]> git.ipfire.org Git - people/ms/u-boot.git/blob - fs/zfs/zfs.c
Merge branch 'master' of git://git.denx.de/u-boot-avr32
[people/ms/u-boot.git] / fs / zfs / zfs.c
1 /*
2 *
3 * ZFS filesystem ported to u-boot by
4 * Jorgen Lundman <lundman at lundman.net>
5 *
6 * GRUB -- GRand Unified Bootloader
7 * Copyright (C) 1999,2000,2001,2002,2003,2004
8 * Free Software Foundation, Inc.
9 * Copyright 2004 Sun Microsystems, Inc.
10 *
11 * GRUB is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * GRUB is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
23 *
24 */
25
26 #include <common.h>
27 #include <malloc.h>
28 #include <linux/stat.h>
29 #include <linux/time.h>
30 #include <linux/ctype.h>
31 #include <asm/byteorder.h>
32 #include "zfs_common.h"
33
34 block_dev_desc_t *zfs_dev_desc;
35
36 /*
37 * The zfs plug-in routines for GRUB are:
38 *
39 * zfs_mount() - locates a valid uberblock of the root pool and reads
40 * in its MOS at the memory address MOS.
41 *
42 * zfs_open() - locates a plain file object by following the MOS
43 * and places its dnode at the memory address DNODE.
44 *
45 * zfs_read() - read in the data blocks pointed by the DNODE.
46 *
47 */
48
49 #include <zfs/zfs.h>
50 #include <zfs/zio.h>
51 #include <zfs/dnode.h>
52 #include <zfs/uberblock_impl.h>
53 #include <zfs/vdev_impl.h>
54 #include <zfs/zio_checksum.h>
55 #include <zfs/zap_impl.h>
56 #include <zfs/zap_leaf.h>
57 #include <zfs/zfs_znode.h>
58 #include <zfs/dmu.h>
59 #include <zfs/dmu_objset.h>
60 #include <zfs/sa_impl.h>
61 #include <zfs/dsl_dir.h>
62 #include <zfs/dsl_dataset.h>
63
64
65 #define ZPOOL_PROP_BOOTFS "bootfs"
66
67
68 /*
69 * For nvlist manipulation. (from nvpair.h)
70 */
71 #define NV_ENCODE_NATIVE 0
72 #define NV_ENCODE_XDR 1
73 #define NV_BIG_ENDIAN 0
74 #define NV_LITTLE_ENDIAN 1
75 #define DATA_TYPE_UINT64 8
76 #define DATA_TYPE_STRING 9
77 #define DATA_TYPE_NVLIST 19
78 #define DATA_TYPE_NVLIST_ARRAY 20
79
80
81 /*
82 * Macros to get fields in a bp or DVA.
83 */
84 #define P2PHASE(x, align) ((x) & ((align) - 1))
85 #define DVA_OFFSET_TO_PHYS_SECTOR(offset) \
86 ((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT)
87
88 /*
89 * return x rounded down to an align boundary
90 * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
91 * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
92 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
93 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
94 */
95 #define P2ALIGN(x, align) ((x) & -(align))
96
97 /*
98 * FAT ZAP data structures
99 */
100 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
101 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
102 #define CHAIN_END 0xffff /* end of the chunk chain */
103
104 /*
105 * The amount of space within the chunk available for the array is:
106 * chunk size - space for type (1) - space for next pointer (2)
107 */
108 #define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
109
110 #define ZAP_LEAF_HASH_SHIFT(bs) (bs - 5)
111 #define ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs))
112 #define LEAF_HASH(bs, h) \
113 ((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) & \
114 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len)))
115
116 /*
117 * The amount of space available for chunks is:
118 * block size shift - hash entry size (2) * number of hash
119 * entries - header space (2*chunksize)
120 */
121 #define ZAP_LEAF_NUMCHUNKS(bs) \
122 (((1<<bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(bs)) / \
123 ZAP_LEAF_CHUNKSIZE - 2)
124
125 /*
126 * The chunks start immediately after the hash table. The end of the
127 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
128 * chunk_t.
129 */
130 #define ZAP_LEAF_CHUNK(l, bs, idx) \
131 ((zap_leaf_chunk_t *)(l->l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx]
132 #define ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry)
133
134
135 /*
136 * Decompression Entry - lzjb
137 */
138 #ifndef NBBY
139 #define NBBY 8
140 #endif
141
142
143
144 typedef int zfs_decomp_func_t(void *s_start, void *d_start,
145 uint32_t s_len, uint32_t d_len);
146 typedef struct decomp_entry {
147 char *name;
148 zfs_decomp_func_t *decomp_func;
149 } decomp_entry_t;
150
151 typedef struct dnode_end {
152 dnode_phys_t dn;
153 zfs_endian_t endian;
154 } dnode_end_t;
155
156 struct zfs_data {
157 /* cache for a file block of the currently zfs_open()-ed file */
158 char *file_buf;
159 uint64_t file_start;
160 uint64_t file_end;
161
162 /* XXX: ashift is per vdev, not per pool. We currently only ever touch
163 * a single vdev, but when/if raid-z or stripes are supported, this
164 * may need revision.
165 */
166 uint64_t vdev_ashift;
167 uint64_t label_txg;
168 uint64_t pool_guid;
169
170 /* cache for a dnode block */
171 dnode_phys_t *dnode_buf;
172 dnode_phys_t *dnode_mdn;
173 uint64_t dnode_start;
174 uint64_t dnode_end;
175 zfs_endian_t dnode_endian;
176
177 uberblock_t current_uberblock;
178
179 dnode_end_t mos;
180 dnode_end_t mdn;
181 dnode_end_t dnode;
182
183 uint64_t vdev_phys_sector;
184
185 int (*userhook)(const char *, const struct zfs_dirhook_info *);
186 struct zfs_dirhook_info *dirinfo;
187
188 };
189
190
191
192
193 static int
194 zlib_decompress(void *s, void *d,
195 uint32_t slen, uint32_t dlen)
196 {
197 if (zlib_decompress(s, d, slen, dlen) < 0)
198 return ZFS_ERR_BAD_FS;
199 return ZFS_ERR_NONE;
200 }
201
202 static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = {
203 {"inherit", NULL}, /* ZIO_COMPRESS_INHERIT */
204 {"on", lzjb_decompress}, /* ZIO_COMPRESS_ON */
205 {"off", NULL}, /* ZIO_COMPRESS_OFF */
206 {"lzjb", lzjb_decompress}, /* ZIO_COMPRESS_LZJB */
207 {"empty", NULL}, /* ZIO_COMPRESS_EMPTY */
208 {"gzip-1", zlib_decompress}, /* ZIO_COMPRESS_GZIP1 */
209 {"gzip-2", zlib_decompress}, /* ZIO_COMPRESS_GZIP2 */
210 {"gzip-3", zlib_decompress}, /* ZIO_COMPRESS_GZIP3 */
211 {"gzip-4", zlib_decompress}, /* ZIO_COMPRESS_GZIP4 */
212 {"gzip-5", zlib_decompress}, /* ZIO_COMPRESS_GZIP5 */
213 {"gzip-6", zlib_decompress}, /* ZIO_COMPRESS_GZIP6 */
214 {"gzip-7", zlib_decompress}, /* ZIO_COMPRESS_GZIP7 */
215 {"gzip-8", zlib_decompress}, /* ZIO_COMPRESS_GZIP8 */
216 {"gzip-9", zlib_decompress}, /* ZIO_COMPRESS_GZIP9 */
217 };
218
219
220
221 static int zio_read_data(blkptr_t *bp, zfs_endian_t endian,
222 void *buf, struct zfs_data *data);
223
224 static int
225 zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
226 size_t *size, struct zfs_data *data);
227
228 /*
229 * Our own version of log2(). Same thing as highbit()-1.
230 */
231 static int
232 zfs_log2(uint64_t num)
233 {
234 int i = 0;
235
236 while (num > 1) {
237 i++;
238 num = num >> 1;
239 }
240
241 return i;
242 }
243
244
245 /* Checksum Functions */
246 static void
247 zio_checksum_off(const void *buf __attribute__ ((unused)),
248 uint64_t size __attribute__ ((unused)),
249 zfs_endian_t endian __attribute__ ((unused)),
250 zio_cksum_t *zcp)
251 {
252 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
253 }
254
255 /* Checksum Table and Values */
256 static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
257 {NULL, 0, 0, "inherit"},
258 {NULL, 0, 0, "on"},
259 {zio_checksum_off, 0, 0, "off"},
260 {zio_checksum_SHA256, 1, 1, "label"},
261 {zio_checksum_SHA256, 1, 1, "gang_header"},
262 {NULL, 0, 0, "zilog"},
263 {fletcher_2_endian, 0, 0, "fletcher2"},
264 {fletcher_4_endian, 1, 0, "fletcher4"},
265 {zio_checksum_SHA256, 1, 0, "SHA256"},
266 {NULL, 0, 0, "zilog2"},
267 };
268
269 /*
270 * zio_checksum_verify: Provides support for checksum verification.
271 *
272 * Fletcher2, Fletcher4, and SHA256 are supported.
273 *
274 */
275 static int
276 zio_checksum_verify(zio_cksum_t zc, uint32_t checksum,
277 zfs_endian_t endian, char *buf, int size)
278 {
279 zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1;
280 zio_checksum_info_t *ci = &zio_checksum_table[checksum];
281 zio_cksum_t actual_cksum, expected_cksum;
282
283 if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) {
284 printf("zfs unknown checksum function %d\n", checksum);
285 return ZFS_ERR_NOT_IMPLEMENTED_YET;
286 }
287
288 if (ci->ci_eck) {
289 expected_cksum = zec->zec_cksum;
290 zec->zec_cksum = zc;
291 ci->ci_func(buf, size, endian, &actual_cksum);
292 zec->zec_cksum = expected_cksum;
293 zc = expected_cksum;
294 } else {
295 ci->ci_func(buf, size, endian, &actual_cksum);
296 }
297
298 if ((actual_cksum.zc_word[0] != zc.zc_word[0])
299 || (actual_cksum.zc_word[1] != zc.zc_word[1])
300 || (actual_cksum.zc_word[2] != zc.zc_word[2])
301 || (actual_cksum.zc_word[3] != zc.zc_word[3])) {
302 return ZFS_ERR_BAD_FS;
303 }
304
305 return ZFS_ERR_NONE;
306 }
307
308 /*
309 * vdev_uberblock_compare takes two uberblock structures and returns an integer
310 * indicating the more recent of the two.
311 * Return Value = 1 if ub2 is more recent
312 * Return Value = -1 if ub1 is more recent
313 * The most recent uberblock is determined using its transaction number and
314 * timestamp. The uberblock with the highest transaction number is
315 * considered "newer". If the transaction numbers of the two blocks match, the
316 * timestamps are compared to determine the "newer" of the two.
317 */
318 static int
319 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
320 {
321 zfs_endian_t ub1_endian, ub2_endian;
322 if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
323 ub1_endian = LITTLE_ENDIAN;
324 else
325 ub1_endian = BIG_ENDIAN;
326 if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
327 ub2_endian = LITTLE_ENDIAN;
328 else
329 ub2_endian = BIG_ENDIAN;
330
331 if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
332 < zfs_to_cpu64(ub2->ub_txg, ub2_endian))
333 return -1;
334 if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
335 > zfs_to_cpu64(ub2->ub_txg, ub2_endian))
336 return 1;
337
338 if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
339 < zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
340 return -1;
341 if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
342 > zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
343 return 1;
344
345 return 0;
346 }
347
348 /*
349 * Three pieces of information are needed to verify an uberblock: the magic
350 * number, the version number, and the checksum.
351 *
352 * Currently Implemented: version number, magic number, label txg
353 * Need to Implement: checksum
354 *
355 */
356 static int
357 uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data)
358 {
359 int err;
360 zfs_endian_t endian = UNKNOWN_ENDIAN;
361 zio_cksum_t zc;
362
363 if (uber->ub_txg < data->label_txg) {
364 debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n",
365 uber->ub_txg, data->label_txg);
366 return ZFS_ERR_BAD_FS;
367 }
368
369 if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
370 && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) > 0
371 && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION)
372 endian = LITTLE_ENDIAN;
373
374 if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC
375 && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) > 0
376 && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) <= SPA_VERSION)
377 endian = BIG_ENDIAN;
378
379 if (endian == UNKNOWN_ENDIAN) {
380 printf("invalid uberblock magic\n");
381 return ZFS_ERR_BAD_FS;
382 }
383
384 memset(&zc, 0, sizeof(zc));
385 zc.zc_word[0] = cpu_to_zfs64(offset, endian);
386 err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian,
387 (char *) uber, UBERBLOCK_SIZE(data->vdev_ashift));
388
389 if (!err) {
390 /* Check that the data pointed by the rootbp is usable. */
391 void *osp = NULL;
392 size_t ospsize;
393 err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data);
394 free(osp);
395
396 if (!err && ospsize < OBJSET_PHYS_SIZE_V14) {
397 printf("uberblock rootbp points to invalid data\n");
398 return ZFS_ERR_BAD_FS;
399 }
400 }
401
402 return err;
403 }
404
405 /*
406 * Find the best uberblock.
407 * Return:
408 * Success - Pointer to the best uberblock.
409 * Failure - NULL
410 */
411 static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data)
412 {
413 const uint64_t sector = data->vdev_phys_sector;
414 uberblock_t *ubbest = NULL;
415 uberblock_t *ubnext;
416 unsigned int i, offset, pickedub = 0;
417 int err = ZFS_ERR_NONE;
418
419 const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift);
420 const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift);
421
422 for (i = 0; i < UBCOUNT; i++) {
423 ubnext = (uberblock_t *) (i * UBBYTES + ub_array);
424 offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES);
425
426 err = uberblock_verify(ubnext, offset, data);
427 if (err)
428 continue;
429
430 if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) {
431 ubbest = ubnext;
432 pickedub = i;
433 }
434 }
435
436 if (ubbest)
437 debug("zfs Found best uberblock at idx %d, txg %llu\n",
438 pickedub, (unsigned long long) ubbest->ub_txg);
439
440 return ubbest;
441 }
442
443 static inline size_t
444 get_psize(blkptr_t *bp, zfs_endian_t endian)
445 {
446 return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1)
447 << SPA_MINBLOCKSHIFT;
448 }
449
450 static uint64_t
451 dva_get_offset(dva_t *dva, zfs_endian_t endian)
452 {
453 return zfs_to_cpu64((dva)->dva_word[1],
454 endian) << SPA_MINBLOCKSHIFT;
455 }
456
457 /*
458 * Read a block of data based on the gang block address dva,
459 * and put its data in buf.
460 *
461 */
462 static int
463 zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf,
464 struct zfs_data *data)
465 {
466 zio_gbh_phys_t *zio_gb;
467 uint64_t offset, sector;
468 unsigned i;
469 int err;
470 zio_cksum_t zc;
471
472 memset(&zc, 0, sizeof(zc));
473
474 zio_gb = malloc(SPA_GANGBLOCKSIZE);
475 if (!zio_gb)
476 return ZFS_ERR_OUT_OF_MEMORY;
477
478 offset = dva_get_offset(dva, endian);
479 sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
480
481 /* read in the gang block header */
482 err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb);
483
484 if (err) {
485 free(zio_gb);
486 return err;
487 }
488
489 /* XXX */
490 /* self checksuming the gang block header */
491 ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva),
492 dva_get_offset(dva, endian), bp->blk_birth, 0);
493 err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian,
494 (char *) zio_gb, SPA_GANGBLOCKSIZE);
495 if (err) {
496 free(zio_gb);
497 return err;
498 }
499
500 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
501
502 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
503 if (zio_gb->zg_blkptr[i].blk_birth == 0)
504 continue;
505
506 err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data);
507 if (err) {
508 free(zio_gb);
509 return err;
510 }
511 buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian);
512 }
513 free(zio_gb);
514 return ZFS_ERR_NONE;
515 }
516
517 /*
518 * Read in a block of raw data to buf.
519 */
520 static int
521 zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf,
522 struct zfs_data *data)
523 {
524 int i, psize;
525 int err = ZFS_ERR_NONE;
526
527 psize = get_psize(bp, endian);
528
529 /* pick a good dva from the block pointer */
530 for (i = 0; i < SPA_DVAS_PER_BP; i++) {
531 uint64_t offset, sector;
532
533 if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0)
534 continue;
535
536 if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) {
537 err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data);
538 } else {
539 /* read in a data block */
540 offset = dva_get_offset(&bp->blk_dva[i], endian);
541 sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
542
543 err = zfs_devread(sector, 0, psize, buf);
544 }
545
546 if (!err) {
547 /*Check the underlying checksum before we rule this DVA as "good"*/
548 uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff;
549
550 err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize);
551 if (!err)
552 return ZFS_ERR_NONE;
553 }
554
555 /* If read failed or checksum bad, reset the error. Hopefully we've got some more DVA's to try.*/
556 }
557
558 if (!err) {
559 printf("couldn't find a valid DVA\n");
560 err = ZFS_ERR_BAD_FS;
561 }
562
563 return err;
564 }
565
566 /*
567 * Read in a block of data, verify its checksum, decompress if needed,
568 * and put the uncompressed data in buf.
569 */
570 static int
571 zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
572 size_t *size, struct zfs_data *data)
573 {
574 size_t lsize, psize;
575 unsigned int comp;
576 char *compbuf = NULL;
577 int err;
578
579 *buf = NULL;
580
581 comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff;
582 lsize = (BP_IS_HOLE(bp) ? 0 :
583 (((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1)
584 << SPA_MINBLOCKSHIFT));
585 psize = get_psize(bp, endian);
586
587 if (size)
588 *size = lsize;
589
590 if (comp >= ZIO_COMPRESS_FUNCTIONS) {
591 printf("compression algorithm %u not supported\n", (unsigned int) comp);
592 return ZFS_ERR_NOT_IMPLEMENTED_YET;
593 }
594
595 if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) {
596 printf("compression algorithm %s not supported\n", decomp_table[comp].name);
597 return ZFS_ERR_NOT_IMPLEMENTED_YET;
598 }
599
600 if (comp != ZIO_COMPRESS_OFF) {
601 compbuf = malloc(psize);
602 if (!compbuf)
603 return ZFS_ERR_OUT_OF_MEMORY;
604 } else {
605 compbuf = *buf = malloc(lsize);
606 }
607
608 err = zio_read_data(bp, endian, compbuf, data);
609 if (err) {
610 free(compbuf);
611 *buf = NULL;
612 return err;
613 }
614
615 if (comp != ZIO_COMPRESS_OFF) {
616 *buf = malloc(lsize);
617 if (!*buf) {
618 free(compbuf);
619 return ZFS_ERR_OUT_OF_MEMORY;
620 }
621
622 err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize);
623 free(compbuf);
624 if (err) {
625 free(*buf);
626 *buf = NULL;
627 return err;
628 }
629 }
630
631 return ZFS_ERR_NONE;
632 }
633
634 /*
635 * Get the block from a block id.
636 * push the block onto the stack.
637 *
638 */
639 static int
640 dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf,
641 zfs_endian_t *endian_out, struct zfs_data *data)
642 {
643 int idx, level;
644 blkptr_t *bp_array = dn->dn.dn_blkptr;
645 int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT;
646 blkptr_t *bp;
647 void *tmpbuf = 0;
648 zfs_endian_t endian;
649 int err = ZFS_ERR_NONE;
650
651 bp = malloc(sizeof(blkptr_t));
652 if (!bp)
653 return ZFS_ERR_OUT_OF_MEMORY;
654
655 endian = dn->endian;
656 for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) {
657 idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1);
658 *bp = bp_array[idx];
659 if (bp_array != dn->dn.dn_blkptr) {
660 free(bp_array);
661 bp_array = 0;
662 }
663
664 if (BP_IS_HOLE(bp)) {
665 size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec,
666 dn->endian)
667 << SPA_MINBLOCKSHIFT;
668 *buf = malloc(size);
669 if (*buf) {
670 err = ZFS_ERR_OUT_OF_MEMORY;
671 break;
672 }
673 memset(*buf, 0, size);
674 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
675 break;
676 }
677 if (level == 0) {
678 err = zio_read(bp, endian, buf, 0, data);
679 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
680 break;
681 }
682 err = zio_read(bp, endian, &tmpbuf, 0, data);
683 endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
684 if (err)
685 break;
686 bp_array = tmpbuf;
687 }
688 if (bp_array != dn->dn.dn_blkptr)
689 free(bp_array);
690 if (endian_out)
691 *endian_out = endian;
692
693 free(bp);
694 return err;
695 }
696
697 /*
698 * mzap_lookup: Looks up property described by "name" and returns the value
699 * in "value".
700 */
701 static int
702 mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian,
703 int objsize, char *name, uint64_t * value)
704 {
705 int i, chunks;
706 mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
707
708 chunks = objsize / MZAP_ENT_LEN - 1;
709 for (i = 0; i < chunks; i++) {
710 if (strcmp(mzap_ent[i].mze_name, name) == 0) {
711 *value = zfs_to_cpu64(mzap_ent[i].mze_value, endian);
712 return ZFS_ERR_NONE;
713 }
714 }
715
716 printf("couldn't find '%s'\n", name);
717 return ZFS_ERR_FILE_NOT_FOUND;
718 }
719
720 static int
721 mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize,
722 int (*hook)(const char *name,
723 uint64_t val,
724 struct zfs_data *data),
725 struct zfs_data *data)
726 {
727 int i, chunks;
728 mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
729
730 chunks = objsize / MZAP_ENT_LEN - 1;
731 for (i = 0; i < chunks; i++) {
732 if (hook(mzap_ent[i].mze_name,
733 zfs_to_cpu64(mzap_ent[i].mze_value, endian),
734 data))
735 return 1;
736 }
737
738 return 0;
739 }
740
741 static uint64_t
742 zap_hash(uint64_t salt, const char *name)
743 {
744 static uint64_t table[256];
745 const uint8_t *cp;
746 uint8_t c;
747 uint64_t crc = salt;
748
749 if (table[128] == 0) {
750 uint64_t *ct;
751 int i, j;
752 for (i = 0; i < 256; i++) {
753 for (ct = table + i, *ct = i, j = 8; j > 0; j--)
754 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
755 }
756 }
757
758 for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++)
759 crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF];
760
761 /*
762 * Only use 28 bits, since we need 4 bits in the cookie for the
763 * collision differentiator. We MUST use the high bits, since
764 * those are the onces that we first pay attention to when
765 * chosing the bucket.
766 */
767 crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
768
769 return crc;
770 }
771
772 /*
773 * Only to be used on 8-bit arrays.
774 * array_len is actual len in bytes (not encoded le_value_length).
775 * buf is null-terminated.
776 */
777 /* XXX */
778 static int
779 zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian,
780 int blksft, int chunk, int array_len, const char *buf)
781 {
782 int bseen = 0;
783
784 while (bseen < array_len) {
785 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
786 int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
787
788 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
789 return 0;
790
791 if (memcmp(la->la_array, buf + bseen, toread) != 0)
792 break;
793 chunk = zfs_to_cpu16(la->la_next, endian);
794 bseen += toread;
795 }
796 return (bseen == array_len);
797 }
798
799 /* XXX */
800 static int
801 zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft,
802 int chunk, int array_len, char *buf)
803 {
804 int bseen = 0;
805
806 while (bseen < array_len) {
807 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
808 int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
809
810 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
811 /* Don't use errno because this error is to be ignored. */
812 return ZFS_ERR_BAD_FS;
813
814 memcpy(buf + bseen, la->la_array, toread);
815 chunk = zfs_to_cpu16(la->la_next, endian);
816 bseen += toread;
817 }
818 return ZFS_ERR_NONE;
819 }
820
821
822 /*
823 * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the
824 * value for the property "name".
825 *
826 */
827 /* XXX */
828 static int
829 zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian,
830 int blksft, uint64_t h,
831 const char *name, uint64_t *value)
832 {
833 uint16_t chunk;
834 struct zap_leaf_entry *le;
835
836 /* Verify if this is a valid leaf block */
837 if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
838 printf("invalid leaf type\n");
839 return ZFS_ERR_BAD_FS;
840 }
841 if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
842 printf("invalid leaf magic\n");
843 return ZFS_ERR_BAD_FS;
844 }
845
846 for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian);
847 chunk != CHAIN_END; chunk = le->le_next) {
848
849 if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) {
850 printf("invalid chunk number\n");
851 return ZFS_ERR_BAD_FS;
852 }
853
854 le = ZAP_LEAF_ENTRY(l, blksft, chunk);
855
856 /* Verify the chunk entry */
857 if (le->le_type != ZAP_CHUNK_ENTRY) {
858 printf("invalid chunk entry\n");
859 return ZFS_ERR_BAD_FS;
860 }
861
862 if (zfs_to_cpu64(le->le_hash, endian) != h)
863 continue;
864
865 if (zap_leaf_array_equal(l, endian, blksft,
866 zfs_to_cpu16(le->le_name_chunk, endian),
867 zfs_to_cpu16(le->le_name_length, endian),
868 name)) {
869 struct zap_leaf_array *la;
870
871 if (le->le_int_size != 8 || le->le_value_length != 1) {
872 printf("invalid leaf chunk entry\n");
873 return ZFS_ERR_BAD_FS;
874 }
875 /* get the uint64_t property value */
876 la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
877
878 *value = be64_to_cpu(la->la_array64);
879
880 return ZFS_ERR_NONE;
881 }
882 }
883
884 printf("couldn't find '%s'\n", name);
885 return ZFS_ERR_FILE_NOT_FOUND;
886 }
887
888
889 /* Verify if this is a fat zap header block */
890 static int
891 zap_verify(zap_phys_t *zap)
892 {
893 if (zap->zap_magic != (uint64_t) ZAP_MAGIC) {
894 printf("bad ZAP magic\n");
895 return ZFS_ERR_BAD_FS;
896 }
897
898 if (zap->zap_flags != 0) {
899 printf("bad ZAP flags\n");
900 return ZFS_ERR_BAD_FS;
901 }
902
903 if (zap->zap_salt == 0) {
904 printf("bad ZAP salt\n");
905 return ZFS_ERR_BAD_FS;
906 }
907
908 return ZFS_ERR_NONE;
909 }
910
911 /*
912 * Fat ZAP lookup
913 *
914 */
915 /* XXX */
916 static int
917 fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap,
918 char *name, uint64_t *value, struct zfs_data *data)
919 {
920 void *l;
921 uint64_t hash, idx, blkid;
922 int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
923 zap_dnode->endian) << DNODE_SHIFT);
924 int err;
925 zfs_endian_t leafendian;
926
927 err = zap_verify(zap);
928 if (err)
929 return err;
930
931 hash = zap_hash(zap->zap_salt, name);
932
933 /* get block id from index */
934 if (zap->zap_ptrtbl.zt_numblks != 0) {
935 printf("external pointer tables not supported\n");
936 return ZFS_ERR_NOT_IMPLEMENTED_YET;
937 }
938 idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift);
939 blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
940
941 /* Get the leaf block */
942 if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
943 printf("ZAP leaf is too small\n");
944 return ZFS_ERR_BAD_FS;
945 }
946 err = dmu_read(zap_dnode, blkid, &l, &leafendian, data);
947 if (err)
948 return err;
949
950 err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value);
951 free(l);
952 return err;
953 }
954
955 /* XXX */
956 static int
957 fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap,
958 int (*hook)(const char *name,
959 uint64_t val,
960 struct zfs_data *data),
961 struct zfs_data *data)
962 {
963 zap_leaf_phys_t *l;
964 void *l_in;
965 uint64_t idx, blkid;
966 uint16_t chunk;
967 int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
968 zap_dnode->endian) << DNODE_SHIFT);
969 int err;
970 zfs_endian_t endian;
971
972 if (zap_verify(zap))
973 return 0;
974
975 /* get block id from index */
976 if (zap->zap_ptrtbl.zt_numblks != 0) {
977 printf("external pointer tables not supported\n");
978 return 0;
979 }
980 /* Get the leaf block */
981 if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
982 printf("ZAP leaf is too small\n");
983 return 0;
984 }
985 for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) {
986 blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
987
988 err = dmu_read(zap_dnode, blkid, &l_in, &endian, data);
989 l = l_in;
990 if (err)
991 continue;
992
993 /* Verify if this is a valid leaf block */
994 if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
995 free(l);
996 continue;
997 }
998 if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
999 free(l);
1000 continue;
1001 }
1002
1003 for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) {
1004 char *buf;
1005 struct zap_leaf_array *la;
1006 struct zap_leaf_entry *le;
1007 uint64_t val;
1008 le = ZAP_LEAF_ENTRY(l, blksft, chunk);
1009
1010 /* Verify the chunk entry */
1011 if (le->le_type != ZAP_CHUNK_ENTRY)
1012 continue;
1013
1014 buf = malloc(zfs_to_cpu16(le->le_name_length, endian)
1015 + 1);
1016 if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk,
1017 le->le_name_length, buf)) {
1018 free(buf);
1019 continue;
1020 }
1021 buf[le->le_name_length] = 0;
1022
1023 if (le->le_int_size != 8
1024 || zfs_to_cpu16(le->le_value_length, endian) != 1)
1025 continue;
1026
1027 /* get the uint64_t property value */
1028 la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
1029 val = be64_to_cpu(la->la_array64);
1030 if (hook(buf, val, data))
1031 return 1;
1032 free(buf);
1033 }
1034 }
1035 return 0;
1036 }
1037
1038
1039 /*
1040 * Read in the data of a zap object and find the value for a matching
1041 * property name.
1042 *
1043 */
1044 static int
1045 zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val,
1046 struct zfs_data *data)
1047 {
1048 uint64_t block_type;
1049 int size;
1050 void *zapbuf;
1051 int err;
1052 zfs_endian_t endian;
1053
1054 /* Read in the first block of the zap object data. */
1055 size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
1056 zap_dnode->endian) << SPA_MINBLOCKSHIFT;
1057 err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
1058 if (err)
1059 return err;
1060 block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
1061
1062 if (block_type == ZBT_MICRO) {
1063 err = (mzap_lookup(zapbuf, endian, size, name, val));
1064 free(zapbuf);
1065 return err;
1066 } else if (block_type == ZBT_HEADER) {
1067 /* this is a fat zap */
1068 err = (fzap_lookup(zap_dnode, zapbuf, name, val, data));
1069 free(zapbuf);
1070 return err;
1071 }
1072
1073 printf("unknown ZAP type\n");
1074 return ZFS_ERR_BAD_FS;
1075 }
1076
1077 static int
1078 zap_iterate(dnode_end_t *zap_dnode,
1079 int (*hook)(const char *name, uint64_t val,
1080 struct zfs_data *data),
1081 struct zfs_data *data)
1082 {
1083 uint64_t block_type;
1084 int size;
1085 void *zapbuf;
1086 int err;
1087 int ret;
1088 zfs_endian_t endian;
1089
1090 /* Read in the first block of the zap object data. */
1091 size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT;
1092 err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
1093 if (err)
1094 return 0;
1095 block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
1096
1097 if (block_type == ZBT_MICRO) {
1098 ret = mzap_iterate(zapbuf, endian, size, hook, data);
1099 free(zapbuf);
1100 return ret;
1101 } else if (block_type == ZBT_HEADER) {
1102 /* this is a fat zap */
1103 ret = fzap_iterate(zap_dnode, zapbuf, hook, data);
1104 free(zapbuf);
1105 return ret;
1106 }
1107 printf("unknown ZAP type\n");
1108 return 0;
1109 }
1110
1111
1112 /*
1113 * Get the dnode of an object number from the metadnode of an object set.
1114 *
1115 * Input
1116 * mdn - metadnode to get the object dnode
1117 * objnum - object number for the object dnode
1118 * buf - data buffer that holds the returning dnode
1119 */
1120 static int
1121 dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type,
1122 dnode_end_t *buf, struct zfs_data *data)
1123 {
1124 uint64_t blkid, blksz; /* the block id this object dnode is in */
1125 int epbs; /* shift of number of dnodes in a block */
1126 int idx; /* index within a block */
1127 void *dnbuf;
1128 int err;
1129 zfs_endian_t endian;
1130
1131 blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec,
1132 mdn->endian) << SPA_MINBLOCKSHIFT;
1133
1134 epbs = zfs_log2(blksz) - DNODE_SHIFT;
1135 blkid = objnum >> epbs;
1136 idx = objnum & ((1 << epbs) - 1);
1137
1138 if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn,
1139 sizeof(*mdn)) == 0
1140 && objnum >= data->dnode_start && objnum < data->dnode_end) {
1141 memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE);
1142 buf->endian = data->dnode_endian;
1143 if (type && buf->dn.dn_type != type) {
1144 printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type);
1145 return ZFS_ERR_BAD_FS;
1146 }
1147 return ZFS_ERR_NONE;
1148 }
1149
1150 err = dmu_read(mdn, blkid, &dnbuf, &endian, data);
1151 if (err)
1152 return err;
1153
1154 free(data->dnode_buf);
1155 free(data->dnode_mdn);
1156 data->dnode_mdn = malloc(sizeof(*mdn));
1157 if (!data->dnode_mdn) {
1158 data->dnode_buf = 0;
1159 } else {
1160 memcpy(data->dnode_mdn, mdn, sizeof(*mdn));
1161 data->dnode_buf = dnbuf;
1162 data->dnode_start = blkid << epbs;
1163 data->dnode_end = (blkid + 1) << epbs;
1164 data->dnode_endian = endian;
1165 }
1166
1167 memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE);
1168 buf->endian = endian;
1169 if (type && buf->dn.dn_type != type) {
1170 printf("incorrect dnode type\n");
1171 return ZFS_ERR_BAD_FS;
1172 }
1173
1174 return ZFS_ERR_NONE;
1175 }
1176
1177 /*
1178 * Get the file dnode for a given file name where mdn is the meta dnode
1179 * for this ZFS object set. When found, place the file dnode in dn.
1180 * The 'path' argument will be mangled.
1181 *
1182 */
1183 static int
1184 dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn,
1185 struct zfs_data *data)
1186 {
1187 uint64_t objnum, version;
1188 char *cname, ch;
1189 int err = ZFS_ERR_NONE;
1190 char *path, *path_buf;
1191 struct dnode_chain {
1192 struct dnode_chain *next;
1193 dnode_end_t dn;
1194 };
1195 struct dnode_chain *dnode_path = 0, *dn_new, *root;
1196
1197 dn_new = malloc(sizeof(*dn_new));
1198 if (!dn_new)
1199 return ZFS_ERR_OUT_OF_MEMORY;
1200 dn_new->next = 0;
1201 dnode_path = root = dn_new;
1202
1203 err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
1204 &(dnode_path->dn), data);
1205 if (err) {
1206 free(dn_new);
1207 return err;
1208 }
1209
1210 err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data);
1211 if (err) {
1212 free(dn_new);
1213 return err;
1214 }
1215 if (version > ZPL_VERSION) {
1216 free(dn_new);
1217 printf("too new ZPL version\n");
1218 return ZFS_ERR_NOT_IMPLEMENTED_YET;
1219 }
1220
1221 err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data);
1222 if (err) {
1223 free(dn_new);
1224 return err;
1225 }
1226
1227 err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
1228 if (err) {
1229 free(dn_new);
1230 return err;
1231 }
1232
1233 path = path_buf = strdup(path_in);
1234 if (!path_buf) {
1235 free(dn_new);
1236 return ZFS_ERR_OUT_OF_MEMORY;
1237 }
1238
1239 while (1) {
1240 /* skip leading slashes */
1241 while (*path == '/')
1242 path++;
1243 if (!*path)
1244 break;
1245 /* get the next component name */
1246 cname = path;
1247 while (*path && *path != '/')
1248 path++;
1249 /* Skip dot. */
1250 if (cname + 1 == path && cname[0] == '.')
1251 continue;
1252 /* Handle double dot. */
1253 if (cname + 2 == path && cname[0] == '.' && cname[1] == '.') {
1254 if (dn_new->next) {
1255 dn_new = dnode_path;
1256 dnode_path = dn_new->next;
1257 free(dn_new);
1258 } else {
1259 printf("can't resolve ..\n");
1260 err = ZFS_ERR_FILE_NOT_FOUND;
1261 break;
1262 }
1263 continue;
1264 }
1265
1266 ch = *path;
1267 *path = 0; /* ensure null termination */
1268
1269 if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
1270 free(path_buf);
1271 printf("not a directory\n");
1272 return ZFS_ERR_BAD_FILE_TYPE;
1273 }
1274 err = zap_lookup(&(dnode_path->dn), cname, &objnum, data);
1275 if (err)
1276 break;
1277
1278 dn_new = malloc(sizeof(*dn_new));
1279 if (!dn_new) {
1280 err = ZFS_ERR_OUT_OF_MEMORY;
1281 break;
1282 }
1283 dn_new->next = dnode_path;
1284 dnode_path = dn_new;
1285
1286 objnum = ZFS_DIRENT_OBJ(objnum);
1287 err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
1288 if (err)
1289 break;
1290
1291 *path = ch;
1292 }
1293
1294 if (!err)
1295 memcpy(dn, &(dnode_path->dn), sizeof(*dn));
1296
1297 while (dnode_path) {
1298 dn_new = dnode_path->next;
1299 free(dnode_path);
1300 dnode_path = dn_new;
1301 }
1302 free(path_buf);
1303 return err;
1304 }
1305
1306
1307 /*
1308 * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
1309 * e.g. pool/rootfs, or a given object number (obj), e.g. the object number
1310 * of pool/rootfs.
1311 *
1312 * If no fsname and no obj are given, return the DSL_DIR metadnode.
1313 * If fsname is given, return its metadnode and its matching object number.
1314 * If only obj is given, return the metadnode for this object number.
1315 *
1316 */
1317 static int
1318 get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname,
1319 dnode_end_t *mdn, struct zfs_data *data)
1320 {
1321 uint64_t objnum;
1322 int err;
1323
1324 err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
1325 DMU_OT_OBJECT_DIRECTORY, mdn, data);
1326 if (err)
1327 return err;
1328
1329 err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data);
1330 if (err)
1331 return err;
1332
1333 err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
1334 if (err)
1335 return err;
1336
1337 while (*fsname) {
1338 uint64_t childobj;
1339 char *cname, ch;
1340
1341 while (*fsname == '/')
1342 fsname++;
1343
1344 if (!*fsname || *fsname == '@')
1345 break;
1346
1347 cname = fsname;
1348 while (*fsname && !isspace(*fsname) && *fsname != '/')
1349 fsname++;
1350 ch = *fsname;
1351 *fsname = 0;
1352
1353 childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian);
1354 err = dnode_get(mosmdn, childobj,
1355 DMU_OT_DSL_DIR_CHILD_MAP, mdn, data);
1356 if (err)
1357 return err;
1358
1359 err = zap_lookup(mdn, cname, &objnum, data);
1360 if (err)
1361 return err;
1362
1363 err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
1364 if (err)
1365 return err;
1366
1367 *fsname = ch;
1368 }
1369 return ZFS_ERR_NONE;
1370 }
1371
1372 static int
1373 make_mdn(dnode_end_t *mdn, struct zfs_data *data)
1374 {
1375 void *osp;
1376 blkptr_t *bp;
1377 size_t ospsize;
1378 int err;
1379
1380 bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp);
1381 err = zio_read(bp, mdn->endian, &osp, &ospsize, data);
1382 if (err)
1383 return err;
1384 if (ospsize < OBJSET_PHYS_SIZE_V14) {
1385 free(osp);
1386 printf("too small osp\n");
1387 return ZFS_ERR_BAD_FS;
1388 }
1389
1390 mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1;
1391 memmove((char *) &(mdn->dn),
1392 (char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
1393 free(osp);
1394 return ZFS_ERR_NONE;
1395 }
1396
1397 static int
1398 dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn,
1399 uint64_t *mdnobj, dnode_end_t *dn, int *isfs,
1400 struct zfs_data *data)
1401 {
1402 char *fsname, *snapname;
1403 const char *ptr_at, *filename;
1404 uint64_t headobj;
1405 int err;
1406
1407 ptr_at = strchr(fullpath, '@');
1408 if (!ptr_at) {
1409 *isfs = 1;
1410 filename = 0;
1411 snapname = 0;
1412 fsname = strdup(fullpath);
1413 } else {
1414 const char *ptr_slash = strchr(ptr_at, '/');
1415
1416 *isfs = 0;
1417 fsname = malloc(ptr_at - fullpath + 1);
1418 if (!fsname)
1419 return ZFS_ERR_OUT_OF_MEMORY;
1420 memcpy(fsname, fullpath, ptr_at - fullpath);
1421 fsname[ptr_at - fullpath] = 0;
1422 if (ptr_at[1] && ptr_at[1] != '/') {
1423 snapname = malloc(ptr_slash - ptr_at);
1424 if (!snapname) {
1425 free(fsname);
1426 return ZFS_ERR_OUT_OF_MEMORY;
1427 }
1428 memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1);
1429 snapname[ptr_slash - ptr_at - 1] = 0;
1430 } else {
1431 snapname = 0;
1432 }
1433 if (ptr_slash)
1434 filename = ptr_slash;
1435 else
1436 filename = "/";
1437 printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n",
1438 fsname, snapname, filename);
1439 }
1440
1441
1442 err = get_filesystem_dnode(&(data->mos), fsname, dn, data);
1443
1444 if (err) {
1445 free(fsname);
1446 free(snapname);
1447 return err;
1448 }
1449
1450 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian);
1451
1452 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
1453 if (err) {
1454 free(fsname);
1455 free(snapname);
1456 return err;
1457 }
1458
1459 if (snapname) {
1460 uint64_t snapobj;
1461
1462 snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian);
1463
1464 err = dnode_get(&(data->mos), snapobj,
1465 DMU_OT_DSL_DS_SNAP_MAP, mdn, data);
1466 if (!err)
1467 err = zap_lookup(mdn, snapname, &headobj, data);
1468 if (!err)
1469 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
1470 if (err) {
1471 free(fsname);
1472 free(snapname);
1473 return err;
1474 }
1475 }
1476
1477 if (mdnobj)
1478 *mdnobj = headobj;
1479
1480 make_mdn(mdn, data);
1481
1482 if (*isfs) {
1483 free(fsname);
1484 free(snapname);
1485 return ZFS_ERR_NONE;
1486 }
1487 err = dnode_get_path(mdn, filename, dn, data);
1488 free(fsname);
1489 free(snapname);
1490 return err;
1491 }
1492
1493 /*
1494 * For a given XDR packed nvlist, verify the first 4 bytes and move on.
1495 *
1496 * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
1497 *
1498 * encoding method/host endian (4 bytes)
1499 * nvl_version (4 bytes)
1500 * nvl_nvflag (4 bytes)
1501 * encoded nvpairs:
1502 * encoded size of the nvpair (4 bytes)
1503 * decoded size of the nvpair (4 bytes)
1504 * name string size (4 bytes)
1505 * name string data (sizeof(NV_ALIGN4(string))
1506 * data type (4 bytes)
1507 * # of elements in the nvpair (4 bytes)
1508 * data
1509 * 2 zero's for the last nvpair
1510 * (end of the entire list) (8 bytes)
1511 *
1512 */
1513
1514 static int
1515 nvlist_find_value(char *nvlist, char *name, int valtype, char **val,
1516 size_t *size_out, size_t *nelm_out)
1517 {
1518 int name_len, type, encode_size;
1519 char *nvpair, *nvp_name;
1520
1521 /* Verify if the 1st and 2nd byte in the nvlist are valid. */
1522 /* NOTE: independently of what endianness header announces all
1523 subsequent values are big-endian. */
1524 if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN
1525 && nvlist[1] != NV_BIG_ENDIAN)) {
1526 printf("zfs incorrect nvlist header\n");
1527 return ZFS_ERR_BAD_FS;
1528 }
1529
1530 /* skip the header, nvl_version, and nvl_nvflag */
1531 nvlist = nvlist + 4 * 3;
1532 /*
1533 * Loop thru the nvpair list
1534 * The XDR representation of an integer is in big-endian byte order.
1535 */
1536 while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) {
1537 int nelm;
1538
1539 nvpair = nvlist + 4 * 2; /* skip the encode/decode size */
1540
1541 name_len = be32_to_cpu(*(uint32_t *) nvpair);
1542 nvpair += 4;
1543
1544 nvp_name = nvpair;
1545 nvpair = nvpair + ((name_len + 3) & ~3); /* align */
1546
1547 type = be32_to_cpu(*(uint32_t *) nvpair);
1548 nvpair += 4;
1549
1550 nelm = be32_to_cpu(*(uint32_t *) nvpair);
1551 if (nelm < 1) {
1552 printf("empty nvpair\n");
1553 return ZFS_ERR_BAD_FS;
1554 }
1555
1556 nvpair += 4;
1557
1558 if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) {
1559 *val = nvpair;
1560 *size_out = encode_size;
1561 if (nelm_out)
1562 *nelm_out = nelm;
1563 return 1;
1564 }
1565
1566 nvlist += encode_size; /* goto the next nvpair */
1567 }
1568 return 0;
1569 }
1570
1571 int
1572 zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out)
1573 {
1574 char *nvpair;
1575 size_t size;
1576 int found;
1577
1578 found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0);
1579 if (!found)
1580 return 0;
1581 if (size < sizeof(uint64_t)) {
1582 printf("invalid uint64\n");
1583 return ZFS_ERR_BAD_FS;
1584 }
1585
1586 *out = be64_to_cpu(*(uint64_t *) nvpair);
1587 return 1;
1588 }
1589
1590 char *
1591 zfs_nvlist_lookup_string(char *nvlist, char *name)
1592 {
1593 char *nvpair;
1594 char *ret;
1595 size_t slen;
1596 size_t size;
1597 int found;
1598
1599 found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0);
1600 if (!found)
1601 return 0;
1602 if (size < 4) {
1603 printf("invalid string\n");
1604 return 0;
1605 }
1606 slen = be32_to_cpu(*(uint32_t *) nvpair);
1607 if (slen > size - 4)
1608 slen = size - 4;
1609 ret = malloc(slen + 1);
1610 if (!ret)
1611 return 0;
1612 memcpy(ret, nvpair + 4, slen);
1613 ret[slen] = 0;
1614 return ret;
1615 }
1616
1617 char *
1618 zfs_nvlist_lookup_nvlist(char *nvlist, char *name)
1619 {
1620 char *nvpair;
1621 char *ret;
1622 size_t size;
1623 int found;
1624
1625 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1626 &size, 0);
1627 if (!found)
1628 return 0;
1629 ret = calloc(1, size + 3 * sizeof(uint32_t));
1630 if (!ret)
1631 return 0;
1632 memcpy(ret, nvlist, sizeof(uint32_t));
1633
1634 memcpy(ret + sizeof(uint32_t), nvpair, size);
1635 return ret;
1636 }
1637
1638 int
1639 zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name)
1640 {
1641 char *nvpair;
1642 size_t nelm, size;
1643 int found;
1644
1645 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1646 &size, &nelm);
1647 if (!found)
1648 return -1;
1649 return nelm;
1650 }
1651
1652 char *
1653 zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name,
1654 size_t index)
1655 {
1656 char *nvpair, *nvpairptr;
1657 int found;
1658 char *ret;
1659 size_t size;
1660 unsigned i;
1661 size_t nelm;
1662
1663 found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1664 &size, &nelm);
1665 if (!found)
1666 return 0;
1667 if (index >= nelm) {
1668 printf("trying to lookup past nvlist array\n");
1669 return 0;
1670 }
1671
1672 nvpairptr = nvpair;
1673
1674 for (i = 0; i < index; i++) {
1675 uint32_t encode_size;
1676
1677 /* skip the header, nvl_version, and nvl_nvflag */
1678 nvpairptr = nvpairptr + 4 * 2;
1679
1680 while (nvpairptr < nvpair + size
1681 && (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr)))
1682 nvlist += encode_size; /* goto the next nvpair */
1683
1684 nvlist = nvlist + 4 * 2; /* skip the ending 2 zeros - 8 bytes */
1685 }
1686
1687 if (nvpairptr >= nvpair + size
1688 || nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
1689 >= nvpair + size) {
1690 printf("incorrect nvlist array\n");
1691 return 0;
1692 }
1693
1694 ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
1695 + 3 * sizeof(uint32_t));
1696 if (!ret)
1697 return 0;
1698 memcpy(ret, nvlist, sizeof(uint32_t));
1699
1700 memcpy(ret + sizeof(uint32_t), nvpairptr, size);
1701 return ret;
1702 }
1703
1704 static int
1705 int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist)
1706 {
1707 int err;
1708
1709 *nvlist = malloc(VDEV_PHYS_SIZE);
1710 /* Read in the vdev name-value pair list (112K). */
1711 err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist);
1712 if (err) {
1713 free(*nvlist);
1714 *nvlist = 0;
1715 return err;
1716 }
1717 return ZFS_ERR_NONE;
1718 }
1719
1720 /*
1721 * Check the disk label information and retrieve needed vdev name-value pairs.
1722 *
1723 */
1724 static int
1725 check_pool_label(struct zfs_data *data)
1726 {
1727 uint64_t pool_state;
1728 char *nvlist; /* for the pool */
1729 char *vdevnvlist; /* for the vdev */
1730 uint64_t diskguid;
1731 uint64_t version;
1732 int found;
1733 int err;
1734
1735 err = int_zfs_fetch_nvlist(data, &nvlist);
1736 if (err)
1737 return err;
1738
1739 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE,
1740 &pool_state);
1741 if (!found) {
1742 free(nvlist);
1743 printf("zfs pool state not found\n");
1744 return ZFS_ERR_BAD_FS;
1745 }
1746
1747 if (pool_state == POOL_STATE_DESTROYED) {
1748 free(nvlist);
1749 printf("zpool is marked as destroyed\n");
1750 return ZFS_ERR_BAD_FS;
1751 }
1752
1753 data->label_txg = 0;
1754 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG,
1755 &data->label_txg);
1756 if (!found) {
1757 free(nvlist);
1758 printf("zfs pool txg not found\n");
1759 return ZFS_ERR_BAD_FS;
1760 }
1761
1762 /* not an active device */
1763 if (data->label_txg == 0) {
1764 free(nvlist);
1765 printf("zpool is not active\n");
1766 return ZFS_ERR_BAD_FS;
1767 }
1768
1769 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION,
1770 &version);
1771 if (!found) {
1772 free(nvlist);
1773 printf("zpool config version not found\n");
1774 return ZFS_ERR_BAD_FS;
1775 }
1776
1777 if (version > SPA_VERSION) {
1778 free(nvlist);
1779 printf("SPA version too new %llu > %llu\n",
1780 (unsigned long long) version,
1781 (unsigned long long) SPA_VERSION);
1782 return ZFS_ERR_NOT_IMPLEMENTED_YET;
1783 }
1784
1785 vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE);
1786 if (!vdevnvlist) {
1787 free(nvlist);
1788 printf("ZFS config vdev tree not found\n");
1789 return ZFS_ERR_BAD_FS;
1790 }
1791
1792 found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT,
1793 &data->vdev_ashift);
1794 free(vdevnvlist);
1795 if (!found) {
1796 free(nvlist);
1797 printf("ZPOOL config ashift not found\n");
1798 return ZFS_ERR_BAD_FS;
1799 }
1800
1801 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid);
1802 if (!found) {
1803 free(nvlist);
1804 printf("ZPOOL config guid not found\n");
1805 return ZFS_ERR_BAD_FS;
1806 }
1807
1808 found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid);
1809 if (!found) {
1810 free(nvlist);
1811 printf("ZPOOL config pool guid not found\n");
1812 return ZFS_ERR_BAD_FS;
1813 }
1814
1815 free(nvlist);
1816
1817 printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n",
1818 (unsigned long long) data->pool_guid,
1819 (unsigned long long) data->pool_guid,
1820 (unsigned long long) diskguid,
1821 (unsigned long long) diskguid,
1822 (unsigned long long) data->label_txg,
1823 (unsigned long long) version,
1824 (unsigned long long) data->vdev_ashift);
1825
1826 return ZFS_ERR_NONE;
1827 }
1828
1829 /*
1830 * vdev_label_start returns the physical disk offset (in bytes) of
1831 * label "l".
1832 */
1833 static uint64_t vdev_label_start(uint64_t psize, int l)
1834 {
1835 return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ?
1836 0 : psize -
1837 VDEV_LABELS * sizeof(vdev_label_t)));
1838 }
1839
1840 void
1841 zfs_unmount(struct zfs_data *data)
1842 {
1843 free(data->dnode_buf);
1844 free(data->dnode_mdn);
1845 free(data->file_buf);
1846 free(data);
1847 }
1848
1849 /*
1850 * zfs_mount() locates a valid uberblock of the root pool and read in its MOS
1851 * to the memory address MOS.
1852 *
1853 */
1854 struct zfs_data *
1855 zfs_mount(device_t dev)
1856 {
1857 struct zfs_data *data = 0;
1858 int label = 0, bestlabel = -1;
1859 char *ub_array;
1860 uberblock_t *ubbest;
1861 uberblock_t *ubcur = NULL;
1862 void *osp = 0;
1863 size_t ospsize;
1864 int err;
1865
1866 data = malloc(sizeof(*data));
1867 if (!data)
1868 return 0;
1869 memset(data, 0, sizeof(*data));
1870
1871 ub_array = malloc(VDEV_UBERBLOCK_RING);
1872 if (!ub_array) {
1873 zfs_unmount(data);
1874 return 0;
1875 }
1876
1877 ubbest = malloc(sizeof(*ubbest));
1878 if (!ubbest) {
1879 zfs_unmount(data);
1880 return 0;
1881 }
1882 memset(ubbest, 0, sizeof(*ubbest));
1883
1884 /*
1885 * some eltorito stacks don't give us a size and
1886 * we end up setting the size to MAXUINT, further
1887 * some of these devices stop working once a single
1888 * read past the end has been issued. Checking
1889 * for a maximum part_length and skipping the backup
1890 * labels at the end of the slice/partition/device
1891 * avoids breaking down on such devices.
1892 */
1893 const int vdevnum =
1894 dev->part_length == 0 ?
1895 VDEV_LABELS / 2 : VDEV_LABELS;
1896
1897 /* Size in bytes of the device (disk or partition) aligned to label size*/
1898 uint64_t device_size =
1899 dev->part_length << SECTOR_BITS;
1900
1901 const uint64_t alignedbytes =
1902 P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t));
1903
1904 for (label = 0; label < vdevnum; label++) {
1905 uint64_t labelstartbytes = vdev_label_start(alignedbytes, label);
1906 uint64_t labelstart = labelstartbytes >> SECTOR_BITS;
1907
1908 debug("zfs reading label %d at sector %llu (byte %llu)\n",
1909 label, (unsigned long long) labelstart,
1910 (unsigned long long) labelstartbytes);
1911
1912 data->vdev_phys_sector = labelstart +
1913 ((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS);
1914
1915 err = check_pool_label(data);
1916 if (err) {
1917 printf("zfs error checking label %d\n", label);
1918 continue;
1919 }
1920
1921 /* Read in the uberblock ring (128K). */
1922 err = zfs_devread(data->vdev_phys_sector +
1923 (VDEV_PHYS_SIZE >> SECTOR_BITS),
1924 0, VDEV_UBERBLOCK_RING, ub_array);
1925 if (err) {
1926 printf("zfs error reading uberblock ring for label %d\n", label);
1927 continue;
1928 }
1929
1930 ubcur = find_bestub(ub_array, data);
1931 if (!ubcur) {
1932 printf("zfs No good uberblocks found in label %d\n", label);
1933 continue;
1934 }
1935
1936 if (vdev_uberblock_compare(ubcur, ubbest) > 0) {
1937 /* Looks like the block is good, so use it.*/
1938 memcpy(ubbest, ubcur, sizeof(*ubbest));
1939 bestlabel = label;
1940 debug("zfs Current best uberblock found in label %d\n", label);
1941 }
1942 }
1943 free(ub_array);
1944
1945 /* We zero'd the structure to begin with. If we never assigned to it,
1946 magic will still be zero. */
1947 if (!ubbest->ub_magic) {
1948 printf("couldn't find a valid ZFS label\n");
1949 zfs_unmount(data);
1950 free(ubbest);
1951 return 0;
1952 }
1953
1954 debug("zfs ubbest %p in label %d\n", ubbest, bestlabel);
1955
1956 zfs_endian_t ub_endian =
1957 zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
1958 ? LITTLE_ENDIAN : BIG_ENDIAN;
1959
1960 debug("zfs endian set to %s\n", !ub_endian ? "big" : "little");
1961
1962 err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data);
1963
1964 if (err) {
1965 printf("couldn't zio_read object directory\n");
1966 zfs_unmount(data);
1967 free(ubbest);
1968 return 0;
1969 }
1970
1971 if (ospsize < OBJSET_PHYS_SIZE_V14) {
1972 printf("osp too small\n");
1973 zfs_unmount(data);
1974 free(osp);
1975 free(ubbest);
1976 return 0;
1977 }
1978
1979 /* Got the MOS. Save it at the memory addr MOS. */
1980 memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
1981 data->mos.endian =
1982 (zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1;
1983 memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t));
1984
1985 free(osp);
1986 free(ubbest);
1987
1988 return data;
1989 }
1990
1991 int
1992 zfs_fetch_nvlist(device_t dev, char **nvlist)
1993 {
1994 struct zfs_data *zfs;
1995 int err;
1996
1997 zfs = zfs_mount(dev);
1998 if (!zfs)
1999 return ZFS_ERR_BAD_FS;
2000 err = int_zfs_fetch_nvlist(zfs, nvlist);
2001 zfs_unmount(zfs);
2002 return err;
2003 }
2004
2005 /*
2006 * zfs_open() locates a file in the rootpool by following the
2007 * MOS and places the dnode of the file in the memory address DNODE.
2008 */
2009 int
2010 zfs_open(struct zfs_file *file, const char *fsfilename)
2011 {
2012 struct zfs_data *data;
2013 int err;
2014 int isfs;
2015
2016 data = zfs_mount(file->device);
2017 if (!data)
2018 return ZFS_ERR_BAD_FS;
2019
2020 err = dnode_get_fullpath(fsfilename, &(data->mdn), 0,
2021 &(data->dnode), &isfs, data);
2022 if (err) {
2023 zfs_unmount(data);
2024 return err;
2025 }
2026
2027 if (isfs) {
2028 zfs_unmount(data);
2029 printf("Missing @ or / separator\n");
2030 return ZFS_ERR_FILE_NOT_FOUND;
2031 }
2032
2033 /* We found the dnode for this file. Verify if it is a plain file. */
2034 if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) {
2035 zfs_unmount(data);
2036 printf("not a file\n");
2037 return ZFS_ERR_BAD_FILE_TYPE;
2038 }
2039
2040 /* get the file size and set the file position to 0 */
2041
2042 /*
2043 * For DMU_OT_SA we will need to locate the SIZE attribute
2044 * attribute, which could be either in the bonus buffer
2045 * or the "spill" block.
2046 */
2047 if (data->dnode.dn.dn_bonustype == DMU_OT_SA) {
2048 void *sahdrp;
2049 int hdrsize;
2050
2051 if (data->dnode.dn.dn_bonuslen != 0) {
2052 sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn);
2053 } else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2054 blkptr_t *bp = &data->dnode.dn.dn_spill;
2055
2056 err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data);
2057 if (err)
2058 return err;
2059 } else {
2060 printf("filesystem is corrupt :(\n");
2061 return ZFS_ERR_BAD_FS;
2062 }
2063
2064 hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp));
2065 file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET);
2066 } else {
2067 file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian);
2068 }
2069
2070 file->data = data;
2071 file->offset = 0;
2072
2073 return ZFS_ERR_NONE;
2074 }
2075
2076 uint64_t
2077 zfs_read(zfs_file_t file, char *buf, uint64_t len)
2078 {
2079 struct zfs_data *data = (struct zfs_data *) file->data;
2080 int blksz, movesize;
2081 uint64_t length;
2082 int64_t red;
2083 int err;
2084
2085 if (data->file_buf == NULL) {
2086 data->file_buf = malloc(SPA_MAXBLOCKSIZE);
2087 if (!data->file_buf)
2088 return -1;
2089 data->file_start = data->file_end = 0;
2090 }
2091
2092 /*
2093 * If offset is in memory, move it into the buffer provided and return.
2094 */
2095 if (file->offset >= data->file_start
2096 && file->offset + len <= data->file_end) {
2097 memmove(buf, data->file_buf + file->offset - data->file_start,
2098 len);
2099 return len;
2100 }
2101
2102 blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec,
2103 data->dnode.endian) << SPA_MINBLOCKSHIFT;
2104
2105 /*
2106 * Entire Dnode is too big to fit into the space available. We
2107 * will need to read it in chunks. This could be optimized to
2108 * read in as large a chunk as there is space available, but for
2109 * now, this only reads in one data block at a time.
2110 */
2111 length = len;
2112 red = 0;
2113 while (length) {
2114 void *t;
2115 /*
2116 * Find requested blkid and the offset within that block.
2117 */
2118 uint64_t blkid = (file->offset + red) / blksz;
2119 free(data->file_buf);
2120 data->file_buf = 0;
2121
2122 err = dmu_read(&(data->dnode), blkid, &t,
2123 0, data);
2124 data->file_buf = t;
2125 if (err)
2126 return -1;
2127
2128 data->file_start = blkid * blksz;
2129 data->file_end = data->file_start + blksz;
2130
2131 movesize = MIN(length, data->file_end - (int) file->offset - red);
2132
2133 memmove(buf, data->file_buf + file->offset + red
2134 - data->file_start, movesize);
2135 buf += movesize;
2136 length -= movesize;
2137 red += movesize;
2138 }
2139
2140 return len;
2141 }
2142
2143 int
2144 zfs_close(zfs_file_t file)
2145 {
2146 zfs_unmount((struct zfs_data *) file->data);
2147 return ZFS_ERR_NONE;
2148 }
2149
2150 int
2151 zfs_getmdnobj(device_t dev, const char *fsfilename,
2152 uint64_t *mdnobj)
2153 {
2154 struct zfs_data *data;
2155 int err;
2156 int isfs;
2157
2158 data = zfs_mount(dev);
2159 if (!data)
2160 return ZFS_ERR_BAD_FS;
2161
2162 err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj,
2163 &(data->dnode), &isfs, data);
2164 zfs_unmount(data);
2165 return err;
2166 }
2167
2168 static void
2169 fill_fs_info(struct zfs_dirhook_info *info,
2170 dnode_end_t mdn, struct zfs_data *data)
2171 {
2172 int err;
2173 dnode_end_t dn;
2174 uint64_t objnum;
2175 uint64_t headobj;
2176
2177 memset(info, 0, sizeof(*info));
2178
2179 info->dir = 1;
2180
2181 if (mdn.dn.dn_type == DMU_OT_DSL_DIR) {
2182 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian);
2183
2184 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data);
2185 if (err) {
2186 printf("zfs failed here 1\n");
2187 return;
2188 }
2189 }
2190 make_mdn(&mdn, data);
2191 err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
2192 &dn, data);
2193 if (err) {
2194 printf("zfs failed here 2\n");
2195 return;
2196 }
2197
2198 err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data);
2199 if (err) {
2200 printf("zfs failed here 3\n");
2201 return;
2202 }
2203
2204 err = dnode_get(&mdn, objnum, 0, &dn, data);
2205 if (err) {
2206 printf("zfs failed here 4\n");
2207 return;
2208 }
2209
2210 info->mtimeset = 1;
2211 info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
2212
2213 return;
2214 }
2215
2216 static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data)
2217 {
2218 struct zfs_dirhook_info info;
2219 dnode_end_t dn;
2220
2221 memset(&info, 0, sizeof(info));
2222
2223 dnode_get(&(data->mdn), val, 0, &dn, data);
2224 info.mtimeset = 1;
2225 info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
2226 info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS);
2227 debug("zfs type=%d, name=%s\n",
2228 (int)dn.dn.dn_type, (char *)name);
2229 if (!data->userhook)
2230 return 0;
2231 return data->userhook(name, &info);
2232 }
2233
2234 static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data)
2235 {
2236 struct zfs_dirhook_info info;
2237 dnode_end_t mdn;
2238 int err;
2239 err = dnode_get(&(data->mos), val, 0, &mdn, data);
2240 if (err)
2241 return 0;
2242 if (mdn.dn.dn_type != DMU_OT_DSL_DIR)
2243 return 0;
2244
2245 fill_fs_info(&info, mdn, data);
2246
2247 if (!data->userhook)
2248 return 0;
2249 return data->userhook(name, &info);
2250 }
2251
2252 static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data)
2253 {
2254 struct zfs_dirhook_info info;
2255 char *name2;
2256 int ret = 0;
2257 dnode_end_t mdn;
2258 int err;
2259
2260 err = dnode_get(&(data->mos), val, 0, &mdn, data);
2261 if (err)
2262 return 0;
2263
2264 if (mdn.dn.dn_type != DMU_OT_DSL_DATASET)
2265 return 0;
2266
2267 fill_fs_info(&info, mdn, data);
2268
2269 name2 = malloc(strlen(name) + 2);
2270 name2[0] = '@';
2271 memcpy(name2 + 1, name, strlen(name) + 1);
2272 if (data->userhook)
2273 ret = data->userhook(name2, &info);
2274 free(name2);
2275 return ret;
2276 }
2277
2278 int
2279 zfs_ls(device_t device, const char *path,
2280 int (*hook)(const char *, const struct zfs_dirhook_info *))
2281 {
2282 struct zfs_data *data;
2283 int err;
2284 int isfs;
2285
2286 data = zfs_mount(device);
2287 if (!data)
2288 return ZFS_ERR_BAD_FS;
2289
2290 data->userhook = hook;
2291
2292 err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data);
2293 if (err) {
2294 zfs_unmount(data);
2295 return err;
2296 }
2297 if (isfs) {
2298 uint64_t childobj, headobj;
2299 uint64_t snapobj;
2300 dnode_end_t dn;
2301 struct zfs_dirhook_info info;
2302
2303 fill_fs_info(&info, data->dnode, data);
2304 hook("@", &info);
2305
2306 childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian);
2307 headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian);
2308 err = dnode_get(&(data->mos), childobj,
2309 DMU_OT_DSL_DIR_CHILD_MAP, &dn, data);
2310 if (err) {
2311 zfs_unmount(data);
2312 return err;
2313 }
2314
2315
2316 zap_iterate(&dn, iterate_zap_fs, data);
2317
2318 err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data);
2319 if (err) {
2320 zfs_unmount(data);
2321 return err;
2322 }
2323
2324 snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian);
2325
2326 err = dnode_get(&(data->mos), snapobj,
2327 DMU_OT_DSL_DS_SNAP_MAP, &dn, data);
2328 if (err) {
2329 zfs_unmount(data);
2330 return err;
2331 }
2332
2333 zap_iterate(&dn, iterate_zap_snap, data);
2334 } else {
2335 if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
2336 zfs_unmount(data);
2337 printf("not a directory\n");
2338 return ZFS_ERR_BAD_FILE_TYPE;
2339 }
2340 zap_iterate(&(data->dnode), iterate_zap, data);
2341 }
2342 zfs_unmount(data);
2343 return ZFS_ERR_NONE;
2344 }