for operations like create with
951 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
952 * are not allowed to use this reserved space.
953 *
954 * This may drive us straight to ENOSPC on mount, but that implies
955 * we were already there on the last unmount. Warn if this occurs.
956 */
957 if (!xfs_is_readonly(mp)) {
958 resblks = xfs_default_resblks(mp);
959 error = xfs_reserve_blocks(mp, &resblks, NULL);
960 if (error)
961 xfs_warn(mp,
962 "Unable to allocate reserve blocks. Continuing without reserve pool.");
963
964 /* Reserve AG blocks for future btree expansion. */
965 error = xfs_fs_reserve_ag_blocks(mp);
966 if (error && error != -ENOSPC)
967 goto out_agresv;
968 }
969
970 return 0;
971
972 out_agresv:
973 xfs_fs_unreserve_ag_blocks(mp);
974 xfs_qm_unmount_quotas(mp);
975 out_rtunmount:
976 xfs_rtunmount_inodes(mp);
977 out_rele_rip:
978 xfs_irele(rip);
979 /* Clean out dquots that might be in memory after quotacheck. */
980 xfs_qm_unmount(mp);
981
982 /*
983 * Inactivate all inodes that might still be in memory after a log
984 * intent recovery failure so that reclaim can free them. Metadata
985 * inodes and the root directory shouldn't need inactivation, but the
986 * mount failed for some reason, so pull down all the state and flee.
987 */
988 xfs_inodegc_flush(mp);
989
990 /*
991 * Flush all inode reclamation work and flush the log.
992 * We have to do this /after/ rtunmount and qm_unmount because those
993 * two will have scheduled delayed reclaim for the rt/quota inodes.
994 *
995 * This is slightly different from the unmountfs call sequence
996 * because we could be tearing down a partially set up mount. In
997 * particular, if log_mount_finish fails we bail out without calling
998 * qm_unmount_quotas and therefore rely on qm_unmount to release the
999 * quota inodes.
1000 */
1001 xfs_unmount_flush_inodes(mp);
1002 out_log_dealloc:
1003 xfs_log_mount_cancel(mp);
1004 out_inodegc_shrinker:
1005 unregister_shrinker(&mp->m_inodegc_shrinker);
1006 out_fail_wait:
1007 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1008 xfs_buftarg_drain(mp->m_logdev_targp);
1009 xfs_buftarg_drain(mp->m_ddev_targp);
1010 out_free_perag:
1011 xfs_free_perag(mp);
1012 out_free_dir:
1013 xfs_da_unmount(mp);
1014 out_remove_uuid:
1015 xfs_uuid_unmount(mp);
1016 out_remove_errortag:
1017 xfs_errortag_del(mp);
1018 out_remove_error_sysfs:
1019 xfs_error_sysfs_del(mp);
1020 out_del_stats:
1021 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1022 out_remove_sysfs:
1023 xfs_sysfs_del(&mp->m_kobj);
1024 out:
1025 return error;
1026 }
1027
1028 /*
1029 * This flushes out the inodes,dquots and the superblock, unmounts the
1030 * log and makes sure that incore structures are freed.
1031 */
1032 void
1033 xfs_unmountfs(
1034 struct xfs_mount *mp)
1035 {
1036 uint64_t resblks;
1037 int error;
1038
1039 /*
1040 * Perform all on-disk metadata updates required to inactivate inodes
1041 * that the VFS evicted earlier in the unmount process. Freeing inodes
1042 * and discarding CoW fork preallocations can cause shape changes to
1043 * the free inode and refcount btrees, respectively, so we must finish
1044 * this before we discard the metadata space reservations. Metadata
1045 * inodes and the root directory do not require inactivation.
1046 */
1047 xfs_inodegc_flush(mp);
1048
1049 xfs_blockgc_stop(mp);
1050 xfs_fs_unreserve_ag_blocks(mp);
1051 xfs_qm_unmount_quotas(mp);
1052 xfs_rtunmount_inodes(mp);
1053 xfs_irele(mp->m_rootip);
1054
1055 xfs_unmount_flush_inodes(mp);
1056
1057 xfs_qm_unmount(mp);
1058
1059 /*
1060 * Unreserve any blocks we have so that when we unmount we don't account
1061 * the reserved free space as used. This is really only necessary for
1062 * lazy superblock counting because it trusts the incore superblock
1063 * counters to be absolutely correct on clean unmount.
1064 *
1065 * We don't bother correcting this elsewhere for lazy superblock
1066 * counting because on mount of an unclean filesystem we reconstruct the
1067 * correct counter value and this is irrelevant.
1068 *
1069 * For non-lazy counter filesystems, this doesn't matter at all because
1070 * we only every apply deltas to the superblock and hence the incore
1071 * value does not matter....
1072 */
1073 resblks = 0;
1074 error = xfs_reserve_blocks(mp, &resblks, NULL);
1075 if (error)
1076 xfs_warn(mp, "Unable to free reserved block pool. "
1077 "Freespace may not be correct on next mount.");
1078
1079 xfs_log_unmount(mp);
1080 xfs_da_unmount(mp);
1081 xfs_uuid_unmount(mp);
1082
1083 #if defined(DEBUG)
1084 xfs_errortag_clearall(mp);
1085 #endif
1086 unregister_shrinker(&mp->m_inodegc_shrinker);
1087 xfs_free_perag(mp);
1088
1089 xfs_errortag_del(mp);
1090 xfs_error_sysfs_del(mp);
1091 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1092 xfs_sysfs_del(&mp->m_kobj);
1093 }
1094
1095 /*
1096 * Determine whether modifications can proceed. The caller specifies the minimum
1097 * freeze level for which modifications should not be allowed. This allows
1098 * certain operations to proceed while the freeze sequence is in progress, if
1099 * necessary.
1100 */
1101 bool
1102 xfs_fs_writable(
1103 struct xfs_mount *mp,
1104 int level)
1105 {
1106 ASSERT(level > SB_UNFROZEN);
1107 if ((mp->m_super->s_writers.frozen >= level) ||
1108 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1109 return false;
1110
1111 return true;
1112 }
1113
1114 /* Adjust m_fdblocks or m_frextents. */
1115 int
1116 xfs_mod_freecounter(
1117 struct xfs_mount *mp,
1118 struct percpu_counter *counter,
1119 int64_t delta,
1120 bool rsvd)
1121 {
1122 int64_t lcounter;
1123 long long res_used;
1124 uint64_t set_aside = 0;
1125 s32 batch;
1126 bool has_resv_pool;
1127
1128 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1129 has_resv_pool = (counter == &mp->m_fdblocks);
1130 if (rsvd)
1131 ASSERT(has_resv_pool);
1132
1133 if (delta > 0) {
1134 /*
1135 * If the reserve pool is depleted, put blocks back into it
1136 * first. Most of the time the pool is full.
1137 */
1138 if (likely(!has_resv_pool ||
1139 mp->m_resblks == mp->m_resblks_avail)) {
1140 percpu_counter_add(counter, delta);
1141 return 0;
1142 }
1143
1144 spin_lock(&mp->m_sb_lock);
1145 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1146
1147 if (res_used > delta) {
1148 mp->m_resblks_avail += delta;
1149 } else {
1150 delta -= res_used;
1151 mp->m_resblks_avail = mp->m_resblks;
1152 percpu_counter_add(counter, delta);
1153 }
1154 spin_unlock(&mp->m_sb_lock);
1155 return 0;
1156 }
1157
1158 /*
1159 * Taking blocks away, need to be more accurate the closer we
1160 * are to zero.
1161 *
1162 * If the counter has a value of less than 2 * max batch size,
1163 * then make everything serialise as we are real close to
1164 * ENOSPC.
1165 */
1166 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1167 XFS_FDBLOCKS_BATCH) < 0)
1168 batch = 1;
1169 else
1170 batch = XFS_FDBLOCKS_BATCH;
1171
1172 /*
1173 * Set aside allocbt blocks because these blocks are tracked as free
1174 * space but not available for allocation. Technically this means that a
1175 * single reservation cannot consume all remaining free space, but the
1176 * ratio of allocbt blocks to usable free blocks should be rather small.
1177 * The tradeoff without this is that filesystems that maintain high
1178 * perag block reservations can over reserve physical block availability
1179 * and fail physical allocation, which leads to much more serious
1180 * problems (i.e. transaction abort, pagecache discards, etc.) than
1181 * slightly premature -ENOSPC.
1182 */
1183 if (has_resv_pool)
1184 set_aside = xfs_fdblocks_unavailable(mp);
1185 percpu_counter_add_batch(counter, delta, batch);
1186 if (__percpu_counter_compare(counter, set_aside,
1187 XFS_FDBLOCKS_BATCH) >= 0) {
1188 /* we had space! */
1189 return 0;
1190 }
1191
1192 /*
1193 * lock up the sb for dipping into reserves before releasing the space
1194 * that took us to ENOSPC.
1195 */
1196 spin_lock(&mp->m_sb_lock);
1197 percpu_counter_add(counter, -delta);
1198 if (!has_resv_pool || !rsvd)
1199 goto fdblocks_enospc;
1200
1201 lcounter = (long long)mp->m_resblks_avail + delta;
1202 if (lcounter >= 0) {
1203 mp->m_resblks_avail = lcounter;
1204 spin_unlock(&mp->m_sb_lock);
1205 return 0;
1206 }
1207 xfs_warn_once(mp,
1208 "Reserve blocks depleted! Consider increasing reserve pool size.");
1209
1210 fdblocks_enospc:
1211 spin_unlock(&mp->m_sb_lock);
1212 return -ENOSPC;
1213 }
1214
1215 /*
1216 * Used to free the superblock along various error paths.
1217 */
1218 void
1219 xfs_freesb(
1220 struct xfs_mount *mp)
1221 {
1222 struct xfs_buf *bp = mp->m_sb_bp;
1223
1224 xfs_buf_lock(bp);
1225 mp->m_sb_bp = NULL;
1226 xfs_buf_relse(bp);
1227 }
1228
1229 /*
1230 * If the underlying (data/log/rt) device is readonly, there are some
1231 * operations that cannot proceed.
1232 */
1233 int
1234 xfs_dev_is_read_only(
1235 struct xfs_mount *mp,
1236 char *message)
1237 {
1238 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1239 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1240 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1241 xfs_notice(mp, "%s required on read-only device.", message);
1242 xfs_notice(mp, "write access unavailable, cannot proceed.");
1243 return -EROFS;
1244 }
1245 return 0;
1246 }
1247
1248 /* Force the summary counters to be recalculated at next mount. */
1249 void
1250 xfs_force_summary_recalc(
1251 struct xfs_mount *mp)
1252 {
1253 if (!xfs_has_lazysbcount(mp))
1254 return;
1255
1256 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1257 }
1258
1259 /*
1260 * Enable a log incompat feature flag in the primary superblock. The caller
1261 * cannot have any other transactions in progress.
1262 */
1263 int
1264 xfs_add_incompat_log_feature(
1265 struct xfs_mount *mp,
1266 uint32_t feature)
1267 {
1268 struct xfs_dsb *dsb;
1269 int error;
1270
1271 ASSERT(hweight32(feature) == 1);
1272 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1273
1274 /*
1275 * Force the log to disk and kick the background AIL thread to reduce
1276 * the chances that the bwrite will stall waiting for the AIL to unpin
1277 * the primary superblock buffer. This isn't a data integrity
1278 * operation, so we don't need a synchronous push.
1279 */
1280 error = xfs_log_force(mp, XFS_LOG_SYNC);
1281 if (error)
1282 return error;
1283 xfs_ail_push_all(mp->m_ail);
1284
1285 /*
1286 * Lock the primary superblock buffer to serialize all callers that
1287 * are trying to set feature bits.
1288 */
1289 xfs_buf_lock(mp->m_sb_bp);
1290 xfs_buf_hold(mp->m_sb_bp);
1291
1292 if (xfs_is_shutdown(mp)) {
1293 error = -EIO;
1294 goto rele;
1295 }
1296
1297 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1298 goto rele;
1299
1300 /*
1301 * Write the primary superblock to disk immediately, because we need
1302 * the log_incompat bit to be set in the primary super now to protect
1303 * the log items that we're going to commit later.
1304 */
1305 dsb = mp->m_sb_bp->b_addr;
1306 xfs_sb_to_disk(dsb, &mp->m_sb);
1307 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1308 error = xfs_bwrite(mp->m_sb_bp);
1309 if (error)
1310 goto shutdown;
1311
1312 /*
1313 * Add the feature bits to the incore superblock before we unlock the
1314 * buffer.
1315 */
1316 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1317 xfs_buf_relse(mp->m_sb_bp);
1318
1319 /* Log the superblock to disk. */
1320 return xfs_sync_sb(mp, false);
1321 shutdown:
1322 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1323 rele:
1324 xfs_buf_relse(mp->m_sb_bp);
1325 return error;
1326 }
1327
1328 /*
1329 * Clear all the log incompat flags from the superblock.
1330 *
1331 * The caller cannot be in a transaction, must ensure that the log does not
1332 * contain any log items protected by any log incompat bit, and must ensure
1333 * that there are no other threads that depend on the state of the log incompat
1334 * feature flags in the primary super.
1335 *
1336 * Returns true if the superblock is dirty.
1337 */
1338 bool
1339 xfs_clear_incompat_log_features(
1340 struct xfs_mount *mp)
1341 {
1342 bool ret = false;
1343
1344 if (!xfs_has_crc(mp) ||
1345 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1346 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1347 xfs_is_shutdown(mp))
1348 return false;
1349
1350 /*
1351 * Update the incore superblock. We synchronize on the primary super
1352 * buffer lock to be consistent with the add function, though at least
1353 * in theory this shouldn't be necessary.
1354 */
1355 xfs_buf_lock(mp->m_sb_bp);
1356 xfs_buf_hold(mp->m_sb_bp);
1357
1358 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1359 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1360 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1361 ret = true;
1362 }
1363
1364 xfs_buf_relse(mp->m_sb_bp);
1365 return ret;
1366 }
1367
1368 /*
1369 * Update the in-core delayed block counter.
1370 *
1371 * We prefer to update the counter without having to take a spinlock for every
1372 * counter update (i.e. batching). Each change to delayed allocation
1373 * reservations can change can easily exceed the default percpu counter
1374 * batching, so we use a larger batch factor here.
1375 *
1376 * Note that we don't currently have any callers requiring fast summation
1377 * (e.g. percpu_counter_read) so we can use a big batch value here.
1378 */
1379 #define XFS_DELALLOC_BATCH (4096)
1380 void
1381 xfs_mod_delalloc(
1382 struct xfs_mount *mp,
1383 int64_t delta)
1384 {
1385 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1386 XFS_DELALLOC_BATCH);
1387 }