]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-arm.c
3adc57076842c985c17d3e084f67caf9e4e0ac7e
[thirdparty/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2020 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35 #include "cpu-arm.h"
36
37 #ifdef OBJ_ELF
38 #include "elf/arm.h"
39 #include "dw2gencfi.h"
40 #endif
41
42 #include "dwarf2dbg.h"
43
44 #ifdef OBJ_ELF
45 /* Must be at least the size of the largest unwind opcode (currently two). */
46 #define ARM_OPCODE_CHUNK_SIZE 8
47
48 /* This structure holds the unwinding state. */
49
50 static struct
51 {
52 symbolS * proc_start;
53 symbolS * table_entry;
54 symbolS * personality_routine;
55 int personality_index;
56 /* The segment containing the function. */
57 segT saved_seg;
58 subsegT saved_subseg;
59 /* Opcodes generated from this function. */
60 unsigned char * opcodes;
61 int opcode_count;
62 int opcode_alloc;
63 /* The number of bytes pushed to the stack. */
64 offsetT frame_size;
65 /* We don't add stack adjustment opcodes immediately so that we can merge
66 multiple adjustments. We can also omit the final adjustment
67 when using a frame pointer. */
68 offsetT pending_offset;
69 /* These two fields are set by both unwind_movsp and unwind_setfp. They
70 hold the reg+offset to use when restoring sp from a frame pointer. */
71 offsetT fp_offset;
72 int fp_reg;
73 /* Nonzero if an unwind_setfp directive has been seen. */
74 unsigned fp_used:1;
75 /* Nonzero if the last opcode restores sp from fp_reg. */
76 unsigned sp_restored:1;
77 } unwind;
78
79 /* Whether --fdpic was given. */
80 static int arm_fdpic;
81
82 #endif /* OBJ_ELF */
83
84 /* Results from operand parsing worker functions. */
85
86 typedef enum
87 {
88 PARSE_OPERAND_SUCCESS,
89 PARSE_OPERAND_FAIL,
90 PARSE_OPERAND_FAIL_NO_BACKTRACK
91 } parse_operand_result;
92
93 enum arm_float_abi
94 {
95 ARM_FLOAT_ABI_HARD,
96 ARM_FLOAT_ABI_SOFTFP,
97 ARM_FLOAT_ABI_SOFT
98 };
99
100 /* Types of processor to assemble for. */
101 #ifndef CPU_DEFAULT
102 /* The code that was here used to select a default CPU depending on compiler
103 pre-defines which were only present when doing native builds, thus
104 changing gas' default behaviour depending upon the build host.
105
106 If you have a target that requires a default CPU option then the you
107 should define CPU_DEFAULT here. */
108 #endif
109
110 /* Perform range checks on positive and negative overflows by checking if the
111 VALUE given fits within the range of an BITS sized immediate. */
112 static bfd_boolean out_of_range_p (offsetT value, offsetT bits)
113 {
114 gas_assert (bits < (offsetT)(sizeof (value) * 8));
115 return (value & ~((1 << bits)-1))
116 && ((value & ~((1 << bits)-1)) != ~((1 << bits)-1));
117 }
118
119 #ifndef FPU_DEFAULT
120 # ifdef TE_LINUX
121 # define FPU_DEFAULT FPU_ARCH_FPA
122 # elif defined (TE_NetBSD)
123 # ifdef OBJ_ELF
124 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
125 # else
126 /* Legacy a.out format. */
127 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
128 # endif
129 # elif defined (TE_VXWORKS)
130 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
131 # else
132 /* For backwards compatibility, default to FPA. */
133 # define FPU_DEFAULT FPU_ARCH_FPA
134 # endif
135 #endif /* ifndef FPU_DEFAULT */
136
137 #define streq(a, b) (strcmp (a, b) == 0)
138
139 /* Current set of feature bits available (CPU+FPU). Different from
140 selected_cpu + selected_fpu in case of autodetection since the CPU
141 feature bits are then all set. */
142 static arm_feature_set cpu_variant;
143 /* Feature bits used in each execution state. Used to set build attribute
144 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
145 static arm_feature_set arm_arch_used;
146 static arm_feature_set thumb_arch_used;
147
148 /* Flags stored in private area of BFD structure. */
149 static int uses_apcs_26 = FALSE;
150 static int atpcs = FALSE;
151 static int support_interwork = FALSE;
152 static int uses_apcs_float = FALSE;
153 static int pic_code = FALSE;
154 static int fix_v4bx = FALSE;
155 /* Warn on using deprecated features. */
156 static int warn_on_deprecated = TRUE;
157 static int warn_on_restrict_it = FALSE;
158
159 /* Understand CodeComposer Studio assembly syntax. */
160 bfd_boolean codecomposer_syntax = FALSE;
161
162 /* Variables that we set while parsing command-line options. Once all
163 options have been read we re-process these values to set the real
164 assembly flags. */
165
166 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
167 instead of -mcpu=arm1). */
168 static const arm_feature_set *legacy_cpu = NULL;
169 static const arm_feature_set *legacy_fpu = NULL;
170
171 /* CPU, extension and FPU feature bits selected by -mcpu. */
172 static const arm_feature_set *mcpu_cpu_opt = NULL;
173 static arm_feature_set *mcpu_ext_opt = NULL;
174 static const arm_feature_set *mcpu_fpu_opt = NULL;
175
176 /* CPU, extension and FPU feature bits selected by -march. */
177 static const arm_feature_set *march_cpu_opt = NULL;
178 static arm_feature_set *march_ext_opt = NULL;
179 static const arm_feature_set *march_fpu_opt = NULL;
180
181 /* Feature bits selected by -mfpu. */
182 static const arm_feature_set *mfpu_opt = NULL;
183
184 /* Constants for known architecture features. */
185 static const arm_feature_set fpu_default = FPU_DEFAULT;
186 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
187 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
188 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
189 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
190 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
191 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
192 #ifdef OBJ_ELF
193 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
194 #endif
195 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
196
197 #ifdef CPU_DEFAULT
198 static const arm_feature_set cpu_default = CPU_DEFAULT;
199 #endif
200
201 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
202 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
203 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
204 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
205 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
206 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
207 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
208 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
209 static const arm_feature_set arm_ext_v4t_5 =
210 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
211 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
212 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
213 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
214 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
215 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
216 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
217 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
218 /* Only for compatability of hint instructions. */
219 static const arm_feature_set arm_ext_v6k_v6t2 =
220 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
221 static const arm_feature_set arm_ext_v6_notm =
222 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
223 static const arm_feature_set arm_ext_v6_dsp =
224 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
225 static const arm_feature_set arm_ext_barrier =
226 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
227 static const arm_feature_set arm_ext_msr =
228 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
229 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
230 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
231 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
232 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
233 #ifdef OBJ_ELF
234 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
235 #endif
236 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
237 static const arm_feature_set arm_ext_m =
238 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
239 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
240 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
241 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
242 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
243 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
244 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
245 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
246 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
247 static const arm_feature_set arm_ext_v8m_main =
248 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
249 static const arm_feature_set arm_ext_v8_1m_main =
250 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
251 /* Instructions in ARMv8-M only found in M profile architectures. */
252 static const arm_feature_set arm_ext_v8m_m_only =
253 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
254 static const arm_feature_set arm_ext_v6t2_v8m =
255 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
256 /* Instructions shared between ARMv8-A and ARMv8-M. */
257 static const arm_feature_set arm_ext_atomics =
258 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
259 #ifdef OBJ_ELF
260 /* DSP instructions Tag_DSP_extension refers to. */
261 static const arm_feature_set arm_ext_dsp =
262 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
263 #endif
264 static const arm_feature_set arm_ext_ras =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
266 /* FP16 instructions. */
267 static const arm_feature_set arm_ext_fp16 =
268 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
269 static const arm_feature_set arm_ext_fp16_fml =
270 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
271 static const arm_feature_set arm_ext_v8_2 =
272 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
273 static const arm_feature_set arm_ext_v8_3 =
274 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
275 static const arm_feature_set arm_ext_sb =
276 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
277 static const arm_feature_set arm_ext_predres =
278 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
279 static const arm_feature_set arm_ext_bf16 =
280 ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16);
281 static const arm_feature_set arm_ext_i8mm =
282 ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM);
283 static const arm_feature_set arm_ext_crc =
284 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC);
285
286 static const arm_feature_set arm_arch_any = ARM_ANY;
287 static const arm_feature_set fpu_any = FPU_ANY;
288 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
289 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
290 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
291
292 static const arm_feature_set arm_cext_iwmmxt2 =
293 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
294 static const arm_feature_set arm_cext_iwmmxt =
295 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
296 static const arm_feature_set arm_cext_xscale =
297 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
298 static const arm_feature_set arm_cext_maverick =
299 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
300 static const arm_feature_set fpu_fpa_ext_v1 =
301 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
302 static const arm_feature_set fpu_fpa_ext_v2 =
303 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
304 static const arm_feature_set fpu_vfp_ext_v1xd =
305 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
306 static const arm_feature_set fpu_vfp_ext_v1 =
307 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
308 static const arm_feature_set fpu_vfp_ext_v2 =
309 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
310 static const arm_feature_set fpu_vfp_ext_v3xd =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
312 static const arm_feature_set fpu_vfp_ext_v3 =
313 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
314 static const arm_feature_set fpu_vfp_ext_d32 =
315 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
316 static const arm_feature_set fpu_neon_ext_v1 =
317 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
318 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
319 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
320 static const arm_feature_set mve_ext =
321 ARM_FEATURE_CORE_HIGH (ARM_EXT2_MVE);
322 static const arm_feature_set mve_fp_ext =
323 ARM_FEATURE_CORE_HIGH (ARM_EXT2_MVE_FP);
324 #ifdef OBJ_ELF
325 static const arm_feature_set fpu_vfp_fp16 =
326 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
327 static const arm_feature_set fpu_neon_ext_fma =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
329 #endif
330 static const arm_feature_set fpu_vfp_ext_fma =
331 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
332 static const arm_feature_set fpu_vfp_ext_armv8 =
333 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
334 static const arm_feature_set fpu_vfp_ext_armv8xd =
335 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
336 static const arm_feature_set fpu_neon_ext_armv8 =
337 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
338 static const arm_feature_set fpu_crypto_ext_armv8 =
339 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
340 static const arm_feature_set fpu_neon_ext_v8_1 =
341 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
342 static const arm_feature_set fpu_neon_ext_dotprod =
343 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
344
345 static int mfloat_abi_opt = -1;
346 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
347 directive. */
348 static arm_feature_set selected_arch = ARM_ARCH_NONE;
349 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
350 directive. */
351 static arm_feature_set selected_ext = ARM_ARCH_NONE;
352 /* Feature bits selected by the last -mcpu/-march or by the combination of the
353 last .cpu/.arch directive .arch_extension directives since that
354 directive. */
355 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
356 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
357 static arm_feature_set selected_fpu = FPU_NONE;
358 /* Feature bits selected by the last .object_arch directive. */
359 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
360 /* Must be long enough to hold any of the names in arm_cpus. */
361 static const struct arm_ext_table * selected_ctx_ext_table = NULL;
362 static char selected_cpu_name[20];
363
364 extern FLONUM_TYPE generic_floating_point_number;
365
366 /* Return if no cpu was selected on command-line. */
367 static bfd_boolean
368 no_cpu_selected (void)
369 {
370 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
371 }
372
373 #ifdef OBJ_ELF
374 # ifdef EABI_DEFAULT
375 static int meabi_flags = EABI_DEFAULT;
376 # else
377 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
378 # endif
379
380 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
381
382 bfd_boolean
383 arm_is_eabi (void)
384 {
385 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
386 }
387 #endif
388
389 #ifdef OBJ_ELF
390 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
391 symbolS * GOT_symbol;
392 #endif
393
394 /* 0: assemble for ARM,
395 1: assemble for Thumb,
396 2: assemble for Thumb even though target CPU does not support thumb
397 instructions. */
398 static int thumb_mode = 0;
399 /* A value distinct from the possible values for thumb_mode that we
400 can use to record whether thumb_mode has been copied into the
401 tc_frag_data field of a frag. */
402 #define MODE_RECORDED (1 << 4)
403
404 /* Specifies the intrinsic IT insn behavior mode. */
405 enum implicit_it_mode
406 {
407 IMPLICIT_IT_MODE_NEVER = 0x00,
408 IMPLICIT_IT_MODE_ARM = 0x01,
409 IMPLICIT_IT_MODE_THUMB = 0x02,
410 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
411 };
412 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
413
414 /* If unified_syntax is true, we are processing the new unified
415 ARM/Thumb syntax. Important differences from the old ARM mode:
416
417 - Immediate operands do not require a # prefix.
418 - Conditional affixes always appear at the end of the
419 instruction. (For backward compatibility, those instructions
420 that formerly had them in the middle, continue to accept them
421 there.)
422 - The IT instruction may appear, and if it does is validated
423 against subsequent conditional affixes. It does not generate
424 machine code.
425
426 Important differences from the old Thumb mode:
427
428 - Immediate operands do not require a # prefix.
429 - Most of the V6T2 instructions are only available in unified mode.
430 - The .N and .W suffixes are recognized and honored (it is an error
431 if they cannot be honored).
432 - All instructions set the flags if and only if they have an 's' affix.
433 - Conditional affixes may be used. They are validated against
434 preceding IT instructions. Unlike ARM mode, you cannot use a
435 conditional affix except in the scope of an IT instruction. */
436
437 static bfd_boolean unified_syntax = FALSE;
438
439 /* An immediate operand can start with #, and ld*, st*, pld operands
440 can contain [ and ]. We need to tell APP not to elide whitespace
441 before a [, which can appear as the first operand for pld.
442 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
443 const char arm_symbol_chars[] = "#[]{}";
444
445 enum neon_el_type
446 {
447 NT_invtype,
448 NT_untyped,
449 NT_integer,
450 NT_float,
451 NT_poly,
452 NT_signed,
453 NT_bfloat,
454 NT_unsigned
455 };
456
457 struct neon_type_el
458 {
459 enum neon_el_type type;
460 unsigned size;
461 };
462
463 #define NEON_MAX_TYPE_ELS 4
464
465 struct neon_type
466 {
467 struct neon_type_el el[NEON_MAX_TYPE_ELS];
468 unsigned elems;
469 };
470
471 enum pred_instruction_type
472 {
473 OUTSIDE_PRED_INSN,
474 INSIDE_VPT_INSN,
475 INSIDE_IT_INSN,
476 INSIDE_IT_LAST_INSN,
477 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
478 if inside, should be the last one. */
479 NEUTRAL_IT_INSN, /* This could be either inside or outside,
480 i.e. BKPT and NOP. */
481 IT_INSN, /* The IT insn has been parsed. */
482 VPT_INSN, /* The VPT/VPST insn has been parsed. */
483 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
484 a predication code. */
485 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
486 };
487
488 /* The maximum number of operands we need. */
489 #define ARM_IT_MAX_OPERANDS 6
490 #define ARM_IT_MAX_RELOCS 3
491
492 struct arm_it
493 {
494 const char * error;
495 unsigned long instruction;
496 int size;
497 int size_req;
498 int cond;
499 /* "uncond_value" is set to the value in place of the conditional field in
500 unconditional versions of the instruction, or -1 if nothing is
501 appropriate. */
502 int uncond_value;
503 struct neon_type vectype;
504 /* This does not indicate an actual NEON instruction, only that
505 the mnemonic accepts neon-style type suffixes. */
506 int is_neon;
507 /* Set to the opcode if the instruction needs relaxation.
508 Zero if the instruction is not relaxed. */
509 unsigned long relax;
510 struct
511 {
512 bfd_reloc_code_real_type type;
513 expressionS exp;
514 int pc_rel;
515 } relocs[ARM_IT_MAX_RELOCS];
516
517 enum pred_instruction_type pred_insn_type;
518
519 struct
520 {
521 unsigned reg;
522 signed int imm;
523 struct neon_type_el vectype;
524 unsigned present : 1; /* Operand present. */
525 unsigned isreg : 1; /* Operand was a register. */
526 unsigned immisreg : 2; /* .imm field is a second register.
527 0: imm, 1: gpr, 2: MVE Q-register. */
528 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
529 0) not scalar,
530 1) Neon scalar,
531 2) MVE scalar. */
532 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
533 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
534 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
535 instructions. This allows us to disambiguate ARM <-> vector insns. */
536 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
537 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
538 unsigned isquad : 1; /* Operand is SIMD quad register. */
539 unsigned issingle : 1; /* Operand is VFP single-precision register. */
540 unsigned iszr : 1; /* Operand is ZR register. */
541 unsigned hasreloc : 1; /* Operand has relocation suffix. */
542 unsigned writeback : 1; /* Operand has trailing ! */
543 unsigned preind : 1; /* Preindexed address. */
544 unsigned postind : 1; /* Postindexed address. */
545 unsigned negative : 1; /* Index register was negated. */
546 unsigned shifted : 1; /* Shift applied to operation. */
547 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
548 } operands[ARM_IT_MAX_OPERANDS];
549 };
550
551 static struct arm_it inst;
552
553 #define NUM_FLOAT_VALS 8
554
555 const char * fp_const[] =
556 {
557 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
558 };
559
560 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
561
562 #define FAIL (-1)
563 #define SUCCESS (0)
564
565 #define SUFF_S 1
566 #define SUFF_D 2
567 #define SUFF_E 3
568 #define SUFF_P 4
569
570 #define CP_T_X 0x00008000
571 #define CP_T_Y 0x00400000
572
573 #define CONDS_BIT 0x00100000
574 #define LOAD_BIT 0x00100000
575
576 #define DOUBLE_LOAD_FLAG 0x00000001
577
578 struct asm_cond
579 {
580 const char * template_name;
581 unsigned long value;
582 };
583
584 #define COND_ALWAYS 0xE
585
586 struct asm_psr
587 {
588 const char * template_name;
589 unsigned long field;
590 };
591
592 struct asm_barrier_opt
593 {
594 const char * template_name;
595 unsigned long value;
596 const arm_feature_set arch;
597 };
598
599 /* The bit that distinguishes CPSR and SPSR. */
600 #define SPSR_BIT (1 << 22)
601
602 /* The individual PSR flag bits. */
603 #define PSR_c (1 << 16)
604 #define PSR_x (1 << 17)
605 #define PSR_s (1 << 18)
606 #define PSR_f (1 << 19)
607
608 struct reloc_entry
609 {
610 const char * name;
611 bfd_reloc_code_real_type reloc;
612 };
613
614 enum vfp_reg_pos
615 {
616 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
617 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
618 };
619
620 enum vfp_ldstm_type
621 {
622 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
623 };
624
625 /* Bits for DEFINED field in neon_typed_alias. */
626 #define NTA_HASTYPE 1
627 #define NTA_HASINDEX 2
628
629 struct neon_typed_alias
630 {
631 unsigned char defined;
632 unsigned char index;
633 struct neon_type_el eltype;
634 };
635
636 /* ARM register categories. This includes coprocessor numbers and various
637 architecture extensions' registers. Each entry should have an error message
638 in reg_expected_msgs below. */
639 enum arm_reg_type
640 {
641 REG_TYPE_RN,
642 REG_TYPE_CP,
643 REG_TYPE_CN,
644 REG_TYPE_FN,
645 REG_TYPE_VFS,
646 REG_TYPE_VFD,
647 REG_TYPE_NQ,
648 REG_TYPE_VFSD,
649 REG_TYPE_NDQ,
650 REG_TYPE_NSD,
651 REG_TYPE_NSDQ,
652 REG_TYPE_VFC,
653 REG_TYPE_MVF,
654 REG_TYPE_MVD,
655 REG_TYPE_MVFX,
656 REG_TYPE_MVDX,
657 REG_TYPE_MVAX,
658 REG_TYPE_MQ,
659 REG_TYPE_DSPSC,
660 REG_TYPE_MMXWR,
661 REG_TYPE_MMXWC,
662 REG_TYPE_MMXWCG,
663 REG_TYPE_XSCALE,
664 REG_TYPE_RNB,
665 REG_TYPE_ZR
666 };
667
668 /* Structure for a hash table entry for a register.
669 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
670 information which states whether a vector type or index is specified (for a
671 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
672 struct reg_entry
673 {
674 const char * name;
675 unsigned int number;
676 unsigned char type;
677 unsigned char builtin;
678 struct neon_typed_alias * neon;
679 };
680
681 /* Diagnostics used when we don't get a register of the expected type. */
682 const char * const reg_expected_msgs[] =
683 {
684 [REG_TYPE_RN] = N_("ARM register expected"),
685 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
686 [REG_TYPE_CN] = N_("co-processor register expected"),
687 [REG_TYPE_FN] = N_("FPA register expected"),
688 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
689 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
690 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
691 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
692 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
693 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
694 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
695 " expected"),
696 [REG_TYPE_VFC] = N_("VFP system register expected"),
697 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
698 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
699 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
700 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
701 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
702 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
703 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
704 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
705 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
706 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
707 [REG_TYPE_MQ] = N_("MVE vector register expected"),
708 [REG_TYPE_RNB] = N_("")
709 };
710
711 /* Some well known registers that we refer to directly elsewhere. */
712 #define REG_R12 12
713 #define REG_SP 13
714 #define REG_LR 14
715 #define REG_PC 15
716
717 /* ARM instructions take 4bytes in the object file, Thumb instructions
718 take 2: */
719 #define INSN_SIZE 4
720
721 struct asm_opcode
722 {
723 /* Basic string to match. */
724 const char * template_name;
725
726 /* Parameters to instruction. */
727 unsigned int operands[8];
728
729 /* Conditional tag - see opcode_lookup. */
730 unsigned int tag : 4;
731
732 /* Basic instruction code. */
733 unsigned int avalue;
734
735 /* Thumb-format instruction code. */
736 unsigned int tvalue;
737
738 /* Which architecture variant provides this instruction. */
739 const arm_feature_set * avariant;
740 const arm_feature_set * tvariant;
741
742 /* Function to call to encode instruction in ARM format. */
743 void (* aencode) (void);
744
745 /* Function to call to encode instruction in Thumb format. */
746 void (* tencode) (void);
747
748 /* Indicates whether this instruction may be vector predicated. */
749 unsigned int mayBeVecPred : 1;
750 };
751
752 /* Defines for various bits that we will want to toggle. */
753 #define INST_IMMEDIATE 0x02000000
754 #define OFFSET_REG 0x02000000
755 #define HWOFFSET_IMM 0x00400000
756 #define SHIFT_BY_REG 0x00000010
757 #define PRE_INDEX 0x01000000
758 #define INDEX_UP 0x00800000
759 #define WRITE_BACK 0x00200000
760 #define LDM_TYPE_2_OR_3 0x00400000
761 #define CPSI_MMOD 0x00020000
762
763 #define LITERAL_MASK 0xf000f000
764 #define OPCODE_MASK 0xfe1fffff
765 #define V4_STR_BIT 0x00000020
766 #define VLDR_VMOV_SAME 0x0040f000
767
768 #define T2_SUBS_PC_LR 0xf3de8f00
769
770 #define DATA_OP_SHIFT 21
771 #define SBIT_SHIFT 20
772
773 #define T2_OPCODE_MASK 0xfe1fffff
774 #define T2_DATA_OP_SHIFT 21
775 #define T2_SBIT_SHIFT 20
776
777 #define A_COND_MASK 0xf0000000
778 #define A_PUSH_POP_OP_MASK 0x0fff0000
779
780 /* Opcodes for pushing/poping registers to/from the stack. */
781 #define A1_OPCODE_PUSH 0x092d0000
782 #define A2_OPCODE_PUSH 0x052d0004
783 #define A2_OPCODE_POP 0x049d0004
784
785 /* Codes to distinguish the arithmetic instructions. */
786 #define OPCODE_AND 0
787 #define OPCODE_EOR 1
788 #define OPCODE_SUB 2
789 #define OPCODE_RSB 3
790 #define OPCODE_ADD 4
791 #define OPCODE_ADC 5
792 #define OPCODE_SBC 6
793 #define OPCODE_RSC 7
794 #define OPCODE_TST 8
795 #define OPCODE_TEQ 9
796 #define OPCODE_CMP 10
797 #define OPCODE_CMN 11
798 #define OPCODE_ORR 12
799 #define OPCODE_MOV 13
800 #define OPCODE_BIC 14
801 #define OPCODE_MVN 15
802
803 #define T2_OPCODE_AND 0
804 #define T2_OPCODE_BIC 1
805 #define T2_OPCODE_ORR 2
806 #define T2_OPCODE_ORN 3
807 #define T2_OPCODE_EOR 4
808 #define T2_OPCODE_ADD 8
809 #define T2_OPCODE_ADC 10
810 #define T2_OPCODE_SBC 11
811 #define T2_OPCODE_SUB 13
812 #define T2_OPCODE_RSB 14
813
814 #define T_OPCODE_MUL 0x4340
815 #define T_OPCODE_TST 0x4200
816 #define T_OPCODE_CMN 0x42c0
817 #define T_OPCODE_NEG 0x4240
818 #define T_OPCODE_MVN 0x43c0
819
820 #define T_OPCODE_ADD_R3 0x1800
821 #define T_OPCODE_SUB_R3 0x1a00
822 #define T_OPCODE_ADD_HI 0x4400
823 #define T_OPCODE_ADD_ST 0xb000
824 #define T_OPCODE_SUB_ST 0xb080
825 #define T_OPCODE_ADD_SP 0xa800
826 #define T_OPCODE_ADD_PC 0xa000
827 #define T_OPCODE_ADD_I8 0x3000
828 #define T_OPCODE_SUB_I8 0x3800
829 #define T_OPCODE_ADD_I3 0x1c00
830 #define T_OPCODE_SUB_I3 0x1e00
831
832 #define T_OPCODE_ASR_R 0x4100
833 #define T_OPCODE_LSL_R 0x4080
834 #define T_OPCODE_LSR_R 0x40c0
835 #define T_OPCODE_ROR_R 0x41c0
836 #define T_OPCODE_ASR_I 0x1000
837 #define T_OPCODE_LSL_I 0x0000
838 #define T_OPCODE_LSR_I 0x0800
839
840 #define T_OPCODE_MOV_I8 0x2000
841 #define T_OPCODE_CMP_I8 0x2800
842 #define T_OPCODE_CMP_LR 0x4280
843 #define T_OPCODE_MOV_HR 0x4600
844 #define T_OPCODE_CMP_HR 0x4500
845
846 #define T_OPCODE_LDR_PC 0x4800
847 #define T_OPCODE_LDR_SP 0x9800
848 #define T_OPCODE_STR_SP 0x9000
849 #define T_OPCODE_LDR_IW 0x6800
850 #define T_OPCODE_STR_IW 0x6000
851 #define T_OPCODE_LDR_IH 0x8800
852 #define T_OPCODE_STR_IH 0x8000
853 #define T_OPCODE_LDR_IB 0x7800
854 #define T_OPCODE_STR_IB 0x7000
855 #define T_OPCODE_LDR_RW 0x5800
856 #define T_OPCODE_STR_RW 0x5000
857 #define T_OPCODE_LDR_RH 0x5a00
858 #define T_OPCODE_STR_RH 0x5200
859 #define T_OPCODE_LDR_RB 0x5c00
860 #define T_OPCODE_STR_RB 0x5400
861
862 #define T_OPCODE_PUSH 0xb400
863 #define T_OPCODE_POP 0xbc00
864
865 #define T_OPCODE_BRANCH 0xe000
866
867 #define THUMB_SIZE 2 /* Size of thumb instruction. */
868 #define THUMB_PP_PC_LR 0x0100
869 #define THUMB_LOAD_BIT 0x0800
870 #define THUMB2_LOAD_BIT 0x00100000
871
872 #define BAD_SYNTAX _("syntax error")
873 #define BAD_ARGS _("bad arguments to instruction")
874 #define BAD_SP _("r13 not allowed here")
875 #define BAD_PC _("r15 not allowed here")
876 #define BAD_ODD _("Odd register not allowed here")
877 #define BAD_EVEN _("Even register not allowed here")
878 #define BAD_COND _("instruction cannot be conditional")
879 #define BAD_OVERLAP _("registers may not be the same")
880 #define BAD_HIREG _("lo register required")
881 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
882 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
883 #define BAD_BRANCH _("branch must be last instruction in IT block")
884 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
885 #define BAD_NOT_IT _("instruction not allowed in IT block")
886 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
887 #define BAD_FPU _("selected FPU does not support instruction")
888 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
889 #define BAD_OUT_VPT \
890 _("vector predicated instruction should be in VPT/VPST block")
891 #define BAD_IT_COND _("incorrect condition in IT block")
892 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
893 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
894 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
895 #define BAD_PC_ADDRESSING \
896 _("cannot use register index with PC-relative addressing")
897 #define BAD_PC_WRITEBACK \
898 _("cannot use writeback with PC-relative addressing")
899 #define BAD_RANGE _("branch out of range")
900 #define BAD_FP16 _("selected processor does not support fp16 instruction")
901 #define BAD_BF16 _("selected processor does not support bf16 instruction")
902 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
903 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
904 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
905 "block")
906 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
907 "block")
908 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
909 " operand")
910 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
911 " operand")
912 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
913 #define BAD_MVE_AUTO \
914 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
915 " use a valid -march or -mcpu option.")
916 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
917 "and source operands makes instruction UNPREDICTABLE")
918 #define BAD_EL_TYPE _("bad element type for instruction")
919 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
920
921 static struct hash_control * arm_ops_hsh;
922 static struct hash_control * arm_cond_hsh;
923 static struct hash_control * arm_vcond_hsh;
924 static struct hash_control * arm_shift_hsh;
925 static struct hash_control * arm_psr_hsh;
926 static struct hash_control * arm_v7m_psr_hsh;
927 static struct hash_control * arm_reg_hsh;
928 static struct hash_control * arm_reloc_hsh;
929 static struct hash_control * arm_barrier_opt_hsh;
930
931 /* Stuff needed to resolve the label ambiguity
932 As:
933 ...
934 label: <insn>
935 may differ from:
936 ...
937 label:
938 <insn> */
939
940 symbolS * last_label_seen;
941 static int label_is_thumb_function_name = FALSE;
942
943 /* Literal pool structure. Held on a per-section
944 and per-sub-section basis. */
945
946 #define MAX_LITERAL_POOL_SIZE 1024
947 typedef struct literal_pool
948 {
949 expressionS literals [MAX_LITERAL_POOL_SIZE];
950 unsigned int next_free_entry;
951 unsigned int id;
952 symbolS * symbol;
953 segT section;
954 subsegT sub_section;
955 #ifdef OBJ_ELF
956 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
957 #endif
958 struct literal_pool * next;
959 unsigned int alignment;
960 } literal_pool;
961
962 /* Pointer to a linked list of literal pools. */
963 literal_pool * list_of_pools = NULL;
964
965 typedef enum asmfunc_states
966 {
967 OUTSIDE_ASMFUNC,
968 WAITING_ASMFUNC_NAME,
969 WAITING_ENDASMFUNC
970 } asmfunc_states;
971
972 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
973
974 #ifdef OBJ_ELF
975 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
976 #else
977 static struct current_pred now_pred;
978 #endif
979
980 static inline int
981 now_pred_compatible (int cond)
982 {
983 return (cond & ~1) == (now_pred.cc & ~1);
984 }
985
986 static inline int
987 conditional_insn (void)
988 {
989 return inst.cond != COND_ALWAYS;
990 }
991
992 static int in_pred_block (void);
993
994 static int handle_pred_state (void);
995
996 static void force_automatic_it_block_close (void);
997
998 static void it_fsm_post_encode (void);
999
1000 #define set_pred_insn_type(type) \
1001 do \
1002 { \
1003 inst.pred_insn_type = type; \
1004 if (handle_pred_state () == FAIL) \
1005 return; \
1006 } \
1007 while (0)
1008
1009 #define set_pred_insn_type_nonvoid(type, failret) \
1010 do \
1011 { \
1012 inst.pred_insn_type = type; \
1013 if (handle_pred_state () == FAIL) \
1014 return failret; \
1015 } \
1016 while(0)
1017
1018 #define set_pred_insn_type_last() \
1019 do \
1020 { \
1021 if (inst.cond == COND_ALWAYS) \
1022 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1023 else \
1024 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1025 } \
1026 while (0)
1027
1028 /* Toggle value[pos]. */
1029 #define TOGGLE_BIT(value, pos) (value ^ (1 << pos))
1030
1031 /* Pure syntax. */
1032
1033 /* This array holds the chars that always start a comment. If the
1034 pre-processor is disabled, these aren't very useful. */
1035 char arm_comment_chars[] = "@";
1036
1037 /* This array holds the chars that only start a comment at the beginning of
1038 a line. If the line seems to have the form '# 123 filename'
1039 .line and .file directives will appear in the pre-processed output. */
1040 /* Note that input_file.c hand checks for '#' at the beginning of the
1041 first line of the input file. This is because the compiler outputs
1042 #NO_APP at the beginning of its output. */
1043 /* Also note that comments like this one will always work. */
1044 const char line_comment_chars[] = "#";
1045
1046 char arm_line_separator_chars[] = ";";
1047
1048 /* Chars that can be used to separate mant
1049 from exp in floating point numbers. */
1050 const char EXP_CHARS[] = "eE";
1051
1052 /* Chars that mean this number is a floating point constant. */
1053 /* As in 0f12.456 */
1054 /* or 0d1.2345e12 */
1055
1056 const char FLT_CHARS[] = "rRsSfFdDxXeEpPHh";
1057
1058 /* Prefix characters that indicate the start of an immediate
1059 value. */
1060 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1061
1062 /* Separator character handling. */
1063
1064 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1065
1066 enum fp_16bit_format
1067 {
1068 ARM_FP16_FORMAT_IEEE = 0x1,
1069 ARM_FP16_FORMAT_ALTERNATIVE = 0x2,
1070 ARM_FP16_FORMAT_DEFAULT = 0x3
1071 };
1072
1073 static enum fp_16bit_format fp16_format = ARM_FP16_FORMAT_DEFAULT;
1074
1075
1076 static inline int
1077 skip_past_char (char ** str, char c)
1078 {
1079 /* PR gas/14987: Allow for whitespace before the expected character. */
1080 skip_whitespace (*str);
1081
1082 if (**str == c)
1083 {
1084 (*str)++;
1085 return SUCCESS;
1086 }
1087 else
1088 return FAIL;
1089 }
1090
1091 #define skip_past_comma(str) skip_past_char (str, ',')
1092
1093 /* Arithmetic expressions (possibly involving symbols). */
1094
1095 /* Return TRUE if anything in the expression is a bignum. */
1096
1097 static bfd_boolean
1098 walk_no_bignums (symbolS * sp)
1099 {
1100 if (symbol_get_value_expression (sp)->X_op == O_big)
1101 return TRUE;
1102
1103 if (symbol_get_value_expression (sp)->X_add_symbol)
1104 {
1105 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1106 || (symbol_get_value_expression (sp)->X_op_symbol
1107 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1108 }
1109
1110 return FALSE;
1111 }
1112
1113 static bfd_boolean in_my_get_expression = FALSE;
1114
1115 /* Third argument to my_get_expression. */
1116 #define GE_NO_PREFIX 0
1117 #define GE_IMM_PREFIX 1
1118 #define GE_OPT_PREFIX 2
1119 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1120 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1121 #define GE_OPT_PREFIX_BIG 3
1122
1123 static int
1124 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1125 {
1126 char * save_in;
1127
1128 /* In unified syntax, all prefixes are optional. */
1129 if (unified_syntax)
1130 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1131 : GE_OPT_PREFIX;
1132
1133 switch (prefix_mode)
1134 {
1135 case GE_NO_PREFIX: break;
1136 case GE_IMM_PREFIX:
1137 if (!is_immediate_prefix (**str))
1138 {
1139 inst.error = _("immediate expression requires a # prefix");
1140 return FAIL;
1141 }
1142 (*str)++;
1143 break;
1144 case GE_OPT_PREFIX:
1145 case GE_OPT_PREFIX_BIG:
1146 if (is_immediate_prefix (**str))
1147 (*str)++;
1148 break;
1149 default:
1150 abort ();
1151 }
1152
1153 memset (ep, 0, sizeof (expressionS));
1154
1155 save_in = input_line_pointer;
1156 input_line_pointer = *str;
1157 in_my_get_expression = TRUE;
1158 expression (ep);
1159 in_my_get_expression = FALSE;
1160
1161 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1162 {
1163 /* We found a bad or missing expression in md_operand(). */
1164 *str = input_line_pointer;
1165 input_line_pointer = save_in;
1166 if (inst.error == NULL)
1167 inst.error = (ep->X_op == O_absent
1168 ? _("missing expression") :_("bad expression"));
1169 return 1;
1170 }
1171
1172 /* Get rid of any bignums now, so that we don't generate an error for which
1173 we can't establish a line number later on. Big numbers are never valid
1174 in instructions, which is where this routine is always called. */
1175 if (prefix_mode != GE_OPT_PREFIX_BIG
1176 && (ep->X_op == O_big
1177 || (ep->X_add_symbol
1178 && (walk_no_bignums (ep->X_add_symbol)
1179 || (ep->X_op_symbol
1180 && walk_no_bignums (ep->X_op_symbol))))))
1181 {
1182 inst.error = _("invalid constant");
1183 *str = input_line_pointer;
1184 input_line_pointer = save_in;
1185 return 1;
1186 }
1187
1188 *str = input_line_pointer;
1189 input_line_pointer = save_in;
1190 return SUCCESS;
1191 }
1192
1193 /* Turn a string in input_line_pointer into a floating point constant
1194 of type TYPE, and store the appropriate bytes in *LITP. The number
1195 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1196 returned, or NULL on OK.
1197
1198 Note that fp constants aren't represent in the normal way on the ARM.
1199 In big endian mode, things are as expected. However, in little endian
1200 mode fp constants are big-endian word-wise, and little-endian byte-wise
1201 within the words. For example, (double) 1.1 in big endian mode is
1202 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1203 the byte sequence 99 99 f1 3f 9a 99 99 99.
1204
1205 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1206
1207 const char *
1208 md_atof (int type, char * litP, int * sizeP)
1209 {
1210 int prec;
1211 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1212 char *t;
1213 int i;
1214
1215 switch (type)
1216 {
1217 case 'H':
1218 case 'h':
1219 prec = 1;
1220 break;
1221
1222 /* If this is a bfloat16, then parse it slightly differently, as it
1223 does not follow the IEEE specification for floating point numbers
1224 exactly. */
1225 case 'b':
1226 {
1227 FLONUM_TYPE generic_float;
1228
1229 t = atof_ieee_detail (input_line_pointer, 1, 8, words, &generic_float);
1230
1231 if (t)
1232 input_line_pointer = t;
1233 else
1234 return _("invalid floating point number");
1235
1236 switch (generic_float.sign)
1237 {
1238 /* Is +Inf. */
1239 case 'P':
1240 words[0] = 0x7f80;
1241 break;
1242
1243 /* Is -Inf. */
1244 case 'N':
1245 words[0] = 0xff80;
1246 break;
1247
1248 /* Is NaN. */
1249 /* bfloat16 has two types of NaN - quiet and signalling.
1250 Quiet NaN has bit[6] == 1 && faction != 0, whereas
1251 signalling NaN's have bit[0] == 0 && fraction != 0.
1252 Chosen this specific encoding as it is the same form
1253 as used by other IEEE 754 encodings in GAS. */
1254 case 0:
1255 words[0] = 0x7fff;
1256 break;
1257
1258 default:
1259 break;
1260 }
1261
1262 *sizeP = 2;
1263
1264 md_number_to_chars (litP, (valueT) words[0], sizeof (LITTLENUM_TYPE));
1265
1266 return NULL;
1267 }
1268 case 'f':
1269 case 'F':
1270 case 's':
1271 case 'S':
1272 prec = 2;
1273 break;
1274
1275 case 'd':
1276 case 'D':
1277 case 'r':
1278 case 'R':
1279 prec = 4;
1280 break;
1281
1282 case 'x':
1283 case 'X':
1284 prec = 5;
1285 break;
1286
1287 case 'p':
1288 case 'P':
1289 prec = 5;
1290 break;
1291
1292 default:
1293 *sizeP = 0;
1294 return _("Unrecognized or unsupported floating point constant");
1295 }
1296
1297 t = atof_ieee (input_line_pointer, type, words);
1298 if (t)
1299 input_line_pointer = t;
1300 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1301
1302 if (target_big_endian || prec == 1)
1303 for (i = 0; i < prec; i++)
1304 {
1305 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1306 litP += sizeof (LITTLENUM_TYPE);
1307 }
1308 else if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1309 for (i = prec - 1; i >= 0; i--)
1310 {
1311 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1312 litP += sizeof (LITTLENUM_TYPE);
1313 }
1314 else
1315 /* For a 4 byte float the order of elements in `words' is 1 0.
1316 For an 8 byte float the order is 1 0 3 2. */
1317 for (i = 0; i < prec; i += 2)
1318 {
1319 md_number_to_chars (litP, (valueT) words[i + 1],
1320 sizeof (LITTLENUM_TYPE));
1321 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1322 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1323 litP += 2 * sizeof (LITTLENUM_TYPE);
1324 }
1325
1326 return NULL;
1327 }
1328
1329 /* We handle all bad expressions here, so that we can report the faulty
1330 instruction in the error message. */
1331
1332 void
1333 md_operand (expressionS * exp)
1334 {
1335 if (in_my_get_expression)
1336 exp->X_op = O_illegal;
1337 }
1338
1339 /* Immediate values. */
1340
1341 #ifdef OBJ_ELF
1342 /* Generic immediate-value read function for use in directives.
1343 Accepts anything that 'expression' can fold to a constant.
1344 *val receives the number. */
1345
1346 static int
1347 immediate_for_directive (int *val)
1348 {
1349 expressionS exp;
1350 exp.X_op = O_illegal;
1351
1352 if (is_immediate_prefix (*input_line_pointer))
1353 {
1354 input_line_pointer++;
1355 expression (&exp);
1356 }
1357
1358 if (exp.X_op != O_constant)
1359 {
1360 as_bad (_("expected #constant"));
1361 ignore_rest_of_line ();
1362 return FAIL;
1363 }
1364 *val = exp.X_add_number;
1365 return SUCCESS;
1366 }
1367 #endif
1368
1369 /* Register parsing. */
1370
1371 /* Generic register parser. CCP points to what should be the
1372 beginning of a register name. If it is indeed a valid register
1373 name, advance CCP over it and return the reg_entry structure;
1374 otherwise return NULL. Does not issue diagnostics. */
1375
1376 static struct reg_entry *
1377 arm_reg_parse_multi (char **ccp)
1378 {
1379 char *start = *ccp;
1380 char *p;
1381 struct reg_entry *reg;
1382
1383 skip_whitespace (start);
1384
1385 #ifdef REGISTER_PREFIX
1386 if (*start != REGISTER_PREFIX)
1387 return NULL;
1388 start++;
1389 #endif
1390 #ifdef OPTIONAL_REGISTER_PREFIX
1391 if (*start == OPTIONAL_REGISTER_PREFIX)
1392 start++;
1393 #endif
1394
1395 p = start;
1396 if (!ISALPHA (*p) || !is_name_beginner (*p))
1397 return NULL;
1398
1399 do
1400 p++;
1401 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1402
1403 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1404
1405 if (!reg)
1406 return NULL;
1407
1408 *ccp = p;
1409 return reg;
1410 }
1411
1412 static int
1413 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1414 enum arm_reg_type type)
1415 {
1416 /* Alternative syntaxes are accepted for a few register classes. */
1417 switch (type)
1418 {
1419 case REG_TYPE_MVF:
1420 case REG_TYPE_MVD:
1421 case REG_TYPE_MVFX:
1422 case REG_TYPE_MVDX:
1423 /* Generic coprocessor register names are allowed for these. */
1424 if (reg && reg->type == REG_TYPE_CN)
1425 return reg->number;
1426 break;
1427
1428 case REG_TYPE_CP:
1429 /* For backward compatibility, a bare number is valid here. */
1430 {
1431 unsigned long processor = strtoul (start, ccp, 10);
1432 if (*ccp != start && processor <= 15)
1433 return processor;
1434 }
1435 /* Fall through. */
1436
1437 case REG_TYPE_MMXWC:
1438 /* WC includes WCG. ??? I'm not sure this is true for all
1439 instructions that take WC registers. */
1440 if (reg && reg->type == REG_TYPE_MMXWCG)
1441 return reg->number;
1442 break;
1443
1444 default:
1445 break;
1446 }
1447
1448 return FAIL;
1449 }
1450
1451 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1452 return value is the register number or FAIL. */
1453
1454 static int
1455 arm_reg_parse (char **ccp, enum arm_reg_type type)
1456 {
1457 char *start = *ccp;
1458 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1459 int ret;
1460
1461 /* Do not allow a scalar (reg+index) to parse as a register. */
1462 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1463 return FAIL;
1464
1465 if (reg && reg->type == type)
1466 return reg->number;
1467
1468 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1469 return ret;
1470
1471 *ccp = start;
1472 return FAIL;
1473 }
1474
1475 /* Parse a Neon type specifier. *STR should point at the leading '.'
1476 character. Does no verification at this stage that the type fits the opcode
1477 properly. E.g.,
1478
1479 .i32.i32.s16
1480 .s32.f32
1481 .u16
1482
1483 Can all be legally parsed by this function.
1484
1485 Fills in neon_type struct pointer with parsed information, and updates STR
1486 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1487 type, FAIL if not. */
1488
1489 static int
1490 parse_neon_type (struct neon_type *type, char **str)
1491 {
1492 char *ptr = *str;
1493
1494 if (type)
1495 type->elems = 0;
1496
1497 while (type->elems < NEON_MAX_TYPE_ELS)
1498 {
1499 enum neon_el_type thistype = NT_untyped;
1500 unsigned thissize = -1u;
1501
1502 if (*ptr != '.')
1503 break;
1504
1505 ptr++;
1506
1507 /* Just a size without an explicit type. */
1508 if (ISDIGIT (*ptr))
1509 goto parsesize;
1510
1511 switch (TOLOWER (*ptr))
1512 {
1513 case 'i': thistype = NT_integer; break;
1514 case 'f': thistype = NT_float; break;
1515 case 'p': thistype = NT_poly; break;
1516 case 's': thistype = NT_signed; break;
1517 case 'u': thistype = NT_unsigned; break;
1518 case 'd':
1519 thistype = NT_float;
1520 thissize = 64;
1521 ptr++;
1522 goto done;
1523 case 'b':
1524 thistype = NT_bfloat;
1525 switch (TOLOWER (*(++ptr)))
1526 {
1527 case 'f':
1528 ptr += 1;
1529 thissize = strtoul (ptr, &ptr, 10);
1530 if (thissize != 16)
1531 {
1532 as_bad (_("bad size %d in type specifier"), thissize);
1533 return FAIL;
1534 }
1535 goto done;
1536 case '0': case '1': case '2': case '3': case '4':
1537 case '5': case '6': case '7': case '8': case '9':
1538 case ' ': case '.':
1539 as_bad (_("unexpected type character `b' -- did you mean `bf'?"));
1540 return FAIL;
1541 default:
1542 break;
1543 }
1544 break;
1545 default:
1546 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1547 return FAIL;
1548 }
1549
1550 ptr++;
1551
1552 /* .f is an abbreviation for .f32. */
1553 if (thistype == NT_float && !ISDIGIT (*ptr))
1554 thissize = 32;
1555 else
1556 {
1557 parsesize:
1558 thissize = strtoul (ptr, &ptr, 10);
1559
1560 if (thissize != 8 && thissize != 16 && thissize != 32
1561 && thissize != 64)
1562 {
1563 as_bad (_("bad size %d in type specifier"), thissize);
1564 return FAIL;
1565 }
1566 }
1567
1568 done:
1569 if (type)
1570 {
1571 type->el[type->elems].type = thistype;
1572 type->el[type->elems].size = thissize;
1573 type->elems++;
1574 }
1575 }
1576
1577 /* Empty/missing type is not a successful parse. */
1578 if (type->elems == 0)
1579 return FAIL;
1580
1581 *str = ptr;
1582
1583 return SUCCESS;
1584 }
1585
1586 /* Errors may be set multiple times during parsing or bit encoding
1587 (particularly in the Neon bits), but usually the earliest error which is set
1588 will be the most meaningful. Avoid overwriting it with later (cascading)
1589 errors by calling this function. */
1590
1591 static void
1592 first_error (const char *err)
1593 {
1594 if (!inst.error)
1595 inst.error = err;
1596 }
1597
1598 /* Parse a single type, e.g. ".s32", leading period included. */
1599 static int
1600 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1601 {
1602 char *str = *ccp;
1603 struct neon_type optype;
1604
1605 if (*str == '.')
1606 {
1607 if (parse_neon_type (&optype, &str) == SUCCESS)
1608 {
1609 if (optype.elems == 1)
1610 *vectype = optype.el[0];
1611 else
1612 {
1613 first_error (_("only one type should be specified for operand"));
1614 return FAIL;
1615 }
1616 }
1617 else
1618 {
1619 first_error (_("vector type expected"));
1620 return FAIL;
1621 }
1622 }
1623 else
1624 return FAIL;
1625
1626 *ccp = str;
1627
1628 return SUCCESS;
1629 }
1630
1631 /* Special meanings for indices (which have a range of 0-7), which will fit into
1632 a 4-bit integer. */
1633
1634 #define NEON_ALL_LANES 15
1635 #define NEON_INTERLEAVE_LANES 14
1636
1637 /* Record a use of the given feature. */
1638 static void
1639 record_feature_use (const arm_feature_set *feature)
1640 {
1641 if (thumb_mode)
1642 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1643 else
1644 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1645 }
1646
1647 /* If the given feature available in the selected CPU, mark it as used.
1648 Returns TRUE iff feature is available. */
1649 static bfd_boolean
1650 mark_feature_used (const arm_feature_set *feature)
1651 {
1652
1653 /* Do not support the use of MVE only instructions when in auto-detection or
1654 -march=all. */
1655 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1656 && ARM_CPU_IS_ANY (cpu_variant))
1657 {
1658 first_error (BAD_MVE_AUTO);
1659 return FALSE;
1660 }
1661 /* Ensure the option is valid on the current architecture. */
1662 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1663 return FALSE;
1664
1665 /* Add the appropriate architecture feature for the barrier option used.
1666 */
1667 record_feature_use (feature);
1668
1669 return TRUE;
1670 }
1671
1672 /* Parse either a register or a scalar, with an optional type. Return the
1673 register number, and optionally fill in the actual type of the register
1674 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1675 type/index information in *TYPEINFO. */
1676
1677 static int
1678 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1679 enum arm_reg_type *rtype,
1680 struct neon_typed_alias *typeinfo)
1681 {
1682 char *str = *ccp;
1683 struct reg_entry *reg = arm_reg_parse_multi (&str);
1684 struct neon_typed_alias atype;
1685 struct neon_type_el parsetype;
1686
1687 atype.defined = 0;
1688 atype.index = -1;
1689 atype.eltype.type = NT_invtype;
1690 atype.eltype.size = -1;
1691
1692 /* Try alternate syntax for some types of register. Note these are mutually
1693 exclusive with the Neon syntax extensions. */
1694 if (reg == NULL)
1695 {
1696 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1697 if (altreg != FAIL)
1698 *ccp = str;
1699 if (typeinfo)
1700 *typeinfo = atype;
1701 return altreg;
1702 }
1703
1704 /* Undo polymorphism when a set of register types may be accepted. */
1705 if ((type == REG_TYPE_NDQ
1706 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1707 || (type == REG_TYPE_VFSD
1708 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1709 || (type == REG_TYPE_NSDQ
1710 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1711 || reg->type == REG_TYPE_NQ))
1712 || (type == REG_TYPE_NSD
1713 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1714 || (type == REG_TYPE_MMXWC
1715 && (reg->type == REG_TYPE_MMXWCG)))
1716 type = (enum arm_reg_type) reg->type;
1717
1718 if (type == REG_TYPE_MQ)
1719 {
1720 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1721 return FAIL;
1722
1723 if (!reg || reg->type != REG_TYPE_NQ)
1724 return FAIL;
1725
1726 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1727 {
1728 first_error (_("expected MVE register [q0..q7]"));
1729 return FAIL;
1730 }
1731 type = REG_TYPE_NQ;
1732 }
1733 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1734 && (type == REG_TYPE_NQ))
1735 return FAIL;
1736
1737
1738 if (type != reg->type)
1739 return FAIL;
1740
1741 if (reg->neon)
1742 atype = *reg->neon;
1743
1744 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1745 {
1746 if ((atype.defined & NTA_HASTYPE) != 0)
1747 {
1748 first_error (_("can't redefine type for operand"));
1749 return FAIL;
1750 }
1751 atype.defined |= NTA_HASTYPE;
1752 atype.eltype = parsetype;
1753 }
1754
1755 if (skip_past_char (&str, '[') == SUCCESS)
1756 {
1757 if (type != REG_TYPE_VFD
1758 && !(type == REG_TYPE_VFS
1759 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1760 && !(type == REG_TYPE_NQ
1761 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1762 {
1763 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1764 first_error (_("only D and Q registers may be indexed"));
1765 else
1766 first_error (_("only D registers may be indexed"));
1767 return FAIL;
1768 }
1769
1770 if ((atype.defined & NTA_HASINDEX) != 0)
1771 {
1772 first_error (_("can't change index for operand"));
1773 return FAIL;
1774 }
1775
1776 atype.defined |= NTA_HASINDEX;
1777
1778 if (skip_past_char (&str, ']') == SUCCESS)
1779 atype.index = NEON_ALL_LANES;
1780 else
1781 {
1782 expressionS exp;
1783
1784 my_get_expression (&exp, &str, GE_NO_PREFIX);
1785
1786 if (exp.X_op != O_constant)
1787 {
1788 first_error (_("constant expression required"));
1789 return FAIL;
1790 }
1791
1792 if (skip_past_char (&str, ']') == FAIL)
1793 return FAIL;
1794
1795 atype.index = exp.X_add_number;
1796 }
1797 }
1798
1799 if (typeinfo)
1800 *typeinfo = atype;
1801
1802 if (rtype)
1803 *rtype = type;
1804
1805 *ccp = str;
1806
1807 return reg->number;
1808 }
1809
1810 /* Like arm_reg_parse, but also allow the following extra features:
1811 - If RTYPE is non-zero, return the (possibly restricted) type of the
1812 register (e.g. Neon double or quad reg when either has been requested).
1813 - If this is a Neon vector type with additional type information, fill
1814 in the struct pointed to by VECTYPE (if non-NULL).
1815 This function will fault on encountering a scalar. */
1816
1817 static int
1818 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1819 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1820 {
1821 struct neon_typed_alias atype;
1822 char *str = *ccp;
1823 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1824
1825 if (reg == FAIL)
1826 return FAIL;
1827
1828 /* Do not allow regname(... to parse as a register. */
1829 if (*str == '(')
1830 return FAIL;
1831
1832 /* Do not allow a scalar (reg+index) to parse as a register. */
1833 if ((atype.defined & NTA_HASINDEX) != 0)
1834 {
1835 first_error (_("register operand expected, but got scalar"));
1836 return FAIL;
1837 }
1838
1839 if (vectype)
1840 *vectype = atype.eltype;
1841
1842 *ccp = str;
1843
1844 return reg;
1845 }
1846
1847 #define NEON_SCALAR_REG(X) ((X) >> 4)
1848 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1849
1850 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1851 have enough information to be able to do a good job bounds-checking. So, we
1852 just do easy checks here, and do further checks later. */
1853
1854 static int
1855 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1856 arm_reg_type reg_type)
1857 {
1858 int reg;
1859 char *str = *ccp;
1860 struct neon_typed_alias atype;
1861 unsigned reg_size;
1862
1863 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1864
1865 switch (reg_type)
1866 {
1867 case REG_TYPE_VFS:
1868 reg_size = 32;
1869 break;
1870 case REG_TYPE_VFD:
1871 reg_size = 64;
1872 break;
1873 case REG_TYPE_MQ:
1874 reg_size = 128;
1875 break;
1876 default:
1877 gas_assert (0);
1878 return FAIL;
1879 }
1880
1881 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1882 return FAIL;
1883
1884 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1885 {
1886 first_error (_("scalar must have an index"));
1887 return FAIL;
1888 }
1889 else if (atype.index >= reg_size / elsize)
1890 {
1891 first_error (_("scalar index out of range"));
1892 return FAIL;
1893 }
1894
1895 if (type)
1896 *type = atype.eltype;
1897
1898 *ccp = str;
1899
1900 return reg * 16 + atype.index;
1901 }
1902
1903 /* Types of registers in a list. */
1904
1905 enum reg_list_els
1906 {
1907 REGLIST_RN,
1908 REGLIST_CLRM,
1909 REGLIST_VFP_S,
1910 REGLIST_VFP_S_VPR,
1911 REGLIST_VFP_D,
1912 REGLIST_VFP_D_VPR,
1913 REGLIST_NEON_D
1914 };
1915
1916 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1917
1918 static long
1919 parse_reg_list (char ** strp, enum reg_list_els etype)
1920 {
1921 char *str = *strp;
1922 long range = 0;
1923 int another_range;
1924
1925 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1926
1927 /* We come back here if we get ranges concatenated by '+' or '|'. */
1928 do
1929 {
1930 skip_whitespace (str);
1931
1932 another_range = 0;
1933
1934 if (*str == '{')
1935 {
1936 int in_range = 0;
1937 int cur_reg = -1;
1938
1939 str++;
1940 do
1941 {
1942 int reg;
1943 const char apsr_str[] = "apsr";
1944 int apsr_str_len = strlen (apsr_str);
1945
1946 reg = arm_reg_parse (&str, REG_TYPE_RN);
1947 if (etype == REGLIST_CLRM)
1948 {
1949 if (reg == REG_SP || reg == REG_PC)
1950 reg = FAIL;
1951 else if (reg == FAIL
1952 && !strncasecmp (str, apsr_str, apsr_str_len)
1953 && !ISALPHA (*(str + apsr_str_len)))
1954 {
1955 reg = 15;
1956 str += apsr_str_len;
1957 }
1958
1959 if (reg == FAIL)
1960 {
1961 first_error (_("r0-r12, lr or APSR expected"));
1962 return FAIL;
1963 }
1964 }
1965 else /* etype == REGLIST_RN. */
1966 {
1967 if (reg == FAIL)
1968 {
1969 first_error (_(reg_expected_msgs[REGLIST_RN]));
1970 return FAIL;
1971 }
1972 }
1973
1974 if (in_range)
1975 {
1976 int i;
1977
1978 if (reg <= cur_reg)
1979 {
1980 first_error (_("bad range in register list"));
1981 return FAIL;
1982 }
1983
1984 for (i = cur_reg + 1; i < reg; i++)
1985 {
1986 if (range & (1 << i))
1987 as_tsktsk
1988 (_("Warning: duplicated register (r%d) in register list"),
1989 i);
1990 else
1991 range |= 1 << i;
1992 }
1993 in_range = 0;
1994 }
1995
1996 if (range & (1 << reg))
1997 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1998 reg);
1999 else if (reg <= cur_reg)
2000 as_tsktsk (_("Warning: register range not in ascending order"));
2001
2002 range |= 1 << reg;
2003 cur_reg = reg;
2004 }
2005 while (skip_past_comma (&str) != FAIL
2006 || (in_range = 1, *str++ == '-'));
2007 str--;
2008
2009 if (skip_past_char (&str, '}') == FAIL)
2010 {
2011 first_error (_("missing `}'"));
2012 return FAIL;
2013 }
2014 }
2015 else if (etype == REGLIST_RN)
2016 {
2017 expressionS exp;
2018
2019 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
2020 return FAIL;
2021
2022 if (exp.X_op == O_constant)
2023 {
2024 if (exp.X_add_number
2025 != (exp.X_add_number & 0x0000ffff))
2026 {
2027 inst.error = _("invalid register mask");
2028 return FAIL;
2029 }
2030
2031 if ((range & exp.X_add_number) != 0)
2032 {
2033 int regno = range & exp.X_add_number;
2034
2035 regno &= -regno;
2036 regno = (1 << regno) - 1;
2037 as_tsktsk
2038 (_("Warning: duplicated register (r%d) in register list"),
2039 regno);
2040 }
2041
2042 range |= exp.X_add_number;
2043 }
2044 else
2045 {
2046 if (inst.relocs[0].type != 0)
2047 {
2048 inst.error = _("expression too complex");
2049 return FAIL;
2050 }
2051
2052 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
2053 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
2054 inst.relocs[0].pc_rel = 0;
2055 }
2056 }
2057
2058 if (*str == '|' || *str == '+')
2059 {
2060 str++;
2061 another_range = 1;
2062 }
2063 }
2064 while (another_range);
2065
2066 *strp = str;
2067 return range;
2068 }
2069
2070 /* Parse a VFP register list. If the string is invalid return FAIL.
2071 Otherwise return the number of registers, and set PBASE to the first
2072 register. Parses registers of type ETYPE.
2073 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
2074 - Q registers can be used to specify pairs of D registers
2075 - { } can be omitted from around a singleton register list
2076 FIXME: This is not implemented, as it would require backtracking in
2077 some cases, e.g.:
2078 vtbl.8 d3,d4,d5
2079 This could be done (the meaning isn't really ambiguous), but doesn't
2080 fit in well with the current parsing framework.
2081 - 32 D registers may be used (also true for VFPv3).
2082 FIXME: Types are ignored in these register lists, which is probably a
2083 bug. */
2084
2085 static int
2086 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
2087 bfd_boolean *partial_match)
2088 {
2089 char *str = *ccp;
2090 int base_reg;
2091 int new_base;
2092 enum arm_reg_type regtype = (enum arm_reg_type) 0;
2093 int max_regs = 0;
2094 int count = 0;
2095 int warned = 0;
2096 unsigned long mask = 0;
2097 int i;
2098 bfd_boolean vpr_seen = FALSE;
2099 bfd_boolean expect_vpr =
2100 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2101
2102 if (skip_past_char (&str, '{') == FAIL)
2103 {
2104 inst.error = _("expecting {");
2105 return FAIL;
2106 }
2107
2108 switch (etype)
2109 {
2110 case REGLIST_VFP_S:
2111 case REGLIST_VFP_S_VPR:
2112 regtype = REG_TYPE_VFS;
2113 max_regs = 32;
2114 break;
2115
2116 case REGLIST_VFP_D:
2117 case REGLIST_VFP_D_VPR:
2118 regtype = REG_TYPE_VFD;
2119 break;
2120
2121 case REGLIST_NEON_D:
2122 regtype = REG_TYPE_NDQ;
2123 break;
2124
2125 default:
2126 gas_assert (0);
2127 }
2128
2129 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2130 {
2131 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2132 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2133 {
2134 max_regs = 32;
2135 if (thumb_mode)
2136 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2137 fpu_vfp_ext_d32);
2138 else
2139 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2140 fpu_vfp_ext_d32);
2141 }
2142 else
2143 max_regs = 16;
2144 }
2145
2146 base_reg = max_regs;
2147 *partial_match = FALSE;
2148
2149 do
2150 {
2151 int setmask = 1, addregs = 1;
2152 const char vpr_str[] = "vpr";
2153 int vpr_str_len = strlen (vpr_str);
2154
2155 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2156
2157 if (expect_vpr)
2158 {
2159 if (new_base == FAIL
2160 && !strncasecmp (str, vpr_str, vpr_str_len)
2161 && !ISALPHA (*(str + vpr_str_len))
2162 && !vpr_seen)
2163 {
2164 vpr_seen = TRUE;
2165 str += vpr_str_len;
2166 if (count == 0)
2167 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2168 }
2169 else if (vpr_seen)
2170 {
2171 first_error (_("VPR expected last"));
2172 return FAIL;
2173 }
2174 else if (new_base == FAIL)
2175 {
2176 if (regtype == REG_TYPE_VFS)
2177 first_error (_("VFP single precision register or VPR "
2178 "expected"));
2179 else /* regtype == REG_TYPE_VFD. */
2180 first_error (_("VFP/Neon double precision register or VPR "
2181 "expected"));
2182 return FAIL;
2183 }
2184 }
2185 else if (new_base == FAIL)
2186 {
2187 first_error (_(reg_expected_msgs[regtype]));
2188 return FAIL;
2189 }
2190
2191 *partial_match = TRUE;
2192 if (vpr_seen)
2193 continue;
2194
2195 if (new_base >= max_regs)
2196 {
2197 first_error (_("register out of range in list"));
2198 return FAIL;
2199 }
2200
2201 /* Note: a value of 2 * n is returned for the register Q<n>. */
2202 if (regtype == REG_TYPE_NQ)
2203 {
2204 setmask = 3;
2205 addregs = 2;
2206 }
2207
2208 if (new_base < base_reg)
2209 base_reg = new_base;
2210
2211 if (mask & (setmask << new_base))
2212 {
2213 first_error (_("invalid register list"));
2214 return FAIL;
2215 }
2216
2217 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2218 {
2219 as_tsktsk (_("register list not in ascending order"));
2220 warned = 1;
2221 }
2222
2223 mask |= setmask << new_base;
2224 count += addregs;
2225
2226 if (*str == '-') /* We have the start of a range expression */
2227 {
2228 int high_range;
2229
2230 str++;
2231
2232 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2233 == FAIL)
2234 {
2235 inst.error = gettext (reg_expected_msgs[regtype]);
2236 return FAIL;
2237 }
2238
2239 if (high_range >= max_regs)
2240 {
2241 first_error (_("register out of range in list"));
2242 return FAIL;
2243 }
2244
2245 if (regtype == REG_TYPE_NQ)
2246 high_range = high_range + 1;
2247
2248 if (high_range <= new_base)
2249 {
2250 inst.error = _("register range not in ascending order");
2251 return FAIL;
2252 }
2253
2254 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2255 {
2256 if (mask & (setmask << new_base))
2257 {
2258 inst.error = _("invalid register list");
2259 return FAIL;
2260 }
2261
2262 mask |= setmask << new_base;
2263 count += addregs;
2264 }
2265 }
2266 }
2267 while (skip_past_comma (&str) != FAIL);
2268
2269 str++;
2270
2271 /* Sanity check -- should have raised a parse error above. */
2272 if ((!vpr_seen && count == 0) || count > max_regs)
2273 abort ();
2274
2275 *pbase = base_reg;
2276
2277 if (expect_vpr && !vpr_seen)
2278 {
2279 first_error (_("VPR expected last"));
2280 return FAIL;
2281 }
2282
2283 /* Final test -- the registers must be consecutive. */
2284 mask >>= base_reg;
2285 for (i = 0; i < count; i++)
2286 {
2287 if ((mask & (1u << i)) == 0)
2288 {
2289 inst.error = _("non-contiguous register range");
2290 return FAIL;
2291 }
2292 }
2293
2294 *ccp = str;
2295
2296 return count;
2297 }
2298
2299 /* True if two alias types are the same. */
2300
2301 static bfd_boolean
2302 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2303 {
2304 if (!a && !b)
2305 return TRUE;
2306
2307 if (!a || !b)
2308 return FALSE;
2309
2310 if (a->defined != b->defined)
2311 return FALSE;
2312
2313 if ((a->defined & NTA_HASTYPE) != 0
2314 && (a->eltype.type != b->eltype.type
2315 || a->eltype.size != b->eltype.size))
2316 return FALSE;
2317
2318 if ((a->defined & NTA_HASINDEX) != 0
2319 && (a->index != b->index))
2320 return FALSE;
2321
2322 return TRUE;
2323 }
2324
2325 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2326 The base register is put in *PBASE.
2327 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2328 the return value.
2329 The register stride (minus one) is put in bit 4 of the return value.
2330 Bits [6:5] encode the list length (minus one).
2331 The type of the list elements is put in *ELTYPE, if non-NULL. */
2332
2333 #define NEON_LANE(X) ((X) & 0xf)
2334 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2335 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2336
2337 static int
2338 parse_neon_el_struct_list (char **str, unsigned *pbase,
2339 int mve,
2340 struct neon_type_el *eltype)
2341 {
2342 char *ptr = *str;
2343 int base_reg = -1;
2344 int reg_incr = -1;
2345 int count = 0;
2346 int lane = -1;
2347 int leading_brace = 0;
2348 enum arm_reg_type rtype = REG_TYPE_NDQ;
2349 const char *const incr_error = mve ? _("register stride must be 1") :
2350 _("register stride must be 1 or 2");
2351 const char *const type_error = _("mismatched element/structure types in list");
2352 struct neon_typed_alias firsttype;
2353 firsttype.defined = 0;
2354 firsttype.eltype.type = NT_invtype;
2355 firsttype.eltype.size = -1;
2356 firsttype.index = -1;
2357
2358 if (skip_past_char (&ptr, '{') == SUCCESS)
2359 leading_brace = 1;
2360
2361 do
2362 {
2363 struct neon_typed_alias atype;
2364 if (mve)
2365 rtype = REG_TYPE_MQ;
2366 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2367
2368 if (getreg == FAIL)
2369 {
2370 first_error (_(reg_expected_msgs[rtype]));
2371 return FAIL;
2372 }
2373
2374 if (base_reg == -1)
2375 {
2376 base_reg = getreg;
2377 if (rtype == REG_TYPE_NQ)
2378 {
2379 reg_incr = 1;
2380 }
2381 firsttype = atype;
2382 }
2383 else if (reg_incr == -1)
2384 {
2385 reg_incr = getreg - base_reg;
2386 if (reg_incr < 1 || reg_incr > 2)
2387 {
2388 first_error (_(incr_error));
2389 return FAIL;
2390 }
2391 }
2392 else if (getreg != base_reg + reg_incr * count)
2393 {
2394 first_error (_(incr_error));
2395 return FAIL;
2396 }
2397
2398 if (! neon_alias_types_same (&atype, &firsttype))
2399 {
2400 first_error (_(type_error));
2401 return FAIL;
2402 }
2403
2404 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2405 modes. */
2406 if (ptr[0] == '-')
2407 {
2408 struct neon_typed_alias htype;
2409 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2410 if (lane == -1)
2411 lane = NEON_INTERLEAVE_LANES;
2412 else if (lane != NEON_INTERLEAVE_LANES)
2413 {
2414 first_error (_(type_error));
2415 return FAIL;
2416 }
2417 if (reg_incr == -1)
2418 reg_incr = 1;
2419 else if (reg_incr != 1)
2420 {
2421 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2422 return FAIL;
2423 }
2424 ptr++;
2425 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2426 if (hireg == FAIL)
2427 {
2428 first_error (_(reg_expected_msgs[rtype]));
2429 return FAIL;
2430 }
2431 if (! neon_alias_types_same (&htype, &firsttype))
2432 {
2433 first_error (_(type_error));
2434 return FAIL;
2435 }
2436 count += hireg + dregs - getreg;
2437 continue;
2438 }
2439
2440 /* If we're using Q registers, we can't use [] or [n] syntax. */
2441 if (rtype == REG_TYPE_NQ)
2442 {
2443 count += 2;
2444 continue;
2445 }
2446
2447 if ((atype.defined & NTA_HASINDEX) != 0)
2448 {
2449 if (lane == -1)
2450 lane = atype.index;
2451 else if (lane != atype.index)
2452 {
2453 first_error (_(type_error));
2454 return FAIL;
2455 }
2456 }
2457 else if (lane == -1)
2458 lane = NEON_INTERLEAVE_LANES;
2459 else if (lane != NEON_INTERLEAVE_LANES)
2460 {
2461 first_error (_(type_error));
2462 return FAIL;
2463 }
2464 count++;
2465 }
2466 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2467
2468 /* No lane set by [x]. We must be interleaving structures. */
2469 if (lane == -1)
2470 lane = NEON_INTERLEAVE_LANES;
2471
2472 /* Sanity check. */
2473 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2474 || (count > 1 && reg_incr == -1))
2475 {
2476 first_error (_("error parsing element/structure list"));
2477 return FAIL;
2478 }
2479
2480 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2481 {
2482 first_error (_("expected }"));
2483 return FAIL;
2484 }
2485
2486 if (reg_incr == -1)
2487 reg_incr = 1;
2488
2489 if (eltype)
2490 *eltype = firsttype.eltype;
2491
2492 *pbase = base_reg;
2493 *str = ptr;
2494
2495 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2496 }
2497
2498 /* Parse an explicit relocation suffix on an expression. This is
2499 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2500 arm_reloc_hsh contains no entries, so this function can only
2501 succeed if there is no () after the word. Returns -1 on error,
2502 BFD_RELOC_UNUSED if there wasn't any suffix. */
2503
2504 static int
2505 parse_reloc (char **str)
2506 {
2507 struct reloc_entry *r;
2508 char *p, *q;
2509
2510 if (**str != '(')
2511 return BFD_RELOC_UNUSED;
2512
2513 p = *str + 1;
2514 q = p;
2515
2516 while (*q && *q != ')' && *q != ',')
2517 q++;
2518 if (*q != ')')
2519 return -1;
2520
2521 if ((r = (struct reloc_entry *)
2522 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2523 return -1;
2524
2525 *str = q + 1;
2526 return r->reloc;
2527 }
2528
2529 /* Directives: register aliases. */
2530
2531 static struct reg_entry *
2532 insert_reg_alias (char *str, unsigned number, int type)
2533 {
2534 struct reg_entry *new_reg;
2535 const char *name;
2536
2537 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2538 {
2539 if (new_reg->builtin)
2540 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2541
2542 /* Only warn about a redefinition if it's not defined as the
2543 same register. */
2544 else if (new_reg->number != number || new_reg->type != type)
2545 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2546
2547 return NULL;
2548 }
2549
2550 name = xstrdup (str);
2551 new_reg = XNEW (struct reg_entry);
2552
2553 new_reg->name = name;
2554 new_reg->number = number;
2555 new_reg->type = type;
2556 new_reg->builtin = FALSE;
2557 new_reg->neon = NULL;
2558
2559 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2560 abort ();
2561
2562 return new_reg;
2563 }
2564
2565 static void
2566 insert_neon_reg_alias (char *str, int number, int type,
2567 struct neon_typed_alias *atype)
2568 {
2569 struct reg_entry *reg = insert_reg_alias (str, number, type);
2570
2571 if (!reg)
2572 {
2573 first_error (_("attempt to redefine typed alias"));
2574 return;
2575 }
2576
2577 if (atype)
2578 {
2579 reg->neon = XNEW (struct neon_typed_alias);
2580 *reg->neon = *atype;
2581 }
2582 }
2583
2584 /* Look for the .req directive. This is of the form:
2585
2586 new_register_name .req existing_register_name
2587
2588 If we find one, or if it looks sufficiently like one that we want to
2589 handle any error here, return TRUE. Otherwise return FALSE. */
2590
2591 static bfd_boolean
2592 create_register_alias (char * newname, char *p)
2593 {
2594 struct reg_entry *old;
2595 char *oldname, *nbuf;
2596 size_t nlen;
2597
2598 /* The input scrubber ensures that whitespace after the mnemonic is
2599 collapsed to single spaces. */
2600 oldname = p;
2601 if (strncmp (oldname, " .req ", 6) != 0)
2602 return FALSE;
2603
2604 oldname += 6;
2605 if (*oldname == '\0')
2606 return FALSE;
2607
2608 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2609 if (!old)
2610 {
2611 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2612 return TRUE;
2613 }
2614
2615 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2616 the desired alias name, and p points to its end. If not, then
2617 the desired alias name is in the global original_case_string. */
2618 #ifdef TC_CASE_SENSITIVE
2619 nlen = p - newname;
2620 #else
2621 newname = original_case_string;
2622 nlen = strlen (newname);
2623 #endif
2624
2625 nbuf = xmemdup0 (newname, nlen);
2626
2627 /* Create aliases under the new name as stated; an all-lowercase
2628 version of the new name; and an all-uppercase version of the new
2629 name. */
2630 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2631 {
2632 for (p = nbuf; *p; p++)
2633 *p = TOUPPER (*p);
2634
2635 if (strncmp (nbuf, newname, nlen))
2636 {
2637 /* If this attempt to create an additional alias fails, do not bother
2638 trying to create the all-lower case alias. We will fail and issue
2639 a second, duplicate error message. This situation arises when the
2640 programmer does something like:
2641 foo .req r0
2642 Foo .req r1
2643 The second .req creates the "Foo" alias but then fails to create
2644 the artificial FOO alias because it has already been created by the
2645 first .req. */
2646 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2647 {
2648 free (nbuf);
2649 return TRUE;
2650 }
2651 }
2652
2653 for (p = nbuf; *p; p++)
2654 *p = TOLOWER (*p);
2655
2656 if (strncmp (nbuf, newname, nlen))
2657 insert_reg_alias (nbuf, old->number, old->type);
2658 }
2659
2660 free (nbuf);
2661 return TRUE;
2662 }
2663
2664 /* Create a Neon typed/indexed register alias using directives, e.g.:
2665 X .dn d5.s32[1]
2666 Y .qn 6.s16
2667 Z .dn d7
2668 T .dn Z[0]
2669 These typed registers can be used instead of the types specified after the
2670 Neon mnemonic, so long as all operands given have types. Types can also be
2671 specified directly, e.g.:
2672 vadd d0.s32, d1.s32, d2.s32 */
2673
2674 static bfd_boolean
2675 create_neon_reg_alias (char *newname, char *p)
2676 {
2677 enum arm_reg_type basetype;
2678 struct reg_entry *basereg;
2679 struct reg_entry mybasereg;
2680 struct neon_type ntype;
2681 struct neon_typed_alias typeinfo;
2682 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2683 int namelen;
2684
2685 typeinfo.defined = 0;
2686 typeinfo.eltype.type = NT_invtype;
2687 typeinfo.eltype.size = -1;
2688 typeinfo.index = -1;
2689
2690 nameend = p;
2691
2692 if (strncmp (p, " .dn ", 5) == 0)
2693 basetype = REG_TYPE_VFD;
2694 else if (strncmp (p, " .qn ", 5) == 0)
2695 basetype = REG_TYPE_NQ;
2696 else
2697 return FALSE;
2698
2699 p += 5;
2700
2701 if (*p == '\0')
2702 return FALSE;
2703
2704 basereg = arm_reg_parse_multi (&p);
2705
2706 if (basereg && basereg->type != basetype)
2707 {
2708 as_bad (_("bad type for register"));
2709 return FALSE;
2710 }
2711
2712 if (basereg == NULL)
2713 {
2714 expressionS exp;
2715 /* Try parsing as an integer. */
2716 my_get_expression (&exp, &p, GE_NO_PREFIX);
2717 if (exp.X_op != O_constant)
2718 {
2719 as_bad (_("expression must be constant"));
2720 return FALSE;
2721 }
2722 basereg = &mybasereg;
2723 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2724 : exp.X_add_number;
2725 basereg->neon = 0;
2726 }
2727
2728 if (basereg->neon)
2729 typeinfo = *basereg->neon;
2730
2731 if (parse_neon_type (&ntype, &p) == SUCCESS)
2732 {
2733 /* We got a type. */
2734 if (typeinfo.defined & NTA_HASTYPE)
2735 {
2736 as_bad (_("can't redefine the type of a register alias"));
2737 return FALSE;
2738 }
2739
2740 typeinfo.defined |= NTA_HASTYPE;
2741 if (ntype.elems != 1)
2742 {
2743 as_bad (_("you must specify a single type only"));
2744 return FALSE;
2745 }
2746 typeinfo.eltype = ntype.el[0];
2747 }
2748
2749 if (skip_past_char (&p, '[') == SUCCESS)
2750 {
2751 expressionS exp;
2752 /* We got a scalar index. */
2753
2754 if (typeinfo.defined & NTA_HASINDEX)
2755 {
2756 as_bad (_("can't redefine the index of a scalar alias"));
2757 return FALSE;
2758 }
2759
2760 my_get_expression (&exp, &p, GE_NO_PREFIX);
2761
2762 if (exp.X_op != O_constant)
2763 {
2764 as_bad (_("scalar index must be constant"));
2765 return FALSE;
2766 }
2767
2768 typeinfo.defined |= NTA_HASINDEX;
2769 typeinfo.index = exp.X_add_number;
2770
2771 if (skip_past_char (&p, ']') == FAIL)
2772 {
2773 as_bad (_("expecting ]"));
2774 return FALSE;
2775 }
2776 }
2777
2778 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2779 the desired alias name, and p points to its end. If not, then
2780 the desired alias name is in the global original_case_string. */
2781 #ifdef TC_CASE_SENSITIVE
2782 namelen = nameend - newname;
2783 #else
2784 newname = original_case_string;
2785 namelen = strlen (newname);
2786 #endif
2787
2788 namebuf = xmemdup0 (newname, namelen);
2789
2790 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2791 typeinfo.defined != 0 ? &typeinfo : NULL);
2792
2793 /* Insert name in all uppercase. */
2794 for (p = namebuf; *p; p++)
2795 *p = TOUPPER (*p);
2796
2797 if (strncmp (namebuf, newname, namelen))
2798 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2799 typeinfo.defined != 0 ? &typeinfo : NULL);
2800
2801 /* Insert name in all lowercase. */
2802 for (p = namebuf; *p; p++)
2803 *p = TOLOWER (*p);
2804
2805 if (strncmp (namebuf, newname, namelen))
2806 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2807 typeinfo.defined != 0 ? &typeinfo : NULL);
2808
2809 free (namebuf);
2810 return TRUE;
2811 }
2812
2813 /* Should never be called, as .req goes between the alias and the
2814 register name, not at the beginning of the line. */
2815
2816 static void
2817 s_req (int a ATTRIBUTE_UNUSED)
2818 {
2819 as_bad (_("invalid syntax for .req directive"));
2820 }
2821
2822 static void
2823 s_dn (int a ATTRIBUTE_UNUSED)
2824 {
2825 as_bad (_("invalid syntax for .dn directive"));
2826 }
2827
2828 static void
2829 s_qn (int a ATTRIBUTE_UNUSED)
2830 {
2831 as_bad (_("invalid syntax for .qn directive"));
2832 }
2833
2834 /* The .unreq directive deletes an alias which was previously defined
2835 by .req. For example:
2836
2837 my_alias .req r11
2838 .unreq my_alias */
2839
2840 static void
2841 s_unreq (int a ATTRIBUTE_UNUSED)
2842 {
2843 char * name;
2844 char saved_char;
2845
2846 name = input_line_pointer;
2847
2848 while (*input_line_pointer != 0
2849 && *input_line_pointer != ' '
2850 && *input_line_pointer != '\n')
2851 ++input_line_pointer;
2852
2853 saved_char = *input_line_pointer;
2854 *input_line_pointer = 0;
2855
2856 if (!*name)
2857 as_bad (_("invalid syntax for .unreq directive"));
2858 else
2859 {
2860 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2861 name);
2862
2863 if (!reg)
2864 as_bad (_("unknown register alias '%s'"), name);
2865 else if (reg->builtin)
2866 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2867 name);
2868 else
2869 {
2870 char * p;
2871 char * nbuf;
2872
2873 hash_delete (arm_reg_hsh, name, FALSE);
2874 free ((char *) reg->name);
2875 if (reg->neon)
2876 free (reg->neon);
2877 free (reg);
2878
2879 /* Also locate the all upper case and all lower case versions.
2880 Do not complain if we cannot find one or the other as it
2881 was probably deleted above. */
2882
2883 nbuf = strdup (name);
2884 for (p = nbuf; *p; p++)
2885 *p = TOUPPER (*p);
2886 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2887 if (reg)
2888 {
2889 hash_delete (arm_reg_hsh, nbuf, FALSE);
2890 free ((char *) reg->name);
2891 if (reg->neon)
2892 free (reg->neon);
2893 free (reg);
2894 }
2895
2896 for (p = nbuf; *p; p++)
2897 *p = TOLOWER (*p);
2898 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2899 if (reg)
2900 {
2901 hash_delete (arm_reg_hsh, nbuf, FALSE);
2902 free ((char *) reg->name);
2903 if (reg->neon)
2904 free (reg->neon);
2905 free (reg);
2906 }
2907
2908 free (nbuf);
2909 }
2910 }
2911
2912 *input_line_pointer = saved_char;
2913 demand_empty_rest_of_line ();
2914 }
2915
2916 /* Directives: Instruction set selection. */
2917
2918 #ifdef OBJ_ELF
2919 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2920 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2921 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2922 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2923
2924 /* Create a new mapping symbol for the transition to STATE. */
2925
2926 static void
2927 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2928 {
2929 symbolS * symbolP;
2930 const char * symname;
2931 int type;
2932
2933 switch (state)
2934 {
2935 case MAP_DATA:
2936 symname = "$d";
2937 type = BSF_NO_FLAGS;
2938 break;
2939 case MAP_ARM:
2940 symname = "$a";
2941 type = BSF_NO_FLAGS;
2942 break;
2943 case MAP_THUMB:
2944 symname = "$t";
2945 type = BSF_NO_FLAGS;
2946 break;
2947 default:
2948 abort ();
2949 }
2950
2951 symbolP = symbol_new (symname, now_seg, value, frag);
2952 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2953
2954 switch (state)
2955 {
2956 case MAP_ARM:
2957 THUMB_SET_FUNC (symbolP, 0);
2958 ARM_SET_THUMB (symbolP, 0);
2959 ARM_SET_INTERWORK (symbolP, support_interwork);
2960 break;
2961
2962 case MAP_THUMB:
2963 THUMB_SET_FUNC (symbolP, 1);
2964 ARM_SET_THUMB (symbolP, 1);
2965 ARM_SET_INTERWORK (symbolP, support_interwork);
2966 break;
2967
2968 case MAP_DATA:
2969 default:
2970 break;
2971 }
2972
2973 /* Save the mapping symbols for future reference. Also check that
2974 we do not place two mapping symbols at the same offset within a
2975 frag. We'll handle overlap between frags in
2976 check_mapping_symbols.
2977
2978 If .fill or other data filling directive generates zero sized data,
2979 the mapping symbol for the following code will have the same value
2980 as the one generated for the data filling directive. In this case,
2981 we replace the old symbol with the new one at the same address. */
2982 if (value == 0)
2983 {
2984 if (frag->tc_frag_data.first_map != NULL)
2985 {
2986 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2987 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2988 }
2989 frag->tc_frag_data.first_map = symbolP;
2990 }
2991 if (frag->tc_frag_data.last_map != NULL)
2992 {
2993 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2994 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2995 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2996 }
2997 frag->tc_frag_data.last_map = symbolP;
2998 }
2999
3000 /* We must sometimes convert a region marked as code to data during
3001 code alignment, if an odd number of bytes have to be padded. The
3002 code mapping symbol is pushed to an aligned address. */
3003
3004 static void
3005 insert_data_mapping_symbol (enum mstate state,
3006 valueT value, fragS *frag, offsetT bytes)
3007 {
3008 /* If there was already a mapping symbol, remove it. */
3009 if (frag->tc_frag_data.last_map != NULL
3010 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
3011 {
3012 symbolS *symp = frag->tc_frag_data.last_map;
3013
3014 if (value == 0)
3015 {
3016 know (frag->tc_frag_data.first_map == symp);
3017 frag->tc_frag_data.first_map = NULL;
3018 }
3019 frag->tc_frag_data.last_map = NULL;
3020 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
3021 }
3022
3023 make_mapping_symbol (MAP_DATA, value, frag);
3024 make_mapping_symbol (state, value + bytes, frag);
3025 }
3026
3027 static void mapping_state_2 (enum mstate state, int max_chars);
3028
3029 /* Set the mapping state to STATE. Only call this when about to
3030 emit some STATE bytes to the file. */
3031
3032 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
3033 void
3034 mapping_state (enum mstate state)
3035 {
3036 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
3037
3038 if (mapstate == state)
3039 /* The mapping symbol has already been emitted.
3040 There is nothing else to do. */
3041 return;
3042
3043 if (state == MAP_ARM || state == MAP_THUMB)
3044 /* PR gas/12931
3045 All ARM instructions require 4-byte alignment.
3046 (Almost) all Thumb instructions require 2-byte alignment.
3047
3048 When emitting instructions into any section, mark the section
3049 appropriately.
3050
3051 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
3052 but themselves require 2-byte alignment; this applies to some
3053 PC- relative forms. However, these cases will involve implicit
3054 literal pool generation or an explicit .align >=2, both of
3055 which will cause the section to me marked with sufficient
3056 alignment. Thus, we don't handle those cases here. */
3057 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
3058
3059 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
3060 /* This case will be evaluated later. */
3061 return;
3062
3063 mapping_state_2 (state, 0);
3064 }
3065
3066 /* Same as mapping_state, but MAX_CHARS bytes have already been
3067 allocated. Put the mapping symbol that far back. */
3068
3069 static void
3070 mapping_state_2 (enum mstate state, int max_chars)
3071 {
3072 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
3073
3074 if (!SEG_NORMAL (now_seg))
3075 return;
3076
3077 if (mapstate == state)
3078 /* The mapping symbol has already been emitted.
3079 There is nothing else to do. */
3080 return;
3081
3082 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
3083 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
3084 {
3085 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
3086 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
3087
3088 if (add_symbol)
3089 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
3090 }
3091
3092 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
3093 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
3094 }
3095 #undef TRANSITION
3096 #else
3097 #define mapping_state(x) ((void)0)
3098 #define mapping_state_2(x, y) ((void)0)
3099 #endif
3100
3101 /* Find the real, Thumb encoded start of a Thumb function. */
3102
3103 #ifdef OBJ_COFF
3104 static symbolS *
3105 find_real_start (symbolS * symbolP)
3106 {
3107 char * real_start;
3108 const char * name = S_GET_NAME (symbolP);
3109 symbolS * new_target;
3110
3111 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3112 #define STUB_NAME ".real_start_of"
3113
3114 if (name == NULL)
3115 abort ();
3116
3117 /* The compiler may generate BL instructions to local labels because
3118 it needs to perform a branch to a far away location. These labels
3119 do not have a corresponding ".real_start_of" label. We check
3120 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3121 the ".real_start_of" convention for nonlocal branches. */
3122 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3123 return symbolP;
3124
3125 real_start = concat (STUB_NAME, name, NULL);
3126 new_target = symbol_find (real_start);
3127 free (real_start);
3128
3129 if (new_target == NULL)
3130 {
3131 as_warn (_("Failed to find real start of function: %s\n"), name);
3132 new_target = symbolP;
3133 }
3134
3135 return new_target;
3136 }
3137 #endif
3138
3139 static void
3140 opcode_select (int width)
3141 {
3142 switch (width)
3143 {
3144 case 16:
3145 if (! thumb_mode)
3146 {
3147 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3148 as_bad (_("selected processor does not support THUMB opcodes"));
3149
3150 thumb_mode = 1;
3151 /* No need to force the alignment, since we will have been
3152 coming from ARM mode, which is word-aligned. */
3153 record_alignment (now_seg, 1);
3154 }
3155 break;
3156
3157 case 32:
3158 if (thumb_mode)
3159 {
3160 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3161 as_bad (_("selected processor does not support ARM opcodes"));
3162
3163 thumb_mode = 0;
3164
3165 if (!need_pass_2)
3166 frag_align (2, 0, 0);
3167
3168 record_alignment (now_seg, 1);
3169 }
3170 break;
3171
3172 default:
3173 as_bad (_("invalid instruction size selected (%d)"), width);
3174 }
3175 }
3176
3177 static void
3178 s_arm (int ignore ATTRIBUTE_UNUSED)
3179 {
3180 opcode_select (32);
3181 demand_empty_rest_of_line ();
3182 }
3183
3184 static void
3185 s_thumb (int ignore ATTRIBUTE_UNUSED)
3186 {
3187 opcode_select (16);
3188 demand_empty_rest_of_line ();
3189 }
3190
3191 static void
3192 s_code (int unused ATTRIBUTE_UNUSED)
3193 {
3194 int temp;
3195
3196 temp = get_absolute_expression ();
3197 switch (temp)
3198 {
3199 case 16:
3200 case 32:
3201 opcode_select (temp);
3202 break;
3203
3204 default:
3205 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3206 }
3207 }
3208
3209 static void
3210 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3211 {
3212 /* If we are not already in thumb mode go into it, EVEN if
3213 the target processor does not support thumb instructions.
3214 This is used by gcc/config/arm/lib1funcs.asm for example
3215 to compile interworking support functions even if the
3216 target processor should not support interworking. */
3217 if (! thumb_mode)
3218 {
3219 thumb_mode = 2;
3220 record_alignment (now_seg, 1);
3221 }
3222
3223 demand_empty_rest_of_line ();
3224 }
3225
3226 static void
3227 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3228 {
3229 s_thumb (0);
3230
3231 /* The following label is the name/address of the start of a Thumb function.
3232 We need to know this for the interworking support. */
3233 label_is_thumb_function_name = TRUE;
3234 }
3235
3236 /* Perform a .set directive, but also mark the alias as
3237 being a thumb function. */
3238
3239 static void
3240 s_thumb_set (int equiv)
3241 {
3242 /* XXX the following is a duplicate of the code for s_set() in read.c
3243 We cannot just call that code as we need to get at the symbol that
3244 is created. */
3245 char * name;
3246 char delim;
3247 char * end_name;
3248 symbolS * symbolP;
3249
3250 /* Especial apologies for the random logic:
3251 This just grew, and could be parsed much more simply!
3252 Dean - in haste. */
3253 delim = get_symbol_name (& name);
3254 end_name = input_line_pointer;
3255 (void) restore_line_pointer (delim);
3256
3257 if (*input_line_pointer != ',')
3258 {
3259 *end_name = 0;
3260 as_bad (_("expected comma after name \"%s\""), name);
3261 *end_name = delim;
3262 ignore_rest_of_line ();
3263 return;
3264 }
3265
3266 input_line_pointer++;
3267 *end_name = 0;
3268
3269 if (name[0] == '.' && name[1] == '\0')
3270 {
3271 /* XXX - this should not happen to .thumb_set. */
3272 abort ();
3273 }
3274
3275 if ((symbolP = symbol_find (name)) == NULL
3276 && (symbolP = md_undefined_symbol (name)) == NULL)
3277 {
3278 #ifndef NO_LISTING
3279 /* When doing symbol listings, play games with dummy fragments living
3280 outside the normal fragment chain to record the file and line info
3281 for this symbol. */
3282 if (listing & LISTING_SYMBOLS)
3283 {
3284 extern struct list_info_struct * listing_tail;
3285 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3286
3287 memset (dummy_frag, 0, sizeof (fragS));
3288 dummy_frag->fr_type = rs_fill;
3289 dummy_frag->line = listing_tail;
3290 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3291 dummy_frag->fr_symbol = symbolP;
3292 }
3293 else
3294 #endif
3295 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3296
3297 #ifdef OBJ_COFF
3298 /* "set" symbols are local unless otherwise specified. */
3299 SF_SET_LOCAL (symbolP);
3300 #endif /* OBJ_COFF */
3301 } /* Make a new symbol. */
3302
3303 symbol_table_insert (symbolP);
3304
3305 * end_name = delim;
3306
3307 if (equiv
3308 && S_IS_DEFINED (symbolP)
3309 && S_GET_SEGMENT (symbolP) != reg_section)
3310 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3311
3312 pseudo_set (symbolP);
3313
3314 demand_empty_rest_of_line ();
3315
3316 /* XXX Now we come to the Thumb specific bit of code. */
3317
3318 THUMB_SET_FUNC (symbolP, 1);
3319 ARM_SET_THUMB (symbolP, 1);
3320 #if defined OBJ_ELF || defined OBJ_COFF
3321 ARM_SET_INTERWORK (symbolP, support_interwork);
3322 #endif
3323 }
3324
3325 /* Directives: Mode selection. */
3326
3327 /* .syntax [unified|divided] - choose the new unified syntax
3328 (same for Arm and Thumb encoding, modulo slight differences in what
3329 can be represented) or the old divergent syntax for each mode. */
3330 static void
3331 s_syntax (int unused ATTRIBUTE_UNUSED)
3332 {
3333 char *name, delim;
3334
3335 delim = get_symbol_name (& name);
3336
3337 if (!strcasecmp (name, "unified"))
3338 unified_syntax = TRUE;
3339 else if (!strcasecmp (name, "divided"))
3340 unified_syntax = FALSE;
3341 else
3342 {
3343 as_bad (_("unrecognized syntax mode \"%s\""), name);
3344 return;
3345 }
3346 (void) restore_line_pointer (delim);
3347 demand_empty_rest_of_line ();
3348 }
3349
3350 /* Directives: sectioning and alignment. */
3351
3352 static void
3353 s_bss (int ignore ATTRIBUTE_UNUSED)
3354 {
3355 /* We don't support putting frags in the BSS segment, we fake it by
3356 marking in_bss, then looking at s_skip for clues. */
3357 subseg_set (bss_section, 0);
3358 demand_empty_rest_of_line ();
3359
3360 #ifdef md_elf_section_change_hook
3361 md_elf_section_change_hook ();
3362 #endif
3363 }
3364
3365 static void
3366 s_even (int ignore ATTRIBUTE_UNUSED)
3367 {
3368 /* Never make frag if expect extra pass. */
3369 if (!need_pass_2)
3370 frag_align (1, 0, 0);
3371
3372 record_alignment (now_seg, 1);
3373
3374 demand_empty_rest_of_line ();
3375 }
3376
3377 /* Directives: CodeComposer Studio. */
3378
3379 /* .ref (for CodeComposer Studio syntax only). */
3380 static void
3381 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3382 {
3383 if (codecomposer_syntax)
3384 ignore_rest_of_line ();
3385 else
3386 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3387 }
3388
3389 /* If name is not NULL, then it is used for marking the beginning of a
3390 function, whereas if it is NULL then it means the function end. */
3391 static void
3392 asmfunc_debug (const char * name)
3393 {
3394 static const char * last_name = NULL;
3395
3396 if (name != NULL)
3397 {
3398 gas_assert (last_name == NULL);
3399 last_name = name;
3400
3401 if (debug_type == DEBUG_STABS)
3402 stabs_generate_asm_func (name, name);
3403 }
3404 else
3405 {
3406 gas_assert (last_name != NULL);
3407
3408 if (debug_type == DEBUG_STABS)
3409 stabs_generate_asm_endfunc (last_name, last_name);
3410
3411 last_name = NULL;
3412 }
3413 }
3414
3415 static void
3416 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3417 {
3418 if (codecomposer_syntax)
3419 {
3420 switch (asmfunc_state)
3421 {
3422 case OUTSIDE_ASMFUNC:
3423 asmfunc_state = WAITING_ASMFUNC_NAME;
3424 break;
3425
3426 case WAITING_ASMFUNC_NAME:
3427 as_bad (_(".asmfunc repeated."));
3428 break;
3429
3430 case WAITING_ENDASMFUNC:
3431 as_bad (_(".asmfunc without function."));
3432 break;
3433 }
3434 demand_empty_rest_of_line ();
3435 }
3436 else
3437 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3438 }
3439
3440 static void
3441 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3442 {
3443 if (codecomposer_syntax)
3444 {
3445 switch (asmfunc_state)
3446 {
3447 case OUTSIDE_ASMFUNC:
3448 as_bad (_(".endasmfunc without a .asmfunc."));
3449 break;
3450
3451 case WAITING_ASMFUNC_NAME:
3452 as_bad (_(".endasmfunc without function."));
3453 break;
3454
3455 case WAITING_ENDASMFUNC:
3456 asmfunc_state = OUTSIDE_ASMFUNC;
3457 asmfunc_debug (NULL);
3458 break;
3459 }
3460 demand_empty_rest_of_line ();
3461 }
3462 else
3463 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3464 }
3465
3466 static void
3467 s_ccs_def (int name)
3468 {
3469 if (codecomposer_syntax)
3470 s_globl (name);
3471 else
3472 as_bad (_(".def pseudo-op only available with -mccs flag."));
3473 }
3474
3475 /* Directives: Literal pools. */
3476
3477 static literal_pool *
3478 find_literal_pool (void)
3479 {
3480 literal_pool * pool;
3481
3482 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3483 {
3484 if (pool->section == now_seg
3485 && pool->sub_section == now_subseg)
3486 break;
3487 }
3488
3489 return pool;
3490 }
3491
3492 static literal_pool *
3493 find_or_make_literal_pool (void)
3494 {
3495 /* Next literal pool ID number. */
3496 static unsigned int latest_pool_num = 1;
3497 literal_pool * pool;
3498
3499 pool = find_literal_pool ();
3500
3501 if (pool == NULL)
3502 {
3503 /* Create a new pool. */
3504 pool = XNEW (literal_pool);
3505 if (! pool)
3506 return NULL;
3507
3508 pool->next_free_entry = 0;
3509 pool->section = now_seg;
3510 pool->sub_section = now_subseg;
3511 pool->next = list_of_pools;
3512 pool->symbol = NULL;
3513 pool->alignment = 2;
3514
3515 /* Add it to the list. */
3516 list_of_pools = pool;
3517 }
3518
3519 /* New pools, and emptied pools, will have a NULL symbol. */
3520 if (pool->symbol == NULL)
3521 {
3522 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3523 (valueT) 0, &zero_address_frag);
3524 pool->id = latest_pool_num ++;
3525 }
3526
3527 /* Done. */
3528 return pool;
3529 }
3530
3531 /* Add the literal in the global 'inst'
3532 structure to the relevant literal pool. */
3533
3534 static int
3535 add_to_lit_pool (unsigned int nbytes)
3536 {
3537 #define PADDING_SLOT 0x1
3538 #define LIT_ENTRY_SIZE_MASK 0xFF
3539 literal_pool * pool;
3540 unsigned int entry, pool_size = 0;
3541 bfd_boolean padding_slot_p = FALSE;
3542 unsigned imm1 = 0;
3543 unsigned imm2 = 0;
3544
3545 if (nbytes == 8)
3546 {
3547 imm1 = inst.operands[1].imm;
3548 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3549 : inst.relocs[0].exp.X_unsigned ? 0
3550 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3551 if (target_big_endian)
3552 {
3553 imm1 = imm2;
3554 imm2 = inst.operands[1].imm;
3555 }
3556 }
3557
3558 pool = find_or_make_literal_pool ();
3559
3560 /* Check if this literal value is already in the pool. */
3561 for (entry = 0; entry < pool->next_free_entry; entry ++)
3562 {
3563 if (nbytes == 4)
3564 {
3565 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3566 && (inst.relocs[0].exp.X_op == O_constant)
3567 && (pool->literals[entry].X_add_number
3568 == inst.relocs[0].exp.X_add_number)
3569 && (pool->literals[entry].X_md == nbytes)
3570 && (pool->literals[entry].X_unsigned
3571 == inst.relocs[0].exp.X_unsigned))
3572 break;
3573
3574 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3575 && (inst.relocs[0].exp.X_op == O_symbol)
3576 && (pool->literals[entry].X_add_number
3577 == inst.relocs[0].exp.X_add_number)
3578 && (pool->literals[entry].X_add_symbol
3579 == inst.relocs[0].exp.X_add_symbol)
3580 && (pool->literals[entry].X_op_symbol
3581 == inst.relocs[0].exp.X_op_symbol)
3582 && (pool->literals[entry].X_md == nbytes))
3583 break;
3584 }
3585 else if ((nbytes == 8)
3586 && !(pool_size & 0x7)
3587 && ((entry + 1) != pool->next_free_entry)
3588 && (pool->literals[entry].X_op == O_constant)
3589 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3590 && (pool->literals[entry].X_unsigned
3591 == inst.relocs[0].exp.X_unsigned)
3592 && (pool->literals[entry + 1].X_op == O_constant)
3593 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3594 && (pool->literals[entry + 1].X_unsigned
3595 == inst.relocs[0].exp.X_unsigned))
3596 break;
3597
3598 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3599 if (padding_slot_p && (nbytes == 4))
3600 break;
3601
3602 pool_size += 4;
3603 }
3604
3605 /* Do we need to create a new entry? */
3606 if (entry == pool->next_free_entry)
3607 {
3608 if (entry >= MAX_LITERAL_POOL_SIZE)
3609 {
3610 inst.error = _("literal pool overflow");
3611 return FAIL;
3612 }
3613
3614 if (nbytes == 8)
3615 {
3616 /* For 8-byte entries, we align to an 8-byte boundary,
3617 and split it into two 4-byte entries, because on 32-bit
3618 host, 8-byte constants are treated as big num, thus
3619 saved in "generic_bignum" which will be overwritten
3620 by later assignments.
3621
3622 We also need to make sure there is enough space for
3623 the split.
3624
3625 We also check to make sure the literal operand is a
3626 constant number. */
3627 if (!(inst.relocs[0].exp.X_op == O_constant
3628 || inst.relocs[0].exp.X_op == O_big))
3629 {
3630 inst.error = _("invalid type for literal pool");
3631 return FAIL;
3632 }
3633 else if (pool_size & 0x7)
3634 {
3635 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3636 {
3637 inst.error = _("literal pool overflow");
3638 return FAIL;
3639 }
3640
3641 pool->literals[entry] = inst.relocs[0].exp;
3642 pool->literals[entry].X_op = O_constant;
3643 pool->literals[entry].X_add_number = 0;
3644 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3645 pool->next_free_entry += 1;
3646 pool_size += 4;
3647 }
3648 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3649 {
3650 inst.error = _("literal pool overflow");
3651 return FAIL;
3652 }
3653
3654 pool->literals[entry] = inst.relocs[0].exp;
3655 pool->literals[entry].X_op = O_constant;
3656 pool->literals[entry].X_add_number = imm1;
3657 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3658 pool->literals[entry++].X_md = 4;
3659 pool->literals[entry] = inst.relocs[0].exp;
3660 pool->literals[entry].X_op = O_constant;
3661 pool->literals[entry].X_add_number = imm2;
3662 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3663 pool->literals[entry].X_md = 4;
3664 pool->alignment = 3;
3665 pool->next_free_entry += 1;
3666 }
3667 else
3668 {
3669 pool->literals[entry] = inst.relocs[0].exp;
3670 pool->literals[entry].X_md = 4;
3671 }
3672
3673 #ifdef OBJ_ELF
3674 /* PR ld/12974: Record the location of the first source line to reference
3675 this entry in the literal pool. If it turns out during linking that the
3676 symbol does not exist we will be able to give an accurate line number for
3677 the (first use of the) missing reference. */
3678 if (debug_type == DEBUG_DWARF2)
3679 dwarf2_where (pool->locs + entry);
3680 #endif
3681 pool->next_free_entry += 1;
3682 }
3683 else if (padding_slot_p)
3684 {
3685 pool->literals[entry] = inst.relocs[0].exp;
3686 pool->literals[entry].X_md = nbytes;
3687 }
3688
3689 inst.relocs[0].exp.X_op = O_symbol;
3690 inst.relocs[0].exp.X_add_number = pool_size;
3691 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3692
3693 return SUCCESS;
3694 }
3695
3696 bfd_boolean
3697 tc_start_label_without_colon (void)
3698 {
3699 bfd_boolean ret = TRUE;
3700
3701 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3702 {
3703 const char *label = input_line_pointer;
3704
3705 while (!is_end_of_line[(int) label[-1]])
3706 --label;
3707
3708 if (*label == '.')
3709 {
3710 as_bad (_("Invalid label '%s'"), label);
3711 ret = FALSE;
3712 }
3713
3714 asmfunc_debug (label);
3715
3716 asmfunc_state = WAITING_ENDASMFUNC;
3717 }
3718
3719 return ret;
3720 }
3721
3722 /* Can't use symbol_new here, so have to create a symbol and then at
3723 a later date assign it a value. That's what these functions do. */
3724
3725 static void
3726 symbol_locate (symbolS * symbolP,
3727 const char * name, /* It is copied, the caller can modify. */
3728 segT segment, /* Segment identifier (SEG_<something>). */
3729 valueT valu, /* Symbol value. */
3730 fragS * frag) /* Associated fragment. */
3731 {
3732 size_t name_length;
3733 char * preserved_copy_of_name;
3734
3735 name_length = strlen (name) + 1; /* +1 for \0. */
3736 obstack_grow (&notes, name, name_length);
3737 preserved_copy_of_name = (char *) obstack_finish (&notes);
3738
3739 #ifdef tc_canonicalize_symbol_name
3740 preserved_copy_of_name =
3741 tc_canonicalize_symbol_name (preserved_copy_of_name);
3742 #endif
3743
3744 S_SET_NAME (symbolP, preserved_copy_of_name);
3745
3746 S_SET_SEGMENT (symbolP, segment);
3747 S_SET_VALUE (symbolP, valu);
3748 symbol_clear_list_pointers (symbolP);
3749
3750 symbol_set_frag (symbolP, frag);
3751
3752 /* Link to end of symbol chain. */
3753 {
3754 extern int symbol_table_frozen;
3755
3756 if (symbol_table_frozen)
3757 abort ();
3758 }
3759
3760 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3761
3762 obj_symbol_new_hook (symbolP);
3763
3764 #ifdef tc_symbol_new_hook
3765 tc_symbol_new_hook (symbolP);
3766 #endif
3767
3768 #ifdef DEBUG_SYMS
3769 verify_symbol_chain (symbol_rootP, symbol_lastP);
3770 #endif /* DEBUG_SYMS */
3771 }
3772
3773 static void
3774 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3775 {
3776 unsigned int entry;
3777 literal_pool * pool;
3778 char sym_name[20];
3779
3780 pool = find_literal_pool ();
3781 if (pool == NULL
3782 || pool->symbol == NULL
3783 || pool->next_free_entry == 0)
3784 return;
3785
3786 /* Align pool as you have word accesses.
3787 Only make a frag if we have to. */
3788 if (!need_pass_2)
3789 frag_align (pool->alignment, 0, 0);
3790
3791 record_alignment (now_seg, 2);
3792
3793 #ifdef OBJ_ELF
3794 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3795 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3796 #endif
3797 sprintf (sym_name, "$$lit_\002%x", pool->id);
3798
3799 symbol_locate (pool->symbol, sym_name, now_seg,
3800 (valueT) frag_now_fix (), frag_now);
3801 symbol_table_insert (pool->symbol);
3802
3803 ARM_SET_THUMB (pool->symbol, thumb_mode);
3804
3805 #if defined OBJ_COFF || defined OBJ_ELF
3806 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3807 #endif
3808
3809 for (entry = 0; entry < pool->next_free_entry; entry ++)
3810 {
3811 #ifdef OBJ_ELF
3812 if (debug_type == DEBUG_DWARF2)
3813 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3814 #endif
3815 /* First output the expression in the instruction to the pool. */
3816 emit_expr (&(pool->literals[entry]),
3817 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3818 }
3819
3820 /* Mark the pool as empty. */
3821 pool->next_free_entry = 0;
3822 pool->symbol = NULL;
3823 }
3824
3825 #ifdef OBJ_ELF
3826 /* Forward declarations for functions below, in the MD interface
3827 section. */
3828 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3829 static valueT create_unwind_entry (int);
3830 static void start_unwind_section (const segT, int);
3831 static void add_unwind_opcode (valueT, int);
3832 static void flush_pending_unwind (void);
3833
3834 /* Directives: Data. */
3835
3836 static void
3837 s_arm_elf_cons (int nbytes)
3838 {
3839 expressionS exp;
3840
3841 #ifdef md_flush_pending_output
3842 md_flush_pending_output ();
3843 #endif
3844
3845 if (is_it_end_of_statement ())
3846 {
3847 demand_empty_rest_of_line ();
3848 return;
3849 }
3850
3851 #ifdef md_cons_align
3852 md_cons_align (nbytes);
3853 #endif
3854
3855 mapping_state (MAP_DATA);
3856 do
3857 {
3858 int reloc;
3859 char *base = input_line_pointer;
3860
3861 expression (& exp);
3862
3863 if (exp.X_op != O_symbol)
3864 emit_expr (&exp, (unsigned int) nbytes);
3865 else
3866 {
3867 char *before_reloc = input_line_pointer;
3868 reloc = parse_reloc (&input_line_pointer);
3869 if (reloc == -1)
3870 {
3871 as_bad (_("unrecognized relocation suffix"));
3872 ignore_rest_of_line ();
3873 return;
3874 }
3875 else if (reloc == BFD_RELOC_UNUSED)
3876 emit_expr (&exp, (unsigned int) nbytes);
3877 else
3878 {
3879 reloc_howto_type *howto = (reloc_howto_type *)
3880 bfd_reloc_type_lookup (stdoutput,
3881 (bfd_reloc_code_real_type) reloc);
3882 int size = bfd_get_reloc_size (howto);
3883
3884 if (reloc == BFD_RELOC_ARM_PLT32)
3885 {
3886 as_bad (_("(plt) is only valid on branch targets"));
3887 reloc = BFD_RELOC_UNUSED;
3888 size = 0;
3889 }
3890
3891 if (size > nbytes)
3892 as_bad (ngettext ("%s relocations do not fit in %d byte",
3893 "%s relocations do not fit in %d bytes",
3894 nbytes),
3895 howto->name, nbytes);
3896 else
3897 {
3898 /* We've parsed an expression stopping at O_symbol.
3899 But there may be more expression left now that we
3900 have parsed the relocation marker. Parse it again.
3901 XXX Surely there is a cleaner way to do this. */
3902 char *p = input_line_pointer;
3903 int offset;
3904 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3905
3906 memcpy (save_buf, base, input_line_pointer - base);
3907 memmove (base + (input_line_pointer - before_reloc),
3908 base, before_reloc - base);
3909
3910 input_line_pointer = base + (input_line_pointer-before_reloc);
3911 expression (&exp);
3912 memcpy (base, save_buf, p - base);
3913
3914 offset = nbytes - size;
3915 p = frag_more (nbytes);
3916 memset (p, 0, nbytes);
3917 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3918 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3919 free (save_buf);
3920 }
3921 }
3922 }
3923 }
3924 while (*input_line_pointer++ == ',');
3925
3926 /* Put terminator back into stream. */
3927 input_line_pointer --;
3928 demand_empty_rest_of_line ();
3929 }
3930
3931 /* Emit an expression containing a 32-bit thumb instruction.
3932 Implementation based on put_thumb32_insn. */
3933
3934 static void
3935 emit_thumb32_expr (expressionS * exp)
3936 {
3937 expressionS exp_high = *exp;
3938
3939 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3940 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3941 exp->X_add_number &= 0xffff;
3942 emit_expr (exp, (unsigned int) THUMB_SIZE);
3943 }
3944
3945 /* Guess the instruction size based on the opcode. */
3946
3947 static int
3948 thumb_insn_size (int opcode)
3949 {
3950 if ((unsigned int) opcode < 0xe800u)
3951 return 2;
3952 else if ((unsigned int) opcode >= 0xe8000000u)
3953 return 4;
3954 else
3955 return 0;
3956 }
3957
3958 static bfd_boolean
3959 emit_insn (expressionS *exp, int nbytes)
3960 {
3961 int size = 0;
3962
3963 if (exp->X_op == O_constant)
3964 {
3965 size = nbytes;
3966
3967 if (size == 0)
3968 size = thumb_insn_size (exp->X_add_number);
3969
3970 if (size != 0)
3971 {
3972 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3973 {
3974 as_bad (_(".inst.n operand too big. "\
3975 "Use .inst.w instead"));
3976 size = 0;
3977 }
3978 else
3979 {
3980 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3981 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3982 else
3983 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3984
3985 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3986 emit_thumb32_expr (exp);
3987 else
3988 emit_expr (exp, (unsigned int) size);
3989
3990 it_fsm_post_encode ();
3991 }
3992 }
3993 else
3994 as_bad (_("cannot determine Thumb instruction size. " \
3995 "Use .inst.n/.inst.w instead"));
3996 }
3997 else
3998 as_bad (_("constant expression required"));
3999
4000 return (size != 0);
4001 }
4002
4003 /* Like s_arm_elf_cons but do not use md_cons_align and
4004 set the mapping state to MAP_ARM/MAP_THUMB. */
4005
4006 static void
4007 s_arm_elf_inst (int nbytes)
4008 {
4009 if (is_it_end_of_statement ())
4010 {
4011 demand_empty_rest_of_line ();
4012 return;
4013 }
4014
4015 /* Calling mapping_state () here will not change ARM/THUMB,
4016 but will ensure not to be in DATA state. */
4017
4018 if (thumb_mode)
4019 mapping_state (MAP_THUMB);
4020 else
4021 {
4022 if (nbytes != 0)
4023 {
4024 as_bad (_("width suffixes are invalid in ARM mode"));
4025 ignore_rest_of_line ();
4026 return;
4027 }
4028
4029 nbytes = 4;
4030
4031 mapping_state (MAP_ARM);
4032 }
4033
4034 do
4035 {
4036 expressionS exp;
4037
4038 expression (& exp);
4039
4040 if (! emit_insn (& exp, nbytes))
4041 {
4042 ignore_rest_of_line ();
4043 return;
4044 }
4045 }
4046 while (*input_line_pointer++ == ',');
4047
4048 /* Put terminator back into stream. */
4049 input_line_pointer --;
4050 demand_empty_rest_of_line ();
4051 }
4052
4053 /* Parse a .rel31 directive. */
4054
4055 static void
4056 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
4057 {
4058 expressionS exp;
4059 char *p;
4060 valueT highbit;
4061
4062 highbit = 0;
4063 if (*input_line_pointer == '1')
4064 highbit = 0x80000000;
4065 else if (*input_line_pointer != '0')
4066 as_bad (_("expected 0 or 1"));
4067
4068 input_line_pointer++;
4069 if (*input_line_pointer != ',')
4070 as_bad (_("missing comma"));
4071 input_line_pointer++;
4072
4073 #ifdef md_flush_pending_output
4074 md_flush_pending_output ();
4075 #endif
4076
4077 #ifdef md_cons_align
4078 md_cons_align (4);
4079 #endif
4080
4081 mapping_state (MAP_DATA);
4082
4083 expression (&exp);
4084
4085 p = frag_more (4);
4086 md_number_to_chars (p, highbit, 4);
4087 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
4088 BFD_RELOC_ARM_PREL31);
4089
4090 demand_empty_rest_of_line ();
4091 }
4092
4093 /* Directives: AEABI stack-unwind tables. */
4094
4095 /* Parse an unwind_fnstart directive. Simply records the current location. */
4096
4097 static void
4098 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4099 {
4100 demand_empty_rest_of_line ();
4101 if (unwind.proc_start)
4102 {
4103 as_bad (_("duplicate .fnstart directive"));
4104 return;
4105 }
4106
4107 /* Mark the start of the function. */
4108 unwind.proc_start = expr_build_dot ();
4109
4110 /* Reset the rest of the unwind info. */
4111 unwind.opcode_count = 0;
4112 unwind.table_entry = NULL;
4113 unwind.personality_routine = NULL;
4114 unwind.personality_index = -1;
4115 unwind.frame_size = 0;
4116 unwind.fp_offset = 0;
4117 unwind.fp_reg = REG_SP;
4118 unwind.fp_used = 0;
4119 unwind.sp_restored = 0;
4120 }
4121
4122
4123 /* Parse a handlerdata directive. Creates the exception handling table entry
4124 for the function. */
4125
4126 static void
4127 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4128 {
4129 demand_empty_rest_of_line ();
4130 if (!unwind.proc_start)
4131 as_bad (MISSING_FNSTART);
4132
4133 if (unwind.table_entry)
4134 as_bad (_("duplicate .handlerdata directive"));
4135
4136 create_unwind_entry (1);
4137 }
4138
4139 /* Parse an unwind_fnend directive. Generates the index table entry. */
4140
4141 static void
4142 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4143 {
4144 long where;
4145 char *ptr;
4146 valueT val;
4147 unsigned int marked_pr_dependency;
4148
4149 demand_empty_rest_of_line ();
4150
4151 if (!unwind.proc_start)
4152 {
4153 as_bad (_(".fnend directive without .fnstart"));
4154 return;
4155 }
4156
4157 /* Add eh table entry. */
4158 if (unwind.table_entry == NULL)
4159 val = create_unwind_entry (0);
4160 else
4161 val = 0;
4162
4163 /* Add index table entry. This is two words. */
4164 start_unwind_section (unwind.saved_seg, 1);
4165 frag_align (2, 0, 0);
4166 record_alignment (now_seg, 2);
4167
4168 ptr = frag_more (8);
4169 memset (ptr, 0, 8);
4170 where = frag_now_fix () - 8;
4171
4172 /* Self relative offset of the function start. */
4173 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4174 BFD_RELOC_ARM_PREL31);
4175
4176 /* Indicate dependency on EHABI-defined personality routines to the
4177 linker, if it hasn't been done already. */
4178 marked_pr_dependency
4179 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4180 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4181 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4182 {
4183 static const char *const name[] =
4184 {
4185 "__aeabi_unwind_cpp_pr0",
4186 "__aeabi_unwind_cpp_pr1",
4187 "__aeabi_unwind_cpp_pr2"
4188 };
4189 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4190 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4191 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4192 |= 1 << unwind.personality_index;
4193 }
4194
4195 if (val)
4196 /* Inline exception table entry. */
4197 md_number_to_chars (ptr + 4, val, 4);
4198 else
4199 /* Self relative offset of the table entry. */
4200 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4201 BFD_RELOC_ARM_PREL31);
4202
4203 /* Restore the original section. */
4204 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4205
4206 unwind.proc_start = NULL;
4207 }
4208
4209
4210 /* Parse an unwind_cantunwind directive. */
4211
4212 static void
4213 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4214 {
4215 demand_empty_rest_of_line ();
4216 if (!unwind.proc_start)
4217 as_bad (MISSING_FNSTART);
4218
4219 if (unwind.personality_routine || unwind.personality_index != -1)
4220 as_bad (_("personality routine specified for cantunwind frame"));
4221
4222 unwind.personality_index = -2;
4223 }
4224
4225
4226 /* Parse a personalityindex directive. */
4227
4228 static void
4229 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4230 {
4231 expressionS exp;
4232
4233 if (!unwind.proc_start)
4234 as_bad (MISSING_FNSTART);
4235
4236 if (unwind.personality_routine || unwind.personality_index != -1)
4237 as_bad (_("duplicate .personalityindex directive"));
4238
4239 expression (&exp);
4240
4241 if (exp.X_op != O_constant
4242 || exp.X_add_number < 0 || exp.X_add_number > 15)
4243 {
4244 as_bad (_("bad personality routine number"));
4245 ignore_rest_of_line ();
4246 return;
4247 }
4248
4249 unwind.personality_index = exp.X_add_number;
4250
4251 demand_empty_rest_of_line ();
4252 }
4253
4254
4255 /* Parse a personality directive. */
4256
4257 static void
4258 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4259 {
4260 char *name, *p, c;
4261
4262 if (!unwind.proc_start)
4263 as_bad (MISSING_FNSTART);
4264
4265 if (unwind.personality_routine || unwind.personality_index != -1)
4266 as_bad (_("duplicate .personality directive"));
4267
4268 c = get_symbol_name (& name);
4269 p = input_line_pointer;
4270 if (c == '"')
4271 ++ input_line_pointer;
4272 unwind.personality_routine = symbol_find_or_make (name);
4273 *p = c;
4274 demand_empty_rest_of_line ();
4275 }
4276
4277
4278 /* Parse a directive saving core registers. */
4279
4280 static void
4281 s_arm_unwind_save_core (void)
4282 {
4283 valueT op;
4284 long range;
4285 int n;
4286
4287 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4288 if (range == FAIL)
4289 {
4290 as_bad (_("expected register list"));
4291 ignore_rest_of_line ();
4292 return;
4293 }
4294
4295 demand_empty_rest_of_line ();
4296
4297 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4298 into .unwind_save {..., sp...}. We aren't bothered about the value of
4299 ip because it is clobbered by calls. */
4300 if (unwind.sp_restored && unwind.fp_reg == 12
4301 && (range & 0x3000) == 0x1000)
4302 {
4303 unwind.opcode_count--;
4304 unwind.sp_restored = 0;
4305 range = (range | 0x2000) & ~0x1000;
4306 unwind.pending_offset = 0;
4307 }
4308
4309 /* Pop r4-r15. */
4310 if (range & 0xfff0)
4311 {
4312 /* See if we can use the short opcodes. These pop a block of up to 8
4313 registers starting with r4, plus maybe r14. */
4314 for (n = 0; n < 8; n++)
4315 {
4316 /* Break at the first non-saved register. */
4317 if ((range & (1 << (n + 4))) == 0)
4318 break;
4319 }
4320 /* See if there are any other bits set. */
4321 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4322 {
4323 /* Use the long form. */
4324 op = 0x8000 | ((range >> 4) & 0xfff);
4325 add_unwind_opcode (op, 2);
4326 }
4327 else
4328 {
4329 /* Use the short form. */
4330 if (range & 0x4000)
4331 op = 0xa8; /* Pop r14. */
4332 else
4333 op = 0xa0; /* Do not pop r14. */
4334 op |= (n - 1);
4335 add_unwind_opcode (op, 1);
4336 }
4337 }
4338
4339 /* Pop r0-r3. */
4340 if (range & 0xf)
4341 {
4342 op = 0xb100 | (range & 0xf);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Record the number of bytes pushed. */
4347 for (n = 0; n < 16; n++)
4348 {
4349 if (range & (1 << n))
4350 unwind.frame_size += 4;
4351 }
4352 }
4353
4354
4355 /* Parse a directive saving FPA registers. */
4356
4357 static void
4358 s_arm_unwind_save_fpa (int reg)
4359 {
4360 expressionS exp;
4361 int num_regs;
4362 valueT op;
4363
4364 /* Get Number of registers to transfer. */
4365 if (skip_past_comma (&input_line_pointer) != FAIL)
4366 expression (&exp);
4367 else
4368 exp.X_op = O_illegal;
4369
4370 if (exp.X_op != O_constant)
4371 {
4372 as_bad (_("expected , <constant>"));
4373 ignore_rest_of_line ();
4374 return;
4375 }
4376
4377 num_regs = exp.X_add_number;
4378
4379 if (num_regs < 1 || num_regs > 4)
4380 {
4381 as_bad (_("number of registers must be in the range [1:4]"));
4382 ignore_rest_of_line ();
4383 return;
4384 }
4385
4386 demand_empty_rest_of_line ();
4387
4388 if (reg == 4)
4389 {
4390 /* Short form. */
4391 op = 0xb4 | (num_regs - 1);
4392 add_unwind_opcode (op, 1);
4393 }
4394 else
4395 {
4396 /* Long form. */
4397 op = 0xc800 | (reg << 4) | (num_regs - 1);
4398 add_unwind_opcode (op, 2);
4399 }
4400 unwind.frame_size += num_regs * 12;
4401 }
4402
4403
4404 /* Parse a directive saving VFP registers for ARMv6 and above. */
4405
4406 static void
4407 s_arm_unwind_save_vfp_armv6 (void)
4408 {
4409 int count;
4410 unsigned int start;
4411 valueT op;
4412 int num_vfpv3_regs = 0;
4413 int num_regs_below_16;
4414 bfd_boolean partial_match;
4415
4416 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4417 &partial_match);
4418 if (count == FAIL)
4419 {
4420 as_bad (_("expected register list"));
4421 ignore_rest_of_line ();
4422 return;
4423 }
4424
4425 demand_empty_rest_of_line ();
4426
4427 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4428 than FSTMX/FLDMX-style ones). */
4429
4430 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4431 if (start >= 16)
4432 num_vfpv3_regs = count;
4433 else if (start + count > 16)
4434 num_vfpv3_regs = start + count - 16;
4435
4436 if (num_vfpv3_regs > 0)
4437 {
4438 int start_offset = start > 16 ? start - 16 : 0;
4439 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4440 add_unwind_opcode (op, 2);
4441 }
4442
4443 /* Generate opcode for registers numbered in the range 0 .. 15. */
4444 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4445 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4446 if (num_regs_below_16 > 0)
4447 {
4448 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4449 add_unwind_opcode (op, 2);
4450 }
4451
4452 unwind.frame_size += count * 8;
4453 }
4454
4455
4456 /* Parse a directive saving VFP registers for pre-ARMv6. */
4457
4458 static void
4459 s_arm_unwind_save_vfp (void)
4460 {
4461 int count;
4462 unsigned int reg;
4463 valueT op;
4464 bfd_boolean partial_match;
4465
4466 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4467 &partial_match);
4468 if (count == FAIL)
4469 {
4470 as_bad (_("expected register list"));
4471 ignore_rest_of_line ();
4472 return;
4473 }
4474
4475 demand_empty_rest_of_line ();
4476
4477 if (reg == 8)
4478 {
4479 /* Short form. */
4480 op = 0xb8 | (count - 1);
4481 add_unwind_opcode (op, 1);
4482 }
4483 else
4484 {
4485 /* Long form. */
4486 op = 0xb300 | (reg << 4) | (count - 1);
4487 add_unwind_opcode (op, 2);
4488 }
4489 unwind.frame_size += count * 8 + 4;
4490 }
4491
4492
4493 /* Parse a directive saving iWMMXt data registers. */
4494
4495 static void
4496 s_arm_unwind_save_mmxwr (void)
4497 {
4498 int reg;
4499 int hi_reg;
4500 int i;
4501 unsigned mask = 0;
4502 valueT op;
4503
4504 if (*input_line_pointer == '{')
4505 input_line_pointer++;
4506
4507 do
4508 {
4509 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4510
4511 if (reg == FAIL)
4512 {
4513 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4514 goto error;
4515 }
4516
4517 if (mask >> reg)
4518 as_tsktsk (_("register list not in ascending order"));
4519 mask |= 1 << reg;
4520
4521 if (*input_line_pointer == '-')
4522 {
4523 input_line_pointer++;
4524 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4525 if (hi_reg == FAIL)
4526 {
4527 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4528 goto error;
4529 }
4530 else if (reg >= hi_reg)
4531 {
4532 as_bad (_("bad register range"));
4533 goto error;
4534 }
4535 for (; reg < hi_reg; reg++)
4536 mask |= 1 << reg;
4537 }
4538 }
4539 while (skip_past_comma (&input_line_pointer) != FAIL);
4540
4541 skip_past_char (&input_line_pointer, '}');
4542
4543 demand_empty_rest_of_line ();
4544
4545 /* Generate any deferred opcodes because we're going to be looking at
4546 the list. */
4547 flush_pending_unwind ();
4548
4549 for (i = 0; i < 16; i++)
4550 {
4551 if (mask & (1 << i))
4552 unwind.frame_size += 8;
4553 }
4554
4555 /* Attempt to combine with a previous opcode. We do this because gcc
4556 likes to output separate unwind directives for a single block of
4557 registers. */
4558 if (unwind.opcode_count > 0)
4559 {
4560 i = unwind.opcodes[unwind.opcode_count - 1];
4561 if ((i & 0xf8) == 0xc0)
4562 {
4563 i &= 7;
4564 /* Only merge if the blocks are contiguous. */
4565 if (i < 6)
4566 {
4567 if ((mask & 0xfe00) == (1 << 9))
4568 {
4569 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4570 unwind.opcode_count--;
4571 }
4572 }
4573 else if (i == 6 && unwind.opcode_count >= 2)
4574 {
4575 i = unwind.opcodes[unwind.opcode_count - 2];
4576 reg = i >> 4;
4577 i &= 0xf;
4578
4579 op = 0xffff << (reg - 1);
4580 if (reg > 0
4581 && ((mask & op) == (1u << (reg - 1))))
4582 {
4583 op = (1 << (reg + i + 1)) - 1;
4584 op &= ~((1 << reg) - 1);
4585 mask |= op;
4586 unwind.opcode_count -= 2;
4587 }
4588 }
4589 }
4590 }
4591
4592 hi_reg = 15;
4593 /* We want to generate opcodes in the order the registers have been
4594 saved, ie. descending order. */
4595 for (reg = 15; reg >= -1; reg--)
4596 {
4597 /* Save registers in blocks. */
4598 if (reg < 0
4599 || !(mask & (1 << reg)))
4600 {
4601 /* We found an unsaved reg. Generate opcodes to save the
4602 preceding block. */
4603 if (reg != hi_reg)
4604 {
4605 if (reg == 9)
4606 {
4607 /* Short form. */
4608 op = 0xc0 | (hi_reg - 10);
4609 add_unwind_opcode (op, 1);
4610 }
4611 else
4612 {
4613 /* Long form. */
4614 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4615 add_unwind_opcode (op, 2);
4616 }
4617 }
4618 hi_reg = reg - 1;
4619 }
4620 }
4621
4622 return;
4623 error:
4624 ignore_rest_of_line ();
4625 }
4626
4627 static void
4628 s_arm_unwind_save_mmxwcg (void)
4629 {
4630 int reg;
4631 int hi_reg;
4632 unsigned mask = 0;
4633 valueT op;
4634
4635 if (*input_line_pointer == '{')
4636 input_line_pointer++;
4637
4638 skip_whitespace (input_line_pointer);
4639
4640 do
4641 {
4642 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4643
4644 if (reg == FAIL)
4645 {
4646 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4647 goto error;
4648 }
4649
4650 reg -= 8;
4651 if (mask >> reg)
4652 as_tsktsk (_("register list not in ascending order"));
4653 mask |= 1 << reg;
4654
4655 if (*input_line_pointer == '-')
4656 {
4657 input_line_pointer++;
4658 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4659 if (hi_reg == FAIL)
4660 {
4661 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4662 goto error;
4663 }
4664 else if (reg >= hi_reg)
4665 {
4666 as_bad (_("bad register range"));
4667 goto error;
4668 }
4669 for (; reg < hi_reg; reg++)
4670 mask |= 1 << reg;
4671 }
4672 }
4673 while (skip_past_comma (&input_line_pointer) != FAIL);
4674
4675 skip_past_char (&input_line_pointer, '}');
4676
4677 demand_empty_rest_of_line ();
4678
4679 /* Generate any deferred opcodes because we're going to be looking at
4680 the list. */
4681 flush_pending_unwind ();
4682
4683 for (reg = 0; reg < 16; reg++)
4684 {
4685 if (mask & (1 << reg))
4686 unwind.frame_size += 4;
4687 }
4688 op = 0xc700 | mask;
4689 add_unwind_opcode (op, 2);
4690 return;
4691 error:
4692 ignore_rest_of_line ();
4693 }
4694
4695
4696 /* Parse an unwind_save directive.
4697 If the argument is non-zero, this is a .vsave directive. */
4698
4699 static void
4700 s_arm_unwind_save (int arch_v6)
4701 {
4702 char *peek;
4703 struct reg_entry *reg;
4704 bfd_boolean had_brace = FALSE;
4705
4706 if (!unwind.proc_start)
4707 as_bad (MISSING_FNSTART);
4708
4709 /* Figure out what sort of save we have. */
4710 peek = input_line_pointer;
4711
4712 if (*peek == '{')
4713 {
4714 had_brace = TRUE;
4715 peek++;
4716 }
4717
4718 reg = arm_reg_parse_multi (&peek);
4719
4720 if (!reg)
4721 {
4722 as_bad (_("register expected"));
4723 ignore_rest_of_line ();
4724 return;
4725 }
4726
4727 switch (reg->type)
4728 {
4729 case REG_TYPE_FN:
4730 if (had_brace)
4731 {
4732 as_bad (_("FPA .unwind_save does not take a register list"));
4733 ignore_rest_of_line ();
4734 return;
4735 }
4736 input_line_pointer = peek;
4737 s_arm_unwind_save_fpa (reg->number);
4738 return;
4739
4740 case REG_TYPE_RN:
4741 s_arm_unwind_save_core ();
4742 return;
4743
4744 case REG_TYPE_VFD:
4745 if (arch_v6)
4746 s_arm_unwind_save_vfp_armv6 ();
4747 else
4748 s_arm_unwind_save_vfp ();
4749 return;
4750
4751 case REG_TYPE_MMXWR:
4752 s_arm_unwind_save_mmxwr ();
4753 return;
4754
4755 case REG_TYPE_MMXWCG:
4756 s_arm_unwind_save_mmxwcg ();
4757 return;
4758
4759 default:
4760 as_bad (_(".unwind_save does not support this kind of register"));
4761 ignore_rest_of_line ();
4762 }
4763 }
4764
4765
4766 /* Parse an unwind_movsp directive. */
4767
4768 static void
4769 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4770 {
4771 int reg;
4772 valueT op;
4773 int offset;
4774
4775 if (!unwind.proc_start)
4776 as_bad (MISSING_FNSTART);
4777
4778 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4779 if (reg == FAIL)
4780 {
4781 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4782 ignore_rest_of_line ();
4783 return;
4784 }
4785
4786 /* Optional constant. */
4787 if (skip_past_comma (&input_line_pointer) != FAIL)
4788 {
4789 if (immediate_for_directive (&offset) == FAIL)
4790 return;
4791 }
4792 else
4793 offset = 0;
4794
4795 demand_empty_rest_of_line ();
4796
4797 if (reg == REG_SP || reg == REG_PC)
4798 {
4799 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4800 return;
4801 }
4802
4803 if (unwind.fp_reg != REG_SP)
4804 as_bad (_("unexpected .unwind_movsp directive"));
4805
4806 /* Generate opcode to restore the value. */
4807 op = 0x90 | reg;
4808 add_unwind_opcode (op, 1);
4809
4810 /* Record the information for later. */
4811 unwind.fp_reg = reg;
4812 unwind.fp_offset = unwind.frame_size - offset;
4813 unwind.sp_restored = 1;
4814 }
4815
4816 /* Parse an unwind_pad directive. */
4817
4818 static void
4819 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4820 {
4821 int offset;
4822
4823 if (!unwind.proc_start)
4824 as_bad (MISSING_FNSTART);
4825
4826 if (immediate_for_directive (&offset) == FAIL)
4827 return;
4828
4829 if (offset & 3)
4830 {
4831 as_bad (_("stack increment must be multiple of 4"));
4832 ignore_rest_of_line ();
4833 return;
4834 }
4835
4836 /* Don't generate any opcodes, just record the details for later. */
4837 unwind.frame_size += offset;
4838 unwind.pending_offset += offset;
4839
4840 demand_empty_rest_of_line ();
4841 }
4842
4843 /* Parse an unwind_setfp directive. */
4844
4845 static void
4846 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4847 {
4848 int sp_reg;
4849 int fp_reg;
4850 int offset;
4851
4852 if (!unwind.proc_start)
4853 as_bad (MISSING_FNSTART);
4854
4855 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4856 if (skip_past_comma (&input_line_pointer) == FAIL)
4857 sp_reg = FAIL;
4858 else
4859 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4860
4861 if (fp_reg == FAIL || sp_reg == FAIL)
4862 {
4863 as_bad (_("expected <reg>, <reg>"));
4864 ignore_rest_of_line ();
4865 return;
4866 }
4867
4868 /* Optional constant. */
4869 if (skip_past_comma (&input_line_pointer) != FAIL)
4870 {
4871 if (immediate_for_directive (&offset) == FAIL)
4872 return;
4873 }
4874 else
4875 offset = 0;
4876
4877 demand_empty_rest_of_line ();
4878
4879 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4880 {
4881 as_bad (_("register must be either sp or set by a previous"
4882 "unwind_movsp directive"));
4883 return;
4884 }
4885
4886 /* Don't generate any opcodes, just record the information for later. */
4887 unwind.fp_reg = fp_reg;
4888 unwind.fp_used = 1;
4889 if (sp_reg == REG_SP)
4890 unwind.fp_offset = unwind.frame_size - offset;
4891 else
4892 unwind.fp_offset -= offset;
4893 }
4894
4895 /* Parse an unwind_raw directive. */
4896
4897 static void
4898 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4899 {
4900 expressionS exp;
4901 /* This is an arbitrary limit. */
4902 unsigned char op[16];
4903 int count;
4904
4905 if (!unwind.proc_start)
4906 as_bad (MISSING_FNSTART);
4907
4908 expression (&exp);
4909 if (exp.X_op == O_constant
4910 && skip_past_comma (&input_line_pointer) != FAIL)
4911 {
4912 unwind.frame_size += exp.X_add_number;
4913 expression (&exp);
4914 }
4915 else
4916 exp.X_op = O_illegal;
4917
4918 if (exp.X_op != O_constant)
4919 {
4920 as_bad (_("expected <offset>, <opcode>"));
4921 ignore_rest_of_line ();
4922 return;
4923 }
4924
4925 count = 0;
4926
4927 /* Parse the opcode. */
4928 for (;;)
4929 {
4930 if (count >= 16)
4931 {
4932 as_bad (_("unwind opcode too long"));
4933 ignore_rest_of_line ();
4934 }
4935 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4936 {
4937 as_bad (_("invalid unwind opcode"));
4938 ignore_rest_of_line ();
4939 return;
4940 }
4941 op[count++] = exp.X_add_number;
4942
4943 /* Parse the next byte. */
4944 if (skip_past_comma (&input_line_pointer) == FAIL)
4945 break;
4946
4947 expression (&exp);
4948 }
4949
4950 /* Add the opcode bytes in reverse order. */
4951 while (count--)
4952 add_unwind_opcode (op[count], 1);
4953
4954 demand_empty_rest_of_line ();
4955 }
4956
4957
4958 /* Parse a .eabi_attribute directive. */
4959
4960 static void
4961 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4962 {
4963 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4964
4965 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4966 attributes_set_explicitly[tag] = 1;
4967 }
4968
4969 /* Emit a tls fix for the symbol. */
4970
4971 static void
4972 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4973 {
4974 char *p;
4975 expressionS exp;
4976 #ifdef md_flush_pending_output
4977 md_flush_pending_output ();
4978 #endif
4979
4980 #ifdef md_cons_align
4981 md_cons_align (4);
4982 #endif
4983
4984 /* Since we're just labelling the code, there's no need to define a
4985 mapping symbol. */
4986 expression (&exp);
4987 p = obstack_next_free (&frchain_now->frch_obstack);
4988 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4989 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4990 : BFD_RELOC_ARM_TLS_DESCSEQ);
4991 }
4992 #endif /* OBJ_ELF */
4993
4994 static void s_arm_arch (int);
4995 static void s_arm_object_arch (int);
4996 static void s_arm_cpu (int);
4997 static void s_arm_fpu (int);
4998 static void s_arm_arch_extension (int);
4999
5000 #ifdef TE_PE
5001
5002 static void
5003 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
5004 {
5005 expressionS exp;
5006
5007 do
5008 {
5009 expression (&exp);
5010 if (exp.X_op == O_symbol)
5011 exp.X_op = O_secrel;
5012
5013 emit_expr (&exp, 4);
5014 }
5015 while (*input_line_pointer++ == ',');
5016
5017 input_line_pointer--;
5018 demand_empty_rest_of_line ();
5019 }
5020 #endif /* TE_PE */
5021
5022 int
5023 arm_is_largest_exponent_ok (int precision)
5024 {
5025 /* precision == 1 ensures that this will only return
5026 true for 16 bit floats. */
5027 return (precision == 1) && (fp16_format == ARM_FP16_FORMAT_ALTERNATIVE);
5028 }
5029
5030 static void
5031 set_fp16_format (int dummy ATTRIBUTE_UNUSED)
5032 {
5033 char saved_char;
5034 char* name;
5035 enum fp_16bit_format new_format;
5036
5037 new_format = ARM_FP16_FORMAT_DEFAULT;
5038
5039 name = input_line_pointer;
5040 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
5041 input_line_pointer++;
5042
5043 saved_char = *input_line_pointer;
5044 *input_line_pointer = 0;
5045
5046 if (strcasecmp (name, "ieee") == 0)
5047 new_format = ARM_FP16_FORMAT_IEEE;
5048 else if (strcasecmp (name, "alternative") == 0)
5049 new_format = ARM_FP16_FORMAT_ALTERNATIVE;
5050 else
5051 {
5052 as_bad (_("unrecognised float16 format \"%s\""), name);
5053 goto cleanup;
5054 }
5055
5056 /* Only set fp16_format if it is still the default (aka not already
5057 been set yet). */
5058 if (fp16_format == ARM_FP16_FORMAT_DEFAULT)
5059 fp16_format = new_format;
5060 else
5061 {
5062 if (new_format != fp16_format)
5063 as_warn (_("float16 format cannot be set more than once, ignoring."));
5064 }
5065
5066 cleanup:
5067 *input_line_pointer = saved_char;
5068 ignore_rest_of_line ();
5069 }
5070
5071 /* This table describes all the machine specific pseudo-ops the assembler
5072 has to support. The fields are:
5073 pseudo-op name without dot
5074 function to call to execute this pseudo-op
5075 Integer arg to pass to the function. */
5076
5077 const pseudo_typeS md_pseudo_table[] =
5078 {
5079 /* Never called because '.req' does not start a line. */
5080 { "req", s_req, 0 },
5081 /* Following two are likewise never called. */
5082 { "dn", s_dn, 0 },
5083 { "qn", s_qn, 0 },
5084 { "unreq", s_unreq, 0 },
5085 { "bss", s_bss, 0 },
5086 { "align", s_align_ptwo, 2 },
5087 { "arm", s_arm, 0 },
5088 { "thumb", s_thumb, 0 },
5089 { "code", s_code, 0 },
5090 { "force_thumb", s_force_thumb, 0 },
5091 { "thumb_func", s_thumb_func, 0 },
5092 { "thumb_set", s_thumb_set, 0 },
5093 { "even", s_even, 0 },
5094 { "ltorg", s_ltorg, 0 },
5095 { "pool", s_ltorg, 0 },
5096 { "syntax", s_syntax, 0 },
5097 { "cpu", s_arm_cpu, 0 },
5098 { "arch", s_arm_arch, 0 },
5099 { "object_arch", s_arm_object_arch, 0 },
5100 { "fpu", s_arm_fpu, 0 },
5101 { "arch_extension", s_arm_arch_extension, 0 },
5102 #ifdef OBJ_ELF
5103 { "word", s_arm_elf_cons, 4 },
5104 { "long", s_arm_elf_cons, 4 },
5105 { "inst.n", s_arm_elf_inst, 2 },
5106 { "inst.w", s_arm_elf_inst, 4 },
5107 { "inst", s_arm_elf_inst, 0 },
5108 { "rel31", s_arm_rel31, 0 },
5109 { "fnstart", s_arm_unwind_fnstart, 0 },
5110 { "fnend", s_arm_unwind_fnend, 0 },
5111 { "cantunwind", s_arm_unwind_cantunwind, 0 },
5112 { "personality", s_arm_unwind_personality, 0 },
5113 { "personalityindex", s_arm_unwind_personalityindex, 0 },
5114 { "handlerdata", s_arm_unwind_handlerdata, 0 },
5115 { "save", s_arm_unwind_save, 0 },
5116 { "vsave", s_arm_unwind_save, 1 },
5117 { "movsp", s_arm_unwind_movsp, 0 },
5118 { "pad", s_arm_unwind_pad, 0 },
5119 { "setfp", s_arm_unwind_setfp, 0 },
5120 { "unwind_raw", s_arm_unwind_raw, 0 },
5121 { "eabi_attribute", s_arm_eabi_attribute, 0 },
5122 { "tlsdescseq", s_arm_tls_descseq, 0 },
5123 #else
5124 { "word", cons, 4},
5125
5126 /* These are used for dwarf. */
5127 {"2byte", cons, 2},
5128 {"4byte", cons, 4},
5129 {"8byte", cons, 8},
5130 /* These are used for dwarf2. */
5131 { "file", dwarf2_directive_file, 0 },
5132 { "loc", dwarf2_directive_loc, 0 },
5133 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
5134 #endif
5135 { "extend", float_cons, 'x' },
5136 { "ldouble", float_cons, 'x' },
5137 { "packed", float_cons, 'p' },
5138 { "bfloat16", float_cons, 'b' },
5139 #ifdef TE_PE
5140 {"secrel32", pe_directive_secrel, 0},
5141 #endif
5142
5143 /* These are for compatibility with CodeComposer Studio. */
5144 {"ref", s_ccs_ref, 0},
5145 {"def", s_ccs_def, 0},
5146 {"asmfunc", s_ccs_asmfunc, 0},
5147 {"endasmfunc", s_ccs_endasmfunc, 0},
5148
5149 {"float16", float_cons, 'h' },
5150 {"float16_format", set_fp16_format, 0 },
5151
5152 { 0, 0, 0 }
5153 };
5154
5155 /* Parser functions used exclusively in instruction operands. */
5156
5157 /* Generic immediate-value read function for use in insn parsing.
5158 STR points to the beginning of the immediate (the leading #);
5159 VAL receives the value; if the value is outside [MIN, MAX]
5160 issue an error. PREFIX_OPT is true if the immediate prefix is
5161 optional. */
5162
5163 static int
5164 parse_immediate (char **str, int *val, int min, int max,
5165 bfd_boolean prefix_opt)
5166 {
5167 expressionS exp;
5168
5169 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5170 if (exp.X_op != O_constant)
5171 {
5172 inst.error = _("constant expression required");
5173 return FAIL;
5174 }
5175
5176 if (exp.X_add_number < min || exp.X_add_number > max)
5177 {
5178 inst.error = _("immediate value out of range");
5179 return FAIL;
5180 }
5181
5182 *val = exp.X_add_number;
5183 return SUCCESS;
5184 }
5185
5186 /* Less-generic immediate-value read function with the possibility of loading a
5187 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5188 instructions. Puts the result directly in inst.operands[i]. */
5189
5190 static int
5191 parse_big_immediate (char **str, int i, expressionS *in_exp,
5192 bfd_boolean allow_symbol_p)
5193 {
5194 expressionS exp;
5195 expressionS *exp_p = in_exp ? in_exp : &exp;
5196 char *ptr = *str;
5197
5198 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5199
5200 if (exp_p->X_op == O_constant)
5201 {
5202 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5203 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5204 O_constant. We have to be careful not to break compilation for
5205 32-bit X_add_number, though. */
5206 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5207 {
5208 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5209 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5210 & 0xffffffff);
5211 inst.operands[i].regisimm = 1;
5212 }
5213 }
5214 else if (exp_p->X_op == O_big
5215 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5216 {
5217 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5218
5219 /* Bignums have their least significant bits in
5220 generic_bignum[0]. Make sure we put 32 bits in imm and
5221 32 bits in reg, in a (hopefully) portable way. */
5222 gas_assert (parts != 0);
5223
5224 /* Make sure that the number is not too big.
5225 PR 11972: Bignums can now be sign-extended to the
5226 size of a .octa so check that the out of range bits
5227 are all zero or all one. */
5228 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5229 {
5230 LITTLENUM_TYPE m = -1;
5231
5232 if (generic_bignum[parts * 2] != 0
5233 && generic_bignum[parts * 2] != m)
5234 return FAIL;
5235
5236 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5237 if (generic_bignum[j] != generic_bignum[j-1])
5238 return FAIL;
5239 }
5240
5241 inst.operands[i].imm = 0;
5242 for (j = 0; j < parts; j++, idx++)
5243 inst.operands[i].imm |= generic_bignum[idx]
5244 << (LITTLENUM_NUMBER_OF_BITS * j);
5245 inst.operands[i].reg = 0;
5246 for (j = 0; j < parts; j++, idx++)
5247 inst.operands[i].reg |= generic_bignum[idx]
5248 << (LITTLENUM_NUMBER_OF_BITS * j);
5249 inst.operands[i].regisimm = 1;
5250 }
5251 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5252 return FAIL;
5253
5254 *str = ptr;
5255
5256 return SUCCESS;
5257 }
5258
5259 /* Returns the pseudo-register number of an FPA immediate constant,
5260 or FAIL if there isn't a valid constant here. */
5261
5262 static int
5263 parse_fpa_immediate (char ** str)
5264 {
5265 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5266 char * save_in;
5267 expressionS exp;
5268 int i;
5269 int j;
5270
5271 /* First try and match exact strings, this is to guarantee
5272 that some formats will work even for cross assembly. */
5273
5274 for (i = 0; fp_const[i]; i++)
5275 {
5276 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5277 {
5278 char *start = *str;
5279
5280 *str += strlen (fp_const[i]);
5281 if (is_end_of_line[(unsigned char) **str])
5282 return i + 8;
5283 *str = start;
5284 }
5285 }
5286
5287 /* Just because we didn't get a match doesn't mean that the constant
5288 isn't valid, just that it is in a format that we don't
5289 automatically recognize. Try parsing it with the standard
5290 expression routines. */
5291
5292 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5293
5294 /* Look for a raw floating point number. */
5295 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5296 && is_end_of_line[(unsigned char) *save_in])
5297 {
5298 for (i = 0; i < NUM_FLOAT_VALS; i++)
5299 {
5300 for (j = 0; j < MAX_LITTLENUMS; j++)
5301 {
5302 if (words[j] != fp_values[i][j])
5303 break;
5304 }
5305
5306 if (j == MAX_LITTLENUMS)
5307 {
5308 *str = save_in;
5309 return i + 8;
5310 }
5311 }
5312 }
5313
5314 /* Try and parse a more complex expression, this will probably fail
5315 unless the code uses a floating point prefix (eg "0f"). */
5316 save_in = input_line_pointer;
5317 input_line_pointer = *str;
5318 if (expression (&exp) == absolute_section
5319 && exp.X_op == O_big
5320 && exp.X_add_number < 0)
5321 {
5322 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5323 Ditto for 15. */
5324 #define X_PRECISION 5
5325 #define E_PRECISION 15L
5326 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5327 {
5328 for (i = 0; i < NUM_FLOAT_VALS; i++)
5329 {
5330 for (j = 0; j < MAX_LITTLENUMS; j++)
5331 {
5332 if (words[j] != fp_values[i][j])
5333 break;
5334 }
5335
5336 if (j == MAX_LITTLENUMS)
5337 {
5338 *str = input_line_pointer;
5339 input_line_pointer = save_in;
5340 return i + 8;
5341 }
5342 }
5343 }
5344 }
5345
5346 *str = input_line_pointer;
5347 input_line_pointer = save_in;
5348 inst.error = _("invalid FPA immediate expression");
5349 return FAIL;
5350 }
5351
5352 /* Returns 1 if a number has "quarter-precision" float format
5353 0baBbbbbbc defgh000 00000000 00000000. */
5354
5355 static int
5356 is_quarter_float (unsigned imm)
5357 {
5358 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5359 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5360 }
5361
5362
5363 /* Detect the presence of a floating point or integer zero constant,
5364 i.e. #0.0 or #0. */
5365
5366 static bfd_boolean
5367 parse_ifimm_zero (char **in)
5368 {
5369 int error_code;
5370
5371 if (!is_immediate_prefix (**in))
5372 {
5373 /* In unified syntax, all prefixes are optional. */
5374 if (!unified_syntax)
5375 return FALSE;
5376 }
5377 else
5378 ++*in;
5379
5380 /* Accept #0x0 as a synonym for #0. */
5381 if (strncmp (*in, "0x", 2) == 0)
5382 {
5383 int val;
5384 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5385 return FALSE;
5386 return TRUE;
5387 }
5388
5389 error_code = atof_generic (in, ".", EXP_CHARS,
5390 &generic_floating_point_number);
5391
5392 if (!error_code
5393 && generic_floating_point_number.sign == '+'
5394 && (generic_floating_point_number.low
5395 > generic_floating_point_number.leader))
5396 return TRUE;
5397
5398 return FALSE;
5399 }
5400
5401 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5402 0baBbbbbbc defgh000 00000000 00000000.
5403 The zero and minus-zero cases need special handling, since they can't be
5404 encoded in the "quarter-precision" float format, but can nonetheless be
5405 loaded as integer constants. */
5406
5407 static unsigned
5408 parse_qfloat_immediate (char **ccp, int *immed)
5409 {
5410 char *str = *ccp;
5411 char *fpnum;
5412 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5413 int found_fpchar = 0;
5414
5415 skip_past_char (&str, '#');
5416
5417 /* We must not accidentally parse an integer as a floating-point number. Make
5418 sure that the value we parse is not an integer by checking for special
5419 characters '.' or 'e'.
5420 FIXME: This is a horrible hack, but doing better is tricky because type
5421 information isn't in a very usable state at parse time. */
5422 fpnum = str;
5423 skip_whitespace (fpnum);
5424
5425 if (strncmp (fpnum, "0x", 2) == 0)
5426 return FAIL;
5427 else
5428 {
5429 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5430 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5431 {
5432 found_fpchar = 1;
5433 break;
5434 }
5435
5436 if (!found_fpchar)
5437 return FAIL;
5438 }
5439
5440 if ((str = atof_ieee (str, 's', words)) != NULL)
5441 {
5442 unsigned fpword = 0;
5443 int i;
5444
5445 /* Our FP word must be 32 bits (single-precision FP). */
5446 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5447 {
5448 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5449 fpword |= words[i];
5450 }
5451
5452 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5453 *immed = fpword;
5454 else
5455 return FAIL;
5456
5457 *ccp = str;
5458
5459 return SUCCESS;
5460 }
5461
5462 return FAIL;
5463 }
5464
5465 /* Shift operands. */
5466 enum shift_kind
5467 {
5468 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5469 };
5470
5471 struct asm_shift_name
5472 {
5473 const char *name;
5474 enum shift_kind kind;
5475 };
5476
5477 /* Third argument to parse_shift. */
5478 enum parse_shift_mode
5479 {
5480 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5481 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5482 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5483 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5484 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5485 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5486 };
5487
5488 /* Parse a <shift> specifier on an ARM data processing instruction.
5489 This has three forms:
5490
5491 (LSL|LSR|ASL|ASR|ROR) Rs
5492 (LSL|LSR|ASL|ASR|ROR) #imm
5493 RRX
5494
5495 Note that ASL is assimilated to LSL in the instruction encoding, and
5496 RRX to ROR #0 (which cannot be written as such). */
5497
5498 static int
5499 parse_shift (char **str, int i, enum parse_shift_mode mode)
5500 {
5501 const struct asm_shift_name *shift_name;
5502 enum shift_kind shift;
5503 char *s = *str;
5504 char *p = s;
5505 int reg;
5506
5507 for (p = *str; ISALPHA (*p); p++)
5508 ;
5509
5510 if (p == *str)
5511 {
5512 inst.error = _("shift expression expected");
5513 return FAIL;
5514 }
5515
5516 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5517 p - *str);
5518
5519 if (shift_name == NULL)
5520 {
5521 inst.error = _("shift expression expected");
5522 return FAIL;
5523 }
5524
5525 shift = shift_name->kind;
5526
5527 switch (mode)
5528 {
5529 case NO_SHIFT_RESTRICT:
5530 case SHIFT_IMMEDIATE:
5531 if (shift == SHIFT_UXTW)
5532 {
5533 inst.error = _("'UXTW' not allowed here");
5534 return FAIL;
5535 }
5536 break;
5537
5538 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5539 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5540 {
5541 inst.error = _("'LSL' or 'ASR' required");
5542 return FAIL;
5543 }
5544 break;
5545
5546 case SHIFT_LSL_IMMEDIATE:
5547 if (shift != SHIFT_LSL)
5548 {
5549 inst.error = _("'LSL' required");
5550 return FAIL;
5551 }
5552 break;
5553
5554 case SHIFT_ASR_IMMEDIATE:
5555 if (shift != SHIFT_ASR)
5556 {
5557 inst.error = _("'ASR' required");
5558 return FAIL;
5559 }
5560 break;
5561 case SHIFT_UXTW_IMMEDIATE:
5562 if (shift != SHIFT_UXTW)
5563 {
5564 inst.error = _("'UXTW' required");
5565 return FAIL;
5566 }
5567 break;
5568
5569 default: abort ();
5570 }
5571
5572 if (shift != SHIFT_RRX)
5573 {
5574 /* Whitespace can appear here if the next thing is a bare digit. */
5575 skip_whitespace (p);
5576
5577 if (mode == NO_SHIFT_RESTRICT
5578 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5579 {
5580 inst.operands[i].imm = reg;
5581 inst.operands[i].immisreg = 1;
5582 }
5583 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5584 return FAIL;
5585 }
5586 inst.operands[i].shift_kind = shift;
5587 inst.operands[i].shifted = 1;
5588 *str = p;
5589 return SUCCESS;
5590 }
5591
5592 /* Parse a <shifter_operand> for an ARM data processing instruction:
5593
5594 #<immediate>
5595 #<immediate>, <rotate>
5596 <Rm>
5597 <Rm>, <shift>
5598
5599 where <shift> is defined by parse_shift above, and <rotate> is a
5600 multiple of 2 between 0 and 30. Validation of immediate operands
5601 is deferred to md_apply_fix. */
5602
5603 static int
5604 parse_shifter_operand (char **str, int i)
5605 {
5606 int value;
5607 expressionS exp;
5608
5609 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5610 {
5611 inst.operands[i].reg = value;
5612 inst.operands[i].isreg = 1;
5613
5614 /* parse_shift will override this if appropriate */
5615 inst.relocs[0].exp.X_op = O_constant;
5616 inst.relocs[0].exp.X_add_number = 0;
5617
5618 if (skip_past_comma (str) == FAIL)
5619 return SUCCESS;
5620
5621 /* Shift operation on register. */
5622 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5623 }
5624
5625 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5626 return FAIL;
5627
5628 if (skip_past_comma (str) == SUCCESS)
5629 {
5630 /* #x, y -- ie explicit rotation by Y. */
5631 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5632 return FAIL;
5633
5634 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5635 {
5636 inst.error = _("constant expression expected");
5637 return FAIL;
5638 }
5639
5640 value = exp.X_add_number;
5641 if (value < 0 || value > 30 || value % 2 != 0)
5642 {
5643 inst.error = _("invalid rotation");
5644 return FAIL;
5645 }
5646 if (inst.relocs[0].exp.X_add_number < 0
5647 || inst.relocs[0].exp.X_add_number > 255)
5648 {
5649 inst.error = _("invalid constant");
5650 return FAIL;
5651 }
5652
5653 /* Encode as specified. */
5654 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5655 return SUCCESS;
5656 }
5657
5658 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5659 inst.relocs[0].pc_rel = 0;
5660 return SUCCESS;
5661 }
5662
5663 /* Group relocation information. Each entry in the table contains the
5664 textual name of the relocation as may appear in assembler source
5665 and must end with a colon.
5666 Along with this textual name are the relocation codes to be used if
5667 the corresponding instruction is an ALU instruction (ADD or SUB only),
5668 an LDR, an LDRS, or an LDC. */
5669
5670 struct group_reloc_table_entry
5671 {
5672 const char *name;
5673 int alu_code;
5674 int ldr_code;
5675 int ldrs_code;
5676 int ldc_code;
5677 };
5678
5679 typedef enum
5680 {
5681 /* Varieties of non-ALU group relocation. */
5682
5683 GROUP_LDR,
5684 GROUP_LDRS,
5685 GROUP_LDC,
5686 GROUP_MVE
5687 } group_reloc_type;
5688
5689 static struct group_reloc_table_entry group_reloc_table[] =
5690 { /* Program counter relative: */
5691 { "pc_g0_nc",
5692 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5693 0, /* LDR */
5694 0, /* LDRS */
5695 0 }, /* LDC */
5696 { "pc_g0",
5697 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5698 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5699 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5700 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5701 { "pc_g1_nc",
5702 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5703 0, /* LDR */
5704 0, /* LDRS */
5705 0 }, /* LDC */
5706 { "pc_g1",
5707 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5708 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5709 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5710 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5711 { "pc_g2",
5712 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5713 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5714 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5715 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5716 /* Section base relative */
5717 { "sb_g0_nc",
5718 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5719 0, /* LDR */
5720 0, /* LDRS */
5721 0 }, /* LDC */
5722 { "sb_g0",
5723 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5724 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5725 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5726 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5727 { "sb_g1_nc",
5728 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5729 0, /* LDR */
5730 0, /* LDRS */
5731 0 }, /* LDC */
5732 { "sb_g1",
5733 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5734 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5735 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5736 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5737 { "sb_g2",
5738 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5739 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5740 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5741 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5742 /* Absolute thumb alu relocations. */
5743 { "lower0_7",
5744 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5745 0, /* LDR. */
5746 0, /* LDRS. */
5747 0 }, /* LDC. */
5748 { "lower8_15",
5749 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5750 0, /* LDR. */
5751 0, /* LDRS. */
5752 0 }, /* LDC. */
5753 { "upper0_7",
5754 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5755 0, /* LDR. */
5756 0, /* LDRS. */
5757 0 }, /* LDC. */
5758 { "upper8_15",
5759 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5760 0, /* LDR. */
5761 0, /* LDRS. */
5762 0 } }; /* LDC. */
5763
5764 /* Given the address of a pointer pointing to the textual name of a group
5765 relocation as may appear in assembler source, attempt to find its details
5766 in group_reloc_table. The pointer will be updated to the character after
5767 the trailing colon. On failure, FAIL will be returned; SUCCESS
5768 otherwise. On success, *entry will be updated to point at the relevant
5769 group_reloc_table entry. */
5770
5771 static int
5772 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5773 {
5774 unsigned int i;
5775 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5776 {
5777 int length = strlen (group_reloc_table[i].name);
5778
5779 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5780 && (*str)[length] == ':')
5781 {
5782 *out = &group_reloc_table[i];
5783 *str += (length + 1);
5784 return SUCCESS;
5785 }
5786 }
5787
5788 return FAIL;
5789 }
5790
5791 /* Parse a <shifter_operand> for an ARM data processing instruction
5792 (as for parse_shifter_operand) where group relocations are allowed:
5793
5794 #<immediate>
5795 #<immediate>, <rotate>
5796 #:<group_reloc>:<expression>
5797 <Rm>
5798 <Rm>, <shift>
5799
5800 where <group_reloc> is one of the strings defined in group_reloc_table.
5801 The hashes are optional.
5802
5803 Everything else is as for parse_shifter_operand. */
5804
5805 static parse_operand_result
5806 parse_shifter_operand_group_reloc (char **str, int i)
5807 {
5808 /* Determine if we have the sequence of characters #: or just :
5809 coming next. If we do, then we check for a group relocation.
5810 If we don't, punt the whole lot to parse_shifter_operand. */
5811
5812 if (((*str)[0] == '#' && (*str)[1] == ':')
5813 || (*str)[0] == ':')
5814 {
5815 struct group_reloc_table_entry *entry;
5816
5817 if ((*str)[0] == '#')
5818 (*str) += 2;
5819 else
5820 (*str)++;
5821
5822 /* Try to parse a group relocation. Anything else is an error. */
5823 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5824 {
5825 inst.error = _("unknown group relocation");
5826 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5827 }
5828
5829 /* We now have the group relocation table entry corresponding to
5830 the name in the assembler source. Next, we parse the expression. */
5831 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5832 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5833
5834 /* Record the relocation type (always the ALU variant here). */
5835 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5836 gas_assert (inst.relocs[0].type != 0);
5837
5838 return PARSE_OPERAND_SUCCESS;
5839 }
5840 else
5841 return parse_shifter_operand (str, i) == SUCCESS
5842 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5843
5844 /* Never reached. */
5845 }
5846
5847 /* Parse a Neon alignment expression. Information is written to
5848 inst.operands[i]. We assume the initial ':' has been skipped.
5849
5850 align .imm = align << 8, .immisalign=1, .preind=0 */
5851 static parse_operand_result
5852 parse_neon_alignment (char **str, int i)
5853 {
5854 char *p = *str;
5855 expressionS exp;
5856
5857 my_get_expression (&exp, &p, GE_NO_PREFIX);
5858
5859 if (exp.X_op != O_constant)
5860 {
5861 inst.error = _("alignment must be constant");
5862 return PARSE_OPERAND_FAIL;
5863 }
5864
5865 inst.operands[i].imm = exp.X_add_number << 8;
5866 inst.operands[i].immisalign = 1;
5867 /* Alignments are not pre-indexes. */
5868 inst.operands[i].preind = 0;
5869
5870 *str = p;
5871 return PARSE_OPERAND_SUCCESS;
5872 }
5873
5874 /* Parse all forms of an ARM address expression. Information is written
5875 to inst.operands[i] and/or inst.relocs[0].
5876
5877 Preindexed addressing (.preind=1):
5878
5879 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5880 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5881 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5882 .shift_kind=shift .relocs[0].exp=shift_imm
5883
5884 These three may have a trailing ! which causes .writeback to be set also.
5885
5886 Postindexed addressing (.postind=1, .writeback=1):
5887
5888 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5889 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5890 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5891 .shift_kind=shift .relocs[0].exp=shift_imm
5892
5893 Unindexed addressing (.preind=0, .postind=0):
5894
5895 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5896
5897 Other:
5898
5899 [Rn]{!} shorthand for [Rn,#0]{!}
5900 =immediate .isreg=0 .relocs[0].exp=immediate
5901 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5902
5903 It is the caller's responsibility to check for addressing modes not
5904 supported by the instruction, and to set inst.relocs[0].type. */
5905
5906 static parse_operand_result
5907 parse_address_main (char **str, int i, int group_relocations,
5908 group_reloc_type group_type)
5909 {
5910 char *p = *str;
5911 int reg;
5912
5913 if (skip_past_char (&p, '[') == FAIL)
5914 {
5915 if (skip_past_char (&p, '=') == FAIL)
5916 {
5917 /* Bare address - translate to PC-relative offset. */
5918 inst.relocs[0].pc_rel = 1;
5919 inst.operands[i].reg = REG_PC;
5920 inst.operands[i].isreg = 1;
5921 inst.operands[i].preind = 1;
5922
5923 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5924 return PARSE_OPERAND_FAIL;
5925 }
5926 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5927 /*allow_symbol_p=*/TRUE))
5928 return PARSE_OPERAND_FAIL;
5929
5930 *str = p;
5931 return PARSE_OPERAND_SUCCESS;
5932 }
5933
5934 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5935 skip_whitespace (p);
5936
5937 if (group_type == GROUP_MVE)
5938 {
5939 enum arm_reg_type rtype = REG_TYPE_MQ;
5940 struct neon_type_el et;
5941 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5942 {
5943 inst.operands[i].isquad = 1;
5944 }
5945 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5946 {
5947 inst.error = BAD_ADDR_MODE;
5948 return PARSE_OPERAND_FAIL;
5949 }
5950 }
5951 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5952 {
5953 if (group_type == GROUP_MVE)
5954 inst.error = BAD_ADDR_MODE;
5955 else
5956 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5957 return PARSE_OPERAND_FAIL;
5958 }
5959 inst.operands[i].reg = reg;
5960 inst.operands[i].isreg = 1;
5961
5962 if (skip_past_comma (&p) == SUCCESS)
5963 {
5964 inst.operands[i].preind = 1;
5965
5966 if (*p == '+') p++;
5967 else if (*p == '-') p++, inst.operands[i].negative = 1;
5968
5969 enum arm_reg_type rtype = REG_TYPE_MQ;
5970 struct neon_type_el et;
5971 if (group_type == GROUP_MVE
5972 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5973 {
5974 inst.operands[i].immisreg = 2;
5975 inst.operands[i].imm = reg;
5976
5977 if (skip_past_comma (&p) == SUCCESS)
5978 {
5979 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5980 {
5981 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5982 inst.relocs[0].exp.X_add_number = 0;
5983 }
5984 else
5985 return PARSE_OPERAND_FAIL;
5986 }
5987 }
5988 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5989 {
5990 inst.operands[i].imm = reg;
5991 inst.operands[i].immisreg = 1;
5992
5993 if (skip_past_comma (&p) == SUCCESS)
5994 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5995 return PARSE_OPERAND_FAIL;
5996 }
5997 else if (skip_past_char (&p, ':') == SUCCESS)
5998 {
5999 /* FIXME: '@' should be used here, but it's filtered out by generic
6000 code before we get to see it here. This may be subject to
6001 change. */
6002 parse_operand_result result = parse_neon_alignment (&p, i);
6003
6004 if (result != PARSE_OPERAND_SUCCESS)
6005 return result;
6006 }
6007 else
6008 {
6009 if (inst.operands[i].negative)
6010 {
6011 inst.operands[i].negative = 0;
6012 p--;
6013 }
6014
6015 if (group_relocations
6016 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
6017 {
6018 struct group_reloc_table_entry *entry;
6019
6020 /* Skip over the #: or : sequence. */
6021 if (*p == '#')
6022 p += 2;
6023 else
6024 p++;
6025
6026 /* Try to parse a group relocation. Anything else is an
6027 error. */
6028 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
6029 {
6030 inst.error = _("unknown group relocation");
6031 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
6032 }
6033
6034 /* We now have the group relocation table entry corresponding to
6035 the name in the assembler source. Next, we parse the
6036 expression. */
6037 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6038 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
6039
6040 /* Record the relocation type. */
6041 switch (group_type)
6042 {
6043 case GROUP_LDR:
6044 inst.relocs[0].type
6045 = (bfd_reloc_code_real_type) entry->ldr_code;
6046 break;
6047
6048 case GROUP_LDRS:
6049 inst.relocs[0].type
6050 = (bfd_reloc_code_real_type) entry->ldrs_code;
6051 break;
6052
6053 case GROUP_LDC:
6054 inst.relocs[0].type
6055 = (bfd_reloc_code_real_type) entry->ldc_code;
6056 break;
6057
6058 default:
6059 gas_assert (0);
6060 }
6061
6062 if (inst.relocs[0].type == 0)
6063 {
6064 inst.error = _("this group relocation is not allowed on this instruction");
6065 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
6066 }
6067 }
6068 else
6069 {
6070 char *q = p;
6071
6072 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6073 return PARSE_OPERAND_FAIL;
6074 /* If the offset is 0, find out if it's a +0 or -0. */
6075 if (inst.relocs[0].exp.X_op == O_constant
6076 && inst.relocs[0].exp.X_add_number == 0)
6077 {
6078 skip_whitespace (q);
6079 if (*q == '#')
6080 {
6081 q++;
6082 skip_whitespace (q);
6083 }
6084 if (*q == '-')
6085 inst.operands[i].negative = 1;
6086 }
6087 }
6088 }
6089 }
6090 else if (skip_past_char (&p, ':') == SUCCESS)
6091 {
6092 /* FIXME: '@' should be used here, but it's filtered out by generic code
6093 before we get to see it here. This may be subject to change. */
6094 parse_operand_result result = parse_neon_alignment (&p, i);
6095
6096 if (result != PARSE_OPERAND_SUCCESS)
6097 return result;
6098 }
6099
6100 if (skip_past_char (&p, ']') == FAIL)
6101 {
6102 inst.error = _("']' expected");
6103 return PARSE_OPERAND_FAIL;
6104 }
6105
6106 if (skip_past_char (&p, '!') == SUCCESS)
6107 inst.operands[i].writeback = 1;
6108
6109 else if (skip_past_comma (&p) == SUCCESS)
6110 {
6111 if (skip_past_char (&p, '{') == SUCCESS)
6112 {
6113 /* [Rn], {expr} - unindexed, with option */
6114 if (parse_immediate (&p, &inst.operands[i].imm,
6115 0, 255, TRUE) == FAIL)
6116 return PARSE_OPERAND_FAIL;
6117
6118 if (skip_past_char (&p, '}') == FAIL)
6119 {
6120 inst.error = _("'}' expected at end of 'option' field");
6121 return PARSE_OPERAND_FAIL;
6122 }
6123 if (inst.operands[i].preind)
6124 {
6125 inst.error = _("cannot combine index with option");
6126 return PARSE_OPERAND_FAIL;
6127 }
6128 *str = p;
6129 return PARSE_OPERAND_SUCCESS;
6130 }
6131 else
6132 {
6133 inst.operands[i].postind = 1;
6134 inst.operands[i].writeback = 1;
6135
6136 if (inst.operands[i].preind)
6137 {
6138 inst.error = _("cannot combine pre- and post-indexing");
6139 return PARSE_OPERAND_FAIL;
6140 }
6141
6142 if (*p == '+') p++;
6143 else if (*p == '-') p++, inst.operands[i].negative = 1;
6144
6145 enum arm_reg_type rtype = REG_TYPE_MQ;
6146 struct neon_type_el et;
6147 if (group_type == GROUP_MVE
6148 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
6149 {
6150 inst.operands[i].immisreg = 2;
6151 inst.operands[i].imm = reg;
6152 }
6153 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6154 {
6155 /* We might be using the immediate for alignment already. If we
6156 are, OR the register number into the low-order bits. */
6157 if (inst.operands[i].immisalign)
6158 inst.operands[i].imm |= reg;
6159 else
6160 inst.operands[i].imm = reg;
6161 inst.operands[i].immisreg = 1;
6162
6163 if (skip_past_comma (&p) == SUCCESS)
6164 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6165 return PARSE_OPERAND_FAIL;
6166 }
6167 else
6168 {
6169 char *q = p;
6170
6171 if (inst.operands[i].negative)
6172 {
6173 inst.operands[i].negative = 0;
6174 p--;
6175 }
6176 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6177 return PARSE_OPERAND_FAIL;
6178 /* If the offset is 0, find out if it's a +0 or -0. */
6179 if (inst.relocs[0].exp.X_op == O_constant
6180 && inst.relocs[0].exp.X_add_number == 0)
6181 {
6182 skip_whitespace (q);
6183 if (*q == '#')
6184 {
6185 q++;
6186 skip_whitespace (q);
6187 }
6188 if (*q == '-')
6189 inst.operands[i].negative = 1;
6190 }
6191 }
6192 }
6193 }
6194
6195 /* If at this point neither .preind nor .postind is set, we have a
6196 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6197 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6198 {
6199 inst.operands[i].preind = 1;
6200 inst.relocs[0].exp.X_op = O_constant;
6201 inst.relocs[0].exp.X_add_number = 0;
6202 }
6203 *str = p;
6204 return PARSE_OPERAND_SUCCESS;
6205 }
6206
6207 static int
6208 parse_address (char **str, int i)
6209 {
6210 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6211 ? SUCCESS : FAIL;
6212 }
6213
6214 static parse_operand_result
6215 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6216 {
6217 return parse_address_main (str, i, 1, type);
6218 }
6219
6220 /* Parse an operand for a MOVW or MOVT instruction. */
6221 static int
6222 parse_half (char **str)
6223 {
6224 char * p;
6225
6226 p = *str;
6227 skip_past_char (&p, '#');
6228 if (strncasecmp (p, ":lower16:", 9) == 0)
6229 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6230 else if (strncasecmp (p, ":upper16:", 9) == 0)
6231 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6232
6233 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6234 {
6235 p += 9;
6236 skip_whitespace (p);
6237 }
6238
6239 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6240 return FAIL;
6241
6242 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6243 {
6244 if (inst.relocs[0].exp.X_op != O_constant)
6245 {
6246 inst.error = _("constant expression expected");
6247 return FAIL;
6248 }
6249 if (inst.relocs[0].exp.X_add_number < 0
6250 || inst.relocs[0].exp.X_add_number > 0xffff)
6251 {
6252 inst.error = _("immediate value out of range");
6253 return FAIL;
6254 }
6255 }
6256 *str = p;
6257 return SUCCESS;
6258 }
6259
6260 /* Miscellaneous. */
6261
6262 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6263 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6264 static int
6265 parse_psr (char **str, bfd_boolean lhs)
6266 {
6267 char *p;
6268 unsigned long psr_field;
6269 const struct asm_psr *psr;
6270 char *start;
6271 bfd_boolean is_apsr = FALSE;
6272 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6273
6274 /* PR gas/12698: If the user has specified -march=all then m_profile will
6275 be TRUE, but we want to ignore it in this case as we are building for any
6276 CPU type, including non-m variants. */
6277 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6278 m_profile = FALSE;
6279
6280 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6281 feature for ease of use and backwards compatibility. */
6282 p = *str;
6283 if (strncasecmp (p, "SPSR", 4) == 0)
6284 {
6285 if (m_profile)
6286 goto unsupported_psr;
6287
6288 psr_field = SPSR_BIT;
6289 }
6290 else if (strncasecmp (p, "CPSR", 4) == 0)
6291 {
6292 if (m_profile)
6293 goto unsupported_psr;
6294
6295 psr_field = 0;
6296 }
6297 else if (strncasecmp (p, "APSR", 4) == 0)
6298 {
6299 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6300 and ARMv7-R architecture CPUs. */
6301 is_apsr = TRUE;
6302 psr_field = 0;
6303 }
6304 else if (m_profile)
6305 {
6306 start = p;
6307 do
6308 p++;
6309 while (ISALNUM (*p) || *p == '_');
6310
6311 if (strncasecmp (start, "iapsr", 5) == 0
6312 || strncasecmp (start, "eapsr", 5) == 0
6313 || strncasecmp (start, "xpsr", 4) == 0
6314 || strncasecmp (start, "psr", 3) == 0)
6315 p = start + strcspn (start, "rR") + 1;
6316
6317 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6318 p - start);
6319
6320 if (!psr)
6321 return FAIL;
6322
6323 /* If APSR is being written, a bitfield may be specified. Note that
6324 APSR itself is handled above. */
6325 if (psr->field <= 3)
6326 {
6327 psr_field = psr->field;
6328 is_apsr = TRUE;
6329 goto check_suffix;
6330 }
6331
6332 *str = p;
6333 /* M-profile MSR instructions have the mask field set to "10", except
6334 *PSR variants which modify APSR, which may use a different mask (and
6335 have been handled already). Do that by setting the PSR_f field
6336 here. */
6337 return psr->field | (lhs ? PSR_f : 0);
6338 }
6339 else
6340 goto unsupported_psr;
6341
6342 p += 4;
6343 check_suffix:
6344 if (*p == '_')
6345 {
6346 /* A suffix follows. */
6347 p++;
6348 start = p;
6349
6350 do
6351 p++;
6352 while (ISALNUM (*p) || *p == '_');
6353
6354 if (is_apsr)
6355 {
6356 /* APSR uses a notation for bits, rather than fields. */
6357 unsigned int nzcvq_bits = 0;
6358 unsigned int g_bit = 0;
6359 char *bit;
6360
6361 for (bit = start; bit != p; bit++)
6362 {
6363 switch (TOLOWER (*bit))
6364 {
6365 case 'n':
6366 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6367 break;
6368
6369 case 'z':
6370 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6371 break;
6372
6373 case 'c':
6374 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6375 break;
6376
6377 case 'v':
6378 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6379 break;
6380
6381 case 'q':
6382 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6383 break;
6384
6385 case 'g':
6386 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6387 break;
6388
6389 default:
6390 inst.error = _("unexpected bit specified after APSR");
6391 return FAIL;
6392 }
6393 }
6394
6395 if (nzcvq_bits == 0x1f)
6396 psr_field |= PSR_f;
6397
6398 if (g_bit == 0x1)
6399 {
6400 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6401 {
6402 inst.error = _("selected processor does not "
6403 "support DSP extension");
6404 return FAIL;
6405 }
6406
6407 psr_field |= PSR_s;
6408 }
6409
6410 if ((nzcvq_bits & 0x20) != 0
6411 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6412 || (g_bit & 0x2) != 0)
6413 {
6414 inst.error = _("bad bitmask specified after APSR");
6415 return FAIL;
6416 }
6417 }
6418 else
6419 {
6420 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6421 p - start);
6422 if (!psr)
6423 goto error;
6424
6425 psr_field |= psr->field;
6426 }
6427 }
6428 else
6429 {
6430 if (ISALNUM (*p))
6431 goto error; /* Garbage after "[CS]PSR". */
6432
6433 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6434 is deprecated, but allow it anyway. */
6435 if (is_apsr && lhs)
6436 {
6437 psr_field |= PSR_f;
6438 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6439 "deprecated"));
6440 }
6441 else if (!m_profile)
6442 /* These bits are never right for M-profile devices: don't set them
6443 (only code paths which read/write APSR reach here). */
6444 psr_field |= (PSR_c | PSR_f);
6445 }
6446 *str = p;
6447 return psr_field;
6448
6449 unsupported_psr:
6450 inst.error = _("selected processor does not support requested special "
6451 "purpose register");
6452 return FAIL;
6453
6454 error:
6455 inst.error = _("flag for {c}psr instruction expected");
6456 return FAIL;
6457 }
6458
6459 static int
6460 parse_sys_vldr_vstr (char **str)
6461 {
6462 unsigned i;
6463 int val = FAIL;
6464 struct {
6465 const char *name;
6466 int regl;
6467 int regh;
6468 } sysregs[] = {
6469 {"FPSCR", 0x1, 0x0},
6470 {"FPSCR_nzcvqc", 0x2, 0x0},
6471 {"VPR", 0x4, 0x1},
6472 {"P0", 0x5, 0x1},
6473 {"FPCXTNS", 0x6, 0x1},
6474 {"FPCXTS", 0x7, 0x1}
6475 };
6476 char *op_end = strchr (*str, ',');
6477 size_t op_strlen = op_end - *str;
6478
6479 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6480 {
6481 if (!strncmp (*str, sysregs[i].name, op_strlen))
6482 {
6483 val = sysregs[i].regl | (sysregs[i].regh << 3);
6484 *str = op_end;
6485 break;
6486 }
6487 }
6488
6489 return val;
6490 }
6491
6492 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6493 value suitable for splatting into the AIF field of the instruction. */
6494
6495 static int
6496 parse_cps_flags (char **str)
6497 {
6498 int val = 0;
6499 int saw_a_flag = 0;
6500 char *s = *str;
6501
6502 for (;;)
6503 switch (*s++)
6504 {
6505 case '\0': case ',':
6506 goto done;
6507
6508 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6509 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6510 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6511
6512 default:
6513 inst.error = _("unrecognized CPS flag");
6514 return FAIL;
6515 }
6516
6517 done:
6518 if (saw_a_flag == 0)
6519 {
6520 inst.error = _("missing CPS flags");
6521 return FAIL;
6522 }
6523
6524 *str = s - 1;
6525 return val;
6526 }
6527
6528 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6529 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6530
6531 static int
6532 parse_endian_specifier (char **str)
6533 {
6534 int little_endian;
6535 char *s = *str;
6536
6537 if (strncasecmp (s, "BE", 2))
6538 little_endian = 0;
6539 else if (strncasecmp (s, "LE", 2))
6540 little_endian = 1;
6541 else
6542 {
6543 inst.error = _("valid endian specifiers are be or le");
6544 return FAIL;
6545 }
6546
6547 if (ISALNUM (s[2]) || s[2] == '_')
6548 {
6549 inst.error = _("valid endian specifiers are be or le");
6550 return FAIL;
6551 }
6552
6553 *str = s + 2;
6554 return little_endian;
6555 }
6556
6557 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6558 value suitable for poking into the rotate field of an sxt or sxta
6559 instruction, or FAIL on error. */
6560
6561 static int
6562 parse_ror (char **str)
6563 {
6564 int rot;
6565 char *s = *str;
6566
6567 if (strncasecmp (s, "ROR", 3) == 0)
6568 s += 3;
6569 else
6570 {
6571 inst.error = _("missing rotation field after comma");
6572 return FAIL;
6573 }
6574
6575 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6576 return FAIL;
6577
6578 switch (rot)
6579 {
6580 case 0: *str = s; return 0x0;
6581 case 8: *str = s; return 0x1;
6582 case 16: *str = s; return 0x2;
6583 case 24: *str = s; return 0x3;
6584
6585 default:
6586 inst.error = _("rotation can only be 0, 8, 16, or 24");
6587 return FAIL;
6588 }
6589 }
6590
6591 /* Parse a conditional code (from conds[] below). The value returned is in the
6592 range 0 .. 14, or FAIL. */
6593 static int
6594 parse_cond (char **str)
6595 {
6596 char *q;
6597 const struct asm_cond *c;
6598 int n;
6599 /* Condition codes are always 2 characters, so matching up to
6600 3 characters is sufficient. */
6601 char cond[3];
6602
6603 q = *str;
6604 n = 0;
6605 while (ISALPHA (*q) && n < 3)
6606 {
6607 cond[n] = TOLOWER (*q);
6608 q++;
6609 n++;
6610 }
6611
6612 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6613 if (!c)
6614 {
6615 inst.error = _("condition required");
6616 return FAIL;
6617 }
6618
6619 *str = q;
6620 return c->value;
6621 }
6622
6623 /* Parse an option for a barrier instruction. Returns the encoding for the
6624 option, or FAIL. */
6625 static int
6626 parse_barrier (char **str)
6627 {
6628 char *p, *q;
6629 const struct asm_barrier_opt *o;
6630
6631 p = q = *str;
6632 while (ISALPHA (*q))
6633 q++;
6634
6635 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6636 q - p);
6637 if (!o)
6638 return FAIL;
6639
6640 if (!mark_feature_used (&o->arch))
6641 return FAIL;
6642
6643 *str = q;
6644 return o->value;
6645 }
6646
6647 /* Parse the operands of a table branch instruction. Similar to a memory
6648 operand. */
6649 static int
6650 parse_tb (char **str)
6651 {
6652 char * p = *str;
6653 int reg;
6654
6655 if (skip_past_char (&p, '[') == FAIL)
6656 {
6657 inst.error = _("'[' expected");
6658 return FAIL;
6659 }
6660
6661 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6662 {
6663 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6664 return FAIL;
6665 }
6666 inst.operands[0].reg = reg;
6667
6668 if (skip_past_comma (&p) == FAIL)
6669 {
6670 inst.error = _("',' expected");
6671 return FAIL;
6672 }
6673
6674 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6675 {
6676 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6677 return FAIL;
6678 }
6679 inst.operands[0].imm = reg;
6680
6681 if (skip_past_comma (&p) == SUCCESS)
6682 {
6683 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6684 return FAIL;
6685 if (inst.relocs[0].exp.X_add_number != 1)
6686 {
6687 inst.error = _("invalid shift");
6688 return FAIL;
6689 }
6690 inst.operands[0].shifted = 1;
6691 }
6692
6693 if (skip_past_char (&p, ']') == FAIL)
6694 {
6695 inst.error = _("']' expected");
6696 return FAIL;
6697 }
6698 *str = p;
6699 return SUCCESS;
6700 }
6701
6702 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6703 information on the types the operands can take and how they are encoded.
6704 Up to four operands may be read; this function handles setting the
6705 ".present" field for each read operand itself.
6706 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6707 else returns FAIL. */
6708
6709 static int
6710 parse_neon_mov (char **str, int *which_operand)
6711 {
6712 int i = *which_operand, val;
6713 enum arm_reg_type rtype;
6714 char *ptr = *str;
6715 struct neon_type_el optype;
6716
6717 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6718 {
6719 /* Cases 17 or 19. */
6720 inst.operands[i].reg = val;
6721 inst.operands[i].isvec = 1;
6722 inst.operands[i].isscalar = 2;
6723 inst.operands[i].vectype = optype;
6724 inst.operands[i++].present = 1;
6725
6726 if (skip_past_comma (&ptr) == FAIL)
6727 goto wanted_comma;
6728
6729 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6730 {
6731 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6732 inst.operands[i].reg = val;
6733 inst.operands[i].isreg = 1;
6734 inst.operands[i].present = 1;
6735 }
6736 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6737 {
6738 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6739 inst.operands[i].reg = val;
6740 inst.operands[i].isvec = 1;
6741 inst.operands[i].isscalar = 2;
6742 inst.operands[i].vectype = optype;
6743 inst.operands[i++].present = 1;
6744
6745 if (skip_past_comma (&ptr) == FAIL)
6746 goto wanted_comma;
6747
6748 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6749 goto wanted_arm;
6750
6751 inst.operands[i].reg = val;
6752 inst.operands[i].isreg = 1;
6753 inst.operands[i++].present = 1;
6754
6755 if (skip_past_comma (&ptr) == FAIL)
6756 goto wanted_comma;
6757
6758 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6759 goto wanted_arm;
6760
6761 inst.operands[i].reg = val;
6762 inst.operands[i].isreg = 1;
6763 inst.operands[i].present = 1;
6764 }
6765 else
6766 {
6767 first_error (_("expected ARM or MVE vector register"));
6768 return FAIL;
6769 }
6770 }
6771 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6772 {
6773 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6774 inst.operands[i].reg = val;
6775 inst.operands[i].isscalar = 1;
6776 inst.operands[i].vectype = optype;
6777 inst.operands[i++].present = 1;
6778
6779 if (skip_past_comma (&ptr) == FAIL)
6780 goto wanted_comma;
6781
6782 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6783 goto wanted_arm;
6784
6785 inst.operands[i].reg = val;
6786 inst.operands[i].isreg = 1;
6787 inst.operands[i].present = 1;
6788 }
6789 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6790 != FAIL)
6791 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6792 != FAIL))
6793 {
6794 /* Cases 0, 1, 2, 3, 5 (D only). */
6795 if (skip_past_comma (&ptr) == FAIL)
6796 goto wanted_comma;
6797
6798 inst.operands[i].reg = val;
6799 inst.operands[i].isreg = 1;
6800 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6801 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6802 inst.operands[i].isvec = 1;
6803 inst.operands[i].vectype = optype;
6804 inst.operands[i++].present = 1;
6805
6806 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6807 {
6808 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6809 Case 13: VMOV <Sd>, <Rm> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isreg = 1;
6812 inst.operands[i].present = 1;
6813
6814 if (rtype == REG_TYPE_NQ)
6815 {
6816 first_error (_("can't use Neon quad register here"));
6817 return FAIL;
6818 }
6819 else if (rtype != REG_TYPE_VFS)
6820 {
6821 i++;
6822 if (skip_past_comma (&ptr) == FAIL)
6823 goto wanted_comma;
6824 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6825 goto wanted_arm;
6826 inst.operands[i].reg = val;
6827 inst.operands[i].isreg = 1;
6828 inst.operands[i].present = 1;
6829 }
6830 }
6831 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6832 &optype)) != FAIL)
6833 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype,
6834 &optype)) != FAIL))
6835 {
6836 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6837 Case 1: VMOV<c><q> <Dd>, <Dm>
6838 Case 8: VMOV.F32 <Sd>, <Sm>
6839 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6840
6841 inst.operands[i].reg = val;
6842 inst.operands[i].isreg = 1;
6843 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6844 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].vectype = optype;
6847 inst.operands[i].present = 1;
6848
6849 if (skip_past_comma (&ptr) == SUCCESS)
6850 {
6851 /* Case 15. */
6852 i++;
6853
6854 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6855 goto wanted_arm;
6856
6857 inst.operands[i].reg = val;
6858 inst.operands[i].isreg = 1;
6859 inst.operands[i++].present = 1;
6860
6861 if (skip_past_comma (&ptr) == FAIL)
6862 goto wanted_comma;
6863
6864 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6865 goto wanted_arm;
6866
6867 inst.operands[i].reg = val;
6868 inst.operands[i].isreg = 1;
6869 inst.operands[i].present = 1;
6870 }
6871 }
6872 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6873 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6874 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6875 Case 10: VMOV.F32 <Sd>, #<imm>
6876 Case 11: VMOV.F64 <Dd>, #<imm> */
6877 inst.operands[i].immisfloat = 1;
6878 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6879 == SUCCESS)
6880 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6881 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6882 ;
6883 else
6884 {
6885 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6886 return FAIL;
6887 }
6888 }
6889 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6890 {
6891 /* Cases 6, 7, 16, 18. */
6892 inst.operands[i].reg = val;
6893 inst.operands[i].isreg = 1;
6894 inst.operands[i++].present = 1;
6895
6896 if (skip_past_comma (&ptr) == FAIL)
6897 goto wanted_comma;
6898
6899 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6900 {
6901 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6902 inst.operands[i].reg = val;
6903 inst.operands[i].isscalar = 2;
6904 inst.operands[i].present = 1;
6905 inst.operands[i].vectype = optype;
6906 }
6907 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6908 {
6909 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6910 inst.operands[i].reg = val;
6911 inst.operands[i].isscalar = 1;
6912 inst.operands[i].present = 1;
6913 inst.operands[i].vectype = optype;
6914 }
6915 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6916 {
6917 inst.operands[i].reg = val;
6918 inst.operands[i].isreg = 1;
6919 inst.operands[i++].present = 1;
6920
6921 if (skip_past_comma (&ptr) == FAIL)
6922 goto wanted_comma;
6923
6924 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6925 != FAIL)
6926 {
6927 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6928
6929 inst.operands[i].reg = val;
6930 inst.operands[i].isreg = 1;
6931 inst.operands[i].isvec = 1;
6932 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6933 inst.operands[i].vectype = optype;
6934 inst.operands[i].present = 1;
6935
6936 if (rtype == REG_TYPE_VFS)
6937 {
6938 /* Case 14. */
6939 i++;
6940 if (skip_past_comma (&ptr) == FAIL)
6941 goto wanted_comma;
6942 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6943 &optype)) == FAIL)
6944 {
6945 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6946 return FAIL;
6947 }
6948 inst.operands[i].reg = val;
6949 inst.operands[i].isreg = 1;
6950 inst.operands[i].isvec = 1;
6951 inst.operands[i].issingle = 1;
6952 inst.operands[i].vectype = optype;
6953 inst.operands[i].present = 1;
6954 }
6955 }
6956 else
6957 {
6958 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6959 != FAIL)
6960 {
6961 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6962 inst.operands[i].reg = val;
6963 inst.operands[i].isvec = 1;
6964 inst.operands[i].isscalar = 2;
6965 inst.operands[i].vectype = optype;
6966 inst.operands[i++].present = 1;
6967
6968 if (skip_past_comma (&ptr) == FAIL)
6969 goto wanted_comma;
6970
6971 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6972 == FAIL)
6973 {
6974 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6975 return FAIL;
6976 }
6977 inst.operands[i].reg = val;
6978 inst.operands[i].isvec = 1;
6979 inst.operands[i].isscalar = 2;
6980 inst.operands[i].vectype = optype;
6981 inst.operands[i].present = 1;
6982 }
6983 else
6984 {
6985 first_error (_("VFP single, double or MVE vector register"
6986 " expected"));
6987 return FAIL;
6988 }
6989 }
6990 }
6991 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6992 != FAIL)
6993 {
6994 /* Case 13. */
6995 inst.operands[i].reg = val;
6996 inst.operands[i].isreg = 1;
6997 inst.operands[i].isvec = 1;
6998 inst.operands[i].issingle = 1;
6999 inst.operands[i].vectype = optype;
7000 inst.operands[i].present = 1;
7001 }
7002 }
7003 else
7004 {
7005 first_error (_("parse error"));
7006 return FAIL;
7007 }
7008
7009 /* Successfully parsed the operands. Update args. */
7010 *which_operand = i;
7011 *str = ptr;
7012 return SUCCESS;
7013
7014 wanted_comma:
7015 first_error (_("expected comma"));
7016 return FAIL;
7017
7018 wanted_arm:
7019 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
7020 return FAIL;
7021 }
7022
7023 /* Use this macro when the operand constraints are different
7024 for ARM and THUMB (e.g. ldrd). */
7025 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
7026 ((arm_operand) | ((thumb_operand) << 16))
7027
7028 /* Matcher codes for parse_operands. */
7029 enum operand_parse_code
7030 {
7031 OP_stop, /* end of line */
7032
7033 OP_RR, /* ARM register */
7034 OP_RRnpc, /* ARM register, not r15 */
7035 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
7036 OP_RRnpcb, /* ARM register, not r15, in square brackets */
7037 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
7038 optional trailing ! */
7039 OP_RRw, /* ARM register, not r15, optional trailing ! */
7040 OP_RCP, /* Coprocessor number */
7041 OP_RCN, /* Coprocessor register */
7042 OP_RF, /* FPA register */
7043 OP_RVS, /* VFP single precision register */
7044 OP_RVD, /* VFP double precision register (0..15) */
7045 OP_RND, /* Neon double precision register (0..31) */
7046 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
7047 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
7048 */
7049 OP_RNQ, /* Neon quad precision register */
7050 OP_RNQMQ, /* Neon quad or MVE vector register. */
7051 OP_RVSD, /* VFP single or double precision register */
7052 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
7053 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
7054 OP_RNSD, /* Neon single or double precision register */
7055 OP_RNDQ, /* Neon double or quad precision register */
7056 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
7057 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
7058 OP_RNSDQ, /* Neon single, double or quad precision register */
7059 OP_RNSC, /* Neon scalar D[X] */
7060 OP_RVC, /* VFP control register */
7061 OP_RMF, /* Maverick F register */
7062 OP_RMD, /* Maverick D register */
7063 OP_RMFX, /* Maverick FX register */
7064 OP_RMDX, /* Maverick DX register */
7065 OP_RMAX, /* Maverick AX register */
7066 OP_RMDS, /* Maverick DSPSC register */
7067 OP_RIWR, /* iWMMXt wR register */
7068 OP_RIWC, /* iWMMXt wC register */
7069 OP_RIWG, /* iWMMXt wCG register */
7070 OP_RXA, /* XScale accumulator register */
7071
7072 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
7073 */
7074 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
7075 GPR (no SP/SP) */
7076 OP_RMQ, /* MVE vector register. */
7077 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
7078 OP_RMQRR, /* MVE vector or ARM register. */
7079
7080 /* New operands for Armv8.1-M Mainline. */
7081 OP_LR, /* ARM LR register */
7082 OP_RRe, /* ARM register, only even numbered. */
7083 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
7084 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
7085 OP_RR_ZR, /* ARM register or ZR but no PC */
7086
7087 OP_REGLST, /* ARM register list */
7088 OP_CLRMLST, /* CLRM register list */
7089 OP_VRSLST, /* VFP single-precision register list */
7090 OP_VRDLST, /* VFP double-precision register list */
7091 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
7092 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
7093 OP_NSTRLST, /* Neon element/structure list */
7094 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
7095 OP_MSTRLST2, /* MVE vector list with two elements. */
7096 OP_MSTRLST4, /* MVE vector list with four elements. */
7097
7098 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
7099 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
7100 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
7101 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
7102 zero. */
7103 OP_RR_RNSC, /* ARM reg or Neon scalar. */
7104 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
7105 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
7106 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
7107 */
7108 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
7109 scalar, or ARM register. */
7110 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
7111 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
7112 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
7113 register. */
7114 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
7115 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
7116 OP_VMOV, /* Neon VMOV operands. */
7117 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
7118 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
7119 OP_RNDQMQ_Ibig,
7120 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
7121 OP_RNDQMQ_I63b_RR, /* Neon D or Q reg, immediate for shift, MVE vector or
7122 ARM register. */
7123 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
7124 OP_VLDR, /* VLDR operand. */
7125
7126 OP_I0, /* immediate zero */
7127 OP_I7, /* immediate value 0 .. 7 */
7128 OP_I15, /* 0 .. 15 */
7129 OP_I16, /* 1 .. 16 */
7130 OP_I16z, /* 0 .. 16 */
7131 OP_I31, /* 0 .. 31 */
7132 OP_I31w, /* 0 .. 31, optional trailing ! */
7133 OP_I32, /* 1 .. 32 */
7134 OP_I32z, /* 0 .. 32 */
7135 OP_I48_I64, /* 48 or 64 */
7136 OP_I63, /* 0 .. 63 */
7137 OP_I63s, /* -64 .. 63 */
7138 OP_I64, /* 1 .. 64 */
7139 OP_I64z, /* 0 .. 64 */
7140 OP_I255, /* 0 .. 255 */
7141
7142 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
7143 OP_I7b, /* 0 .. 7 */
7144 OP_I15b, /* 0 .. 15 */
7145 OP_I31b, /* 0 .. 31 */
7146
7147 OP_SH, /* shifter operand */
7148 OP_SHG, /* shifter operand with possible group relocation */
7149 OP_ADDR, /* Memory address expression (any mode) */
7150 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
7151 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
7152 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
7153 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
7154 OP_EXP, /* arbitrary expression */
7155 OP_EXPi, /* same, with optional immediate prefix */
7156 OP_EXPr, /* same, with optional relocation suffix */
7157 OP_EXPs, /* same, with optional non-first operand relocation suffix */
7158 OP_HALF, /* 0 .. 65535 or low/high reloc. */
7159 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7160 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7161
7162 OP_CPSF, /* CPS flags */
7163 OP_ENDI, /* Endianness specifier */
7164 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7165 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7166 OP_COND, /* conditional code */
7167 OP_TB, /* Table branch. */
7168
7169 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7170
7171 OP_RRnpc_I0, /* ARM register or literal 0 */
7172 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7173 OP_RR_EXi, /* ARM register or expression with imm prefix */
7174 OP_RF_IF, /* FPA register or immediate */
7175 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7176 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7177
7178 /* Optional operands. */
7179 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7180 OP_oI31b, /* 0 .. 31 */
7181 OP_oI32b, /* 1 .. 32 */
7182 OP_oI32z, /* 0 .. 32 */
7183 OP_oIffffb, /* 0 .. 65535 */
7184 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7185
7186 OP_oRR, /* ARM register */
7187 OP_oLR, /* ARM LR register */
7188 OP_oRRnpc, /* ARM register, not the PC */
7189 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7190 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7191 OP_oRND, /* Optional Neon double precision register */
7192 OP_oRNQ, /* Optional Neon quad precision register */
7193 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7194 OP_oRNDQ, /* Optional Neon double or quad precision register */
7195 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7196 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7197 register. */
7198 OP_oSHll, /* LSL immediate */
7199 OP_oSHar, /* ASR immediate */
7200 OP_oSHllar, /* LSL or ASR immediate */
7201 OP_oROR, /* ROR 0/8/16/24 */
7202 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7203
7204 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7205
7206 /* Some pre-defined mixed (ARM/THUMB) operands. */
7207 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7208 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7209 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7210
7211 OP_FIRST_OPTIONAL = OP_oI7b
7212 };
7213
7214 /* Generic instruction operand parser. This does no encoding and no
7215 semantic validation; it merely squirrels values away in the inst
7216 structure. Returns SUCCESS or FAIL depending on whether the
7217 specified grammar matched. */
7218 static int
7219 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7220 {
7221 unsigned const int *upat = pattern;
7222 char *backtrack_pos = 0;
7223 const char *backtrack_error = 0;
7224 int i, val = 0, backtrack_index = 0;
7225 enum arm_reg_type rtype;
7226 parse_operand_result result;
7227 unsigned int op_parse_code;
7228 bfd_boolean partial_match;
7229
7230 #define po_char_or_fail(chr) \
7231 do \
7232 { \
7233 if (skip_past_char (&str, chr) == FAIL) \
7234 goto bad_args; \
7235 } \
7236 while (0)
7237
7238 #define po_reg_or_fail(regtype) \
7239 do \
7240 { \
7241 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7242 & inst.operands[i].vectype); \
7243 if (val == FAIL) \
7244 { \
7245 first_error (_(reg_expected_msgs[regtype])); \
7246 goto failure; \
7247 } \
7248 inst.operands[i].reg = val; \
7249 inst.operands[i].isreg = 1; \
7250 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7251 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7252 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7253 || rtype == REG_TYPE_VFD \
7254 || rtype == REG_TYPE_NQ); \
7255 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7256 } \
7257 while (0)
7258
7259 #define po_reg_or_goto(regtype, label) \
7260 do \
7261 { \
7262 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7263 & inst.operands[i].vectype); \
7264 if (val == FAIL) \
7265 goto label; \
7266 \
7267 inst.operands[i].reg = val; \
7268 inst.operands[i].isreg = 1; \
7269 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7270 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7271 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7272 || rtype == REG_TYPE_VFD \
7273 || rtype == REG_TYPE_NQ); \
7274 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7275 } \
7276 while (0)
7277
7278 #define po_imm_or_fail(min, max, popt) \
7279 do \
7280 { \
7281 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7282 goto failure; \
7283 inst.operands[i].imm = val; \
7284 } \
7285 while (0)
7286
7287 #define po_imm1_or_imm2_or_fail(imm1, imm2, popt) \
7288 do \
7289 { \
7290 expressionS exp; \
7291 my_get_expression (&exp, &str, popt); \
7292 if (exp.X_op != O_constant) \
7293 { \
7294 inst.error = _("constant expression required"); \
7295 goto failure; \
7296 } \
7297 if (exp.X_add_number != imm1 && exp.X_add_number != imm2) \
7298 { \
7299 inst.error = _("immediate value 48 or 64 expected"); \
7300 goto failure; \
7301 } \
7302 inst.operands[i].imm = exp.X_add_number; \
7303 } \
7304 while (0)
7305
7306 #define po_scalar_or_goto(elsz, label, reg_type) \
7307 do \
7308 { \
7309 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7310 reg_type); \
7311 if (val == FAIL) \
7312 goto label; \
7313 inst.operands[i].reg = val; \
7314 inst.operands[i].isscalar = 1; \
7315 } \
7316 while (0)
7317
7318 #define po_misc_or_fail(expr) \
7319 do \
7320 { \
7321 if (expr) \
7322 goto failure; \
7323 } \
7324 while (0)
7325
7326 #define po_misc_or_fail_no_backtrack(expr) \
7327 do \
7328 { \
7329 result = expr; \
7330 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7331 backtrack_pos = 0; \
7332 if (result != PARSE_OPERAND_SUCCESS) \
7333 goto failure; \
7334 } \
7335 while (0)
7336
7337 #define po_barrier_or_imm(str) \
7338 do \
7339 { \
7340 val = parse_barrier (&str); \
7341 if (val == FAIL && ! ISALPHA (*str)) \
7342 goto immediate; \
7343 if (val == FAIL \
7344 /* ISB can only take SY as an option. */ \
7345 || ((inst.instruction & 0xf0) == 0x60 \
7346 && val != 0xf)) \
7347 { \
7348 inst.error = _("invalid barrier type"); \
7349 backtrack_pos = 0; \
7350 goto failure; \
7351 } \
7352 } \
7353 while (0)
7354
7355 skip_whitespace (str);
7356
7357 for (i = 0; upat[i] != OP_stop; i++)
7358 {
7359 op_parse_code = upat[i];
7360 if (op_parse_code >= 1<<16)
7361 op_parse_code = thumb ? (op_parse_code >> 16)
7362 : (op_parse_code & ((1<<16)-1));
7363
7364 if (op_parse_code >= OP_FIRST_OPTIONAL)
7365 {
7366 /* Remember where we are in case we need to backtrack. */
7367 backtrack_pos = str;
7368 backtrack_error = inst.error;
7369 backtrack_index = i;
7370 }
7371
7372 if (i > 0 && (i > 1 || inst.operands[0].present))
7373 po_char_or_fail (',');
7374
7375 switch (op_parse_code)
7376 {
7377 /* Registers */
7378 case OP_oRRnpc:
7379 case OP_oRRnpcsp:
7380 case OP_RRnpc:
7381 case OP_RRnpcsp:
7382 case OP_oRR:
7383 case OP_RRe:
7384 case OP_RRo:
7385 case OP_LR:
7386 case OP_oLR:
7387 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7388 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7389 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7390 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7391 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7392 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7393 case OP_oRND:
7394 case OP_RNDMQR:
7395 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7396 break;
7397 try_rndmq:
7398 case OP_RNDMQ:
7399 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7400 break;
7401 try_rnd:
7402 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7403 case OP_RVC:
7404 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7405 break;
7406 /* Also accept generic coprocessor regs for unknown registers. */
7407 coproc_reg:
7408 po_reg_or_goto (REG_TYPE_CN, vpr_po);
7409 break;
7410 /* Also accept P0 or p0 for VPR.P0. Since P0 is already an
7411 existing register with a value of 0, this seems like the
7412 best way to parse P0. */
7413 vpr_po:
7414 if (strncasecmp (str, "P0", 2) == 0)
7415 {
7416 str += 2;
7417 inst.operands[i].isreg = 1;
7418 inst.operands[i].reg = 13;
7419 }
7420 else
7421 goto failure;
7422 break;
7423 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7424 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7425 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7426 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7427 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7428 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7429 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7430 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7431 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7432 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7433 case OP_oRNQ:
7434 case OP_RNQMQ:
7435 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7436 break;
7437 try_nq:
7438 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7439 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7440 case OP_RNDQMQR:
7441 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7442 break;
7443 try_rndqmq:
7444 case OP_oRNDQMQ:
7445 case OP_RNDQMQ:
7446 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7447 break;
7448 try_rndq:
7449 case OP_oRNDQ:
7450 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7451 case OP_RVSDMQ:
7452 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7453 break;
7454 try_rvsd:
7455 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7456 case OP_RVSD_COND:
7457 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7458 break;
7459 case OP_oRNSDQ:
7460 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7461 case OP_RNSDQMQR:
7462 po_reg_or_goto (REG_TYPE_RN, try_mq);
7463 break;
7464 try_mq:
7465 case OP_oRNSDQMQ:
7466 case OP_RNSDQMQ:
7467 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7468 break;
7469 try_nsdq2:
7470 po_reg_or_fail (REG_TYPE_NSDQ);
7471 inst.error = 0;
7472 break;
7473 case OP_RMQRR:
7474 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7475 break;
7476 try_rmq:
7477 case OP_RMQ:
7478 po_reg_or_fail (REG_TYPE_MQ);
7479 break;
7480 /* Neon scalar. Using an element size of 8 means that some invalid
7481 scalars are accepted here, so deal with those in later code. */
7482 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7483
7484 case OP_RNDQ_I0:
7485 {
7486 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7487 break;
7488 try_imm0:
7489 po_imm_or_fail (0, 0, TRUE);
7490 }
7491 break;
7492
7493 case OP_RVSD_I0:
7494 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7495 break;
7496
7497 case OP_RSVDMQ_FI0:
7498 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7499 break;
7500 try_rsvd_fi0:
7501 case OP_RSVD_FI0:
7502 {
7503 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7504 break;
7505 try_ifimm0:
7506 if (parse_ifimm_zero (&str))
7507 inst.operands[i].imm = 0;
7508 else
7509 {
7510 inst.error
7511 = _("only floating point zero is allowed as immediate value");
7512 goto failure;
7513 }
7514 }
7515 break;
7516
7517 case OP_RR_RNSC:
7518 {
7519 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7520 break;
7521 try_rr:
7522 po_reg_or_fail (REG_TYPE_RN);
7523 }
7524 break;
7525
7526 case OP_RNSDQ_RNSC_MQ_RR:
7527 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7528 break;
7529 try_rnsdq_rnsc_mq:
7530 case OP_RNSDQ_RNSC_MQ:
7531 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7532 break;
7533 try_rnsdq_rnsc:
7534 case OP_RNSDQ_RNSC:
7535 {
7536 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7537 inst.error = 0;
7538 break;
7539 try_nsdq:
7540 po_reg_or_fail (REG_TYPE_NSDQ);
7541 inst.error = 0;
7542 }
7543 break;
7544
7545 case OP_RNSD_RNSC:
7546 {
7547 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7548 break;
7549 try_s_scalar:
7550 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7551 break;
7552 try_nsd:
7553 po_reg_or_fail (REG_TYPE_NSD);
7554 }
7555 break;
7556
7557 case OP_RNDQMQ_RNSC_RR:
7558 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7559 break;
7560 try_rndq_rnsc_rr:
7561 case OP_RNDQ_RNSC_RR:
7562 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7563 break;
7564 case OP_RNDQMQ_RNSC:
7565 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7566 break;
7567 try_rndq_rnsc:
7568 case OP_RNDQ_RNSC:
7569 {
7570 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7571 break;
7572 try_ndq:
7573 po_reg_or_fail (REG_TYPE_NDQ);
7574 }
7575 break;
7576
7577 case OP_RND_RNSC:
7578 {
7579 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7580 break;
7581 try_vfd:
7582 po_reg_or_fail (REG_TYPE_VFD);
7583 }
7584 break;
7585
7586 case OP_VMOV:
7587 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7588 not careful then bad things might happen. */
7589 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7590 break;
7591
7592 case OP_RNDQMQ_Ibig:
7593 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7594 break;
7595 try_rndq_ibig:
7596 case OP_RNDQ_Ibig:
7597 {
7598 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7599 break;
7600 try_immbig:
7601 /* There's a possibility of getting a 64-bit immediate here, so
7602 we need special handling. */
7603 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7604 == FAIL)
7605 {
7606 inst.error = _("immediate value is out of range");
7607 goto failure;
7608 }
7609 }
7610 break;
7611
7612 case OP_RNDQMQ_I63b_RR:
7613 po_reg_or_goto (REG_TYPE_MQ, try_rndq_i63b_rr);
7614 break;
7615 try_rndq_i63b_rr:
7616 po_reg_or_goto (REG_TYPE_RN, try_rndq_i63b);
7617 break;
7618 try_rndq_i63b:
7619 case OP_RNDQ_I63b:
7620 {
7621 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7622 break;
7623 try_shimm:
7624 po_imm_or_fail (0, 63, TRUE);
7625 }
7626 break;
7627
7628 case OP_RRnpcb:
7629 po_char_or_fail ('[');
7630 po_reg_or_fail (REG_TYPE_RN);
7631 po_char_or_fail (']');
7632 break;
7633
7634 case OP_RRnpctw:
7635 case OP_RRw:
7636 case OP_oRRw:
7637 po_reg_or_fail (REG_TYPE_RN);
7638 if (skip_past_char (&str, '!') == SUCCESS)
7639 inst.operands[i].writeback = 1;
7640 break;
7641
7642 /* Immediates */
7643 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7644 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7645 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7646 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7647 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7648 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7649 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7650 case OP_I48_I64: po_imm1_or_imm2_or_fail (48, 64, FALSE); break;
7651 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7652 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7653 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7654 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7655 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7656
7657 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7658 case OP_oI7b:
7659 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7660 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7661 case OP_oI31b:
7662 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7663 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7664 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7665 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7666
7667 /* Immediate variants */
7668 case OP_oI255c:
7669 po_char_or_fail ('{');
7670 po_imm_or_fail (0, 255, TRUE);
7671 po_char_or_fail ('}');
7672 break;
7673
7674 case OP_I31w:
7675 /* The expression parser chokes on a trailing !, so we have
7676 to find it first and zap it. */
7677 {
7678 char *s = str;
7679 while (*s && *s != ',')
7680 s++;
7681 if (s[-1] == '!')
7682 {
7683 s[-1] = '\0';
7684 inst.operands[i].writeback = 1;
7685 }
7686 po_imm_or_fail (0, 31, TRUE);
7687 if (str == s - 1)
7688 str = s;
7689 }
7690 break;
7691
7692 /* Expressions */
7693 case OP_EXPi: EXPi:
7694 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7695 GE_OPT_PREFIX));
7696 break;
7697
7698 case OP_EXP:
7699 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7700 GE_NO_PREFIX));
7701 break;
7702
7703 case OP_EXPr: EXPr:
7704 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7705 GE_NO_PREFIX));
7706 if (inst.relocs[0].exp.X_op == O_symbol)
7707 {
7708 val = parse_reloc (&str);
7709 if (val == -1)
7710 {
7711 inst.error = _("unrecognized relocation suffix");
7712 goto failure;
7713 }
7714 else if (val != BFD_RELOC_UNUSED)
7715 {
7716 inst.operands[i].imm = val;
7717 inst.operands[i].hasreloc = 1;
7718 }
7719 }
7720 break;
7721
7722 case OP_EXPs:
7723 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7724 GE_NO_PREFIX));
7725 if (inst.relocs[i].exp.X_op == O_symbol)
7726 {
7727 inst.operands[i].hasreloc = 1;
7728 }
7729 else if (inst.relocs[i].exp.X_op == O_constant)
7730 {
7731 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7732 inst.operands[i].hasreloc = 0;
7733 }
7734 break;
7735
7736 /* Operand for MOVW or MOVT. */
7737 case OP_HALF:
7738 po_misc_or_fail (parse_half (&str));
7739 break;
7740
7741 /* Register or expression. */
7742 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7743 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7744
7745 /* Register or immediate. */
7746 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7747 I0: po_imm_or_fail (0, 0, FALSE); break;
7748
7749 case OP_RRnpcsp_I32: po_reg_or_goto (REG_TYPE_RN, I32); break;
7750 I32: po_imm_or_fail (1, 32, FALSE); break;
7751
7752 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7753 IF:
7754 if (!is_immediate_prefix (*str))
7755 goto bad_args;
7756 str++;
7757 val = parse_fpa_immediate (&str);
7758 if (val == FAIL)
7759 goto failure;
7760 /* FPA immediates are encoded as registers 8-15.
7761 parse_fpa_immediate has already applied the offset. */
7762 inst.operands[i].reg = val;
7763 inst.operands[i].isreg = 1;
7764 break;
7765
7766 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7767 I32z: po_imm_or_fail (0, 32, FALSE); break;
7768
7769 /* Two kinds of register. */
7770 case OP_RIWR_RIWC:
7771 {
7772 struct reg_entry *rege = arm_reg_parse_multi (&str);
7773 if (!rege
7774 || (rege->type != REG_TYPE_MMXWR
7775 && rege->type != REG_TYPE_MMXWC
7776 && rege->type != REG_TYPE_MMXWCG))
7777 {
7778 inst.error = _("iWMMXt data or control register expected");
7779 goto failure;
7780 }
7781 inst.operands[i].reg = rege->number;
7782 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7783 }
7784 break;
7785
7786 case OP_RIWC_RIWG:
7787 {
7788 struct reg_entry *rege = arm_reg_parse_multi (&str);
7789 if (!rege
7790 || (rege->type != REG_TYPE_MMXWC
7791 && rege->type != REG_TYPE_MMXWCG))
7792 {
7793 inst.error = _("iWMMXt control register expected");
7794 goto failure;
7795 }
7796 inst.operands[i].reg = rege->number;
7797 inst.operands[i].isreg = 1;
7798 }
7799 break;
7800
7801 /* Misc */
7802 case OP_CPSF: val = parse_cps_flags (&str); break;
7803 case OP_ENDI: val = parse_endian_specifier (&str); break;
7804 case OP_oROR: val = parse_ror (&str); break;
7805 try_cond:
7806 case OP_COND: val = parse_cond (&str); break;
7807 case OP_oBARRIER_I15:
7808 po_barrier_or_imm (str); break;
7809 immediate:
7810 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7811 goto failure;
7812 break;
7813
7814 case OP_wPSR:
7815 case OP_rPSR:
7816 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7817 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7818 {
7819 inst.error = _("Banked registers are not available with this "
7820 "architecture.");
7821 goto failure;
7822 }
7823 break;
7824 try_psr:
7825 val = parse_psr (&str, op_parse_code == OP_wPSR);
7826 break;
7827
7828 case OP_VLDR:
7829 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7830 break;
7831 try_sysreg:
7832 val = parse_sys_vldr_vstr (&str);
7833 break;
7834
7835 case OP_APSR_RR:
7836 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7837 break;
7838 try_apsr:
7839 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7840 instruction). */
7841 if (strncasecmp (str, "APSR_", 5) == 0)
7842 {
7843 unsigned found = 0;
7844 str += 5;
7845 while (found < 15)
7846 switch (*str++)
7847 {
7848 case 'c': found = (found & 1) ? 16 : found | 1; break;
7849 case 'n': found = (found & 2) ? 16 : found | 2; break;
7850 case 'z': found = (found & 4) ? 16 : found | 4; break;
7851 case 'v': found = (found & 8) ? 16 : found | 8; break;
7852 default: found = 16;
7853 }
7854 if (found != 15)
7855 goto failure;
7856 inst.operands[i].isvec = 1;
7857 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7858 inst.operands[i].reg = REG_PC;
7859 }
7860 else
7861 goto failure;
7862 break;
7863
7864 case OP_TB:
7865 po_misc_or_fail (parse_tb (&str));
7866 break;
7867
7868 /* Register lists. */
7869 case OP_REGLST:
7870 val = parse_reg_list (&str, REGLIST_RN);
7871 if (*str == '^')
7872 {
7873 inst.operands[i].writeback = 1;
7874 str++;
7875 }
7876 break;
7877
7878 case OP_CLRMLST:
7879 val = parse_reg_list (&str, REGLIST_CLRM);
7880 break;
7881
7882 case OP_VRSLST:
7883 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7884 &partial_match);
7885 break;
7886
7887 case OP_VRDLST:
7888 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7889 &partial_match);
7890 break;
7891
7892 case OP_VRSDLST:
7893 /* Allow Q registers too. */
7894 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7895 REGLIST_NEON_D, &partial_match);
7896 if (val == FAIL)
7897 {
7898 inst.error = NULL;
7899 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7900 REGLIST_VFP_S, &partial_match);
7901 inst.operands[i].issingle = 1;
7902 }
7903 break;
7904
7905 case OP_VRSDVLST:
7906 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7907 REGLIST_VFP_D_VPR, &partial_match);
7908 if (val == FAIL && !partial_match)
7909 {
7910 inst.error = NULL;
7911 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7912 REGLIST_VFP_S_VPR, &partial_match);
7913 inst.operands[i].issingle = 1;
7914 }
7915 break;
7916
7917 case OP_NRDLST:
7918 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7919 REGLIST_NEON_D, &partial_match);
7920 break;
7921
7922 case OP_MSTRLST4:
7923 case OP_MSTRLST2:
7924 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7925 1, &inst.operands[i].vectype);
7926 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7927 goto failure;
7928 break;
7929 case OP_NSTRLST:
7930 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7931 0, &inst.operands[i].vectype);
7932 break;
7933
7934 /* Addressing modes */
7935 case OP_ADDRMVE:
7936 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7937 break;
7938
7939 case OP_ADDR:
7940 po_misc_or_fail (parse_address (&str, i));
7941 break;
7942
7943 case OP_ADDRGLDR:
7944 po_misc_or_fail_no_backtrack (
7945 parse_address_group_reloc (&str, i, GROUP_LDR));
7946 break;
7947
7948 case OP_ADDRGLDRS:
7949 po_misc_or_fail_no_backtrack (
7950 parse_address_group_reloc (&str, i, GROUP_LDRS));
7951 break;
7952
7953 case OP_ADDRGLDC:
7954 po_misc_or_fail_no_backtrack (
7955 parse_address_group_reloc (&str, i, GROUP_LDC));
7956 break;
7957
7958 case OP_SH:
7959 po_misc_or_fail (parse_shifter_operand (&str, i));
7960 break;
7961
7962 case OP_SHG:
7963 po_misc_or_fail_no_backtrack (
7964 parse_shifter_operand_group_reloc (&str, i));
7965 break;
7966
7967 case OP_oSHll:
7968 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7969 break;
7970
7971 case OP_oSHar:
7972 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7973 break;
7974
7975 case OP_oSHllar:
7976 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7977 break;
7978
7979 case OP_RMQRZ:
7980 case OP_oRMQRZ:
7981 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7982 break;
7983
7984 case OP_RR_ZR:
7985 try_rr_zr:
7986 po_reg_or_goto (REG_TYPE_RN, ZR);
7987 break;
7988 ZR:
7989 po_reg_or_fail (REG_TYPE_ZR);
7990 break;
7991
7992 default:
7993 as_fatal (_("unhandled operand code %d"), op_parse_code);
7994 }
7995
7996 /* Various value-based sanity checks and shared operations. We
7997 do not signal immediate failures for the register constraints;
7998 this allows a syntax error to take precedence. */
7999 switch (op_parse_code)
8000 {
8001 case OP_oRRnpc:
8002 case OP_RRnpc:
8003 case OP_RRnpcb:
8004 case OP_RRw:
8005 case OP_oRRw:
8006 case OP_RRnpc_I0:
8007 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
8008 inst.error = BAD_PC;
8009 break;
8010
8011 case OP_oRRnpcsp:
8012 case OP_RRnpcsp:
8013 case OP_RRnpcsp_I32:
8014 if (inst.operands[i].isreg)
8015 {
8016 if (inst.operands[i].reg == REG_PC)
8017 inst.error = BAD_PC;
8018 else if (inst.operands[i].reg == REG_SP
8019 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
8020 relaxed since ARMv8-A. */
8021 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8022 {
8023 gas_assert (thumb);
8024 inst.error = BAD_SP;
8025 }
8026 }
8027 break;
8028
8029 case OP_RRnpctw:
8030 if (inst.operands[i].isreg
8031 && inst.operands[i].reg == REG_PC
8032 && (inst.operands[i].writeback || thumb))
8033 inst.error = BAD_PC;
8034 break;
8035
8036 case OP_RVSD_COND:
8037 case OP_VLDR:
8038 if (inst.operands[i].isreg)
8039 break;
8040 /* fall through. */
8041
8042 case OP_CPSF:
8043 case OP_ENDI:
8044 case OP_oROR:
8045 case OP_wPSR:
8046 case OP_rPSR:
8047 case OP_COND:
8048 case OP_oBARRIER_I15:
8049 case OP_REGLST:
8050 case OP_CLRMLST:
8051 case OP_VRSLST:
8052 case OP_VRDLST:
8053 case OP_VRSDLST:
8054 case OP_VRSDVLST:
8055 case OP_NRDLST:
8056 case OP_NSTRLST:
8057 case OP_MSTRLST2:
8058 case OP_MSTRLST4:
8059 if (val == FAIL)
8060 goto failure;
8061 inst.operands[i].imm = val;
8062 break;
8063
8064 case OP_LR:
8065 case OP_oLR:
8066 if (inst.operands[i].reg != REG_LR)
8067 inst.error = _("operand must be LR register");
8068 break;
8069
8070 case OP_RMQRZ:
8071 case OP_oRMQRZ:
8072 case OP_RR_ZR:
8073 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
8074 inst.error = BAD_PC;
8075 break;
8076
8077 case OP_RRe:
8078 if (inst.operands[i].isreg
8079 && (inst.operands[i].reg & 0x00000001) != 0)
8080 inst.error = BAD_ODD;
8081 break;
8082
8083 case OP_RRo:
8084 if (inst.operands[i].isreg)
8085 {
8086 if ((inst.operands[i].reg & 0x00000001) != 1)
8087 inst.error = BAD_EVEN;
8088 else if (inst.operands[i].reg == REG_SP)
8089 as_tsktsk (MVE_BAD_SP);
8090 else if (inst.operands[i].reg == REG_PC)
8091 inst.error = BAD_PC;
8092 }
8093 break;
8094
8095 default:
8096 break;
8097 }
8098
8099 /* If we get here, this operand was successfully parsed. */
8100 inst.operands[i].present = 1;
8101 continue;
8102
8103 bad_args:
8104 inst.error = BAD_ARGS;
8105
8106 failure:
8107 if (!backtrack_pos)
8108 {
8109 /* The parse routine should already have set inst.error, but set a
8110 default here just in case. */
8111 if (!inst.error)
8112 inst.error = BAD_SYNTAX;
8113 return FAIL;
8114 }
8115
8116 /* Do not backtrack over a trailing optional argument that
8117 absorbed some text. We will only fail again, with the
8118 'garbage following instruction' error message, which is
8119 probably less helpful than the current one. */
8120 if (backtrack_index == i && backtrack_pos != str
8121 && upat[i+1] == OP_stop)
8122 {
8123 if (!inst.error)
8124 inst.error = BAD_SYNTAX;
8125 return FAIL;
8126 }
8127
8128 /* Try again, skipping the optional argument at backtrack_pos. */
8129 str = backtrack_pos;
8130 inst.error = backtrack_error;
8131 inst.operands[backtrack_index].present = 0;
8132 i = backtrack_index;
8133 backtrack_pos = 0;
8134 }
8135
8136 /* Check that we have parsed all the arguments. */
8137 if (*str != '\0' && !inst.error)
8138 inst.error = _("garbage following instruction");
8139
8140 return inst.error ? FAIL : SUCCESS;
8141 }
8142
8143 #undef po_char_or_fail
8144 #undef po_reg_or_fail
8145 #undef po_reg_or_goto
8146 #undef po_imm_or_fail
8147 #undef po_scalar_or_fail
8148 #undef po_barrier_or_imm
8149
8150 /* Shorthand macro for instruction encoding functions issuing errors. */
8151 #define constraint(expr, err) \
8152 do \
8153 { \
8154 if (expr) \
8155 { \
8156 inst.error = err; \
8157 return; \
8158 } \
8159 } \
8160 while (0)
8161
8162 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
8163 instructions are unpredictable if these registers are used. This
8164 is the BadReg predicate in ARM's Thumb-2 documentation.
8165
8166 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
8167 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
8168 #define reject_bad_reg(reg) \
8169 do \
8170 if (reg == REG_PC) \
8171 { \
8172 inst.error = BAD_PC; \
8173 return; \
8174 } \
8175 else if (reg == REG_SP \
8176 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
8177 { \
8178 inst.error = BAD_SP; \
8179 return; \
8180 } \
8181 while (0)
8182
8183 /* If REG is R13 (the stack pointer), warn that its use is
8184 deprecated. */
8185 #define warn_deprecated_sp(reg) \
8186 do \
8187 if (warn_on_deprecated && reg == REG_SP) \
8188 as_tsktsk (_("use of r13 is deprecated")); \
8189 while (0)
8190
8191 /* Functions for operand encoding. ARM, then Thumb. */
8192
8193 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
8194
8195 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
8196
8197 The only binary encoding difference is the Coprocessor number. Coprocessor
8198 9 is used for half-precision calculations or conversions. The format of the
8199 instruction is the same as the equivalent Coprocessor 10 instruction that
8200 exists for Single-Precision operation. */
8201
8202 static void
8203 do_scalar_fp16_v82_encode (void)
8204 {
8205 if (inst.cond < COND_ALWAYS)
8206 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8207 " the behaviour is UNPREDICTABLE"));
8208 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8209 _(BAD_FP16));
8210
8211 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8212 mark_feature_used (&arm_ext_fp16);
8213 }
8214
8215 /* If VAL can be encoded in the immediate field of an ARM instruction,
8216 return the encoded form. Otherwise, return FAIL. */
8217
8218 static unsigned int
8219 encode_arm_immediate (unsigned int val)
8220 {
8221 unsigned int a, i;
8222
8223 if (val <= 0xff)
8224 return val;
8225
8226 for (i = 2; i < 32; i += 2)
8227 if ((a = rotate_left (val, i)) <= 0xff)
8228 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8229
8230 return FAIL;
8231 }
8232
8233 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8234 return the encoded form. Otherwise, return FAIL. */
8235 static unsigned int
8236 encode_thumb32_immediate (unsigned int val)
8237 {
8238 unsigned int a, i;
8239
8240 if (val <= 0xff)
8241 return val;
8242
8243 for (i = 1; i <= 24; i++)
8244 {
8245 a = val >> i;
8246 if ((val & ~(0xff << i)) == 0)
8247 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8248 }
8249
8250 a = val & 0xff;
8251 if (val == ((a << 16) | a))
8252 return 0x100 | a;
8253 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8254 return 0x300 | a;
8255
8256 a = val & 0xff00;
8257 if (val == ((a << 16) | a))
8258 return 0x200 | (a >> 8);
8259
8260 return FAIL;
8261 }
8262 /* Encode a VFP SP or DP register number into inst.instruction. */
8263
8264 static void
8265 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8266 {
8267 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8268 && reg > 15)
8269 {
8270 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8271 {
8272 if (thumb_mode)
8273 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8274 fpu_vfp_ext_d32);
8275 else
8276 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8277 fpu_vfp_ext_d32);
8278 }
8279 else
8280 {
8281 first_error (_("D register out of range for selected VFP version"));
8282 return;
8283 }
8284 }
8285
8286 switch (pos)
8287 {
8288 case VFP_REG_Sd:
8289 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8290 break;
8291
8292 case VFP_REG_Sn:
8293 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8294 break;
8295
8296 case VFP_REG_Sm:
8297 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8298 break;
8299
8300 case VFP_REG_Dd:
8301 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8302 break;
8303
8304 case VFP_REG_Dn:
8305 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8306 break;
8307
8308 case VFP_REG_Dm:
8309 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8310 break;
8311
8312 default:
8313 abort ();
8314 }
8315 }
8316
8317 /* Encode a <shift> in an ARM-format instruction. The immediate,
8318 if any, is handled by md_apply_fix. */
8319 static void
8320 encode_arm_shift (int i)
8321 {
8322 /* register-shifted register. */
8323 if (inst.operands[i].immisreg)
8324 {
8325 int op_index;
8326 for (op_index = 0; op_index <= i; ++op_index)
8327 {
8328 /* Check the operand only when it's presented. In pre-UAL syntax,
8329 if the destination register is the same as the first operand, two
8330 register form of the instruction can be used. */
8331 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8332 && inst.operands[op_index].reg == REG_PC)
8333 as_warn (UNPRED_REG ("r15"));
8334 }
8335
8336 if (inst.operands[i].imm == REG_PC)
8337 as_warn (UNPRED_REG ("r15"));
8338 }
8339
8340 if (inst.operands[i].shift_kind == SHIFT_RRX)
8341 inst.instruction |= SHIFT_ROR << 5;
8342 else
8343 {
8344 inst.instruction |= inst.operands[i].shift_kind << 5;
8345 if (inst.operands[i].immisreg)
8346 {
8347 inst.instruction |= SHIFT_BY_REG;
8348 inst.instruction |= inst.operands[i].imm << 8;
8349 }
8350 else
8351 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8352 }
8353 }
8354
8355 static void
8356 encode_arm_shifter_operand (int i)
8357 {
8358 if (inst.operands[i].isreg)
8359 {
8360 inst.instruction |= inst.operands[i].reg;
8361 encode_arm_shift (i);
8362 }
8363 else
8364 {
8365 inst.instruction |= INST_IMMEDIATE;
8366 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8367 inst.instruction |= inst.operands[i].imm;
8368 }
8369 }
8370
8371 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8372 static void
8373 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8374 {
8375 /* PR 14260:
8376 Generate an error if the operand is not a register. */
8377 constraint (!inst.operands[i].isreg,
8378 _("Instruction does not support =N addresses"));
8379
8380 inst.instruction |= inst.operands[i].reg << 16;
8381
8382 if (inst.operands[i].preind)
8383 {
8384 if (is_t)
8385 {
8386 inst.error = _("instruction does not accept preindexed addressing");
8387 return;
8388 }
8389 inst.instruction |= PRE_INDEX;
8390 if (inst.operands[i].writeback)
8391 inst.instruction |= WRITE_BACK;
8392
8393 }
8394 else if (inst.operands[i].postind)
8395 {
8396 gas_assert (inst.operands[i].writeback);
8397 if (is_t)
8398 inst.instruction |= WRITE_BACK;
8399 }
8400 else /* unindexed - only for coprocessor */
8401 {
8402 inst.error = _("instruction does not accept unindexed addressing");
8403 return;
8404 }
8405
8406 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8407 && (((inst.instruction & 0x000f0000) >> 16)
8408 == ((inst.instruction & 0x0000f000) >> 12)))
8409 as_warn ((inst.instruction & LOAD_BIT)
8410 ? _("destination register same as write-back base")
8411 : _("source register same as write-back base"));
8412 }
8413
8414 /* inst.operands[i] was set up by parse_address. Encode it into an
8415 ARM-format mode 2 load or store instruction. If is_t is true,
8416 reject forms that cannot be used with a T instruction (i.e. not
8417 post-indexed). */
8418 static void
8419 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8420 {
8421 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8422
8423 encode_arm_addr_mode_common (i, is_t);
8424
8425 if (inst.operands[i].immisreg)
8426 {
8427 constraint ((inst.operands[i].imm == REG_PC
8428 || (is_pc && inst.operands[i].writeback)),
8429 BAD_PC_ADDRESSING);
8430 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8431 inst.instruction |= inst.operands[i].imm;
8432 if (!inst.operands[i].negative)
8433 inst.instruction |= INDEX_UP;
8434 if (inst.operands[i].shifted)
8435 {
8436 if (inst.operands[i].shift_kind == SHIFT_RRX)
8437 inst.instruction |= SHIFT_ROR << 5;
8438 else
8439 {
8440 inst.instruction |= inst.operands[i].shift_kind << 5;
8441 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8442 }
8443 }
8444 }
8445 else /* immediate offset in inst.relocs[0] */
8446 {
8447 if (is_pc && !inst.relocs[0].pc_rel)
8448 {
8449 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8450
8451 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8452 cannot use PC in addressing.
8453 PC cannot be used in writeback addressing, either. */
8454 constraint ((is_t || inst.operands[i].writeback),
8455 BAD_PC_ADDRESSING);
8456
8457 /* Use of PC in str is deprecated for ARMv7. */
8458 if (warn_on_deprecated
8459 && !is_load
8460 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8461 as_tsktsk (_("use of PC in this instruction is deprecated"));
8462 }
8463
8464 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8465 {
8466 /* Prefer + for zero encoded value. */
8467 if (!inst.operands[i].negative)
8468 inst.instruction |= INDEX_UP;
8469 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8470 }
8471 }
8472 }
8473
8474 /* inst.operands[i] was set up by parse_address. Encode it into an
8475 ARM-format mode 3 load or store instruction. Reject forms that
8476 cannot be used with such instructions. If is_t is true, reject
8477 forms that cannot be used with a T instruction (i.e. not
8478 post-indexed). */
8479 static void
8480 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8481 {
8482 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8483 {
8484 inst.error = _("instruction does not accept scaled register index");
8485 return;
8486 }
8487
8488 encode_arm_addr_mode_common (i, is_t);
8489
8490 if (inst.operands[i].immisreg)
8491 {
8492 constraint ((inst.operands[i].imm == REG_PC
8493 || (is_t && inst.operands[i].reg == REG_PC)),
8494 BAD_PC_ADDRESSING);
8495 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8496 BAD_PC_WRITEBACK);
8497 inst.instruction |= inst.operands[i].imm;
8498 if (!inst.operands[i].negative)
8499 inst.instruction |= INDEX_UP;
8500 }
8501 else /* immediate offset in inst.relocs[0] */
8502 {
8503 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8504 && inst.operands[i].writeback),
8505 BAD_PC_WRITEBACK);
8506 inst.instruction |= HWOFFSET_IMM;
8507 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8508 {
8509 /* Prefer + for zero encoded value. */
8510 if (!inst.operands[i].negative)
8511 inst.instruction |= INDEX_UP;
8512
8513 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8514 }
8515 }
8516 }
8517
8518 /* Write immediate bits [7:0] to the following locations:
8519
8520 |28/24|23 19|18 16|15 4|3 0|
8521 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8522
8523 This function is used by VMOV/VMVN/VORR/VBIC. */
8524
8525 static void
8526 neon_write_immbits (unsigned immbits)
8527 {
8528 inst.instruction |= immbits & 0xf;
8529 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8530 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8531 }
8532
8533 /* Invert low-order SIZE bits of XHI:XLO. */
8534
8535 static void
8536 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8537 {
8538 unsigned immlo = xlo ? *xlo : 0;
8539 unsigned immhi = xhi ? *xhi : 0;
8540
8541 switch (size)
8542 {
8543 case 8:
8544 immlo = (~immlo) & 0xff;
8545 break;
8546
8547 case 16:
8548 immlo = (~immlo) & 0xffff;
8549 break;
8550
8551 case 64:
8552 immhi = (~immhi) & 0xffffffff;
8553 /* fall through. */
8554
8555 case 32:
8556 immlo = (~immlo) & 0xffffffff;
8557 break;
8558
8559 default:
8560 abort ();
8561 }
8562
8563 if (xlo)
8564 *xlo = immlo;
8565
8566 if (xhi)
8567 *xhi = immhi;
8568 }
8569
8570 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8571 A, B, C, D. */
8572
8573 static int
8574 neon_bits_same_in_bytes (unsigned imm)
8575 {
8576 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8577 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8578 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8579 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8580 }
8581
8582 /* For immediate of above form, return 0bABCD. */
8583
8584 static unsigned
8585 neon_squash_bits (unsigned imm)
8586 {
8587 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8588 | ((imm & 0x01000000) >> 21);
8589 }
8590
8591 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8592
8593 static unsigned
8594 neon_qfloat_bits (unsigned imm)
8595 {
8596 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8597 }
8598
8599 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8600 the instruction. *OP is passed as the initial value of the op field, and
8601 may be set to a different value depending on the constant (i.e.
8602 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8603 MVN). If the immediate looks like a repeated pattern then also
8604 try smaller element sizes. */
8605
8606 static int
8607 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8608 unsigned *immbits, int *op, int size,
8609 enum neon_el_type type)
8610 {
8611 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8612 float. */
8613 if (type == NT_float && !float_p)
8614 return FAIL;
8615
8616 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8617 {
8618 if (size != 32 || *op == 1)
8619 return FAIL;
8620 *immbits = neon_qfloat_bits (immlo);
8621 return 0xf;
8622 }
8623
8624 if (size == 64)
8625 {
8626 if (neon_bits_same_in_bytes (immhi)
8627 && neon_bits_same_in_bytes (immlo))
8628 {
8629 if (*op == 1)
8630 return FAIL;
8631 *immbits = (neon_squash_bits (immhi) << 4)
8632 | neon_squash_bits (immlo);
8633 *op = 1;
8634 return 0xe;
8635 }
8636
8637 if (immhi != immlo)
8638 return FAIL;
8639 }
8640
8641 if (size >= 32)
8642 {
8643 if (immlo == (immlo & 0x000000ff))
8644 {
8645 *immbits = immlo;
8646 return 0x0;
8647 }
8648 else if (immlo == (immlo & 0x0000ff00))
8649 {
8650 *immbits = immlo >> 8;
8651 return 0x2;
8652 }
8653 else if (immlo == (immlo & 0x00ff0000))
8654 {
8655 *immbits = immlo >> 16;
8656 return 0x4;
8657 }
8658 else if (immlo == (immlo & 0xff000000))
8659 {
8660 *immbits = immlo >> 24;
8661 return 0x6;
8662 }
8663 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8664 {
8665 *immbits = (immlo >> 8) & 0xff;
8666 return 0xc;
8667 }
8668 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8669 {
8670 *immbits = (immlo >> 16) & 0xff;
8671 return 0xd;
8672 }
8673
8674 if ((immlo & 0xffff) != (immlo >> 16))
8675 return FAIL;
8676 immlo &= 0xffff;
8677 }
8678
8679 if (size >= 16)
8680 {
8681 if (immlo == (immlo & 0x000000ff))
8682 {
8683 *immbits = immlo;
8684 return 0x8;
8685 }
8686 else if (immlo == (immlo & 0x0000ff00))
8687 {
8688 *immbits = immlo >> 8;
8689 return 0xa;
8690 }
8691
8692 if ((immlo & 0xff) != (immlo >> 8))
8693 return FAIL;
8694 immlo &= 0xff;
8695 }
8696
8697 if (immlo == (immlo & 0x000000ff))
8698 {
8699 /* Don't allow MVN with 8-bit immediate. */
8700 if (*op == 1)
8701 return FAIL;
8702 *immbits = immlo;
8703 return 0xe;
8704 }
8705
8706 return FAIL;
8707 }
8708
8709 #if defined BFD_HOST_64_BIT
8710 /* Returns TRUE if double precision value V may be cast
8711 to single precision without loss of accuracy. */
8712
8713 static bfd_boolean
8714 is_double_a_single (bfd_int64_t v)
8715 {
8716 int exp = (int)((v >> 52) & 0x7FF);
8717 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8718
8719 return (exp == 0 || exp == 0x7FF
8720 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8721 && (mantissa & 0x1FFFFFFFl) == 0;
8722 }
8723
8724 /* Returns a double precision value casted to single precision
8725 (ignoring the least significant bits in exponent and mantissa). */
8726
8727 static int
8728 double_to_single (bfd_int64_t v)
8729 {
8730 int sign = (int) ((v >> 63) & 1l);
8731 int exp = (int) ((v >> 52) & 0x7FF);
8732 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8733
8734 if (exp == 0x7FF)
8735 exp = 0xFF;
8736 else
8737 {
8738 exp = exp - 1023 + 127;
8739 if (exp >= 0xFF)
8740 {
8741 /* Infinity. */
8742 exp = 0x7F;
8743 mantissa = 0;
8744 }
8745 else if (exp < 0)
8746 {
8747 /* No denormalized numbers. */
8748 exp = 0;
8749 mantissa = 0;
8750 }
8751 }
8752 mantissa >>= 29;
8753 return (sign << 31) | (exp << 23) | mantissa;
8754 }
8755 #endif /* BFD_HOST_64_BIT */
8756
8757 enum lit_type
8758 {
8759 CONST_THUMB,
8760 CONST_ARM,
8761 CONST_VEC
8762 };
8763
8764 static void do_vfp_nsyn_opcode (const char *);
8765
8766 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8767 Determine whether it can be performed with a move instruction; if
8768 it can, convert inst.instruction to that move instruction and
8769 return TRUE; if it can't, convert inst.instruction to a literal-pool
8770 load and return FALSE. If this is not a valid thing to do in the
8771 current context, set inst.error and return TRUE.
8772
8773 inst.operands[i] describes the destination register. */
8774
8775 static bfd_boolean
8776 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8777 {
8778 unsigned long tbit;
8779 bfd_boolean thumb_p = (t == CONST_THUMB);
8780 bfd_boolean arm_p = (t == CONST_ARM);
8781
8782 if (thumb_p)
8783 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8784 else
8785 tbit = LOAD_BIT;
8786
8787 if ((inst.instruction & tbit) == 0)
8788 {
8789 inst.error = _("invalid pseudo operation");
8790 return TRUE;
8791 }
8792
8793 if (inst.relocs[0].exp.X_op != O_constant
8794 && inst.relocs[0].exp.X_op != O_symbol
8795 && inst.relocs[0].exp.X_op != O_big)
8796 {
8797 inst.error = _("constant expression expected");
8798 return TRUE;
8799 }
8800
8801 if (inst.relocs[0].exp.X_op == O_constant
8802 || inst.relocs[0].exp.X_op == O_big)
8803 {
8804 #if defined BFD_HOST_64_BIT
8805 bfd_int64_t v;
8806 #else
8807 offsetT v;
8808 #endif
8809 if (inst.relocs[0].exp.X_op == O_big)
8810 {
8811 LITTLENUM_TYPE w[X_PRECISION];
8812 LITTLENUM_TYPE * l;
8813
8814 if (inst.relocs[0].exp.X_add_number == -1)
8815 {
8816 gen_to_words (w, X_PRECISION, E_PRECISION);
8817 l = w;
8818 /* FIXME: Should we check words w[2..5] ? */
8819 }
8820 else
8821 l = generic_bignum;
8822
8823 #if defined BFD_HOST_64_BIT
8824 v =
8825 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8826 << LITTLENUM_NUMBER_OF_BITS)
8827 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8828 << LITTLENUM_NUMBER_OF_BITS)
8829 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8830 << LITTLENUM_NUMBER_OF_BITS)
8831 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8832 #else
8833 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8834 | (l[0] & LITTLENUM_MASK);
8835 #endif
8836 }
8837 else
8838 v = inst.relocs[0].exp.X_add_number;
8839
8840 if (!inst.operands[i].issingle)
8841 {
8842 if (thumb_p)
8843 {
8844 /* LDR should not use lead in a flag-setting instruction being
8845 chosen so we do not check whether movs can be used. */
8846
8847 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8848 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8849 && inst.operands[i].reg != 13
8850 && inst.operands[i].reg != 15)
8851 {
8852 /* Check if on thumb2 it can be done with a mov.w, mvn or
8853 movw instruction. */
8854 unsigned int newimm;
8855 bfd_boolean isNegated;
8856
8857 newimm = encode_thumb32_immediate (v);
8858 if (newimm != (unsigned int) FAIL)
8859 isNegated = FALSE;
8860 else
8861 {
8862 newimm = encode_thumb32_immediate (~v);
8863 if (newimm != (unsigned int) FAIL)
8864 isNegated = TRUE;
8865 }
8866
8867 /* The number can be loaded with a mov.w or mvn
8868 instruction. */
8869 if (newimm != (unsigned int) FAIL
8870 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8871 {
8872 inst.instruction = (0xf04f0000 /* MOV.W. */
8873 | (inst.operands[i].reg << 8));
8874 /* Change to MOVN. */
8875 inst.instruction |= (isNegated ? 0x200000 : 0);
8876 inst.instruction |= (newimm & 0x800) << 15;
8877 inst.instruction |= (newimm & 0x700) << 4;
8878 inst.instruction |= (newimm & 0x0ff);
8879 return TRUE;
8880 }
8881 /* The number can be loaded with a movw instruction. */
8882 else if ((v & ~0xFFFF) == 0
8883 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8884 {
8885 int imm = v & 0xFFFF;
8886
8887 inst.instruction = 0xf2400000; /* MOVW. */
8888 inst.instruction |= (inst.operands[i].reg << 8);
8889 inst.instruction |= (imm & 0xf000) << 4;
8890 inst.instruction |= (imm & 0x0800) << 15;
8891 inst.instruction |= (imm & 0x0700) << 4;
8892 inst.instruction |= (imm & 0x00ff);
8893 /* In case this replacement is being done on Armv8-M
8894 Baseline we need to make sure to disable the
8895 instruction size check, as otherwise GAS will reject
8896 the use of this T32 instruction. */
8897 inst.size_req = 0;
8898 return TRUE;
8899 }
8900 }
8901 }
8902 else if (arm_p)
8903 {
8904 int value = encode_arm_immediate (v);
8905
8906 if (value != FAIL)
8907 {
8908 /* This can be done with a mov instruction. */
8909 inst.instruction &= LITERAL_MASK;
8910 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8911 inst.instruction |= value & 0xfff;
8912 return TRUE;
8913 }
8914
8915 value = encode_arm_immediate (~ v);
8916 if (value != FAIL)
8917 {
8918 /* This can be done with a mvn instruction. */
8919 inst.instruction &= LITERAL_MASK;
8920 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8921 inst.instruction |= value & 0xfff;
8922 return TRUE;
8923 }
8924 }
8925 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8926 {
8927 int op = 0;
8928 unsigned immbits = 0;
8929 unsigned immlo = inst.operands[1].imm;
8930 unsigned immhi = inst.operands[1].regisimm
8931 ? inst.operands[1].reg
8932 : inst.relocs[0].exp.X_unsigned
8933 ? 0
8934 : ((bfd_int64_t)((int) immlo)) >> 32;
8935 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8936 &op, 64, NT_invtype);
8937
8938 if (cmode == FAIL)
8939 {
8940 neon_invert_size (&immlo, &immhi, 64);
8941 op = !op;
8942 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8943 &op, 64, NT_invtype);
8944 }
8945
8946 if (cmode != FAIL)
8947 {
8948 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8949 | (1 << 23)
8950 | (cmode << 8)
8951 | (op << 5)
8952 | (1 << 4);
8953
8954 /* Fill other bits in vmov encoding for both thumb and arm. */
8955 if (thumb_mode)
8956 inst.instruction |= (0x7U << 29) | (0xF << 24);
8957 else
8958 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8959 neon_write_immbits (immbits);
8960 return TRUE;
8961 }
8962 }
8963 }
8964
8965 if (t == CONST_VEC)
8966 {
8967 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8968 if (inst.operands[i].issingle
8969 && is_quarter_float (inst.operands[1].imm)
8970 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8971 {
8972 inst.operands[1].imm =
8973 neon_qfloat_bits (v);
8974 do_vfp_nsyn_opcode ("fconsts");
8975 return TRUE;
8976 }
8977
8978 /* If our host does not support a 64-bit type then we cannot perform
8979 the following optimization. This mean that there will be a
8980 discrepancy between the output produced by an assembler built for
8981 a 32-bit-only host and the output produced from a 64-bit host, but
8982 this cannot be helped. */
8983 #if defined BFD_HOST_64_BIT
8984 else if (!inst.operands[1].issingle
8985 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8986 {
8987 if (is_double_a_single (v)
8988 && is_quarter_float (double_to_single (v)))
8989 {
8990 inst.operands[1].imm =
8991 neon_qfloat_bits (double_to_single (v));
8992 do_vfp_nsyn_opcode ("fconstd");
8993 return TRUE;
8994 }
8995 }
8996 #endif
8997 }
8998 }
8999
9000 if (add_to_lit_pool ((!inst.operands[i].isvec
9001 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
9002 return TRUE;
9003
9004 inst.operands[1].reg = REG_PC;
9005 inst.operands[1].isreg = 1;
9006 inst.operands[1].preind = 1;
9007 inst.relocs[0].pc_rel = 1;
9008 inst.relocs[0].type = (thumb_p
9009 ? BFD_RELOC_ARM_THUMB_OFFSET
9010 : (mode_3
9011 ? BFD_RELOC_ARM_HWLITERAL
9012 : BFD_RELOC_ARM_LITERAL));
9013 return FALSE;
9014 }
9015
9016 /* inst.operands[i] was set up by parse_address. Encode it into an
9017 ARM-format instruction. Reject all forms which cannot be encoded
9018 into a coprocessor load/store instruction. If wb_ok is false,
9019 reject use of writeback; if unind_ok is false, reject use of
9020 unindexed addressing. If reloc_override is not 0, use it instead
9021 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
9022 (in which case it is preserved). */
9023
9024 static int
9025 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
9026 {
9027 if (!inst.operands[i].isreg)
9028 {
9029 /* PR 18256 */
9030 if (! inst.operands[0].isvec)
9031 {
9032 inst.error = _("invalid co-processor operand");
9033 return FAIL;
9034 }
9035 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
9036 return SUCCESS;
9037 }
9038
9039 inst.instruction |= inst.operands[i].reg << 16;
9040
9041 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
9042
9043 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
9044 {
9045 gas_assert (!inst.operands[i].writeback);
9046 if (!unind_ok)
9047 {
9048 inst.error = _("instruction does not support unindexed addressing");
9049 return FAIL;
9050 }
9051 inst.instruction |= inst.operands[i].imm;
9052 inst.instruction |= INDEX_UP;
9053 return SUCCESS;
9054 }
9055
9056 if (inst.operands[i].preind)
9057 inst.instruction |= PRE_INDEX;
9058
9059 if (inst.operands[i].writeback)
9060 {
9061 if (inst.operands[i].reg == REG_PC)
9062 {
9063 inst.error = _("pc may not be used with write-back");
9064 return FAIL;
9065 }
9066 if (!wb_ok)
9067 {
9068 inst.error = _("instruction does not support writeback");
9069 return FAIL;
9070 }
9071 inst.instruction |= WRITE_BACK;
9072 }
9073
9074 if (reloc_override)
9075 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
9076 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
9077 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
9078 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
9079 {
9080 if (thumb_mode)
9081 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
9082 else
9083 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
9084 }
9085
9086 /* Prefer + for zero encoded value. */
9087 if (!inst.operands[i].negative)
9088 inst.instruction |= INDEX_UP;
9089
9090 return SUCCESS;
9091 }
9092
9093 /* Functions for instruction encoding, sorted by sub-architecture.
9094 First some generics; their names are taken from the conventional
9095 bit positions for register arguments in ARM format instructions. */
9096
9097 static void
9098 do_noargs (void)
9099 {
9100 }
9101
9102 static void
9103 do_rd (void)
9104 {
9105 inst.instruction |= inst.operands[0].reg << 12;
9106 }
9107
9108 static void
9109 do_rn (void)
9110 {
9111 inst.instruction |= inst.operands[0].reg << 16;
9112 }
9113
9114 static void
9115 do_rd_rm (void)
9116 {
9117 inst.instruction |= inst.operands[0].reg << 12;
9118 inst.instruction |= inst.operands[1].reg;
9119 }
9120
9121 static void
9122 do_rm_rn (void)
9123 {
9124 inst.instruction |= inst.operands[0].reg;
9125 inst.instruction |= inst.operands[1].reg << 16;
9126 }
9127
9128 static void
9129 do_rd_rn (void)
9130 {
9131 inst.instruction |= inst.operands[0].reg << 12;
9132 inst.instruction |= inst.operands[1].reg << 16;
9133 }
9134
9135 static void
9136 do_rn_rd (void)
9137 {
9138 inst.instruction |= inst.operands[0].reg << 16;
9139 inst.instruction |= inst.operands[1].reg << 12;
9140 }
9141
9142 static void
9143 do_tt (void)
9144 {
9145 inst.instruction |= inst.operands[0].reg << 8;
9146 inst.instruction |= inst.operands[1].reg << 16;
9147 }
9148
9149 static bfd_boolean
9150 check_obsolete (const arm_feature_set *feature, const char *msg)
9151 {
9152 if (ARM_CPU_IS_ANY (cpu_variant))
9153 {
9154 as_tsktsk ("%s", msg);
9155 return TRUE;
9156 }
9157 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
9158 {
9159 as_bad ("%s", msg);
9160 return TRUE;
9161 }
9162
9163 return FALSE;
9164 }
9165
9166 static void
9167 do_rd_rm_rn (void)
9168 {
9169 unsigned Rn = inst.operands[2].reg;
9170 /* Enforce restrictions on SWP instruction. */
9171 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
9172 {
9173 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
9174 _("Rn must not overlap other operands"));
9175
9176 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
9177 */
9178 if (!check_obsolete (&arm_ext_v8,
9179 _("swp{b} use is obsoleted for ARMv8 and later"))
9180 && warn_on_deprecated
9181 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
9182 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
9183 }
9184
9185 inst.instruction |= inst.operands[0].reg << 12;
9186 inst.instruction |= inst.operands[1].reg;
9187 inst.instruction |= Rn << 16;
9188 }
9189
9190 static void
9191 do_rd_rn_rm (void)
9192 {
9193 inst.instruction |= inst.operands[0].reg << 12;
9194 inst.instruction |= inst.operands[1].reg << 16;
9195 inst.instruction |= inst.operands[2].reg;
9196 }
9197
9198 static void
9199 do_rm_rd_rn (void)
9200 {
9201 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
9202 constraint (((inst.relocs[0].exp.X_op != O_constant
9203 && inst.relocs[0].exp.X_op != O_illegal)
9204 || inst.relocs[0].exp.X_add_number != 0),
9205 BAD_ADDR_MODE);
9206 inst.instruction |= inst.operands[0].reg;
9207 inst.instruction |= inst.operands[1].reg << 12;
9208 inst.instruction |= inst.operands[2].reg << 16;
9209 }
9210
9211 static void
9212 do_imm0 (void)
9213 {
9214 inst.instruction |= inst.operands[0].imm;
9215 }
9216
9217 static void
9218 do_rd_cpaddr (void)
9219 {
9220 inst.instruction |= inst.operands[0].reg << 12;
9221 encode_arm_cp_address (1, TRUE, TRUE, 0);
9222 }
9223
9224 /* ARM instructions, in alphabetical order by function name (except
9225 that wrapper functions appear immediately after the function they
9226 wrap). */
9227
9228 /* This is a pseudo-op of the form "adr rd, label" to be converted
9229 into a relative address of the form "add rd, pc, #label-.-8". */
9230
9231 static void
9232 do_adr (void)
9233 {
9234 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9235
9236 /* Frag hacking will turn this into a sub instruction if the offset turns
9237 out to be negative. */
9238 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9239 inst.relocs[0].pc_rel = 1;
9240 inst.relocs[0].exp.X_add_number -= 8;
9241
9242 if (support_interwork
9243 && inst.relocs[0].exp.X_op == O_symbol
9244 && inst.relocs[0].exp.X_add_symbol != NULL
9245 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9246 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9247 inst.relocs[0].exp.X_add_number |= 1;
9248 }
9249
9250 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9251 into a relative address of the form:
9252 add rd, pc, #low(label-.-8)"
9253 add rd, rd, #high(label-.-8)" */
9254
9255 static void
9256 do_adrl (void)
9257 {
9258 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9259
9260 /* Frag hacking will turn this into a sub instruction if the offset turns
9261 out to be negative. */
9262 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9263 inst.relocs[0].pc_rel = 1;
9264 inst.size = INSN_SIZE * 2;
9265 inst.relocs[0].exp.X_add_number -= 8;
9266
9267 if (support_interwork
9268 && inst.relocs[0].exp.X_op == O_symbol
9269 && inst.relocs[0].exp.X_add_symbol != NULL
9270 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9271 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9272 inst.relocs[0].exp.X_add_number |= 1;
9273 }
9274
9275 static void
9276 do_arit (void)
9277 {
9278 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9279 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9280 THUMB1_RELOC_ONLY);
9281 if (!inst.operands[1].present)
9282 inst.operands[1].reg = inst.operands[0].reg;
9283 inst.instruction |= inst.operands[0].reg << 12;
9284 inst.instruction |= inst.operands[1].reg << 16;
9285 encode_arm_shifter_operand (2);
9286 }
9287
9288 static void
9289 do_barrier (void)
9290 {
9291 if (inst.operands[0].present)
9292 inst.instruction |= inst.operands[0].imm;
9293 else
9294 inst.instruction |= 0xf;
9295 }
9296
9297 static void
9298 do_bfc (void)
9299 {
9300 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9301 constraint (msb > 32, _("bit-field extends past end of register"));
9302 /* The instruction encoding stores the LSB and MSB,
9303 not the LSB and width. */
9304 inst.instruction |= inst.operands[0].reg << 12;
9305 inst.instruction |= inst.operands[1].imm << 7;
9306 inst.instruction |= (msb - 1) << 16;
9307 }
9308
9309 static void
9310 do_bfi (void)
9311 {
9312 unsigned int msb;
9313
9314 /* #0 in second position is alternative syntax for bfc, which is
9315 the same instruction but with REG_PC in the Rm field. */
9316 if (!inst.operands[1].isreg)
9317 inst.operands[1].reg = REG_PC;
9318
9319 msb = inst.operands[2].imm + inst.operands[3].imm;
9320 constraint (msb > 32, _("bit-field extends past end of register"));
9321 /* The instruction encoding stores the LSB and MSB,
9322 not the LSB and width. */
9323 inst.instruction |= inst.operands[0].reg << 12;
9324 inst.instruction |= inst.operands[1].reg;
9325 inst.instruction |= inst.operands[2].imm << 7;
9326 inst.instruction |= (msb - 1) << 16;
9327 }
9328
9329 static void
9330 do_bfx (void)
9331 {
9332 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9333 _("bit-field extends past end of register"));
9334 inst.instruction |= inst.operands[0].reg << 12;
9335 inst.instruction |= inst.operands[1].reg;
9336 inst.instruction |= inst.operands[2].imm << 7;
9337 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9338 }
9339
9340 /* ARM V5 breakpoint instruction (argument parse)
9341 BKPT <16 bit unsigned immediate>
9342 Instruction is not conditional.
9343 The bit pattern given in insns[] has the COND_ALWAYS condition,
9344 and it is an error if the caller tried to override that. */
9345
9346 static void
9347 do_bkpt (void)
9348 {
9349 /* Top 12 of 16 bits to bits 19:8. */
9350 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9351
9352 /* Bottom 4 of 16 bits to bits 3:0. */
9353 inst.instruction |= inst.operands[0].imm & 0xf;
9354 }
9355
9356 static void
9357 encode_branch (int default_reloc)
9358 {
9359 if (inst.operands[0].hasreloc)
9360 {
9361 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9362 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9363 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9364 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9365 ? BFD_RELOC_ARM_PLT32
9366 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9367 }
9368 else
9369 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9370 inst.relocs[0].pc_rel = 1;
9371 }
9372
9373 static void
9374 do_branch (void)
9375 {
9376 #ifdef OBJ_ELF
9377 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9378 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9379 else
9380 #endif
9381 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9382 }
9383
9384 static void
9385 do_bl (void)
9386 {
9387 #ifdef OBJ_ELF
9388 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9389 {
9390 if (inst.cond == COND_ALWAYS)
9391 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9392 else
9393 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9394 }
9395 else
9396 #endif
9397 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9398 }
9399
9400 /* ARM V5 branch-link-exchange instruction (argument parse)
9401 BLX <target_addr> ie BLX(1)
9402 BLX{<condition>} <Rm> ie BLX(2)
9403 Unfortunately, there are two different opcodes for this mnemonic.
9404 So, the insns[].value is not used, and the code here zaps values
9405 into inst.instruction.
9406 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9407
9408 static void
9409 do_blx (void)
9410 {
9411 if (inst.operands[0].isreg)
9412 {
9413 /* Arg is a register; the opcode provided by insns[] is correct.
9414 It is not illegal to do "blx pc", just useless. */
9415 if (inst.operands[0].reg == REG_PC)
9416 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9417
9418 inst.instruction |= inst.operands[0].reg;
9419 }
9420 else
9421 {
9422 /* Arg is an address; this instruction cannot be executed
9423 conditionally, and the opcode must be adjusted.
9424 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9425 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9426 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9427 inst.instruction = 0xfa000000;
9428 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9429 }
9430 }
9431
9432 static void
9433 do_bx (void)
9434 {
9435 bfd_boolean want_reloc;
9436
9437 if (inst.operands[0].reg == REG_PC)
9438 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9439
9440 inst.instruction |= inst.operands[0].reg;
9441 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9442 it is for ARMv4t or earlier. */
9443 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9444 if (!ARM_FEATURE_ZERO (selected_object_arch)
9445 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9446 want_reloc = TRUE;
9447
9448 #ifdef OBJ_ELF
9449 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9450 #endif
9451 want_reloc = FALSE;
9452
9453 if (want_reloc)
9454 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9455 }
9456
9457
9458 /* ARM v5TEJ. Jump to Jazelle code. */
9459
9460 static void
9461 do_bxj (void)
9462 {
9463 if (inst.operands[0].reg == REG_PC)
9464 as_tsktsk (_("use of r15 in bxj is not really useful"));
9465
9466 inst.instruction |= inst.operands[0].reg;
9467 }
9468
9469 /* Co-processor data operation:
9470 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9471 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9472 static void
9473 do_cdp (void)
9474 {
9475 inst.instruction |= inst.operands[0].reg << 8;
9476 inst.instruction |= inst.operands[1].imm << 20;
9477 inst.instruction |= inst.operands[2].reg << 12;
9478 inst.instruction |= inst.operands[3].reg << 16;
9479 inst.instruction |= inst.operands[4].reg;
9480 inst.instruction |= inst.operands[5].imm << 5;
9481 }
9482
9483 static void
9484 do_cmp (void)
9485 {
9486 inst.instruction |= inst.operands[0].reg << 16;
9487 encode_arm_shifter_operand (1);
9488 }
9489
9490 /* Transfer between coprocessor and ARM registers.
9491 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9492 MRC2
9493 MCR{cond}
9494 MCR2
9495
9496 No special properties. */
9497
9498 struct deprecated_coproc_regs_s
9499 {
9500 unsigned cp;
9501 int opc1;
9502 unsigned crn;
9503 unsigned crm;
9504 int opc2;
9505 arm_feature_set deprecated;
9506 arm_feature_set obsoleted;
9507 const char *dep_msg;
9508 const char *obs_msg;
9509 };
9510
9511 #define DEPR_ACCESS_V8 \
9512 N_("This coprocessor register access is deprecated in ARMv8")
9513
9514 /* Table of all deprecated coprocessor registers. */
9515 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9516 {
9517 {15, 0, 7, 10, 5, /* CP15DMB. */
9518 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9519 DEPR_ACCESS_V8, NULL},
9520 {15, 0, 7, 10, 4, /* CP15DSB. */
9521 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9522 DEPR_ACCESS_V8, NULL},
9523 {15, 0, 7, 5, 4, /* CP15ISB. */
9524 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9525 DEPR_ACCESS_V8, NULL},
9526 {14, 6, 1, 0, 0, /* TEEHBR. */
9527 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9528 DEPR_ACCESS_V8, NULL},
9529 {14, 6, 0, 0, 0, /* TEECR. */
9530 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9531 DEPR_ACCESS_V8, NULL},
9532 };
9533
9534 #undef DEPR_ACCESS_V8
9535
9536 static const size_t deprecated_coproc_reg_count =
9537 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9538
9539 static void
9540 do_co_reg (void)
9541 {
9542 unsigned Rd;
9543 size_t i;
9544
9545 Rd = inst.operands[2].reg;
9546 if (thumb_mode)
9547 {
9548 if (inst.instruction == 0xee000010
9549 || inst.instruction == 0xfe000010)
9550 /* MCR, MCR2 */
9551 reject_bad_reg (Rd);
9552 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9553 /* MRC, MRC2 */
9554 constraint (Rd == REG_SP, BAD_SP);
9555 }
9556 else
9557 {
9558 /* MCR */
9559 if (inst.instruction == 0xe000010)
9560 constraint (Rd == REG_PC, BAD_PC);
9561 }
9562
9563 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9564 {
9565 const struct deprecated_coproc_regs_s *r =
9566 deprecated_coproc_regs + i;
9567
9568 if (inst.operands[0].reg == r->cp
9569 && inst.operands[1].imm == r->opc1
9570 && inst.operands[3].reg == r->crn
9571 && inst.operands[4].reg == r->crm
9572 && inst.operands[5].imm == r->opc2)
9573 {
9574 if (! ARM_CPU_IS_ANY (cpu_variant)
9575 && warn_on_deprecated
9576 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9577 as_tsktsk ("%s", r->dep_msg);
9578 }
9579 }
9580
9581 inst.instruction |= inst.operands[0].reg << 8;
9582 inst.instruction |= inst.operands[1].imm << 21;
9583 inst.instruction |= Rd << 12;
9584 inst.instruction |= inst.operands[3].reg << 16;
9585 inst.instruction |= inst.operands[4].reg;
9586 inst.instruction |= inst.operands[5].imm << 5;
9587 }
9588
9589 /* Transfer between coprocessor register and pair of ARM registers.
9590 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9591 MCRR2
9592 MRRC{cond}
9593 MRRC2
9594
9595 Two XScale instructions are special cases of these:
9596
9597 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9598 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9599
9600 Result unpredictable if Rd or Rn is R15. */
9601
9602 static void
9603 do_co_reg2c (void)
9604 {
9605 unsigned Rd, Rn;
9606
9607 Rd = inst.operands[2].reg;
9608 Rn = inst.operands[3].reg;
9609
9610 if (thumb_mode)
9611 {
9612 reject_bad_reg (Rd);
9613 reject_bad_reg (Rn);
9614 }
9615 else
9616 {
9617 constraint (Rd == REG_PC, BAD_PC);
9618 constraint (Rn == REG_PC, BAD_PC);
9619 }
9620
9621 /* Only check the MRRC{2} variants. */
9622 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9623 {
9624 /* If Rd == Rn, error that the operation is
9625 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9626 constraint (Rd == Rn, BAD_OVERLAP);
9627 }
9628
9629 inst.instruction |= inst.operands[0].reg << 8;
9630 inst.instruction |= inst.operands[1].imm << 4;
9631 inst.instruction |= Rd << 12;
9632 inst.instruction |= Rn << 16;
9633 inst.instruction |= inst.operands[4].reg;
9634 }
9635
9636 static void
9637 do_cpsi (void)
9638 {
9639 inst.instruction |= inst.operands[0].imm << 6;
9640 if (inst.operands[1].present)
9641 {
9642 inst.instruction |= CPSI_MMOD;
9643 inst.instruction |= inst.operands[1].imm;
9644 }
9645 }
9646
9647 static void
9648 do_dbg (void)
9649 {
9650 inst.instruction |= inst.operands[0].imm;
9651 }
9652
9653 static void
9654 do_div (void)
9655 {
9656 unsigned Rd, Rn, Rm;
9657
9658 Rd = inst.operands[0].reg;
9659 Rn = (inst.operands[1].present
9660 ? inst.operands[1].reg : Rd);
9661 Rm = inst.operands[2].reg;
9662
9663 constraint ((Rd == REG_PC), BAD_PC);
9664 constraint ((Rn == REG_PC), BAD_PC);
9665 constraint ((Rm == REG_PC), BAD_PC);
9666
9667 inst.instruction |= Rd << 16;
9668 inst.instruction |= Rn << 0;
9669 inst.instruction |= Rm << 8;
9670 }
9671
9672 static void
9673 do_it (void)
9674 {
9675 /* There is no IT instruction in ARM mode. We
9676 process it to do the validation as if in
9677 thumb mode, just in case the code gets
9678 assembled for thumb using the unified syntax. */
9679
9680 inst.size = 0;
9681 if (unified_syntax)
9682 {
9683 set_pred_insn_type (IT_INSN);
9684 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9685 now_pred.cc = inst.operands[0].imm;
9686 }
9687 }
9688
9689 /* If there is only one register in the register list,
9690 then return its register number. Otherwise return -1. */
9691 static int
9692 only_one_reg_in_list (int range)
9693 {
9694 int i = ffs (range) - 1;
9695 return (i > 15 || range != (1 << i)) ? -1 : i;
9696 }
9697
9698 static void
9699 encode_ldmstm(int from_push_pop_mnem)
9700 {
9701 int base_reg = inst.operands[0].reg;
9702 int range = inst.operands[1].imm;
9703 int one_reg;
9704
9705 inst.instruction |= base_reg << 16;
9706 inst.instruction |= range;
9707
9708 if (inst.operands[1].writeback)
9709 inst.instruction |= LDM_TYPE_2_OR_3;
9710
9711 if (inst.operands[0].writeback)
9712 {
9713 inst.instruction |= WRITE_BACK;
9714 /* Check for unpredictable uses of writeback. */
9715 if (inst.instruction & LOAD_BIT)
9716 {
9717 /* Not allowed in LDM type 2. */
9718 if ((inst.instruction & LDM_TYPE_2_OR_3)
9719 && ((range & (1 << REG_PC)) == 0))
9720 as_warn (_("writeback of base register is UNPREDICTABLE"));
9721 /* Only allowed if base reg not in list for other types. */
9722 else if (range & (1 << base_reg))
9723 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9724 }
9725 else /* STM. */
9726 {
9727 /* Not allowed for type 2. */
9728 if (inst.instruction & LDM_TYPE_2_OR_3)
9729 as_warn (_("writeback of base register is UNPREDICTABLE"));
9730 /* Only allowed if base reg not in list, or first in list. */
9731 else if ((range & (1 << base_reg))
9732 && (range & ((1 << base_reg) - 1)))
9733 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9734 }
9735 }
9736
9737 /* If PUSH/POP has only one register, then use the A2 encoding. */
9738 one_reg = only_one_reg_in_list (range);
9739 if (from_push_pop_mnem && one_reg >= 0)
9740 {
9741 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9742
9743 if (is_push && one_reg == 13 /* SP */)
9744 /* PR 22483: The A2 encoding cannot be used when
9745 pushing the stack pointer as this is UNPREDICTABLE. */
9746 return;
9747
9748 inst.instruction &= A_COND_MASK;
9749 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9750 inst.instruction |= one_reg << 12;
9751 }
9752 }
9753
9754 static void
9755 do_ldmstm (void)
9756 {
9757 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9758 }
9759
9760 /* ARMv5TE load-consecutive (argument parse)
9761 Mode is like LDRH.
9762
9763 LDRccD R, mode
9764 STRccD R, mode. */
9765
9766 static void
9767 do_ldrd (void)
9768 {
9769 constraint (inst.operands[0].reg % 2 != 0,
9770 _("first transfer register must be even"));
9771 constraint (inst.operands[1].present
9772 && inst.operands[1].reg != inst.operands[0].reg + 1,
9773 _("can only transfer two consecutive registers"));
9774 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9775 constraint (!inst.operands[2].isreg, _("'[' expected"));
9776
9777 if (!inst.operands[1].present)
9778 inst.operands[1].reg = inst.operands[0].reg + 1;
9779
9780 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9781 register and the first register written; we have to diagnose
9782 overlap between the base and the second register written here. */
9783
9784 if (inst.operands[2].reg == inst.operands[1].reg
9785 && (inst.operands[2].writeback || inst.operands[2].postind))
9786 as_warn (_("base register written back, and overlaps "
9787 "second transfer register"));
9788
9789 if (!(inst.instruction & V4_STR_BIT))
9790 {
9791 /* For an index-register load, the index register must not overlap the
9792 destination (even if not write-back). */
9793 if (inst.operands[2].immisreg
9794 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9795 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9796 as_warn (_("index register overlaps transfer register"));
9797 }
9798 inst.instruction |= inst.operands[0].reg << 12;
9799 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9800 }
9801
9802 static void
9803 do_ldrex (void)
9804 {
9805 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9806 || inst.operands[1].postind || inst.operands[1].writeback
9807 || inst.operands[1].immisreg || inst.operands[1].shifted
9808 || inst.operands[1].negative
9809 /* This can arise if the programmer has written
9810 strex rN, rM, foo
9811 or if they have mistakenly used a register name as the last
9812 operand, eg:
9813 strex rN, rM, rX
9814 It is very difficult to distinguish between these two cases
9815 because "rX" might actually be a label. ie the register
9816 name has been occluded by a symbol of the same name. So we
9817 just generate a general 'bad addressing mode' type error
9818 message and leave it up to the programmer to discover the
9819 true cause and fix their mistake. */
9820 || (inst.operands[1].reg == REG_PC),
9821 BAD_ADDR_MODE);
9822
9823 constraint (inst.relocs[0].exp.X_op != O_constant
9824 || inst.relocs[0].exp.X_add_number != 0,
9825 _("offset must be zero in ARM encoding"));
9826
9827 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9828
9829 inst.instruction |= inst.operands[0].reg << 12;
9830 inst.instruction |= inst.operands[1].reg << 16;
9831 inst.relocs[0].type = BFD_RELOC_UNUSED;
9832 }
9833
9834 static void
9835 do_ldrexd (void)
9836 {
9837 constraint (inst.operands[0].reg % 2 != 0,
9838 _("even register required"));
9839 constraint (inst.operands[1].present
9840 && inst.operands[1].reg != inst.operands[0].reg + 1,
9841 _("can only load two consecutive registers"));
9842 /* If op 1 were present and equal to PC, this function wouldn't
9843 have been called in the first place. */
9844 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9845
9846 inst.instruction |= inst.operands[0].reg << 12;
9847 inst.instruction |= inst.operands[2].reg << 16;
9848 }
9849
9850 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9851 which is not a multiple of four is UNPREDICTABLE. */
9852 static void
9853 check_ldr_r15_aligned (void)
9854 {
9855 constraint (!(inst.operands[1].immisreg)
9856 && (inst.operands[0].reg == REG_PC
9857 && inst.operands[1].reg == REG_PC
9858 && (inst.relocs[0].exp.X_add_number & 0x3)),
9859 _("ldr to register 15 must be 4-byte aligned"));
9860 }
9861
9862 static void
9863 do_ldst (void)
9864 {
9865 inst.instruction |= inst.operands[0].reg << 12;
9866 if (!inst.operands[1].isreg)
9867 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9868 return;
9869 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9870 check_ldr_r15_aligned ();
9871 }
9872
9873 static void
9874 do_ldstt (void)
9875 {
9876 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9877 reject [Rn,...]. */
9878 if (inst.operands[1].preind)
9879 {
9880 constraint (inst.relocs[0].exp.X_op != O_constant
9881 || inst.relocs[0].exp.X_add_number != 0,
9882 _("this instruction requires a post-indexed address"));
9883
9884 inst.operands[1].preind = 0;
9885 inst.operands[1].postind = 1;
9886 inst.operands[1].writeback = 1;
9887 }
9888 inst.instruction |= inst.operands[0].reg << 12;
9889 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9890 }
9891
9892 /* Halfword and signed-byte load/store operations. */
9893
9894 static void
9895 do_ldstv4 (void)
9896 {
9897 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9898 inst.instruction |= inst.operands[0].reg << 12;
9899 if (!inst.operands[1].isreg)
9900 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9901 return;
9902 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9903 }
9904
9905 static void
9906 do_ldsttv4 (void)
9907 {
9908 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9909 reject [Rn,...]. */
9910 if (inst.operands[1].preind)
9911 {
9912 constraint (inst.relocs[0].exp.X_op != O_constant
9913 || inst.relocs[0].exp.X_add_number != 0,
9914 _("this instruction requires a post-indexed address"));
9915
9916 inst.operands[1].preind = 0;
9917 inst.operands[1].postind = 1;
9918 inst.operands[1].writeback = 1;
9919 }
9920 inst.instruction |= inst.operands[0].reg << 12;
9921 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9922 }
9923
9924 /* Co-processor register load/store.
9925 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9926 static void
9927 do_lstc (void)
9928 {
9929 inst.instruction |= inst.operands[0].reg << 8;
9930 inst.instruction |= inst.operands[1].reg << 12;
9931 encode_arm_cp_address (2, TRUE, TRUE, 0);
9932 }
9933
9934 static void
9935 do_mlas (void)
9936 {
9937 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9938 if (inst.operands[0].reg == inst.operands[1].reg
9939 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9940 && !(inst.instruction & 0x00400000))
9941 as_tsktsk (_("Rd and Rm should be different in mla"));
9942
9943 inst.instruction |= inst.operands[0].reg << 16;
9944 inst.instruction |= inst.operands[1].reg;
9945 inst.instruction |= inst.operands[2].reg << 8;
9946 inst.instruction |= inst.operands[3].reg << 12;
9947 }
9948
9949 static void
9950 do_mov (void)
9951 {
9952 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9953 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9954 THUMB1_RELOC_ONLY);
9955 inst.instruction |= inst.operands[0].reg << 12;
9956 encode_arm_shifter_operand (1);
9957 }
9958
9959 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9960 static void
9961 do_mov16 (void)
9962 {
9963 bfd_vma imm;
9964 bfd_boolean top;
9965
9966 top = (inst.instruction & 0x00400000) != 0;
9967 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9968 _(":lower16: not allowed in this instruction"));
9969 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9970 _(":upper16: not allowed in this instruction"));
9971 inst.instruction |= inst.operands[0].reg << 12;
9972 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9973 {
9974 imm = inst.relocs[0].exp.X_add_number;
9975 /* The value is in two pieces: 0:11, 16:19. */
9976 inst.instruction |= (imm & 0x00000fff);
9977 inst.instruction |= (imm & 0x0000f000) << 4;
9978 }
9979 }
9980
9981 static int
9982 do_vfp_nsyn_mrs (void)
9983 {
9984 if (inst.operands[0].isvec)
9985 {
9986 if (inst.operands[1].reg != 1)
9987 first_error (_("operand 1 must be FPSCR"));
9988 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9989 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9990 do_vfp_nsyn_opcode ("fmstat");
9991 }
9992 else if (inst.operands[1].isvec)
9993 do_vfp_nsyn_opcode ("fmrx");
9994 else
9995 return FAIL;
9996
9997 return SUCCESS;
9998 }
9999
10000 static int
10001 do_vfp_nsyn_msr (void)
10002 {
10003 if (inst.operands[0].isvec)
10004 do_vfp_nsyn_opcode ("fmxr");
10005 else
10006 return FAIL;
10007
10008 return SUCCESS;
10009 }
10010
10011 static void
10012 do_vmrs (void)
10013 {
10014 unsigned Rt = inst.operands[0].reg;
10015
10016 if (thumb_mode && Rt == REG_SP)
10017 {
10018 inst.error = BAD_SP;
10019 return;
10020 }
10021
10022 switch (inst.operands[1].reg)
10023 {
10024 /* MVFR2 is only valid for Armv8-A. */
10025 case 5:
10026 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
10027 _(BAD_FPU));
10028 break;
10029
10030 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
10031 case 1: /* fpscr. */
10032 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10033 || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10034 _(BAD_FPU));
10035 break;
10036
10037 case 14: /* fpcxt_ns. */
10038 case 15: /* fpcxt_s. */
10039 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main),
10040 _("selected processor does not support instruction"));
10041 break;
10042
10043 case 2: /* fpscr_nzcvqc. */
10044 case 12: /* vpr. */
10045 case 13: /* p0. */
10046 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main)
10047 || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10048 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10049 _("selected processor does not support instruction"));
10050 if (inst.operands[0].reg != 2
10051 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
10052 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
10053 break;
10054
10055 default:
10056 break;
10057 }
10058
10059 /* APSR_ sets isvec. All other refs to PC are illegal. */
10060 if (!inst.operands[0].isvec && Rt == REG_PC)
10061 {
10062 inst.error = BAD_PC;
10063 return;
10064 }
10065
10066 /* If we get through parsing the register name, we just insert the number
10067 generated into the instruction without further validation. */
10068 inst.instruction |= (inst.operands[1].reg << 16);
10069 inst.instruction |= (Rt << 12);
10070 }
10071
10072 static void
10073 do_vmsr (void)
10074 {
10075 unsigned Rt = inst.operands[1].reg;
10076
10077 if (thumb_mode)
10078 reject_bad_reg (Rt);
10079 else if (Rt == REG_PC)
10080 {
10081 inst.error = BAD_PC;
10082 return;
10083 }
10084
10085 switch (inst.operands[0].reg)
10086 {
10087 /* MVFR2 is only valid for Armv8-A. */
10088 case 5:
10089 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
10090 _(BAD_FPU));
10091 break;
10092
10093 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
10094 case 1: /* fpcr. */
10095 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10096 || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10097 _(BAD_FPU));
10098 break;
10099
10100 case 14: /* fpcxt_ns. */
10101 case 15: /* fpcxt_s. */
10102 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main),
10103 _("selected processor does not support instruction"));
10104 break;
10105
10106 case 2: /* fpscr_nzcvqc. */
10107 case 12: /* vpr. */
10108 case 13: /* p0. */
10109 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main)
10110 || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10111 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10112 _("selected processor does not support instruction"));
10113 if (inst.operands[0].reg != 2
10114 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
10115 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
10116 break;
10117
10118 default:
10119 break;
10120 }
10121
10122 /* If we get through parsing the register name, we just insert the number
10123 generated into the instruction without further validation. */
10124 inst.instruction |= (inst.operands[0].reg << 16);
10125 inst.instruction |= (Rt << 12);
10126 }
10127
10128 static void
10129 do_mrs (void)
10130 {
10131 unsigned br;
10132
10133 if (do_vfp_nsyn_mrs () == SUCCESS)
10134 return;
10135
10136 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10137 inst.instruction |= inst.operands[0].reg << 12;
10138
10139 if (inst.operands[1].isreg)
10140 {
10141 br = inst.operands[1].reg;
10142 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
10143 as_bad (_("bad register for mrs"));
10144 }
10145 else
10146 {
10147 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10148 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
10149 != (PSR_c|PSR_f),
10150 _("'APSR', 'CPSR' or 'SPSR' expected"));
10151 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
10152 }
10153
10154 inst.instruction |= br;
10155 }
10156
10157 /* Two possible forms:
10158 "{C|S}PSR_<field>, Rm",
10159 "{C|S}PSR_f, #expression". */
10160
10161 static void
10162 do_msr (void)
10163 {
10164 if (do_vfp_nsyn_msr () == SUCCESS)
10165 return;
10166
10167 inst.instruction |= inst.operands[0].imm;
10168 if (inst.operands[1].isreg)
10169 inst.instruction |= inst.operands[1].reg;
10170 else
10171 {
10172 inst.instruction |= INST_IMMEDIATE;
10173 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
10174 inst.relocs[0].pc_rel = 0;
10175 }
10176 }
10177
10178 static void
10179 do_mul (void)
10180 {
10181 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
10182
10183 if (!inst.operands[2].present)
10184 inst.operands[2].reg = inst.operands[0].reg;
10185 inst.instruction |= inst.operands[0].reg << 16;
10186 inst.instruction |= inst.operands[1].reg;
10187 inst.instruction |= inst.operands[2].reg << 8;
10188
10189 if (inst.operands[0].reg == inst.operands[1].reg
10190 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
10191 as_tsktsk (_("Rd and Rm should be different in mul"));
10192 }
10193
10194 /* Long Multiply Parser
10195 UMULL RdLo, RdHi, Rm, Rs
10196 SMULL RdLo, RdHi, Rm, Rs
10197 UMLAL RdLo, RdHi, Rm, Rs
10198 SMLAL RdLo, RdHi, Rm, Rs. */
10199
10200 static void
10201 do_mull (void)
10202 {
10203 inst.instruction |= inst.operands[0].reg << 12;
10204 inst.instruction |= inst.operands[1].reg << 16;
10205 inst.instruction |= inst.operands[2].reg;
10206 inst.instruction |= inst.operands[3].reg << 8;
10207
10208 /* rdhi and rdlo must be different. */
10209 if (inst.operands[0].reg == inst.operands[1].reg)
10210 as_tsktsk (_("rdhi and rdlo must be different"));
10211
10212 /* rdhi, rdlo and rm must all be different before armv6. */
10213 if ((inst.operands[0].reg == inst.operands[2].reg
10214 || inst.operands[1].reg == inst.operands[2].reg)
10215 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
10216 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
10217 }
10218
10219 static void
10220 do_nop (void)
10221 {
10222 if (inst.operands[0].present
10223 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
10224 {
10225 /* Architectural NOP hints are CPSR sets with no bits selected. */
10226 inst.instruction &= 0xf0000000;
10227 inst.instruction |= 0x0320f000;
10228 if (inst.operands[0].present)
10229 inst.instruction |= inst.operands[0].imm;
10230 }
10231 }
10232
10233 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
10234 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
10235 Condition defaults to COND_ALWAYS.
10236 Error if Rd, Rn or Rm are R15. */
10237
10238 static void
10239 do_pkhbt (void)
10240 {
10241 inst.instruction |= inst.operands[0].reg << 12;
10242 inst.instruction |= inst.operands[1].reg << 16;
10243 inst.instruction |= inst.operands[2].reg;
10244 if (inst.operands[3].present)
10245 encode_arm_shift (3);
10246 }
10247
10248 /* ARM V6 PKHTB (Argument Parse). */
10249
10250 static void
10251 do_pkhtb (void)
10252 {
10253 if (!inst.operands[3].present)
10254 {
10255 /* If the shift specifier is omitted, turn the instruction
10256 into pkhbt rd, rm, rn. */
10257 inst.instruction &= 0xfff00010;
10258 inst.instruction |= inst.operands[0].reg << 12;
10259 inst.instruction |= inst.operands[1].reg;
10260 inst.instruction |= inst.operands[2].reg << 16;
10261 }
10262 else
10263 {
10264 inst.instruction |= inst.operands[0].reg << 12;
10265 inst.instruction |= inst.operands[1].reg << 16;
10266 inst.instruction |= inst.operands[2].reg;
10267 encode_arm_shift (3);
10268 }
10269 }
10270
10271 /* ARMv5TE: Preload-Cache
10272 MP Extensions: Preload for write
10273
10274 PLD(W) <addr_mode>
10275
10276 Syntactically, like LDR with B=1, W=0, L=1. */
10277
10278 static void
10279 do_pld (void)
10280 {
10281 constraint (!inst.operands[0].isreg,
10282 _("'[' expected after PLD mnemonic"));
10283 constraint (inst.operands[0].postind,
10284 _("post-indexed expression used in preload instruction"));
10285 constraint (inst.operands[0].writeback,
10286 _("writeback used in preload instruction"));
10287 constraint (!inst.operands[0].preind,
10288 _("unindexed addressing used in preload instruction"));
10289 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10290 }
10291
10292 /* ARMv7: PLI <addr_mode> */
10293 static void
10294 do_pli (void)
10295 {
10296 constraint (!inst.operands[0].isreg,
10297 _("'[' expected after PLI mnemonic"));
10298 constraint (inst.operands[0].postind,
10299 _("post-indexed expression used in preload instruction"));
10300 constraint (inst.operands[0].writeback,
10301 _("writeback used in preload instruction"));
10302 constraint (!inst.operands[0].preind,
10303 _("unindexed addressing used in preload instruction"));
10304 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10305 inst.instruction &= ~PRE_INDEX;
10306 }
10307
10308 static void
10309 do_push_pop (void)
10310 {
10311 constraint (inst.operands[0].writeback,
10312 _("push/pop do not support {reglist}^"));
10313 inst.operands[1] = inst.operands[0];
10314 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10315 inst.operands[0].isreg = 1;
10316 inst.operands[0].writeback = 1;
10317 inst.operands[0].reg = REG_SP;
10318 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10319 }
10320
10321 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10322 word at the specified address and the following word
10323 respectively.
10324 Unconditionally executed.
10325 Error if Rn is R15. */
10326
10327 static void
10328 do_rfe (void)
10329 {
10330 inst.instruction |= inst.operands[0].reg << 16;
10331 if (inst.operands[0].writeback)
10332 inst.instruction |= WRITE_BACK;
10333 }
10334
10335 /* ARM V6 ssat (argument parse). */
10336
10337 static void
10338 do_ssat (void)
10339 {
10340 inst.instruction |= inst.operands[0].reg << 12;
10341 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10342 inst.instruction |= inst.operands[2].reg;
10343
10344 if (inst.operands[3].present)
10345 encode_arm_shift (3);
10346 }
10347
10348 /* ARM V6 usat (argument parse). */
10349
10350 static void
10351 do_usat (void)
10352 {
10353 inst.instruction |= inst.operands[0].reg << 12;
10354 inst.instruction |= inst.operands[1].imm << 16;
10355 inst.instruction |= inst.operands[2].reg;
10356
10357 if (inst.operands[3].present)
10358 encode_arm_shift (3);
10359 }
10360
10361 /* ARM V6 ssat16 (argument parse). */
10362
10363 static void
10364 do_ssat16 (void)
10365 {
10366 inst.instruction |= inst.operands[0].reg << 12;
10367 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10368 inst.instruction |= inst.operands[2].reg;
10369 }
10370
10371 static void
10372 do_usat16 (void)
10373 {
10374 inst.instruction |= inst.operands[0].reg << 12;
10375 inst.instruction |= inst.operands[1].imm << 16;
10376 inst.instruction |= inst.operands[2].reg;
10377 }
10378
10379 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10380 preserving the other bits.
10381
10382 setend <endian_specifier>, where <endian_specifier> is either
10383 BE or LE. */
10384
10385 static void
10386 do_setend (void)
10387 {
10388 if (warn_on_deprecated
10389 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10390 as_tsktsk (_("setend use is deprecated for ARMv8"));
10391
10392 if (inst.operands[0].imm)
10393 inst.instruction |= 0x200;
10394 }
10395
10396 static void
10397 do_shift (void)
10398 {
10399 unsigned int Rm = (inst.operands[1].present
10400 ? inst.operands[1].reg
10401 : inst.operands[0].reg);
10402
10403 inst.instruction |= inst.operands[0].reg << 12;
10404 inst.instruction |= Rm;
10405 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10406 {
10407 inst.instruction |= inst.operands[2].reg << 8;
10408 inst.instruction |= SHIFT_BY_REG;
10409 /* PR 12854: Error on extraneous shifts. */
10410 constraint (inst.operands[2].shifted,
10411 _("extraneous shift as part of operand to shift insn"));
10412 }
10413 else
10414 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10415 }
10416
10417 static void
10418 do_smc (void)
10419 {
10420 unsigned int value = inst.relocs[0].exp.X_add_number;
10421 constraint (value > 0xf, _("immediate too large (bigger than 0xF)"));
10422
10423 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10424 inst.relocs[0].pc_rel = 0;
10425 }
10426
10427 static void
10428 do_hvc (void)
10429 {
10430 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10431 inst.relocs[0].pc_rel = 0;
10432 }
10433
10434 static void
10435 do_swi (void)
10436 {
10437 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10438 inst.relocs[0].pc_rel = 0;
10439 }
10440
10441 static void
10442 do_setpan (void)
10443 {
10444 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10445 _("selected processor does not support SETPAN instruction"));
10446
10447 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10448 }
10449
10450 static void
10451 do_t_setpan (void)
10452 {
10453 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10454 _("selected processor does not support SETPAN instruction"));
10455
10456 inst.instruction |= (inst.operands[0].imm << 3);
10457 }
10458
10459 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10460 SMLAxy{cond} Rd,Rm,Rs,Rn
10461 SMLAWy{cond} Rd,Rm,Rs,Rn
10462 Error if any register is R15. */
10463
10464 static void
10465 do_smla (void)
10466 {
10467 inst.instruction |= inst.operands[0].reg << 16;
10468 inst.instruction |= inst.operands[1].reg;
10469 inst.instruction |= inst.operands[2].reg << 8;
10470 inst.instruction |= inst.operands[3].reg << 12;
10471 }
10472
10473 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10474 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10475 Error if any register is R15.
10476 Warning if Rdlo == Rdhi. */
10477
10478 static void
10479 do_smlal (void)
10480 {
10481 inst.instruction |= inst.operands[0].reg << 12;
10482 inst.instruction |= inst.operands[1].reg << 16;
10483 inst.instruction |= inst.operands[2].reg;
10484 inst.instruction |= inst.operands[3].reg << 8;
10485
10486 if (inst.operands[0].reg == inst.operands[1].reg)
10487 as_tsktsk (_("rdhi and rdlo must be different"));
10488 }
10489
10490 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10491 SMULxy{cond} Rd,Rm,Rs
10492 Error if any register is R15. */
10493
10494 static void
10495 do_smul (void)
10496 {
10497 inst.instruction |= inst.operands[0].reg << 16;
10498 inst.instruction |= inst.operands[1].reg;
10499 inst.instruction |= inst.operands[2].reg << 8;
10500 }
10501
10502 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10503 the same for both ARM and Thumb-2. */
10504
10505 static void
10506 do_srs (void)
10507 {
10508 int reg;
10509
10510 if (inst.operands[0].present)
10511 {
10512 reg = inst.operands[0].reg;
10513 constraint (reg != REG_SP, _("SRS base register must be r13"));
10514 }
10515 else
10516 reg = REG_SP;
10517
10518 inst.instruction |= reg << 16;
10519 inst.instruction |= inst.operands[1].imm;
10520 if (inst.operands[0].writeback || inst.operands[1].writeback)
10521 inst.instruction |= WRITE_BACK;
10522 }
10523
10524 /* ARM V6 strex (argument parse). */
10525
10526 static void
10527 do_strex (void)
10528 {
10529 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10530 || inst.operands[2].postind || inst.operands[2].writeback
10531 || inst.operands[2].immisreg || inst.operands[2].shifted
10532 || inst.operands[2].negative
10533 /* See comment in do_ldrex(). */
10534 || (inst.operands[2].reg == REG_PC),
10535 BAD_ADDR_MODE);
10536
10537 constraint (inst.operands[0].reg == inst.operands[1].reg
10538 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10539
10540 constraint (inst.relocs[0].exp.X_op != O_constant
10541 || inst.relocs[0].exp.X_add_number != 0,
10542 _("offset must be zero in ARM encoding"));
10543
10544 inst.instruction |= inst.operands[0].reg << 12;
10545 inst.instruction |= inst.operands[1].reg;
10546 inst.instruction |= inst.operands[2].reg << 16;
10547 inst.relocs[0].type = BFD_RELOC_UNUSED;
10548 }
10549
10550 static void
10551 do_t_strexbh (void)
10552 {
10553 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10554 || inst.operands[2].postind || inst.operands[2].writeback
10555 || inst.operands[2].immisreg || inst.operands[2].shifted
10556 || inst.operands[2].negative,
10557 BAD_ADDR_MODE);
10558
10559 constraint (inst.operands[0].reg == inst.operands[1].reg
10560 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10561
10562 do_rm_rd_rn ();
10563 }
10564
10565 static void
10566 do_strexd (void)
10567 {
10568 constraint (inst.operands[1].reg % 2 != 0,
10569 _("even register required"));
10570 constraint (inst.operands[2].present
10571 && inst.operands[2].reg != inst.operands[1].reg + 1,
10572 _("can only store two consecutive registers"));
10573 /* If op 2 were present and equal to PC, this function wouldn't
10574 have been called in the first place. */
10575 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10576
10577 constraint (inst.operands[0].reg == inst.operands[1].reg
10578 || inst.operands[0].reg == inst.operands[1].reg + 1
10579 || inst.operands[0].reg == inst.operands[3].reg,
10580 BAD_OVERLAP);
10581
10582 inst.instruction |= inst.operands[0].reg << 12;
10583 inst.instruction |= inst.operands[1].reg;
10584 inst.instruction |= inst.operands[3].reg << 16;
10585 }
10586
10587 /* ARM V8 STRL. */
10588 static void
10589 do_stlex (void)
10590 {
10591 constraint (inst.operands[0].reg == inst.operands[1].reg
10592 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10593
10594 do_rd_rm_rn ();
10595 }
10596
10597 static void
10598 do_t_stlex (void)
10599 {
10600 constraint (inst.operands[0].reg == inst.operands[1].reg
10601 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10602
10603 do_rm_rd_rn ();
10604 }
10605
10606 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10607 extends it to 32-bits, and adds the result to a value in another
10608 register. You can specify a rotation by 0, 8, 16, or 24 bits
10609 before extracting the 16-bit value.
10610 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10611 Condition defaults to COND_ALWAYS.
10612 Error if any register uses R15. */
10613
10614 static void
10615 do_sxtah (void)
10616 {
10617 inst.instruction |= inst.operands[0].reg << 12;
10618 inst.instruction |= inst.operands[1].reg << 16;
10619 inst.instruction |= inst.operands[2].reg;
10620 inst.instruction |= inst.operands[3].imm << 10;
10621 }
10622
10623 /* ARM V6 SXTH.
10624
10625 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10626 Condition defaults to COND_ALWAYS.
10627 Error if any register uses R15. */
10628
10629 static void
10630 do_sxth (void)
10631 {
10632 inst.instruction |= inst.operands[0].reg << 12;
10633 inst.instruction |= inst.operands[1].reg;
10634 inst.instruction |= inst.operands[2].imm << 10;
10635 }
10636 \f
10637 /* VFP instructions. In a logical order: SP variant first, monad
10638 before dyad, arithmetic then move then load/store. */
10639
10640 static void
10641 do_vfp_sp_monadic (void)
10642 {
10643 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10644 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10645 _(BAD_FPU));
10646
10647 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10648 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10649 }
10650
10651 static void
10652 do_vfp_sp_dyadic (void)
10653 {
10654 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10655 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10656 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10657 }
10658
10659 static void
10660 do_vfp_sp_compare_z (void)
10661 {
10662 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10663 }
10664
10665 static void
10666 do_vfp_dp_sp_cvt (void)
10667 {
10668 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10669 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10670 }
10671
10672 static void
10673 do_vfp_sp_dp_cvt (void)
10674 {
10675 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10676 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10677 }
10678
10679 static void
10680 do_vfp_reg_from_sp (void)
10681 {
10682 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10683 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10684 _(BAD_FPU));
10685
10686 inst.instruction |= inst.operands[0].reg << 12;
10687 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10688 }
10689
10690 static void
10691 do_vfp_reg2_from_sp2 (void)
10692 {
10693 constraint (inst.operands[2].imm != 2,
10694 _("only two consecutive VFP SP registers allowed here"));
10695 inst.instruction |= inst.operands[0].reg << 12;
10696 inst.instruction |= inst.operands[1].reg << 16;
10697 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10698 }
10699
10700 static void
10701 do_vfp_sp_from_reg (void)
10702 {
10703 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10704 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10705 _(BAD_FPU));
10706
10707 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10708 inst.instruction |= inst.operands[1].reg << 12;
10709 }
10710
10711 static void
10712 do_vfp_sp2_from_reg2 (void)
10713 {
10714 constraint (inst.operands[0].imm != 2,
10715 _("only two consecutive VFP SP registers allowed here"));
10716 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10717 inst.instruction |= inst.operands[1].reg << 12;
10718 inst.instruction |= inst.operands[2].reg << 16;
10719 }
10720
10721 static void
10722 do_vfp_sp_ldst (void)
10723 {
10724 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10725 encode_arm_cp_address (1, FALSE, TRUE, 0);
10726 }
10727
10728 static void
10729 do_vfp_dp_ldst (void)
10730 {
10731 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10732 encode_arm_cp_address (1, FALSE, TRUE, 0);
10733 }
10734
10735
10736 static void
10737 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10738 {
10739 if (inst.operands[0].writeback)
10740 inst.instruction |= WRITE_BACK;
10741 else
10742 constraint (ldstm_type != VFP_LDSTMIA,
10743 _("this addressing mode requires base-register writeback"));
10744 inst.instruction |= inst.operands[0].reg << 16;
10745 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10746 inst.instruction |= inst.operands[1].imm;
10747 }
10748
10749 static void
10750 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10751 {
10752 int count;
10753
10754 if (inst.operands[0].writeback)
10755 inst.instruction |= WRITE_BACK;
10756 else
10757 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10758 _("this addressing mode requires base-register writeback"));
10759
10760 inst.instruction |= inst.operands[0].reg << 16;
10761 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10762
10763 count = inst.operands[1].imm << 1;
10764 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10765 count += 1;
10766
10767 inst.instruction |= count;
10768 }
10769
10770 static void
10771 do_vfp_sp_ldstmia (void)
10772 {
10773 vfp_sp_ldstm (VFP_LDSTMIA);
10774 }
10775
10776 static void
10777 do_vfp_sp_ldstmdb (void)
10778 {
10779 vfp_sp_ldstm (VFP_LDSTMDB);
10780 }
10781
10782 static void
10783 do_vfp_dp_ldstmia (void)
10784 {
10785 vfp_dp_ldstm (VFP_LDSTMIA);
10786 }
10787
10788 static void
10789 do_vfp_dp_ldstmdb (void)
10790 {
10791 vfp_dp_ldstm (VFP_LDSTMDB);
10792 }
10793
10794 static void
10795 do_vfp_xp_ldstmia (void)
10796 {
10797 vfp_dp_ldstm (VFP_LDSTMIAX);
10798 }
10799
10800 static void
10801 do_vfp_xp_ldstmdb (void)
10802 {
10803 vfp_dp_ldstm (VFP_LDSTMDBX);
10804 }
10805
10806 static void
10807 do_vfp_dp_rd_rm (void)
10808 {
10809 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10810 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10811 _(BAD_FPU));
10812
10813 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10814 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10815 }
10816
10817 static void
10818 do_vfp_dp_rn_rd (void)
10819 {
10820 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10821 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10822 }
10823
10824 static void
10825 do_vfp_dp_rd_rn (void)
10826 {
10827 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10828 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10829 }
10830
10831 static void
10832 do_vfp_dp_rd_rn_rm (void)
10833 {
10834 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10835 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10836 _(BAD_FPU));
10837
10838 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10839 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10840 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10841 }
10842
10843 static void
10844 do_vfp_dp_rd (void)
10845 {
10846 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10847 }
10848
10849 static void
10850 do_vfp_dp_rm_rd_rn (void)
10851 {
10852 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10853 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10854 _(BAD_FPU));
10855
10856 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10857 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10858 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10859 }
10860
10861 /* VFPv3 instructions. */
10862 static void
10863 do_vfp_sp_const (void)
10864 {
10865 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10866 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10867 inst.instruction |= (inst.operands[1].imm & 0x0f);
10868 }
10869
10870 static void
10871 do_vfp_dp_const (void)
10872 {
10873 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10874 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10875 inst.instruction |= (inst.operands[1].imm & 0x0f);
10876 }
10877
10878 static void
10879 vfp_conv (int srcsize)
10880 {
10881 int immbits = srcsize - inst.operands[1].imm;
10882
10883 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10884 {
10885 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10886 i.e. immbits must be in range 0 - 16. */
10887 inst.error = _("immediate value out of range, expected range [0, 16]");
10888 return;
10889 }
10890 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10891 {
10892 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10893 i.e. immbits must be in range 0 - 31. */
10894 inst.error = _("immediate value out of range, expected range [1, 32]");
10895 return;
10896 }
10897
10898 inst.instruction |= (immbits & 1) << 5;
10899 inst.instruction |= (immbits >> 1);
10900 }
10901
10902 static void
10903 do_vfp_sp_conv_16 (void)
10904 {
10905 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10906 vfp_conv (16);
10907 }
10908
10909 static void
10910 do_vfp_dp_conv_16 (void)
10911 {
10912 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10913 vfp_conv (16);
10914 }
10915
10916 static void
10917 do_vfp_sp_conv_32 (void)
10918 {
10919 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10920 vfp_conv (32);
10921 }
10922
10923 static void
10924 do_vfp_dp_conv_32 (void)
10925 {
10926 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10927 vfp_conv (32);
10928 }
10929 \f
10930 /* FPA instructions. Also in a logical order. */
10931
10932 static void
10933 do_fpa_cmp (void)
10934 {
10935 inst.instruction |= inst.operands[0].reg << 16;
10936 inst.instruction |= inst.operands[1].reg;
10937 }
10938
10939 static void
10940 do_fpa_ldmstm (void)
10941 {
10942 inst.instruction |= inst.operands[0].reg << 12;
10943 switch (inst.operands[1].imm)
10944 {
10945 case 1: inst.instruction |= CP_T_X; break;
10946 case 2: inst.instruction |= CP_T_Y; break;
10947 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10948 case 4: break;
10949 default: abort ();
10950 }
10951
10952 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10953 {
10954 /* The instruction specified "ea" or "fd", so we can only accept
10955 [Rn]{!}. The instruction does not really support stacking or
10956 unstacking, so we have to emulate these by setting appropriate
10957 bits and offsets. */
10958 constraint (inst.relocs[0].exp.X_op != O_constant
10959 || inst.relocs[0].exp.X_add_number != 0,
10960 _("this instruction does not support indexing"));
10961
10962 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10963 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10964
10965 if (!(inst.instruction & INDEX_UP))
10966 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10967
10968 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10969 {
10970 inst.operands[2].preind = 0;
10971 inst.operands[2].postind = 1;
10972 }
10973 }
10974
10975 encode_arm_cp_address (2, TRUE, TRUE, 0);
10976 }
10977 \f
10978 /* iWMMXt instructions: strictly in alphabetical order. */
10979
10980 static void
10981 do_iwmmxt_tandorc (void)
10982 {
10983 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10984 }
10985
10986 static void
10987 do_iwmmxt_textrc (void)
10988 {
10989 inst.instruction |= inst.operands[0].reg << 12;
10990 inst.instruction |= inst.operands[1].imm;
10991 }
10992
10993 static void
10994 do_iwmmxt_textrm (void)
10995 {
10996 inst.instruction |= inst.operands[0].reg << 12;
10997 inst.instruction |= inst.operands[1].reg << 16;
10998 inst.instruction |= inst.operands[2].imm;
10999 }
11000
11001 static void
11002 do_iwmmxt_tinsr (void)
11003 {
11004 inst.instruction |= inst.operands[0].reg << 16;
11005 inst.instruction |= inst.operands[1].reg << 12;
11006 inst.instruction |= inst.operands[2].imm;
11007 }
11008
11009 static void
11010 do_iwmmxt_tmia (void)
11011 {
11012 inst.instruction |= inst.operands[0].reg << 5;
11013 inst.instruction |= inst.operands[1].reg;
11014 inst.instruction |= inst.operands[2].reg << 12;
11015 }
11016
11017 static void
11018 do_iwmmxt_waligni (void)
11019 {
11020 inst.instruction |= inst.operands[0].reg << 12;
11021 inst.instruction |= inst.operands[1].reg << 16;
11022 inst.instruction |= inst.operands[2].reg;
11023 inst.instruction |= inst.operands[3].imm << 20;
11024 }
11025
11026 static void
11027 do_iwmmxt_wmerge (void)
11028 {
11029 inst.instruction |= inst.operands[0].reg << 12;
11030 inst.instruction |= inst.operands[1].reg << 16;
11031 inst.instruction |= inst.operands[2].reg;
11032 inst.instruction |= inst.operands[3].imm << 21;
11033 }
11034
11035 static void
11036 do_iwmmxt_wmov (void)
11037 {
11038 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
11039 inst.instruction |= inst.operands[0].reg << 12;
11040 inst.instruction |= inst.operands[1].reg << 16;
11041 inst.instruction |= inst.operands[1].reg;
11042 }
11043
11044 static void
11045 do_iwmmxt_wldstbh (void)
11046 {
11047 int reloc;
11048 inst.instruction |= inst.operands[0].reg << 12;
11049 if (thumb_mode)
11050 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
11051 else
11052 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
11053 encode_arm_cp_address (1, TRUE, FALSE, reloc);
11054 }
11055
11056 static void
11057 do_iwmmxt_wldstw (void)
11058 {
11059 /* RIWR_RIWC clears .isreg for a control register. */
11060 if (!inst.operands[0].isreg)
11061 {
11062 constraint (inst.cond != COND_ALWAYS, BAD_COND);
11063 inst.instruction |= 0xf0000000;
11064 }
11065
11066 inst.instruction |= inst.operands[0].reg << 12;
11067 encode_arm_cp_address (1, TRUE, TRUE, 0);
11068 }
11069
11070 static void
11071 do_iwmmxt_wldstd (void)
11072 {
11073 inst.instruction |= inst.operands[0].reg << 12;
11074 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
11075 && inst.operands[1].immisreg)
11076 {
11077 inst.instruction &= ~0x1a000ff;
11078 inst.instruction |= (0xfU << 28);
11079 if (inst.operands[1].preind)
11080 inst.instruction |= PRE_INDEX;
11081 if (!inst.operands[1].negative)
11082 inst.instruction |= INDEX_UP;
11083 if (inst.operands[1].writeback)
11084 inst.instruction |= WRITE_BACK;
11085 inst.instruction |= inst.operands[1].reg << 16;
11086 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11087 inst.instruction |= inst.operands[1].imm;
11088 }
11089 else
11090 encode_arm_cp_address (1, TRUE, FALSE, 0);
11091 }
11092
11093 static void
11094 do_iwmmxt_wshufh (void)
11095 {
11096 inst.instruction |= inst.operands[0].reg << 12;
11097 inst.instruction |= inst.operands[1].reg << 16;
11098 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
11099 inst.instruction |= (inst.operands[2].imm & 0x0f);
11100 }
11101
11102 static void
11103 do_iwmmxt_wzero (void)
11104 {
11105 /* WZERO reg is an alias for WANDN reg, reg, reg. */
11106 inst.instruction |= inst.operands[0].reg;
11107 inst.instruction |= inst.operands[0].reg << 12;
11108 inst.instruction |= inst.operands[0].reg << 16;
11109 }
11110
11111 static void
11112 do_iwmmxt_wrwrwr_or_imm5 (void)
11113 {
11114 if (inst.operands[2].isreg)
11115 do_rd_rn_rm ();
11116 else {
11117 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
11118 _("immediate operand requires iWMMXt2"));
11119 do_rd_rn ();
11120 if (inst.operands[2].imm == 0)
11121 {
11122 switch ((inst.instruction >> 20) & 0xf)
11123 {
11124 case 4:
11125 case 5:
11126 case 6:
11127 case 7:
11128 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
11129 inst.operands[2].imm = 16;
11130 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
11131 break;
11132 case 8:
11133 case 9:
11134 case 10:
11135 case 11:
11136 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
11137 inst.operands[2].imm = 32;
11138 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
11139 break;
11140 case 12:
11141 case 13:
11142 case 14:
11143 case 15:
11144 {
11145 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
11146 unsigned long wrn;
11147 wrn = (inst.instruction >> 16) & 0xf;
11148 inst.instruction &= 0xff0fff0f;
11149 inst.instruction |= wrn;
11150 /* Bail out here; the instruction is now assembled. */
11151 return;
11152 }
11153 }
11154 }
11155 /* Map 32 -> 0, etc. */
11156 inst.operands[2].imm &= 0x1f;
11157 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
11158 }
11159 }
11160 \f
11161 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
11162 operations first, then control, shift, and load/store. */
11163
11164 /* Insns like "foo X,Y,Z". */
11165
11166 static void
11167 do_mav_triple (void)
11168 {
11169 inst.instruction |= inst.operands[0].reg << 16;
11170 inst.instruction |= inst.operands[1].reg;
11171 inst.instruction |= inst.operands[2].reg << 12;
11172 }
11173
11174 /* Insns like "foo W,X,Y,Z".
11175 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
11176
11177 static void
11178 do_mav_quad (void)
11179 {
11180 inst.instruction |= inst.operands[0].reg << 5;
11181 inst.instruction |= inst.operands[1].reg << 12;
11182 inst.instruction |= inst.operands[2].reg << 16;
11183 inst.instruction |= inst.operands[3].reg;
11184 }
11185
11186 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
11187 static void
11188 do_mav_dspsc (void)
11189 {
11190 inst.instruction |= inst.operands[1].reg << 12;
11191 }
11192
11193 /* Maverick shift immediate instructions.
11194 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
11195 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
11196
11197 static void
11198 do_mav_shift (void)
11199 {
11200 int imm = inst.operands[2].imm;
11201
11202 inst.instruction |= inst.operands[0].reg << 12;
11203 inst.instruction |= inst.operands[1].reg << 16;
11204
11205 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
11206 Bits 5-7 of the insn should have bits 4-6 of the immediate.
11207 Bit 4 should be 0. */
11208 imm = (imm & 0xf) | ((imm & 0x70) << 1);
11209
11210 inst.instruction |= imm;
11211 }
11212 \f
11213 /* XScale instructions. Also sorted arithmetic before move. */
11214
11215 /* Xscale multiply-accumulate (argument parse)
11216 MIAcc acc0,Rm,Rs
11217 MIAPHcc acc0,Rm,Rs
11218 MIAxycc acc0,Rm,Rs. */
11219
11220 static void
11221 do_xsc_mia (void)
11222 {
11223 inst.instruction |= inst.operands[1].reg;
11224 inst.instruction |= inst.operands[2].reg << 12;
11225 }
11226
11227 /* Xscale move-accumulator-register (argument parse)
11228
11229 MARcc acc0,RdLo,RdHi. */
11230
11231 static void
11232 do_xsc_mar (void)
11233 {
11234 inst.instruction |= inst.operands[1].reg << 12;
11235 inst.instruction |= inst.operands[2].reg << 16;
11236 }
11237
11238 /* Xscale move-register-accumulator (argument parse)
11239
11240 MRAcc RdLo,RdHi,acc0. */
11241
11242 static void
11243 do_xsc_mra (void)
11244 {
11245 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
11246 inst.instruction |= inst.operands[0].reg << 12;
11247 inst.instruction |= inst.operands[1].reg << 16;
11248 }
11249 \f
11250 /* Encoding functions relevant only to Thumb. */
11251
11252 /* inst.operands[i] is a shifted-register operand; encode
11253 it into inst.instruction in the format used by Thumb32. */
11254
11255 static void
11256 encode_thumb32_shifted_operand (int i)
11257 {
11258 unsigned int value = inst.relocs[0].exp.X_add_number;
11259 unsigned int shift = inst.operands[i].shift_kind;
11260
11261 constraint (inst.operands[i].immisreg,
11262 _("shift by register not allowed in thumb mode"));
11263 inst.instruction |= inst.operands[i].reg;
11264 if (shift == SHIFT_RRX)
11265 inst.instruction |= SHIFT_ROR << 4;
11266 else
11267 {
11268 constraint (inst.relocs[0].exp.X_op != O_constant,
11269 _("expression too complex"));
11270
11271 constraint (value > 32
11272 || (value == 32 && (shift == SHIFT_LSL
11273 || shift == SHIFT_ROR)),
11274 _("shift expression is too large"));
11275
11276 if (value == 0)
11277 shift = SHIFT_LSL;
11278 else if (value == 32)
11279 value = 0;
11280
11281 inst.instruction |= shift << 4;
11282 inst.instruction |= (value & 0x1c) << 10;
11283 inst.instruction |= (value & 0x03) << 6;
11284 }
11285 }
11286
11287
11288 /* inst.operands[i] was set up by parse_address. Encode it into a
11289 Thumb32 format load or store instruction. Reject forms that cannot
11290 be used with such instructions. If is_t is true, reject forms that
11291 cannot be used with a T instruction; if is_d is true, reject forms
11292 that cannot be used with a D instruction. If it is a store insn,
11293 reject PC in Rn. */
11294
11295 static void
11296 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11297 {
11298 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
11299
11300 constraint (!inst.operands[i].isreg,
11301 _("Instruction does not support =N addresses"));
11302
11303 inst.instruction |= inst.operands[i].reg << 16;
11304 if (inst.operands[i].immisreg)
11305 {
11306 constraint (is_pc, BAD_PC_ADDRESSING);
11307 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11308 constraint (inst.operands[i].negative,
11309 _("Thumb does not support negative register indexing"));
11310 constraint (inst.operands[i].postind,
11311 _("Thumb does not support register post-indexing"));
11312 constraint (inst.operands[i].writeback,
11313 _("Thumb does not support register indexing with writeback"));
11314 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11315 _("Thumb supports only LSL in shifted register indexing"));
11316
11317 inst.instruction |= inst.operands[i].imm;
11318 if (inst.operands[i].shifted)
11319 {
11320 constraint (inst.relocs[0].exp.X_op != O_constant,
11321 _("expression too complex"));
11322 constraint (inst.relocs[0].exp.X_add_number < 0
11323 || inst.relocs[0].exp.X_add_number > 3,
11324 _("shift out of range"));
11325 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11326 }
11327 inst.relocs[0].type = BFD_RELOC_UNUSED;
11328 }
11329 else if (inst.operands[i].preind)
11330 {
11331 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11332 constraint (is_t && inst.operands[i].writeback,
11333 _("cannot use writeback with this instruction"));
11334 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11335 BAD_PC_ADDRESSING);
11336
11337 if (is_d)
11338 {
11339 inst.instruction |= 0x01000000;
11340 if (inst.operands[i].writeback)
11341 inst.instruction |= 0x00200000;
11342 }
11343 else
11344 {
11345 inst.instruction |= 0x00000c00;
11346 if (inst.operands[i].writeback)
11347 inst.instruction |= 0x00000100;
11348 }
11349 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11350 }
11351 else if (inst.operands[i].postind)
11352 {
11353 gas_assert (inst.operands[i].writeback);
11354 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11355 constraint (is_t, _("cannot use post-indexing with this instruction"));
11356
11357 if (is_d)
11358 inst.instruction |= 0x00200000;
11359 else
11360 inst.instruction |= 0x00000900;
11361 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11362 }
11363 else /* unindexed - only for coprocessor */
11364 inst.error = _("instruction does not accept unindexed addressing");
11365 }
11366
11367 /* Table of Thumb instructions which exist in 16- and/or 32-bit
11368 encodings (the latter only in post-V6T2 cores). The index is the
11369 value used in the insns table below. When there is more than one
11370 possible 16-bit encoding for the instruction, this table always
11371 holds variant (1).
11372 Also contains several pseudo-instructions used during relaxation. */
11373 #define T16_32_TAB \
11374 X(_adc, 4140, eb400000), \
11375 X(_adcs, 4140, eb500000), \
11376 X(_add, 1c00, eb000000), \
11377 X(_adds, 1c00, eb100000), \
11378 X(_addi, 0000, f1000000), \
11379 X(_addis, 0000, f1100000), \
11380 X(_add_pc,000f, f20f0000), \
11381 X(_add_sp,000d, f10d0000), \
11382 X(_adr, 000f, f20f0000), \
11383 X(_and, 4000, ea000000), \
11384 X(_ands, 4000, ea100000), \
11385 X(_asr, 1000, fa40f000), \
11386 X(_asrs, 1000, fa50f000), \
11387 X(_b, e000, f000b000), \
11388 X(_bcond, d000, f0008000), \
11389 X(_bf, 0000, f040e001), \
11390 X(_bfcsel,0000, f000e001), \
11391 X(_bfx, 0000, f060e001), \
11392 X(_bfl, 0000, f000c001), \
11393 X(_bflx, 0000, f070e001), \
11394 X(_bic, 4380, ea200000), \
11395 X(_bics, 4380, ea300000), \
11396 X(_cinc, 0000, ea509000), \
11397 X(_cinv, 0000, ea50a000), \
11398 X(_cmn, 42c0, eb100f00), \
11399 X(_cmp, 2800, ebb00f00), \
11400 X(_cneg, 0000, ea50b000), \
11401 X(_cpsie, b660, f3af8400), \
11402 X(_cpsid, b670, f3af8600), \
11403 X(_cpy, 4600, ea4f0000), \
11404 X(_csel, 0000, ea508000), \
11405 X(_cset, 0000, ea5f900f), \
11406 X(_csetm, 0000, ea5fa00f), \
11407 X(_csinc, 0000, ea509000), \
11408 X(_csinv, 0000, ea50a000), \
11409 X(_csneg, 0000, ea50b000), \
11410 X(_dec_sp,80dd, f1ad0d00), \
11411 X(_dls, 0000, f040e001), \
11412 X(_dlstp, 0000, f000e001), \
11413 X(_eor, 4040, ea800000), \
11414 X(_eors, 4040, ea900000), \
11415 X(_inc_sp,00dd, f10d0d00), \
11416 X(_lctp, 0000, f00fe001), \
11417 X(_ldmia, c800, e8900000), \
11418 X(_ldr, 6800, f8500000), \
11419 X(_ldrb, 7800, f8100000), \
11420 X(_ldrh, 8800, f8300000), \
11421 X(_ldrsb, 5600, f9100000), \
11422 X(_ldrsh, 5e00, f9300000), \
11423 X(_ldr_pc,4800, f85f0000), \
11424 X(_ldr_pc2,4800, f85f0000), \
11425 X(_ldr_sp,9800, f85d0000), \
11426 X(_le, 0000, f00fc001), \
11427 X(_letp, 0000, f01fc001), \
11428 X(_lsl, 0000, fa00f000), \
11429 X(_lsls, 0000, fa10f000), \
11430 X(_lsr, 0800, fa20f000), \
11431 X(_lsrs, 0800, fa30f000), \
11432 X(_mov, 2000, ea4f0000), \
11433 X(_movs, 2000, ea5f0000), \
11434 X(_mul, 4340, fb00f000), \
11435 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11436 X(_mvn, 43c0, ea6f0000), \
11437 X(_mvns, 43c0, ea7f0000), \
11438 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11439 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11440 X(_orr, 4300, ea400000), \
11441 X(_orrs, 4300, ea500000), \
11442 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11443 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11444 X(_rev, ba00, fa90f080), \
11445 X(_rev16, ba40, fa90f090), \
11446 X(_revsh, bac0, fa90f0b0), \
11447 X(_ror, 41c0, fa60f000), \
11448 X(_rors, 41c0, fa70f000), \
11449 X(_sbc, 4180, eb600000), \
11450 X(_sbcs, 4180, eb700000), \
11451 X(_stmia, c000, e8800000), \
11452 X(_str, 6000, f8400000), \
11453 X(_strb, 7000, f8000000), \
11454 X(_strh, 8000, f8200000), \
11455 X(_str_sp,9000, f84d0000), \
11456 X(_sub, 1e00, eba00000), \
11457 X(_subs, 1e00, ebb00000), \
11458 X(_subi, 8000, f1a00000), \
11459 X(_subis, 8000, f1b00000), \
11460 X(_sxtb, b240, fa4ff080), \
11461 X(_sxth, b200, fa0ff080), \
11462 X(_tst, 4200, ea100f00), \
11463 X(_uxtb, b2c0, fa5ff080), \
11464 X(_uxth, b280, fa1ff080), \
11465 X(_nop, bf00, f3af8000), \
11466 X(_yield, bf10, f3af8001), \
11467 X(_wfe, bf20, f3af8002), \
11468 X(_wfi, bf30, f3af8003), \
11469 X(_wls, 0000, f040c001), \
11470 X(_wlstp, 0000, f000c001), \
11471 X(_sev, bf40, f3af8004), \
11472 X(_sevl, bf50, f3af8005), \
11473 X(_udf, de00, f7f0a000)
11474
11475 /* To catch errors in encoding functions, the codes are all offset by
11476 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11477 as 16-bit instructions. */
11478 #define X(a,b,c) T_MNEM##a
11479 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11480 #undef X
11481
11482 #define X(a,b,c) 0x##b
11483 static const unsigned short thumb_op16[] = { T16_32_TAB };
11484 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11485 #undef X
11486
11487 #define X(a,b,c) 0x##c
11488 static const unsigned int thumb_op32[] = { T16_32_TAB };
11489 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11490 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11491 #undef X
11492 #undef T16_32_TAB
11493
11494 /* Thumb instruction encoders, in alphabetical order. */
11495
11496 /* ADDW or SUBW. */
11497
11498 static void
11499 do_t_add_sub_w (void)
11500 {
11501 int Rd, Rn;
11502
11503 Rd = inst.operands[0].reg;
11504 Rn = inst.operands[1].reg;
11505
11506 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11507 is the SP-{plus,minus}-immediate form of the instruction. */
11508 if (Rn == REG_SP)
11509 constraint (Rd == REG_PC, BAD_PC);
11510 else
11511 reject_bad_reg (Rd);
11512
11513 inst.instruction |= (Rn << 16) | (Rd << 8);
11514 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11515 }
11516
11517 /* Parse an add or subtract instruction. We get here with inst.instruction
11518 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11519
11520 static void
11521 do_t_add_sub (void)
11522 {
11523 int Rd, Rs, Rn;
11524
11525 Rd = inst.operands[0].reg;
11526 Rs = (inst.operands[1].present
11527 ? inst.operands[1].reg /* Rd, Rs, foo */
11528 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11529
11530 if (Rd == REG_PC)
11531 set_pred_insn_type_last ();
11532
11533 if (unified_syntax)
11534 {
11535 bfd_boolean flags;
11536 bfd_boolean narrow;
11537 int opcode;
11538
11539 flags = (inst.instruction == T_MNEM_adds
11540 || inst.instruction == T_MNEM_subs);
11541 if (flags)
11542 narrow = !in_pred_block ();
11543 else
11544 narrow = in_pred_block ();
11545 if (!inst.operands[2].isreg)
11546 {
11547 int add;
11548
11549 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11550 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11551
11552 add = (inst.instruction == T_MNEM_add
11553 || inst.instruction == T_MNEM_adds);
11554 opcode = 0;
11555 if (inst.size_req != 4)
11556 {
11557 /* Attempt to use a narrow opcode, with relaxation if
11558 appropriate. */
11559 if (Rd == REG_SP && Rs == REG_SP && !flags)
11560 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11561 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11562 opcode = T_MNEM_add_sp;
11563 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11564 opcode = T_MNEM_add_pc;
11565 else if (Rd <= 7 && Rs <= 7 && narrow)
11566 {
11567 if (flags)
11568 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11569 else
11570 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11571 }
11572 if (opcode)
11573 {
11574 inst.instruction = THUMB_OP16(opcode);
11575 inst.instruction |= (Rd << 4) | Rs;
11576 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11577 || (inst.relocs[0].type
11578 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11579 {
11580 if (inst.size_req == 2)
11581 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11582 else
11583 inst.relax = opcode;
11584 }
11585 }
11586 else
11587 constraint (inst.size_req == 2, BAD_HIREG);
11588 }
11589 if (inst.size_req == 4
11590 || (inst.size_req != 2 && !opcode))
11591 {
11592 constraint ((inst.relocs[0].type
11593 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11594 && (inst.relocs[0].type
11595 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11596 THUMB1_RELOC_ONLY);
11597 if (Rd == REG_PC)
11598 {
11599 constraint (add, BAD_PC);
11600 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11601 _("only SUBS PC, LR, #const allowed"));
11602 constraint (inst.relocs[0].exp.X_op != O_constant,
11603 _("expression too complex"));
11604 constraint (inst.relocs[0].exp.X_add_number < 0
11605 || inst.relocs[0].exp.X_add_number > 0xff,
11606 _("immediate value out of range"));
11607 inst.instruction = T2_SUBS_PC_LR
11608 | inst.relocs[0].exp.X_add_number;
11609 inst.relocs[0].type = BFD_RELOC_UNUSED;
11610 return;
11611 }
11612 else if (Rs == REG_PC)
11613 {
11614 /* Always use addw/subw. */
11615 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11616 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11617 }
11618 else
11619 {
11620 inst.instruction = THUMB_OP32 (inst.instruction);
11621 inst.instruction = (inst.instruction & 0xe1ffffff)
11622 | 0x10000000;
11623 if (flags)
11624 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11625 else
11626 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11627 }
11628 inst.instruction |= Rd << 8;
11629 inst.instruction |= Rs << 16;
11630 }
11631 }
11632 else
11633 {
11634 unsigned int value = inst.relocs[0].exp.X_add_number;
11635 unsigned int shift = inst.operands[2].shift_kind;
11636
11637 Rn = inst.operands[2].reg;
11638 /* See if we can do this with a 16-bit instruction. */
11639 if (!inst.operands[2].shifted && inst.size_req != 4)
11640 {
11641 if (Rd > 7 || Rs > 7 || Rn > 7)
11642 narrow = FALSE;
11643
11644 if (narrow)
11645 {
11646 inst.instruction = ((inst.instruction == T_MNEM_adds
11647 || inst.instruction == T_MNEM_add)
11648 ? T_OPCODE_ADD_R3
11649 : T_OPCODE_SUB_R3);
11650 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11651 return;
11652 }
11653
11654 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11655 {
11656 /* Thumb-1 cores (except v6-M) require at least one high
11657 register in a narrow non flag setting add. */
11658 if (Rd > 7 || Rn > 7
11659 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11660 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11661 {
11662 if (Rd == Rn)
11663 {
11664 Rn = Rs;
11665 Rs = Rd;
11666 }
11667 inst.instruction = T_OPCODE_ADD_HI;
11668 inst.instruction |= (Rd & 8) << 4;
11669 inst.instruction |= (Rd & 7);
11670 inst.instruction |= Rn << 3;
11671 return;
11672 }
11673 }
11674 }
11675
11676 constraint (Rd == REG_PC, BAD_PC);
11677 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11678 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11679 constraint (Rs == REG_PC, BAD_PC);
11680 reject_bad_reg (Rn);
11681
11682 /* If we get here, it can't be done in 16 bits. */
11683 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11684 _("shift must be constant"));
11685 inst.instruction = THUMB_OP32 (inst.instruction);
11686 inst.instruction |= Rd << 8;
11687 inst.instruction |= Rs << 16;
11688 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11689 _("shift value over 3 not allowed in thumb mode"));
11690 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11691 _("only LSL shift allowed in thumb mode"));
11692 encode_thumb32_shifted_operand (2);
11693 }
11694 }
11695 else
11696 {
11697 constraint (inst.instruction == T_MNEM_adds
11698 || inst.instruction == T_MNEM_subs,
11699 BAD_THUMB32);
11700
11701 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11702 {
11703 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11704 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11705 BAD_HIREG);
11706
11707 inst.instruction = (inst.instruction == T_MNEM_add
11708 ? 0x0000 : 0x8000);
11709 inst.instruction |= (Rd << 4) | Rs;
11710 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11711 return;
11712 }
11713
11714 Rn = inst.operands[2].reg;
11715 constraint (inst.operands[2].shifted, _("unshifted register required"));
11716
11717 /* We now have Rd, Rs, and Rn set to registers. */
11718 if (Rd > 7 || Rs > 7 || Rn > 7)
11719 {
11720 /* Can't do this for SUB. */
11721 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11722 inst.instruction = T_OPCODE_ADD_HI;
11723 inst.instruction |= (Rd & 8) << 4;
11724 inst.instruction |= (Rd & 7);
11725 if (Rs == Rd)
11726 inst.instruction |= Rn << 3;
11727 else if (Rn == Rd)
11728 inst.instruction |= Rs << 3;
11729 else
11730 constraint (1, _("dest must overlap one source register"));
11731 }
11732 else
11733 {
11734 inst.instruction = (inst.instruction == T_MNEM_add
11735 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11736 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11737 }
11738 }
11739 }
11740
11741 static void
11742 do_t_adr (void)
11743 {
11744 unsigned Rd;
11745
11746 Rd = inst.operands[0].reg;
11747 reject_bad_reg (Rd);
11748
11749 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11750 {
11751 /* Defer to section relaxation. */
11752 inst.relax = inst.instruction;
11753 inst.instruction = THUMB_OP16 (inst.instruction);
11754 inst.instruction |= Rd << 4;
11755 }
11756 else if (unified_syntax && inst.size_req != 2)
11757 {
11758 /* Generate a 32-bit opcode. */
11759 inst.instruction = THUMB_OP32 (inst.instruction);
11760 inst.instruction |= Rd << 8;
11761 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11762 inst.relocs[0].pc_rel = 1;
11763 }
11764 else
11765 {
11766 /* Generate a 16-bit opcode. */
11767 inst.instruction = THUMB_OP16 (inst.instruction);
11768 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11769 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11770 inst.relocs[0].pc_rel = 1;
11771 inst.instruction |= Rd << 4;
11772 }
11773
11774 if (inst.relocs[0].exp.X_op == O_symbol
11775 && inst.relocs[0].exp.X_add_symbol != NULL
11776 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11777 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11778 inst.relocs[0].exp.X_add_number += 1;
11779 }
11780
11781 /* Arithmetic instructions for which there is just one 16-bit
11782 instruction encoding, and it allows only two low registers.
11783 For maximal compatibility with ARM syntax, we allow three register
11784 operands even when Thumb-32 instructions are not available, as long
11785 as the first two are identical. For instance, both "sbc r0,r1" and
11786 "sbc r0,r0,r1" are allowed. */
11787 static void
11788 do_t_arit3 (void)
11789 {
11790 int Rd, Rs, Rn;
11791
11792 Rd = inst.operands[0].reg;
11793 Rs = (inst.operands[1].present
11794 ? inst.operands[1].reg /* Rd, Rs, foo */
11795 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11796 Rn = inst.operands[2].reg;
11797
11798 reject_bad_reg (Rd);
11799 reject_bad_reg (Rs);
11800 if (inst.operands[2].isreg)
11801 reject_bad_reg (Rn);
11802
11803 if (unified_syntax)
11804 {
11805 if (!inst.operands[2].isreg)
11806 {
11807 /* For an immediate, we always generate a 32-bit opcode;
11808 section relaxation will shrink it later if possible. */
11809 inst.instruction = THUMB_OP32 (inst.instruction);
11810 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11811 inst.instruction |= Rd << 8;
11812 inst.instruction |= Rs << 16;
11813 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11814 }
11815 else
11816 {
11817 bfd_boolean narrow;
11818
11819 /* See if we can do this with a 16-bit instruction. */
11820 if (THUMB_SETS_FLAGS (inst.instruction))
11821 narrow = !in_pred_block ();
11822 else
11823 narrow = in_pred_block ();
11824
11825 if (Rd > 7 || Rn > 7 || Rs > 7)
11826 narrow = FALSE;
11827 if (inst.operands[2].shifted)
11828 narrow = FALSE;
11829 if (inst.size_req == 4)
11830 narrow = FALSE;
11831
11832 if (narrow
11833 && Rd == Rs)
11834 {
11835 inst.instruction = THUMB_OP16 (inst.instruction);
11836 inst.instruction |= Rd;
11837 inst.instruction |= Rn << 3;
11838 return;
11839 }
11840
11841 /* If we get here, it can't be done in 16 bits. */
11842 constraint (inst.operands[2].shifted
11843 && inst.operands[2].immisreg,
11844 _("shift must be constant"));
11845 inst.instruction = THUMB_OP32 (inst.instruction);
11846 inst.instruction |= Rd << 8;
11847 inst.instruction |= Rs << 16;
11848 encode_thumb32_shifted_operand (2);
11849 }
11850 }
11851 else
11852 {
11853 /* On its face this is a lie - the instruction does set the
11854 flags. However, the only supported mnemonic in this mode
11855 says it doesn't. */
11856 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11857
11858 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11859 _("unshifted register required"));
11860 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11861 constraint (Rd != Rs,
11862 _("dest and source1 must be the same register"));
11863
11864 inst.instruction = THUMB_OP16 (inst.instruction);
11865 inst.instruction |= Rd;
11866 inst.instruction |= Rn << 3;
11867 }
11868 }
11869
11870 /* Similarly, but for instructions where the arithmetic operation is
11871 commutative, so we can allow either of them to be different from
11872 the destination operand in a 16-bit instruction. For instance, all
11873 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11874 accepted. */
11875 static void
11876 do_t_arit3c (void)
11877 {
11878 int Rd, Rs, Rn;
11879
11880 Rd = inst.operands[0].reg;
11881 Rs = (inst.operands[1].present
11882 ? inst.operands[1].reg /* Rd, Rs, foo */
11883 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11884 Rn = inst.operands[2].reg;
11885
11886 reject_bad_reg (Rd);
11887 reject_bad_reg (Rs);
11888 if (inst.operands[2].isreg)
11889 reject_bad_reg (Rn);
11890
11891 if (unified_syntax)
11892 {
11893 if (!inst.operands[2].isreg)
11894 {
11895 /* For an immediate, we always generate a 32-bit opcode;
11896 section relaxation will shrink it later if possible. */
11897 inst.instruction = THUMB_OP32 (inst.instruction);
11898 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11899 inst.instruction |= Rd << 8;
11900 inst.instruction |= Rs << 16;
11901 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11902 }
11903 else
11904 {
11905 bfd_boolean narrow;
11906
11907 /* See if we can do this with a 16-bit instruction. */
11908 if (THUMB_SETS_FLAGS (inst.instruction))
11909 narrow = !in_pred_block ();
11910 else
11911 narrow = in_pred_block ();
11912
11913 if (Rd > 7 || Rn > 7 || Rs > 7)
11914 narrow = FALSE;
11915 if (inst.operands[2].shifted)
11916 narrow = FALSE;
11917 if (inst.size_req == 4)
11918 narrow = FALSE;
11919
11920 if (narrow)
11921 {
11922 if (Rd == Rs)
11923 {
11924 inst.instruction = THUMB_OP16 (inst.instruction);
11925 inst.instruction |= Rd;
11926 inst.instruction |= Rn << 3;
11927 return;
11928 }
11929 if (Rd == Rn)
11930 {
11931 inst.instruction = THUMB_OP16 (inst.instruction);
11932 inst.instruction |= Rd;
11933 inst.instruction |= Rs << 3;
11934 return;
11935 }
11936 }
11937
11938 /* If we get here, it can't be done in 16 bits. */
11939 constraint (inst.operands[2].shifted
11940 && inst.operands[2].immisreg,
11941 _("shift must be constant"));
11942 inst.instruction = THUMB_OP32 (inst.instruction);
11943 inst.instruction |= Rd << 8;
11944 inst.instruction |= Rs << 16;
11945 encode_thumb32_shifted_operand (2);
11946 }
11947 }
11948 else
11949 {
11950 /* On its face this is a lie - the instruction does set the
11951 flags. However, the only supported mnemonic in this mode
11952 says it doesn't. */
11953 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11954
11955 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11956 _("unshifted register required"));
11957 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11958
11959 inst.instruction = THUMB_OP16 (inst.instruction);
11960 inst.instruction |= Rd;
11961
11962 if (Rd == Rs)
11963 inst.instruction |= Rn << 3;
11964 else if (Rd == Rn)
11965 inst.instruction |= Rs << 3;
11966 else
11967 constraint (1, _("dest must overlap one source register"));
11968 }
11969 }
11970
11971 static void
11972 do_t_bfc (void)
11973 {
11974 unsigned Rd;
11975 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11976 constraint (msb > 32, _("bit-field extends past end of register"));
11977 /* The instruction encoding stores the LSB and MSB,
11978 not the LSB and width. */
11979 Rd = inst.operands[0].reg;
11980 reject_bad_reg (Rd);
11981 inst.instruction |= Rd << 8;
11982 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11983 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11984 inst.instruction |= msb - 1;
11985 }
11986
11987 static void
11988 do_t_bfi (void)
11989 {
11990 int Rd, Rn;
11991 unsigned int msb;
11992
11993 Rd = inst.operands[0].reg;
11994 reject_bad_reg (Rd);
11995
11996 /* #0 in second position is alternative syntax for bfc, which is
11997 the same instruction but with REG_PC in the Rm field. */
11998 if (!inst.operands[1].isreg)
11999 Rn = REG_PC;
12000 else
12001 {
12002 Rn = inst.operands[1].reg;
12003 reject_bad_reg (Rn);
12004 }
12005
12006 msb = inst.operands[2].imm + inst.operands[3].imm;
12007 constraint (msb > 32, _("bit-field extends past end of register"));
12008 /* The instruction encoding stores the LSB and MSB,
12009 not the LSB and width. */
12010 inst.instruction |= Rd << 8;
12011 inst.instruction |= Rn << 16;
12012 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
12013 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
12014 inst.instruction |= msb - 1;
12015 }
12016
12017 static void
12018 do_t_bfx (void)
12019 {
12020 unsigned Rd, Rn;
12021
12022 Rd = inst.operands[0].reg;
12023 Rn = inst.operands[1].reg;
12024
12025 reject_bad_reg (Rd);
12026 reject_bad_reg (Rn);
12027
12028 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
12029 _("bit-field extends past end of register"));
12030 inst.instruction |= Rd << 8;
12031 inst.instruction |= Rn << 16;
12032 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
12033 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
12034 inst.instruction |= inst.operands[3].imm - 1;
12035 }
12036
12037 /* ARM V5 Thumb BLX (argument parse)
12038 BLX <target_addr> which is BLX(1)
12039 BLX <Rm> which is BLX(2)
12040 Unfortunately, there are two different opcodes for this mnemonic.
12041 So, the insns[].value is not used, and the code here zaps values
12042 into inst.instruction.
12043
12044 ??? How to take advantage of the additional two bits of displacement
12045 available in Thumb32 mode? Need new relocation? */
12046
12047 static void
12048 do_t_blx (void)
12049 {
12050 set_pred_insn_type_last ();
12051
12052 if (inst.operands[0].isreg)
12053 {
12054 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
12055 /* We have a register, so this is BLX(2). */
12056 inst.instruction |= inst.operands[0].reg << 3;
12057 }
12058 else
12059 {
12060 /* No register. This must be BLX(1). */
12061 inst.instruction = 0xf000e800;
12062 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
12063 }
12064 }
12065
12066 static void
12067 do_t_branch (void)
12068 {
12069 int opcode;
12070 int cond;
12071 bfd_reloc_code_real_type reloc;
12072
12073 cond = inst.cond;
12074 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
12075
12076 if (in_pred_block ())
12077 {
12078 /* Conditional branches inside IT blocks are encoded as unconditional
12079 branches. */
12080 cond = COND_ALWAYS;
12081 }
12082 else
12083 cond = inst.cond;
12084
12085 if (cond != COND_ALWAYS)
12086 opcode = T_MNEM_bcond;
12087 else
12088 opcode = inst.instruction;
12089
12090 if (unified_syntax
12091 && (inst.size_req == 4
12092 || (inst.size_req != 2
12093 && (inst.operands[0].hasreloc
12094 || inst.relocs[0].exp.X_op == O_constant))))
12095 {
12096 inst.instruction = THUMB_OP32(opcode);
12097 if (cond == COND_ALWAYS)
12098 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
12099 else
12100 {
12101 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
12102 _("selected architecture does not support "
12103 "wide conditional branch instruction"));
12104
12105 gas_assert (cond != 0xF);
12106 inst.instruction |= cond << 22;
12107 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
12108 }
12109 }
12110 else
12111 {
12112 inst.instruction = THUMB_OP16(opcode);
12113 if (cond == COND_ALWAYS)
12114 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
12115 else
12116 {
12117 inst.instruction |= cond << 8;
12118 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
12119 }
12120 /* Allow section relaxation. */
12121 if (unified_syntax && inst.size_req != 2)
12122 inst.relax = opcode;
12123 }
12124 inst.relocs[0].type = reloc;
12125 inst.relocs[0].pc_rel = 1;
12126 }
12127
12128 /* Actually do the work for Thumb state bkpt and hlt. The only difference
12129 between the two is the maximum immediate allowed - which is passed in
12130 RANGE. */
12131 static void
12132 do_t_bkpt_hlt1 (int range)
12133 {
12134 constraint (inst.cond != COND_ALWAYS,
12135 _("instruction is always unconditional"));
12136 if (inst.operands[0].present)
12137 {
12138 constraint (inst.operands[0].imm > range,
12139 _("immediate value out of range"));
12140 inst.instruction |= inst.operands[0].imm;
12141 }
12142
12143 set_pred_insn_type (NEUTRAL_IT_INSN);
12144 }
12145
12146 static void
12147 do_t_hlt (void)
12148 {
12149 do_t_bkpt_hlt1 (63);
12150 }
12151
12152 static void
12153 do_t_bkpt (void)
12154 {
12155 do_t_bkpt_hlt1 (255);
12156 }
12157
12158 static void
12159 do_t_branch23 (void)
12160 {
12161 set_pred_insn_type_last ();
12162 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
12163
12164 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
12165 this file. We used to simply ignore the PLT reloc type here --
12166 the branch encoding is now needed to deal with TLSCALL relocs.
12167 So if we see a PLT reloc now, put it back to how it used to be to
12168 keep the preexisting behaviour. */
12169 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
12170 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
12171
12172 #if defined(OBJ_COFF)
12173 /* If the destination of the branch is a defined symbol which does not have
12174 the THUMB_FUNC attribute, then we must be calling a function which has
12175 the (interfacearm) attribute. We look for the Thumb entry point to that
12176 function and change the branch to refer to that function instead. */
12177 if ( inst.relocs[0].exp.X_op == O_symbol
12178 && inst.relocs[0].exp.X_add_symbol != NULL
12179 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
12180 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
12181 inst.relocs[0].exp.X_add_symbol
12182 = find_real_start (inst.relocs[0].exp.X_add_symbol);
12183 #endif
12184 }
12185
12186 static void
12187 do_t_bx (void)
12188 {
12189 set_pred_insn_type_last ();
12190 inst.instruction |= inst.operands[0].reg << 3;
12191 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
12192 should cause the alignment to be checked once it is known. This is
12193 because BX PC only works if the instruction is word aligned. */
12194 }
12195
12196 static void
12197 do_t_bxj (void)
12198 {
12199 int Rm;
12200
12201 set_pred_insn_type_last ();
12202 Rm = inst.operands[0].reg;
12203 reject_bad_reg (Rm);
12204 inst.instruction |= Rm << 16;
12205 }
12206
12207 static void
12208 do_t_clz (void)
12209 {
12210 unsigned Rd;
12211 unsigned Rm;
12212
12213 Rd = inst.operands[0].reg;
12214 Rm = inst.operands[1].reg;
12215
12216 reject_bad_reg (Rd);
12217 reject_bad_reg (Rm);
12218
12219 inst.instruction |= Rd << 8;
12220 inst.instruction |= Rm << 16;
12221 inst.instruction |= Rm;
12222 }
12223
12224 /* For the Armv8.1-M conditional instructions. */
12225 static void
12226 do_t_cond (void)
12227 {
12228 unsigned Rd, Rn, Rm;
12229 signed int cond;
12230
12231 constraint (inst.cond != COND_ALWAYS, BAD_COND);
12232
12233 Rd = inst.operands[0].reg;
12234 switch (inst.instruction)
12235 {
12236 case T_MNEM_csinc:
12237 case T_MNEM_csinv:
12238 case T_MNEM_csneg:
12239 case T_MNEM_csel:
12240 Rn = inst.operands[1].reg;
12241 Rm = inst.operands[2].reg;
12242 cond = inst.operands[3].imm;
12243 constraint (Rn == REG_SP, BAD_SP);
12244 constraint (Rm == REG_SP, BAD_SP);
12245 break;
12246
12247 case T_MNEM_cinc:
12248 case T_MNEM_cinv:
12249 case T_MNEM_cneg:
12250 Rn = inst.operands[1].reg;
12251 cond = inst.operands[2].imm;
12252 /* Invert the last bit to invert the cond. */
12253 cond = TOGGLE_BIT (cond, 0);
12254 constraint (Rn == REG_SP, BAD_SP);
12255 Rm = Rn;
12256 break;
12257
12258 case T_MNEM_csetm:
12259 case T_MNEM_cset:
12260 cond = inst.operands[1].imm;
12261 /* Invert the last bit to invert the cond. */
12262 cond = TOGGLE_BIT (cond, 0);
12263 Rn = REG_PC;
12264 Rm = REG_PC;
12265 break;
12266
12267 default: abort ();
12268 }
12269
12270 set_pred_insn_type (OUTSIDE_PRED_INSN);
12271 inst.instruction = THUMB_OP32 (inst.instruction);
12272 inst.instruction |= Rd << 8;
12273 inst.instruction |= Rn << 16;
12274 inst.instruction |= Rm;
12275 inst.instruction |= cond << 4;
12276 }
12277
12278 static void
12279 do_t_csdb (void)
12280 {
12281 set_pred_insn_type (OUTSIDE_PRED_INSN);
12282 }
12283
12284 static void
12285 do_t_cps (void)
12286 {
12287 set_pred_insn_type (OUTSIDE_PRED_INSN);
12288 inst.instruction |= inst.operands[0].imm;
12289 }
12290
12291 static void
12292 do_t_cpsi (void)
12293 {
12294 set_pred_insn_type (OUTSIDE_PRED_INSN);
12295 if (unified_syntax
12296 && (inst.operands[1].present || inst.size_req == 4)
12297 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
12298 {
12299 unsigned int imod = (inst.instruction & 0x0030) >> 4;
12300 inst.instruction = 0xf3af8000;
12301 inst.instruction |= imod << 9;
12302 inst.instruction |= inst.operands[0].imm << 5;
12303 if (inst.operands[1].present)
12304 inst.instruction |= 0x100 | inst.operands[1].imm;
12305 }
12306 else
12307 {
12308 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
12309 && (inst.operands[0].imm & 4),
12310 _("selected processor does not support 'A' form "
12311 "of this instruction"));
12312 constraint (inst.operands[1].present || inst.size_req == 4,
12313 _("Thumb does not support the 2-argument "
12314 "form of this instruction"));
12315 inst.instruction |= inst.operands[0].imm;
12316 }
12317 }
12318
12319 /* THUMB CPY instruction (argument parse). */
12320
12321 static void
12322 do_t_cpy (void)
12323 {
12324 if (inst.size_req == 4)
12325 {
12326 inst.instruction = THUMB_OP32 (T_MNEM_mov);
12327 inst.instruction |= inst.operands[0].reg << 8;
12328 inst.instruction |= inst.operands[1].reg;
12329 }
12330 else
12331 {
12332 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
12333 inst.instruction |= (inst.operands[0].reg & 0x7);
12334 inst.instruction |= inst.operands[1].reg << 3;
12335 }
12336 }
12337
12338 static void
12339 do_t_cbz (void)
12340 {
12341 set_pred_insn_type (OUTSIDE_PRED_INSN);
12342 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12343 inst.instruction |= inst.operands[0].reg;
12344 inst.relocs[0].pc_rel = 1;
12345 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
12346 }
12347
12348 static void
12349 do_t_dbg (void)
12350 {
12351 inst.instruction |= inst.operands[0].imm;
12352 }
12353
12354 static void
12355 do_t_div (void)
12356 {
12357 unsigned Rd, Rn, Rm;
12358
12359 Rd = inst.operands[0].reg;
12360 Rn = (inst.operands[1].present
12361 ? inst.operands[1].reg : Rd);
12362 Rm = inst.operands[2].reg;
12363
12364 reject_bad_reg (Rd);
12365 reject_bad_reg (Rn);
12366 reject_bad_reg (Rm);
12367
12368 inst.instruction |= Rd << 8;
12369 inst.instruction |= Rn << 16;
12370 inst.instruction |= Rm;
12371 }
12372
12373 static void
12374 do_t_hint (void)
12375 {
12376 if (unified_syntax && inst.size_req == 4)
12377 inst.instruction = THUMB_OP32 (inst.instruction);
12378 else
12379 inst.instruction = THUMB_OP16 (inst.instruction);
12380 }
12381
12382 static void
12383 do_t_it (void)
12384 {
12385 unsigned int cond = inst.operands[0].imm;
12386
12387 set_pred_insn_type (IT_INSN);
12388 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12389 now_pred.cc = cond;
12390 now_pred.warn_deprecated = FALSE;
12391 now_pred.type = SCALAR_PRED;
12392
12393 /* If the condition is a negative condition, invert the mask. */
12394 if ((cond & 0x1) == 0x0)
12395 {
12396 unsigned int mask = inst.instruction & 0x000f;
12397
12398 if ((mask & 0x7) == 0)
12399 {
12400 /* No conversion needed. */
12401 now_pred.block_length = 1;
12402 }
12403 else if ((mask & 0x3) == 0)
12404 {
12405 mask ^= 0x8;
12406 now_pred.block_length = 2;
12407 }
12408 else if ((mask & 0x1) == 0)
12409 {
12410 mask ^= 0xC;
12411 now_pred.block_length = 3;
12412 }
12413 else
12414 {
12415 mask ^= 0xE;
12416 now_pred.block_length = 4;
12417 }
12418
12419 inst.instruction &= 0xfff0;
12420 inst.instruction |= mask;
12421 }
12422
12423 inst.instruction |= cond << 4;
12424 }
12425
12426 /* Helper function used for both push/pop and ldm/stm. */
12427 static void
12428 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12429 bfd_boolean writeback)
12430 {
12431 bfd_boolean load, store;
12432
12433 gas_assert (base != -1 || !do_io);
12434 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12435 store = do_io && !load;
12436
12437 if (mask & (1 << 13))
12438 inst.error = _("SP not allowed in register list");
12439
12440 if (do_io && (mask & (1 << base)) != 0
12441 && writeback)
12442 inst.error = _("having the base register in the register list when "
12443 "using write back is UNPREDICTABLE");
12444
12445 if (load)
12446 {
12447 if (mask & (1 << 15))
12448 {
12449 if (mask & (1 << 14))
12450 inst.error = _("LR and PC should not both be in register list");
12451 else
12452 set_pred_insn_type_last ();
12453 }
12454 }
12455 else if (store)
12456 {
12457 if (mask & (1 << 15))
12458 inst.error = _("PC not allowed in register list");
12459 }
12460
12461 if (do_io && ((mask & (mask - 1)) == 0))
12462 {
12463 /* Single register transfers implemented as str/ldr. */
12464 if (writeback)
12465 {
12466 if (inst.instruction & (1 << 23))
12467 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12468 else
12469 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12470 }
12471 else
12472 {
12473 if (inst.instruction & (1 << 23))
12474 inst.instruction = 0x00800000; /* ia -> [base] */
12475 else
12476 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12477 }
12478
12479 inst.instruction |= 0xf8400000;
12480 if (load)
12481 inst.instruction |= 0x00100000;
12482
12483 mask = ffs (mask) - 1;
12484 mask <<= 12;
12485 }
12486 else if (writeback)
12487 inst.instruction |= WRITE_BACK;
12488
12489 inst.instruction |= mask;
12490 if (do_io)
12491 inst.instruction |= base << 16;
12492 }
12493
12494 static void
12495 do_t_ldmstm (void)
12496 {
12497 /* This really doesn't seem worth it. */
12498 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12499 _("expression too complex"));
12500 constraint (inst.operands[1].writeback,
12501 _("Thumb load/store multiple does not support {reglist}^"));
12502
12503 if (unified_syntax)
12504 {
12505 bfd_boolean narrow;
12506 unsigned mask;
12507
12508 narrow = FALSE;
12509 /* See if we can use a 16-bit instruction. */
12510 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12511 && inst.size_req != 4
12512 && !(inst.operands[1].imm & ~0xff))
12513 {
12514 mask = 1 << inst.operands[0].reg;
12515
12516 if (inst.operands[0].reg <= 7)
12517 {
12518 if (inst.instruction == T_MNEM_stmia
12519 ? inst.operands[0].writeback
12520 : (inst.operands[0].writeback
12521 == !(inst.operands[1].imm & mask)))
12522 {
12523 if (inst.instruction == T_MNEM_stmia
12524 && (inst.operands[1].imm & mask)
12525 && (inst.operands[1].imm & (mask - 1)))
12526 as_warn (_("value stored for r%d is UNKNOWN"),
12527 inst.operands[0].reg);
12528
12529 inst.instruction = THUMB_OP16 (inst.instruction);
12530 inst.instruction |= inst.operands[0].reg << 8;
12531 inst.instruction |= inst.operands[1].imm;
12532 narrow = TRUE;
12533 }
12534 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12535 {
12536 /* This means 1 register in reg list one of 3 situations:
12537 1. Instruction is stmia, but without writeback.
12538 2. lmdia without writeback, but with Rn not in
12539 reglist.
12540 3. ldmia with writeback, but with Rn in reglist.
12541 Case 3 is UNPREDICTABLE behaviour, so we handle
12542 case 1 and 2 which can be converted into a 16-bit
12543 str or ldr. The SP cases are handled below. */
12544 unsigned long opcode;
12545 /* First, record an error for Case 3. */
12546 if (inst.operands[1].imm & mask
12547 && inst.operands[0].writeback)
12548 inst.error =
12549 _("having the base register in the register list when "
12550 "using write back is UNPREDICTABLE");
12551
12552 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12553 : T_MNEM_ldr);
12554 inst.instruction = THUMB_OP16 (opcode);
12555 inst.instruction |= inst.operands[0].reg << 3;
12556 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12557 narrow = TRUE;
12558 }
12559 }
12560 else if (inst.operands[0] .reg == REG_SP)
12561 {
12562 if (inst.operands[0].writeback)
12563 {
12564 inst.instruction =
12565 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12566 ? T_MNEM_push : T_MNEM_pop);
12567 inst.instruction |= inst.operands[1].imm;
12568 narrow = TRUE;
12569 }
12570 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12571 {
12572 inst.instruction =
12573 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12574 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12575 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12576 narrow = TRUE;
12577 }
12578 }
12579 }
12580
12581 if (!narrow)
12582 {
12583 if (inst.instruction < 0xffff)
12584 inst.instruction = THUMB_OP32 (inst.instruction);
12585
12586 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12587 inst.operands[1].imm,
12588 inst.operands[0].writeback);
12589 }
12590 }
12591 else
12592 {
12593 constraint (inst.operands[0].reg > 7
12594 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12595 constraint (inst.instruction != T_MNEM_ldmia
12596 && inst.instruction != T_MNEM_stmia,
12597 _("Thumb-2 instruction only valid in unified syntax"));
12598 if (inst.instruction == T_MNEM_stmia)
12599 {
12600 if (!inst.operands[0].writeback)
12601 as_warn (_("this instruction will write back the base register"));
12602 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12603 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12604 as_warn (_("value stored for r%d is UNKNOWN"),
12605 inst.operands[0].reg);
12606 }
12607 else
12608 {
12609 if (!inst.operands[0].writeback
12610 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12611 as_warn (_("this instruction will write back the base register"));
12612 else if (inst.operands[0].writeback
12613 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12614 as_warn (_("this instruction will not write back the base register"));
12615 }
12616
12617 inst.instruction = THUMB_OP16 (inst.instruction);
12618 inst.instruction |= inst.operands[0].reg << 8;
12619 inst.instruction |= inst.operands[1].imm;
12620 }
12621 }
12622
12623 static void
12624 do_t_ldrex (void)
12625 {
12626 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12627 || inst.operands[1].postind || inst.operands[1].writeback
12628 || inst.operands[1].immisreg || inst.operands[1].shifted
12629 || inst.operands[1].negative,
12630 BAD_ADDR_MODE);
12631
12632 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12633
12634 inst.instruction |= inst.operands[0].reg << 12;
12635 inst.instruction |= inst.operands[1].reg << 16;
12636 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12637 }
12638
12639 static void
12640 do_t_ldrexd (void)
12641 {
12642 if (!inst.operands[1].present)
12643 {
12644 constraint (inst.operands[0].reg == REG_LR,
12645 _("r14 not allowed as first register "
12646 "when second register is omitted"));
12647 inst.operands[1].reg = inst.operands[0].reg + 1;
12648 }
12649 constraint (inst.operands[0].reg == inst.operands[1].reg,
12650 BAD_OVERLAP);
12651
12652 inst.instruction |= inst.operands[0].reg << 12;
12653 inst.instruction |= inst.operands[1].reg << 8;
12654 inst.instruction |= inst.operands[2].reg << 16;
12655 }
12656
12657 static void
12658 do_t_ldst (void)
12659 {
12660 unsigned long opcode;
12661 int Rn;
12662
12663 if (inst.operands[0].isreg
12664 && !inst.operands[0].preind
12665 && inst.operands[0].reg == REG_PC)
12666 set_pred_insn_type_last ();
12667
12668 opcode = inst.instruction;
12669 if (unified_syntax)
12670 {
12671 if (!inst.operands[1].isreg)
12672 {
12673 if (opcode <= 0xffff)
12674 inst.instruction = THUMB_OP32 (opcode);
12675 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12676 return;
12677 }
12678 if (inst.operands[1].isreg
12679 && !inst.operands[1].writeback
12680 && !inst.operands[1].shifted && !inst.operands[1].postind
12681 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12682 && opcode <= 0xffff
12683 && inst.size_req != 4)
12684 {
12685 /* Insn may have a 16-bit form. */
12686 Rn = inst.operands[1].reg;
12687 if (inst.operands[1].immisreg)
12688 {
12689 inst.instruction = THUMB_OP16 (opcode);
12690 /* [Rn, Rik] */
12691 if (Rn <= 7 && inst.operands[1].imm <= 7)
12692 goto op16;
12693 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12694 reject_bad_reg (inst.operands[1].imm);
12695 }
12696 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12697 && opcode != T_MNEM_ldrsb)
12698 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12699 || (Rn == REG_SP && opcode == T_MNEM_str))
12700 {
12701 /* [Rn, #const] */
12702 if (Rn > 7)
12703 {
12704 if (Rn == REG_PC)
12705 {
12706 if (inst.relocs[0].pc_rel)
12707 opcode = T_MNEM_ldr_pc2;
12708 else
12709 opcode = T_MNEM_ldr_pc;
12710 }
12711 else
12712 {
12713 if (opcode == T_MNEM_ldr)
12714 opcode = T_MNEM_ldr_sp;
12715 else
12716 opcode = T_MNEM_str_sp;
12717 }
12718 inst.instruction = inst.operands[0].reg << 8;
12719 }
12720 else
12721 {
12722 inst.instruction = inst.operands[0].reg;
12723 inst.instruction |= inst.operands[1].reg << 3;
12724 }
12725 inst.instruction |= THUMB_OP16 (opcode);
12726 if (inst.size_req == 2)
12727 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12728 else
12729 inst.relax = opcode;
12730 return;
12731 }
12732 }
12733 /* Definitely a 32-bit variant. */
12734
12735 /* Warning for Erratum 752419. */
12736 if (opcode == T_MNEM_ldr
12737 && inst.operands[0].reg == REG_SP
12738 && inst.operands[1].writeback == 1
12739 && !inst.operands[1].immisreg)
12740 {
12741 if (no_cpu_selected ()
12742 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12743 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12744 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12745 as_warn (_("This instruction may be unpredictable "
12746 "if executed on M-profile cores "
12747 "with interrupts enabled."));
12748 }
12749
12750 /* Do some validations regarding addressing modes. */
12751 if (inst.operands[1].immisreg)
12752 reject_bad_reg (inst.operands[1].imm);
12753
12754 constraint (inst.operands[1].writeback == 1
12755 && inst.operands[0].reg == inst.operands[1].reg,
12756 BAD_OVERLAP);
12757
12758 inst.instruction = THUMB_OP32 (opcode);
12759 inst.instruction |= inst.operands[0].reg << 12;
12760 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12761 check_ldr_r15_aligned ();
12762 return;
12763 }
12764
12765 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12766
12767 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12768 {
12769 /* Only [Rn,Rm] is acceptable. */
12770 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12771 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12772 || inst.operands[1].postind || inst.operands[1].shifted
12773 || inst.operands[1].negative,
12774 _("Thumb does not support this addressing mode"));
12775 inst.instruction = THUMB_OP16 (inst.instruction);
12776 goto op16;
12777 }
12778
12779 inst.instruction = THUMB_OP16 (inst.instruction);
12780 if (!inst.operands[1].isreg)
12781 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12782 return;
12783
12784 constraint (!inst.operands[1].preind
12785 || inst.operands[1].shifted
12786 || inst.operands[1].writeback,
12787 _("Thumb does not support this addressing mode"));
12788 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12789 {
12790 constraint (inst.instruction & 0x0600,
12791 _("byte or halfword not valid for base register"));
12792 constraint (inst.operands[1].reg == REG_PC
12793 && !(inst.instruction & THUMB_LOAD_BIT),
12794 _("r15 based store not allowed"));
12795 constraint (inst.operands[1].immisreg,
12796 _("invalid base register for register offset"));
12797
12798 if (inst.operands[1].reg == REG_PC)
12799 inst.instruction = T_OPCODE_LDR_PC;
12800 else if (inst.instruction & THUMB_LOAD_BIT)
12801 inst.instruction = T_OPCODE_LDR_SP;
12802 else
12803 inst.instruction = T_OPCODE_STR_SP;
12804
12805 inst.instruction |= inst.operands[0].reg << 8;
12806 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12807 return;
12808 }
12809
12810 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12811 if (!inst.operands[1].immisreg)
12812 {
12813 /* Immediate offset. */
12814 inst.instruction |= inst.operands[0].reg;
12815 inst.instruction |= inst.operands[1].reg << 3;
12816 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12817 return;
12818 }
12819
12820 /* Register offset. */
12821 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12822 constraint (inst.operands[1].negative,
12823 _("Thumb does not support this addressing mode"));
12824
12825 op16:
12826 switch (inst.instruction)
12827 {
12828 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12829 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12830 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12831 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12832 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12833 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12834 case 0x5600 /* ldrsb */:
12835 case 0x5e00 /* ldrsh */: break;
12836 default: abort ();
12837 }
12838
12839 inst.instruction |= inst.operands[0].reg;
12840 inst.instruction |= inst.operands[1].reg << 3;
12841 inst.instruction |= inst.operands[1].imm << 6;
12842 }
12843
12844 static void
12845 do_t_ldstd (void)
12846 {
12847 if (!inst.operands[1].present)
12848 {
12849 inst.operands[1].reg = inst.operands[0].reg + 1;
12850 constraint (inst.operands[0].reg == REG_LR,
12851 _("r14 not allowed here"));
12852 constraint (inst.operands[0].reg == REG_R12,
12853 _("r12 not allowed here"));
12854 }
12855
12856 if (inst.operands[2].writeback
12857 && (inst.operands[0].reg == inst.operands[2].reg
12858 || inst.operands[1].reg == inst.operands[2].reg))
12859 as_warn (_("base register written back, and overlaps "
12860 "one of transfer registers"));
12861
12862 inst.instruction |= inst.operands[0].reg << 12;
12863 inst.instruction |= inst.operands[1].reg << 8;
12864 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12865 }
12866
12867 static void
12868 do_t_ldstt (void)
12869 {
12870 inst.instruction |= inst.operands[0].reg << 12;
12871 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12872 }
12873
12874 static void
12875 do_t_mla (void)
12876 {
12877 unsigned Rd, Rn, Rm, Ra;
12878
12879 Rd = inst.operands[0].reg;
12880 Rn = inst.operands[1].reg;
12881 Rm = inst.operands[2].reg;
12882 Ra = inst.operands[3].reg;
12883
12884 reject_bad_reg (Rd);
12885 reject_bad_reg (Rn);
12886 reject_bad_reg (Rm);
12887 reject_bad_reg (Ra);
12888
12889 inst.instruction |= Rd << 8;
12890 inst.instruction |= Rn << 16;
12891 inst.instruction |= Rm;
12892 inst.instruction |= Ra << 12;
12893 }
12894
12895 static void
12896 do_t_mlal (void)
12897 {
12898 unsigned RdLo, RdHi, Rn, Rm;
12899
12900 RdLo = inst.operands[0].reg;
12901 RdHi = inst.operands[1].reg;
12902 Rn = inst.operands[2].reg;
12903 Rm = inst.operands[3].reg;
12904
12905 reject_bad_reg (RdLo);
12906 reject_bad_reg (RdHi);
12907 reject_bad_reg (Rn);
12908 reject_bad_reg (Rm);
12909
12910 inst.instruction |= RdLo << 12;
12911 inst.instruction |= RdHi << 8;
12912 inst.instruction |= Rn << 16;
12913 inst.instruction |= Rm;
12914 }
12915
12916 static void
12917 do_t_mov_cmp (void)
12918 {
12919 unsigned Rn, Rm;
12920
12921 Rn = inst.operands[0].reg;
12922 Rm = inst.operands[1].reg;
12923
12924 if (Rn == REG_PC)
12925 set_pred_insn_type_last ();
12926
12927 if (unified_syntax)
12928 {
12929 int r0off = (inst.instruction == T_MNEM_mov
12930 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12931 unsigned long opcode;
12932 bfd_boolean narrow;
12933 bfd_boolean low_regs;
12934
12935 low_regs = (Rn <= 7 && Rm <= 7);
12936 opcode = inst.instruction;
12937 if (in_pred_block ())
12938 narrow = opcode != T_MNEM_movs;
12939 else
12940 narrow = opcode != T_MNEM_movs || low_regs;
12941 if (inst.size_req == 4
12942 || inst.operands[1].shifted)
12943 narrow = FALSE;
12944
12945 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12946 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12947 && !inst.operands[1].shifted
12948 && Rn == REG_PC
12949 && Rm == REG_LR)
12950 {
12951 inst.instruction = T2_SUBS_PC_LR;
12952 return;
12953 }
12954
12955 if (opcode == T_MNEM_cmp)
12956 {
12957 constraint (Rn == REG_PC, BAD_PC);
12958 if (narrow)
12959 {
12960 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12961 but valid. */
12962 warn_deprecated_sp (Rm);
12963 /* R15 was documented as a valid choice for Rm in ARMv6,
12964 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12965 tools reject R15, so we do too. */
12966 constraint (Rm == REG_PC, BAD_PC);
12967 }
12968 else
12969 reject_bad_reg (Rm);
12970 }
12971 else if (opcode == T_MNEM_mov
12972 || opcode == T_MNEM_movs)
12973 {
12974 if (inst.operands[1].isreg)
12975 {
12976 if (opcode == T_MNEM_movs)
12977 {
12978 reject_bad_reg (Rn);
12979 reject_bad_reg (Rm);
12980 }
12981 else if (narrow)
12982 {
12983 /* This is mov.n. */
12984 if ((Rn == REG_SP || Rn == REG_PC)
12985 && (Rm == REG_SP || Rm == REG_PC))
12986 {
12987 as_tsktsk (_("Use of r%u as a source register is "
12988 "deprecated when r%u is the destination "
12989 "register."), Rm, Rn);
12990 }
12991 }
12992 else
12993 {
12994 /* This is mov.w. */
12995 constraint (Rn == REG_PC, BAD_PC);
12996 constraint (Rm == REG_PC, BAD_PC);
12997 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12998 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12999 }
13000 }
13001 else
13002 reject_bad_reg (Rn);
13003 }
13004
13005 if (!inst.operands[1].isreg)
13006 {
13007 /* Immediate operand. */
13008 if (!in_pred_block () && opcode == T_MNEM_mov)
13009 narrow = 0;
13010 if (low_regs && narrow)
13011 {
13012 inst.instruction = THUMB_OP16 (opcode);
13013 inst.instruction |= Rn << 8;
13014 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
13015 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
13016 {
13017 if (inst.size_req == 2)
13018 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
13019 else
13020 inst.relax = opcode;
13021 }
13022 }
13023 else
13024 {
13025 constraint ((inst.relocs[0].type
13026 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
13027 && (inst.relocs[0].type
13028 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
13029 THUMB1_RELOC_ONLY);
13030
13031 inst.instruction = THUMB_OP32 (inst.instruction);
13032 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13033 inst.instruction |= Rn << r0off;
13034 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13035 }
13036 }
13037 else if (inst.operands[1].shifted && inst.operands[1].immisreg
13038 && (inst.instruction == T_MNEM_mov
13039 || inst.instruction == T_MNEM_movs))
13040 {
13041 /* Register shifts are encoded as separate shift instructions. */
13042 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
13043
13044 if (in_pred_block ())
13045 narrow = !flags;
13046 else
13047 narrow = flags;
13048
13049 if (inst.size_req == 4)
13050 narrow = FALSE;
13051
13052 if (!low_regs || inst.operands[1].imm > 7)
13053 narrow = FALSE;
13054
13055 if (Rn != Rm)
13056 narrow = FALSE;
13057
13058 switch (inst.operands[1].shift_kind)
13059 {
13060 case SHIFT_LSL:
13061 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
13062 break;
13063 case SHIFT_ASR:
13064 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
13065 break;
13066 case SHIFT_LSR:
13067 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
13068 break;
13069 case SHIFT_ROR:
13070 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
13071 break;
13072 default:
13073 abort ();
13074 }
13075
13076 inst.instruction = opcode;
13077 if (narrow)
13078 {
13079 inst.instruction |= Rn;
13080 inst.instruction |= inst.operands[1].imm << 3;
13081 }
13082 else
13083 {
13084 if (flags)
13085 inst.instruction |= CONDS_BIT;
13086
13087 inst.instruction |= Rn << 8;
13088 inst.instruction |= Rm << 16;
13089 inst.instruction |= inst.operands[1].imm;
13090 }
13091 }
13092 else if (!narrow)
13093 {
13094 /* Some mov with immediate shift have narrow variants.
13095 Register shifts are handled above. */
13096 if (low_regs && inst.operands[1].shifted
13097 && (inst.instruction == T_MNEM_mov
13098 || inst.instruction == T_MNEM_movs))
13099 {
13100 if (in_pred_block ())
13101 narrow = (inst.instruction == T_MNEM_mov);
13102 else
13103 narrow = (inst.instruction == T_MNEM_movs);
13104 }
13105
13106 if (narrow)
13107 {
13108 switch (inst.operands[1].shift_kind)
13109 {
13110 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13111 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13112 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13113 default: narrow = FALSE; break;
13114 }
13115 }
13116
13117 if (narrow)
13118 {
13119 inst.instruction |= Rn;
13120 inst.instruction |= Rm << 3;
13121 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13122 }
13123 else
13124 {
13125 inst.instruction = THUMB_OP32 (inst.instruction);
13126 inst.instruction |= Rn << r0off;
13127 encode_thumb32_shifted_operand (1);
13128 }
13129 }
13130 else
13131 switch (inst.instruction)
13132 {
13133 case T_MNEM_mov:
13134 /* In v4t or v5t a move of two lowregs produces unpredictable
13135 results. Don't allow this. */
13136 if (low_regs)
13137 {
13138 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
13139 "MOV Rd, Rs with two low registers is not "
13140 "permitted on this architecture");
13141 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
13142 arm_ext_v6);
13143 }
13144
13145 inst.instruction = T_OPCODE_MOV_HR;
13146 inst.instruction |= (Rn & 0x8) << 4;
13147 inst.instruction |= (Rn & 0x7);
13148 inst.instruction |= Rm << 3;
13149 break;
13150
13151 case T_MNEM_movs:
13152 /* We know we have low registers at this point.
13153 Generate LSLS Rd, Rs, #0. */
13154 inst.instruction = T_OPCODE_LSL_I;
13155 inst.instruction |= Rn;
13156 inst.instruction |= Rm << 3;
13157 break;
13158
13159 case T_MNEM_cmp:
13160 if (low_regs)
13161 {
13162 inst.instruction = T_OPCODE_CMP_LR;
13163 inst.instruction |= Rn;
13164 inst.instruction |= Rm << 3;
13165 }
13166 else
13167 {
13168 inst.instruction = T_OPCODE_CMP_HR;
13169 inst.instruction |= (Rn & 0x8) << 4;
13170 inst.instruction |= (Rn & 0x7);
13171 inst.instruction |= Rm << 3;
13172 }
13173 break;
13174 }
13175 return;
13176 }
13177
13178 inst.instruction = THUMB_OP16 (inst.instruction);
13179
13180 /* PR 10443: Do not silently ignore shifted operands. */
13181 constraint (inst.operands[1].shifted,
13182 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
13183
13184 if (inst.operands[1].isreg)
13185 {
13186 if (Rn < 8 && Rm < 8)
13187 {
13188 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
13189 since a MOV instruction produces unpredictable results. */
13190 if (inst.instruction == T_OPCODE_MOV_I8)
13191 inst.instruction = T_OPCODE_ADD_I3;
13192 else
13193 inst.instruction = T_OPCODE_CMP_LR;
13194
13195 inst.instruction |= Rn;
13196 inst.instruction |= Rm << 3;
13197 }
13198 else
13199 {
13200 if (inst.instruction == T_OPCODE_MOV_I8)
13201 inst.instruction = T_OPCODE_MOV_HR;
13202 else
13203 inst.instruction = T_OPCODE_CMP_HR;
13204 do_t_cpy ();
13205 }
13206 }
13207 else
13208 {
13209 constraint (Rn > 7,
13210 _("only lo regs allowed with immediate"));
13211 inst.instruction |= Rn << 8;
13212 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
13213 }
13214 }
13215
13216 static void
13217 do_t_mov16 (void)
13218 {
13219 unsigned Rd;
13220 bfd_vma imm;
13221 bfd_boolean top;
13222
13223 top = (inst.instruction & 0x00800000) != 0;
13224 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
13225 {
13226 constraint (top, _(":lower16: not allowed in this instruction"));
13227 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
13228 }
13229 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
13230 {
13231 constraint (!top, _(":upper16: not allowed in this instruction"));
13232 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
13233 }
13234
13235 Rd = inst.operands[0].reg;
13236 reject_bad_reg (Rd);
13237
13238 inst.instruction |= Rd << 8;
13239 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
13240 {
13241 imm = inst.relocs[0].exp.X_add_number;
13242 inst.instruction |= (imm & 0xf000) << 4;
13243 inst.instruction |= (imm & 0x0800) << 15;
13244 inst.instruction |= (imm & 0x0700) << 4;
13245 inst.instruction |= (imm & 0x00ff);
13246 }
13247 }
13248
13249 static void
13250 do_t_mvn_tst (void)
13251 {
13252 unsigned Rn, Rm;
13253
13254 Rn = inst.operands[0].reg;
13255 Rm = inst.operands[1].reg;
13256
13257 if (inst.instruction == T_MNEM_cmp
13258 || inst.instruction == T_MNEM_cmn)
13259 constraint (Rn == REG_PC, BAD_PC);
13260 else
13261 reject_bad_reg (Rn);
13262 reject_bad_reg (Rm);
13263
13264 if (unified_syntax)
13265 {
13266 int r0off = (inst.instruction == T_MNEM_mvn
13267 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
13268 bfd_boolean narrow;
13269
13270 if (inst.size_req == 4
13271 || inst.instruction > 0xffff
13272 || inst.operands[1].shifted
13273 || Rn > 7 || Rm > 7)
13274 narrow = FALSE;
13275 else if (inst.instruction == T_MNEM_cmn
13276 || inst.instruction == T_MNEM_tst)
13277 narrow = TRUE;
13278 else if (THUMB_SETS_FLAGS (inst.instruction))
13279 narrow = !in_pred_block ();
13280 else
13281 narrow = in_pred_block ();
13282
13283 if (!inst.operands[1].isreg)
13284 {
13285 /* For an immediate, we always generate a 32-bit opcode;
13286 section relaxation will shrink it later if possible. */
13287 if (inst.instruction < 0xffff)
13288 inst.instruction = THUMB_OP32 (inst.instruction);
13289 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13290 inst.instruction |= Rn << r0off;
13291 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13292 }
13293 else
13294 {
13295 /* See if we can do this with a 16-bit instruction. */
13296 if (narrow)
13297 {
13298 inst.instruction = THUMB_OP16 (inst.instruction);
13299 inst.instruction |= Rn;
13300 inst.instruction |= Rm << 3;
13301 }
13302 else
13303 {
13304 constraint (inst.operands[1].shifted
13305 && inst.operands[1].immisreg,
13306 _("shift must be constant"));
13307 if (inst.instruction < 0xffff)
13308 inst.instruction = THUMB_OP32 (inst.instruction);
13309 inst.instruction |= Rn << r0off;
13310 encode_thumb32_shifted_operand (1);
13311 }
13312 }
13313 }
13314 else
13315 {
13316 constraint (inst.instruction > 0xffff
13317 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
13318 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
13319 _("unshifted register required"));
13320 constraint (Rn > 7 || Rm > 7,
13321 BAD_HIREG);
13322
13323 inst.instruction = THUMB_OP16 (inst.instruction);
13324 inst.instruction |= Rn;
13325 inst.instruction |= Rm << 3;
13326 }
13327 }
13328
13329 static void
13330 do_t_mrs (void)
13331 {
13332 unsigned Rd;
13333
13334 if (do_vfp_nsyn_mrs () == SUCCESS)
13335 return;
13336
13337 Rd = inst.operands[0].reg;
13338 reject_bad_reg (Rd);
13339 inst.instruction |= Rd << 8;
13340
13341 if (inst.operands[1].isreg)
13342 {
13343 unsigned br = inst.operands[1].reg;
13344 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13345 as_bad (_("bad register for mrs"));
13346
13347 inst.instruction |= br & (0xf << 16);
13348 inst.instruction |= (br & 0x300) >> 4;
13349 inst.instruction |= (br & SPSR_BIT) >> 2;
13350 }
13351 else
13352 {
13353 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13354
13355 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13356 {
13357 /* PR gas/12698: The constraint is only applied for m_profile.
13358 If the user has specified -march=all, we want to ignore it as
13359 we are building for any CPU type, including non-m variants. */
13360 bfd_boolean m_profile =
13361 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13362 constraint ((flags != 0) && m_profile, _("selected processor does "
13363 "not support requested special purpose register"));
13364 }
13365 else
13366 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13367 devices). */
13368 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13369 _("'APSR', 'CPSR' or 'SPSR' expected"));
13370
13371 inst.instruction |= (flags & SPSR_BIT) >> 2;
13372 inst.instruction |= inst.operands[1].imm & 0xff;
13373 inst.instruction |= 0xf0000;
13374 }
13375 }
13376
13377 static void
13378 do_t_msr (void)
13379 {
13380 int flags;
13381 unsigned Rn;
13382
13383 if (do_vfp_nsyn_msr () == SUCCESS)
13384 return;
13385
13386 constraint (!inst.operands[1].isreg,
13387 _("Thumb encoding does not support an immediate here"));
13388
13389 if (inst.operands[0].isreg)
13390 flags = (int)(inst.operands[0].reg);
13391 else
13392 flags = inst.operands[0].imm;
13393
13394 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13395 {
13396 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13397
13398 /* PR gas/12698: The constraint is only applied for m_profile.
13399 If the user has specified -march=all, we want to ignore it as
13400 we are building for any CPU type, including non-m variants. */
13401 bfd_boolean m_profile =
13402 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13403 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13404 && (bits & ~(PSR_s | PSR_f)) != 0)
13405 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13406 && bits != PSR_f)) && m_profile,
13407 _("selected processor does not support requested special "
13408 "purpose register"));
13409 }
13410 else
13411 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13412 "requested special purpose register"));
13413
13414 Rn = inst.operands[1].reg;
13415 reject_bad_reg (Rn);
13416
13417 inst.instruction |= (flags & SPSR_BIT) >> 2;
13418 inst.instruction |= (flags & 0xf0000) >> 8;
13419 inst.instruction |= (flags & 0x300) >> 4;
13420 inst.instruction |= (flags & 0xff);
13421 inst.instruction |= Rn << 16;
13422 }
13423
13424 static void
13425 do_t_mul (void)
13426 {
13427 bfd_boolean narrow;
13428 unsigned Rd, Rn, Rm;
13429
13430 if (!inst.operands[2].present)
13431 inst.operands[2].reg = inst.operands[0].reg;
13432
13433 Rd = inst.operands[0].reg;
13434 Rn = inst.operands[1].reg;
13435 Rm = inst.operands[2].reg;
13436
13437 if (unified_syntax)
13438 {
13439 if (inst.size_req == 4
13440 || (Rd != Rn
13441 && Rd != Rm)
13442 || Rn > 7
13443 || Rm > 7)
13444 narrow = FALSE;
13445 else if (inst.instruction == T_MNEM_muls)
13446 narrow = !in_pred_block ();
13447 else
13448 narrow = in_pred_block ();
13449 }
13450 else
13451 {
13452 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13453 constraint (Rn > 7 || Rm > 7,
13454 BAD_HIREG);
13455 narrow = TRUE;
13456 }
13457
13458 if (narrow)
13459 {
13460 /* 16-bit MULS/Conditional MUL. */
13461 inst.instruction = THUMB_OP16 (inst.instruction);
13462 inst.instruction |= Rd;
13463
13464 if (Rd == Rn)
13465 inst.instruction |= Rm << 3;
13466 else if (Rd == Rm)
13467 inst.instruction |= Rn << 3;
13468 else
13469 constraint (1, _("dest must overlap one source register"));
13470 }
13471 else
13472 {
13473 constraint (inst.instruction != T_MNEM_mul,
13474 _("Thumb-2 MUL must not set flags"));
13475 /* 32-bit MUL. */
13476 inst.instruction = THUMB_OP32 (inst.instruction);
13477 inst.instruction |= Rd << 8;
13478 inst.instruction |= Rn << 16;
13479 inst.instruction |= Rm << 0;
13480
13481 reject_bad_reg (Rd);
13482 reject_bad_reg (Rn);
13483 reject_bad_reg (Rm);
13484 }
13485 }
13486
13487 static void
13488 do_t_mull (void)
13489 {
13490 unsigned RdLo, RdHi, Rn, Rm;
13491
13492 RdLo = inst.operands[0].reg;
13493 RdHi = inst.operands[1].reg;
13494 Rn = inst.operands[2].reg;
13495 Rm = inst.operands[3].reg;
13496
13497 reject_bad_reg (RdLo);
13498 reject_bad_reg (RdHi);
13499 reject_bad_reg (Rn);
13500 reject_bad_reg (Rm);
13501
13502 inst.instruction |= RdLo << 12;
13503 inst.instruction |= RdHi << 8;
13504 inst.instruction |= Rn << 16;
13505 inst.instruction |= Rm;
13506
13507 if (RdLo == RdHi)
13508 as_tsktsk (_("rdhi and rdlo must be different"));
13509 }
13510
13511 static void
13512 do_t_nop (void)
13513 {
13514 set_pred_insn_type (NEUTRAL_IT_INSN);
13515
13516 if (unified_syntax)
13517 {
13518 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13519 {
13520 inst.instruction = THUMB_OP32 (inst.instruction);
13521 inst.instruction |= inst.operands[0].imm;
13522 }
13523 else
13524 {
13525 /* PR9722: Check for Thumb2 availability before
13526 generating a thumb2 nop instruction. */
13527 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13528 {
13529 inst.instruction = THUMB_OP16 (inst.instruction);
13530 inst.instruction |= inst.operands[0].imm << 4;
13531 }
13532 else
13533 inst.instruction = 0x46c0;
13534 }
13535 }
13536 else
13537 {
13538 constraint (inst.operands[0].present,
13539 _("Thumb does not support NOP with hints"));
13540 inst.instruction = 0x46c0;
13541 }
13542 }
13543
13544 static void
13545 do_t_neg (void)
13546 {
13547 if (unified_syntax)
13548 {
13549 bfd_boolean narrow;
13550
13551 if (THUMB_SETS_FLAGS (inst.instruction))
13552 narrow = !in_pred_block ();
13553 else
13554 narrow = in_pred_block ();
13555 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13556 narrow = FALSE;
13557 if (inst.size_req == 4)
13558 narrow = FALSE;
13559
13560 if (!narrow)
13561 {
13562 inst.instruction = THUMB_OP32 (inst.instruction);
13563 inst.instruction |= inst.operands[0].reg << 8;
13564 inst.instruction |= inst.operands[1].reg << 16;
13565 }
13566 else
13567 {
13568 inst.instruction = THUMB_OP16 (inst.instruction);
13569 inst.instruction |= inst.operands[0].reg;
13570 inst.instruction |= inst.operands[1].reg << 3;
13571 }
13572 }
13573 else
13574 {
13575 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13576 BAD_HIREG);
13577 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13578
13579 inst.instruction = THUMB_OP16 (inst.instruction);
13580 inst.instruction |= inst.operands[0].reg;
13581 inst.instruction |= inst.operands[1].reg << 3;
13582 }
13583 }
13584
13585 static void
13586 do_t_orn (void)
13587 {
13588 unsigned Rd, Rn;
13589
13590 Rd = inst.operands[0].reg;
13591 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13592
13593 reject_bad_reg (Rd);
13594 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13595 reject_bad_reg (Rn);
13596
13597 inst.instruction |= Rd << 8;
13598 inst.instruction |= Rn << 16;
13599
13600 if (!inst.operands[2].isreg)
13601 {
13602 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13603 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13604 }
13605 else
13606 {
13607 unsigned Rm;
13608
13609 Rm = inst.operands[2].reg;
13610 reject_bad_reg (Rm);
13611
13612 constraint (inst.operands[2].shifted
13613 && inst.operands[2].immisreg,
13614 _("shift must be constant"));
13615 encode_thumb32_shifted_operand (2);
13616 }
13617 }
13618
13619 static void
13620 do_t_pkhbt (void)
13621 {
13622 unsigned Rd, Rn, Rm;
13623
13624 Rd = inst.operands[0].reg;
13625 Rn = inst.operands[1].reg;
13626 Rm = inst.operands[2].reg;
13627
13628 reject_bad_reg (Rd);
13629 reject_bad_reg (Rn);
13630 reject_bad_reg (Rm);
13631
13632 inst.instruction |= Rd << 8;
13633 inst.instruction |= Rn << 16;
13634 inst.instruction |= Rm;
13635 if (inst.operands[3].present)
13636 {
13637 unsigned int val = inst.relocs[0].exp.X_add_number;
13638 constraint (inst.relocs[0].exp.X_op != O_constant,
13639 _("expression too complex"));
13640 inst.instruction |= (val & 0x1c) << 10;
13641 inst.instruction |= (val & 0x03) << 6;
13642 }
13643 }
13644
13645 static void
13646 do_t_pkhtb (void)
13647 {
13648 if (!inst.operands[3].present)
13649 {
13650 unsigned Rtmp;
13651
13652 inst.instruction &= ~0x00000020;
13653
13654 /* PR 10168. Swap the Rm and Rn registers. */
13655 Rtmp = inst.operands[1].reg;
13656 inst.operands[1].reg = inst.operands[2].reg;
13657 inst.operands[2].reg = Rtmp;
13658 }
13659 do_t_pkhbt ();
13660 }
13661
13662 static void
13663 do_t_pld (void)
13664 {
13665 if (inst.operands[0].immisreg)
13666 reject_bad_reg (inst.operands[0].imm);
13667
13668 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13669 }
13670
13671 static void
13672 do_t_push_pop (void)
13673 {
13674 unsigned mask;
13675
13676 constraint (inst.operands[0].writeback,
13677 _("push/pop do not support {reglist}^"));
13678 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13679 _("expression too complex"));
13680
13681 mask = inst.operands[0].imm;
13682 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13683 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13684 else if (inst.size_req != 4
13685 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13686 ? REG_LR : REG_PC)))
13687 {
13688 inst.instruction = THUMB_OP16 (inst.instruction);
13689 inst.instruction |= THUMB_PP_PC_LR;
13690 inst.instruction |= mask & 0xff;
13691 }
13692 else if (unified_syntax)
13693 {
13694 inst.instruction = THUMB_OP32 (inst.instruction);
13695 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13696 }
13697 else
13698 {
13699 inst.error = _("invalid register list to push/pop instruction");
13700 return;
13701 }
13702 }
13703
13704 static void
13705 do_t_clrm (void)
13706 {
13707 if (unified_syntax)
13708 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13709 else
13710 {
13711 inst.error = _("invalid register list to push/pop instruction");
13712 return;
13713 }
13714 }
13715
13716 static void
13717 do_t_vscclrm (void)
13718 {
13719 if (inst.operands[0].issingle)
13720 {
13721 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13722 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13723 inst.instruction |= inst.operands[0].imm;
13724 }
13725 else
13726 {
13727 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13728 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13729 inst.instruction |= 1 << 8;
13730 inst.instruction |= inst.operands[0].imm << 1;
13731 }
13732 }
13733
13734 static void
13735 do_t_rbit (void)
13736 {
13737 unsigned Rd, Rm;
13738
13739 Rd = inst.operands[0].reg;
13740 Rm = inst.operands[1].reg;
13741
13742 reject_bad_reg (Rd);
13743 reject_bad_reg (Rm);
13744
13745 inst.instruction |= Rd << 8;
13746 inst.instruction |= Rm << 16;
13747 inst.instruction |= Rm;
13748 }
13749
13750 static void
13751 do_t_rev (void)
13752 {
13753 unsigned Rd, Rm;
13754
13755 Rd = inst.operands[0].reg;
13756 Rm = inst.operands[1].reg;
13757
13758 reject_bad_reg (Rd);
13759 reject_bad_reg (Rm);
13760
13761 if (Rd <= 7 && Rm <= 7
13762 && inst.size_req != 4)
13763 {
13764 inst.instruction = THUMB_OP16 (inst.instruction);
13765 inst.instruction |= Rd;
13766 inst.instruction |= Rm << 3;
13767 }
13768 else if (unified_syntax)
13769 {
13770 inst.instruction = THUMB_OP32 (inst.instruction);
13771 inst.instruction |= Rd << 8;
13772 inst.instruction |= Rm << 16;
13773 inst.instruction |= Rm;
13774 }
13775 else
13776 inst.error = BAD_HIREG;
13777 }
13778
13779 static void
13780 do_t_rrx (void)
13781 {
13782 unsigned Rd, Rm;
13783
13784 Rd = inst.operands[0].reg;
13785 Rm = inst.operands[1].reg;
13786
13787 reject_bad_reg (Rd);
13788 reject_bad_reg (Rm);
13789
13790 inst.instruction |= Rd << 8;
13791 inst.instruction |= Rm;
13792 }
13793
13794 static void
13795 do_t_rsb (void)
13796 {
13797 unsigned Rd, Rs;
13798
13799 Rd = inst.operands[0].reg;
13800 Rs = (inst.operands[1].present
13801 ? inst.operands[1].reg /* Rd, Rs, foo */
13802 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13803
13804 reject_bad_reg (Rd);
13805 reject_bad_reg (Rs);
13806 if (inst.operands[2].isreg)
13807 reject_bad_reg (inst.operands[2].reg);
13808
13809 inst.instruction |= Rd << 8;
13810 inst.instruction |= Rs << 16;
13811 if (!inst.operands[2].isreg)
13812 {
13813 bfd_boolean narrow;
13814
13815 if ((inst.instruction & 0x00100000) != 0)
13816 narrow = !in_pred_block ();
13817 else
13818 narrow = in_pred_block ();
13819
13820 if (Rd > 7 || Rs > 7)
13821 narrow = FALSE;
13822
13823 if (inst.size_req == 4 || !unified_syntax)
13824 narrow = FALSE;
13825
13826 if (inst.relocs[0].exp.X_op != O_constant
13827 || inst.relocs[0].exp.X_add_number != 0)
13828 narrow = FALSE;
13829
13830 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13831 relaxation, but it doesn't seem worth the hassle. */
13832 if (narrow)
13833 {
13834 inst.relocs[0].type = BFD_RELOC_UNUSED;
13835 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13836 inst.instruction |= Rs << 3;
13837 inst.instruction |= Rd;
13838 }
13839 else
13840 {
13841 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13842 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13843 }
13844 }
13845 else
13846 encode_thumb32_shifted_operand (2);
13847 }
13848
13849 static void
13850 do_t_setend (void)
13851 {
13852 if (warn_on_deprecated
13853 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13854 as_tsktsk (_("setend use is deprecated for ARMv8"));
13855
13856 set_pred_insn_type (OUTSIDE_PRED_INSN);
13857 if (inst.operands[0].imm)
13858 inst.instruction |= 0x8;
13859 }
13860
13861 static void
13862 do_t_shift (void)
13863 {
13864 if (!inst.operands[1].present)
13865 inst.operands[1].reg = inst.operands[0].reg;
13866
13867 if (unified_syntax)
13868 {
13869 bfd_boolean narrow;
13870 int shift_kind;
13871
13872 switch (inst.instruction)
13873 {
13874 case T_MNEM_asr:
13875 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13876 case T_MNEM_lsl:
13877 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13878 case T_MNEM_lsr:
13879 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13880 case T_MNEM_ror:
13881 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13882 default: abort ();
13883 }
13884
13885 if (THUMB_SETS_FLAGS (inst.instruction))
13886 narrow = !in_pred_block ();
13887 else
13888 narrow = in_pred_block ();
13889 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13890 narrow = FALSE;
13891 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13892 narrow = FALSE;
13893 if (inst.operands[2].isreg
13894 && (inst.operands[1].reg != inst.operands[0].reg
13895 || inst.operands[2].reg > 7))
13896 narrow = FALSE;
13897 if (inst.size_req == 4)
13898 narrow = FALSE;
13899
13900 reject_bad_reg (inst.operands[0].reg);
13901 reject_bad_reg (inst.operands[1].reg);
13902
13903 if (!narrow)
13904 {
13905 if (inst.operands[2].isreg)
13906 {
13907 reject_bad_reg (inst.operands[2].reg);
13908 inst.instruction = THUMB_OP32 (inst.instruction);
13909 inst.instruction |= inst.operands[0].reg << 8;
13910 inst.instruction |= inst.operands[1].reg << 16;
13911 inst.instruction |= inst.operands[2].reg;
13912
13913 /* PR 12854: Error on extraneous shifts. */
13914 constraint (inst.operands[2].shifted,
13915 _("extraneous shift as part of operand to shift insn"));
13916 }
13917 else
13918 {
13919 inst.operands[1].shifted = 1;
13920 inst.operands[1].shift_kind = shift_kind;
13921 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13922 ? T_MNEM_movs : T_MNEM_mov);
13923 inst.instruction |= inst.operands[0].reg << 8;
13924 encode_thumb32_shifted_operand (1);
13925 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13926 inst.relocs[0].type = BFD_RELOC_UNUSED;
13927 }
13928 }
13929 else
13930 {
13931 if (inst.operands[2].isreg)
13932 {
13933 switch (shift_kind)
13934 {
13935 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13936 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13937 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13938 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13939 default: abort ();
13940 }
13941
13942 inst.instruction |= inst.operands[0].reg;
13943 inst.instruction |= inst.operands[2].reg << 3;
13944
13945 /* PR 12854: Error on extraneous shifts. */
13946 constraint (inst.operands[2].shifted,
13947 _("extraneous shift as part of operand to shift insn"));
13948 }
13949 else
13950 {
13951 switch (shift_kind)
13952 {
13953 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13954 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13955 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13956 default: abort ();
13957 }
13958 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13959 inst.instruction |= inst.operands[0].reg;
13960 inst.instruction |= inst.operands[1].reg << 3;
13961 }
13962 }
13963 }
13964 else
13965 {
13966 constraint (inst.operands[0].reg > 7
13967 || inst.operands[1].reg > 7, BAD_HIREG);
13968 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13969
13970 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13971 {
13972 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13973 constraint (inst.operands[0].reg != inst.operands[1].reg,
13974 _("source1 and dest must be same register"));
13975
13976 switch (inst.instruction)
13977 {
13978 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13979 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13980 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13981 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13982 default: abort ();
13983 }
13984
13985 inst.instruction |= inst.operands[0].reg;
13986 inst.instruction |= inst.operands[2].reg << 3;
13987
13988 /* PR 12854: Error on extraneous shifts. */
13989 constraint (inst.operands[2].shifted,
13990 _("extraneous shift as part of operand to shift insn"));
13991 }
13992 else
13993 {
13994 switch (inst.instruction)
13995 {
13996 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13997 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13998 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13999 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
14000 default: abort ();
14001 }
14002 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
14003 inst.instruction |= inst.operands[0].reg;
14004 inst.instruction |= inst.operands[1].reg << 3;
14005 }
14006 }
14007 }
14008
14009 static void
14010 do_t_simd (void)
14011 {
14012 unsigned Rd, Rn, Rm;
14013
14014 Rd = inst.operands[0].reg;
14015 Rn = inst.operands[1].reg;
14016 Rm = inst.operands[2].reg;
14017
14018 reject_bad_reg (Rd);
14019 reject_bad_reg (Rn);
14020 reject_bad_reg (Rm);
14021
14022 inst.instruction |= Rd << 8;
14023 inst.instruction |= Rn << 16;
14024 inst.instruction |= Rm;
14025 }
14026
14027 static void
14028 do_t_simd2 (void)
14029 {
14030 unsigned Rd, Rn, Rm;
14031
14032 Rd = inst.operands[0].reg;
14033 Rm = inst.operands[1].reg;
14034 Rn = inst.operands[2].reg;
14035
14036 reject_bad_reg (Rd);
14037 reject_bad_reg (Rn);
14038 reject_bad_reg (Rm);
14039
14040 inst.instruction |= Rd << 8;
14041 inst.instruction |= Rn << 16;
14042 inst.instruction |= Rm;
14043 }
14044
14045 static void
14046 do_t_smc (void)
14047 {
14048 unsigned int value = inst.relocs[0].exp.X_add_number;
14049 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
14050 _("SMC is not permitted on this architecture"));
14051 constraint (inst.relocs[0].exp.X_op != O_constant,
14052 _("expression too complex"));
14053 constraint (value > 0xf, _("immediate too large (bigger than 0xF)"));
14054
14055 inst.relocs[0].type = BFD_RELOC_UNUSED;
14056 inst.instruction |= (value & 0x000f) << 16;
14057
14058 /* PR gas/15623: SMC instructions must be last in an IT block. */
14059 set_pred_insn_type_last ();
14060 }
14061
14062 static void
14063 do_t_hvc (void)
14064 {
14065 unsigned int value = inst.relocs[0].exp.X_add_number;
14066
14067 inst.relocs[0].type = BFD_RELOC_UNUSED;
14068 inst.instruction |= (value & 0x0fff);
14069 inst.instruction |= (value & 0xf000) << 4;
14070 }
14071
14072 static void
14073 do_t_ssat_usat (int bias)
14074 {
14075 unsigned Rd, Rn;
14076
14077 Rd = inst.operands[0].reg;
14078 Rn = inst.operands[2].reg;
14079
14080 reject_bad_reg (Rd);
14081 reject_bad_reg (Rn);
14082
14083 inst.instruction |= Rd << 8;
14084 inst.instruction |= inst.operands[1].imm - bias;
14085 inst.instruction |= Rn << 16;
14086
14087 if (inst.operands[3].present)
14088 {
14089 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
14090
14091 inst.relocs[0].type = BFD_RELOC_UNUSED;
14092
14093 constraint (inst.relocs[0].exp.X_op != O_constant,
14094 _("expression too complex"));
14095
14096 if (shift_amount != 0)
14097 {
14098 constraint (shift_amount > 31,
14099 _("shift expression is too large"));
14100
14101 if (inst.operands[3].shift_kind == SHIFT_ASR)
14102 inst.instruction |= 0x00200000; /* sh bit. */
14103
14104 inst.instruction |= (shift_amount & 0x1c) << 10;
14105 inst.instruction |= (shift_amount & 0x03) << 6;
14106 }
14107 }
14108 }
14109
14110 static void
14111 do_t_ssat (void)
14112 {
14113 do_t_ssat_usat (1);
14114 }
14115
14116 static void
14117 do_t_ssat16 (void)
14118 {
14119 unsigned Rd, Rn;
14120
14121 Rd = inst.operands[0].reg;
14122 Rn = inst.operands[2].reg;
14123
14124 reject_bad_reg (Rd);
14125 reject_bad_reg (Rn);
14126
14127 inst.instruction |= Rd << 8;
14128 inst.instruction |= inst.operands[1].imm - 1;
14129 inst.instruction |= Rn << 16;
14130 }
14131
14132 static void
14133 do_t_strex (void)
14134 {
14135 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
14136 || inst.operands[2].postind || inst.operands[2].writeback
14137 || inst.operands[2].immisreg || inst.operands[2].shifted
14138 || inst.operands[2].negative,
14139 BAD_ADDR_MODE);
14140
14141 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
14142
14143 inst.instruction |= inst.operands[0].reg << 8;
14144 inst.instruction |= inst.operands[1].reg << 12;
14145 inst.instruction |= inst.operands[2].reg << 16;
14146 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
14147 }
14148
14149 static void
14150 do_t_strexd (void)
14151 {
14152 if (!inst.operands[2].present)
14153 inst.operands[2].reg = inst.operands[1].reg + 1;
14154
14155 constraint (inst.operands[0].reg == inst.operands[1].reg
14156 || inst.operands[0].reg == inst.operands[2].reg
14157 || inst.operands[0].reg == inst.operands[3].reg,
14158 BAD_OVERLAP);
14159
14160 inst.instruction |= inst.operands[0].reg;
14161 inst.instruction |= inst.operands[1].reg << 12;
14162 inst.instruction |= inst.operands[2].reg << 8;
14163 inst.instruction |= inst.operands[3].reg << 16;
14164 }
14165
14166 static void
14167 do_t_sxtah (void)
14168 {
14169 unsigned Rd, Rn, Rm;
14170
14171 Rd = inst.operands[0].reg;
14172 Rn = inst.operands[1].reg;
14173 Rm = inst.operands[2].reg;
14174
14175 reject_bad_reg (Rd);
14176 reject_bad_reg (Rn);
14177 reject_bad_reg (Rm);
14178
14179 inst.instruction |= Rd << 8;
14180 inst.instruction |= Rn << 16;
14181 inst.instruction |= Rm;
14182 inst.instruction |= inst.operands[3].imm << 4;
14183 }
14184
14185 static void
14186 do_t_sxth (void)
14187 {
14188 unsigned Rd, Rm;
14189
14190 Rd = inst.operands[0].reg;
14191 Rm = inst.operands[1].reg;
14192
14193 reject_bad_reg (Rd);
14194 reject_bad_reg (Rm);
14195
14196 if (inst.instruction <= 0xffff
14197 && inst.size_req != 4
14198 && Rd <= 7 && Rm <= 7
14199 && (!inst.operands[2].present || inst.operands[2].imm == 0))
14200 {
14201 inst.instruction = THUMB_OP16 (inst.instruction);
14202 inst.instruction |= Rd;
14203 inst.instruction |= Rm << 3;
14204 }
14205 else if (unified_syntax)
14206 {
14207 if (inst.instruction <= 0xffff)
14208 inst.instruction = THUMB_OP32 (inst.instruction);
14209 inst.instruction |= Rd << 8;
14210 inst.instruction |= Rm;
14211 inst.instruction |= inst.operands[2].imm << 4;
14212 }
14213 else
14214 {
14215 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
14216 _("Thumb encoding does not support rotation"));
14217 constraint (1, BAD_HIREG);
14218 }
14219 }
14220
14221 static void
14222 do_t_swi (void)
14223 {
14224 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
14225 }
14226
14227 static void
14228 do_t_tb (void)
14229 {
14230 unsigned Rn, Rm;
14231 int half;
14232
14233 half = (inst.instruction & 0x10) != 0;
14234 set_pred_insn_type_last ();
14235 constraint (inst.operands[0].immisreg,
14236 _("instruction requires register index"));
14237
14238 Rn = inst.operands[0].reg;
14239 Rm = inst.operands[0].imm;
14240
14241 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
14242 constraint (Rn == REG_SP, BAD_SP);
14243 reject_bad_reg (Rm);
14244
14245 constraint (!half && inst.operands[0].shifted,
14246 _("instruction does not allow shifted index"));
14247 inst.instruction |= (Rn << 16) | Rm;
14248 }
14249
14250 static void
14251 do_t_udf (void)
14252 {
14253 if (!inst.operands[0].present)
14254 inst.operands[0].imm = 0;
14255
14256 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
14257 {
14258 constraint (inst.size_req == 2,
14259 _("immediate value out of range"));
14260 inst.instruction = THUMB_OP32 (inst.instruction);
14261 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
14262 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
14263 }
14264 else
14265 {
14266 inst.instruction = THUMB_OP16 (inst.instruction);
14267 inst.instruction |= inst.operands[0].imm;
14268 }
14269
14270 set_pred_insn_type (NEUTRAL_IT_INSN);
14271 }
14272
14273
14274 static void
14275 do_t_usat (void)
14276 {
14277 do_t_ssat_usat (0);
14278 }
14279
14280 static void
14281 do_t_usat16 (void)
14282 {
14283 unsigned Rd, Rn;
14284
14285 Rd = inst.operands[0].reg;
14286 Rn = inst.operands[2].reg;
14287
14288 reject_bad_reg (Rd);
14289 reject_bad_reg (Rn);
14290
14291 inst.instruction |= Rd << 8;
14292 inst.instruction |= inst.operands[1].imm;
14293 inst.instruction |= Rn << 16;
14294 }
14295
14296 /* Checking the range of the branch offset (VAL) with NBITS bits
14297 and IS_SIGNED signedness. Also checks the LSB to be 0. */
14298 static int
14299 v8_1_branch_value_check (int val, int nbits, int is_signed)
14300 {
14301 gas_assert (nbits > 0 && nbits <= 32);
14302 if (is_signed)
14303 {
14304 int cmp = (1 << (nbits - 1));
14305 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
14306 return FAIL;
14307 }
14308 else
14309 {
14310 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
14311 return FAIL;
14312 }
14313 return SUCCESS;
14314 }
14315
14316 /* For branches in Armv8.1-M Mainline. */
14317 static void
14318 do_t_branch_future (void)
14319 {
14320 unsigned long insn = inst.instruction;
14321
14322 inst.instruction = THUMB_OP32 (inst.instruction);
14323 if (inst.operands[0].hasreloc == 0)
14324 {
14325 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
14326 as_bad (BAD_BRANCH_OFF);
14327
14328 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
14329 }
14330 else
14331 {
14332 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
14333 inst.relocs[0].pc_rel = 1;
14334 }
14335
14336 switch (insn)
14337 {
14338 case T_MNEM_bf:
14339 if (inst.operands[1].hasreloc == 0)
14340 {
14341 int val = inst.operands[1].imm;
14342 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14343 as_bad (BAD_BRANCH_OFF);
14344
14345 int immA = (val & 0x0001f000) >> 12;
14346 int immB = (val & 0x00000ffc) >> 2;
14347 int immC = (val & 0x00000002) >> 1;
14348 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14349 }
14350 else
14351 {
14352 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14353 inst.relocs[1].pc_rel = 1;
14354 }
14355 break;
14356
14357 case T_MNEM_bfl:
14358 if (inst.operands[1].hasreloc == 0)
14359 {
14360 int val = inst.operands[1].imm;
14361 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14362 as_bad (BAD_BRANCH_OFF);
14363
14364 int immA = (val & 0x0007f000) >> 12;
14365 int immB = (val & 0x00000ffc) >> 2;
14366 int immC = (val & 0x00000002) >> 1;
14367 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14368 }
14369 else
14370 {
14371 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14372 inst.relocs[1].pc_rel = 1;
14373 }
14374 break;
14375
14376 case T_MNEM_bfcsel:
14377 /* Operand 1. */
14378 if (inst.operands[1].hasreloc == 0)
14379 {
14380 int val = inst.operands[1].imm;
14381 int immA = (val & 0x00001000) >> 12;
14382 int immB = (val & 0x00000ffc) >> 2;
14383 int immC = (val & 0x00000002) >> 1;
14384 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14385 }
14386 else
14387 {
14388 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14389 inst.relocs[1].pc_rel = 1;
14390 }
14391
14392 /* Operand 2. */
14393 if (inst.operands[2].hasreloc == 0)
14394 {
14395 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14396 int val2 = inst.operands[2].imm;
14397 int val0 = inst.operands[0].imm & 0x1f;
14398 int diff = val2 - val0;
14399 if (diff == 4)
14400 inst.instruction |= 1 << 17; /* T bit. */
14401 else if (diff != 2)
14402 as_bad (_("out of range label-relative fixup value"));
14403 }
14404 else
14405 {
14406 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14407 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14408 inst.relocs[2].pc_rel = 1;
14409 }
14410
14411 /* Operand 3. */
14412 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14413 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14414 break;
14415
14416 case T_MNEM_bfx:
14417 case T_MNEM_bflx:
14418 inst.instruction |= inst.operands[1].reg << 16;
14419 break;
14420
14421 default: abort ();
14422 }
14423 }
14424
14425 /* Helper function for do_t_loloop to handle relocations. */
14426 static void
14427 v8_1_loop_reloc (int is_le)
14428 {
14429 if (inst.relocs[0].exp.X_op == O_constant)
14430 {
14431 int value = inst.relocs[0].exp.X_add_number;
14432 value = (is_le) ? -value : value;
14433
14434 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14435 as_bad (BAD_BRANCH_OFF);
14436
14437 int imml, immh;
14438
14439 immh = (value & 0x00000ffc) >> 2;
14440 imml = (value & 0x00000002) >> 1;
14441
14442 inst.instruction |= (imml << 11) | (immh << 1);
14443 }
14444 else
14445 {
14446 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14447 inst.relocs[0].pc_rel = 1;
14448 }
14449 }
14450
14451 /* For shifts with four operands in MVE. */
14452 static void
14453 do_mve_scalar_shift1 (void)
14454 {
14455 unsigned int value = inst.operands[2].imm;
14456
14457 inst.instruction |= inst.operands[0].reg << 16;
14458 inst.instruction |= inst.operands[1].reg << 8;
14459
14460 /* Setting the bit for saturation. */
14461 inst.instruction |= ((value == 64) ? 0: 1) << 7;
14462
14463 /* Assuming Rm is already checked not to be 11x1. */
14464 constraint (inst.operands[3].reg == inst.operands[0].reg, BAD_OVERLAP);
14465 constraint (inst.operands[3].reg == inst.operands[1].reg, BAD_OVERLAP);
14466 inst.instruction |= inst.operands[3].reg << 12;
14467 }
14468
14469 /* For shifts in MVE. */
14470 static void
14471 do_mve_scalar_shift (void)
14472 {
14473 if (!inst.operands[2].present)
14474 {
14475 inst.operands[2] = inst.operands[1];
14476 inst.operands[1].reg = 0xf;
14477 }
14478
14479 inst.instruction |= inst.operands[0].reg << 16;
14480 inst.instruction |= inst.operands[1].reg << 8;
14481
14482 if (inst.operands[2].isreg)
14483 {
14484 /* Assuming Rm is already checked not to be 11x1. */
14485 constraint (inst.operands[2].reg == inst.operands[0].reg, BAD_OVERLAP);
14486 constraint (inst.operands[2].reg == inst.operands[1].reg, BAD_OVERLAP);
14487 inst.instruction |= inst.operands[2].reg << 12;
14488 }
14489 else
14490 {
14491 /* Assuming imm is already checked as [1,32]. */
14492 unsigned int value = inst.operands[2].imm;
14493 inst.instruction |= (value & 0x1c) << 10;
14494 inst.instruction |= (value & 0x03) << 6;
14495 /* Change last 4 bits from 0xd to 0xf. */
14496 inst.instruction |= 0x2;
14497 }
14498 }
14499
14500 /* MVE instruction encoder helpers. */
14501 #define M_MNEM_vabav 0xee800f01
14502 #define M_MNEM_vmladav 0xeef00e00
14503 #define M_MNEM_vmladava 0xeef00e20
14504 #define M_MNEM_vmladavx 0xeef01e00
14505 #define M_MNEM_vmladavax 0xeef01e20
14506 #define M_MNEM_vmlsdav 0xeef00e01
14507 #define M_MNEM_vmlsdava 0xeef00e21
14508 #define M_MNEM_vmlsdavx 0xeef01e01
14509 #define M_MNEM_vmlsdavax 0xeef01e21
14510 #define M_MNEM_vmullt 0xee011e00
14511 #define M_MNEM_vmullb 0xee010e00
14512 #define M_MNEM_vctp 0xf000e801
14513 #define M_MNEM_vst20 0xfc801e00
14514 #define M_MNEM_vst21 0xfc801e20
14515 #define M_MNEM_vst40 0xfc801e01
14516 #define M_MNEM_vst41 0xfc801e21
14517 #define M_MNEM_vst42 0xfc801e41
14518 #define M_MNEM_vst43 0xfc801e61
14519 #define M_MNEM_vld20 0xfc901e00
14520 #define M_MNEM_vld21 0xfc901e20
14521 #define M_MNEM_vld40 0xfc901e01
14522 #define M_MNEM_vld41 0xfc901e21
14523 #define M_MNEM_vld42 0xfc901e41
14524 #define M_MNEM_vld43 0xfc901e61
14525 #define M_MNEM_vstrb 0xec000e00
14526 #define M_MNEM_vstrh 0xec000e10
14527 #define M_MNEM_vstrw 0xec000e40
14528 #define M_MNEM_vstrd 0xec000e50
14529 #define M_MNEM_vldrb 0xec100e00
14530 #define M_MNEM_vldrh 0xec100e10
14531 #define M_MNEM_vldrw 0xec100e40
14532 #define M_MNEM_vldrd 0xec100e50
14533 #define M_MNEM_vmovlt 0xeea01f40
14534 #define M_MNEM_vmovlb 0xeea00f40
14535 #define M_MNEM_vmovnt 0xfe311e81
14536 #define M_MNEM_vmovnb 0xfe310e81
14537 #define M_MNEM_vadc 0xee300f00
14538 #define M_MNEM_vadci 0xee301f00
14539 #define M_MNEM_vbrsr 0xfe011e60
14540 #define M_MNEM_vaddlv 0xee890f00
14541 #define M_MNEM_vaddlva 0xee890f20
14542 #define M_MNEM_vaddv 0xeef10f00
14543 #define M_MNEM_vaddva 0xeef10f20
14544 #define M_MNEM_vddup 0xee011f6e
14545 #define M_MNEM_vdwdup 0xee011f60
14546 #define M_MNEM_vidup 0xee010f6e
14547 #define M_MNEM_viwdup 0xee010f60
14548 #define M_MNEM_vmaxv 0xeee20f00
14549 #define M_MNEM_vmaxav 0xeee00f00
14550 #define M_MNEM_vminv 0xeee20f80
14551 #define M_MNEM_vminav 0xeee00f80
14552 #define M_MNEM_vmlaldav 0xee800e00
14553 #define M_MNEM_vmlaldava 0xee800e20
14554 #define M_MNEM_vmlaldavx 0xee801e00
14555 #define M_MNEM_vmlaldavax 0xee801e20
14556 #define M_MNEM_vmlsldav 0xee800e01
14557 #define M_MNEM_vmlsldava 0xee800e21
14558 #define M_MNEM_vmlsldavx 0xee801e01
14559 #define M_MNEM_vmlsldavax 0xee801e21
14560 #define M_MNEM_vrmlaldavhx 0xee801f00
14561 #define M_MNEM_vrmlaldavhax 0xee801f20
14562 #define M_MNEM_vrmlsldavh 0xfe800e01
14563 #define M_MNEM_vrmlsldavha 0xfe800e21
14564 #define M_MNEM_vrmlsldavhx 0xfe801e01
14565 #define M_MNEM_vrmlsldavhax 0xfe801e21
14566 #define M_MNEM_vqmovnt 0xee331e01
14567 #define M_MNEM_vqmovnb 0xee330e01
14568 #define M_MNEM_vqmovunt 0xee311e81
14569 #define M_MNEM_vqmovunb 0xee310e81
14570 #define M_MNEM_vshrnt 0xee801fc1
14571 #define M_MNEM_vshrnb 0xee800fc1
14572 #define M_MNEM_vrshrnt 0xfe801fc1
14573 #define M_MNEM_vqshrnt 0xee801f40
14574 #define M_MNEM_vqshrnb 0xee800f40
14575 #define M_MNEM_vqshrunt 0xee801fc0
14576 #define M_MNEM_vqshrunb 0xee800fc0
14577 #define M_MNEM_vrshrnb 0xfe800fc1
14578 #define M_MNEM_vqrshrnt 0xee801f41
14579 #define M_MNEM_vqrshrnb 0xee800f41
14580 #define M_MNEM_vqrshrunt 0xfe801fc0
14581 #define M_MNEM_vqrshrunb 0xfe800fc0
14582
14583 /* Bfloat16 instruction encoder helpers. */
14584 #define B_MNEM_vfmat 0xfc300850
14585 #define B_MNEM_vfmab 0xfc300810
14586
14587 /* Neon instruction encoder helpers. */
14588
14589 /* Encodings for the different types for various Neon opcodes. */
14590
14591 /* An "invalid" code for the following tables. */
14592 #define N_INV -1u
14593
14594 struct neon_tab_entry
14595 {
14596 unsigned integer;
14597 unsigned float_or_poly;
14598 unsigned scalar_or_imm;
14599 };
14600
14601 /* Map overloaded Neon opcodes to their respective encodings. */
14602 #define NEON_ENC_TAB \
14603 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14604 X(vabdl, 0x0800700, N_INV, N_INV), \
14605 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14606 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14607 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14608 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14609 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14610 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14611 X(vaddl, 0x0800000, N_INV, N_INV), \
14612 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14613 X(vsubl, 0x0800200, N_INV, N_INV), \
14614 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14615 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14616 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14617 /* Register variants of the following two instructions are encoded as
14618 vcge / vcgt with the operands reversed. */ \
14619 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14620 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14621 X(vfma, N_INV, 0x0000c10, N_INV), \
14622 X(vfms, N_INV, 0x0200c10, N_INV), \
14623 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14624 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14625 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14626 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14627 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14628 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14629 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14630 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14631 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14632 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14633 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14634 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14635 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14636 X(vshl, 0x0000400, N_INV, 0x0800510), \
14637 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14638 X(vand, 0x0000110, N_INV, 0x0800030), \
14639 X(vbic, 0x0100110, N_INV, 0x0800030), \
14640 X(veor, 0x1000110, N_INV, N_INV), \
14641 X(vorn, 0x0300110, N_INV, 0x0800010), \
14642 X(vorr, 0x0200110, N_INV, 0x0800010), \
14643 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14644 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14645 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14646 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14647 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14648 X(vst1, 0x0000000, 0x0800000, N_INV), \
14649 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14650 X(vst2, 0x0000100, 0x0800100, N_INV), \
14651 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14652 X(vst3, 0x0000200, 0x0800200, N_INV), \
14653 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14654 X(vst4, 0x0000300, 0x0800300, N_INV), \
14655 X(vmovn, 0x1b20200, N_INV, N_INV), \
14656 X(vtrn, 0x1b20080, N_INV, N_INV), \
14657 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14658 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14659 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14660 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14661 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14662 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14663 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14664 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14665 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14666 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14667 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14668 X(vseleq, 0xe000a00, N_INV, N_INV), \
14669 X(vselvs, 0xe100a00, N_INV, N_INV), \
14670 X(vselge, 0xe200a00, N_INV, N_INV), \
14671 X(vselgt, 0xe300a00, N_INV, N_INV), \
14672 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14673 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14674 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14675 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14676 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14677 X(aes, 0x3b00300, N_INV, N_INV), \
14678 X(sha3op, 0x2000c00, N_INV, N_INV), \
14679 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14680 X(sha2op, 0x3ba0380, N_INV, N_INV)
14681
14682 enum neon_opc
14683 {
14684 #define X(OPC,I,F,S) N_MNEM_##OPC
14685 NEON_ENC_TAB
14686 #undef X
14687 };
14688
14689 static const struct neon_tab_entry neon_enc_tab[] =
14690 {
14691 #define X(OPC,I,F,S) { (I), (F), (S) }
14692 NEON_ENC_TAB
14693 #undef X
14694 };
14695
14696 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14697 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14698 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14699 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14700 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14701 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14702 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14703 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14704 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14705 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14706 #define NEON_ENC_SINGLE_(X) \
14707 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14708 #define NEON_ENC_DOUBLE_(X) \
14709 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14710 #define NEON_ENC_FPV8_(X) \
14711 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14712
14713 #define NEON_ENCODE(type, inst) \
14714 do \
14715 { \
14716 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14717 inst.is_neon = 1; \
14718 } \
14719 while (0)
14720
14721 #define check_neon_suffixes \
14722 do \
14723 { \
14724 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14725 { \
14726 as_bad (_("invalid neon suffix for non neon instruction")); \
14727 return; \
14728 } \
14729 } \
14730 while (0)
14731
14732 /* Define shapes for instruction operands. The following mnemonic characters
14733 are used in this table:
14734
14735 F - VFP S<n> register
14736 D - Neon D<n> register
14737 Q - Neon Q<n> register
14738 I - Immediate
14739 S - Scalar
14740 R - ARM register
14741 L - D<n> register list
14742
14743 This table is used to generate various data:
14744 - enumerations of the form NS_DDR to be used as arguments to
14745 neon_select_shape.
14746 - a table classifying shapes into single, double, quad, mixed.
14747 - a table used to drive neon_select_shape. */
14748
14749 #define NEON_SHAPE_DEF \
14750 X(4, (R, R, Q, Q), QUAD), \
14751 X(4, (Q, R, R, I), QUAD), \
14752 X(4, (R, R, S, S), QUAD), \
14753 X(4, (S, S, R, R), QUAD), \
14754 X(3, (Q, R, I), QUAD), \
14755 X(3, (I, Q, Q), QUAD), \
14756 X(3, (I, Q, R), QUAD), \
14757 X(3, (R, Q, Q), QUAD), \
14758 X(3, (D, D, D), DOUBLE), \
14759 X(3, (Q, Q, Q), QUAD), \
14760 X(3, (D, D, I), DOUBLE), \
14761 X(3, (Q, Q, I), QUAD), \
14762 X(3, (D, D, S), DOUBLE), \
14763 X(3, (Q, Q, S), QUAD), \
14764 X(3, (Q, Q, R), QUAD), \
14765 X(3, (R, R, Q), QUAD), \
14766 X(2, (R, Q), QUAD), \
14767 X(2, (D, D), DOUBLE), \
14768 X(2, (Q, Q), QUAD), \
14769 X(2, (D, S), DOUBLE), \
14770 X(2, (Q, S), QUAD), \
14771 X(2, (D, R), DOUBLE), \
14772 X(2, (Q, R), QUAD), \
14773 X(2, (D, I), DOUBLE), \
14774 X(2, (Q, I), QUAD), \
14775 X(3, (D, L, D), DOUBLE), \
14776 X(2, (D, Q), MIXED), \
14777 X(2, (Q, D), MIXED), \
14778 X(3, (D, Q, I), MIXED), \
14779 X(3, (Q, D, I), MIXED), \
14780 X(3, (Q, D, D), MIXED), \
14781 X(3, (D, Q, Q), MIXED), \
14782 X(3, (Q, Q, D), MIXED), \
14783 X(3, (Q, D, S), MIXED), \
14784 X(3, (D, Q, S), MIXED), \
14785 X(4, (D, D, D, I), DOUBLE), \
14786 X(4, (Q, Q, Q, I), QUAD), \
14787 X(4, (D, D, S, I), DOUBLE), \
14788 X(4, (Q, Q, S, I), QUAD), \
14789 X(2, (F, F), SINGLE), \
14790 X(3, (F, F, F), SINGLE), \
14791 X(2, (F, I), SINGLE), \
14792 X(2, (F, D), MIXED), \
14793 X(2, (D, F), MIXED), \
14794 X(3, (F, F, I), MIXED), \
14795 X(4, (R, R, F, F), SINGLE), \
14796 X(4, (F, F, R, R), SINGLE), \
14797 X(3, (D, R, R), DOUBLE), \
14798 X(3, (R, R, D), DOUBLE), \
14799 X(2, (S, R), SINGLE), \
14800 X(2, (R, S), SINGLE), \
14801 X(2, (F, R), SINGLE), \
14802 X(2, (R, F), SINGLE), \
14803 /* Used for MVE tail predicated loop instructions. */\
14804 X(2, (R, R), QUAD), \
14805 /* Half float shape supported so far. */\
14806 X (2, (H, D), MIXED), \
14807 X (2, (D, H), MIXED), \
14808 X (2, (H, F), MIXED), \
14809 X (2, (F, H), MIXED), \
14810 X (2, (H, H), HALF), \
14811 X (2, (H, R), HALF), \
14812 X (2, (R, H), HALF), \
14813 X (2, (H, I), HALF), \
14814 X (3, (H, H, H), HALF), \
14815 X (3, (H, F, I), MIXED), \
14816 X (3, (F, H, I), MIXED), \
14817 X (3, (D, H, H), MIXED), \
14818 X (3, (D, H, S), MIXED)
14819
14820 #define S2(A,B) NS_##A##B
14821 #define S3(A,B,C) NS_##A##B##C
14822 #define S4(A,B,C,D) NS_##A##B##C##D
14823
14824 #define X(N, L, C) S##N L
14825
14826 enum neon_shape
14827 {
14828 NEON_SHAPE_DEF,
14829 NS_NULL
14830 };
14831
14832 #undef X
14833 #undef S2
14834 #undef S3
14835 #undef S4
14836
14837 enum neon_shape_class
14838 {
14839 SC_HALF,
14840 SC_SINGLE,
14841 SC_DOUBLE,
14842 SC_QUAD,
14843 SC_MIXED
14844 };
14845
14846 #define X(N, L, C) SC_##C
14847
14848 static enum neon_shape_class neon_shape_class[] =
14849 {
14850 NEON_SHAPE_DEF
14851 };
14852
14853 #undef X
14854
14855 enum neon_shape_el
14856 {
14857 SE_H,
14858 SE_F,
14859 SE_D,
14860 SE_Q,
14861 SE_I,
14862 SE_S,
14863 SE_R,
14864 SE_L
14865 };
14866
14867 /* Register widths of above. */
14868 static unsigned neon_shape_el_size[] =
14869 {
14870 16,
14871 32,
14872 64,
14873 128,
14874 0,
14875 32,
14876 32,
14877 0
14878 };
14879
14880 struct neon_shape_info
14881 {
14882 unsigned els;
14883 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14884 };
14885
14886 #define S2(A,B) { SE_##A, SE_##B }
14887 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14888 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14889
14890 #define X(N, L, C) { N, S##N L }
14891
14892 static struct neon_shape_info neon_shape_tab[] =
14893 {
14894 NEON_SHAPE_DEF
14895 };
14896
14897 #undef X
14898 #undef S2
14899 #undef S3
14900 #undef S4
14901
14902 /* Bit masks used in type checking given instructions.
14903 'N_EQK' means the type must be the same as (or based on in some way) the key
14904 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14905 set, various other bits can be set as well in order to modify the meaning of
14906 the type constraint. */
14907
14908 enum neon_type_mask
14909 {
14910 N_S8 = 0x0000001,
14911 N_S16 = 0x0000002,
14912 N_S32 = 0x0000004,
14913 N_S64 = 0x0000008,
14914 N_U8 = 0x0000010,
14915 N_U16 = 0x0000020,
14916 N_U32 = 0x0000040,
14917 N_U64 = 0x0000080,
14918 N_I8 = 0x0000100,
14919 N_I16 = 0x0000200,
14920 N_I32 = 0x0000400,
14921 N_I64 = 0x0000800,
14922 N_8 = 0x0001000,
14923 N_16 = 0x0002000,
14924 N_32 = 0x0004000,
14925 N_64 = 0x0008000,
14926 N_P8 = 0x0010000,
14927 N_P16 = 0x0020000,
14928 N_F16 = 0x0040000,
14929 N_F32 = 0x0080000,
14930 N_F64 = 0x0100000,
14931 N_P64 = 0x0200000,
14932 N_BF16 = 0x0400000,
14933 N_KEY = 0x1000000, /* Key element (main type specifier). */
14934 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14935 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14936 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14937 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14938 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14939 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14940 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14941 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14942 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14943 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14944 N_UTYP = 0,
14945 N_MAX_NONSPECIAL = N_P64
14946 };
14947
14948 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14949
14950 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14951 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14952 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14953 #define N_S_32 (N_S8 | N_S16 | N_S32)
14954 #define N_F_16_32 (N_F16 | N_F32)
14955 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14956 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14957 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14958 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14959 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14960 #define N_F_MVE (N_F16 | N_F32)
14961 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14962
14963 /* Pass this as the first type argument to neon_check_type to ignore types
14964 altogether. */
14965 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14966
14967 /* Select a "shape" for the current instruction (describing register types or
14968 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14969 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14970 function of operand parsing, so this function doesn't need to be called.
14971 Shapes should be listed in order of decreasing length. */
14972
14973 static enum neon_shape
14974 neon_select_shape (enum neon_shape shape, ...)
14975 {
14976 va_list ap;
14977 enum neon_shape first_shape = shape;
14978
14979 /* Fix missing optional operands. FIXME: we don't know at this point how
14980 many arguments we should have, so this makes the assumption that we have
14981 > 1. This is true of all current Neon opcodes, I think, but may not be
14982 true in the future. */
14983 if (!inst.operands[1].present)
14984 inst.operands[1] = inst.operands[0];
14985
14986 va_start (ap, shape);
14987
14988 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14989 {
14990 unsigned j;
14991 int matches = 1;
14992
14993 for (j = 0; j < neon_shape_tab[shape].els; j++)
14994 {
14995 if (!inst.operands[j].present)
14996 {
14997 matches = 0;
14998 break;
14999 }
15000
15001 switch (neon_shape_tab[shape].el[j])
15002 {
15003 /* If a .f16, .16, .u16, .s16 type specifier is given over
15004 a VFP single precision register operand, it's essentially
15005 means only half of the register is used.
15006
15007 If the type specifier is given after the mnemonics, the
15008 information is stored in inst.vectype. If the type specifier
15009 is given after register operand, the information is stored
15010 in inst.operands[].vectype.
15011
15012 When there is only one type specifier, and all the register
15013 operands are the same type of hardware register, the type
15014 specifier applies to all register operands.
15015
15016 If no type specifier is given, the shape is inferred from
15017 operand information.
15018
15019 for example:
15020 vadd.f16 s0, s1, s2: NS_HHH
15021 vabs.f16 s0, s1: NS_HH
15022 vmov.f16 s0, r1: NS_HR
15023 vmov.f16 r0, s1: NS_RH
15024 vcvt.f16 r0, s1: NS_RH
15025 vcvt.f16.s32 s2, s2, #29: NS_HFI
15026 vcvt.f16.s32 s2, s2: NS_HF
15027 */
15028 case SE_H:
15029 if (!(inst.operands[j].isreg
15030 && inst.operands[j].isvec
15031 && inst.operands[j].issingle
15032 && !inst.operands[j].isquad
15033 && ((inst.vectype.elems == 1
15034 && inst.vectype.el[0].size == 16)
15035 || (inst.vectype.elems > 1
15036 && inst.vectype.el[j].size == 16)
15037 || (inst.vectype.elems == 0
15038 && inst.operands[j].vectype.type != NT_invtype
15039 && inst.operands[j].vectype.size == 16))))
15040 matches = 0;
15041 break;
15042
15043 case SE_F:
15044 if (!(inst.operands[j].isreg
15045 && inst.operands[j].isvec
15046 && inst.operands[j].issingle
15047 && !inst.operands[j].isquad
15048 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
15049 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
15050 || (inst.vectype.elems == 0
15051 && (inst.operands[j].vectype.size == 32
15052 || inst.operands[j].vectype.type == NT_invtype)))))
15053 matches = 0;
15054 break;
15055
15056 case SE_D:
15057 if (!(inst.operands[j].isreg
15058 && inst.operands[j].isvec
15059 && !inst.operands[j].isquad
15060 && !inst.operands[j].issingle))
15061 matches = 0;
15062 break;
15063
15064 case SE_R:
15065 if (!(inst.operands[j].isreg
15066 && !inst.operands[j].isvec))
15067 matches = 0;
15068 break;
15069
15070 case SE_Q:
15071 if (!(inst.operands[j].isreg
15072 && inst.operands[j].isvec
15073 && inst.operands[j].isquad
15074 && !inst.operands[j].issingle))
15075 matches = 0;
15076 break;
15077
15078 case SE_I:
15079 if (!(!inst.operands[j].isreg
15080 && !inst.operands[j].isscalar))
15081 matches = 0;
15082 break;
15083
15084 case SE_S:
15085 if (!(!inst.operands[j].isreg
15086 && inst.operands[j].isscalar))
15087 matches = 0;
15088 break;
15089
15090 case SE_L:
15091 break;
15092 }
15093 if (!matches)
15094 break;
15095 }
15096 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
15097 /* We've matched all the entries in the shape table, and we don't
15098 have any left over operands which have not been matched. */
15099 break;
15100 }
15101
15102 va_end (ap);
15103
15104 if (shape == NS_NULL && first_shape != NS_NULL)
15105 first_error (_("invalid instruction shape"));
15106
15107 return shape;
15108 }
15109
15110 /* True if SHAPE is predominantly a quadword operation (most of the time, this
15111 means the Q bit should be set). */
15112
15113 static int
15114 neon_quad (enum neon_shape shape)
15115 {
15116 return neon_shape_class[shape] == SC_QUAD;
15117 }
15118
15119 static void
15120 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
15121 unsigned *g_size)
15122 {
15123 /* Allow modification to be made to types which are constrained to be
15124 based on the key element, based on bits set alongside N_EQK. */
15125 if ((typebits & N_EQK) != 0)
15126 {
15127 if ((typebits & N_HLF) != 0)
15128 *g_size /= 2;
15129 else if ((typebits & N_DBL) != 0)
15130 *g_size *= 2;
15131 if ((typebits & N_SGN) != 0)
15132 *g_type = NT_signed;
15133 else if ((typebits & N_UNS) != 0)
15134 *g_type = NT_unsigned;
15135 else if ((typebits & N_INT) != 0)
15136 *g_type = NT_integer;
15137 else if ((typebits & N_FLT) != 0)
15138 *g_type = NT_float;
15139 else if ((typebits & N_SIZ) != 0)
15140 *g_type = NT_untyped;
15141 }
15142 }
15143
15144 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
15145 operand type, i.e. the single type specified in a Neon instruction when it
15146 is the only one given. */
15147
15148 static struct neon_type_el
15149 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
15150 {
15151 struct neon_type_el dest = *key;
15152
15153 gas_assert ((thisarg & N_EQK) != 0);
15154
15155 neon_modify_type_size (thisarg, &dest.type, &dest.size);
15156
15157 return dest;
15158 }
15159
15160 /* Convert Neon type and size into compact bitmask representation. */
15161
15162 static enum neon_type_mask
15163 type_chk_of_el_type (enum neon_el_type type, unsigned size)
15164 {
15165 switch (type)
15166 {
15167 case NT_untyped:
15168 switch (size)
15169 {
15170 case 8: return N_8;
15171 case 16: return N_16;
15172 case 32: return N_32;
15173 case 64: return N_64;
15174 default: ;
15175 }
15176 break;
15177
15178 case NT_integer:
15179 switch (size)
15180 {
15181 case 8: return N_I8;
15182 case 16: return N_I16;
15183 case 32: return N_I32;
15184 case 64: return N_I64;
15185 default: ;
15186 }
15187 break;
15188
15189 case NT_float:
15190 switch (size)
15191 {
15192 case 16: return N_F16;
15193 case 32: return N_F32;
15194 case 64: return N_F64;
15195 default: ;
15196 }
15197 break;
15198
15199 case NT_poly:
15200 switch (size)
15201 {
15202 case 8: return N_P8;
15203 case 16: return N_P16;
15204 case 64: return N_P64;
15205 default: ;
15206 }
15207 break;
15208
15209 case NT_signed:
15210 switch (size)
15211 {
15212 case 8: return N_S8;
15213 case 16: return N_S16;
15214 case 32: return N_S32;
15215 case 64: return N_S64;
15216 default: ;
15217 }
15218 break;
15219
15220 case NT_unsigned:
15221 switch (size)
15222 {
15223 case 8: return N_U8;
15224 case 16: return N_U16;
15225 case 32: return N_U32;
15226 case 64: return N_U64;
15227 default: ;
15228 }
15229 break;
15230
15231 case NT_bfloat:
15232 if (size == 16) return N_BF16;
15233 break;
15234
15235 default: ;
15236 }
15237
15238 return N_UTYP;
15239 }
15240
15241 /* Convert compact Neon bitmask type representation to a type and size. Only
15242 handles the case where a single bit is set in the mask. */
15243
15244 static int
15245 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
15246 enum neon_type_mask mask)
15247 {
15248 if ((mask & N_EQK) != 0)
15249 return FAIL;
15250
15251 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
15252 *size = 8;
15253 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16 | N_BF16))
15254 != 0)
15255 *size = 16;
15256 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
15257 *size = 32;
15258 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
15259 *size = 64;
15260 else
15261 return FAIL;
15262
15263 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
15264 *type = NT_signed;
15265 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
15266 *type = NT_unsigned;
15267 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
15268 *type = NT_integer;
15269 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
15270 *type = NT_untyped;
15271 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
15272 *type = NT_poly;
15273 else if ((mask & (N_F_ALL)) != 0)
15274 *type = NT_float;
15275 else if ((mask & (N_BF16)) != 0)
15276 *type = NT_bfloat;
15277 else
15278 return FAIL;
15279
15280 return SUCCESS;
15281 }
15282
15283 /* Modify a bitmask of allowed types. This is only needed for type
15284 relaxation. */
15285
15286 static unsigned
15287 modify_types_allowed (unsigned allowed, unsigned mods)
15288 {
15289 unsigned size;
15290 enum neon_el_type type;
15291 unsigned destmask;
15292 int i;
15293
15294 destmask = 0;
15295
15296 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
15297 {
15298 if (el_type_of_type_chk (&type, &size,
15299 (enum neon_type_mask) (allowed & i)) == SUCCESS)
15300 {
15301 neon_modify_type_size (mods, &type, &size);
15302 destmask |= type_chk_of_el_type (type, size);
15303 }
15304 }
15305
15306 return destmask;
15307 }
15308
15309 /* Check type and return type classification.
15310 The manual states (paraphrase): If one datatype is given, it indicates the
15311 type given in:
15312 - the second operand, if there is one
15313 - the operand, if there is no second operand
15314 - the result, if there are no operands.
15315 This isn't quite good enough though, so we use a concept of a "key" datatype
15316 which is set on a per-instruction basis, which is the one which matters when
15317 only one data type is written.
15318 Note: this function has side-effects (e.g. filling in missing operands). All
15319 Neon instructions should call it before performing bit encoding. */
15320
15321 static struct neon_type_el
15322 neon_check_type (unsigned els, enum neon_shape ns, ...)
15323 {
15324 va_list ap;
15325 unsigned i, pass, key_el = 0;
15326 unsigned types[NEON_MAX_TYPE_ELS];
15327 enum neon_el_type k_type = NT_invtype;
15328 unsigned k_size = -1u;
15329 struct neon_type_el badtype = {NT_invtype, -1};
15330 unsigned key_allowed = 0;
15331
15332 /* Optional registers in Neon instructions are always (not) in operand 1.
15333 Fill in the missing operand here, if it was omitted. */
15334 if (els > 1 && !inst.operands[1].present)
15335 inst.operands[1] = inst.operands[0];
15336
15337 /* Suck up all the varargs. */
15338 va_start (ap, ns);
15339 for (i = 0; i < els; i++)
15340 {
15341 unsigned thisarg = va_arg (ap, unsigned);
15342 if (thisarg == N_IGNORE_TYPE)
15343 {
15344 va_end (ap);
15345 return badtype;
15346 }
15347 types[i] = thisarg;
15348 if ((thisarg & N_KEY) != 0)
15349 key_el = i;
15350 }
15351 va_end (ap);
15352
15353 if (inst.vectype.elems > 0)
15354 for (i = 0; i < els; i++)
15355 if (inst.operands[i].vectype.type != NT_invtype)
15356 {
15357 first_error (_("types specified in both the mnemonic and operands"));
15358 return badtype;
15359 }
15360
15361 /* Duplicate inst.vectype elements here as necessary.
15362 FIXME: No idea if this is exactly the same as the ARM assembler,
15363 particularly when an insn takes one register and one non-register
15364 operand. */
15365 if (inst.vectype.elems == 1 && els > 1)
15366 {
15367 unsigned j;
15368 inst.vectype.elems = els;
15369 inst.vectype.el[key_el] = inst.vectype.el[0];
15370 for (j = 0; j < els; j++)
15371 if (j != key_el)
15372 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15373 types[j]);
15374 }
15375 else if (inst.vectype.elems == 0 && els > 0)
15376 {
15377 unsigned j;
15378 /* No types were given after the mnemonic, so look for types specified
15379 after each operand. We allow some flexibility here; as long as the
15380 "key" operand has a type, we can infer the others. */
15381 for (j = 0; j < els; j++)
15382 if (inst.operands[j].vectype.type != NT_invtype)
15383 inst.vectype.el[j] = inst.operands[j].vectype;
15384
15385 if (inst.operands[key_el].vectype.type != NT_invtype)
15386 {
15387 for (j = 0; j < els; j++)
15388 if (inst.operands[j].vectype.type == NT_invtype)
15389 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15390 types[j]);
15391 }
15392 else
15393 {
15394 first_error (_("operand types can't be inferred"));
15395 return badtype;
15396 }
15397 }
15398 else if (inst.vectype.elems != els)
15399 {
15400 first_error (_("type specifier has the wrong number of parts"));
15401 return badtype;
15402 }
15403
15404 for (pass = 0; pass < 2; pass++)
15405 {
15406 for (i = 0; i < els; i++)
15407 {
15408 unsigned thisarg = types[i];
15409 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15410 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15411 enum neon_el_type g_type = inst.vectype.el[i].type;
15412 unsigned g_size = inst.vectype.el[i].size;
15413
15414 /* Decay more-specific signed & unsigned types to sign-insensitive
15415 integer types if sign-specific variants are unavailable. */
15416 if ((g_type == NT_signed || g_type == NT_unsigned)
15417 && (types_allowed & N_SU_ALL) == 0)
15418 g_type = NT_integer;
15419
15420 /* If only untyped args are allowed, decay any more specific types to
15421 them. Some instructions only care about signs for some element
15422 sizes, so handle that properly. */
15423 if (((types_allowed & N_UNT) == 0)
15424 && ((g_size == 8 && (types_allowed & N_8) != 0)
15425 || (g_size == 16 && (types_allowed & N_16) != 0)
15426 || (g_size == 32 && (types_allowed & N_32) != 0)
15427 || (g_size == 64 && (types_allowed & N_64) != 0)))
15428 g_type = NT_untyped;
15429
15430 if (pass == 0)
15431 {
15432 if ((thisarg & N_KEY) != 0)
15433 {
15434 k_type = g_type;
15435 k_size = g_size;
15436 key_allowed = thisarg & ~N_KEY;
15437
15438 /* Check architecture constraint on FP16 extension. */
15439 if (k_size == 16
15440 && k_type == NT_float
15441 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15442 {
15443 inst.error = _(BAD_FP16);
15444 return badtype;
15445 }
15446 }
15447 }
15448 else
15449 {
15450 if ((thisarg & N_VFP) != 0)
15451 {
15452 enum neon_shape_el regshape;
15453 unsigned regwidth, match;
15454
15455 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15456 if (ns == NS_NULL)
15457 {
15458 first_error (_("invalid instruction shape"));
15459 return badtype;
15460 }
15461 regshape = neon_shape_tab[ns].el[i];
15462 regwidth = neon_shape_el_size[regshape];
15463
15464 /* In VFP mode, operands must match register widths. If we
15465 have a key operand, use its width, else use the width of
15466 the current operand. */
15467 if (k_size != -1u)
15468 match = k_size;
15469 else
15470 match = g_size;
15471
15472 /* FP16 will use a single precision register. */
15473 if (regwidth == 32 && match == 16)
15474 {
15475 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15476 match = regwidth;
15477 else
15478 {
15479 inst.error = _(BAD_FP16);
15480 return badtype;
15481 }
15482 }
15483
15484 if (regwidth != match)
15485 {
15486 first_error (_("operand size must match register width"));
15487 return badtype;
15488 }
15489 }
15490
15491 if ((thisarg & N_EQK) == 0)
15492 {
15493 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15494
15495 if ((given_type & types_allowed) == 0)
15496 {
15497 first_error (BAD_SIMD_TYPE);
15498 return badtype;
15499 }
15500 }
15501 else
15502 {
15503 enum neon_el_type mod_k_type = k_type;
15504 unsigned mod_k_size = k_size;
15505 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15506 if (g_type != mod_k_type || g_size != mod_k_size)
15507 {
15508 first_error (_("inconsistent types in Neon instruction"));
15509 return badtype;
15510 }
15511 }
15512 }
15513 }
15514 }
15515
15516 return inst.vectype.el[key_el];
15517 }
15518
15519 /* Neon-style VFP instruction forwarding. */
15520
15521 /* Thumb VFP instructions have 0xE in the condition field. */
15522
15523 static void
15524 do_vfp_cond_or_thumb (void)
15525 {
15526 inst.is_neon = 1;
15527
15528 if (thumb_mode)
15529 inst.instruction |= 0xe0000000;
15530 else
15531 inst.instruction |= inst.cond << 28;
15532 }
15533
15534 /* Look up and encode a simple mnemonic, for use as a helper function for the
15535 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15536 etc. It is assumed that operand parsing has already been done, and that the
15537 operands are in the form expected by the given opcode (this isn't necessarily
15538 the same as the form in which they were parsed, hence some massaging must
15539 take place before this function is called).
15540 Checks current arch version against that in the looked-up opcode. */
15541
15542 static void
15543 do_vfp_nsyn_opcode (const char *opname)
15544 {
15545 const struct asm_opcode *opcode;
15546
15547 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15548
15549 if (!opcode)
15550 abort ();
15551
15552 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15553 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15554 _(BAD_FPU));
15555
15556 inst.is_neon = 1;
15557
15558 if (thumb_mode)
15559 {
15560 inst.instruction = opcode->tvalue;
15561 opcode->tencode ();
15562 }
15563 else
15564 {
15565 inst.instruction = (inst.cond << 28) | opcode->avalue;
15566 opcode->aencode ();
15567 }
15568 }
15569
15570 static void
15571 do_vfp_nsyn_add_sub (enum neon_shape rs)
15572 {
15573 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15574
15575 if (rs == NS_FFF || rs == NS_HHH)
15576 {
15577 if (is_add)
15578 do_vfp_nsyn_opcode ("fadds");
15579 else
15580 do_vfp_nsyn_opcode ("fsubs");
15581
15582 /* ARMv8.2 fp16 instruction. */
15583 if (rs == NS_HHH)
15584 do_scalar_fp16_v82_encode ();
15585 }
15586 else
15587 {
15588 if (is_add)
15589 do_vfp_nsyn_opcode ("faddd");
15590 else
15591 do_vfp_nsyn_opcode ("fsubd");
15592 }
15593 }
15594
15595 /* Check operand types to see if this is a VFP instruction, and if so call
15596 PFN (). */
15597
15598 static int
15599 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15600 {
15601 enum neon_shape rs;
15602 struct neon_type_el et;
15603
15604 switch (args)
15605 {
15606 case 2:
15607 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15608 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15609 break;
15610
15611 case 3:
15612 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15613 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15614 N_F_ALL | N_KEY | N_VFP);
15615 break;
15616
15617 default:
15618 abort ();
15619 }
15620
15621 if (et.type != NT_invtype)
15622 {
15623 pfn (rs);
15624 return SUCCESS;
15625 }
15626
15627 inst.error = NULL;
15628 return FAIL;
15629 }
15630
15631 static void
15632 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15633 {
15634 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15635
15636 if (rs == NS_FFF || rs == NS_HHH)
15637 {
15638 if (is_mla)
15639 do_vfp_nsyn_opcode ("fmacs");
15640 else
15641 do_vfp_nsyn_opcode ("fnmacs");
15642
15643 /* ARMv8.2 fp16 instruction. */
15644 if (rs == NS_HHH)
15645 do_scalar_fp16_v82_encode ();
15646 }
15647 else
15648 {
15649 if (is_mla)
15650 do_vfp_nsyn_opcode ("fmacd");
15651 else
15652 do_vfp_nsyn_opcode ("fnmacd");
15653 }
15654 }
15655
15656 static void
15657 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15658 {
15659 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15660
15661 if (rs == NS_FFF || rs == NS_HHH)
15662 {
15663 if (is_fma)
15664 do_vfp_nsyn_opcode ("ffmas");
15665 else
15666 do_vfp_nsyn_opcode ("ffnmas");
15667
15668 /* ARMv8.2 fp16 instruction. */
15669 if (rs == NS_HHH)
15670 do_scalar_fp16_v82_encode ();
15671 }
15672 else
15673 {
15674 if (is_fma)
15675 do_vfp_nsyn_opcode ("ffmad");
15676 else
15677 do_vfp_nsyn_opcode ("ffnmad");
15678 }
15679 }
15680
15681 static void
15682 do_vfp_nsyn_mul (enum neon_shape rs)
15683 {
15684 if (rs == NS_FFF || rs == NS_HHH)
15685 {
15686 do_vfp_nsyn_opcode ("fmuls");
15687
15688 /* ARMv8.2 fp16 instruction. */
15689 if (rs == NS_HHH)
15690 do_scalar_fp16_v82_encode ();
15691 }
15692 else
15693 do_vfp_nsyn_opcode ("fmuld");
15694 }
15695
15696 static void
15697 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15698 {
15699 int is_neg = (inst.instruction & 0x80) != 0;
15700 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15701
15702 if (rs == NS_FF || rs == NS_HH)
15703 {
15704 if (is_neg)
15705 do_vfp_nsyn_opcode ("fnegs");
15706 else
15707 do_vfp_nsyn_opcode ("fabss");
15708
15709 /* ARMv8.2 fp16 instruction. */
15710 if (rs == NS_HH)
15711 do_scalar_fp16_v82_encode ();
15712 }
15713 else
15714 {
15715 if (is_neg)
15716 do_vfp_nsyn_opcode ("fnegd");
15717 else
15718 do_vfp_nsyn_opcode ("fabsd");
15719 }
15720 }
15721
15722 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15723 insns belong to Neon, and are handled elsewhere. */
15724
15725 static void
15726 do_vfp_nsyn_ldm_stm (int is_dbmode)
15727 {
15728 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15729 if (is_ldm)
15730 {
15731 if (is_dbmode)
15732 do_vfp_nsyn_opcode ("fldmdbs");
15733 else
15734 do_vfp_nsyn_opcode ("fldmias");
15735 }
15736 else
15737 {
15738 if (is_dbmode)
15739 do_vfp_nsyn_opcode ("fstmdbs");
15740 else
15741 do_vfp_nsyn_opcode ("fstmias");
15742 }
15743 }
15744
15745 static void
15746 do_vfp_nsyn_sqrt (void)
15747 {
15748 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15749 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15750
15751 if (rs == NS_FF || rs == NS_HH)
15752 {
15753 do_vfp_nsyn_opcode ("fsqrts");
15754
15755 /* ARMv8.2 fp16 instruction. */
15756 if (rs == NS_HH)
15757 do_scalar_fp16_v82_encode ();
15758 }
15759 else
15760 do_vfp_nsyn_opcode ("fsqrtd");
15761 }
15762
15763 static void
15764 do_vfp_nsyn_div (void)
15765 {
15766 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15767 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15768 N_F_ALL | N_KEY | N_VFP);
15769
15770 if (rs == NS_FFF || rs == NS_HHH)
15771 {
15772 do_vfp_nsyn_opcode ("fdivs");
15773
15774 /* ARMv8.2 fp16 instruction. */
15775 if (rs == NS_HHH)
15776 do_scalar_fp16_v82_encode ();
15777 }
15778 else
15779 do_vfp_nsyn_opcode ("fdivd");
15780 }
15781
15782 static void
15783 do_vfp_nsyn_nmul (void)
15784 {
15785 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15786 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15787 N_F_ALL | N_KEY | N_VFP);
15788
15789 if (rs == NS_FFF || rs == NS_HHH)
15790 {
15791 NEON_ENCODE (SINGLE, inst);
15792 do_vfp_sp_dyadic ();
15793
15794 /* ARMv8.2 fp16 instruction. */
15795 if (rs == NS_HHH)
15796 do_scalar_fp16_v82_encode ();
15797 }
15798 else
15799 {
15800 NEON_ENCODE (DOUBLE, inst);
15801 do_vfp_dp_rd_rn_rm ();
15802 }
15803 do_vfp_cond_or_thumb ();
15804
15805 }
15806
15807 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15808 (0, 1, 2, 3). */
15809
15810 static unsigned
15811 neon_logbits (unsigned x)
15812 {
15813 return ffs (x) - 4;
15814 }
15815
15816 #define LOW4(R) ((R) & 0xf)
15817 #define HI1(R) (((R) >> 4) & 1)
15818
15819 static unsigned
15820 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15821 {
15822 switch (et.type)
15823 {
15824 default:
15825 first_error (BAD_EL_TYPE);
15826 return 0;
15827 case NT_float:
15828 switch (inst.operands[0].imm)
15829 {
15830 default:
15831 first_error (_("invalid condition"));
15832 return 0;
15833 case 0x0:
15834 /* eq. */
15835 return 0;
15836 case 0x1:
15837 /* ne. */
15838 return 1;
15839 case 0xa:
15840 /* ge/ */
15841 return 4;
15842 case 0xb:
15843 /* lt. */
15844 return 5;
15845 case 0xc:
15846 /* gt. */
15847 return 6;
15848 case 0xd:
15849 /* le. */
15850 return 7;
15851 }
15852 case NT_integer:
15853 /* only accept eq and ne. */
15854 if (inst.operands[0].imm > 1)
15855 {
15856 first_error (_("invalid condition"));
15857 return 0;
15858 }
15859 return inst.operands[0].imm;
15860 case NT_unsigned:
15861 if (inst.operands[0].imm == 0x2)
15862 return 2;
15863 else if (inst.operands[0].imm == 0x8)
15864 return 3;
15865 else
15866 {
15867 first_error (_("invalid condition"));
15868 return 0;
15869 }
15870 case NT_signed:
15871 switch (inst.operands[0].imm)
15872 {
15873 default:
15874 first_error (_("invalid condition"));
15875 return 0;
15876 case 0xa:
15877 /* ge. */
15878 return 4;
15879 case 0xb:
15880 /* lt. */
15881 return 5;
15882 case 0xc:
15883 /* gt. */
15884 return 6;
15885 case 0xd:
15886 /* le. */
15887 return 7;
15888 }
15889 }
15890 /* Should be unreachable. */
15891 abort ();
15892 }
15893
15894 /* For VCTP (create vector tail predicate) in MVE. */
15895 static void
15896 do_mve_vctp (void)
15897 {
15898 int dt = 0;
15899 unsigned size = 0x0;
15900
15901 if (inst.cond > COND_ALWAYS)
15902 inst.pred_insn_type = INSIDE_VPT_INSN;
15903 else
15904 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15905
15906 /* This is a typical MVE instruction which has no type but have size 8, 16,
15907 32 and 64. For instructions with no type, inst.vectype.el[j].type is set
15908 to NT_untyped and size is updated in inst.vectype.el[j].size. */
15909 if ((inst.operands[0].present) && (inst.vectype.el[0].type == NT_untyped))
15910 dt = inst.vectype.el[0].size;
15911
15912 /* Setting this does not indicate an actual NEON instruction, but only
15913 indicates that the mnemonic accepts neon-style type suffixes. */
15914 inst.is_neon = 1;
15915
15916 switch (dt)
15917 {
15918 case 8:
15919 break;
15920 case 16:
15921 size = 0x1; break;
15922 case 32:
15923 size = 0x2; break;
15924 case 64:
15925 size = 0x3; break;
15926 default:
15927 first_error (_("Type is not allowed for this instruction"));
15928 }
15929 inst.instruction |= size << 20;
15930 inst.instruction |= inst.operands[0].reg << 16;
15931 }
15932
15933 static void
15934 do_mve_vpt (void)
15935 {
15936 /* We are dealing with a vector predicated block. */
15937 if (inst.operands[0].present)
15938 {
15939 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15940 struct neon_type_el et
15941 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15942 N_EQK);
15943
15944 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15945
15946 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15947
15948 if (et.type == NT_invtype)
15949 return;
15950
15951 if (et.type == NT_float)
15952 {
15953 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15954 BAD_FPU);
15955 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15956 inst.instruction |= (et.size == 16) << 28;
15957 inst.instruction |= 0x3 << 20;
15958 }
15959 else
15960 {
15961 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15962 BAD_EL_TYPE);
15963 inst.instruction |= 1 << 28;
15964 inst.instruction |= neon_logbits (et.size) << 20;
15965 }
15966
15967 if (inst.operands[2].isquad)
15968 {
15969 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15970 inst.instruction |= LOW4 (inst.operands[2].reg);
15971 inst.instruction |= (fcond & 0x2) >> 1;
15972 }
15973 else
15974 {
15975 if (inst.operands[2].reg == REG_SP)
15976 as_tsktsk (MVE_BAD_SP);
15977 inst.instruction |= 1 << 6;
15978 inst.instruction |= (fcond & 0x2) << 4;
15979 inst.instruction |= inst.operands[2].reg;
15980 }
15981 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15982 inst.instruction |= (fcond & 0x4) << 10;
15983 inst.instruction |= (fcond & 0x1) << 7;
15984
15985 }
15986 set_pred_insn_type (VPT_INSN);
15987 now_pred.cc = 0;
15988 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15989 | ((inst.instruction & 0xe000) >> 13);
15990 now_pred.warn_deprecated = FALSE;
15991 now_pred.type = VECTOR_PRED;
15992 inst.is_neon = 1;
15993 }
15994
15995 static void
15996 do_mve_vcmp (void)
15997 {
15998 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15999 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
16000 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
16001 if (!inst.operands[2].present)
16002 first_error (_("MVE vector or ARM register expected"));
16003 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16004
16005 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
16006 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
16007 && inst.operands[1].isquad)
16008 {
16009 inst.instruction = N_MNEM_vcmp;
16010 inst.cond = 0x10;
16011 }
16012
16013 if (inst.cond > COND_ALWAYS)
16014 inst.pred_insn_type = INSIDE_VPT_INSN;
16015 else
16016 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16017
16018 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
16019 struct neon_type_el et
16020 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
16021 N_EQK);
16022
16023 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
16024 && !inst.operands[2].iszr, BAD_PC);
16025
16026 unsigned fcond = mve_get_vcmp_vpt_cond (et);
16027
16028 inst.instruction = 0xee010f00;
16029 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16030 inst.instruction |= (fcond & 0x4) << 10;
16031 inst.instruction |= (fcond & 0x1) << 7;
16032 if (et.type == NT_float)
16033 {
16034 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
16035 BAD_FPU);
16036 inst.instruction |= (et.size == 16) << 28;
16037 inst.instruction |= 0x3 << 20;
16038 }
16039 else
16040 {
16041 inst.instruction |= 1 << 28;
16042 inst.instruction |= neon_logbits (et.size) << 20;
16043 }
16044 if (inst.operands[2].isquad)
16045 {
16046 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16047 inst.instruction |= (fcond & 0x2) >> 1;
16048 inst.instruction |= LOW4 (inst.operands[2].reg);
16049 }
16050 else
16051 {
16052 if (inst.operands[2].reg == REG_SP)
16053 as_tsktsk (MVE_BAD_SP);
16054 inst.instruction |= 1 << 6;
16055 inst.instruction |= (fcond & 0x2) << 4;
16056 inst.instruction |= inst.operands[2].reg;
16057 }
16058
16059 inst.is_neon = 1;
16060 return;
16061 }
16062
16063 static void
16064 do_mve_vmaxa_vmina (void)
16065 {
16066 if (inst.cond > COND_ALWAYS)
16067 inst.pred_insn_type = INSIDE_VPT_INSN;
16068 else
16069 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16070
16071 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
16072 struct neon_type_el et
16073 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
16074
16075 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16076 inst.instruction |= neon_logbits (et.size) << 18;
16077 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16078 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16079 inst.instruction |= LOW4 (inst.operands[1].reg);
16080 inst.is_neon = 1;
16081 }
16082
16083 static void
16084 do_mve_vfmas (void)
16085 {
16086 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
16087 struct neon_type_el et
16088 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
16089
16090 if (inst.cond > COND_ALWAYS)
16091 inst.pred_insn_type = INSIDE_VPT_INSN;
16092 else
16093 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16094
16095 if (inst.operands[2].reg == REG_SP)
16096 as_tsktsk (MVE_BAD_SP);
16097 else if (inst.operands[2].reg == REG_PC)
16098 as_tsktsk (MVE_BAD_PC);
16099
16100 inst.instruction |= (et.size == 16) << 28;
16101 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16102 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16103 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16104 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16105 inst.instruction |= inst.operands[2].reg;
16106 inst.is_neon = 1;
16107 }
16108
16109 static void
16110 do_mve_viddup (void)
16111 {
16112 if (inst.cond > COND_ALWAYS)
16113 inst.pred_insn_type = INSIDE_VPT_INSN;
16114 else
16115 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16116
16117 unsigned imm = inst.relocs[0].exp.X_add_number;
16118 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
16119 _("immediate must be either 1, 2, 4 or 8"));
16120
16121 enum neon_shape rs;
16122 struct neon_type_el et;
16123 unsigned Rm;
16124 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
16125 {
16126 rs = neon_select_shape (NS_QRI, NS_NULL);
16127 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
16128 Rm = 7;
16129 }
16130 else
16131 {
16132 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
16133 if (inst.operands[2].reg == REG_SP)
16134 as_tsktsk (MVE_BAD_SP);
16135 else if (inst.operands[2].reg == REG_PC)
16136 first_error (BAD_PC);
16137
16138 rs = neon_select_shape (NS_QRRI, NS_NULL);
16139 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
16140 Rm = inst.operands[2].reg >> 1;
16141 }
16142 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16143 inst.instruction |= neon_logbits (et.size) << 20;
16144 inst.instruction |= inst.operands[1].reg << 16;
16145 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16146 inst.instruction |= (imm > 2) << 7;
16147 inst.instruction |= Rm << 1;
16148 inst.instruction |= (imm == 2 || imm == 8);
16149 inst.is_neon = 1;
16150 }
16151
16152 static void
16153 do_mve_vmlas (void)
16154 {
16155 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
16156 struct neon_type_el et
16157 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16158
16159 if (inst.operands[2].reg == REG_PC)
16160 as_tsktsk (MVE_BAD_PC);
16161 else if (inst.operands[2].reg == REG_SP)
16162 as_tsktsk (MVE_BAD_SP);
16163
16164 if (inst.cond > COND_ALWAYS)
16165 inst.pred_insn_type = INSIDE_VPT_INSN;
16166 else
16167 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16168
16169 inst.instruction |= (et.type == NT_unsigned) << 28;
16170 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16171 inst.instruction |= neon_logbits (et.size) << 20;
16172 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16173 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16174 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16175 inst.instruction |= inst.operands[2].reg;
16176 inst.is_neon = 1;
16177 }
16178
16179 static void
16180 do_mve_vshll (void)
16181 {
16182 struct neon_type_el et
16183 = neon_check_type (2, NS_QQI, N_EQK, N_S8 | N_U8 | N_S16 | N_U16 | N_KEY);
16184
16185 if (inst.cond > COND_ALWAYS)
16186 inst.pred_insn_type = INSIDE_VPT_INSN;
16187 else
16188 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16189
16190 int imm = inst.operands[2].imm;
16191 constraint (imm < 1 || (unsigned)imm > et.size,
16192 _("immediate value out of range"));
16193
16194 if ((unsigned)imm == et.size)
16195 {
16196 inst.instruction |= neon_logbits (et.size) << 18;
16197 inst.instruction |= 0x110001;
16198 }
16199 else
16200 {
16201 inst.instruction |= (et.size + imm) << 16;
16202 inst.instruction |= 0x800140;
16203 }
16204
16205 inst.instruction |= (et.type == NT_unsigned) << 28;
16206 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16207 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16208 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16209 inst.instruction |= LOW4 (inst.operands[1].reg);
16210 inst.is_neon = 1;
16211 }
16212
16213 static void
16214 do_mve_vshlc (void)
16215 {
16216 if (inst.cond > COND_ALWAYS)
16217 inst.pred_insn_type = INSIDE_VPT_INSN;
16218 else
16219 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16220
16221 if (inst.operands[1].reg == REG_PC)
16222 as_tsktsk (MVE_BAD_PC);
16223 else if (inst.operands[1].reg == REG_SP)
16224 as_tsktsk (MVE_BAD_SP);
16225
16226 int imm = inst.operands[2].imm;
16227 constraint (imm < 1 || imm > 32, _("immediate value out of range"));
16228
16229 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16230 inst.instruction |= (imm & 0x1f) << 16;
16231 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16232 inst.instruction |= inst.operands[1].reg;
16233 inst.is_neon = 1;
16234 }
16235
16236 static void
16237 do_mve_vshrn (void)
16238 {
16239 unsigned types;
16240 switch (inst.instruction)
16241 {
16242 case M_MNEM_vshrnt:
16243 case M_MNEM_vshrnb:
16244 case M_MNEM_vrshrnt:
16245 case M_MNEM_vrshrnb:
16246 types = N_I16 | N_I32;
16247 break;
16248 case M_MNEM_vqshrnt:
16249 case M_MNEM_vqshrnb:
16250 case M_MNEM_vqrshrnt:
16251 case M_MNEM_vqrshrnb:
16252 types = N_U16 | N_U32 | N_S16 | N_S32;
16253 break;
16254 case M_MNEM_vqshrunt:
16255 case M_MNEM_vqshrunb:
16256 case M_MNEM_vqrshrunt:
16257 case M_MNEM_vqrshrunb:
16258 types = N_S16 | N_S32;
16259 break;
16260 default:
16261 abort ();
16262 }
16263
16264 struct neon_type_el et = neon_check_type (2, NS_QQI, N_EQK, types | N_KEY);
16265
16266 if (inst.cond > COND_ALWAYS)
16267 inst.pred_insn_type = INSIDE_VPT_INSN;
16268 else
16269 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16270
16271 unsigned Qd = inst.operands[0].reg;
16272 unsigned Qm = inst.operands[1].reg;
16273 unsigned imm = inst.operands[2].imm;
16274 constraint (imm < 1 || ((unsigned) imm) > (et.size / 2),
16275 et.size == 16
16276 ? _("immediate operand expected in the range [1,8]")
16277 : _("immediate operand expected in the range [1,16]"));
16278
16279 inst.instruction |= (et.type == NT_unsigned) << 28;
16280 inst.instruction |= HI1 (Qd) << 22;
16281 inst.instruction |= (et.size - imm) << 16;
16282 inst.instruction |= LOW4 (Qd) << 12;
16283 inst.instruction |= HI1 (Qm) << 5;
16284 inst.instruction |= LOW4 (Qm);
16285 inst.is_neon = 1;
16286 }
16287
16288 static void
16289 do_mve_vqmovn (void)
16290 {
16291 struct neon_type_el et;
16292 if (inst.instruction == M_MNEM_vqmovnt
16293 || inst.instruction == M_MNEM_vqmovnb)
16294 et = neon_check_type (2, NS_QQ, N_EQK,
16295 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
16296 else
16297 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
16298
16299 if (inst.cond > COND_ALWAYS)
16300 inst.pred_insn_type = INSIDE_VPT_INSN;
16301 else
16302 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16303
16304 inst.instruction |= (et.type == NT_unsigned) << 28;
16305 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16306 inst.instruction |= (et.size == 32) << 18;
16307 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16308 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16309 inst.instruction |= LOW4 (inst.operands[1].reg);
16310 inst.is_neon = 1;
16311 }
16312
16313 static void
16314 do_mve_vpsel (void)
16315 {
16316 neon_select_shape (NS_QQQ, NS_NULL);
16317
16318 if (inst.cond > COND_ALWAYS)
16319 inst.pred_insn_type = INSIDE_VPT_INSN;
16320 else
16321 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16322
16323 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16324 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16325 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16326 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16327 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16328 inst.instruction |= LOW4 (inst.operands[2].reg);
16329 inst.is_neon = 1;
16330 }
16331
16332 static void
16333 do_mve_vpnot (void)
16334 {
16335 if (inst.cond > COND_ALWAYS)
16336 inst.pred_insn_type = INSIDE_VPT_INSN;
16337 else
16338 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16339 }
16340
16341 static void
16342 do_mve_vmaxnma_vminnma (void)
16343 {
16344 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
16345 struct neon_type_el et
16346 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
16347
16348 if (inst.cond > COND_ALWAYS)
16349 inst.pred_insn_type = INSIDE_VPT_INSN;
16350 else
16351 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16352
16353 inst.instruction |= (et.size == 16) << 28;
16354 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16355 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16356 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16357 inst.instruction |= LOW4 (inst.operands[1].reg);
16358 inst.is_neon = 1;
16359 }
16360
16361 static void
16362 do_mve_vcmul (void)
16363 {
16364 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
16365 struct neon_type_el et
16366 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
16367
16368 if (inst.cond > COND_ALWAYS)
16369 inst.pred_insn_type = INSIDE_VPT_INSN;
16370 else
16371 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16372
16373 unsigned rot = inst.relocs[0].exp.X_add_number;
16374 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
16375 _("immediate out of range"));
16376
16377 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
16378 || inst.operands[0].reg == inst.operands[2].reg))
16379 as_tsktsk (BAD_MVE_SRCDEST);
16380
16381 inst.instruction |= (et.size == 32) << 28;
16382 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16383 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16384 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16385 inst.instruction |= (rot > 90) << 12;
16386 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16387 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16388 inst.instruction |= LOW4 (inst.operands[2].reg);
16389 inst.instruction |= (rot == 90 || rot == 270);
16390 inst.is_neon = 1;
16391 }
16392
16393 /* To handle the Low Overhead Loop instructions
16394 in Armv8.1-M Mainline and MVE. */
16395 static void
16396 do_t_loloop (void)
16397 {
16398 unsigned long insn = inst.instruction;
16399
16400 inst.instruction = THUMB_OP32 (inst.instruction);
16401
16402 if (insn == T_MNEM_lctp)
16403 return;
16404
16405 set_pred_insn_type (MVE_OUTSIDE_PRED_INSN);
16406
16407 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16408 {
16409 struct neon_type_el et
16410 = neon_check_type (2, NS_RR, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16411 inst.instruction |= neon_logbits (et.size) << 20;
16412 inst.is_neon = 1;
16413 }
16414
16415 switch (insn)
16416 {
16417 case T_MNEM_letp:
16418 constraint (!inst.operands[0].present,
16419 _("expected LR"));
16420 /* fall through. */
16421 case T_MNEM_le:
16422 /* le <label>. */
16423 if (!inst.operands[0].present)
16424 inst.instruction |= 1 << 21;
16425
16426 v8_1_loop_reloc (TRUE);
16427 break;
16428
16429 case T_MNEM_wls:
16430 case T_MNEM_wlstp:
16431 v8_1_loop_reloc (FALSE);
16432 /* fall through. */
16433 case T_MNEM_dlstp:
16434 case T_MNEM_dls:
16435 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
16436
16437 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16438 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
16439 else if (inst.operands[1].reg == REG_PC)
16440 as_tsktsk (MVE_BAD_PC);
16441 if (inst.operands[1].reg == REG_SP)
16442 as_tsktsk (MVE_BAD_SP);
16443
16444 inst.instruction |= (inst.operands[1].reg << 16);
16445 break;
16446
16447 default:
16448 abort ();
16449 }
16450 }
16451
16452
16453 static void
16454 do_vfp_nsyn_cmp (void)
16455 {
16456 enum neon_shape rs;
16457 if (!inst.operands[0].isreg)
16458 {
16459 do_mve_vcmp ();
16460 return;
16461 }
16462 else
16463 {
16464 constraint (inst.operands[2].present, BAD_SYNTAX);
16465 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
16466 BAD_FPU);
16467 }
16468
16469 if (inst.operands[1].isreg)
16470 {
16471 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
16472 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
16473
16474 if (rs == NS_FF || rs == NS_HH)
16475 {
16476 NEON_ENCODE (SINGLE, inst);
16477 do_vfp_sp_monadic ();
16478 }
16479 else
16480 {
16481 NEON_ENCODE (DOUBLE, inst);
16482 do_vfp_dp_rd_rm ();
16483 }
16484 }
16485 else
16486 {
16487 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
16488 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
16489
16490 switch (inst.instruction & 0x0fffffff)
16491 {
16492 case N_MNEM_vcmp:
16493 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
16494 break;
16495 case N_MNEM_vcmpe:
16496 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
16497 break;
16498 default:
16499 abort ();
16500 }
16501
16502 if (rs == NS_FI || rs == NS_HI)
16503 {
16504 NEON_ENCODE (SINGLE, inst);
16505 do_vfp_sp_compare_z ();
16506 }
16507 else
16508 {
16509 NEON_ENCODE (DOUBLE, inst);
16510 do_vfp_dp_rd ();
16511 }
16512 }
16513 do_vfp_cond_or_thumb ();
16514
16515 /* ARMv8.2 fp16 instruction. */
16516 if (rs == NS_HI || rs == NS_HH)
16517 do_scalar_fp16_v82_encode ();
16518 }
16519
16520 static void
16521 nsyn_insert_sp (void)
16522 {
16523 inst.operands[1] = inst.operands[0];
16524 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
16525 inst.operands[0].reg = REG_SP;
16526 inst.operands[0].isreg = 1;
16527 inst.operands[0].writeback = 1;
16528 inst.operands[0].present = 1;
16529 }
16530
16531 /* Fix up Neon data-processing instructions, ORing in the correct bits for
16532 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
16533
16534 static void
16535 neon_dp_fixup (struct arm_it* insn)
16536 {
16537 unsigned int i = insn->instruction;
16538 insn->is_neon = 1;
16539
16540 if (thumb_mode)
16541 {
16542 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
16543 if (i & (1 << 24))
16544 i |= 1 << 28;
16545
16546 i &= ~(1 << 24);
16547
16548 i |= 0xef000000;
16549 }
16550 else
16551 i |= 0xf2000000;
16552
16553 insn->instruction = i;
16554 }
16555
16556 static void
16557 mve_encode_qqr (int size, int U, int fp)
16558 {
16559 if (inst.operands[2].reg == REG_SP)
16560 as_tsktsk (MVE_BAD_SP);
16561 else if (inst.operands[2].reg == REG_PC)
16562 as_tsktsk (MVE_BAD_PC);
16563
16564 if (fp)
16565 {
16566 /* vadd. */
16567 if (((unsigned)inst.instruction) == 0xd00)
16568 inst.instruction = 0xee300f40;
16569 /* vsub. */
16570 else if (((unsigned)inst.instruction) == 0x200d00)
16571 inst.instruction = 0xee301f40;
16572 /* vmul. */
16573 else if (((unsigned)inst.instruction) == 0x1000d10)
16574 inst.instruction = 0xee310e60;
16575
16576 /* Setting size which is 1 for F16 and 0 for F32. */
16577 inst.instruction |= (size == 16) << 28;
16578 }
16579 else
16580 {
16581 /* vadd. */
16582 if (((unsigned)inst.instruction) == 0x800)
16583 inst.instruction = 0xee010f40;
16584 /* vsub. */
16585 else if (((unsigned)inst.instruction) == 0x1000800)
16586 inst.instruction = 0xee011f40;
16587 /* vhadd. */
16588 else if (((unsigned)inst.instruction) == 0)
16589 inst.instruction = 0xee000f40;
16590 /* vhsub. */
16591 else if (((unsigned)inst.instruction) == 0x200)
16592 inst.instruction = 0xee001f40;
16593 /* vmla. */
16594 else if (((unsigned)inst.instruction) == 0x900)
16595 inst.instruction = 0xee010e40;
16596 /* vmul. */
16597 else if (((unsigned)inst.instruction) == 0x910)
16598 inst.instruction = 0xee011e60;
16599 /* vqadd. */
16600 else if (((unsigned)inst.instruction) == 0x10)
16601 inst.instruction = 0xee000f60;
16602 /* vqsub. */
16603 else if (((unsigned)inst.instruction) == 0x210)
16604 inst.instruction = 0xee001f60;
16605 /* vqrdmlah. */
16606 else if (((unsigned)inst.instruction) == 0x3000b10)
16607 inst.instruction = 0xee000e40;
16608 /* vqdmulh. */
16609 else if (((unsigned)inst.instruction) == 0x0000b00)
16610 inst.instruction = 0xee010e60;
16611 /* vqrdmulh. */
16612 else if (((unsigned)inst.instruction) == 0x1000b00)
16613 inst.instruction = 0xfe010e60;
16614
16615 /* Set U-bit. */
16616 inst.instruction |= U << 28;
16617
16618 /* Setting bits for size. */
16619 inst.instruction |= neon_logbits (size) << 20;
16620 }
16621 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16622 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16623 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16624 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16625 inst.instruction |= inst.operands[2].reg;
16626 inst.is_neon = 1;
16627 }
16628
16629 static void
16630 mve_encode_rqq (unsigned bit28, unsigned size)
16631 {
16632 inst.instruction |= bit28 << 28;
16633 inst.instruction |= neon_logbits (size) << 20;
16634 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16635 inst.instruction |= inst.operands[0].reg << 12;
16636 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16637 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16638 inst.instruction |= LOW4 (inst.operands[2].reg);
16639 inst.is_neon = 1;
16640 }
16641
16642 static void
16643 mve_encode_qqq (int ubit, int size)
16644 {
16645
16646 inst.instruction |= (ubit != 0) << 28;
16647 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16648 inst.instruction |= neon_logbits (size) << 20;
16649 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16650 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16651 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16652 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16653 inst.instruction |= LOW4 (inst.operands[2].reg);
16654
16655 inst.is_neon = 1;
16656 }
16657
16658 static void
16659 mve_encode_rq (unsigned bit28, unsigned size)
16660 {
16661 inst.instruction |= bit28 << 28;
16662 inst.instruction |= neon_logbits (size) << 18;
16663 inst.instruction |= inst.operands[0].reg << 12;
16664 inst.instruction |= LOW4 (inst.operands[1].reg);
16665 inst.is_neon = 1;
16666 }
16667
16668 static void
16669 mve_encode_rrqq (unsigned U, unsigned size)
16670 {
16671 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16672
16673 inst.instruction |= U << 28;
16674 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16675 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16676 inst.instruction |= (size == 32) << 16;
16677 inst.instruction |= inst.operands[0].reg << 12;
16678 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16679 inst.instruction |= inst.operands[3].reg;
16680 inst.is_neon = 1;
16681 }
16682
16683 /* Helper function for neon_three_same handling the operands. */
16684 static void
16685 neon_three_args (int isquad)
16686 {
16687 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16688 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16689 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16690 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16691 inst.instruction |= LOW4 (inst.operands[2].reg);
16692 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16693 inst.instruction |= (isquad != 0) << 6;
16694 inst.is_neon = 1;
16695 }
16696
16697 /* Encode insns with bit pattern:
16698
16699 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16700 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16701
16702 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16703 different meaning for some instruction. */
16704
16705 static void
16706 neon_three_same (int isquad, int ubit, int size)
16707 {
16708 neon_three_args (isquad);
16709 inst.instruction |= (ubit != 0) << 24;
16710 if (size != -1)
16711 inst.instruction |= neon_logbits (size) << 20;
16712
16713 neon_dp_fixup (&inst);
16714 }
16715
16716 /* Encode instructions of the form:
16717
16718 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16719 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16720
16721 Don't write size if SIZE == -1. */
16722
16723 static void
16724 neon_two_same (int qbit, int ubit, int size)
16725 {
16726 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16727 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16728 inst.instruction |= LOW4 (inst.operands[1].reg);
16729 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16730 inst.instruction |= (qbit != 0) << 6;
16731 inst.instruction |= (ubit != 0) << 24;
16732
16733 if (size != -1)
16734 inst.instruction |= neon_logbits (size) << 18;
16735
16736 neon_dp_fixup (&inst);
16737 }
16738
16739 enum vfp_or_neon_is_neon_bits
16740 {
16741 NEON_CHECK_CC = 1,
16742 NEON_CHECK_ARCH = 2,
16743 NEON_CHECK_ARCH8 = 4
16744 };
16745
16746 /* Call this function if an instruction which may have belonged to the VFP or
16747 Neon instruction sets, but turned out to be a Neon instruction (due to the
16748 operand types involved, etc.). We have to check and/or fix-up a couple of
16749 things:
16750
16751 - Make sure the user hasn't attempted to make a Neon instruction
16752 conditional.
16753 - Alter the value in the condition code field if necessary.
16754 - Make sure that the arch supports Neon instructions.
16755
16756 Which of these operations take place depends on bits from enum
16757 vfp_or_neon_is_neon_bits.
16758
16759 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16760 current instruction's condition is COND_ALWAYS, the condition field is
16761 changed to inst.uncond_value. This is necessary because instructions shared
16762 between VFP and Neon may be conditional for the VFP variants only, and the
16763 unconditional Neon version must have, e.g., 0xF in the condition field. */
16764
16765 static int
16766 vfp_or_neon_is_neon (unsigned check)
16767 {
16768 /* Conditions are always legal in Thumb mode (IT blocks). */
16769 if (!thumb_mode && (check & NEON_CHECK_CC))
16770 {
16771 if (inst.cond != COND_ALWAYS)
16772 {
16773 first_error (_(BAD_COND));
16774 return FAIL;
16775 }
16776 if (inst.uncond_value != -1)
16777 inst.instruction |= inst.uncond_value << 28;
16778 }
16779
16780
16781 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16782 || ((check & NEON_CHECK_ARCH8)
16783 && !mark_feature_used (&fpu_neon_ext_armv8)))
16784 {
16785 first_error (_(BAD_FPU));
16786 return FAIL;
16787 }
16788
16789 return SUCCESS;
16790 }
16791
16792
16793 /* Return TRUE if the SIMD instruction is available for the current
16794 cpu_variant. FP is set to TRUE if this is a SIMD floating-point
16795 instruction. CHECK contains th. CHECK contains the set of bits to pass to
16796 vfp_or_neon_is_neon for the NEON specific checks. */
16797
16798 static bfd_boolean
16799 check_simd_pred_availability (int fp, unsigned check)
16800 {
16801 if (inst.cond > COND_ALWAYS)
16802 {
16803 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16804 {
16805 inst.error = BAD_FPU;
16806 return FALSE;
16807 }
16808 inst.pred_insn_type = INSIDE_VPT_INSN;
16809 }
16810 else if (inst.cond < COND_ALWAYS)
16811 {
16812 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16813 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16814 else if (vfp_or_neon_is_neon (check) == FAIL)
16815 return FALSE;
16816 }
16817 else
16818 {
16819 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16820 && vfp_or_neon_is_neon (check) == FAIL)
16821 return FALSE;
16822
16823 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16824 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16825 }
16826 return TRUE;
16827 }
16828
16829 /* Neon instruction encoders, in approximate order of appearance. */
16830
16831 static void
16832 do_neon_dyadic_i_su (void)
16833 {
16834 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16835 return;
16836
16837 enum neon_shape rs;
16838 struct neon_type_el et;
16839 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16840 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16841 else
16842 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16843
16844 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16845
16846
16847 if (rs != NS_QQR)
16848 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16849 else
16850 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16851 }
16852
16853 static void
16854 do_neon_dyadic_i64_su (void)
16855 {
16856 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
16857 return;
16858 enum neon_shape rs;
16859 struct neon_type_el et;
16860 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16861 {
16862 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16863 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16864 }
16865 else
16866 {
16867 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16868 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16869 }
16870 if (rs == NS_QQR)
16871 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16872 else
16873 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16874 }
16875
16876 static void
16877 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
16878 unsigned immbits)
16879 {
16880 unsigned size = et.size >> 3;
16881 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16882 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16883 inst.instruction |= LOW4 (inst.operands[1].reg);
16884 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16885 inst.instruction |= (isquad != 0) << 6;
16886 inst.instruction |= immbits << 16;
16887 inst.instruction |= (size >> 3) << 7;
16888 inst.instruction |= (size & 0x7) << 19;
16889 if (write_ubit)
16890 inst.instruction |= (uval != 0) << 24;
16891
16892 neon_dp_fixup (&inst);
16893 }
16894
16895 static void
16896 do_neon_shl (void)
16897 {
16898 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16899 return;
16900
16901 if (!inst.operands[2].isreg)
16902 {
16903 enum neon_shape rs;
16904 struct neon_type_el et;
16905 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16906 {
16907 rs = neon_select_shape (NS_QQI, NS_NULL);
16908 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_MVE);
16909 }
16910 else
16911 {
16912 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16913 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16914 }
16915 int imm = inst.operands[2].imm;
16916
16917 constraint (imm < 0 || (unsigned)imm >= et.size,
16918 _("immediate out of range for shift"));
16919 NEON_ENCODE (IMMED, inst);
16920 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16921 }
16922 else
16923 {
16924 enum neon_shape rs;
16925 struct neon_type_el et;
16926 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16927 {
16928 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16929 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16930 }
16931 else
16932 {
16933 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16934 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16935 }
16936
16937
16938 if (rs == NS_QQR)
16939 {
16940 constraint (inst.operands[0].reg != inst.operands[1].reg,
16941 _("invalid instruction shape"));
16942 if (inst.operands[2].reg == REG_SP)
16943 as_tsktsk (MVE_BAD_SP);
16944 else if (inst.operands[2].reg == REG_PC)
16945 as_tsktsk (MVE_BAD_PC);
16946
16947 inst.instruction = 0xee311e60;
16948 inst.instruction |= (et.type == NT_unsigned) << 28;
16949 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16950 inst.instruction |= neon_logbits (et.size) << 18;
16951 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16952 inst.instruction |= inst.operands[2].reg;
16953 inst.is_neon = 1;
16954 }
16955 else
16956 {
16957 unsigned int tmp;
16958
16959 /* VSHL/VQSHL 3-register variants have syntax such as:
16960 vshl.xx Dd, Dm, Dn
16961 whereas other 3-register operations encoded by neon_three_same have
16962 syntax like:
16963 vadd.xx Dd, Dn, Dm
16964 (i.e. with Dn & Dm reversed). Swap operands[1].reg and
16965 operands[2].reg here. */
16966 tmp = inst.operands[2].reg;
16967 inst.operands[2].reg = inst.operands[1].reg;
16968 inst.operands[1].reg = tmp;
16969 NEON_ENCODE (INTEGER, inst);
16970 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16971 }
16972 }
16973 }
16974
16975 static void
16976 do_neon_qshl (void)
16977 {
16978 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16979 return;
16980
16981 if (!inst.operands[2].isreg)
16982 {
16983 enum neon_shape rs;
16984 struct neon_type_el et;
16985 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16986 {
16987 rs = neon_select_shape (NS_QQI, NS_NULL);
16988 et = neon_check_type (2, rs, N_EQK, N_KEY | N_SU_MVE);
16989 }
16990 else
16991 {
16992 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16993 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16994 }
16995 int imm = inst.operands[2].imm;
16996
16997 constraint (imm < 0 || (unsigned)imm >= et.size,
16998 _("immediate out of range for shift"));
16999 NEON_ENCODE (IMMED, inst);
17000 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
17001 }
17002 else
17003 {
17004 enum neon_shape rs;
17005 struct neon_type_el et;
17006
17007 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17008 {
17009 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17010 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
17011 }
17012 else
17013 {
17014 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17015 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
17016 }
17017
17018 if (rs == NS_QQR)
17019 {
17020 constraint (inst.operands[0].reg != inst.operands[1].reg,
17021 _("invalid instruction shape"));
17022 if (inst.operands[2].reg == REG_SP)
17023 as_tsktsk (MVE_BAD_SP);
17024 else if (inst.operands[2].reg == REG_PC)
17025 as_tsktsk (MVE_BAD_PC);
17026
17027 inst.instruction = 0xee311ee0;
17028 inst.instruction |= (et.type == NT_unsigned) << 28;
17029 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17030 inst.instruction |= neon_logbits (et.size) << 18;
17031 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17032 inst.instruction |= inst.operands[2].reg;
17033 inst.is_neon = 1;
17034 }
17035 else
17036 {
17037 unsigned int tmp;
17038
17039 /* See note in do_neon_shl. */
17040 tmp = inst.operands[2].reg;
17041 inst.operands[2].reg = inst.operands[1].reg;
17042 inst.operands[1].reg = tmp;
17043 NEON_ENCODE (INTEGER, inst);
17044 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
17045 }
17046 }
17047 }
17048
17049 static void
17050 do_neon_rshl (void)
17051 {
17052 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
17053 return;
17054
17055 enum neon_shape rs;
17056 struct neon_type_el et;
17057 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17058 {
17059 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17060 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17061 }
17062 else
17063 {
17064 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17065 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
17066 }
17067
17068 unsigned int tmp;
17069
17070 if (rs == NS_QQR)
17071 {
17072 if (inst.operands[2].reg == REG_PC)
17073 as_tsktsk (MVE_BAD_PC);
17074 else if (inst.operands[2].reg == REG_SP)
17075 as_tsktsk (MVE_BAD_SP);
17076
17077 constraint (inst.operands[0].reg != inst.operands[1].reg,
17078 _("invalid instruction shape"));
17079
17080 if (inst.instruction == 0x0000510)
17081 /* We are dealing with vqrshl. */
17082 inst.instruction = 0xee331ee0;
17083 else
17084 /* We are dealing with vrshl. */
17085 inst.instruction = 0xee331e60;
17086
17087 inst.instruction |= (et.type == NT_unsigned) << 28;
17088 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17089 inst.instruction |= neon_logbits (et.size) << 18;
17090 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17091 inst.instruction |= inst.operands[2].reg;
17092 inst.is_neon = 1;
17093 }
17094 else
17095 {
17096 tmp = inst.operands[2].reg;
17097 inst.operands[2].reg = inst.operands[1].reg;
17098 inst.operands[1].reg = tmp;
17099 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
17100 }
17101 }
17102
17103 static int
17104 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
17105 {
17106 /* Handle .I8 pseudo-instructions. */
17107 if (size == 8)
17108 {
17109 /* Unfortunately, this will make everything apart from zero out-of-range.
17110 FIXME is this the intended semantics? There doesn't seem much point in
17111 accepting .I8 if so. */
17112 immediate |= immediate << 8;
17113 size = 16;
17114 }
17115
17116 if (size >= 32)
17117 {
17118 if (immediate == (immediate & 0x000000ff))
17119 {
17120 *immbits = immediate;
17121 return 0x1;
17122 }
17123 else if (immediate == (immediate & 0x0000ff00))
17124 {
17125 *immbits = immediate >> 8;
17126 return 0x3;
17127 }
17128 else if (immediate == (immediate & 0x00ff0000))
17129 {
17130 *immbits = immediate >> 16;
17131 return 0x5;
17132 }
17133 else if (immediate == (immediate & 0xff000000))
17134 {
17135 *immbits = immediate >> 24;
17136 return 0x7;
17137 }
17138 if ((immediate & 0xffff) != (immediate >> 16))
17139 goto bad_immediate;
17140 immediate &= 0xffff;
17141 }
17142
17143 if (immediate == (immediate & 0x000000ff))
17144 {
17145 *immbits = immediate;
17146 return 0x9;
17147 }
17148 else if (immediate == (immediate & 0x0000ff00))
17149 {
17150 *immbits = immediate >> 8;
17151 return 0xb;
17152 }
17153
17154 bad_immediate:
17155 first_error (_("immediate value out of range"));
17156 return FAIL;
17157 }
17158
17159 static void
17160 do_neon_logic (void)
17161 {
17162 if (inst.operands[2].present && inst.operands[2].isreg)
17163 {
17164 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17165 if (rs == NS_QQQ
17166 && !check_simd_pred_availability (FALSE,
17167 NEON_CHECK_ARCH | NEON_CHECK_CC))
17168 return;
17169 else if (rs != NS_QQQ
17170 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
17171 first_error (BAD_FPU);
17172
17173 neon_check_type (3, rs, N_IGNORE_TYPE);
17174 /* U bit and size field were set as part of the bitmask. */
17175 NEON_ENCODE (INTEGER, inst);
17176 neon_three_same (neon_quad (rs), 0, -1);
17177 }
17178 else
17179 {
17180 const int three_ops_form = (inst.operands[2].present
17181 && !inst.operands[2].isreg);
17182 const int immoperand = (three_ops_form ? 2 : 1);
17183 enum neon_shape rs = (three_ops_form
17184 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
17185 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
17186 /* Because neon_select_shape makes the second operand a copy of the first
17187 if the second operand is not present. */
17188 if (rs == NS_QQI
17189 && !check_simd_pred_availability (FALSE,
17190 NEON_CHECK_ARCH | NEON_CHECK_CC))
17191 return;
17192 else if (rs != NS_QQI
17193 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
17194 first_error (BAD_FPU);
17195
17196 struct neon_type_el et;
17197 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17198 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
17199 else
17200 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
17201 | N_KEY, N_EQK);
17202
17203 if (et.type == NT_invtype)
17204 return;
17205 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
17206 unsigned immbits;
17207 int cmode;
17208
17209
17210 if (three_ops_form)
17211 constraint (inst.operands[0].reg != inst.operands[1].reg,
17212 _("first and second operands shall be the same register"));
17213
17214 NEON_ENCODE (IMMED, inst);
17215
17216 immbits = inst.operands[immoperand].imm;
17217 if (et.size == 64)
17218 {
17219 /* .i64 is a pseudo-op, so the immediate must be a repeating
17220 pattern. */
17221 if (immbits != (inst.operands[immoperand].regisimm ?
17222 inst.operands[immoperand].reg : 0))
17223 {
17224 /* Set immbits to an invalid constant. */
17225 immbits = 0xdeadbeef;
17226 }
17227 }
17228
17229 switch (opcode)
17230 {
17231 case N_MNEM_vbic:
17232 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17233 break;
17234
17235 case N_MNEM_vorr:
17236 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17237 break;
17238
17239 case N_MNEM_vand:
17240 /* Pseudo-instruction for VBIC. */
17241 neon_invert_size (&immbits, 0, et.size);
17242 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17243 break;
17244
17245 case N_MNEM_vorn:
17246 /* Pseudo-instruction for VORR. */
17247 neon_invert_size (&immbits, 0, et.size);
17248 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17249 break;
17250
17251 default:
17252 abort ();
17253 }
17254
17255 if (cmode == FAIL)
17256 return;
17257
17258 inst.instruction |= neon_quad (rs) << 6;
17259 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17260 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17261 inst.instruction |= cmode << 8;
17262 neon_write_immbits (immbits);
17263
17264 neon_dp_fixup (&inst);
17265 }
17266 }
17267
17268 static void
17269 do_neon_bitfield (void)
17270 {
17271 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17272 neon_check_type (3, rs, N_IGNORE_TYPE);
17273 neon_three_same (neon_quad (rs), 0, -1);
17274 }
17275
17276 static void
17277 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
17278 unsigned destbits)
17279 {
17280 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17281 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
17282 types | N_KEY);
17283 if (et.type == NT_float)
17284 {
17285 NEON_ENCODE (FLOAT, inst);
17286 if (rs == NS_QQR)
17287 mve_encode_qqr (et.size, 0, 1);
17288 else
17289 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17290 }
17291 else
17292 {
17293 NEON_ENCODE (INTEGER, inst);
17294 if (rs == NS_QQR)
17295 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
17296 else
17297 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
17298 }
17299 }
17300
17301
17302 static void
17303 do_neon_dyadic_if_su_d (void)
17304 {
17305 /* This version only allow D registers, but that constraint is enforced during
17306 operand parsing so we don't need to do anything extra here. */
17307 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17308 }
17309
17310 static void
17311 do_neon_dyadic_if_i_d (void)
17312 {
17313 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17314 affected if we specify unsigned args. */
17315 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17316 }
17317
17318 static void
17319 do_mve_vstr_vldr_QI (int size, int elsize, int load)
17320 {
17321 constraint (size < 32, BAD_ADDR_MODE);
17322 constraint (size != elsize, BAD_EL_TYPE);
17323 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17324 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
17325 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
17326 _("destination register and offset register may not be the"
17327 " same"));
17328
17329 int imm = inst.relocs[0].exp.X_add_number;
17330 int add = 1;
17331 if (imm < 0)
17332 {
17333 add = 0;
17334 imm = -imm;
17335 }
17336 constraint ((imm % (size / 8) != 0)
17337 || imm > (0x7f << neon_logbits (size)),
17338 (size == 32) ? _("immediate must be a multiple of 4 in the"
17339 " range of +/-[0,508]")
17340 : _("immediate must be a multiple of 8 in the"
17341 " range of +/-[0,1016]"));
17342 inst.instruction |= 0x11 << 24;
17343 inst.instruction |= add << 23;
17344 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17345 inst.instruction |= inst.operands[1].writeback << 21;
17346 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17347 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17348 inst.instruction |= 1 << 12;
17349 inst.instruction |= (size == 64) << 8;
17350 inst.instruction &= 0xffffff00;
17351 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17352 inst.instruction |= imm >> neon_logbits (size);
17353 }
17354
17355 static void
17356 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
17357 {
17358 unsigned os = inst.operands[1].imm >> 5;
17359 unsigned type = inst.vectype.el[0].type;
17360 constraint (os != 0 && size == 8,
17361 _("can not shift offsets when accessing less than half-word"));
17362 constraint (os && os != neon_logbits (size),
17363 _("shift immediate must be 1, 2 or 3 for half-word, word"
17364 " or double-word accesses respectively"));
17365 if (inst.operands[1].reg == REG_PC)
17366 as_tsktsk (MVE_BAD_PC);
17367
17368 switch (size)
17369 {
17370 case 8:
17371 constraint (elsize >= 64, BAD_EL_TYPE);
17372 break;
17373 case 16:
17374 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17375 break;
17376 case 32:
17377 case 64:
17378 constraint (elsize != size, BAD_EL_TYPE);
17379 break;
17380 default:
17381 break;
17382 }
17383 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
17384 BAD_ADDR_MODE);
17385 if (load)
17386 {
17387 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
17388 _("destination register and offset register may not be"
17389 " the same"));
17390 constraint (size == elsize && type == NT_signed, BAD_EL_TYPE);
17391 constraint (size != elsize && type != NT_unsigned && type != NT_signed,
17392 BAD_EL_TYPE);
17393 inst.instruction |= ((size == elsize) || (type == NT_unsigned)) << 28;
17394 }
17395 else
17396 {
17397 constraint (type != NT_untyped, BAD_EL_TYPE);
17398 }
17399
17400 inst.instruction |= 1 << 23;
17401 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17402 inst.instruction |= inst.operands[1].reg << 16;
17403 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17404 inst.instruction |= neon_logbits (elsize) << 7;
17405 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
17406 inst.instruction |= LOW4 (inst.operands[1].imm);
17407 inst.instruction |= !!os;
17408 }
17409
17410 static void
17411 do_mve_vstr_vldr_RI (int size, int elsize, int load)
17412 {
17413 enum neon_el_type type = inst.vectype.el[0].type;
17414
17415 constraint (size >= 64, BAD_ADDR_MODE);
17416 switch (size)
17417 {
17418 case 16:
17419 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17420 break;
17421 case 32:
17422 constraint (elsize != size, BAD_EL_TYPE);
17423 break;
17424 default:
17425 break;
17426 }
17427 if (load)
17428 {
17429 constraint (elsize != size && type != NT_unsigned
17430 && type != NT_signed, BAD_EL_TYPE);
17431 }
17432 else
17433 {
17434 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
17435 }
17436
17437 int imm = inst.relocs[0].exp.X_add_number;
17438 int add = 1;
17439 if (imm < 0)
17440 {
17441 add = 0;
17442 imm = -imm;
17443 }
17444
17445 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
17446 {
17447 switch (size)
17448 {
17449 case 8:
17450 constraint (1, _("immediate must be in the range of +/-[0,127]"));
17451 break;
17452 case 16:
17453 constraint (1, _("immediate must be a multiple of 2 in the"
17454 " range of +/-[0,254]"));
17455 break;
17456 case 32:
17457 constraint (1, _("immediate must be a multiple of 4 in the"
17458 " range of +/-[0,508]"));
17459 break;
17460 }
17461 }
17462
17463 if (size != elsize)
17464 {
17465 constraint (inst.operands[1].reg > 7, BAD_HIREG);
17466 constraint (inst.operands[0].reg > 14,
17467 _("MVE vector register in the range [Q0..Q7] expected"));
17468 inst.instruction |= (load && type == NT_unsigned) << 28;
17469 inst.instruction |= (size == 16) << 19;
17470 inst.instruction |= neon_logbits (elsize) << 7;
17471 }
17472 else
17473 {
17474 if (inst.operands[1].reg == REG_PC)
17475 as_tsktsk (MVE_BAD_PC);
17476 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17477 as_tsktsk (MVE_BAD_SP);
17478 inst.instruction |= 1 << 12;
17479 inst.instruction |= neon_logbits (size) << 7;
17480 }
17481 inst.instruction |= inst.operands[1].preind << 24;
17482 inst.instruction |= add << 23;
17483 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17484 inst.instruction |= inst.operands[1].writeback << 21;
17485 inst.instruction |= inst.operands[1].reg << 16;
17486 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17487 inst.instruction &= 0xffffff80;
17488 inst.instruction |= imm >> neon_logbits (size);
17489
17490 }
17491
17492 static void
17493 do_mve_vstr_vldr (void)
17494 {
17495 unsigned size;
17496 int load = 0;
17497
17498 if (inst.cond > COND_ALWAYS)
17499 inst.pred_insn_type = INSIDE_VPT_INSN;
17500 else
17501 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17502
17503 switch (inst.instruction)
17504 {
17505 default:
17506 gas_assert (0);
17507 break;
17508 case M_MNEM_vldrb:
17509 load = 1;
17510 /* fall through. */
17511 case M_MNEM_vstrb:
17512 size = 8;
17513 break;
17514 case M_MNEM_vldrh:
17515 load = 1;
17516 /* fall through. */
17517 case M_MNEM_vstrh:
17518 size = 16;
17519 break;
17520 case M_MNEM_vldrw:
17521 load = 1;
17522 /* fall through. */
17523 case M_MNEM_vstrw:
17524 size = 32;
17525 break;
17526 case M_MNEM_vldrd:
17527 load = 1;
17528 /* fall through. */
17529 case M_MNEM_vstrd:
17530 size = 64;
17531 break;
17532 }
17533 unsigned elsize = inst.vectype.el[0].size;
17534
17535 if (inst.operands[1].isquad)
17536 {
17537 /* We are dealing with [Q, imm]{!} cases. */
17538 do_mve_vstr_vldr_QI (size, elsize, load);
17539 }
17540 else
17541 {
17542 if (inst.operands[1].immisreg == 2)
17543 {
17544 /* We are dealing with [R, Q, {UXTW #os}] cases. */
17545 do_mve_vstr_vldr_RQ (size, elsize, load);
17546 }
17547 else if (!inst.operands[1].immisreg)
17548 {
17549 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
17550 do_mve_vstr_vldr_RI (size, elsize, load);
17551 }
17552 else
17553 constraint (1, BAD_ADDR_MODE);
17554 }
17555
17556 inst.is_neon = 1;
17557 }
17558
17559 static void
17560 do_mve_vst_vld (void)
17561 {
17562 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17563 return;
17564
17565 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
17566 || inst.relocs[0].exp.X_add_number != 0
17567 || inst.operands[1].immisreg != 0,
17568 BAD_ADDR_MODE);
17569 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
17570 if (inst.operands[1].reg == REG_PC)
17571 as_tsktsk (MVE_BAD_PC);
17572 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17573 as_tsktsk (MVE_BAD_SP);
17574
17575
17576 /* These instructions are one of the "exceptions" mentioned in
17577 handle_pred_state. They are MVE instructions that are not VPT compatible
17578 and do not accept a VPT code, thus appending such a code is a syntax
17579 error. */
17580 if (inst.cond > COND_ALWAYS)
17581 first_error (BAD_SYNTAX);
17582 /* If we append a scalar condition code we can set this to
17583 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
17584 else if (inst.cond < COND_ALWAYS)
17585 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17586 else
17587 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
17588
17589 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17590 inst.instruction |= inst.operands[1].writeback << 21;
17591 inst.instruction |= inst.operands[1].reg << 16;
17592 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17593 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
17594 inst.is_neon = 1;
17595 }
17596
17597 static void
17598 do_mve_vaddlv (void)
17599 {
17600 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
17601 struct neon_type_el et
17602 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
17603
17604 if (et.type == NT_invtype)
17605 first_error (BAD_EL_TYPE);
17606
17607 if (inst.cond > COND_ALWAYS)
17608 inst.pred_insn_type = INSIDE_VPT_INSN;
17609 else
17610 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17611
17612 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17613
17614 inst.instruction |= (et.type == NT_unsigned) << 28;
17615 inst.instruction |= inst.operands[1].reg << 19;
17616 inst.instruction |= inst.operands[0].reg << 12;
17617 inst.instruction |= inst.operands[2].reg;
17618 inst.is_neon = 1;
17619 }
17620
17621 static void
17622 do_neon_dyadic_if_su (void)
17623 {
17624 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17625 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17626 N_SUF_32 | N_KEY);
17627
17628 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
17629 || inst.instruction == ((unsigned) N_MNEM_vmin))
17630 && et.type == NT_float
17631 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
17632
17633 if (!check_simd_pred_availability (et.type == NT_float,
17634 NEON_CHECK_ARCH | NEON_CHECK_CC))
17635 return;
17636
17637 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17638 }
17639
17640 static void
17641 do_neon_addsub_if_i (void)
17642 {
17643 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
17644 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
17645 return;
17646
17647 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17648 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
17649 N_EQK, N_IF_32 | N_I64 | N_KEY);
17650
17651 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
17652 /* If we are parsing Q registers and the element types match MVE, which NEON
17653 also supports, then we must check whether this is an instruction that can
17654 be used by both MVE/NEON. This distinction can be made based on whether
17655 they are predicated or not. */
17656 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
17657 {
17658 if (!check_simd_pred_availability (et.type == NT_float,
17659 NEON_CHECK_ARCH | NEON_CHECK_CC))
17660 return;
17661 }
17662 else
17663 {
17664 /* If they are either in a D register or are using an unsupported. */
17665 if (rs != NS_QQR
17666 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17667 return;
17668 }
17669
17670 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17671 affected if we specify unsigned args. */
17672 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
17673 }
17674
17675 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17676 result to be:
17677 V<op> A,B (A is operand 0, B is operand 2)
17678 to mean:
17679 V<op> A,B,A
17680 not:
17681 V<op> A,B,B
17682 so handle that case specially. */
17683
17684 static void
17685 neon_exchange_operands (void)
17686 {
17687 if (inst.operands[1].present)
17688 {
17689 void *scratch = xmalloc (sizeof (inst.operands[0]));
17690
17691 /* Swap operands[1] and operands[2]. */
17692 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17693 inst.operands[1] = inst.operands[2];
17694 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
17695 free (scratch);
17696 }
17697 else
17698 {
17699 inst.operands[1] = inst.operands[2];
17700 inst.operands[2] = inst.operands[0];
17701 }
17702 }
17703
17704 static void
17705 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17706 {
17707 if (inst.operands[2].isreg)
17708 {
17709 if (invert)
17710 neon_exchange_operands ();
17711 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
17712 }
17713 else
17714 {
17715 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17716 struct neon_type_el et = neon_check_type (2, rs,
17717 N_EQK | N_SIZ, immtypes | N_KEY);
17718
17719 NEON_ENCODE (IMMED, inst);
17720 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17721 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17722 inst.instruction |= LOW4 (inst.operands[1].reg);
17723 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17724 inst.instruction |= neon_quad (rs) << 6;
17725 inst.instruction |= (et.type == NT_float) << 10;
17726 inst.instruction |= neon_logbits (et.size) << 18;
17727
17728 neon_dp_fixup (&inst);
17729 }
17730 }
17731
17732 static void
17733 do_neon_cmp (void)
17734 {
17735 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
17736 }
17737
17738 static void
17739 do_neon_cmp_inv (void)
17740 {
17741 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
17742 }
17743
17744 static void
17745 do_neon_ceq (void)
17746 {
17747 neon_compare (N_IF_32, N_IF_32, FALSE);
17748 }
17749
17750 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
17751 scalars, which are encoded in 5 bits, M : Rm.
17752 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17753 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
17754 index in M.
17755
17756 Dot Product instructions are similar to multiply instructions except elsize
17757 should always be 32.
17758
17759 This function translates SCALAR, which is GAS's internal encoding of indexed
17760 scalar register, to raw encoding. There is also register and index range
17761 check based on ELSIZE. */
17762
17763 static unsigned
17764 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17765 {
17766 unsigned regno = NEON_SCALAR_REG (scalar);
17767 unsigned elno = NEON_SCALAR_INDEX (scalar);
17768
17769 switch (elsize)
17770 {
17771 case 16:
17772 if (regno > 7 || elno > 3)
17773 goto bad_scalar;
17774 return regno | (elno << 3);
17775
17776 case 32:
17777 if (regno > 15 || elno > 1)
17778 goto bad_scalar;
17779 return regno | (elno << 4);
17780
17781 default:
17782 bad_scalar:
17783 first_error (_("scalar out of range for multiply instruction"));
17784 }
17785
17786 return 0;
17787 }
17788
17789 /* Encode multiply / multiply-accumulate scalar instructions. */
17790
17791 static void
17792 neon_mul_mac (struct neon_type_el et, int ubit)
17793 {
17794 unsigned scalar;
17795
17796 /* Give a more helpful error message if we have an invalid type. */
17797 if (et.type == NT_invtype)
17798 return;
17799
17800 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
17801 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17802 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17803 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17804 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17805 inst.instruction |= LOW4 (scalar);
17806 inst.instruction |= HI1 (scalar) << 5;
17807 inst.instruction |= (et.type == NT_float) << 8;
17808 inst.instruction |= neon_logbits (et.size) << 20;
17809 inst.instruction |= (ubit != 0) << 24;
17810
17811 neon_dp_fixup (&inst);
17812 }
17813
17814 static void
17815 do_neon_mac_maybe_scalar (void)
17816 {
17817 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17818 return;
17819
17820 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17821 return;
17822
17823 if (inst.operands[2].isscalar)
17824 {
17825 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17826 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17827 struct neon_type_el et = neon_check_type (3, rs,
17828 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
17829 NEON_ENCODE (SCALAR, inst);
17830 neon_mul_mac (et, neon_quad (rs));
17831 }
17832 else if (!inst.operands[2].isvec)
17833 {
17834 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17835
17836 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17837 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17838
17839 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17840 }
17841 else
17842 {
17843 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17844 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17845 affected if we specify unsigned args. */
17846 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17847 }
17848 }
17849
17850 static void
17851 do_bfloat_vfma (void)
17852 {
17853 constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU));
17854 constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16));
17855 enum neon_shape rs;
17856 int t_bit = 0;
17857
17858 if (inst.instruction != B_MNEM_vfmab)
17859 {
17860 t_bit = 1;
17861 inst.instruction = B_MNEM_vfmat;
17862 }
17863
17864 if (inst.operands[2].isscalar)
17865 {
17866 rs = neon_select_shape (NS_QQS, NS_NULL);
17867 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
17868
17869 inst.instruction |= (1 << 25);
17870 int index = inst.operands[2].reg & 0xf;
17871 constraint (!(index < 4), _("index must be in the range 0 to 3"));
17872 inst.operands[2].reg >>= 4;
17873 constraint (!(inst.operands[2].reg < 8),
17874 _("indexed register must be less than 8"));
17875 neon_three_args (t_bit);
17876 inst.instruction |= ((index & 1) << 3);
17877 inst.instruction |= ((index & 2) << 4);
17878 }
17879 else
17880 {
17881 rs = neon_select_shape (NS_QQQ, NS_NULL);
17882 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
17883 neon_three_args (t_bit);
17884 }
17885
17886 }
17887
17888 static void
17889 do_neon_fmac (void)
17890 {
17891 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17892 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
17893 return;
17894
17895 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17896 return;
17897
17898 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17899 {
17900 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17901 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17902 N_EQK);
17903
17904 if (rs == NS_QQR)
17905 {
17906
17907 if (inst.operands[2].reg == REG_SP)
17908 as_tsktsk (MVE_BAD_SP);
17909 else if (inst.operands[2].reg == REG_PC)
17910 as_tsktsk (MVE_BAD_PC);
17911
17912 inst.instruction = 0xee310e40;
17913 inst.instruction |= (et.size == 16) << 28;
17914 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17915 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17916 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17917 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17918 inst.instruction |= inst.operands[2].reg;
17919 inst.is_neon = 1;
17920 return;
17921 }
17922 }
17923 else
17924 {
17925 constraint (!inst.operands[2].isvec, BAD_FPU);
17926 }
17927
17928 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17929 }
17930
17931 static void
17932 do_mve_vfma (void)
17933 {
17934 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_bf16) &&
17935 inst.cond == COND_ALWAYS)
17936 {
17937 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17938 inst.instruction = N_MNEM_vfma;
17939 inst.pred_insn_type = INSIDE_VPT_INSN;
17940 inst.cond = 0xf;
17941 return do_neon_fmac();
17942 }
17943 else
17944 {
17945 do_bfloat_vfma();
17946 }
17947 }
17948
17949 static void
17950 do_neon_tst (void)
17951 {
17952 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17953 struct neon_type_el et = neon_check_type (3, rs,
17954 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17955 neon_three_same (neon_quad (rs), 0, et.size);
17956 }
17957
17958 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
17959 same types as the MAC equivalents. The polynomial type for this instruction
17960 is encoded the same as the integer type. */
17961
17962 static void
17963 do_neon_mul (void)
17964 {
17965 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17966 return;
17967
17968 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17969 return;
17970
17971 if (inst.operands[2].isscalar)
17972 {
17973 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17974 do_neon_mac_maybe_scalar ();
17975 }
17976 else
17977 {
17978 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17979 {
17980 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17981 struct neon_type_el et
17982 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17983 if (et.type == NT_float)
17984 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17985 BAD_FPU);
17986
17987 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17988 }
17989 else
17990 {
17991 constraint (!inst.operands[2].isvec, BAD_FPU);
17992 neon_dyadic_misc (NT_poly,
17993 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17994 }
17995 }
17996 }
17997
17998 static void
17999 do_neon_qdmulh (void)
18000 {
18001 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18002 return;
18003
18004 if (inst.operands[2].isscalar)
18005 {
18006 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
18007 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
18008 struct neon_type_el et = neon_check_type (3, rs,
18009 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18010 NEON_ENCODE (SCALAR, inst);
18011 neon_mul_mac (et, neon_quad (rs));
18012 }
18013 else
18014 {
18015 enum neon_shape rs;
18016 struct neon_type_el et;
18017 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18018 {
18019 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
18020 et = neon_check_type (3, rs,
18021 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18022 }
18023 else
18024 {
18025 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18026 et = neon_check_type (3, rs,
18027 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18028 }
18029
18030 NEON_ENCODE (INTEGER, inst);
18031 if (rs == NS_QQR)
18032 mve_encode_qqr (et.size, 0, 0);
18033 else
18034 /* The U bit (rounding) comes from bit mask. */
18035 neon_three_same (neon_quad (rs), 0, et.size);
18036 }
18037 }
18038
18039 static void
18040 do_mve_vaddv (void)
18041 {
18042 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18043 struct neon_type_el et
18044 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
18045
18046 if (et.type == NT_invtype)
18047 first_error (BAD_EL_TYPE);
18048
18049 if (inst.cond > COND_ALWAYS)
18050 inst.pred_insn_type = INSIDE_VPT_INSN;
18051 else
18052 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18053
18054 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
18055
18056 mve_encode_rq (et.type == NT_unsigned, et.size);
18057 }
18058
18059 static void
18060 do_mve_vhcadd (void)
18061 {
18062 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
18063 struct neon_type_el et
18064 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18065
18066 if (inst.cond > COND_ALWAYS)
18067 inst.pred_insn_type = INSIDE_VPT_INSN;
18068 else
18069 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18070
18071 unsigned rot = inst.relocs[0].exp.X_add_number;
18072 constraint (rot != 90 && rot != 270, _("immediate out of range"));
18073
18074 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
18075 as_tsktsk (_("Warning: 32-bit element size and same first and third "
18076 "operand makes instruction UNPREDICTABLE"));
18077
18078 mve_encode_qqq (0, et.size);
18079 inst.instruction |= (rot == 270) << 12;
18080 inst.is_neon = 1;
18081 }
18082
18083 static void
18084 do_mve_vqdmull (void)
18085 {
18086 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
18087 struct neon_type_el et
18088 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18089
18090 if (et.size == 32
18091 && (inst.operands[0].reg == inst.operands[1].reg
18092 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
18093 as_tsktsk (BAD_MVE_SRCDEST);
18094
18095 if (inst.cond > COND_ALWAYS)
18096 inst.pred_insn_type = INSIDE_VPT_INSN;
18097 else
18098 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18099
18100 if (rs == NS_QQQ)
18101 {
18102 mve_encode_qqq (et.size == 32, 64);
18103 inst.instruction |= 1;
18104 }
18105 else
18106 {
18107 mve_encode_qqr (64, et.size == 32, 0);
18108 inst.instruction |= 0x3 << 5;
18109 }
18110 }
18111
18112 static void
18113 do_mve_vadc (void)
18114 {
18115 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
18116 struct neon_type_el et
18117 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
18118
18119 if (et.type == NT_invtype)
18120 first_error (BAD_EL_TYPE);
18121
18122 if (inst.cond > COND_ALWAYS)
18123 inst.pred_insn_type = INSIDE_VPT_INSN;
18124 else
18125 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18126
18127 mve_encode_qqq (0, 64);
18128 }
18129
18130 static void
18131 do_mve_vbrsr (void)
18132 {
18133 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18134 struct neon_type_el et
18135 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18136
18137 if (inst.cond > COND_ALWAYS)
18138 inst.pred_insn_type = INSIDE_VPT_INSN;
18139 else
18140 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18141
18142 mve_encode_qqr (et.size, 0, 0);
18143 }
18144
18145 static void
18146 do_mve_vsbc (void)
18147 {
18148 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
18149
18150 if (inst.cond > COND_ALWAYS)
18151 inst.pred_insn_type = INSIDE_VPT_INSN;
18152 else
18153 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18154
18155 mve_encode_qqq (1, 64);
18156 }
18157
18158 static void
18159 do_mve_vmulh (void)
18160 {
18161 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
18162 struct neon_type_el et
18163 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
18164
18165 if (inst.cond > COND_ALWAYS)
18166 inst.pred_insn_type = INSIDE_VPT_INSN;
18167 else
18168 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18169
18170 mve_encode_qqq (et.type == NT_unsigned, et.size);
18171 }
18172
18173 static void
18174 do_mve_vqdmlah (void)
18175 {
18176 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18177 struct neon_type_el et
18178 = neon_check_type (3, rs, N_EQK, N_EQK, N_S_32 | N_KEY);
18179
18180 if (inst.cond > COND_ALWAYS)
18181 inst.pred_insn_type = INSIDE_VPT_INSN;
18182 else
18183 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18184
18185 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
18186 }
18187
18188 static void
18189 do_mve_vqdmladh (void)
18190 {
18191 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
18192 struct neon_type_el et
18193 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18194
18195 if (inst.cond > COND_ALWAYS)
18196 inst.pred_insn_type = INSIDE_VPT_INSN;
18197 else
18198 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18199
18200 mve_encode_qqq (0, et.size);
18201 }
18202
18203
18204 static void
18205 do_mve_vmull (void)
18206 {
18207
18208 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
18209 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
18210 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18211 && inst.cond == COND_ALWAYS
18212 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
18213 {
18214 if (rs == NS_QQQ)
18215 {
18216
18217 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
18218 N_SUF_32 | N_F64 | N_P8
18219 | N_P16 | N_I_MVE | N_KEY);
18220 if (((et.type == NT_poly) && et.size == 8
18221 && ARM_CPU_IS_ANY (cpu_variant))
18222 || (et.type == NT_integer) || (et.type == NT_float))
18223 goto neon_vmul;
18224 }
18225 else
18226 goto neon_vmul;
18227 }
18228
18229 constraint (rs != NS_QQQ, BAD_FPU);
18230 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
18231 N_SU_32 | N_P8 | N_P16 | N_KEY);
18232
18233 /* We are dealing with MVE's vmullt. */
18234 if (et.size == 32
18235 && (inst.operands[0].reg == inst.operands[1].reg
18236 || inst.operands[0].reg == inst.operands[2].reg))
18237 as_tsktsk (BAD_MVE_SRCDEST);
18238
18239 if (inst.cond > COND_ALWAYS)
18240 inst.pred_insn_type = INSIDE_VPT_INSN;
18241 else
18242 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18243
18244 if (et.type == NT_poly)
18245 mve_encode_qqq (neon_logbits (et.size), 64);
18246 else
18247 mve_encode_qqq (et.type == NT_unsigned, et.size);
18248
18249 return;
18250
18251 neon_vmul:
18252 inst.instruction = N_MNEM_vmul;
18253 inst.cond = 0xb;
18254 if (thumb_mode)
18255 inst.pred_insn_type = INSIDE_IT_INSN;
18256 do_neon_mul ();
18257 }
18258
18259 static void
18260 do_mve_vabav (void)
18261 {
18262 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
18263
18264 if (rs == NS_NULL)
18265 return;
18266
18267 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18268 return;
18269
18270 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
18271 | N_S16 | N_S32 | N_U8 | N_U16
18272 | N_U32);
18273
18274 if (inst.cond > COND_ALWAYS)
18275 inst.pred_insn_type = INSIDE_VPT_INSN;
18276 else
18277 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18278
18279 mve_encode_rqq (et.type == NT_unsigned, et.size);
18280 }
18281
18282 static void
18283 do_mve_vmladav (void)
18284 {
18285 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
18286 struct neon_type_el et = neon_check_type (3, rs,
18287 N_EQK, N_EQK, N_SU_MVE | N_KEY);
18288
18289 if (et.type == NT_unsigned
18290 && (inst.instruction == M_MNEM_vmladavx
18291 || inst.instruction == M_MNEM_vmladavax
18292 || inst.instruction == M_MNEM_vmlsdav
18293 || inst.instruction == M_MNEM_vmlsdava
18294 || inst.instruction == M_MNEM_vmlsdavx
18295 || inst.instruction == M_MNEM_vmlsdavax))
18296 first_error (BAD_SIMD_TYPE);
18297
18298 constraint (inst.operands[2].reg > 14,
18299 _("MVE vector register in the range [Q0..Q7] expected"));
18300
18301 if (inst.cond > COND_ALWAYS)
18302 inst.pred_insn_type = INSIDE_VPT_INSN;
18303 else
18304 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18305
18306 if (inst.instruction == M_MNEM_vmlsdav
18307 || inst.instruction == M_MNEM_vmlsdava
18308 || inst.instruction == M_MNEM_vmlsdavx
18309 || inst.instruction == M_MNEM_vmlsdavax)
18310 inst.instruction |= (et.size == 8) << 28;
18311 else
18312 inst.instruction |= (et.size == 8) << 8;
18313
18314 mve_encode_rqq (et.type == NT_unsigned, 64);
18315 inst.instruction |= (et.size == 32) << 16;
18316 }
18317
18318 static void
18319 do_mve_vmlaldav (void)
18320 {
18321 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
18322 struct neon_type_el et
18323 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
18324 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
18325
18326 if (et.type == NT_unsigned
18327 && (inst.instruction == M_MNEM_vmlsldav
18328 || inst.instruction == M_MNEM_vmlsldava
18329 || inst.instruction == M_MNEM_vmlsldavx
18330 || inst.instruction == M_MNEM_vmlsldavax))
18331 first_error (BAD_SIMD_TYPE);
18332
18333 if (inst.cond > COND_ALWAYS)
18334 inst.pred_insn_type = INSIDE_VPT_INSN;
18335 else
18336 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18337
18338 mve_encode_rrqq (et.type == NT_unsigned, et.size);
18339 }
18340
18341 static void
18342 do_mve_vrmlaldavh (void)
18343 {
18344 struct neon_type_el et;
18345 if (inst.instruction == M_MNEM_vrmlsldavh
18346 || inst.instruction == M_MNEM_vrmlsldavha
18347 || inst.instruction == M_MNEM_vrmlsldavhx
18348 || inst.instruction == M_MNEM_vrmlsldavhax)
18349 {
18350 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
18351 if (inst.operands[1].reg == REG_SP)
18352 as_tsktsk (MVE_BAD_SP);
18353 }
18354 else
18355 {
18356 if (inst.instruction == M_MNEM_vrmlaldavhx
18357 || inst.instruction == M_MNEM_vrmlaldavhax)
18358 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
18359 else
18360 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
18361 N_U32 | N_S32 | N_KEY);
18362 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
18363 with vmax/min instructions, making the use of SP in assembly really
18364 nonsensical, so instead of issuing a warning like we do for other uses
18365 of SP for the odd register operand we error out. */
18366 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
18367 }
18368
18369 /* Make sure we still check the second operand is an odd one and that PC is
18370 disallowed. This because we are parsing for any GPR operand, to be able
18371 to distinguish between giving a warning or an error for SP as described
18372 above. */
18373 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
18374 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
18375
18376 if (inst.cond > COND_ALWAYS)
18377 inst.pred_insn_type = INSIDE_VPT_INSN;
18378 else
18379 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18380
18381 mve_encode_rrqq (et.type == NT_unsigned, 0);
18382 }
18383
18384
18385 static void
18386 do_mve_vmaxnmv (void)
18387 {
18388 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18389 struct neon_type_el et
18390 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
18391
18392 if (inst.cond > COND_ALWAYS)
18393 inst.pred_insn_type = INSIDE_VPT_INSN;
18394 else
18395 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18396
18397 if (inst.operands[0].reg == REG_SP)
18398 as_tsktsk (MVE_BAD_SP);
18399 else if (inst.operands[0].reg == REG_PC)
18400 as_tsktsk (MVE_BAD_PC);
18401
18402 mve_encode_rq (et.size == 16, 64);
18403 }
18404
18405 static void
18406 do_mve_vmaxv (void)
18407 {
18408 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18409 struct neon_type_el et;
18410
18411 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
18412 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
18413 else
18414 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18415
18416 if (inst.cond > COND_ALWAYS)
18417 inst.pred_insn_type = INSIDE_VPT_INSN;
18418 else
18419 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18420
18421 if (inst.operands[0].reg == REG_SP)
18422 as_tsktsk (MVE_BAD_SP);
18423 else if (inst.operands[0].reg == REG_PC)
18424 as_tsktsk (MVE_BAD_PC);
18425
18426 mve_encode_rq (et.type == NT_unsigned, et.size);
18427 }
18428
18429
18430 static void
18431 do_neon_qrdmlah (void)
18432 {
18433 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18434 return;
18435 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18436 {
18437 /* Check we're on the correct architecture. */
18438 if (!mark_feature_used (&fpu_neon_ext_armv8))
18439 inst.error
18440 = _("instruction form not available on this architecture.");
18441 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
18442 {
18443 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
18444 record_feature_use (&fpu_neon_ext_v8_1);
18445 }
18446 if (inst.operands[2].isscalar)
18447 {
18448 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
18449 struct neon_type_el et = neon_check_type (3, rs,
18450 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18451 NEON_ENCODE (SCALAR, inst);
18452 neon_mul_mac (et, neon_quad (rs));
18453 }
18454 else
18455 {
18456 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18457 struct neon_type_el et = neon_check_type (3, rs,
18458 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18459 NEON_ENCODE (INTEGER, inst);
18460 /* The U bit (rounding) comes from bit mask. */
18461 neon_three_same (neon_quad (rs), 0, et.size);
18462 }
18463 }
18464 else
18465 {
18466 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18467 struct neon_type_el et
18468 = neon_check_type (3, rs, N_EQK, N_EQK, N_S_32 | N_KEY);
18469
18470 NEON_ENCODE (INTEGER, inst);
18471 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
18472 }
18473 }
18474
18475 static void
18476 do_neon_fcmp_absolute (void)
18477 {
18478 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18479 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18480 N_F_16_32 | N_KEY);
18481 /* Size field comes from bit mask. */
18482 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
18483 }
18484
18485 static void
18486 do_neon_fcmp_absolute_inv (void)
18487 {
18488 neon_exchange_operands ();
18489 do_neon_fcmp_absolute ();
18490 }
18491
18492 static void
18493 do_neon_step (void)
18494 {
18495 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18496 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18497 N_F_16_32 | N_KEY);
18498 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
18499 }
18500
18501 static void
18502 do_neon_abs_neg (void)
18503 {
18504 enum neon_shape rs;
18505 struct neon_type_el et;
18506
18507 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
18508 return;
18509
18510 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18511 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
18512
18513 if (!check_simd_pred_availability (et.type == NT_float,
18514 NEON_CHECK_ARCH | NEON_CHECK_CC))
18515 return;
18516
18517 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18518 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18519 inst.instruction |= LOW4 (inst.operands[1].reg);
18520 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18521 inst.instruction |= neon_quad (rs) << 6;
18522 inst.instruction |= (et.type == NT_float) << 10;
18523 inst.instruction |= neon_logbits (et.size) << 18;
18524
18525 neon_dp_fixup (&inst);
18526 }
18527
18528 static void
18529 do_neon_sli (void)
18530 {
18531 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18532 return;
18533
18534 enum neon_shape rs;
18535 struct neon_type_el et;
18536 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18537 {
18538 rs = neon_select_shape (NS_QQI, NS_NULL);
18539 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18540 }
18541 else
18542 {
18543 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18544 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18545 }
18546
18547
18548 int imm = inst.operands[2].imm;
18549 constraint (imm < 0 || (unsigned)imm >= et.size,
18550 _("immediate out of range for insert"));
18551 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
18552 }
18553
18554 static void
18555 do_neon_sri (void)
18556 {
18557 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18558 return;
18559
18560 enum neon_shape rs;
18561 struct neon_type_el et;
18562 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18563 {
18564 rs = neon_select_shape (NS_QQI, NS_NULL);
18565 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18566 }
18567 else
18568 {
18569 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18570 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18571 }
18572
18573 int imm = inst.operands[2].imm;
18574 constraint (imm < 1 || (unsigned)imm > et.size,
18575 _("immediate out of range for insert"));
18576 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
18577 }
18578
18579 static void
18580 do_neon_qshlu_imm (void)
18581 {
18582 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18583 return;
18584
18585 enum neon_shape rs;
18586 struct neon_type_el et;
18587 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18588 {
18589 rs = neon_select_shape (NS_QQI, NS_NULL);
18590 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18591 }
18592 else
18593 {
18594 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18595 et = neon_check_type (2, rs, N_EQK | N_UNS,
18596 N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
18597 }
18598
18599 int imm = inst.operands[2].imm;
18600 constraint (imm < 0 || (unsigned)imm >= et.size,
18601 _("immediate out of range for shift"));
18602 /* Only encodes the 'U present' variant of the instruction.
18603 In this case, signed types have OP (bit 8) set to 0.
18604 Unsigned types have OP set to 1. */
18605 inst.instruction |= (et.type == NT_unsigned) << 8;
18606 /* The rest of the bits are the same as other immediate shifts. */
18607 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
18608 }
18609
18610 static void
18611 do_neon_qmovn (void)
18612 {
18613 struct neon_type_el et = neon_check_type (2, NS_DQ,
18614 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18615 /* Saturating move where operands can be signed or unsigned, and the
18616 destination has the same signedness. */
18617 NEON_ENCODE (INTEGER, inst);
18618 if (et.type == NT_unsigned)
18619 inst.instruction |= 0xc0;
18620 else
18621 inst.instruction |= 0x80;
18622 neon_two_same (0, 1, et.size / 2);
18623 }
18624
18625 static void
18626 do_neon_qmovun (void)
18627 {
18628 struct neon_type_el et = neon_check_type (2, NS_DQ,
18629 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18630 /* Saturating move with unsigned results. Operands must be signed. */
18631 NEON_ENCODE (INTEGER, inst);
18632 neon_two_same (0, 1, et.size / 2);
18633 }
18634
18635 static void
18636 do_neon_rshift_sat_narrow (void)
18637 {
18638 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18639 or unsigned. If operands are unsigned, results must also be unsigned. */
18640 struct neon_type_el et = neon_check_type (2, NS_DQI,
18641 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18642 int imm = inst.operands[2].imm;
18643 /* This gets the bounds check, size encoding and immediate bits calculation
18644 right. */
18645 et.size /= 2;
18646
18647 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
18648 VQMOVN.I<size> <Dd>, <Qm>. */
18649 if (imm == 0)
18650 {
18651 inst.operands[2].present = 0;
18652 inst.instruction = N_MNEM_vqmovn;
18653 do_neon_qmovn ();
18654 return;
18655 }
18656
18657 constraint (imm < 1 || (unsigned)imm > et.size,
18658 _("immediate out of range"));
18659 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
18660 }
18661
18662 static void
18663 do_neon_rshift_sat_narrow_u (void)
18664 {
18665 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18666 or unsigned. If operands are unsigned, results must also be unsigned. */
18667 struct neon_type_el et = neon_check_type (2, NS_DQI,
18668 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18669 int imm = inst.operands[2].imm;
18670 /* This gets the bounds check, size encoding and immediate bits calculation
18671 right. */
18672 et.size /= 2;
18673
18674 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
18675 VQMOVUN.I<size> <Dd>, <Qm>. */
18676 if (imm == 0)
18677 {
18678 inst.operands[2].present = 0;
18679 inst.instruction = N_MNEM_vqmovun;
18680 do_neon_qmovun ();
18681 return;
18682 }
18683
18684 constraint (imm < 1 || (unsigned)imm > et.size,
18685 _("immediate out of range"));
18686 /* FIXME: The manual is kind of unclear about what value U should have in
18687 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
18688 must be 1. */
18689 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
18690 }
18691
18692 static void
18693 do_neon_movn (void)
18694 {
18695 struct neon_type_el et = neon_check_type (2, NS_DQ,
18696 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18697 NEON_ENCODE (INTEGER, inst);
18698 neon_two_same (0, 1, et.size / 2);
18699 }
18700
18701 static void
18702 do_neon_rshift_narrow (void)
18703 {
18704 struct neon_type_el et = neon_check_type (2, NS_DQI,
18705 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18706 int imm = inst.operands[2].imm;
18707 /* This gets the bounds check, size encoding and immediate bits calculation
18708 right. */
18709 et.size /= 2;
18710
18711 /* If immediate is zero then we are a pseudo-instruction for
18712 VMOVN.I<size> <Dd>, <Qm> */
18713 if (imm == 0)
18714 {
18715 inst.operands[2].present = 0;
18716 inst.instruction = N_MNEM_vmovn;
18717 do_neon_movn ();
18718 return;
18719 }
18720
18721 constraint (imm < 1 || (unsigned)imm > et.size,
18722 _("immediate out of range for narrowing operation"));
18723 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
18724 }
18725
18726 static void
18727 do_neon_shll (void)
18728 {
18729 /* FIXME: Type checking when lengthening. */
18730 struct neon_type_el et = neon_check_type (2, NS_QDI,
18731 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
18732 unsigned imm = inst.operands[2].imm;
18733
18734 if (imm == et.size)
18735 {
18736 /* Maximum shift variant. */
18737 NEON_ENCODE (INTEGER, inst);
18738 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18739 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18740 inst.instruction |= LOW4 (inst.operands[1].reg);
18741 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18742 inst.instruction |= neon_logbits (et.size) << 18;
18743
18744 neon_dp_fixup (&inst);
18745 }
18746 else
18747 {
18748 /* A more-specific type check for non-max versions. */
18749 et = neon_check_type (2, NS_QDI,
18750 N_EQK | N_DBL, N_SU_32 | N_KEY);
18751 NEON_ENCODE (IMMED, inst);
18752 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
18753 }
18754 }
18755
18756 /* Check the various types for the VCVT instruction, and return which version
18757 the current instruction is. */
18758
18759 #define CVT_FLAVOUR_VAR \
18760 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18761 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18762 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18763 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18764 /* Half-precision conversions. */ \
18765 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18766 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18767 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18768 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
18769 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18770 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
18771 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18772 Compared with single/double precision variants, only the co-processor \
18773 field is different, so the encoding flow is reused here. */ \
18774 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18775 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18776 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18777 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
18778 CVT_VAR (bf16_f32, N_BF16, N_F32, whole_reg, NULL, NULL, NULL) \
18779 /* VFP instructions. */ \
18780 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18781 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18782 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18783 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18784 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18785 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18786 /* VFP instructions with bitshift. */ \
18787 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18788 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18789 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18790 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18791 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18792 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18793 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18794 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18795
18796 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18797 neon_cvt_flavour_##C,
18798
18799 /* The different types of conversions we can do. */
18800 enum neon_cvt_flavour
18801 {
18802 CVT_FLAVOUR_VAR
18803 neon_cvt_flavour_invalid,
18804 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18805 };
18806
18807 #undef CVT_VAR
18808
18809 static enum neon_cvt_flavour
18810 get_neon_cvt_flavour (enum neon_shape rs)
18811 {
18812 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18813 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18814 if (et.type != NT_invtype) \
18815 { \
18816 inst.error = NULL; \
18817 return (neon_cvt_flavour_##C); \
18818 }
18819
18820 struct neon_type_el et;
18821 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
18822 || rs == NS_FF) ? N_VFP : 0;
18823 /* The instruction versions which take an immediate take one register
18824 argument, which is extended to the width of the full register. Thus the
18825 "source" and "destination" registers must have the same width. Hack that
18826 here by making the size equal to the key (wider, in this case) operand. */
18827 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
18828
18829 CVT_FLAVOUR_VAR;
18830
18831 return neon_cvt_flavour_invalid;
18832 #undef CVT_VAR
18833 }
18834
18835 enum neon_cvt_mode
18836 {
18837 neon_cvt_mode_a,
18838 neon_cvt_mode_n,
18839 neon_cvt_mode_p,
18840 neon_cvt_mode_m,
18841 neon_cvt_mode_z,
18842 neon_cvt_mode_x,
18843 neon_cvt_mode_r
18844 };
18845
18846 /* Neon-syntax VFP conversions. */
18847
18848 static void
18849 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
18850 {
18851 const char *opname = 0;
18852
18853 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18854 || rs == NS_FHI || rs == NS_HFI)
18855 {
18856 /* Conversions with immediate bitshift. */
18857 const char *enc[] =
18858 {
18859 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18860 CVT_FLAVOUR_VAR
18861 NULL
18862 #undef CVT_VAR
18863 };
18864
18865 if (flavour < (int) ARRAY_SIZE (enc))
18866 {
18867 opname = enc[flavour];
18868 constraint (inst.operands[0].reg != inst.operands[1].reg,
18869 _("operands 0 and 1 must be the same register"));
18870 inst.operands[1] = inst.operands[2];
18871 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18872 }
18873 }
18874 else
18875 {
18876 /* Conversions without bitshift. */
18877 const char *enc[] =
18878 {
18879 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18880 CVT_FLAVOUR_VAR
18881 NULL
18882 #undef CVT_VAR
18883 };
18884
18885 if (flavour < (int) ARRAY_SIZE (enc))
18886 opname = enc[flavour];
18887 }
18888
18889 if (opname)
18890 do_vfp_nsyn_opcode (opname);
18891
18892 /* ARMv8.2 fp16 VCVT instruction. */
18893 if (flavour == neon_cvt_flavour_s32_f16
18894 || flavour == neon_cvt_flavour_u32_f16
18895 || flavour == neon_cvt_flavour_f16_u32
18896 || flavour == neon_cvt_flavour_f16_s32)
18897 do_scalar_fp16_v82_encode ();
18898 }
18899
18900 static void
18901 do_vfp_nsyn_cvtz (void)
18902 {
18903 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
18904 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18905 const char *enc[] =
18906 {
18907 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18908 CVT_FLAVOUR_VAR
18909 NULL
18910 #undef CVT_VAR
18911 };
18912
18913 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
18914 do_vfp_nsyn_opcode (enc[flavour]);
18915 }
18916
18917 static void
18918 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
18919 enum neon_cvt_mode mode)
18920 {
18921 int sz, op;
18922 int rm;
18923
18924 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18925 D register operands. */
18926 if (flavour == neon_cvt_flavour_s32_f64
18927 || flavour == neon_cvt_flavour_u32_f64)
18928 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18929 _(BAD_FPU));
18930
18931 if (flavour == neon_cvt_flavour_s32_f16
18932 || flavour == neon_cvt_flavour_u32_f16)
18933 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18934 _(BAD_FP16));
18935
18936 set_pred_insn_type (OUTSIDE_PRED_INSN);
18937
18938 switch (flavour)
18939 {
18940 case neon_cvt_flavour_s32_f64:
18941 sz = 1;
18942 op = 1;
18943 break;
18944 case neon_cvt_flavour_s32_f32:
18945 sz = 0;
18946 op = 1;
18947 break;
18948 case neon_cvt_flavour_s32_f16:
18949 sz = 0;
18950 op = 1;
18951 break;
18952 case neon_cvt_flavour_u32_f64:
18953 sz = 1;
18954 op = 0;
18955 break;
18956 case neon_cvt_flavour_u32_f32:
18957 sz = 0;
18958 op = 0;
18959 break;
18960 case neon_cvt_flavour_u32_f16:
18961 sz = 0;
18962 op = 0;
18963 break;
18964 default:
18965 first_error (_("invalid instruction shape"));
18966 return;
18967 }
18968
18969 switch (mode)
18970 {
18971 case neon_cvt_mode_a: rm = 0; break;
18972 case neon_cvt_mode_n: rm = 1; break;
18973 case neon_cvt_mode_p: rm = 2; break;
18974 case neon_cvt_mode_m: rm = 3; break;
18975 default: first_error (_("invalid rounding mode")); return;
18976 }
18977
18978 NEON_ENCODE (FPV8, inst);
18979 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18980 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18981 inst.instruction |= sz << 8;
18982
18983 /* ARMv8.2 fp16 VCVT instruction. */
18984 if (flavour == neon_cvt_flavour_s32_f16
18985 ||flavour == neon_cvt_flavour_u32_f16)
18986 do_scalar_fp16_v82_encode ();
18987 inst.instruction |= op << 7;
18988 inst.instruction |= rm << 16;
18989 inst.instruction |= 0xf0000000;
18990 inst.is_neon = TRUE;
18991 }
18992
18993 static void
18994 do_neon_cvt_1 (enum neon_cvt_mode mode)
18995 {
18996 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
18997 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18998 NS_FH, NS_HF, NS_FHI, NS_HFI,
18999 NS_NULL);
19000 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
19001
19002 if (flavour == neon_cvt_flavour_invalid)
19003 return;
19004
19005 /* PR11109: Handle round-to-zero for VCVT conversions. */
19006 if (mode == neon_cvt_mode_z
19007 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
19008 && (flavour == neon_cvt_flavour_s16_f16
19009 || flavour == neon_cvt_flavour_u16_f16
19010 || flavour == neon_cvt_flavour_s32_f32
19011 || flavour == neon_cvt_flavour_u32_f32
19012 || flavour == neon_cvt_flavour_s32_f64
19013 || flavour == neon_cvt_flavour_u32_f64)
19014 && (rs == NS_FD || rs == NS_FF))
19015 {
19016 do_vfp_nsyn_cvtz ();
19017 return;
19018 }
19019
19020 /* ARMv8.2 fp16 VCVT conversions. */
19021 if (mode == neon_cvt_mode_z
19022 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
19023 && (flavour == neon_cvt_flavour_s32_f16
19024 || flavour == neon_cvt_flavour_u32_f16)
19025 && (rs == NS_FH))
19026 {
19027 do_vfp_nsyn_cvtz ();
19028 do_scalar_fp16_v82_encode ();
19029 return;
19030 }
19031
19032 /* VFP rather than Neon conversions. */
19033 if (flavour >= neon_cvt_flavour_first_fp)
19034 {
19035 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
19036 do_vfp_nsyn_cvt (rs, flavour);
19037 else
19038 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
19039
19040 return;
19041 }
19042
19043 switch (rs)
19044 {
19045 case NS_QQI:
19046 if (mode == neon_cvt_mode_z
19047 && (flavour == neon_cvt_flavour_f16_s16
19048 || flavour == neon_cvt_flavour_f16_u16
19049 || flavour == neon_cvt_flavour_s16_f16
19050 || flavour == neon_cvt_flavour_u16_f16
19051 || flavour == neon_cvt_flavour_f32_u32
19052 || flavour == neon_cvt_flavour_f32_s32
19053 || flavour == neon_cvt_flavour_s32_f32
19054 || flavour == neon_cvt_flavour_u32_f32))
19055 {
19056 if (!check_simd_pred_availability (TRUE,
19057 NEON_CHECK_CC | NEON_CHECK_ARCH))
19058 return;
19059 }
19060 else if (mode == neon_cvt_mode_n)
19061 {
19062 /* We are dealing with vcvt with the 'ne' condition. */
19063 inst.cond = 0x1;
19064 inst.instruction = N_MNEM_vcvt;
19065 do_neon_cvt_1 (neon_cvt_mode_z);
19066 return;
19067 }
19068 /* fall through. */
19069 case NS_DDI:
19070 {
19071 unsigned immbits;
19072 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
19073 0x0000100, 0x1000100, 0x0, 0x1000000};
19074
19075 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19076 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19077 return;
19078
19079 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19080 {
19081 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
19082 _("immediate value out of range"));
19083 switch (flavour)
19084 {
19085 case neon_cvt_flavour_f16_s16:
19086 case neon_cvt_flavour_f16_u16:
19087 case neon_cvt_flavour_s16_f16:
19088 case neon_cvt_flavour_u16_f16:
19089 constraint (inst.operands[2].imm > 16,
19090 _("immediate value out of range"));
19091 break;
19092 case neon_cvt_flavour_f32_u32:
19093 case neon_cvt_flavour_f32_s32:
19094 case neon_cvt_flavour_s32_f32:
19095 case neon_cvt_flavour_u32_f32:
19096 constraint (inst.operands[2].imm > 32,
19097 _("immediate value out of range"));
19098 break;
19099 default:
19100 inst.error = BAD_FPU;
19101 return;
19102 }
19103 }
19104
19105 /* Fixed-point conversion with #0 immediate is encoded as an
19106 integer conversion. */
19107 if (inst.operands[2].present && inst.operands[2].imm == 0)
19108 goto int_encode;
19109 NEON_ENCODE (IMMED, inst);
19110 if (flavour != neon_cvt_flavour_invalid)
19111 inst.instruction |= enctab[flavour];
19112 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19113 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19114 inst.instruction |= LOW4 (inst.operands[1].reg);
19115 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19116 inst.instruction |= neon_quad (rs) << 6;
19117 inst.instruction |= 1 << 21;
19118 if (flavour < neon_cvt_flavour_s16_f16)
19119 {
19120 inst.instruction |= 1 << 21;
19121 immbits = 32 - inst.operands[2].imm;
19122 inst.instruction |= immbits << 16;
19123 }
19124 else
19125 {
19126 inst.instruction |= 3 << 20;
19127 immbits = 16 - inst.operands[2].imm;
19128 inst.instruction |= immbits << 16;
19129 inst.instruction &= ~(1 << 9);
19130 }
19131
19132 neon_dp_fixup (&inst);
19133 }
19134 break;
19135
19136 case NS_QQ:
19137 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
19138 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
19139 && (flavour == neon_cvt_flavour_s16_f16
19140 || flavour == neon_cvt_flavour_u16_f16
19141 || flavour == neon_cvt_flavour_s32_f32
19142 || flavour == neon_cvt_flavour_u32_f32))
19143 {
19144 if (!check_simd_pred_availability (TRUE,
19145 NEON_CHECK_CC | NEON_CHECK_ARCH8))
19146 return;
19147 }
19148 else if (mode == neon_cvt_mode_z
19149 && (flavour == neon_cvt_flavour_f16_s16
19150 || flavour == neon_cvt_flavour_f16_u16
19151 || flavour == neon_cvt_flavour_s16_f16
19152 || flavour == neon_cvt_flavour_u16_f16
19153 || flavour == neon_cvt_flavour_f32_u32
19154 || flavour == neon_cvt_flavour_f32_s32
19155 || flavour == neon_cvt_flavour_s32_f32
19156 || flavour == neon_cvt_flavour_u32_f32))
19157 {
19158 if (!check_simd_pred_availability (TRUE,
19159 NEON_CHECK_CC | NEON_CHECK_ARCH))
19160 return;
19161 }
19162 /* fall through. */
19163 case NS_DD:
19164 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
19165 {
19166
19167 NEON_ENCODE (FLOAT, inst);
19168 if (!check_simd_pred_availability (TRUE,
19169 NEON_CHECK_CC | NEON_CHECK_ARCH8))
19170 return;
19171
19172 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19173 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19174 inst.instruction |= LOW4 (inst.operands[1].reg);
19175 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19176 inst.instruction |= neon_quad (rs) << 6;
19177 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
19178 || flavour == neon_cvt_flavour_u32_f32) << 7;
19179 inst.instruction |= mode << 8;
19180 if (flavour == neon_cvt_flavour_u16_f16
19181 || flavour == neon_cvt_flavour_s16_f16)
19182 /* Mask off the original size bits and reencode them. */
19183 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
19184
19185 if (thumb_mode)
19186 inst.instruction |= 0xfc000000;
19187 else
19188 inst.instruction |= 0xf0000000;
19189 }
19190 else
19191 {
19192 int_encode:
19193 {
19194 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
19195 0x100, 0x180, 0x0, 0x080};
19196
19197 NEON_ENCODE (INTEGER, inst);
19198
19199 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
19200 {
19201 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19202 return;
19203 }
19204
19205 if (flavour != neon_cvt_flavour_invalid)
19206 inst.instruction |= enctab[flavour];
19207
19208 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19209 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19210 inst.instruction |= LOW4 (inst.operands[1].reg);
19211 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19212 inst.instruction |= neon_quad (rs) << 6;
19213 if (flavour >= neon_cvt_flavour_s16_f16
19214 && flavour <= neon_cvt_flavour_f16_u16)
19215 /* Half precision. */
19216 inst.instruction |= 1 << 18;
19217 else
19218 inst.instruction |= 2 << 18;
19219
19220 neon_dp_fixup (&inst);
19221 }
19222 }
19223 break;
19224
19225 /* Half-precision conversions for Advanced SIMD -- neon. */
19226 case NS_QD:
19227 case NS_DQ:
19228 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19229 return;
19230
19231 if ((rs == NS_DQ)
19232 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
19233 {
19234 as_bad (_("operand size must match register width"));
19235 break;
19236 }
19237
19238 if ((rs == NS_QD)
19239 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
19240 {
19241 as_bad (_("operand size must match register width"));
19242 break;
19243 }
19244
19245 if (rs == NS_DQ)
19246 {
19247 if (flavour == neon_cvt_flavour_bf16_f32)
19248 {
19249 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH8) == FAIL)
19250 return;
19251 constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16));
19252 /* VCVT.bf16.f32. */
19253 inst.instruction = 0x11b60640;
19254 }
19255 else
19256 /* VCVT.f16.f32. */
19257 inst.instruction = 0x3b60600;
19258 }
19259 else
19260 /* VCVT.f32.f16. */
19261 inst.instruction = 0x3b60700;
19262
19263 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19264 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19265 inst.instruction |= LOW4 (inst.operands[1].reg);
19266 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19267 neon_dp_fixup (&inst);
19268 break;
19269
19270 default:
19271 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
19272 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
19273 do_vfp_nsyn_cvt (rs, flavour);
19274 else
19275 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
19276 }
19277 }
19278
19279 static void
19280 do_neon_cvtr (void)
19281 {
19282 do_neon_cvt_1 (neon_cvt_mode_x);
19283 }
19284
19285 static void
19286 do_neon_cvt (void)
19287 {
19288 do_neon_cvt_1 (neon_cvt_mode_z);
19289 }
19290
19291 static void
19292 do_neon_cvta (void)
19293 {
19294 do_neon_cvt_1 (neon_cvt_mode_a);
19295 }
19296
19297 static void
19298 do_neon_cvtn (void)
19299 {
19300 do_neon_cvt_1 (neon_cvt_mode_n);
19301 }
19302
19303 static void
19304 do_neon_cvtp (void)
19305 {
19306 do_neon_cvt_1 (neon_cvt_mode_p);
19307 }
19308
19309 static void
19310 do_neon_cvtm (void)
19311 {
19312 do_neon_cvt_1 (neon_cvt_mode_m);
19313 }
19314
19315 static void
19316 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
19317 {
19318 if (is_double)
19319 mark_feature_used (&fpu_vfp_ext_armv8);
19320
19321 encode_arm_vfp_reg (inst.operands[0].reg,
19322 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
19323 encode_arm_vfp_reg (inst.operands[1].reg,
19324 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
19325 inst.instruction |= to ? 0x10000 : 0;
19326 inst.instruction |= t ? 0x80 : 0;
19327 inst.instruction |= is_double ? 0x100 : 0;
19328 do_vfp_cond_or_thumb ();
19329 }
19330
19331 static void
19332 do_neon_cvttb_1 (bfd_boolean t)
19333 {
19334 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
19335 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
19336
19337 if (rs == NS_NULL)
19338 return;
19339 else if (rs == NS_QQ || rs == NS_QQI)
19340 {
19341 int single_to_half = 0;
19342 if (!check_simd_pred_availability (TRUE, NEON_CHECK_ARCH))
19343 return;
19344
19345 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
19346
19347 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19348 && (flavour == neon_cvt_flavour_u16_f16
19349 || flavour == neon_cvt_flavour_s16_f16
19350 || flavour == neon_cvt_flavour_f16_s16
19351 || flavour == neon_cvt_flavour_f16_u16
19352 || flavour == neon_cvt_flavour_u32_f32
19353 || flavour == neon_cvt_flavour_s32_f32
19354 || flavour == neon_cvt_flavour_f32_s32
19355 || flavour == neon_cvt_flavour_f32_u32))
19356 {
19357 inst.cond = 0xf;
19358 inst.instruction = N_MNEM_vcvt;
19359 set_pred_insn_type (INSIDE_VPT_INSN);
19360 do_neon_cvt_1 (neon_cvt_mode_z);
19361 return;
19362 }
19363 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
19364 single_to_half = 1;
19365 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
19366 {
19367 first_error (BAD_FPU);
19368 return;
19369 }
19370
19371 inst.instruction = 0xee3f0e01;
19372 inst.instruction |= single_to_half << 28;
19373 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19374 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
19375 inst.instruction |= t << 12;
19376 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19377 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
19378 inst.is_neon = 1;
19379 }
19380 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
19381 {
19382 inst.error = NULL;
19383 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
19384 }
19385 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
19386 {
19387 inst.error = NULL;
19388 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
19389 }
19390 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
19391 {
19392 /* The VCVTB and VCVTT instructions with D-register operands
19393 don't work for SP only targets. */
19394 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19395 _(BAD_FPU));
19396
19397 inst.error = NULL;
19398 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
19399 }
19400 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
19401 {
19402 /* The VCVTB and VCVTT instructions with D-register operands
19403 don't work for SP only targets. */
19404 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19405 _(BAD_FPU));
19406
19407 inst.error = NULL;
19408 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
19409 }
19410 else if (neon_check_type (2, rs, N_BF16 | N_VFP, N_F32).type != NT_invtype)
19411 {
19412 constraint (!mark_feature_used (&arm_ext_bf16), _(BAD_BF16));
19413 inst.error = NULL;
19414 inst.instruction |= (1 << 8);
19415 inst.instruction &= ~(1 << 9);
19416 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
19417 }
19418 else
19419 return;
19420 }
19421
19422 static void
19423 do_neon_cvtb (void)
19424 {
19425 do_neon_cvttb_1 (FALSE);
19426 }
19427
19428
19429 static void
19430 do_neon_cvtt (void)
19431 {
19432 do_neon_cvttb_1 (TRUE);
19433 }
19434
19435 static void
19436 neon_move_immediate (void)
19437 {
19438 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
19439 struct neon_type_el et = neon_check_type (2, rs,
19440 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
19441 unsigned immlo, immhi = 0, immbits;
19442 int op, cmode, float_p;
19443
19444 constraint (et.type == NT_invtype,
19445 _("operand size must be specified for immediate VMOV"));
19446
19447 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
19448 op = (inst.instruction & (1 << 5)) != 0;
19449
19450 immlo = inst.operands[1].imm;
19451 if (inst.operands[1].regisimm)
19452 immhi = inst.operands[1].reg;
19453
19454 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
19455 _("immediate has bits set outside the operand size"));
19456
19457 float_p = inst.operands[1].immisfloat;
19458
19459 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
19460 et.size, et.type)) == FAIL)
19461 {
19462 /* Invert relevant bits only. */
19463 neon_invert_size (&immlo, &immhi, et.size);
19464 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
19465 with one or the other; those cases are caught by
19466 neon_cmode_for_move_imm. */
19467 op = !op;
19468 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
19469 &op, et.size, et.type)) == FAIL)
19470 {
19471 first_error (_("immediate out of range"));
19472 return;
19473 }
19474 }
19475
19476 inst.instruction &= ~(1 << 5);
19477 inst.instruction |= op << 5;
19478
19479 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19480 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19481 inst.instruction |= neon_quad (rs) << 6;
19482 inst.instruction |= cmode << 8;
19483
19484 neon_write_immbits (immbits);
19485 }
19486
19487 static void
19488 do_neon_mvn (void)
19489 {
19490 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
19491 return;
19492
19493 if (inst.operands[1].isreg)
19494 {
19495 enum neon_shape rs;
19496 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19497 rs = neon_select_shape (NS_QQ, NS_NULL);
19498 else
19499 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19500
19501 NEON_ENCODE (INTEGER, inst);
19502 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19503 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19504 inst.instruction |= LOW4 (inst.operands[1].reg);
19505 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19506 inst.instruction |= neon_quad (rs) << 6;
19507 }
19508 else
19509 {
19510 NEON_ENCODE (IMMED, inst);
19511 neon_move_immediate ();
19512 }
19513
19514 neon_dp_fixup (&inst);
19515
19516 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19517 {
19518 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
19519 }
19520 }
19521
19522 /* Encode instructions of form:
19523
19524 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
19525 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
19526
19527 static void
19528 neon_mixed_length (struct neon_type_el et, unsigned size)
19529 {
19530 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19531 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19532 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19533 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19534 inst.instruction |= LOW4 (inst.operands[2].reg);
19535 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19536 inst.instruction |= (et.type == NT_unsigned) << 24;
19537 inst.instruction |= neon_logbits (size) << 20;
19538
19539 neon_dp_fixup (&inst);
19540 }
19541
19542 static void
19543 do_neon_dyadic_long (void)
19544 {
19545 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
19546 if (rs == NS_QDD)
19547 {
19548 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
19549 return;
19550
19551 NEON_ENCODE (INTEGER, inst);
19552 /* FIXME: Type checking for lengthening op. */
19553 struct neon_type_el et = neon_check_type (3, NS_QDD,
19554 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
19555 neon_mixed_length (et, et.size);
19556 }
19557 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19558 && (inst.cond == 0xf || inst.cond == 0x10))
19559 {
19560 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
19561 in an IT block with le/lt conditions. */
19562
19563 if (inst.cond == 0xf)
19564 inst.cond = 0xb;
19565 else if (inst.cond == 0x10)
19566 inst.cond = 0xd;
19567
19568 inst.pred_insn_type = INSIDE_IT_INSN;
19569
19570 if (inst.instruction == N_MNEM_vaddl)
19571 {
19572 inst.instruction = N_MNEM_vadd;
19573 do_neon_addsub_if_i ();
19574 }
19575 else if (inst.instruction == N_MNEM_vsubl)
19576 {
19577 inst.instruction = N_MNEM_vsub;
19578 do_neon_addsub_if_i ();
19579 }
19580 else if (inst.instruction == N_MNEM_vabdl)
19581 {
19582 inst.instruction = N_MNEM_vabd;
19583 do_neon_dyadic_if_su ();
19584 }
19585 }
19586 else
19587 first_error (BAD_FPU);
19588 }
19589
19590 static void
19591 do_neon_abal (void)
19592 {
19593 struct neon_type_el et = neon_check_type (3, NS_QDD,
19594 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
19595 neon_mixed_length (et, et.size);
19596 }
19597
19598 static void
19599 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
19600 {
19601 if (inst.operands[2].isscalar)
19602 {
19603 struct neon_type_el et = neon_check_type (3, NS_QDS,
19604 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
19605 NEON_ENCODE (SCALAR, inst);
19606 neon_mul_mac (et, et.type == NT_unsigned);
19607 }
19608 else
19609 {
19610 struct neon_type_el et = neon_check_type (3, NS_QDD,
19611 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
19612 NEON_ENCODE (INTEGER, inst);
19613 neon_mixed_length (et, et.size);
19614 }
19615 }
19616
19617 static void
19618 do_neon_mac_maybe_scalar_long (void)
19619 {
19620 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
19621 }
19622
19623 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
19624 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
19625
19626 static unsigned
19627 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
19628 {
19629 unsigned regno = NEON_SCALAR_REG (scalar);
19630 unsigned elno = NEON_SCALAR_INDEX (scalar);
19631
19632 if (quad_p)
19633 {
19634 if (regno > 7 || elno > 3)
19635 goto bad_scalar;
19636
19637 return ((regno & 0x7)
19638 | ((elno & 0x1) << 3)
19639 | (((elno >> 1) & 0x1) << 5));
19640 }
19641 else
19642 {
19643 if (regno > 15 || elno > 1)
19644 goto bad_scalar;
19645
19646 return (((regno & 0x1) << 5)
19647 | ((regno >> 1) & 0x7)
19648 | ((elno & 0x1) << 3));
19649 }
19650
19651 bad_scalar:
19652 first_error (_("scalar out of range for multiply instruction"));
19653 return 0;
19654 }
19655
19656 static void
19657 do_neon_fmac_maybe_scalar_long (int subtype)
19658 {
19659 enum neon_shape rs;
19660 int high8;
19661 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
19662 field (bits[21:20]) has different meaning. For scalar index variant, it's
19663 used to differentiate add and subtract, otherwise it's with fixed value
19664 0x2. */
19665 int size = -1;
19666
19667 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
19668 be a scalar index register. */
19669 if (inst.operands[2].isscalar)
19670 {
19671 high8 = 0xfe000000;
19672 if (subtype)
19673 size = 16;
19674 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
19675 }
19676 else
19677 {
19678 high8 = 0xfc000000;
19679 size = 32;
19680 if (subtype)
19681 inst.instruction |= (0x1 << 23);
19682 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
19683 }
19684
19685
19686 if (inst.cond != COND_ALWAYS)
19687 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
19688 "behaviour is UNPREDICTABLE"));
19689
19690 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
19691 _(BAD_FP16));
19692
19693 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19694 _(BAD_FPU));
19695
19696 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
19697 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
19698 so we simply pass -1 as size. */
19699 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
19700 neon_three_same (quad_p, 0, size);
19701
19702 /* Undo neon_dp_fixup. Redo the high eight bits. */
19703 inst.instruction &= 0x00ffffff;
19704 inst.instruction |= high8;
19705
19706 #define LOW1(R) ((R) & 0x1)
19707 #define HI4(R) (((R) >> 1) & 0xf)
19708 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
19709 whether the instruction is in Q form and whether Vm is a scalar indexed
19710 operand. */
19711 if (inst.operands[2].isscalar)
19712 {
19713 unsigned rm
19714 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
19715 inst.instruction &= 0xffffffd0;
19716 inst.instruction |= rm;
19717
19718 if (!quad_p)
19719 {
19720 /* Redo Rn as well. */
19721 inst.instruction &= 0xfff0ff7f;
19722 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19723 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19724 }
19725 }
19726 else if (!quad_p)
19727 {
19728 /* Redo Rn and Rm. */
19729 inst.instruction &= 0xfff0ff50;
19730 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19731 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19732 inst.instruction |= HI4 (inst.operands[2].reg);
19733 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
19734 }
19735 }
19736
19737 static void
19738 do_neon_vfmal (void)
19739 {
19740 return do_neon_fmac_maybe_scalar_long (0);
19741 }
19742
19743 static void
19744 do_neon_vfmsl (void)
19745 {
19746 return do_neon_fmac_maybe_scalar_long (1);
19747 }
19748
19749 static void
19750 do_neon_dyadic_wide (void)
19751 {
19752 struct neon_type_el et = neon_check_type (3, NS_QQD,
19753 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
19754 neon_mixed_length (et, et.size);
19755 }
19756
19757 static void
19758 do_neon_dyadic_narrow (void)
19759 {
19760 struct neon_type_el et = neon_check_type (3, NS_QDD,
19761 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
19762 /* Operand sign is unimportant, and the U bit is part of the opcode,
19763 so force the operand type to integer. */
19764 et.type = NT_integer;
19765 neon_mixed_length (et, et.size / 2);
19766 }
19767
19768 static void
19769 do_neon_mul_sat_scalar_long (void)
19770 {
19771 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
19772 }
19773
19774 static void
19775 do_neon_vmull (void)
19776 {
19777 if (inst.operands[2].isscalar)
19778 do_neon_mac_maybe_scalar_long ();
19779 else
19780 {
19781 struct neon_type_el et = neon_check_type (3, NS_QDD,
19782 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
19783
19784 if (et.type == NT_poly)
19785 NEON_ENCODE (POLY, inst);
19786 else
19787 NEON_ENCODE (INTEGER, inst);
19788
19789 /* For polynomial encoding the U bit must be zero, and the size must
19790 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19791 obviously, as 0b10). */
19792 if (et.size == 64)
19793 {
19794 /* Check we're on the correct architecture. */
19795 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19796 inst.error =
19797 _("Instruction form not available on this architecture.");
19798
19799 et.size = 32;
19800 }
19801
19802 neon_mixed_length (et, et.size);
19803 }
19804 }
19805
19806 static void
19807 do_neon_ext (void)
19808 {
19809 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19810 struct neon_type_el et = neon_check_type (3, rs,
19811 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19812 unsigned imm = (inst.operands[3].imm * et.size) / 8;
19813
19814 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19815 _("shift out of range"));
19816 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19817 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19818 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19819 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19820 inst.instruction |= LOW4 (inst.operands[2].reg);
19821 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19822 inst.instruction |= neon_quad (rs) << 6;
19823 inst.instruction |= imm << 8;
19824
19825 neon_dp_fixup (&inst);
19826 }
19827
19828 static void
19829 do_neon_rev (void)
19830 {
19831 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
19832 return;
19833
19834 enum neon_shape rs;
19835 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19836 rs = neon_select_shape (NS_QQ, NS_NULL);
19837 else
19838 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19839
19840 struct neon_type_el et = neon_check_type (2, rs,
19841 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19842
19843 unsigned op = (inst.instruction >> 7) & 3;
19844 /* N (width of reversed regions) is encoded as part of the bitmask. We
19845 extract it here to check the elements to be reversed are smaller.
19846 Otherwise we'd get a reserved instruction. */
19847 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
19848
19849 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && elsize == 64
19850 && inst.operands[0].reg == inst.operands[1].reg)
19851 as_tsktsk (_("Warning: 64-bit element size and same destination and source"
19852 " operands makes instruction UNPREDICTABLE"));
19853
19854 gas_assert (elsize != 0);
19855 constraint (et.size >= elsize,
19856 _("elements must be smaller than reversal region"));
19857 neon_two_same (neon_quad (rs), 1, et.size);
19858 }
19859
19860 static void
19861 do_neon_dup (void)
19862 {
19863 if (inst.operands[1].isscalar)
19864 {
19865 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19866 BAD_FPU);
19867 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
19868 struct neon_type_el et = neon_check_type (2, rs,
19869 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19870 unsigned sizebits = et.size >> 3;
19871 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
19872 int logsize = neon_logbits (et.size);
19873 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
19874
19875 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
19876 return;
19877
19878 NEON_ENCODE (SCALAR, inst);
19879 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19880 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19881 inst.instruction |= LOW4 (dm);
19882 inst.instruction |= HI1 (dm) << 5;
19883 inst.instruction |= neon_quad (rs) << 6;
19884 inst.instruction |= x << 17;
19885 inst.instruction |= sizebits << 16;
19886
19887 neon_dp_fixup (&inst);
19888 }
19889 else
19890 {
19891 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19892 struct neon_type_el et = neon_check_type (2, rs,
19893 N_8 | N_16 | N_32 | N_KEY, N_EQK);
19894 if (rs == NS_QR)
19895 {
19896 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH))
19897 return;
19898 }
19899 else
19900 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19901 BAD_FPU);
19902
19903 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19904 {
19905 if (inst.operands[1].reg == REG_SP)
19906 as_tsktsk (MVE_BAD_SP);
19907 else if (inst.operands[1].reg == REG_PC)
19908 as_tsktsk (MVE_BAD_PC);
19909 }
19910
19911 /* Duplicate ARM register to lanes of vector. */
19912 NEON_ENCODE (ARMREG, inst);
19913 switch (et.size)
19914 {
19915 case 8: inst.instruction |= 0x400000; break;
19916 case 16: inst.instruction |= 0x000020; break;
19917 case 32: inst.instruction |= 0x000000; break;
19918 default: break;
19919 }
19920 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19921 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19922 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
19923 inst.instruction |= neon_quad (rs) << 21;
19924 /* The encoding for this instruction is identical for the ARM and Thumb
19925 variants, except for the condition field. */
19926 do_vfp_cond_or_thumb ();
19927 }
19928 }
19929
19930 static void
19931 do_mve_mov (int toQ)
19932 {
19933 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19934 return;
19935 if (inst.cond > COND_ALWAYS)
19936 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19937
19938 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19939 if (toQ)
19940 {
19941 Q0 = 0;
19942 Q1 = 1;
19943 Rt = 2;
19944 Rt2 = 3;
19945 }
19946
19947 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19948 _("Index one must be [2,3] and index two must be two less than"
19949 " index one."));
19950 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19951 _("General purpose registers may not be the same"));
19952 constraint (inst.operands[Rt].reg == REG_SP
19953 || inst.operands[Rt2].reg == REG_SP,
19954 BAD_SP);
19955 constraint (inst.operands[Rt].reg == REG_PC
19956 || inst.operands[Rt2].reg == REG_PC,
19957 BAD_PC);
19958
19959 inst.instruction = 0xec000f00;
19960 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19961 inst.instruction |= !!toQ << 20;
19962 inst.instruction |= inst.operands[Rt2].reg << 16;
19963 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19964 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19965 inst.instruction |= inst.operands[Rt].reg;
19966 }
19967
19968 static void
19969 do_mve_movn (void)
19970 {
19971 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19972 return;
19973
19974 if (inst.cond > COND_ALWAYS)
19975 inst.pred_insn_type = INSIDE_VPT_INSN;
19976 else
19977 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
19978
19979 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
19980 | N_KEY);
19981
19982 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19983 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
19984 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19985 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19986 inst.instruction |= LOW4 (inst.operands[1].reg);
19987 inst.is_neon = 1;
19988
19989 }
19990
19991 /* VMOV has particularly many variations. It can be one of:
19992 0. VMOV<c><q> <Qd>, <Qm>
19993 1. VMOV<c><q> <Dd>, <Dm>
19994 (Register operations, which are VORR with Rm = Rn.)
19995 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19996 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19997 (Immediate loads.)
19998 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19999 (ARM register to scalar.)
20000 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
20001 (Two ARM registers to vector.)
20002 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
20003 (Scalar to ARM register.)
20004 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
20005 (Vector to two ARM registers.)
20006 8. VMOV.F32 <Sd>, <Sm>
20007 9. VMOV.F64 <Dd>, <Dm>
20008 (VFP register moves.)
20009 10. VMOV.F32 <Sd>, #imm
20010 11. VMOV.F64 <Dd>, #imm
20011 (VFP float immediate load.)
20012 12. VMOV <Rd>, <Sm>
20013 (VFP single to ARM reg.)
20014 13. VMOV <Sd>, <Rm>
20015 (ARM reg to VFP single.)
20016 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
20017 (Two ARM regs to two VFP singles.)
20018 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
20019 (Two VFP singles to two ARM regs.)
20020 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
20021 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
20022 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
20023 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
20024
20025 These cases can be disambiguated using neon_select_shape, except cases 1/9
20026 and 3/11 which depend on the operand type too.
20027
20028 All the encoded bits are hardcoded by this function.
20029
20030 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
20031 Cases 5, 7 may be used with VFPv2 and above.
20032
20033 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
20034 can specify a type where it doesn't make sense to, and is ignored). */
20035
20036 static void
20037 do_neon_mov (void)
20038 {
20039 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
20040 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
20041 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
20042 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
20043 NS_NULL);
20044 struct neon_type_el et;
20045 const char *ldconst = 0;
20046
20047 switch (rs)
20048 {
20049 case NS_DD: /* case 1/9. */
20050 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
20051 /* It is not an error here if no type is given. */
20052 inst.error = NULL;
20053
20054 /* In MVE we interpret the following instructions as same, so ignoring
20055 the following type (float) and size (64) checks.
20056 a: VMOV<c><q> <Dd>, <Dm>
20057 b: VMOV<c><q>.F64 <Dd>, <Dm>. */
20058 if ((et.type == NT_float && et.size == 64)
20059 || (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
20060 {
20061 do_vfp_nsyn_opcode ("fcpyd");
20062 break;
20063 }
20064 /* fall through. */
20065
20066 case NS_QQ: /* case 0/1. */
20067 {
20068 if (!check_simd_pred_availability (FALSE,
20069 NEON_CHECK_CC | NEON_CHECK_ARCH))
20070 return;
20071 /* The architecture manual I have doesn't explicitly state which
20072 value the U bit should have for register->register moves, but
20073 the equivalent VORR instruction has U = 0, so do that. */
20074 inst.instruction = 0x0200110;
20075 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20076 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20077 inst.instruction |= LOW4 (inst.operands[1].reg);
20078 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20079 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20080 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20081 inst.instruction |= neon_quad (rs) << 6;
20082
20083 neon_dp_fixup (&inst);
20084 }
20085 break;
20086
20087 case NS_DI: /* case 3/11. */
20088 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
20089 inst.error = NULL;
20090 if (et.type == NT_float && et.size == 64)
20091 {
20092 /* case 11 (fconstd). */
20093 ldconst = "fconstd";
20094 goto encode_fconstd;
20095 }
20096 /* fall through. */
20097
20098 case NS_QI: /* case 2/3. */
20099 if (!check_simd_pred_availability (FALSE,
20100 NEON_CHECK_CC | NEON_CHECK_ARCH))
20101 return;
20102 inst.instruction = 0x0800010;
20103 neon_move_immediate ();
20104 neon_dp_fixup (&inst);
20105 break;
20106
20107 case NS_SR: /* case 4. */
20108 {
20109 unsigned bcdebits = 0;
20110 int logsize;
20111 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
20112 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
20113
20114 /* .<size> is optional here, defaulting to .32. */
20115 if (inst.vectype.elems == 0
20116 && inst.operands[0].vectype.type == NT_invtype
20117 && inst.operands[1].vectype.type == NT_invtype)
20118 {
20119 inst.vectype.el[0].type = NT_untyped;
20120 inst.vectype.el[0].size = 32;
20121 inst.vectype.elems = 1;
20122 }
20123
20124 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
20125 logsize = neon_logbits (et.size);
20126
20127 if (et.size != 32)
20128 {
20129 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20130 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
20131 return;
20132 }
20133 else
20134 {
20135 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
20136 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20137 _(BAD_FPU));
20138 }
20139
20140 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20141 {
20142 if (inst.operands[1].reg == REG_SP)
20143 as_tsktsk (MVE_BAD_SP);
20144 else if (inst.operands[1].reg == REG_PC)
20145 as_tsktsk (MVE_BAD_PC);
20146 }
20147 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
20148
20149 constraint (et.type == NT_invtype, _("bad type for scalar"));
20150 constraint (x >= size / et.size, _("scalar index out of range"));
20151
20152
20153 switch (et.size)
20154 {
20155 case 8: bcdebits = 0x8; break;
20156 case 16: bcdebits = 0x1; break;
20157 case 32: bcdebits = 0x0; break;
20158 default: ;
20159 }
20160
20161 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
20162
20163 inst.instruction = 0xe000b10;
20164 do_vfp_cond_or_thumb ();
20165 inst.instruction |= LOW4 (dn) << 16;
20166 inst.instruction |= HI1 (dn) << 7;
20167 inst.instruction |= inst.operands[1].reg << 12;
20168 inst.instruction |= (bcdebits & 3) << 5;
20169 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
20170 inst.instruction |= (x >> (3-logsize)) << 16;
20171 }
20172 break;
20173
20174 case NS_DRR: /* case 5 (fmdrr). */
20175 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20176 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20177 _(BAD_FPU));
20178
20179 inst.instruction = 0xc400b10;
20180 do_vfp_cond_or_thumb ();
20181 inst.instruction |= LOW4 (inst.operands[0].reg);
20182 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
20183 inst.instruction |= inst.operands[1].reg << 12;
20184 inst.instruction |= inst.operands[2].reg << 16;
20185 break;
20186
20187 case NS_RS: /* case 6. */
20188 {
20189 unsigned logsize;
20190 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
20191 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
20192 unsigned abcdebits = 0;
20193
20194 /* .<dt> is optional here, defaulting to .32. */
20195 if (inst.vectype.elems == 0
20196 && inst.operands[0].vectype.type == NT_invtype
20197 && inst.operands[1].vectype.type == NT_invtype)
20198 {
20199 inst.vectype.el[0].type = NT_untyped;
20200 inst.vectype.el[0].size = 32;
20201 inst.vectype.elems = 1;
20202 }
20203
20204 et = neon_check_type (2, NS_NULL,
20205 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
20206 logsize = neon_logbits (et.size);
20207
20208 if (et.size != 32)
20209 {
20210 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20211 && vfp_or_neon_is_neon (NEON_CHECK_CC
20212 | NEON_CHECK_ARCH) == FAIL)
20213 return;
20214 }
20215 else
20216 {
20217 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
20218 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20219 _(BAD_FPU));
20220 }
20221
20222 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20223 {
20224 if (inst.operands[0].reg == REG_SP)
20225 as_tsktsk (MVE_BAD_SP);
20226 else if (inst.operands[0].reg == REG_PC)
20227 as_tsktsk (MVE_BAD_PC);
20228 }
20229
20230 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
20231
20232 constraint (et.type == NT_invtype, _("bad type for scalar"));
20233 constraint (x >= size / et.size, _("scalar index out of range"));
20234
20235 switch (et.size)
20236 {
20237 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
20238 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
20239 case 32: abcdebits = 0x00; break;
20240 default: ;
20241 }
20242
20243 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
20244 inst.instruction = 0xe100b10;
20245 do_vfp_cond_or_thumb ();
20246 inst.instruction |= LOW4 (dn) << 16;
20247 inst.instruction |= HI1 (dn) << 7;
20248 inst.instruction |= inst.operands[0].reg << 12;
20249 inst.instruction |= (abcdebits & 3) << 5;
20250 inst.instruction |= (abcdebits >> 2) << 21;
20251 inst.instruction |= (x >> (3-logsize)) << 16;
20252 }
20253 break;
20254
20255 case NS_RRD: /* case 7 (fmrrd). */
20256 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20257 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20258 _(BAD_FPU));
20259
20260 inst.instruction = 0xc500b10;
20261 do_vfp_cond_or_thumb ();
20262 inst.instruction |= inst.operands[0].reg << 12;
20263 inst.instruction |= inst.operands[1].reg << 16;
20264 inst.instruction |= LOW4 (inst.operands[2].reg);
20265 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20266 break;
20267
20268 case NS_FF: /* case 8 (fcpys). */
20269 do_vfp_nsyn_opcode ("fcpys");
20270 break;
20271
20272 case NS_HI:
20273 case NS_FI: /* case 10 (fconsts). */
20274 ldconst = "fconsts";
20275 encode_fconstd:
20276 if (!inst.operands[1].immisfloat)
20277 {
20278 unsigned new_imm;
20279 /* Immediate has to fit in 8 bits so float is enough. */
20280 float imm = (float) inst.operands[1].imm;
20281 memcpy (&new_imm, &imm, sizeof (float));
20282 /* But the assembly may have been written to provide an integer
20283 bit pattern that equates to a float, so check that the
20284 conversion has worked. */
20285 if (is_quarter_float (new_imm))
20286 {
20287 if (is_quarter_float (inst.operands[1].imm))
20288 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
20289
20290 inst.operands[1].imm = new_imm;
20291 inst.operands[1].immisfloat = 1;
20292 }
20293 }
20294
20295 if (is_quarter_float (inst.operands[1].imm))
20296 {
20297 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
20298 do_vfp_nsyn_opcode (ldconst);
20299
20300 /* ARMv8.2 fp16 vmov.f16 instruction. */
20301 if (rs == NS_HI)
20302 do_scalar_fp16_v82_encode ();
20303 }
20304 else
20305 first_error (_("immediate out of range"));
20306 break;
20307
20308 case NS_RH:
20309 case NS_RF: /* case 12 (fmrs). */
20310 do_vfp_nsyn_opcode ("fmrs");
20311 /* ARMv8.2 fp16 vmov.f16 instruction. */
20312 if (rs == NS_RH)
20313 do_scalar_fp16_v82_encode ();
20314 break;
20315
20316 case NS_HR:
20317 case NS_FR: /* case 13 (fmsr). */
20318 do_vfp_nsyn_opcode ("fmsr");
20319 /* ARMv8.2 fp16 vmov.f16 instruction. */
20320 if (rs == NS_HR)
20321 do_scalar_fp16_v82_encode ();
20322 break;
20323
20324 case NS_RRSS:
20325 do_mve_mov (0);
20326 break;
20327 case NS_SSRR:
20328 do_mve_mov (1);
20329 break;
20330
20331 /* The encoders for the fmrrs and fmsrr instructions expect three operands
20332 (one of which is a list), but we have parsed four. Do some fiddling to
20333 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
20334 expect. */
20335 case NS_RRFF: /* case 14 (fmrrs). */
20336 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20337 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20338 _(BAD_FPU));
20339 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
20340 _("VFP registers must be adjacent"));
20341 inst.operands[2].imm = 2;
20342 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
20343 do_vfp_nsyn_opcode ("fmrrs");
20344 break;
20345
20346 case NS_FFRR: /* case 15 (fmsrr). */
20347 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20348 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20349 _(BAD_FPU));
20350 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
20351 _("VFP registers must be adjacent"));
20352 inst.operands[1] = inst.operands[2];
20353 inst.operands[2] = inst.operands[3];
20354 inst.operands[0].imm = 2;
20355 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
20356 do_vfp_nsyn_opcode ("fmsrr");
20357 break;
20358
20359 case NS_NULL:
20360 /* neon_select_shape has determined that the instruction
20361 shape is wrong and has already set the error message. */
20362 break;
20363
20364 default:
20365 abort ();
20366 }
20367 }
20368
20369 static void
20370 do_mve_movl (void)
20371 {
20372 if (!(inst.operands[0].present && inst.operands[0].isquad
20373 && inst.operands[1].present && inst.operands[1].isquad
20374 && !inst.operands[2].present))
20375 {
20376 inst.instruction = 0;
20377 inst.cond = 0xb;
20378 if (thumb_mode)
20379 set_pred_insn_type (INSIDE_IT_INSN);
20380 do_neon_mov ();
20381 return;
20382 }
20383
20384 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20385 return;
20386
20387 if (inst.cond != COND_ALWAYS)
20388 inst.pred_insn_type = INSIDE_VPT_INSN;
20389
20390 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
20391 | N_S16 | N_U16 | N_KEY);
20392
20393 inst.instruction |= (et.type == NT_unsigned) << 28;
20394 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20395 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
20396 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20397 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20398 inst.instruction |= LOW4 (inst.operands[1].reg);
20399 inst.is_neon = 1;
20400 }
20401
20402 static void
20403 do_neon_rshift_round_imm (void)
20404 {
20405 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20406 return;
20407
20408 enum neon_shape rs;
20409 struct neon_type_el et;
20410
20411 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20412 {
20413 rs = neon_select_shape (NS_QQI, NS_NULL);
20414 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
20415 }
20416 else
20417 {
20418 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
20419 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
20420 }
20421 int imm = inst.operands[2].imm;
20422
20423 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
20424 if (imm == 0)
20425 {
20426 inst.operands[2].present = 0;
20427 do_neon_mov ();
20428 return;
20429 }
20430
20431 constraint (imm < 1 || (unsigned)imm > et.size,
20432 _("immediate out of range for shift"));
20433 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
20434 et.size - imm);
20435 }
20436
20437 static void
20438 do_neon_movhf (void)
20439 {
20440 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
20441 constraint (rs != NS_HH, _("invalid suffix"));
20442
20443 if (inst.cond != COND_ALWAYS)
20444 {
20445 if (thumb_mode)
20446 {
20447 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
20448 " the behaviour is UNPREDICTABLE"));
20449 }
20450 else
20451 {
20452 inst.error = BAD_COND;
20453 return;
20454 }
20455 }
20456
20457 do_vfp_sp_monadic ();
20458
20459 inst.is_neon = 1;
20460 inst.instruction |= 0xf0000000;
20461 }
20462
20463 static void
20464 do_neon_movl (void)
20465 {
20466 struct neon_type_el et = neon_check_type (2, NS_QD,
20467 N_EQK | N_DBL, N_SU_32 | N_KEY);
20468 unsigned sizebits = et.size >> 3;
20469 inst.instruction |= sizebits << 19;
20470 neon_two_same (0, et.type == NT_unsigned, -1);
20471 }
20472
20473 static void
20474 do_neon_trn (void)
20475 {
20476 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20477 struct neon_type_el et = neon_check_type (2, rs,
20478 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20479 NEON_ENCODE (INTEGER, inst);
20480 neon_two_same (neon_quad (rs), 1, et.size);
20481 }
20482
20483 static void
20484 do_neon_zip_uzp (void)
20485 {
20486 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20487 struct neon_type_el et = neon_check_type (2, rs,
20488 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20489 if (rs == NS_DD && et.size == 32)
20490 {
20491 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
20492 inst.instruction = N_MNEM_vtrn;
20493 do_neon_trn ();
20494 return;
20495 }
20496 neon_two_same (neon_quad (rs), 1, et.size);
20497 }
20498
20499 static void
20500 do_neon_sat_abs_neg (void)
20501 {
20502 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
20503 return;
20504
20505 enum neon_shape rs;
20506 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20507 rs = neon_select_shape (NS_QQ, NS_NULL);
20508 else
20509 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20510 struct neon_type_el et = neon_check_type (2, rs,
20511 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
20512 neon_two_same (neon_quad (rs), 1, et.size);
20513 }
20514
20515 static void
20516 do_neon_pair_long (void)
20517 {
20518 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20519 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
20520 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
20521 inst.instruction |= (et.type == NT_unsigned) << 7;
20522 neon_two_same (neon_quad (rs), 1, et.size);
20523 }
20524
20525 static void
20526 do_neon_recip_est (void)
20527 {
20528 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20529 struct neon_type_el et = neon_check_type (2, rs,
20530 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
20531 inst.instruction |= (et.type == NT_float) << 8;
20532 neon_two_same (neon_quad (rs), 1, et.size);
20533 }
20534
20535 static void
20536 do_neon_cls (void)
20537 {
20538 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20539 return;
20540
20541 enum neon_shape rs;
20542 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20543 rs = neon_select_shape (NS_QQ, NS_NULL);
20544 else
20545 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20546
20547 struct neon_type_el et = neon_check_type (2, rs,
20548 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
20549 neon_two_same (neon_quad (rs), 1, et.size);
20550 }
20551
20552 static void
20553 do_neon_clz (void)
20554 {
20555 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20556 return;
20557
20558 enum neon_shape rs;
20559 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20560 rs = neon_select_shape (NS_QQ, NS_NULL);
20561 else
20562 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20563
20564 struct neon_type_el et = neon_check_type (2, rs,
20565 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
20566 neon_two_same (neon_quad (rs), 1, et.size);
20567 }
20568
20569 static void
20570 do_neon_cnt (void)
20571 {
20572 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20573 struct neon_type_el et = neon_check_type (2, rs,
20574 N_EQK | N_INT, N_8 | N_KEY);
20575 neon_two_same (neon_quad (rs), 1, et.size);
20576 }
20577
20578 static void
20579 do_neon_swp (void)
20580 {
20581 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20582 neon_two_same (neon_quad (rs), 1, -1);
20583 }
20584
20585 static void
20586 do_neon_tbl_tbx (void)
20587 {
20588 unsigned listlenbits;
20589 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
20590
20591 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
20592 {
20593 first_error (_("bad list length for table lookup"));
20594 return;
20595 }
20596
20597 listlenbits = inst.operands[1].imm - 1;
20598 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20599 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20600 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20601 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20602 inst.instruction |= LOW4 (inst.operands[2].reg);
20603 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20604 inst.instruction |= listlenbits << 8;
20605
20606 neon_dp_fixup (&inst);
20607 }
20608
20609 static void
20610 do_neon_ldm_stm (void)
20611 {
20612 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
20613 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20614 _(BAD_FPU));
20615 /* P, U and L bits are part of bitmask. */
20616 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
20617 unsigned offsetbits = inst.operands[1].imm * 2;
20618
20619 if (inst.operands[1].issingle)
20620 {
20621 do_vfp_nsyn_ldm_stm (is_dbmode);
20622 return;
20623 }
20624
20625 constraint (is_dbmode && !inst.operands[0].writeback,
20626 _("writeback (!) must be used for VLDMDB and VSTMDB"));
20627
20628 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
20629 _("register list must contain at least 1 and at most 16 "
20630 "registers"));
20631
20632 inst.instruction |= inst.operands[0].reg << 16;
20633 inst.instruction |= inst.operands[0].writeback << 21;
20634 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
20635 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
20636
20637 inst.instruction |= offsetbits;
20638
20639 do_vfp_cond_or_thumb ();
20640 }
20641
20642 static void
20643 do_vfp_nsyn_pop (void)
20644 {
20645 nsyn_insert_sp ();
20646 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) {
20647 return do_vfp_nsyn_opcode ("vldm");
20648 }
20649
20650 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
20651 _(BAD_FPU));
20652
20653 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
20654 _("register list must contain at least 1 and at most 16 "
20655 "registers"));
20656
20657 if (inst.operands[1].issingle)
20658 do_vfp_nsyn_opcode ("fldmias");
20659 else
20660 do_vfp_nsyn_opcode ("fldmiad");
20661 }
20662
20663 static void
20664 do_vfp_nsyn_push (void)
20665 {
20666 nsyn_insert_sp ();
20667 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)) {
20668 return do_vfp_nsyn_opcode ("vstmdb");
20669 }
20670
20671 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
20672 _(BAD_FPU));
20673
20674 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
20675 _("register list must contain at least 1 and at most 16 "
20676 "registers"));
20677
20678 if (inst.operands[1].issingle)
20679 do_vfp_nsyn_opcode ("fstmdbs");
20680 else
20681 do_vfp_nsyn_opcode ("fstmdbd");
20682 }
20683
20684
20685 static void
20686 do_neon_ldr_str (void)
20687 {
20688 int is_ldr = (inst.instruction & (1 << 20)) != 0;
20689
20690 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
20691 And is UNPREDICTABLE in thumb mode. */
20692 if (!is_ldr
20693 && inst.operands[1].reg == REG_PC
20694 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
20695 {
20696 if (thumb_mode)
20697 inst.error = _("Use of PC here is UNPREDICTABLE");
20698 else if (warn_on_deprecated)
20699 as_tsktsk (_("Use of PC here is deprecated"));
20700 }
20701
20702 if (inst.operands[0].issingle)
20703 {
20704 if (is_ldr)
20705 do_vfp_nsyn_opcode ("flds");
20706 else
20707 do_vfp_nsyn_opcode ("fsts");
20708
20709 /* ARMv8.2 vldr.16/vstr.16 instruction. */
20710 if (inst.vectype.el[0].size == 16)
20711 do_scalar_fp16_v82_encode ();
20712 }
20713 else
20714 {
20715 if (is_ldr)
20716 do_vfp_nsyn_opcode ("fldd");
20717 else
20718 do_vfp_nsyn_opcode ("fstd");
20719 }
20720 }
20721
20722 static void
20723 do_t_vldr_vstr_sysreg (void)
20724 {
20725 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
20726 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
20727
20728 /* Use of PC is UNPREDICTABLE. */
20729 if (inst.operands[1].reg == REG_PC)
20730 inst.error = _("Use of PC here is UNPREDICTABLE");
20731
20732 if (inst.operands[1].immisreg)
20733 inst.error = _("instruction does not accept register index");
20734
20735 if (!inst.operands[1].isreg)
20736 inst.error = _("instruction does not accept PC-relative addressing");
20737
20738 if (abs (inst.operands[1].imm) >= (1 << 7))
20739 inst.error = _("immediate value out of range");
20740
20741 inst.instruction = 0xec000f80;
20742 if (is_vldr)
20743 inst.instruction |= 1 << sysreg_vldr_bitno;
20744 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
20745 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
20746 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
20747 }
20748
20749 static void
20750 do_vldr_vstr (void)
20751 {
20752 bfd_boolean sysreg_op = !inst.operands[0].isreg;
20753
20754 /* VLDR/VSTR (System Register). */
20755 if (sysreg_op)
20756 {
20757 if (!mark_feature_used (&arm_ext_v8_1m_main))
20758 as_bad (_("Instruction not permitted on this architecture"));
20759
20760 do_t_vldr_vstr_sysreg ();
20761 }
20762 /* VLDR/VSTR. */
20763 else
20764 {
20765 if (!mark_feature_used (&fpu_vfp_ext_v1xd)
20766 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20767 as_bad (_("Instruction not permitted on this architecture"));
20768 do_neon_ldr_str ();
20769 }
20770 }
20771
20772 /* "interleave" version also handles non-interleaving register VLD1/VST1
20773 instructions. */
20774
20775 static void
20776 do_neon_ld_st_interleave (void)
20777 {
20778 struct neon_type_el et = neon_check_type (1, NS_NULL,
20779 N_8 | N_16 | N_32 | N_64);
20780 unsigned alignbits = 0;
20781 unsigned idx;
20782 /* The bits in this table go:
20783 0: register stride of one (0) or two (1)
20784 1,2: register list length, minus one (1, 2, 3, 4).
20785 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
20786 We use -1 for invalid entries. */
20787 const int typetable[] =
20788 {
20789 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
20790 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
20791 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
20792 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
20793 };
20794 int typebits;
20795
20796 if (et.type == NT_invtype)
20797 return;
20798
20799 if (inst.operands[1].immisalign)
20800 switch (inst.operands[1].imm >> 8)
20801 {
20802 case 64: alignbits = 1; break;
20803 case 128:
20804 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
20805 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20806 goto bad_alignment;
20807 alignbits = 2;
20808 break;
20809 case 256:
20810 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20811 goto bad_alignment;
20812 alignbits = 3;
20813 break;
20814 default:
20815 bad_alignment:
20816 first_error (_("bad alignment"));
20817 return;
20818 }
20819
20820 inst.instruction |= alignbits << 4;
20821 inst.instruction |= neon_logbits (et.size) << 6;
20822
20823 /* Bits [4:6] of the immediate in a list specifier encode register stride
20824 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
20825 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
20826 up the right value for "type" in a table based on this value and the given
20827 list style, then stick it back. */
20828 idx = ((inst.operands[0].imm >> 4) & 7)
20829 | (((inst.instruction >> 8) & 3) << 3);
20830
20831 typebits = typetable[idx];
20832
20833 constraint (typebits == -1, _("bad list type for instruction"));
20834 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
20835 BAD_EL_TYPE);
20836
20837 inst.instruction &= ~0xf00;
20838 inst.instruction |= typebits << 8;
20839 }
20840
20841 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
20842 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
20843 otherwise. The variable arguments are a list of pairs of legal (size, align)
20844 values, terminated with -1. */
20845
20846 static int
20847 neon_alignment_bit (int size, int align, int *do_alignment, ...)
20848 {
20849 va_list ap;
20850 int result = FAIL, thissize, thisalign;
20851
20852 if (!inst.operands[1].immisalign)
20853 {
20854 *do_alignment = 0;
20855 return SUCCESS;
20856 }
20857
20858 va_start (ap, do_alignment);
20859
20860 do
20861 {
20862 thissize = va_arg (ap, int);
20863 if (thissize == -1)
20864 break;
20865 thisalign = va_arg (ap, int);
20866
20867 if (size == thissize && align == thisalign)
20868 result = SUCCESS;
20869 }
20870 while (result != SUCCESS);
20871
20872 va_end (ap);
20873
20874 if (result == SUCCESS)
20875 *do_alignment = 1;
20876 else
20877 first_error (_("unsupported alignment for instruction"));
20878
20879 return result;
20880 }
20881
20882 static void
20883 do_neon_ld_st_lane (void)
20884 {
20885 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20886 int align_good, do_alignment = 0;
20887 int logsize = neon_logbits (et.size);
20888 int align = inst.operands[1].imm >> 8;
20889 int n = (inst.instruction >> 8) & 3;
20890 int max_el = 64 / et.size;
20891
20892 if (et.type == NT_invtype)
20893 return;
20894
20895 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
20896 _("bad list length"));
20897 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
20898 _("scalar index out of range"));
20899 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
20900 && et.size == 8,
20901 _("stride of 2 unavailable when element size is 8"));
20902
20903 switch (n)
20904 {
20905 case 0: /* VLD1 / VST1. */
20906 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
20907 32, 32, -1);
20908 if (align_good == FAIL)
20909 return;
20910 if (do_alignment)
20911 {
20912 unsigned alignbits = 0;
20913 switch (et.size)
20914 {
20915 case 16: alignbits = 0x1; break;
20916 case 32: alignbits = 0x3; break;
20917 default: ;
20918 }
20919 inst.instruction |= alignbits << 4;
20920 }
20921 break;
20922
20923 case 1: /* VLD2 / VST2. */
20924 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20925 16, 32, 32, 64, -1);
20926 if (align_good == FAIL)
20927 return;
20928 if (do_alignment)
20929 inst.instruction |= 1 << 4;
20930 break;
20931
20932 case 2: /* VLD3 / VST3. */
20933 constraint (inst.operands[1].immisalign,
20934 _("can't use alignment with this instruction"));
20935 break;
20936
20937 case 3: /* VLD4 / VST4. */
20938 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20939 16, 64, 32, 64, 32, 128, -1);
20940 if (align_good == FAIL)
20941 return;
20942 if (do_alignment)
20943 {
20944 unsigned alignbits = 0;
20945 switch (et.size)
20946 {
20947 case 8: alignbits = 0x1; break;
20948 case 16: alignbits = 0x1; break;
20949 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
20950 default: ;
20951 }
20952 inst.instruction |= alignbits << 4;
20953 }
20954 break;
20955
20956 default: ;
20957 }
20958
20959 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20960 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20961 inst.instruction |= 1 << (4 + logsize);
20962
20963 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
20964 inst.instruction |= logsize << 10;
20965 }
20966
20967 /* Encode single n-element structure to all lanes VLD<n> instructions. */
20968
20969 static void
20970 do_neon_ld_dup (void)
20971 {
20972 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20973 int align_good, do_alignment = 0;
20974
20975 if (et.type == NT_invtype)
20976 return;
20977
20978 switch ((inst.instruction >> 8) & 3)
20979 {
20980 case 0: /* VLD1. */
20981 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
20982 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20983 &do_alignment, 16, 16, 32, 32, -1);
20984 if (align_good == FAIL)
20985 return;
20986 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
20987 {
20988 case 1: break;
20989 case 2: inst.instruction |= 1 << 5; break;
20990 default: first_error (_("bad list length")); return;
20991 }
20992 inst.instruction |= neon_logbits (et.size) << 6;
20993 break;
20994
20995 case 1: /* VLD2. */
20996 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20997 &do_alignment, 8, 16, 16, 32, 32, 64,
20998 -1);
20999 if (align_good == FAIL)
21000 return;
21001 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
21002 _("bad list length"));
21003 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
21004 inst.instruction |= 1 << 5;
21005 inst.instruction |= neon_logbits (et.size) << 6;
21006 break;
21007
21008 case 2: /* VLD3. */
21009 constraint (inst.operands[1].immisalign,
21010 _("can't use alignment with this instruction"));
21011 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
21012 _("bad list length"));
21013 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
21014 inst.instruction |= 1 << 5;
21015 inst.instruction |= neon_logbits (et.size) << 6;
21016 break;
21017
21018 case 3: /* VLD4. */
21019 {
21020 int align = inst.operands[1].imm >> 8;
21021 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
21022 16, 64, 32, 64, 32, 128, -1);
21023 if (align_good == FAIL)
21024 return;
21025 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
21026 _("bad list length"));
21027 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
21028 inst.instruction |= 1 << 5;
21029 if (et.size == 32 && align == 128)
21030 inst.instruction |= 0x3 << 6;
21031 else
21032 inst.instruction |= neon_logbits (et.size) << 6;
21033 }
21034 break;
21035
21036 default: ;
21037 }
21038
21039 inst.instruction |= do_alignment << 4;
21040 }
21041
21042 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
21043 apart from bits [11:4]. */
21044
21045 static void
21046 do_neon_ldx_stx (void)
21047 {
21048 if (inst.operands[1].isreg)
21049 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
21050
21051 switch (NEON_LANE (inst.operands[0].imm))
21052 {
21053 case NEON_INTERLEAVE_LANES:
21054 NEON_ENCODE (INTERLV, inst);
21055 do_neon_ld_st_interleave ();
21056 break;
21057
21058 case NEON_ALL_LANES:
21059 NEON_ENCODE (DUP, inst);
21060 if (inst.instruction == N_INV)
21061 {
21062 first_error ("only loads support such operands");
21063 break;
21064 }
21065 do_neon_ld_dup ();
21066 break;
21067
21068 default:
21069 NEON_ENCODE (LANE, inst);
21070 do_neon_ld_st_lane ();
21071 }
21072
21073 /* L bit comes from bit mask. */
21074 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21075 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21076 inst.instruction |= inst.operands[1].reg << 16;
21077
21078 if (inst.operands[1].postind)
21079 {
21080 int postreg = inst.operands[1].imm & 0xf;
21081 constraint (!inst.operands[1].immisreg,
21082 _("post-index must be a register"));
21083 constraint (postreg == 0xd || postreg == 0xf,
21084 _("bad register for post-index"));
21085 inst.instruction |= postreg;
21086 }
21087 else
21088 {
21089 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
21090 constraint (inst.relocs[0].exp.X_op != O_constant
21091 || inst.relocs[0].exp.X_add_number != 0,
21092 BAD_ADDR_MODE);
21093
21094 if (inst.operands[1].writeback)
21095 {
21096 inst.instruction |= 0xd;
21097 }
21098 else
21099 inst.instruction |= 0xf;
21100 }
21101
21102 if (thumb_mode)
21103 inst.instruction |= 0xf9000000;
21104 else
21105 inst.instruction |= 0xf4000000;
21106 }
21107
21108 /* FP v8. */
21109 static void
21110 do_vfp_nsyn_fpv8 (enum neon_shape rs)
21111 {
21112 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
21113 D register operands. */
21114 if (neon_shape_class[rs] == SC_DOUBLE)
21115 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21116 _(BAD_FPU));
21117
21118 NEON_ENCODE (FPV8, inst);
21119
21120 if (rs == NS_FFF || rs == NS_HHH)
21121 {
21122 do_vfp_sp_dyadic ();
21123
21124 /* ARMv8.2 fp16 instruction. */
21125 if (rs == NS_HHH)
21126 do_scalar_fp16_v82_encode ();
21127 }
21128 else
21129 do_vfp_dp_rd_rn_rm ();
21130
21131 if (rs == NS_DDD)
21132 inst.instruction |= 0x100;
21133
21134 inst.instruction |= 0xf0000000;
21135 }
21136
21137 static void
21138 do_vsel (void)
21139 {
21140 set_pred_insn_type (OUTSIDE_PRED_INSN);
21141
21142 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
21143 first_error (_("invalid instruction shape"));
21144 }
21145
21146 static void
21147 do_vmaxnm (void)
21148 {
21149 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21150 set_pred_insn_type (OUTSIDE_PRED_INSN);
21151
21152 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
21153 return;
21154
21155 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH8))
21156 return;
21157
21158 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
21159 }
21160
21161 static void
21162 do_vrint_1 (enum neon_cvt_mode mode)
21163 {
21164 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
21165 struct neon_type_el et;
21166
21167 if (rs == NS_NULL)
21168 return;
21169
21170 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
21171 D register operands. */
21172 if (neon_shape_class[rs] == SC_DOUBLE)
21173 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21174 _(BAD_FPU));
21175
21176 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
21177 | N_VFP);
21178 if (et.type != NT_invtype)
21179 {
21180 /* VFP encodings. */
21181 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
21182 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
21183 set_pred_insn_type (OUTSIDE_PRED_INSN);
21184
21185 NEON_ENCODE (FPV8, inst);
21186 if (rs == NS_FF || rs == NS_HH)
21187 do_vfp_sp_monadic ();
21188 else
21189 do_vfp_dp_rd_rm ();
21190
21191 switch (mode)
21192 {
21193 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
21194 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
21195 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
21196 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
21197 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
21198 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
21199 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
21200 default: abort ();
21201 }
21202
21203 inst.instruction |= (rs == NS_DD) << 8;
21204 do_vfp_cond_or_thumb ();
21205
21206 /* ARMv8.2 fp16 vrint instruction. */
21207 if (rs == NS_HH)
21208 do_scalar_fp16_v82_encode ();
21209 }
21210 else
21211 {
21212 /* Neon encodings (or something broken...). */
21213 inst.error = NULL;
21214 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
21215
21216 if (et.type == NT_invtype)
21217 return;
21218
21219 if (!check_simd_pred_availability (TRUE,
21220 NEON_CHECK_CC | NEON_CHECK_ARCH8))
21221 return;
21222
21223 NEON_ENCODE (FLOAT, inst);
21224
21225 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21226 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21227 inst.instruction |= LOW4 (inst.operands[1].reg);
21228 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
21229 inst.instruction |= neon_quad (rs) << 6;
21230 /* Mask off the original size bits and reencode them. */
21231 inst.instruction = ((inst.instruction & 0xfff3ffff)
21232 | neon_logbits (et.size) << 18);
21233
21234 switch (mode)
21235 {
21236 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
21237 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
21238 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
21239 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
21240 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
21241 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
21242 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
21243 default: abort ();
21244 }
21245
21246 if (thumb_mode)
21247 inst.instruction |= 0xfc000000;
21248 else
21249 inst.instruction |= 0xf0000000;
21250 }
21251 }
21252
21253 static void
21254 do_vrintx (void)
21255 {
21256 do_vrint_1 (neon_cvt_mode_x);
21257 }
21258
21259 static void
21260 do_vrintz (void)
21261 {
21262 do_vrint_1 (neon_cvt_mode_z);
21263 }
21264
21265 static void
21266 do_vrintr (void)
21267 {
21268 do_vrint_1 (neon_cvt_mode_r);
21269 }
21270
21271 static void
21272 do_vrinta (void)
21273 {
21274 do_vrint_1 (neon_cvt_mode_a);
21275 }
21276
21277 static void
21278 do_vrintn (void)
21279 {
21280 do_vrint_1 (neon_cvt_mode_n);
21281 }
21282
21283 static void
21284 do_vrintp (void)
21285 {
21286 do_vrint_1 (neon_cvt_mode_p);
21287 }
21288
21289 static void
21290 do_vrintm (void)
21291 {
21292 do_vrint_1 (neon_cvt_mode_m);
21293 }
21294
21295 static unsigned
21296 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
21297 {
21298 unsigned regno = NEON_SCALAR_REG (opnd);
21299 unsigned elno = NEON_SCALAR_INDEX (opnd);
21300
21301 if (elsize == 16 && elno < 2 && regno < 16)
21302 return regno | (elno << 4);
21303 else if (elsize == 32 && elno == 0)
21304 return regno;
21305
21306 first_error (_("scalar out of range"));
21307 return 0;
21308 }
21309
21310 static void
21311 do_vcmla (void)
21312 {
21313 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
21314 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
21315 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
21316 constraint (inst.relocs[0].exp.X_op != O_constant,
21317 _("expression too complex"));
21318 unsigned rot = inst.relocs[0].exp.X_add_number;
21319 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
21320 _("immediate out of range"));
21321 rot /= 90;
21322
21323 if (!check_simd_pred_availability (TRUE,
21324 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
21325 return;
21326
21327 if (inst.operands[2].isscalar)
21328 {
21329 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
21330 first_error (_("invalid instruction shape"));
21331 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
21332 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
21333 N_KEY | N_F16 | N_F32).size;
21334 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
21335 inst.is_neon = 1;
21336 inst.instruction = 0xfe000800;
21337 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21338 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21339 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
21340 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
21341 inst.instruction |= LOW4 (m);
21342 inst.instruction |= HI1 (m) << 5;
21343 inst.instruction |= neon_quad (rs) << 6;
21344 inst.instruction |= rot << 20;
21345 inst.instruction |= (size == 32) << 23;
21346 }
21347 else
21348 {
21349 enum neon_shape rs;
21350 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
21351 rs = neon_select_shape (NS_QQQI, NS_NULL);
21352 else
21353 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
21354
21355 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
21356 N_KEY | N_F16 | N_F32).size;
21357 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
21358 && (inst.operands[0].reg == inst.operands[1].reg
21359 || inst.operands[0].reg == inst.operands[2].reg))
21360 as_tsktsk (BAD_MVE_SRCDEST);
21361
21362 neon_three_same (neon_quad (rs), 0, -1);
21363 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
21364 inst.instruction |= 0xfc200800;
21365 inst.instruction |= rot << 23;
21366 inst.instruction |= (size == 32) << 20;
21367 }
21368 }
21369
21370 static void
21371 do_vcadd (void)
21372 {
21373 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
21374 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
21375 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
21376 constraint (inst.relocs[0].exp.X_op != O_constant,
21377 _("expression too complex"));
21378
21379 unsigned rot = inst.relocs[0].exp.X_add_number;
21380 constraint (rot != 90 && rot != 270, _("immediate out of range"));
21381 enum neon_shape rs;
21382 struct neon_type_el et;
21383 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21384 {
21385 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
21386 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
21387 }
21388 else
21389 {
21390 rs = neon_select_shape (NS_QQQI, NS_NULL);
21391 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
21392 | N_I16 | N_I32);
21393 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
21394 as_tsktsk (_("Warning: 32-bit element size and same first and third "
21395 "operand makes instruction UNPREDICTABLE"));
21396 }
21397
21398 if (et.type == NT_invtype)
21399 return;
21400
21401 if (!check_simd_pred_availability (et.type == NT_float,
21402 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
21403 return;
21404
21405 if (et.type == NT_float)
21406 {
21407 neon_three_same (neon_quad (rs), 0, -1);
21408 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
21409 inst.instruction |= 0xfc800800;
21410 inst.instruction |= (rot == 270) << 24;
21411 inst.instruction |= (et.size == 32) << 20;
21412 }
21413 else
21414 {
21415 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
21416 inst.instruction = 0xfe000f00;
21417 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21418 inst.instruction |= neon_logbits (et.size) << 20;
21419 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
21420 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21421 inst.instruction |= (rot == 270) << 12;
21422 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
21423 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
21424 inst.instruction |= LOW4 (inst.operands[2].reg);
21425 inst.is_neon = 1;
21426 }
21427 }
21428
21429 /* Dot Product instructions encoding support. */
21430
21431 static void
21432 do_neon_dotproduct (int unsigned_p)
21433 {
21434 enum neon_shape rs;
21435 unsigned scalar_oprd2 = 0;
21436 int high8;
21437
21438 if (inst.cond != COND_ALWAYS)
21439 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
21440 "is UNPREDICTABLE"));
21441
21442 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
21443 _(BAD_FPU));
21444
21445 /* Dot Product instructions are in three-same D/Q register format or the third
21446 operand can be a scalar index register. */
21447 if (inst.operands[2].isscalar)
21448 {
21449 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
21450 high8 = 0xfe000000;
21451 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21452 }
21453 else
21454 {
21455 high8 = 0xfc000000;
21456 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
21457 }
21458
21459 if (unsigned_p)
21460 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
21461 else
21462 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
21463
21464 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
21465 Product instruction, so we pass 0 as the "ubit" parameter. And the
21466 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
21467 neon_three_same (neon_quad (rs), 0, 32);
21468
21469 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
21470 different NEON three-same encoding. */
21471 inst.instruction &= 0x00ffffff;
21472 inst.instruction |= high8;
21473 /* Encode 'U' bit which indicates signedness. */
21474 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
21475 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
21476 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
21477 the instruction encoding. */
21478 if (inst.operands[2].isscalar)
21479 {
21480 inst.instruction &= 0xffffffd0;
21481 inst.instruction |= LOW4 (scalar_oprd2);
21482 inst.instruction |= HI1 (scalar_oprd2) << 5;
21483 }
21484 }
21485
21486 /* Dot Product instructions for signed integer. */
21487
21488 static void
21489 do_neon_dotproduct_s (void)
21490 {
21491 return do_neon_dotproduct (0);
21492 }
21493
21494 /* Dot Product instructions for unsigned integer. */
21495
21496 static void
21497 do_neon_dotproduct_u (void)
21498 {
21499 return do_neon_dotproduct (1);
21500 }
21501
21502 static void
21503 do_vusdot (void)
21504 {
21505 enum neon_shape rs;
21506 set_pred_insn_type (OUTSIDE_PRED_INSN);
21507 if (inst.operands[2].isscalar)
21508 {
21509 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21510 neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY);
21511
21512 inst.instruction |= (1 << 25);
21513 int index = inst.operands[2].reg & 0xf;
21514 constraint ((index != 1 && index != 0), _("index must be 0 or 1"));
21515 inst.operands[2].reg >>= 4;
21516 constraint (!(inst.operands[2].reg < 16),
21517 _("indexed register must be less than 16"));
21518 neon_three_args (rs == NS_QQS);
21519 inst.instruction |= (index << 5);
21520 }
21521 else
21522 {
21523 inst.instruction |= (1 << 21);
21524 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
21525 neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY);
21526 neon_three_args (rs == NS_QQQ);
21527 }
21528 }
21529
21530 static void
21531 do_vsudot (void)
21532 {
21533 enum neon_shape rs;
21534 set_pred_insn_type (OUTSIDE_PRED_INSN);
21535 if (inst.operands[2].isscalar)
21536 {
21537 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21538 neon_check_type (3, rs, N_EQK, N_EQK, N_U8 | N_KEY);
21539
21540 inst.instruction |= (1 << 25);
21541 int index = inst.operands[2].reg & 0xf;
21542 constraint ((index != 1 && index != 0), _("index must be 0 or 1"));
21543 inst.operands[2].reg >>= 4;
21544 constraint (!(inst.operands[2].reg < 16),
21545 _("indexed register must be less than 16"));
21546 neon_three_args (rs == NS_QQS);
21547 inst.instruction |= (index << 5);
21548 }
21549 }
21550
21551 static void
21552 do_vsmmla (void)
21553 {
21554 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
21555 neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_KEY);
21556
21557 set_pred_insn_type (OUTSIDE_PRED_INSN);
21558
21559 neon_three_args (1);
21560
21561 }
21562
21563 static void
21564 do_vummla (void)
21565 {
21566 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
21567 neon_check_type (3, rs, N_EQK, N_EQK, N_U8 | N_KEY);
21568
21569 set_pred_insn_type (OUTSIDE_PRED_INSN);
21570
21571 neon_three_args (1);
21572
21573 }
21574
21575 /* Crypto v1 instructions. */
21576 static void
21577 do_crypto_2op_1 (unsigned elttype, int op)
21578 {
21579 set_pred_insn_type (OUTSIDE_PRED_INSN);
21580
21581 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
21582 == NT_invtype)
21583 return;
21584
21585 inst.error = NULL;
21586
21587 NEON_ENCODE (INTEGER, inst);
21588 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21589 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21590 inst.instruction |= LOW4 (inst.operands[1].reg);
21591 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
21592 if (op != -1)
21593 inst.instruction |= op << 6;
21594
21595 if (thumb_mode)
21596 inst.instruction |= 0xfc000000;
21597 else
21598 inst.instruction |= 0xf0000000;
21599 }
21600
21601 static void
21602 do_crypto_3op_1 (int u, int op)
21603 {
21604 set_pred_insn_type (OUTSIDE_PRED_INSN);
21605
21606 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
21607 N_32 | N_UNT | N_KEY).type == NT_invtype)
21608 return;
21609
21610 inst.error = NULL;
21611
21612 NEON_ENCODE (INTEGER, inst);
21613 neon_three_same (1, u, 8 << op);
21614 }
21615
21616 static void
21617 do_aese (void)
21618 {
21619 do_crypto_2op_1 (N_8, 0);
21620 }
21621
21622 static void
21623 do_aesd (void)
21624 {
21625 do_crypto_2op_1 (N_8, 1);
21626 }
21627
21628 static void
21629 do_aesmc (void)
21630 {
21631 do_crypto_2op_1 (N_8, 2);
21632 }
21633
21634 static void
21635 do_aesimc (void)
21636 {
21637 do_crypto_2op_1 (N_8, 3);
21638 }
21639
21640 static void
21641 do_sha1c (void)
21642 {
21643 do_crypto_3op_1 (0, 0);
21644 }
21645
21646 static void
21647 do_sha1p (void)
21648 {
21649 do_crypto_3op_1 (0, 1);
21650 }
21651
21652 static void
21653 do_sha1m (void)
21654 {
21655 do_crypto_3op_1 (0, 2);
21656 }
21657
21658 static void
21659 do_sha1su0 (void)
21660 {
21661 do_crypto_3op_1 (0, 3);
21662 }
21663
21664 static void
21665 do_sha256h (void)
21666 {
21667 do_crypto_3op_1 (1, 0);
21668 }
21669
21670 static void
21671 do_sha256h2 (void)
21672 {
21673 do_crypto_3op_1 (1, 1);
21674 }
21675
21676 static void
21677 do_sha256su1 (void)
21678 {
21679 do_crypto_3op_1 (1, 2);
21680 }
21681
21682 static void
21683 do_sha1h (void)
21684 {
21685 do_crypto_2op_1 (N_32, -1);
21686 }
21687
21688 static void
21689 do_sha1su1 (void)
21690 {
21691 do_crypto_2op_1 (N_32, 0);
21692 }
21693
21694 static void
21695 do_sha256su0 (void)
21696 {
21697 do_crypto_2op_1 (N_32, 1);
21698 }
21699
21700 static void
21701 do_crc32_1 (unsigned int poly, unsigned int sz)
21702 {
21703 unsigned int Rd = inst.operands[0].reg;
21704 unsigned int Rn = inst.operands[1].reg;
21705 unsigned int Rm = inst.operands[2].reg;
21706
21707 set_pred_insn_type (OUTSIDE_PRED_INSN);
21708 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
21709 inst.instruction |= LOW4 (Rn) << 16;
21710 inst.instruction |= LOW4 (Rm);
21711 inst.instruction |= sz << (thumb_mode ? 4 : 21);
21712 inst.instruction |= poly << (thumb_mode ? 20 : 9);
21713
21714 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
21715 as_warn (UNPRED_REG ("r15"));
21716 }
21717
21718 static void
21719 do_crc32b (void)
21720 {
21721 do_crc32_1 (0, 0);
21722 }
21723
21724 static void
21725 do_crc32h (void)
21726 {
21727 do_crc32_1 (0, 1);
21728 }
21729
21730 static void
21731 do_crc32w (void)
21732 {
21733 do_crc32_1 (0, 2);
21734 }
21735
21736 static void
21737 do_crc32cb (void)
21738 {
21739 do_crc32_1 (1, 0);
21740 }
21741
21742 static void
21743 do_crc32ch (void)
21744 {
21745 do_crc32_1 (1, 1);
21746 }
21747
21748 static void
21749 do_crc32cw (void)
21750 {
21751 do_crc32_1 (1, 2);
21752 }
21753
21754 static void
21755 do_vjcvt (void)
21756 {
21757 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21758 _(BAD_FPU));
21759 neon_check_type (2, NS_FD, N_S32, N_F64);
21760 do_vfp_sp_dp_cvt ();
21761 do_vfp_cond_or_thumb ();
21762 }
21763
21764 static void
21765 do_vdot (void)
21766 {
21767 enum neon_shape rs;
21768 constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU));
21769 set_pred_insn_type (OUTSIDE_PRED_INSN);
21770 if (inst.operands[2].isscalar)
21771 {
21772 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21773 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
21774
21775 inst.instruction |= (1 << 25);
21776 int index = inst.operands[2].reg & 0xf;
21777 constraint ((index != 1 && index != 0), _("index must be 0 or 1"));
21778 inst.operands[2].reg >>= 4;
21779 constraint (!(inst.operands[2].reg < 16),
21780 _("indexed register must be less than 16"));
21781 neon_three_args (rs == NS_QQS);
21782 inst.instruction |= (index << 5);
21783 }
21784 else
21785 {
21786 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
21787 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
21788 neon_three_args (rs == NS_QQQ);
21789 }
21790 }
21791
21792 static void
21793 do_vmmla (void)
21794 {
21795 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
21796 neon_check_type (3, rs, N_EQK, N_EQK, N_BF16 | N_KEY);
21797
21798 constraint (!mark_feature_used (&fpu_neon_ext_armv8), _(BAD_FPU));
21799 set_pred_insn_type (OUTSIDE_PRED_INSN);
21800
21801 neon_three_args (1);
21802 }
21803
21804 \f
21805 /* Overall per-instruction processing. */
21806
21807 /* We need to be able to fix up arbitrary expressions in some statements.
21808 This is so that we can handle symbols that are an arbitrary distance from
21809 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
21810 which returns part of an address in a form which will be valid for
21811 a data instruction. We do this by pushing the expression into a symbol
21812 in the expr_section, and creating a fix for that. */
21813
21814 static void
21815 fix_new_arm (fragS * frag,
21816 int where,
21817 short int size,
21818 expressionS * exp,
21819 int pc_rel,
21820 int reloc)
21821 {
21822 fixS * new_fix;
21823
21824 switch (exp->X_op)
21825 {
21826 case O_constant:
21827 if (pc_rel)
21828 {
21829 /* Create an absolute valued symbol, so we have something to
21830 refer to in the object file. Unfortunately for us, gas's
21831 generic expression parsing will already have folded out
21832 any use of .set foo/.type foo %function that may have
21833 been used to set type information of the target location,
21834 that's being specified symbolically. We have to presume
21835 the user knows what they are doing. */
21836 char name[16 + 8];
21837 symbolS *symbol;
21838
21839 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
21840
21841 symbol = symbol_find_or_make (name);
21842 S_SET_SEGMENT (symbol, absolute_section);
21843 symbol_set_frag (symbol, &zero_address_frag);
21844 S_SET_VALUE (symbol, exp->X_add_number);
21845 exp->X_op = O_symbol;
21846 exp->X_add_symbol = symbol;
21847 exp->X_add_number = 0;
21848 }
21849 /* FALLTHROUGH */
21850 case O_symbol:
21851 case O_add:
21852 case O_subtract:
21853 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
21854 (enum bfd_reloc_code_real) reloc);
21855 break;
21856
21857 default:
21858 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
21859 pc_rel, (enum bfd_reloc_code_real) reloc);
21860 break;
21861 }
21862
21863 /* Mark whether the fix is to a THUMB instruction, or an ARM
21864 instruction. */
21865 new_fix->tc_fix_data = thumb_mode;
21866 }
21867
21868 /* Create a frg for an instruction requiring relaxation. */
21869 static void
21870 output_relax_insn (void)
21871 {
21872 char * to;
21873 symbolS *sym;
21874 int offset;
21875
21876 /* The size of the instruction is unknown, so tie the debug info to the
21877 start of the instruction. */
21878 dwarf2_emit_insn (0);
21879
21880 switch (inst.relocs[0].exp.X_op)
21881 {
21882 case O_symbol:
21883 sym = inst.relocs[0].exp.X_add_symbol;
21884 offset = inst.relocs[0].exp.X_add_number;
21885 break;
21886 case O_constant:
21887 sym = NULL;
21888 offset = inst.relocs[0].exp.X_add_number;
21889 break;
21890 default:
21891 sym = make_expr_symbol (&inst.relocs[0].exp);
21892 offset = 0;
21893 break;
21894 }
21895 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
21896 inst.relax, sym, offset, NULL/*offset, opcode*/);
21897 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
21898 }
21899
21900 /* Write a 32-bit thumb instruction to buf. */
21901 static void
21902 put_thumb32_insn (char * buf, unsigned long insn)
21903 {
21904 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
21905 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
21906 }
21907
21908 static void
21909 output_inst (const char * str)
21910 {
21911 char * to = NULL;
21912
21913 if (inst.error)
21914 {
21915 as_bad ("%s -- `%s'", inst.error, str);
21916 return;
21917 }
21918 if (inst.relax)
21919 {
21920 output_relax_insn ();
21921 return;
21922 }
21923 if (inst.size == 0)
21924 return;
21925
21926 to = frag_more (inst.size);
21927 /* PR 9814: Record the thumb mode into the current frag so that we know
21928 what type of NOP padding to use, if necessary. We override any previous
21929 setting so that if the mode has changed then the NOPS that we use will
21930 match the encoding of the last instruction in the frag. */
21931 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21932
21933 if (thumb_mode && (inst.size > THUMB_SIZE))
21934 {
21935 gas_assert (inst.size == (2 * THUMB_SIZE));
21936 put_thumb32_insn (to, inst.instruction);
21937 }
21938 else if (inst.size > INSN_SIZE)
21939 {
21940 gas_assert (inst.size == (2 * INSN_SIZE));
21941 md_number_to_chars (to, inst.instruction, INSN_SIZE);
21942 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
21943 }
21944 else
21945 md_number_to_chars (to, inst.instruction, inst.size);
21946
21947 int r;
21948 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21949 {
21950 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
21951 fix_new_arm (frag_now, to - frag_now->fr_literal,
21952 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
21953 inst.relocs[r].type);
21954 }
21955
21956 dwarf2_emit_insn (inst.size);
21957 }
21958
21959 static char *
21960 output_it_inst (int cond, int mask, char * to)
21961 {
21962 unsigned long instruction = 0xbf00;
21963
21964 mask &= 0xf;
21965 instruction |= mask;
21966 instruction |= cond << 4;
21967
21968 if (to == NULL)
21969 {
21970 to = frag_more (2);
21971 #ifdef OBJ_ELF
21972 dwarf2_emit_insn (2);
21973 #endif
21974 }
21975
21976 md_number_to_chars (to, instruction, 2);
21977
21978 return to;
21979 }
21980
21981 /* Tag values used in struct asm_opcode's tag field. */
21982 enum opcode_tag
21983 {
21984 OT_unconditional, /* Instruction cannot be conditionalized.
21985 The ARM condition field is still 0xE. */
21986 OT_unconditionalF, /* Instruction cannot be conditionalized
21987 and carries 0xF in its ARM condition field. */
21988 OT_csuffix, /* Instruction takes a conditional suffix. */
21989 OT_csuffixF, /* Some forms of the instruction take a scalar
21990 conditional suffix, others place 0xF where the
21991 condition field would be, others take a vector
21992 conditional suffix. */
21993 OT_cinfix3, /* Instruction takes a conditional infix,
21994 beginning at character index 3. (In
21995 unified mode, it becomes a suffix.) */
21996 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
21997 tsts, cmps, cmns, and teqs. */
21998 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
21999 character index 3, even in unified mode. Used for
22000 legacy instructions where suffix and infix forms
22001 may be ambiguous. */
22002 OT_csuf_or_in3, /* Instruction takes either a conditional
22003 suffix or an infix at character index 3. */
22004 OT_odd_infix_unc, /* This is the unconditional variant of an
22005 instruction that takes a conditional infix
22006 at an unusual position. In unified mode,
22007 this variant will accept a suffix. */
22008 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
22009 are the conditional variants of instructions that
22010 take conditional infixes in unusual positions.
22011 The infix appears at character index
22012 (tag - OT_odd_infix_0). These are not accepted
22013 in unified mode. */
22014 };
22015
22016 /* Subroutine of md_assemble, responsible for looking up the primary
22017 opcode from the mnemonic the user wrote. STR points to the
22018 beginning of the mnemonic.
22019
22020 This is not simply a hash table lookup, because of conditional
22021 variants. Most instructions have conditional variants, which are
22022 expressed with a _conditional affix_ to the mnemonic. If we were
22023 to encode each conditional variant as a literal string in the opcode
22024 table, it would have approximately 20,000 entries.
22025
22026 Most mnemonics take this affix as a suffix, and in unified syntax,
22027 'most' is upgraded to 'all'. However, in the divided syntax, some
22028 instructions take the affix as an infix, notably the s-variants of
22029 the arithmetic instructions. Of those instructions, all but six
22030 have the infix appear after the third character of the mnemonic.
22031
22032 Accordingly, the algorithm for looking up primary opcodes given
22033 an identifier is:
22034
22035 1. Look up the identifier in the opcode table.
22036 If we find a match, go to step U.
22037
22038 2. Look up the last two characters of the identifier in the
22039 conditions table. If we find a match, look up the first N-2
22040 characters of the identifier in the opcode table. If we
22041 find a match, go to step CE.
22042
22043 3. Look up the fourth and fifth characters of the identifier in
22044 the conditions table. If we find a match, extract those
22045 characters from the identifier, and look up the remaining
22046 characters in the opcode table. If we find a match, go
22047 to step CM.
22048
22049 4. Fail.
22050
22051 U. Examine the tag field of the opcode structure, in case this is
22052 one of the six instructions with its conditional infix in an
22053 unusual place. If it is, the tag tells us where to find the
22054 infix; look it up in the conditions table and set inst.cond
22055 accordingly. Otherwise, this is an unconditional instruction.
22056 Again set inst.cond accordingly. Return the opcode structure.
22057
22058 CE. Examine the tag field to make sure this is an instruction that
22059 should receive a conditional suffix. If it is not, fail.
22060 Otherwise, set inst.cond from the suffix we already looked up,
22061 and return the opcode structure.
22062
22063 CM. Examine the tag field to make sure this is an instruction that
22064 should receive a conditional infix after the third character.
22065 If it is not, fail. Otherwise, undo the edits to the current
22066 line of input and proceed as for case CE. */
22067
22068 static const struct asm_opcode *
22069 opcode_lookup (char **str)
22070 {
22071 char *end, *base;
22072 char *affix;
22073 const struct asm_opcode *opcode;
22074 const struct asm_cond *cond;
22075 char save[2];
22076
22077 /* Scan up to the end of the mnemonic, which must end in white space,
22078 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
22079 for (base = end = *str; *end != '\0'; end++)
22080 if (*end == ' ' || *end == '.')
22081 break;
22082
22083 if (end == base)
22084 return NULL;
22085
22086 /* Handle a possible width suffix and/or Neon type suffix. */
22087 if (end[0] == '.')
22088 {
22089 int offset = 2;
22090
22091 /* The .w and .n suffixes are only valid if the unified syntax is in
22092 use. */
22093 if (unified_syntax && end[1] == 'w')
22094 inst.size_req = 4;
22095 else if (unified_syntax && end[1] == 'n')
22096 inst.size_req = 2;
22097 else
22098 offset = 0;
22099
22100 inst.vectype.elems = 0;
22101
22102 *str = end + offset;
22103
22104 if (end[offset] == '.')
22105 {
22106 /* See if we have a Neon type suffix (possible in either unified or
22107 non-unified ARM syntax mode). */
22108 if (parse_neon_type (&inst.vectype, str) == FAIL)
22109 return NULL;
22110 }
22111 else if (end[offset] != '\0' && end[offset] != ' ')
22112 return NULL;
22113 }
22114 else
22115 *str = end;
22116
22117 /* Look for unaffixed or special-case affixed mnemonic. */
22118 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22119 end - base);
22120 if (opcode)
22121 {
22122 /* step U */
22123 if (opcode->tag < OT_odd_infix_0)
22124 {
22125 inst.cond = COND_ALWAYS;
22126 return opcode;
22127 }
22128
22129 if (warn_on_deprecated && unified_syntax)
22130 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
22131 affix = base + (opcode->tag - OT_odd_infix_0);
22132 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
22133 gas_assert (cond);
22134
22135 inst.cond = cond->value;
22136 return opcode;
22137 }
22138 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
22139 {
22140 /* Cannot have a conditional suffix on a mnemonic of less than a character.
22141 */
22142 if (end - base < 2)
22143 return NULL;
22144 affix = end - 1;
22145 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
22146 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22147 affix - base);
22148 /* If this opcode can not be vector predicated then don't accept it with a
22149 vector predication code. */
22150 if (opcode && !opcode->mayBeVecPred)
22151 opcode = NULL;
22152 }
22153 if (!opcode || !cond)
22154 {
22155 /* Cannot have a conditional suffix on a mnemonic of less than two
22156 characters. */
22157 if (end - base < 3)
22158 return NULL;
22159
22160 /* Look for suffixed mnemonic. */
22161 affix = end - 2;
22162 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
22163 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22164 affix - base);
22165 }
22166
22167 if (opcode && cond)
22168 {
22169 /* step CE */
22170 switch (opcode->tag)
22171 {
22172 case OT_cinfix3_legacy:
22173 /* Ignore conditional suffixes matched on infix only mnemonics. */
22174 break;
22175
22176 case OT_cinfix3:
22177 case OT_cinfix3_deprecated:
22178 case OT_odd_infix_unc:
22179 if (!unified_syntax)
22180 return NULL;
22181 /* Fall through. */
22182
22183 case OT_csuffix:
22184 case OT_csuffixF:
22185 case OT_csuf_or_in3:
22186 inst.cond = cond->value;
22187 return opcode;
22188
22189 case OT_unconditional:
22190 case OT_unconditionalF:
22191 if (thumb_mode)
22192 inst.cond = cond->value;
22193 else
22194 {
22195 /* Delayed diagnostic. */
22196 inst.error = BAD_COND;
22197 inst.cond = COND_ALWAYS;
22198 }
22199 return opcode;
22200
22201 default:
22202 return NULL;
22203 }
22204 }
22205
22206 /* Cannot have a usual-position infix on a mnemonic of less than
22207 six characters (five would be a suffix). */
22208 if (end - base < 6)
22209 return NULL;
22210
22211 /* Look for infixed mnemonic in the usual position. */
22212 affix = base + 3;
22213 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
22214 if (!cond)
22215 return NULL;
22216
22217 memcpy (save, affix, 2);
22218 memmove (affix, affix + 2, (end - affix) - 2);
22219 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
22220 (end - base) - 2);
22221 memmove (affix + 2, affix, (end - affix) - 2);
22222 memcpy (affix, save, 2);
22223
22224 if (opcode
22225 && (opcode->tag == OT_cinfix3
22226 || opcode->tag == OT_cinfix3_deprecated
22227 || opcode->tag == OT_csuf_or_in3
22228 || opcode->tag == OT_cinfix3_legacy))
22229 {
22230 /* Step CM. */
22231 if (warn_on_deprecated && unified_syntax
22232 && (opcode->tag == OT_cinfix3
22233 || opcode->tag == OT_cinfix3_deprecated))
22234 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
22235
22236 inst.cond = cond->value;
22237 return opcode;
22238 }
22239
22240 return NULL;
22241 }
22242
22243 /* This function generates an initial IT instruction, leaving its block
22244 virtually open for the new instructions. Eventually,
22245 the mask will be updated by now_pred_add_mask () each time
22246 a new instruction needs to be included in the IT block.
22247 Finally, the block is closed with close_automatic_it_block ().
22248 The block closure can be requested either from md_assemble (),
22249 a tencode (), or due to a label hook. */
22250
22251 static void
22252 new_automatic_it_block (int cond)
22253 {
22254 now_pred.state = AUTOMATIC_PRED_BLOCK;
22255 now_pred.mask = 0x18;
22256 now_pred.cc = cond;
22257 now_pred.block_length = 1;
22258 mapping_state (MAP_THUMB);
22259 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
22260 now_pred.warn_deprecated = FALSE;
22261 now_pred.insn_cond = TRUE;
22262 }
22263
22264 /* Close an automatic IT block.
22265 See comments in new_automatic_it_block (). */
22266
22267 static void
22268 close_automatic_it_block (void)
22269 {
22270 now_pred.mask = 0x10;
22271 now_pred.block_length = 0;
22272 }
22273
22274 /* Update the mask of the current automatically-generated IT
22275 instruction. See comments in new_automatic_it_block (). */
22276
22277 static void
22278 now_pred_add_mask (int cond)
22279 {
22280 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
22281 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
22282 | ((bitvalue) << (nbit)))
22283 const int resulting_bit = (cond & 1);
22284
22285 now_pred.mask &= 0xf;
22286 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
22287 resulting_bit,
22288 (5 - now_pred.block_length));
22289 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
22290 1,
22291 ((5 - now_pred.block_length) - 1));
22292 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
22293
22294 #undef CLEAR_BIT
22295 #undef SET_BIT_VALUE
22296 }
22297
22298 /* The IT blocks handling machinery is accessed through the these functions:
22299 it_fsm_pre_encode () from md_assemble ()
22300 set_pred_insn_type () optional, from the tencode functions
22301 set_pred_insn_type_last () ditto
22302 in_pred_block () ditto
22303 it_fsm_post_encode () from md_assemble ()
22304 force_automatic_it_block_close () from label handling functions
22305
22306 Rationale:
22307 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
22308 initializing the IT insn type with a generic initial value depending
22309 on the inst.condition.
22310 2) During the tencode function, two things may happen:
22311 a) The tencode function overrides the IT insn type by
22312 calling either set_pred_insn_type (type) or
22313 set_pred_insn_type_last ().
22314 b) The tencode function queries the IT block state by
22315 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
22316
22317 Both set_pred_insn_type and in_pred_block run the internal FSM state
22318 handling function (handle_pred_state), because: a) setting the IT insn
22319 type may incur in an invalid state (exiting the function),
22320 and b) querying the state requires the FSM to be updated.
22321 Specifically we want to avoid creating an IT block for conditional
22322 branches, so it_fsm_pre_encode is actually a guess and we can't
22323 determine whether an IT block is required until the tencode () routine
22324 has decided what type of instruction this actually it.
22325 Because of this, if set_pred_insn_type and in_pred_block have to be
22326 used, set_pred_insn_type has to be called first.
22327
22328 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
22329 that determines the insn IT type depending on the inst.cond code.
22330 When a tencode () routine encodes an instruction that can be
22331 either outside an IT block, or, in the case of being inside, has to be
22332 the last one, set_pred_insn_type_last () will determine the proper
22333 IT instruction type based on the inst.cond code. Otherwise,
22334 set_pred_insn_type can be called for overriding that logic or
22335 for covering other cases.
22336
22337 Calling handle_pred_state () may not transition the IT block state to
22338 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
22339 still queried. Instead, if the FSM determines that the state should
22340 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
22341 after the tencode () function: that's what it_fsm_post_encode () does.
22342
22343 Since in_pred_block () calls the state handling function to get an
22344 updated state, an error may occur (due to invalid insns combination).
22345 In that case, inst.error is set.
22346 Therefore, inst.error has to be checked after the execution of
22347 the tencode () routine.
22348
22349 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
22350 any pending state change (if any) that didn't take place in
22351 handle_pred_state () as explained above. */
22352
22353 static void
22354 it_fsm_pre_encode (void)
22355 {
22356 if (inst.cond != COND_ALWAYS)
22357 inst.pred_insn_type = INSIDE_IT_INSN;
22358 else
22359 inst.pred_insn_type = OUTSIDE_PRED_INSN;
22360
22361 now_pred.state_handled = 0;
22362 }
22363
22364 /* IT state FSM handling function. */
22365 /* MVE instructions and non-MVE instructions are handled differently because of
22366 the introduction of VPT blocks.
22367 Specifications say that any non-MVE instruction inside a VPT block is
22368 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
22369 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
22370 few exceptions we have MVE_UNPREDICABLE_INSN.
22371 The error messages provided depending on the different combinations possible
22372 are described in the cases below:
22373 For 'most' MVE instructions:
22374 1) In an IT block, with an IT code: syntax error
22375 2) In an IT block, with a VPT code: error: must be in a VPT block
22376 3) In an IT block, with no code: warning: UNPREDICTABLE
22377 4) In a VPT block, with an IT code: syntax error
22378 5) In a VPT block, with a VPT code: OK!
22379 6) In a VPT block, with no code: error: missing code
22380 7) Outside a pred block, with an IT code: error: syntax error
22381 8) Outside a pred block, with a VPT code: error: should be in a VPT block
22382 9) Outside a pred block, with no code: OK!
22383 For non-MVE instructions:
22384 10) In an IT block, with an IT code: OK!
22385 11) In an IT block, with a VPT code: syntax error
22386 12) In an IT block, with no code: error: missing code
22387 13) In a VPT block, with an IT code: error: should be in an IT block
22388 14) In a VPT block, with a VPT code: syntax error
22389 15) In a VPT block, with no code: UNPREDICTABLE
22390 16) Outside a pred block, with an IT code: error: should be in an IT block
22391 17) Outside a pred block, with a VPT code: syntax error
22392 18) Outside a pred block, with no code: OK!
22393 */
22394
22395
22396 static int
22397 handle_pred_state (void)
22398 {
22399 now_pred.state_handled = 1;
22400 now_pred.insn_cond = FALSE;
22401
22402 switch (now_pred.state)
22403 {
22404 case OUTSIDE_PRED_BLOCK:
22405 switch (inst.pred_insn_type)
22406 {
22407 case MVE_UNPREDICABLE_INSN:
22408 case MVE_OUTSIDE_PRED_INSN:
22409 if (inst.cond < COND_ALWAYS)
22410 {
22411 /* Case 7: Outside a pred block, with an IT code: error: syntax
22412 error. */
22413 inst.error = BAD_SYNTAX;
22414 return FAIL;
22415 }
22416 /* Case 9: Outside a pred block, with no code: OK! */
22417 break;
22418 case OUTSIDE_PRED_INSN:
22419 if (inst.cond > COND_ALWAYS)
22420 {
22421 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22422 */
22423 inst.error = BAD_SYNTAX;
22424 return FAIL;
22425 }
22426 /* Case 18: Outside a pred block, with no code: OK! */
22427 break;
22428
22429 case INSIDE_VPT_INSN:
22430 /* Case 8: Outside a pred block, with a VPT code: error: should be in
22431 a VPT block. */
22432 inst.error = BAD_OUT_VPT;
22433 return FAIL;
22434
22435 case INSIDE_IT_INSN:
22436 case INSIDE_IT_LAST_INSN:
22437 if (inst.cond < COND_ALWAYS)
22438 {
22439 /* Case 16: Outside a pred block, with an IT code: error: should
22440 be in an IT block. */
22441 if (thumb_mode == 0)
22442 {
22443 if (unified_syntax
22444 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
22445 as_tsktsk (_("Warning: conditional outside an IT block"\
22446 " for Thumb."));
22447 }
22448 else
22449 {
22450 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
22451 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
22452 {
22453 /* Automatically generate the IT instruction. */
22454 new_automatic_it_block (inst.cond);
22455 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
22456 close_automatic_it_block ();
22457 }
22458 else
22459 {
22460 inst.error = BAD_OUT_IT;
22461 return FAIL;
22462 }
22463 }
22464 break;
22465 }
22466 else if (inst.cond > COND_ALWAYS)
22467 {
22468 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22469 */
22470 inst.error = BAD_SYNTAX;
22471 return FAIL;
22472 }
22473 else
22474 gas_assert (0);
22475 case IF_INSIDE_IT_LAST_INSN:
22476 case NEUTRAL_IT_INSN:
22477 break;
22478
22479 case VPT_INSN:
22480 if (inst.cond != COND_ALWAYS)
22481 first_error (BAD_SYNTAX);
22482 now_pred.state = MANUAL_PRED_BLOCK;
22483 now_pred.block_length = 0;
22484 now_pred.type = VECTOR_PRED;
22485 now_pred.cc = 0;
22486 break;
22487 case IT_INSN:
22488 now_pred.state = MANUAL_PRED_BLOCK;
22489 now_pred.block_length = 0;
22490 now_pred.type = SCALAR_PRED;
22491 break;
22492 }
22493 break;
22494
22495 case AUTOMATIC_PRED_BLOCK:
22496 /* Three things may happen now:
22497 a) We should increment current it block size;
22498 b) We should close current it block (closing insn or 4 insns);
22499 c) We should close current it block and start a new one (due
22500 to incompatible conditions or
22501 4 insns-length block reached). */
22502
22503 switch (inst.pred_insn_type)
22504 {
22505 case INSIDE_VPT_INSN:
22506 case VPT_INSN:
22507 case MVE_UNPREDICABLE_INSN:
22508 case MVE_OUTSIDE_PRED_INSN:
22509 gas_assert (0);
22510 case OUTSIDE_PRED_INSN:
22511 /* The closure of the block shall happen immediately,
22512 so any in_pred_block () call reports the block as closed. */
22513 force_automatic_it_block_close ();
22514 break;
22515
22516 case INSIDE_IT_INSN:
22517 case INSIDE_IT_LAST_INSN:
22518 case IF_INSIDE_IT_LAST_INSN:
22519 now_pred.block_length++;
22520
22521 if (now_pred.block_length > 4
22522 || !now_pred_compatible (inst.cond))
22523 {
22524 force_automatic_it_block_close ();
22525 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
22526 new_automatic_it_block (inst.cond);
22527 }
22528 else
22529 {
22530 now_pred.insn_cond = TRUE;
22531 now_pred_add_mask (inst.cond);
22532 }
22533
22534 if (now_pred.state == AUTOMATIC_PRED_BLOCK
22535 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
22536 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
22537 close_automatic_it_block ();
22538 break;
22539
22540 case NEUTRAL_IT_INSN:
22541 now_pred.block_length++;
22542 now_pred.insn_cond = TRUE;
22543
22544 if (now_pred.block_length > 4)
22545 force_automatic_it_block_close ();
22546 else
22547 now_pred_add_mask (now_pred.cc & 1);
22548 break;
22549
22550 case IT_INSN:
22551 close_automatic_it_block ();
22552 now_pred.state = MANUAL_PRED_BLOCK;
22553 break;
22554 }
22555 break;
22556
22557 case MANUAL_PRED_BLOCK:
22558 {
22559 int cond, is_last;
22560 if (now_pred.type == SCALAR_PRED)
22561 {
22562 /* Check conditional suffixes. */
22563 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
22564 now_pred.mask <<= 1;
22565 now_pred.mask &= 0x1f;
22566 is_last = (now_pred.mask == 0x10);
22567 }
22568 else
22569 {
22570 now_pred.cc ^= (now_pred.mask >> 4);
22571 cond = now_pred.cc + 0xf;
22572 now_pred.mask <<= 1;
22573 now_pred.mask &= 0x1f;
22574 is_last = now_pred.mask == 0x10;
22575 }
22576 now_pred.insn_cond = TRUE;
22577
22578 switch (inst.pred_insn_type)
22579 {
22580 case OUTSIDE_PRED_INSN:
22581 if (now_pred.type == SCALAR_PRED)
22582 {
22583 if (inst.cond == COND_ALWAYS)
22584 {
22585 /* Case 12: In an IT block, with no code: error: missing
22586 code. */
22587 inst.error = BAD_NOT_IT;
22588 return FAIL;
22589 }
22590 else if (inst.cond > COND_ALWAYS)
22591 {
22592 /* Case 11: In an IT block, with a VPT code: syntax error.
22593 */
22594 inst.error = BAD_SYNTAX;
22595 return FAIL;
22596 }
22597 else if (thumb_mode)
22598 {
22599 /* This is for some special cases where a non-MVE
22600 instruction is not allowed in an IT block, such as cbz,
22601 but are put into one with a condition code.
22602 You could argue this should be a syntax error, but we
22603 gave the 'not allowed in IT block' diagnostic in the
22604 past so we will keep doing so. */
22605 inst.error = BAD_NOT_IT;
22606 return FAIL;
22607 }
22608 break;
22609 }
22610 else
22611 {
22612 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
22613 as_tsktsk (MVE_NOT_VPT);
22614 return SUCCESS;
22615 }
22616 case MVE_OUTSIDE_PRED_INSN:
22617 if (now_pred.type == SCALAR_PRED)
22618 {
22619 if (inst.cond == COND_ALWAYS)
22620 {
22621 /* Case 3: In an IT block, with no code: warning:
22622 UNPREDICTABLE. */
22623 as_tsktsk (MVE_NOT_IT);
22624 return SUCCESS;
22625 }
22626 else if (inst.cond < COND_ALWAYS)
22627 {
22628 /* Case 1: In an IT block, with an IT code: syntax error.
22629 */
22630 inst.error = BAD_SYNTAX;
22631 return FAIL;
22632 }
22633 else
22634 gas_assert (0);
22635 }
22636 else
22637 {
22638 if (inst.cond < COND_ALWAYS)
22639 {
22640 /* Case 4: In a VPT block, with an IT code: syntax error.
22641 */
22642 inst.error = BAD_SYNTAX;
22643 return FAIL;
22644 }
22645 else if (inst.cond == COND_ALWAYS)
22646 {
22647 /* Case 6: In a VPT block, with no code: error: missing
22648 code. */
22649 inst.error = BAD_NOT_VPT;
22650 return FAIL;
22651 }
22652 else
22653 {
22654 gas_assert (0);
22655 }
22656 }
22657 case MVE_UNPREDICABLE_INSN:
22658 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
22659 return SUCCESS;
22660 case INSIDE_IT_INSN:
22661 if (inst.cond > COND_ALWAYS)
22662 {
22663 /* Case 11: In an IT block, with a VPT code: syntax error. */
22664 /* Case 14: In a VPT block, with a VPT code: syntax error. */
22665 inst.error = BAD_SYNTAX;
22666 return FAIL;
22667 }
22668 else if (now_pred.type == SCALAR_PRED)
22669 {
22670 /* Case 10: In an IT block, with an IT code: OK! */
22671 if (cond != inst.cond)
22672 {
22673 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
22674 BAD_VPT_COND;
22675 return FAIL;
22676 }
22677 }
22678 else
22679 {
22680 /* Case 13: In a VPT block, with an IT code: error: should be
22681 in an IT block. */
22682 inst.error = BAD_OUT_IT;
22683 return FAIL;
22684 }
22685 break;
22686
22687 case INSIDE_VPT_INSN:
22688 if (now_pred.type == SCALAR_PRED)
22689 {
22690 /* Case 2: In an IT block, with a VPT code: error: must be in a
22691 VPT block. */
22692 inst.error = BAD_OUT_VPT;
22693 return FAIL;
22694 }
22695 /* Case 5: In a VPT block, with a VPT code: OK! */
22696 else if (cond != inst.cond)
22697 {
22698 inst.error = BAD_VPT_COND;
22699 return FAIL;
22700 }
22701 break;
22702 case INSIDE_IT_LAST_INSN:
22703 case IF_INSIDE_IT_LAST_INSN:
22704 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
22705 {
22706 /* Case 4: In a VPT block, with an IT code: syntax error. */
22707 /* Case 11: In an IT block, with a VPT code: syntax error. */
22708 inst.error = BAD_SYNTAX;
22709 return FAIL;
22710 }
22711 else if (cond != inst.cond)
22712 {
22713 inst.error = BAD_IT_COND;
22714 return FAIL;
22715 }
22716 if (!is_last)
22717 {
22718 inst.error = BAD_BRANCH;
22719 return FAIL;
22720 }
22721 break;
22722
22723 case NEUTRAL_IT_INSN:
22724 /* The BKPT instruction is unconditional even in a IT or VPT
22725 block. */
22726 break;
22727
22728 case IT_INSN:
22729 if (now_pred.type == SCALAR_PRED)
22730 {
22731 inst.error = BAD_IT_IT;
22732 return FAIL;
22733 }
22734 /* fall through. */
22735 case VPT_INSN:
22736 if (inst.cond == COND_ALWAYS)
22737 {
22738 /* Executing a VPT/VPST instruction inside an IT block or a
22739 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
22740 */
22741 if (now_pred.type == SCALAR_PRED)
22742 as_tsktsk (MVE_NOT_IT);
22743 else
22744 as_tsktsk (MVE_NOT_VPT);
22745 return SUCCESS;
22746 }
22747 else
22748 {
22749 /* VPT/VPST do not accept condition codes. */
22750 inst.error = BAD_SYNTAX;
22751 return FAIL;
22752 }
22753 }
22754 }
22755 break;
22756 }
22757
22758 return SUCCESS;
22759 }
22760
22761 struct depr_insn_mask
22762 {
22763 unsigned long pattern;
22764 unsigned long mask;
22765 const char* description;
22766 };
22767
22768 /* List of 16-bit instruction patterns deprecated in an IT block in
22769 ARMv8. */
22770 static const struct depr_insn_mask depr_it_insns[] = {
22771 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
22772 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
22773 { 0xa000, 0xb800, N_("ADR") },
22774 { 0x4800, 0xf800, N_("Literal loads") },
22775 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
22776 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
22777 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
22778 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
22779 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
22780 { 0, 0, NULL }
22781 };
22782
22783 static void
22784 it_fsm_post_encode (void)
22785 {
22786 int is_last;
22787
22788 if (!now_pred.state_handled)
22789 handle_pred_state ();
22790
22791 if (now_pred.insn_cond
22792 && warn_on_restrict_it
22793 && !now_pred.warn_deprecated
22794 && warn_on_deprecated
22795 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
22796 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
22797 {
22798 if (inst.instruction >= 0x10000)
22799 {
22800 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
22801 "performance deprecated in ARMv8-A and ARMv8-R"));
22802 now_pred.warn_deprecated = TRUE;
22803 }
22804 else
22805 {
22806 const struct depr_insn_mask *p = depr_it_insns;
22807
22808 while (p->mask != 0)
22809 {
22810 if ((inst.instruction & p->mask) == p->pattern)
22811 {
22812 as_tsktsk (_("IT blocks containing 16-bit Thumb "
22813 "instructions of the following class are "
22814 "performance deprecated in ARMv8-A and "
22815 "ARMv8-R: %s"), p->description);
22816 now_pred.warn_deprecated = TRUE;
22817 break;
22818 }
22819
22820 ++p;
22821 }
22822 }
22823
22824 if (now_pred.block_length > 1)
22825 {
22826 as_tsktsk (_("IT blocks containing more than one conditional "
22827 "instruction are performance deprecated in ARMv8-A and "
22828 "ARMv8-R"));
22829 now_pred.warn_deprecated = TRUE;
22830 }
22831 }
22832
22833 is_last = (now_pred.mask == 0x10);
22834 if (is_last)
22835 {
22836 now_pred.state = OUTSIDE_PRED_BLOCK;
22837 now_pred.mask = 0;
22838 }
22839 }
22840
22841 static void
22842 force_automatic_it_block_close (void)
22843 {
22844 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
22845 {
22846 close_automatic_it_block ();
22847 now_pred.state = OUTSIDE_PRED_BLOCK;
22848 now_pred.mask = 0;
22849 }
22850 }
22851
22852 static int
22853 in_pred_block (void)
22854 {
22855 if (!now_pred.state_handled)
22856 handle_pred_state ();
22857
22858 return now_pred.state != OUTSIDE_PRED_BLOCK;
22859 }
22860
22861 /* Whether OPCODE only has T32 encoding. Since this function is only used by
22862 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
22863 here, hence the "known" in the function name. */
22864
22865 static bfd_boolean
22866 known_t32_only_insn (const struct asm_opcode *opcode)
22867 {
22868 /* Original Thumb-1 wide instruction. */
22869 if (opcode->tencode == do_t_blx
22870 || opcode->tencode == do_t_branch23
22871 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
22872 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
22873 return TRUE;
22874
22875 /* Wide-only instruction added to ARMv8-M Baseline. */
22876 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
22877 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
22878 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
22879 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
22880 return TRUE;
22881
22882 return FALSE;
22883 }
22884
22885 /* Whether wide instruction variant can be used if available for a valid OPCODE
22886 in ARCH. */
22887
22888 static bfd_boolean
22889 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
22890 {
22891 if (known_t32_only_insn (opcode))
22892 return TRUE;
22893
22894 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
22895 of variant T3 of B.W is checked in do_t_branch. */
22896 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22897 && opcode->tencode == do_t_branch)
22898 return TRUE;
22899
22900 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
22901 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22902 && opcode->tencode == do_t_mov_cmp
22903 /* Make sure CMP instruction is not affected. */
22904 && opcode->aencode == do_mov)
22905 return TRUE;
22906
22907 /* Wide instruction variants of all instructions with narrow *and* wide
22908 variants become available with ARMv6t2. Other opcodes are either
22909 narrow-only or wide-only and are thus available if OPCODE is valid. */
22910 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
22911 return TRUE;
22912
22913 /* OPCODE with narrow only instruction variant or wide variant not
22914 available. */
22915 return FALSE;
22916 }
22917
22918 void
22919 md_assemble (char *str)
22920 {
22921 char *p = str;
22922 const struct asm_opcode * opcode;
22923
22924 /* Align the previous label if needed. */
22925 if (last_label_seen != NULL)
22926 {
22927 symbol_set_frag (last_label_seen, frag_now);
22928 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
22929 S_SET_SEGMENT (last_label_seen, now_seg);
22930 }
22931
22932 memset (&inst, '\0', sizeof (inst));
22933 int r;
22934 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
22935 inst.relocs[r].type = BFD_RELOC_UNUSED;
22936
22937 opcode = opcode_lookup (&p);
22938 if (!opcode)
22939 {
22940 /* It wasn't an instruction, but it might be a register alias of
22941 the form alias .req reg, or a Neon .dn/.qn directive. */
22942 if (! create_register_alias (str, p)
22943 && ! create_neon_reg_alias (str, p))
22944 as_bad (_("bad instruction `%s'"), str);
22945
22946 return;
22947 }
22948
22949 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
22950 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
22951
22952 /* The value which unconditional instructions should have in place of the
22953 condition field. */
22954 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
22955
22956 if (thumb_mode)
22957 {
22958 arm_feature_set variant;
22959
22960 variant = cpu_variant;
22961 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
22962 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
22963 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
22964 /* Check that this instruction is supported for this CPU. */
22965 if (!opcode->tvariant
22966 || (thumb_mode == 1
22967 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
22968 {
22969 if (opcode->tencode == do_t_swi)
22970 as_bad (_("SVC is not permitted on this architecture"));
22971 else
22972 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
22973 return;
22974 }
22975 if (inst.cond != COND_ALWAYS && !unified_syntax
22976 && opcode->tencode != do_t_branch)
22977 {
22978 as_bad (_("Thumb does not support conditional execution"));
22979 return;
22980 }
22981
22982 /* Two things are addressed here:
22983 1) Implicit require narrow instructions on Thumb-1.
22984 This avoids relaxation accidentally introducing Thumb-2
22985 instructions.
22986 2) Reject wide instructions in non Thumb-2 cores.
22987
22988 Only instructions with narrow and wide variants need to be handled
22989 but selecting all non wide-only instructions is easier. */
22990 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
22991 && !t32_insn_ok (variant, opcode))
22992 {
22993 if (inst.size_req == 0)
22994 inst.size_req = 2;
22995 else if (inst.size_req == 4)
22996 {
22997 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
22998 as_bad (_("selected processor does not support 32bit wide "
22999 "variant of instruction `%s'"), str);
23000 else
23001 as_bad (_("selected processor does not support `%s' in "
23002 "Thumb-2 mode"), str);
23003 return;
23004 }
23005 }
23006
23007 inst.instruction = opcode->tvalue;
23008
23009 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
23010 {
23011 /* Prepare the pred_insn_type for those encodings that don't set
23012 it. */
23013 it_fsm_pre_encode ();
23014
23015 opcode->tencode ();
23016
23017 it_fsm_post_encode ();
23018 }
23019
23020 if (!(inst.error || inst.relax))
23021 {
23022 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
23023 inst.size = (inst.instruction > 0xffff ? 4 : 2);
23024 if (inst.size_req && inst.size_req != inst.size)
23025 {
23026 as_bad (_("cannot honor width suffix -- `%s'"), str);
23027 return;
23028 }
23029 }
23030
23031 /* Something has gone badly wrong if we try to relax a fixed size
23032 instruction. */
23033 gas_assert (inst.size_req == 0 || !inst.relax);
23034
23035 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
23036 *opcode->tvariant);
23037 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
23038 set those bits when Thumb-2 32-bit instructions are seen. The impact
23039 of relaxable instructions will be considered later after we finish all
23040 relaxation. */
23041 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
23042 variant = arm_arch_none;
23043 else
23044 variant = cpu_variant;
23045 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
23046 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
23047 arm_ext_v6t2);
23048
23049 check_neon_suffixes;
23050
23051 if (!inst.error)
23052 {
23053 mapping_state (MAP_THUMB);
23054 }
23055 }
23056 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
23057 {
23058 bfd_boolean is_bx;
23059
23060 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
23061 is_bx = (opcode->aencode == do_bx);
23062
23063 /* Check that this instruction is supported for this CPU. */
23064 if (!(is_bx && fix_v4bx)
23065 && !(opcode->avariant &&
23066 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
23067 {
23068 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
23069 return;
23070 }
23071 if (inst.size_req)
23072 {
23073 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
23074 return;
23075 }
23076
23077 inst.instruction = opcode->avalue;
23078 if (opcode->tag == OT_unconditionalF)
23079 inst.instruction |= 0xFU << 28;
23080 else
23081 inst.instruction |= inst.cond << 28;
23082 inst.size = INSN_SIZE;
23083 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
23084 {
23085 it_fsm_pre_encode ();
23086 opcode->aencode ();
23087 it_fsm_post_encode ();
23088 }
23089 /* Arm mode bx is marked as both v4T and v5 because it's still required
23090 on a hypothetical non-thumb v5 core. */
23091 if (is_bx)
23092 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
23093 else
23094 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
23095 *opcode->avariant);
23096
23097 check_neon_suffixes;
23098
23099 if (!inst.error)
23100 {
23101 mapping_state (MAP_ARM);
23102 }
23103 }
23104 else
23105 {
23106 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
23107 "-- `%s'"), str);
23108 return;
23109 }
23110 output_inst (str);
23111 }
23112
23113 static void
23114 check_pred_blocks_finished (void)
23115 {
23116 #ifdef OBJ_ELF
23117 asection *sect;
23118
23119 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
23120 if (seg_info (sect)->tc_segment_info_data.current_pred.state
23121 == MANUAL_PRED_BLOCK)
23122 {
23123 if (now_pred.type == SCALAR_PRED)
23124 as_warn (_("section '%s' finished with an open IT block."),
23125 sect->name);
23126 else
23127 as_warn (_("section '%s' finished with an open VPT/VPST block."),
23128 sect->name);
23129 }
23130 #else
23131 if (now_pred.state == MANUAL_PRED_BLOCK)
23132 {
23133 if (now_pred.type == SCALAR_PRED)
23134 as_warn (_("file finished with an open IT block."));
23135 else
23136 as_warn (_("file finished with an open VPT/VPST block."));
23137 }
23138 #endif
23139 }
23140
23141 /* Various frobbings of labels and their addresses. */
23142
23143 void
23144 arm_start_line_hook (void)
23145 {
23146 last_label_seen = NULL;
23147 }
23148
23149 void
23150 arm_frob_label (symbolS * sym)
23151 {
23152 last_label_seen = sym;
23153
23154 ARM_SET_THUMB (sym, thumb_mode);
23155
23156 #if defined OBJ_COFF || defined OBJ_ELF
23157 ARM_SET_INTERWORK (sym, support_interwork);
23158 #endif
23159
23160 force_automatic_it_block_close ();
23161
23162 /* Note - do not allow local symbols (.Lxxx) to be labelled
23163 as Thumb functions. This is because these labels, whilst
23164 they exist inside Thumb code, are not the entry points for
23165 possible ARM->Thumb calls. Also, these labels can be used
23166 as part of a computed goto or switch statement. eg gcc
23167 can generate code that looks like this:
23168
23169 ldr r2, [pc, .Laaa]
23170 lsl r3, r3, #2
23171 ldr r2, [r3, r2]
23172 mov pc, r2
23173
23174 .Lbbb: .word .Lxxx
23175 .Lccc: .word .Lyyy
23176 ..etc...
23177 .Laaa: .word Lbbb
23178
23179 The first instruction loads the address of the jump table.
23180 The second instruction converts a table index into a byte offset.
23181 The third instruction gets the jump address out of the table.
23182 The fourth instruction performs the jump.
23183
23184 If the address stored at .Laaa is that of a symbol which has the
23185 Thumb_Func bit set, then the linker will arrange for this address
23186 to have the bottom bit set, which in turn would mean that the
23187 address computation performed by the third instruction would end
23188 up with the bottom bit set. Since the ARM is capable of unaligned
23189 word loads, the instruction would then load the incorrect address
23190 out of the jump table, and chaos would ensue. */
23191 if (label_is_thumb_function_name
23192 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
23193 && (bfd_section_flags (now_seg) & SEC_CODE) != 0)
23194 {
23195 /* When the address of a Thumb function is taken the bottom
23196 bit of that address should be set. This will allow
23197 interworking between Arm and Thumb functions to work
23198 correctly. */
23199
23200 THUMB_SET_FUNC (sym, 1);
23201
23202 label_is_thumb_function_name = FALSE;
23203 }
23204
23205 dwarf2_emit_label (sym);
23206 }
23207
23208 bfd_boolean
23209 arm_data_in_code (void)
23210 {
23211 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
23212 {
23213 *input_line_pointer = '/';
23214 input_line_pointer += 5;
23215 *input_line_pointer = 0;
23216 return TRUE;
23217 }
23218
23219 return FALSE;
23220 }
23221
23222 char *
23223 arm_canonicalize_symbol_name (char * name)
23224 {
23225 int len;
23226
23227 if (thumb_mode && (len = strlen (name)) > 5
23228 && streq (name + len - 5, "/data"))
23229 *(name + len - 5) = 0;
23230
23231 return name;
23232 }
23233 \f
23234 /* Table of all register names defined by default. The user can
23235 define additional names with .req. Note that all register names
23236 should appear in both upper and lowercase variants. Some registers
23237 also have mixed-case names. */
23238
23239 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
23240 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
23241 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
23242 #define REGSET(p,t) \
23243 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
23244 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
23245 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
23246 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
23247 #define REGSETH(p,t) \
23248 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
23249 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
23250 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
23251 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
23252 #define REGSET2(p,t) \
23253 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
23254 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
23255 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
23256 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
23257 #define SPLRBANK(base,bank,t) \
23258 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
23259 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
23260 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
23261 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
23262 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
23263 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
23264
23265 static const struct reg_entry reg_names[] =
23266 {
23267 /* ARM integer registers. */
23268 REGSET(r, RN), REGSET(R, RN),
23269
23270 /* ATPCS synonyms. */
23271 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
23272 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
23273 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
23274
23275 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
23276 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
23277 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
23278
23279 /* Well-known aliases. */
23280 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
23281 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
23282
23283 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
23284 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
23285
23286 /* Defining the new Zero register from ARMv8.1-M. */
23287 REGDEF(zr,15,ZR),
23288 REGDEF(ZR,15,ZR),
23289
23290 /* Coprocessor numbers. */
23291 REGSET(p, CP), REGSET(P, CP),
23292
23293 /* Coprocessor register numbers. The "cr" variants are for backward
23294 compatibility. */
23295 REGSET(c, CN), REGSET(C, CN),
23296 REGSET(cr, CN), REGSET(CR, CN),
23297
23298 /* ARM banked registers. */
23299 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
23300 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
23301 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
23302 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
23303 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
23304 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
23305 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
23306
23307 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
23308 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
23309 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
23310 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
23311 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
23312 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
23313 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
23314 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
23315
23316 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
23317 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
23318 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
23319 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
23320 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
23321 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
23322 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
23323 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
23324 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
23325
23326 /* FPA registers. */
23327 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
23328 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
23329
23330 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
23331 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
23332
23333 /* VFP SP registers. */
23334 REGSET(s,VFS), REGSET(S,VFS),
23335 REGSETH(s,VFS), REGSETH(S,VFS),
23336
23337 /* VFP DP Registers. */
23338 REGSET(d,VFD), REGSET(D,VFD),
23339 /* Extra Neon DP registers. */
23340 REGSETH(d,VFD), REGSETH(D,VFD),
23341
23342 /* Neon QP registers. */
23343 REGSET2(q,NQ), REGSET2(Q,NQ),
23344
23345 /* VFP control registers. */
23346 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
23347 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
23348 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
23349 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
23350 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
23351 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
23352 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
23353 REGDEF(fpscr_nzcvqc,2,VFC), REGDEF(FPSCR_nzcvqc,2,VFC),
23354 REGDEF(vpr,12,VFC), REGDEF(VPR,12,VFC),
23355 REGDEF(fpcxt_ns,14,VFC), REGDEF(FPCXT_NS,14,VFC),
23356 REGDEF(fpcxt_s,15,VFC), REGDEF(FPCXT_S,15,VFC),
23357
23358 /* Maverick DSP coprocessor registers. */
23359 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
23360 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
23361
23362 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
23363 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
23364 REGDEF(dspsc,0,DSPSC),
23365
23366 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
23367 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
23368 REGDEF(DSPSC,0,DSPSC),
23369
23370 /* iWMMXt data registers - p0, c0-15. */
23371 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
23372
23373 /* iWMMXt control registers - p1, c0-3. */
23374 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
23375 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
23376 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
23377 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
23378
23379 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
23380 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
23381 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
23382 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
23383 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
23384
23385 /* XScale accumulator registers. */
23386 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
23387 };
23388 #undef REGDEF
23389 #undef REGNUM
23390 #undef REGSET
23391
23392 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
23393 within psr_required_here. */
23394 static const struct asm_psr psrs[] =
23395 {
23396 /* Backward compatibility notation. Note that "all" is no longer
23397 truly all possible PSR bits. */
23398 {"all", PSR_c | PSR_f},
23399 {"flg", PSR_f},
23400 {"ctl", PSR_c},
23401
23402 /* Individual flags. */
23403 {"f", PSR_f},
23404 {"c", PSR_c},
23405 {"x", PSR_x},
23406 {"s", PSR_s},
23407
23408 /* Combinations of flags. */
23409 {"fs", PSR_f | PSR_s},
23410 {"fx", PSR_f | PSR_x},
23411 {"fc", PSR_f | PSR_c},
23412 {"sf", PSR_s | PSR_f},
23413 {"sx", PSR_s | PSR_x},
23414 {"sc", PSR_s | PSR_c},
23415 {"xf", PSR_x | PSR_f},
23416 {"xs", PSR_x | PSR_s},
23417 {"xc", PSR_x | PSR_c},
23418 {"cf", PSR_c | PSR_f},
23419 {"cs", PSR_c | PSR_s},
23420 {"cx", PSR_c | PSR_x},
23421 {"fsx", PSR_f | PSR_s | PSR_x},
23422 {"fsc", PSR_f | PSR_s | PSR_c},
23423 {"fxs", PSR_f | PSR_x | PSR_s},
23424 {"fxc", PSR_f | PSR_x | PSR_c},
23425 {"fcs", PSR_f | PSR_c | PSR_s},
23426 {"fcx", PSR_f | PSR_c | PSR_x},
23427 {"sfx", PSR_s | PSR_f | PSR_x},
23428 {"sfc", PSR_s | PSR_f | PSR_c},
23429 {"sxf", PSR_s | PSR_x | PSR_f},
23430 {"sxc", PSR_s | PSR_x | PSR_c},
23431 {"scf", PSR_s | PSR_c | PSR_f},
23432 {"scx", PSR_s | PSR_c | PSR_x},
23433 {"xfs", PSR_x | PSR_f | PSR_s},
23434 {"xfc", PSR_x | PSR_f | PSR_c},
23435 {"xsf", PSR_x | PSR_s | PSR_f},
23436 {"xsc", PSR_x | PSR_s | PSR_c},
23437 {"xcf", PSR_x | PSR_c | PSR_f},
23438 {"xcs", PSR_x | PSR_c | PSR_s},
23439 {"cfs", PSR_c | PSR_f | PSR_s},
23440 {"cfx", PSR_c | PSR_f | PSR_x},
23441 {"csf", PSR_c | PSR_s | PSR_f},
23442 {"csx", PSR_c | PSR_s | PSR_x},
23443 {"cxf", PSR_c | PSR_x | PSR_f},
23444 {"cxs", PSR_c | PSR_x | PSR_s},
23445 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
23446 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
23447 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
23448 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
23449 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
23450 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
23451 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
23452 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
23453 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
23454 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
23455 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
23456 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
23457 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
23458 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
23459 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
23460 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
23461 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
23462 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
23463 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
23464 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
23465 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
23466 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
23467 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
23468 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
23469 };
23470
23471 /* Table of V7M psr names. */
23472 static const struct asm_psr v7m_psrs[] =
23473 {
23474 {"apsr", 0x0 }, {"APSR", 0x0 },
23475 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
23476 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
23477 {"psr", 0x3 }, {"PSR", 0x3 },
23478 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
23479 {"ipsr", 0x5 }, {"IPSR", 0x5 },
23480 {"epsr", 0x6 }, {"EPSR", 0x6 },
23481 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
23482 {"msp", 0x8 }, {"MSP", 0x8 },
23483 {"psp", 0x9 }, {"PSP", 0x9 },
23484 {"msplim", 0xa }, {"MSPLIM", 0xa },
23485 {"psplim", 0xb }, {"PSPLIM", 0xb },
23486 {"primask", 0x10}, {"PRIMASK", 0x10},
23487 {"basepri", 0x11}, {"BASEPRI", 0x11},
23488 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
23489 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
23490 {"control", 0x14}, {"CONTROL", 0x14},
23491 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
23492 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
23493 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
23494 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
23495 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
23496 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
23497 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
23498 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
23499 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
23500 };
23501
23502 /* Table of all shift-in-operand names. */
23503 static const struct asm_shift_name shift_names [] =
23504 {
23505 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
23506 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
23507 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
23508 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
23509 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
23510 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
23511 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
23512 };
23513
23514 /* Table of all explicit relocation names. */
23515 #ifdef OBJ_ELF
23516 static struct reloc_entry reloc_names[] =
23517 {
23518 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
23519 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
23520 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
23521 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
23522 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
23523 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
23524 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
23525 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
23526 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
23527 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
23528 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
23529 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
23530 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
23531 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
23532 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
23533 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
23534 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
23535 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
23536 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
23537 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
23538 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
23539 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
23540 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
23541 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
23542 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
23543 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
23544 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
23545 };
23546 #endif
23547
23548 /* Table of all conditional affixes. */
23549 static const struct asm_cond conds[] =
23550 {
23551 {"eq", 0x0},
23552 {"ne", 0x1},
23553 {"cs", 0x2}, {"hs", 0x2},
23554 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
23555 {"mi", 0x4},
23556 {"pl", 0x5},
23557 {"vs", 0x6},
23558 {"vc", 0x7},
23559 {"hi", 0x8},
23560 {"ls", 0x9},
23561 {"ge", 0xa},
23562 {"lt", 0xb},
23563 {"gt", 0xc},
23564 {"le", 0xd},
23565 {"al", 0xe}
23566 };
23567 static const struct asm_cond vconds[] =
23568 {
23569 {"t", 0xf},
23570 {"e", 0x10}
23571 };
23572
23573 #define UL_BARRIER(L,U,CODE,FEAT) \
23574 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
23575 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
23576
23577 static struct asm_barrier_opt barrier_opt_names[] =
23578 {
23579 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
23580 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
23581 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
23582 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
23583 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
23584 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
23585 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
23586 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
23587 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
23588 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
23589 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
23590 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
23591 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
23592 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
23593 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
23594 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
23595 };
23596
23597 #undef UL_BARRIER
23598
23599 /* Table of ARM-format instructions. */
23600
23601 /* Macros for gluing together operand strings. N.B. In all cases
23602 other than OPS0, the trailing OP_stop comes from default
23603 zero-initialization of the unspecified elements of the array. */
23604 #define OPS0() { OP_stop, }
23605 #define OPS1(a) { OP_##a, }
23606 #define OPS2(a,b) { OP_##a,OP_##b, }
23607 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
23608 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
23609 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
23610 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
23611
23612 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
23613 This is useful when mixing operands for ARM and THUMB, i.e. using the
23614 MIX_ARM_THUMB_OPERANDS macro.
23615 In order to use these macros, prefix the number of operands with _
23616 e.g. _3. */
23617 #define OPS_1(a) { a, }
23618 #define OPS_2(a,b) { a,b, }
23619 #define OPS_3(a,b,c) { a,b,c, }
23620 #define OPS_4(a,b,c,d) { a,b,c,d, }
23621 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
23622 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
23623
23624 /* These macros abstract out the exact format of the mnemonic table and
23625 save some repeated characters. */
23626
23627 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
23628 #define TxCE(mnem, op, top, nops, ops, ae, te) \
23629 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
23630 THUMB_VARIANT, do_##ae, do_##te, 0 }
23631
23632 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
23633 a T_MNEM_xyz enumerator. */
23634 #define TCE(mnem, aop, top, nops, ops, ae, te) \
23635 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
23636 #define tCE(mnem, aop, top, nops, ops, ae, te) \
23637 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23638
23639 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
23640 infix after the third character. */
23641 #define TxC3(mnem, op, top, nops, ops, ae, te) \
23642 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
23643 THUMB_VARIANT, do_##ae, do_##te, 0 }
23644 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
23645 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
23646 THUMB_VARIANT, do_##ae, do_##te, 0 }
23647 #define TC3(mnem, aop, top, nops, ops, ae, te) \
23648 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
23649 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
23650 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
23651 #define tC3(mnem, aop, top, nops, ops, ae, te) \
23652 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23653 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
23654 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23655
23656 /* Mnemonic that cannot be conditionalized. The ARM condition-code
23657 field is still 0xE. Many of the Thumb variants can be executed
23658 conditionally, so this is checked separately. */
23659 #define TUE(mnem, op, top, nops, ops, ae, te) \
23660 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
23661 THUMB_VARIANT, do_##ae, do_##te, 0 }
23662
23663 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
23664 Used by mnemonics that have very minimal differences in the encoding for
23665 ARM and Thumb variants and can be handled in a common function. */
23666 #define TUEc(mnem, op, top, nops, ops, en) \
23667 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
23668 THUMB_VARIANT, do_##en, do_##en, 0 }
23669
23670 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
23671 condition code field. */
23672 #define TUF(mnem, op, top, nops, ops, ae, te) \
23673 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
23674 THUMB_VARIANT, do_##ae, do_##te, 0 }
23675
23676 /* ARM-only variants of all the above. */
23677 #define CE(mnem, op, nops, ops, ae) \
23678 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23679
23680 #define C3(mnem, op, nops, ops, ae) \
23681 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23682
23683 /* Thumb-only variants of TCE and TUE. */
23684 #define ToC(mnem, top, nops, ops, te) \
23685 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
23686 do_##te, 0 }
23687
23688 #define ToU(mnem, top, nops, ops, te) \
23689 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
23690 NULL, do_##te, 0 }
23691
23692 /* T_MNEM_xyz enumerator variants of ToC. */
23693 #define toC(mnem, top, nops, ops, te) \
23694 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
23695 do_##te, 0 }
23696
23697 /* T_MNEM_xyz enumerator variants of ToU. */
23698 #define toU(mnem, top, nops, ops, te) \
23699 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
23700 NULL, do_##te, 0 }
23701
23702 /* Legacy mnemonics that always have conditional infix after the third
23703 character. */
23704 #define CL(mnem, op, nops, ops, ae) \
23705 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
23706 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23707
23708 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
23709 #define cCE(mnem, op, nops, ops, ae) \
23710 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23711
23712 /* mov instructions that are shared between coprocessor and MVE. */
23713 #define mcCE(mnem, op, nops, ops, ae) \
23714 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
23715
23716 /* Legacy coprocessor instructions where conditional infix and conditional
23717 suffix are ambiguous. For consistency this includes all FPA instructions,
23718 not just the potentially ambiguous ones. */
23719 #define cCL(mnem, op, nops, ops, ae) \
23720 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
23721 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23722
23723 /* Coprocessor, takes either a suffix or a position-3 infix
23724 (for an FPA corner case). */
23725 #define C3E(mnem, op, nops, ops, ae) \
23726 { mnem, OPS##nops ops, OT_csuf_or_in3, \
23727 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23728
23729 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
23730 { m1 #m2 m3, OPS##nops ops, \
23731 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
23732 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23733
23734 #define CM(m1, m2, op, nops, ops, ae) \
23735 xCM_ (m1, , m2, op, nops, ops, ae), \
23736 xCM_ (m1, eq, m2, op, nops, ops, ae), \
23737 xCM_ (m1, ne, m2, op, nops, ops, ae), \
23738 xCM_ (m1, cs, m2, op, nops, ops, ae), \
23739 xCM_ (m1, hs, m2, op, nops, ops, ae), \
23740 xCM_ (m1, cc, m2, op, nops, ops, ae), \
23741 xCM_ (m1, ul, m2, op, nops, ops, ae), \
23742 xCM_ (m1, lo, m2, op, nops, ops, ae), \
23743 xCM_ (m1, mi, m2, op, nops, ops, ae), \
23744 xCM_ (m1, pl, m2, op, nops, ops, ae), \
23745 xCM_ (m1, vs, m2, op, nops, ops, ae), \
23746 xCM_ (m1, vc, m2, op, nops, ops, ae), \
23747 xCM_ (m1, hi, m2, op, nops, ops, ae), \
23748 xCM_ (m1, ls, m2, op, nops, ops, ae), \
23749 xCM_ (m1, ge, m2, op, nops, ops, ae), \
23750 xCM_ (m1, lt, m2, op, nops, ops, ae), \
23751 xCM_ (m1, gt, m2, op, nops, ops, ae), \
23752 xCM_ (m1, le, m2, op, nops, ops, ae), \
23753 xCM_ (m1, al, m2, op, nops, ops, ae)
23754
23755 #define UE(mnem, op, nops, ops, ae) \
23756 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23757
23758 #define UF(mnem, op, nops, ops, ae) \
23759 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23760
23761 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
23762 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
23763 use the same encoding function for each. */
23764 #define NUF(mnem, op, nops, ops, enc) \
23765 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
23766 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
23767
23768 /* Neon data processing, version which indirects through neon_enc_tab for
23769 the various overloaded versions of opcodes. */
23770 #define nUF(mnem, op, nops, ops, enc) \
23771 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
23772 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
23773
23774 /* Neon insn with conditional suffix for the ARM version, non-overloaded
23775 version. */
23776 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
23777 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
23778 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
23779
23780 #define NCE(mnem, op, nops, ops, enc) \
23781 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
23782
23783 #define NCEF(mnem, op, nops, ops, enc) \
23784 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
23785
23786 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
23787 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
23788 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
23789 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
23790
23791 #define nCE(mnem, op, nops, ops, enc) \
23792 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
23793
23794 #define nCEF(mnem, op, nops, ops, enc) \
23795 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
23796
23797 /* */
23798 #define mCEF(mnem, op, nops, ops, enc) \
23799 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
23800 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23801
23802
23803 /* nCEF but for MVE predicated instructions. */
23804 #define mnCEF(mnem, op, nops, ops, enc) \
23805 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
23806
23807 /* nCE but for MVE predicated instructions. */
23808 #define mnCE(mnem, op, nops, ops, enc) \
23809 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
23810
23811 /* NUF but for potentially MVE predicated instructions. */
23812 #define MNUF(mnem, op, nops, ops, enc) \
23813 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
23814 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23815
23816 /* nUF but for potentially MVE predicated instructions. */
23817 #define mnUF(mnem, op, nops, ops, enc) \
23818 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
23819 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23820
23821 /* ToC but for potentially MVE predicated instructions. */
23822 #define mToC(mnem, top, nops, ops, te) \
23823 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
23824 do_##te, 1 }
23825
23826 /* NCE but for MVE predicated instructions. */
23827 #define MNCE(mnem, op, nops, ops, enc) \
23828 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
23829
23830 /* NCEF but for MVE predicated instructions. */
23831 #define MNCEF(mnem, op, nops, ops, enc) \
23832 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
23833 #define do_0 0
23834
23835 static const struct asm_opcode insns[] =
23836 {
23837 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
23838 #define THUMB_VARIANT & arm_ext_v4t
23839 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
23840 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
23841 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
23842 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
23843 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
23844 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
23845 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
23846 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
23847 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
23848 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
23849 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
23850 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
23851 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
23852 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
23853 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
23854 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
23855
23856 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
23857 for setting PSR flag bits. They are obsolete in V6 and do not
23858 have Thumb equivalents. */
23859 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23860 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23861 CL("tstp", 110f000, 2, (RR, SH), cmp),
23862 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23863 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23864 CL("cmpp", 150f000, 2, (RR, SH), cmp),
23865 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23866 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23867 CL("cmnp", 170f000, 2, (RR, SH), cmp),
23868
23869 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
23870 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
23871 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
23872 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
23873
23874 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
23875 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
23876 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
23877 OP_RRnpc),
23878 OP_ADDRGLDR),ldst, t_ldst),
23879 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
23880
23881 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23882 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23883 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23884 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23885 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23886 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23887
23888 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
23889 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
23890
23891 /* Pseudo ops. */
23892 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
23893 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
23894 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
23895 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
23896
23897 /* Thumb-compatibility pseudo ops. */
23898 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
23899 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
23900 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
23901 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
23902 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
23903 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
23904 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
23905 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
23906 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
23907 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
23908 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
23909 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
23910
23911 /* These may simplify to neg. */
23912 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
23913 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
23914
23915 #undef THUMB_VARIANT
23916 #define THUMB_VARIANT & arm_ext_os
23917
23918 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
23919 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
23920
23921 #undef THUMB_VARIANT
23922 #define THUMB_VARIANT & arm_ext_v6
23923
23924 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
23925
23926 /* V1 instructions with no Thumb analogue prior to V6T2. */
23927 #undef THUMB_VARIANT
23928 #define THUMB_VARIANT & arm_ext_v6t2
23929
23930 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23931 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23932 CL("teqp", 130f000, 2, (RR, SH), cmp),
23933
23934 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23935 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23936 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
23937 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23938
23939 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23940 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23941
23942 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23943 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23944
23945 /* V1 instructions with no Thumb analogue at all. */
23946 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
23947 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
23948
23949 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
23950 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
23951 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
23952 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
23953 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
23954 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
23955 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
23956 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
23957
23958 #undef ARM_VARIANT
23959 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
23960 #undef THUMB_VARIANT
23961 #define THUMB_VARIANT & arm_ext_v4t
23962
23963 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23964 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23965
23966 #undef THUMB_VARIANT
23967 #define THUMB_VARIANT & arm_ext_v6t2
23968
23969 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23970 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
23971
23972 /* Generic coprocessor instructions. */
23973 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23974 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23975 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23976 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23977 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23978 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23979 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
23980
23981 #undef ARM_VARIANT
23982 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
23983
23984 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23985 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23986
23987 #undef ARM_VARIANT
23988 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
23989 #undef THUMB_VARIANT
23990 #define THUMB_VARIANT & arm_ext_msr
23991
23992 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
23993 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
23994
23995 #undef ARM_VARIANT
23996 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
23997 #undef THUMB_VARIANT
23998 #define THUMB_VARIANT & arm_ext_v6t2
23999
24000 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
24001 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
24002 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
24003 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
24004 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
24005 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
24006 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
24007 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
24008
24009 #undef ARM_VARIANT
24010 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
24011 #undef THUMB_VARIANT
24012 #define THUMB_VARIANT & arm_ext_v4t
24013
24014 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24015 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24016 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24017 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24018 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24019 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
24020
24021 #undef ARM_VARIANT
24022 #define ARM_VARIANT & arm_ext_v4t_5
24023
24024 /* ARM Architecture 4T. */
24025 /* Note: bx (and blx) are required on V5, even if the processor does
24026 not support Thumb. */
24027 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
24028
24029 #undef ARM_VARIANT
24030 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
24031 #undef THUMB_VARIANT
24032 #define THUMB_VARIANT & arm_ext_v5t
24033
24034 /* Note: blx has 2 variants; the .value coded here is for
24035 BLX(2). Only this variant has conditional execution. */
24036 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
24037 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
24038
24039 #undef THUMB_VARIANT
24040 #define THUMB_VARIANT & arm_ext_v6t2
24041
24042 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
24043 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24044 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24045 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24046 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
24047 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
24048 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
24049 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
24050
24051 #undef ARM_VARIANT
24052 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
24053 #undef THUMB_VARIANT
24054 #define THUMB_VARIANT & arm_ext_v5exp
24055
24056 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24057 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24058 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24059 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24060
24061 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24062 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
24063
24064 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24065 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24066 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24067 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
24068
24069 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24070 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24071 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24072 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24073
24074 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24075 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24076
24077 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24078 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24079 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24080 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
24081
24082 #undef ARM_VARIANT
24083 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
24084 #undef THUMB_VARIANT
24085 #define THUMB_VARIANT & arm_ext_v6t2
24086
24087 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
24088 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
24089 ldrd, t_ldstd),
24090 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
24091 ADDRGLDRS), ldrd, t_ldstd),
24092
24093 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24094 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24095
24096 #undef ARM_VARIANT
24097 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
24098
24099 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
24100
24101 #undef ARM_VARIANT
24102 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
24103 #undef THUMB_VARIANT
24104 #define THUMB_VARIANT & arm_ext_v6
24105
24106 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
24107 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
24108 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
24109 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
24110 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
24111 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24112 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24113 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24114 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24115 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
24116
24117 #undef THUMB_VARIANT
24118 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24119
24120 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
24121 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
24122 strex, t_strex),
24123 #undef THUMB_VARIANT
24124 #define THUMB_VARIANT & arm_ext_v6t2
24125
24126 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24127 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
24128
24129 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
24130 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
24131
24132 /* ARM V6 not included in V7M. */
24133 #undef THUMB_VARIANT
24134 #define THUMB_VARIANT & arm_ext_v6_notm
24135 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
24136 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
24137 UF(rfeib, 9900a00, 1, (RRw), rfe),
24138 UF(rfeda, 8100a00, 1, (RRw), rfe),
24139 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
24140 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
24141 UF(rfefa, 8100a00, 1, (RRw), rfe),
24142 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
24143 UF(rfeed, 9900a00, 1, (RRw), rfe),
24144 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
24145 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
24146 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
24147 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
24148 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
24149 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
24150 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
24151 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
24152 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
24153 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
24154
24155 /* ARM V6 not included in V7M (eg. integer SIMD). */
24156 #undef THUMB_VARIANT
24157 #define THUMB_VARIANT & arm_ext_v6_dsp
24158 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
24159 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
24160 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24161 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24162 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24163 /* Old name for QASX. */
24164 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24165 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24166 /* Old name for QSAX. */
24167 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24168 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24169 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24170 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24171 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24172 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24173 /* Old name for SASX. */
24174 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24175 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24176 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24177 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24178 /* Old name for SHASX. */
24179 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24180 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24181 /* Old name for SHSAX. */
24182 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24183 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24184 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24185 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24186 /* Old name for SSAX. */
24187 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24188 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24189 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24190 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24191 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24192 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24193 /* Old name for UASX. */
24194 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24195 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24196 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24197 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24198 /* Old name for UHASX. */
24199 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24200 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24201 /* Old name for UHSAX. */
24202 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24203 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24204 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24205 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24206 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24207 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24208 /* Old name for UQASX. */
24209 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24210 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24211 /* Old name for UQSAX. */
24212 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24213 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24214 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24215 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24216 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24217 /* Old name for USAX. */
24218 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24219 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24220 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24221 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24222 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24223 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24224 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24225 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24226 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
24227 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
24228 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
24229 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24230 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24231 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24232 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24233 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24234 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24235 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24236 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
24237 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24238 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24239 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24240 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24241 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24242 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24243 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24244 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24245 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24246 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24247 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
24248 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
24249 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
24250 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
24251 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
24252
24253 #undef ARM_VARIANT
24254 #define ARM_VARIANT & arm_ext_v6k_v6t2
24255 #undef THUMB_VARIANT
24256 #define THUMB_VARIANT & arm_ext_v6k_v6t2
24257
24258 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
24259 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
24260 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
24261 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
24262
24263 #undef THUMB_VARIANT
24264 #define THUMB_VARIANT & arm_ext_v6_notm
24265 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
24266 ldrexd, t_ldrexd),
24267 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
24268 RRnpcb), strexd, t_strexd),
24269
24270 #undef THUMB_VARIANT
24271 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24272 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
24273 rd_rn, rd_rn),
24274 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
24275 rd_rn, rd_rn),
24276 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
24277 strex, t_strexbh),
24278 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
24279 strex, t_strexbh),
24280 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
24281
24282 #undef ARM_VARIANT
24283 #define ARM_VARIANT & arm_ext_sec
24284 #undef THUMB_VARIANT
24285 #define THUMB_VARIANT & arm_ext_sec
24286
24287 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
24288
24289 #undef ARM_VARIANT
24290 #define ARM_VARIANT & arm_ext_virt
24291 #undef THUMB_VARIANT
24292 #define THUMB_VARIANT & arm_ext_virt
24293
24294 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
24295 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
24296
24297 #undef ARM_VARIANT
24298 #define ARM_VARIANT & arm_ext_pan
24299 #undef THUMB_VARIANT
24300 #define THUMB_VARIANT & arm_ext_pan
24301
24302 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
24303
24304 #undef ARM_VARIANT
24305 #define ARM_VARIANT & arm_ext_v6t2
24306 #undef THUMB_VARIANT
24307 #define THUMB_VARIANT & arm_ext_v6t2
24308
24309 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
24310 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
24311 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
24312 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
24313
24314 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
24315 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
24316
24317 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24318 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24319 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24320 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
24321
24322 #undef ARM_VARIANT
24323 #define ARM_VARIANT & arm_ext_v3
24324 #undef THUMB_VARIANT
24325 #define THUMB_VARIANT & arm_ext_v6t2
24326
24327 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
24328 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
24329 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
24330
24331 #undef ARM_VARIANT
24332 #define ARM_VARIANT & arm_ext_v6t2
24333 #undef THUMB_VARIANT
24334 #define THUMB_VARIANT & arm_ext_v6t2_v8m
24335 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
24336 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
24337
24338 /* Thumb-only instructions. */
24339 #undef ARM_VARIANT
24340 #define ARM_VARIANT NULL
24341 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
24342 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
24343
24344 /* ARM does not really have an IT instruction, so always allow it.
24345 The opcode is copied from Thumb in order to allow warnings in
24346 -mimplicit-it=[never | arm] modes. */
24347 #undef ARM_VARIANT
24348 #define ARM_VARIANT & arm_ext_v1
24349 #undef THUMB_VARIANT
24350 #define THUMB_VARIANT & arm_ext_v6t2
24351
24352 TUE("it", bf08, bf08, 1, (COND), it, t_it),
24353 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
24354 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
24355 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
24356 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
24357 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
24358 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
24359 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
24360 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
24361 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
24362 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
24363 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
24364 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
24365 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
24366 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
24367 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
24368 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
24369 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
24370
24371 /* Thumb2 only instructions. */
24372 #undef ARM_VARIANT
24373 #define ARM_VARIANT NULL
24374
24375 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
24376 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
24377 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
24378 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
24379 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
24380 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
24381
24382 /* Hardware division instructions. */
24383 #undef ARM_VARIANT
24384 #define ARM_VARIANT & arm_ext_adiv
24385 #undef THUMB_VARIANT
24386 #define THUMB_VARIANT & arm_ext_div
24387
24388 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
24389 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
24390
24391 /* ARM V6M/V7 instructions. */
24392 #undef ARM_VARIANT
24393 #define ARM_VARIANT & arm_ext_barrier
24394 #undef THUMB_VARIANT
24395 #define THUMB_VARIANT & arm_ext_barrier
24396
24397 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
24398 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
24399 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
24400
24401 /* ARM V7 instructions. */
24402 #undef ARM_VARIANT
24403 #define ARM_VARIANT & arm_ext_v7
24404 #undef THUMB_VARIANT
24405 #define THUMB_VARIANT & arm_ext_v7
24406
24407 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
24408 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
24409
24410 #undef ARM_VARIANT
24411 #define ARM_VARIANT & arm_ext_mp
24412 #undef THUMB_VARIANT
24413 #define THUMB_VARIANT & arm_ext_mp
24414
24415 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
24416
24417 /* AArchv8 instructions. */
24418 #undef ARM_VARIANT
24419 #define ARM_VARIANT & arm_ext_v8
24420
24421 /* Instructions shared between armv8-a and armv8-m. */
24422 #undef THUMB_VARIANT
24423 #define THUMB_VARIANT & arm_ext_atomics
24424
24425 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24426 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24427 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24428 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24429 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24430 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24431 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24432 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
24433 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24434 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
24435 stlex, t_stlex),
24436 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
24437 stlex, t_stlex),
24438 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
24439 stlex, t_stlex),
24440 #undef THUMB_VARIANT
24441 #define THUMB_VARIANT & arm_ext_v8
24442
24443 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
24444 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
24445 ldrexd, t_ldrexd),
24446 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
24447 strexd, t_strexd),
24448
24449 /* Defined in V8 but is in undefined encoding space for earlier
24450 architectures. However earlier architectures are required to treat
24451 this instuction as a semihosting trap as well. Hence while not explicitly
24452 defined as such, it is in fact correct to define the instruction for all
24453 architectures. */
24454 #undef THUMB_VARIANT
24455 #define THUMB_VARIANT & arm_ext_v1
24456 #undef ARM_VARIANT
24457 #define ARM_VARIANT & arm_ext_v1
24458 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
24459
24460 /* ARMv8 T32 only. */
24461 #undef ARM_VARIANT
24462 #define ARM_VARIANT NULL
24463 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
24464 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
24465 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
24466
24467 /* FP for ARMv8. */
24468 #undef ARM_VARIANT
24469 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24470 #undef THUMB_VARIANT
24471 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
24472
24473 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
24474 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
24475 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
24476 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
24477 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
24478 mnCE(vrintz, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintz),
24479 mnCE(vrintx, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintx),
24480 mnUF(vrinta, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrinta),
24481 mnUF(vrintn, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintn),
24482 mnUF(vrintp, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintp),
24483 mnUF(vrintm, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintm),
24484
24485 /* Crypto v1 extensions. */
24486 #undef ARM_VARIANT
24487 #define ARM_VARIANT & fpu_crypto_ext_armv8
24488 #undef THUMB_VARIANT
24489 #define THUMB_VARIANT & fpu_crypto_ext_armv8
24490
24491 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
24492 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
24493 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
24494 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
24495 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
24496 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
24497 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
24498 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
24499 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
24500 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
24501 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
24502 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
24503 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
24504 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
24505
24506 #undef ARM_VARIANT
24507 #define ARM_VARIANT & arm_ext_crc
24508 #undef THUMB_VARIANT
24509 #define THUMB_VARIANT & arm_ext_crc
24510 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
24511 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
24512 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
24513 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
24514 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
24515 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
24516
24517 /* ARMv8.2 RAS extension. */
24518 #undef ARM_VARIANT
24519 #define ARM_VARIANT & arm_ext_ras
24520 #undef THUMB_VARIANT
24521 #define THUMB_VARIANT & arm_ext_ras
24522 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
24523
24524 #undef ARM_VARIANT
24525 #define ARM_VARIANT & arm_ext_v8_3
24526 #undef THUMB_VARIANT
24527 #define THUMB_VARIANT & arm_ext_v8_3
24528 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
24529
24530 #undef ARM_VARIANT
24531 #define ARM_VARIANT & fpu_neon_ext_dotprod
24532 #undef THUMB_VARIANT
24533 #define THUMB_VARIANT & fpu_neon_ext_dotprod
24534 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
24535 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
24536
24537 #undef ARM_VARIANT
24538 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
24539 #undef THUMB_VARIANT
24540 #define THUMB_VARIANT NULL
24541
24542 cCE("wfs", e200110, 1, (RR), rd),
24543 cCE("rfs", e300110, 1, (RR), rd),
24544 cCE("wfc", e400110, 1, (RR), rd),
24545 cCE("rfc", e500110, 1, (RR), rd),
24546
24547 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
24548 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
24549 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
24550 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
24551
24552 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
24553 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
24554 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
24555 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
24556
24557 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
24558 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
24559 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
24560 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
24561 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
24562 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
24563 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
24564 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
24565 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
24566 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
24567 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
24568 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
24569
24570 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
24571 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
24572 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
24573 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
24574 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
24575 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
24576 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
24577 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
24578 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
24579 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
24580 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
24581 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
24582
24583 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
24584 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
24585 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
24586 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
24587 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
24588 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
24589 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
24590 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
24591 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
24592 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
24593 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
24594 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
24595
24596 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
24597 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
24598 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
24599 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
24600 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
24601 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
24602 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
24603 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
24604 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
24605 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
24606 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
24607 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
24608
24609 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
24610 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
24611 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
24612 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
24613 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
24614 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
24615 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
24616 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
24617 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
24618 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
24619 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
24620 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
24621
24622 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
24623 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
24624 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
24625 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
24626 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
24627 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
24628 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
24629 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
24630 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
24631 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
24632 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
24633 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
24634
24635 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
24636 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
24637 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
24638 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
24639 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
24640 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
24641 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
24642 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
24643 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
24644 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
24645 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
24646 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
24647
24648 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
24649 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
24650 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
24651 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
24652 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
24653 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
24654 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
24655 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
24656 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
24657 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
24658 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
24659 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
24660
24661 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
24662 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
24663 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
24664 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
24665 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
24666 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
24667 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
24668 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
24669 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
24670 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
24671 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
24672 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
24673
24674 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
24675 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
24676 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
24677 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
24678 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
24679 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
24680 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
24681 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
24682 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
24683 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
24684 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
24685 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
24686
24687 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
24688 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
24689 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
24690 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
24691 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
24692 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
24693 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
24694 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
24695 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
24696 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
24697 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
24698 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
24699
24700 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
24701 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
24702 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
24703 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
24704 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
24705 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
24706 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
24707 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
24708 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
24709 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
24710 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
24711 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
24712
24713 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
24714 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
24715 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
24716 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
24717 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
24718 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
24719 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
24720 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
24721 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
24722 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
24723 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
24724 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
24725
24726 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
24727 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
24728 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
24729 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
24730 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
24731 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
24732 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
24733 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
24734 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
24735 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
24736 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
24737 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
24738
24739 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
24740 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
24741 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
24742 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
24743 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
24744 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
24745 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
24746 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
24747 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
24748 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
24749 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
24750 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
24751
24752 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
24753 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
24754 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
24755 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
24756 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
24757 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
24758 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
24759 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
24760 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
24761 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
24762 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
24763 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
24764
24765 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
24766 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
24767 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
24768 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
24769 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
24770 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24771 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24772 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24773 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
24774 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
24775 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
24776 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
24777
24778 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
24779 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
24780 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
24781 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
24782 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
24783 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24784 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24785 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24786 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
24787 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
24788 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
24789 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
24790
24791 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
24792 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
24793 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
24794 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
24795 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
24796 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24797 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24798 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24799 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
24800 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
24801 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
24802 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
24803
24804 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
24805 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
24806 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
24807 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
24808 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
24809 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24810 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24811 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24812 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
24813 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
24814 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
24815 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
24816
24817 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
24818 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
24819 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
24820 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
24821 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
24822 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24823 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24824 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24825 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
24826 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
24827 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
24828 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
24829
24830 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
24831 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
24832 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
24833 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
24834 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
24835 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24836 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24837 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24838 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
24839 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
24840 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
24841 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
24842
24843 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
24844 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
24845 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
24846 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
24847 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
24848 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24849 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24850 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24851 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
24852 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
24853 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
24854 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
24855
24856 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
24857 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
24858 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
24859 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
24860 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
24861 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24862 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24863 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24864 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
24865 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
24866 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
24867 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
24868
24869 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
24870 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
24871 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
24872 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
24873 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
24874 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24875 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24876 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24877 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
24878 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
24879 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
24880 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
24881
24882 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
24883 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
24884 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
24885 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
24886 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
24887 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24888 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24889 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24890 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
24891 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
24892 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
24893 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
24894
24895 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24896 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24897 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24898 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24899 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24900 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24901 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24902 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24903 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24904 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24905 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24906 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24907
24908 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24909 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24910 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24911 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24912 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24913 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24914 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24915 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24916 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24917 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24918 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24919 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24920
24921 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24922 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24923 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24924 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24925 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24926 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24927 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24928 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24929 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24930 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24931 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24932 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24933
24934 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
24935 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
24936 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
24937 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
24938
24939 cCL("flts", e000110, 2, (RF, RR), rn_rd),
24940 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
24941 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
24942 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
24943 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
24944 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
24945 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
24946 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
24947 cCL("flte", e080110, 2, (RF, RR), rn_rd),
24948 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
24949 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
24950 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
24951
24952 /* The implementation of the FIX instruction is broken on some
24953 assemblers, in that it accepts a precision specifier as well as a
24954 rounding specifier, despite the fact that this is meaningless.
24955 To be more compatible, we accept it as well, though of course it
24956 does not set any bits. */
24957 cCE("fix", e100110, 2, (RR, RF), rd_rm),
24958 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
24959 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
24960 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
24961 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
24962 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
24963 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
24964 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
24965 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
24966 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
24967 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
24968 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
24969 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
24970
24971 /* Instructions that were new with the real FPA, call them V2. */
24972 #undef ARM_VARIANT
24973 #define ARM_VARIANT & fpu_fpa_ext_v2
24974
24975 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24976 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24977 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24978 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24979 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24980 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24981
24982 #undef ARM_VARIANT
24983 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
24984 #undef THUMB_VARIANT
24985 #define THUMB_VARIANT & arm_ext_v6t2
24986 mcCE(vmrs, ef00a10, 2, (APSR_RR, RVC), vmrs),
24987 mcCE(vmsr, ee00a10, 2, (RVC, RR), vmsr),
24988 mcCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24989 mcCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24990 mcCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24991 mcCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24992
24993 /* Memory operations. */
24994 mcCE(fldmias, c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24995 mcCE(fldmdbs, d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24996 mcCE(fstmias, c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24997 mcCE(fstmdbs, d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24998 #undef THUMB_VARIANT
24999
25000 /* Moves and type conversions. */
25001 cCE("fmstat", ef1fa10, 0, (), noargs),
25002 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
25003 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
25004 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
25005 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
25006 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
25007 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
25008 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
25009 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
25010
25011 /* Memory operations. */
25012 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
25013 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
25014 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
25015 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
25016 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
25017 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
25018 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
25019 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
25020 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
25021 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
25022 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
25023 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
25024
25025 /* Monadic operations. */
25026 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
25027 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
25028 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
25029
25030 /* Dyadic operations. */
25031 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25032 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25033 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25034 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25035 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25036 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25037 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25038 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25039 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25040
25041 /* Comparisons. */
25042 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
25043 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
25044 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
25045 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
25046
25047 /* Double precision load/store are still present on single precision
25048 implementations. */
25049 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25050 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25051 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25052 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25053 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25054 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
25055 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25056 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
25057
25058 #undef ARM_VARIANT
25059 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
25060
25061 /* Moves and type conversions. */
25062 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
25063 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
25064 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
25065 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
25066 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
25067 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
25068 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
25069 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
25070 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
25071 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
25072 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
25073 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
25074
25075 /* Monadic operations. */
25076 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
25077 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25078 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
25079
25080 /* Dyadic operations. */
25081 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25082 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25083 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25084 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25085 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25086 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25087 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25088 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25089 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25090
25091 /* Comparisons. */
25092 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25093 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
25094 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
25095 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
25096
25097 /* Instructions which may belong to either the Neon or VFP instruction sets.
25098 Individual encoder functions perform additional architecture checks. */
25099 #undef ARM_VARIANT
25100 #define ARM_VARIANT & fpu_vfp_ext_v1xd
25101 #undef THUMB_VARIANT
25102 #define THUMB_VARIANT & arm_ext_v6t2
25103
25104 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25105 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25106 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25107 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25108 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25109 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
25110
25111 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
25112 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
25113
25114 #undef THUMB_VARIANT
25115 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
25116
25117 /* These mnemonics are unique to VFP. */
25118 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
25119 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
25120 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25121 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25122 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25123 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
25124
25125 /* Mnemonics shared by Neon and VFP. */
25126 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
25127
25128 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
25129 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
25130 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
25131 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
25132
25133
25134 /* NOTE: All VMOV encoding is special-cased! */
25135 NCE(vmovq, 0, 1, (VMOV), neon_mov),
25136
25137 #undef THUMB_VARIANT
25138 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
25139 by different feature bits. Since we are setting the Thumb guard, we can
25140 require Thumb-1 which makes it a nop guard and set the right feature bit in
25141 do_vldr_vstr (). */
25142 #define THUMB_VARIANT & arm_ext_v4t
25143 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
25144 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
25145
25146 #undef ARM_VARIANT
25147 #define ARM_VARIANT & arm_ext_fp16
25148 #undef THUMB_VARIANT
25149 #define THUMB_VARIANT & arm_ext_fp16
25150 /* New instructions added from v8.2, allowing the extraction and insertion of
25151 the upper 16 bits of a 32-bit vector register. */
25152 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
25153 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
25154
25155 /* New backported fma/fms instructions optional in v8.2. */
25156 NUF (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
25157 NUF (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
25158
25159 #undef THUMB_VARIANT
25160 #define THUMB_VARIANT & fpu_neon_ext_v1
25161 #undef ARM_VARIANT
25162 #define ARM_VARIANT & fpu_neon_ext_v1
25163
25164 /* Data processing with three registers of the same length. */
25165 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
25166 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
25167 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
25168 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
25169 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
25170 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
25171 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
25172 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
25173 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
25174 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
25175 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
25176 /* If not immediate, fall back to neon_dyadic_i64_su.
25177 shl should accept I8 I16 I32 I64,
25178 qshl should accept S8 S16 S32 S64 U8 U16 U32 U64. */
25179 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl),
25180 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl),
25181 /* Logic ops, types optional & ignored. */
25182 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
25183 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
25184 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
25185 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
25186 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
25187 /* Bitfield ops, untyped. */
25188 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
25189 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
25190 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
25191 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
25192 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
25193 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
25194 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
25195 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
25196 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
25197 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
25198 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
25199 back to neon_dyadic_if_su. */
25200 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
25201 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
25202 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
25203 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
25204 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
25205 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
25206 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
25207 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
25208 /* Comparison. Type I8 I16 I32 F32. */
25209 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
25210 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
25211 /* As above, D registers only. */
25212 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
25213 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
25214 /* Int and float variants, signedness unimportant. */
25215 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
25216 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
25217 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
25218 /* Add/sub take types I8 I16 I32 I64 F32. */
25219 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
25220 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
25221 /* vtst takes sizes 8, 16, 32. */
25222 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
25223 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
25224 /* VMUL takes I8 I16 I32 F32 P8. */
25225 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
25226 /* VQD{R}MULH takes S16 S32. */
25227 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
25228 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
25229 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
25230 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
25231 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
25232 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
25233 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
25234 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
25235 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
25236 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
25237 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
25238 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
25239 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
25240 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
25241 /* ARM v8.1 extension. */
25242 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
25243 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
25244 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
25245
25246 /* Two address, int/float. Types S8 S16 S32 F32. */
25247 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
25248 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
25249
25250 /* Data processing with two registers and a shift amount. */
25251 /* Right shifts, and variants with rounding.
25252 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
25253 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
25254 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
25255 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
25256 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
25257 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
25258 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
25259 /* Shift and insert. Sizes accepted 8 16 32 64. */
25260 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
25261 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
25262 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
25263 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
25264 /* Right shift immediate, saturating & narrowing, with rounding variants.
25265 Types accepted S16 S32 S64 U16 U32 U64. */
25266 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
25267 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
25268 /* As above, unsigned. Types accepted S16 S32 S64. */
25269 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
25270 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
25271 /* Right shift narrowing. Types accepted I16 I32 I64. */
25272 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
25273 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
25274 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
25275 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
25276 /* CVT with optional immediate for fixed-point variant. */
25277 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
25278
25279 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
25280
25281 /* Data processing, three registers of different lengths. */
25282 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
25283 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
25284 /* If not scalar, fall back to neon_dyadic_long.
25285 Vector types as above, scalar types S16 S32 U16 U32. */
25286 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
25287 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
25288 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
25289 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
25290 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
25291 /* Dyadic, narrowing insns. Types I16 I32 I64. */
25292 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25293 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25294 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25295 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
25296 /* Saturating doubling multiplies. Types S16 S32. */
25297 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
25298 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
25299 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
25300 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
25301 S16 S32 U16 U32. */
25302 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
25303
25304 /* Extract. Size 8. */
25305 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
25306 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
25307
25308 /* Two registers, miscellaneous. */
25309 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
25310 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
25311 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
25312 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
25313 /* Vector replicate. Sizes 8 16 32. */
25314 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
25315 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
25316 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
25317 /* VMOVN. Types I16 I32 I64. */
25318 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
25319 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
25320 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
25321 /* VQMOVUN. Types S16 S32 S64. */
25322 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
25323 /* VZIP / VUZP. Sizes 8 16 32. */
25324 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
25325 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
25326 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
25327 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
25328 /* VQABS / VQNEG. Types S8 S16 S32. */
25329 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
25330 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
25331 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
25332 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
25333 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
25334 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
25335 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
25336 /* Reciprocal estimates. Types U32 F16 F32. */
25337 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
25338 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
25339 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
25340 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
25341 /* VCLS. Types S8 S16 S32. */
25342 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
25343 /* VCLZ. Types I8 I16 I32. */
25344 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
25345 /* VCNT. Size 8. */
25346 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
25347 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
25348 /* Two address, untyped. */
25349 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
25350 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
25351 /* VTRN. Sizes 8 16 32. */
25352 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
25353 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
25354
25355 /* Table lookup. Size 8. */
25356 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
25357 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
25358
25359 #undef THUMB_VARIANT
25360 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
25361 #undef ARM_VARIANT
25362 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
25363
25364 /* Neon element/structure load/store. */
25365 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
25366 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
25367 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
25368 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
25369 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
25370 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
25371 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
25372 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
25373
25374 #undef THUMB_VARIANT
25375 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
25376 #undef ARM_VARIANT
25377 #define ARM_VARIANT & fpu_vfp_ext_v3xd
25378 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
25379 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25380 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25381 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25382 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25383 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25384 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25385 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
25386 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
25387
25388 #undef THUMB_VARIANT
25389 #define THUMB_VARIANT & fpu_vfp_ext_v3
25390 #undef ARM_VARIANT
25391 #define ARM_VARIANT & fpu_vfp_ext_v3
25392
25393 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
25394 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25395 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25396 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25397 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25398 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25399 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25400 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25401 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25402
25403 #undef ARM_VARIANT
25404 #define ARM_VARIANT & fpu_vfp_ext_fma
25405 #undef THUMB_VARIANT
25406 #define THUMB_VARIANT & fpu_vfp_ext_fma
25407 /* Mnemonics shared by Neon, VFP, MVE and BF16. These are included in the
25408 VFP FMA variant; NEON and VFP FMA always includes the NEON
25409 FMA instructions. */
25410 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
25411 TUF ("vfmat", c300850, fc300850, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), mve_vfma, mve_vfma),
25412 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
25413
25414 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
25415 the v form should always be used. */
25416 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25417 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25418 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25419 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25420 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25421 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25422
25423 #undef THUMB_VARIANT
25424 #undef ARM_VARIANT
25425 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
25426
25427 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25428 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25429 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25430 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25431 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25432 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25433 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
25434 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
25435
25436 #undef ARM_VARIANT
25437 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
25438
25439 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
25440 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
25441 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
25442 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
25443 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
25444 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
25445 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
25446 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
25447 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
25448 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25449 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25450 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25451 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25452 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25453 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25454 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25455 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25456 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25457 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
25458 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
25459 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25460 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25461 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25462 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25463 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25464 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25465 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
25466 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
25467 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
25468 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
25469 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
25470 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
25471 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
25472 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
25473 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
25474 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
25475 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
25476 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25477 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25478 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25479 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25480 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25481 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25482 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25483 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25484 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25485 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
25486 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25487 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25488 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25489 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25490 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25491 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25492 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25493 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25494 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25495 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25496 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25497 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25498 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25499 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25500 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25501 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25502 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25503 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25504 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25505 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25506 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25507 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
25508 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
25509 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25510 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25511 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25512 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25513 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25514 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25515 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25516 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25517 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25518 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25519 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25520 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25521 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25522 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25523 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25524 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25525 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25526 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25527 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
25528 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25529 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25530 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25531 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25532 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25533 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25534 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25535 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25536 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25537 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25538 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25539 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25540 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25541 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25542 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25543 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25544 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25545 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25546 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25547 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25548 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25549 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
25550 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25551 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25552 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25553 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25554 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25555 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25556 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25557 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25558 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25559 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25560 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25561 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25562 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25563 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25564 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25565 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25566 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25567 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25568 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25569 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25570 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
25571 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
25572 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25573 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25574 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25575 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25576 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25577 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25578 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25579 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25580 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25581 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
25582 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
25583 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
25584 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
25585 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
25586 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
25587 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25588 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25589 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25590 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
25591 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
25592 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
25593 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
25594 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
25595 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
25596 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25597 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25598 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25599 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25600 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
25601
25602 #undef ARM_VARIANT
25603 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
25604
25605 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
25606 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
25607 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
25608 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
25609 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
25610 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
25611 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25612 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25613 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25614 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25615 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25616 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25617 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25618 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25619 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25620 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25621 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25622 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25623 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25624 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25625 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
25626 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25627 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25628 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25629 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25630 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25631 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25632 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25633 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25634 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25635 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25636 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25637 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25638 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25639 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25640 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25641 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25642 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25643 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25644 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25645 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25646 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25647 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25648 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25649 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25650 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25651 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25652 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25653 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25654 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25655 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25656 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25657 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25658 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25659 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25660 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25661 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25662
25663 #undef ARM_VARIANT
25664 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
25665
25666 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
25667 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
25668 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
25669 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
25670 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
25671 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
25672 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
25673 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
25674 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
25675 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
25676 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
25677 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
25678 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
25679 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
25680 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
25681 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
25682 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
25683 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
25684 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
25685 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
25686 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
25687 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
25688 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
25689 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
25690 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
25691 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
25692 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
25693 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
25694 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
25695 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
25696 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
25697 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
25698 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
25699 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
25700 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
25701 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
25702 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
25703 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
25704 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
25705 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
25706 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
25707 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
25708 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
25709 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
25710 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
25711 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
25712 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
25713 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
25714 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
25715 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
25716 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
25717 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
25718 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
25719 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
25720 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
25721 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
25722 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
25723 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
25724 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
25725 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
25726 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
25727 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
25728 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
25729 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
25730 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25731 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25732 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25733 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25734 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25735 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25736 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25737 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25738 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
25739 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
25740 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
25741 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
25742
25743 /* ARMv8.5-A instructions. */
25744 #undef ARM_VARIANT
25745 #define ARM_VARIANT & arm_ext_sb
25746 #undef THUMB_VARIANT
25747 #define THUMB_VARIANT & arm_ext_sb
25748 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
25749
25750 #undef ARM_VARIANT
25751 #define ARM_VARIANT & arm_ext_predres
25752 #undef THUMB_VARIANT
25753 #define THUMB_VARIANT & arm_ext_predres
25754 CE("cfprctx", e070f93, 1, (RRnpc), rd),
25755 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
25756 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
25757
25758 /* ARMv8-M instructions. */
25759 #undef ARM_VARIANT
25760 #define ARM_VARIANT NULL
25761 #undef THUMB_VARIANT
25762 #define THUMB_VARIANT & arm_ext_v8m
25763 ToU("sg", e97fe97f, 0, (), noargs),
25764 ToC("blxns", 4784, 1, (RRnpc), t_blx),
25765 ToC("bxns", 4704, 1, (RRnpc), t_bx),
25766 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
25767 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
25768 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
25769 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
25770
25771 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
25772 instructions behave as nop if no VFP is present. */
25773 #undef THUMB_VARIANT
25774 #define THUMB_VARIANT & arm_ext_v8m_main
25775 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
25776 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
25777
25778 /* Armv8.1-M Mainline instructions. */
25779 #undef THUMB_VARIANT
25780 #define THUMB_VARIANT & arm_ext_v8_1m_main
25781 toU("cinc", _cinc, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25782 toU("cinv", _cinv, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25783 toU("cneg", _cneg, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25784 toU("csel", _csel, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25785 toU("csetm", _csetm, 2, (RRnpcsp, COND), t_cond),
25786 toU("cset", _cset, 2, (RRnpcsp, COND), t_cond),
25787 toU("csinc", _csinc, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25788 toU("csinv", _csinv, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25789 toU("csneg", _csneg, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25790
25791 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
25792 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
25793 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
25794 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
25795 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
25796
25797 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
25798 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
25799 toU("le", _le, 2, (oLR, EXP), t_loloop),
25800
25801 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
25802 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
25803
25804 #undef THUMB_VARIANT
25805 #define THUMB_VARIANT & mve_ext
25806 ToC("lsll", ea50010d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
25807 ToC("lsrl", ea50011f, 3, (RRe, RRo, I32), mve_scalar_shift),
25808 ToC("asrl", ea50012d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
25809 ToC("uqrshll", ea51010d, 4, (RRe, RRo, I48_I64, RRnpcsp), mve_scalar_shift1),
25810 ToC("sqrshrl", ea51012d, 4, (RRe, RRo, I48_I64, RRnpcsp), mve_scalar_shift1),
25811 ToC("uqshll", ea51010f, 3, (RRe, RRo, I32), mve_scalar_shift),
25812 ToC("urshrl", ea51011f, 3, (RRe, RRo, I32), mve_scalar_shift),
25813 ToC("srshrl", ea51012f, 3, (RRe, RRo, I32), mve_scalar_shift),
25814 ToC("sqshll", ea51013f, 3, (RRe, RRo, I32), mve_scalar_shift),
25815 ToC("uqrshl", ea500f0d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
25816 ToC("sqrshr", ea500f2d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
25817 ToC("uqshl", ea500f0f, 2, (RRnpcsp, I32), mve_scalar_shift),
25818 ToC("urshr", ea500f1f, 2, (RRnpcsp, I32), mve_scalar_shift),
25819 ToC("srshr", ea500f2f, 2, (RRnpcsp, I32), mve_scalar_shift),
25820 ToC("sqshl", ea500f3f, 2, (RRnpcsp, I32), mve_scalar_shift),
25821
25822 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25823 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25824 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25825 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25826 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25827 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25828 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25829 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25830 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25831 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25832 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25833 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25834 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25835 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25836 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25837
25838 ToC("vpst", fe710f4d, 0, (), mve_vpt),
25839 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
25840 ToC("vpste", fe718f4d, 0, (), mve_vpt),
25841 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
25842 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
25843 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
25844 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
25845 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
25846 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
25847 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
25848 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
25849 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
25850 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
25851 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
25852 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
25853
25854 /* MVE and MVE FP only. */
25855 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
25856 mCEF(vctp, _vctp, 1, (RRnpc), mve_vctp),
25857 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
25858 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
25859 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
25860 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
25861 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
25862 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
25863 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25864 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25865 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25866 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25867 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25868 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25869 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25870 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25871 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25872 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25873
25874 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25875 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25876 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25877 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25878 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25879 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25880 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25881 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25882 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25883 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25884 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25885 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25886 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25887 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25888 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25889 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25890 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25891 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25892 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25893 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25894
25895 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
25896 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
25897 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
25898 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
25899 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
25900 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
25901 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
25902 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
25903 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
25904 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
25905 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
25906 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
25907 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
25908 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
25909 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
25910 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
25911 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
25912
25913 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25914 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25915 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25916 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25917 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25918 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25919 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25920 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25921 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25922 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25923 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25924 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25925 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25926 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25927 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25928 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25929 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25930 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25931 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25932 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25933
25934 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
25935 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
25936 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
25937 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
25938 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
25939
25940 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25941 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25942 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25943 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25944 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25945 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25946 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25947 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25948 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25949 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25950 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25951 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25952 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25953 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
25954 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
25955 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
25956 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
25957
25958 mCEF(vshrnt, _vshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25959 mCEF(vshrnb, _vshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25960 mCEF(vrshrnt, _vrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25961 mCEF(vrshrnb, _vrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25962 mCEF(vqshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25963 mCEF(vqshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25964 mCEF(vqshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25965 mCEF(vqshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25966 mCEF(vqrshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25967 mCEF(vqrshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25968 mCEF(vqrshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25969 mCEF(vqrshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25970
25971 mToC("vshlc", eea00fc0, 3, (RMQ, RR, I32z), mve_vshlc),
25972 mToC("vshllt", ee201e00, 3, (RMQ, RMQ, I32), mve_vshll),
25973 mToC("vshllb", ee200e00, 3, (RMQ, RMQ, I32), mve_vshll),
25974
25975 toU("dlstp", _dlstp, 2, (LR, RR), t_loloop),
25976 toU("wlstp", _wlstp, 3, (LR, RR, EXP), t_loloop),
25977 toU("letp", _letp, 2, (LR, EXP), t_loloop),
25978 toU("lctp", _lctp, 0, (), t_loloop),
25979
25980 #undef THUMB_VARIANT
25981 #define THUMB_VARIANT & mve_fp_ext
25982 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
25983 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
25984 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25985 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25986 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
25987 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
25988 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
25989 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
25990
25991 #undef ARM_VARIANT
25992 #define ARM_VARIANT & fpu_vfp_ext_v1
25993 #undef THUMB_VARIANT
25994 #define THUMB_VARIANT & arm_ext_v6t2
25995 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
25996 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
25997
25998 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25999
26000 #undef ARM_VARIANT
26001 #define ARM_VARIANT & fpu_vfp_ext_v1xd
26002
26003 MNCE(vmov, 0, 1, (VMOV), neon_mov),
26004 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
26005 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
26006 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
26007
26008 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
26009 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
26010 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
26011
26012 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
26013 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
26014
26015 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
26016 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
26017
26018 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
26019 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
26020
26021 #undef ARM_VARIANT
26022 #define ARM_VARIANT & fpu_vfp_ext_v2
26023
26024 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
26025 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
26026 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
26027 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
26028
26029 #undef ARM_VARIANT
26030 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
26031 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
26032 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
26033 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
26034 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
26035 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
26036 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
26037
26038 #undef ARM_VARIANT
26039 #define ARM_VARIANT & fpu_neon_ext_v1
26040 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
26041 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
26042 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
26043 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
26044 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26045 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26046 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26047 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
26048 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
26049 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
26050 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
26051 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
26052 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
26053 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
26054 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
26055 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
26056 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
26057 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
26058 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
26059 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
26060 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
26061 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
26062 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
26063 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
26064 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
26065 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
26066 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
26067 MNUF(vshr, 0800010, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
26068 MNUF(vrshr, 0800210, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
26069 MNUF(vsli, 1800510, 3, (RNDQMQ, oRNDQMQ, I63), neon_sli),
26070 MNUF(vsri, 1800410, 3, (RNDQMQ, oRNDQMQ, I64z), neon_sri),
26071 MNUF(vrev64, 1b00000, 2, (RNDQMQ, RNDQMQ), neon_rev),
26072 MNUF(vrev32, 1b00080, 2, (RNDQMQ, RNDQMQ), neon_rev),
26073 MNUF(vrev16, 1b00100, 2, (RNDQMQ, RNDQMQ), neon_rev),
26074 mnUF(vshl, _vshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_shl),
26075 mnUF(vqshl, _vqshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_qshl),
26076 MNUF(vqshlu, 1800610, 3, (RNDQMQ, oRNDQMQ, I63), neon_qshlu_imm),
26077
26078 #undef ARM_VARIANT
26079 #define ARM_VARIANT & arm_ext_v8_3
26080 #undef THUMB_VARIANT
26081 #define THUMB_VARIANT & arm_ext_v6t2_v8m
26082 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
26083 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
26084
26085 #undef ARM_VARIANT
26086 #define ARM_VARIANT &arm_ext_bf16
26087 #undef THUMB_VARIANT
26088 #define THUMB_VARIANT &arm_ext_bf16
26089 TUF ("vdot", c000d00, fc000d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), vdot, vdot),
26090 TUF ("vmmla", c000c40, fc000c40, 3, (RNQ, RNQ, RNQ), vmmla, vmmla),
26091 TUF ("vfmab", c300810, fc300810, 3, (RNDQ, RNDQ, RNDQ_RNSC), bfloat_vfma, bfloat_vfma),
26092
26093 #undef ARM_VARIANT
26094 #define ARM_VARIANT &arm_ext_i8mm
26095 #undef THUMB_VARIANT
26096 #define THUMB_VARIANT &arm_ext_i8mm
26097 TUF ("vsmmla", c200c40, fc200c40, 3, (RNQ, RNQ, RNQ), vsmmla, vsmmla),
26098 TUF ("vummla", c200c50, fc200c50, 3, (RNQ, RNQ, RNQ), vummla, vummla),
26099 TUF ("vusmmla", ca00c40, fca00c40, 3, (RNQ, RNQ, RNQ), vsmmla, vsmmla),
26100 TUF ("vusdot", c800d00, fc800d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), vusdot, vusdot),
26101 TUF ("vsudot", c800d10, fc800d10, 3, (RNDQ, RNDQ, RNSC), vsudot, vsudot),
26102 };
26103 #undef ARM_VARIANT
26104 #undef THUMB_VARIANT
26105 #undef TCE
26106 #undef TUE
26107 #undef TUF
26108 #undef TCC
26109 #undef cCE
26110 #undef cCL
26111 #undef C3E
26112 #undef C3
26113 #undef CE
26114 #undef CM
26115 #undef CL
26116 #undef UE
26117 #undef UF
26118 #undef UT
26119 #undef NUF
26120 #undef nUF
26121 #undef NCE
26122 #undef nCE
26123 #undef OPS0
26124 #undef OPS1
26125 #undef OPS2
26126 #undef OPS3
26127 #undef OPS4
26128 #undef OPS5
26129 #undef OPS6
26130 #undef do_0
26131 #undef ToC
26132 #undef toC
26133 #undef ToU
26134 #undef toU
26135 \f
26136 /* MD interface: bits in the object file. */
26137
26138 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
26139 for use in the a.out file, and stores them in the array pointed to by buf.
26140 This knows about the endian-ness of the target machine and does
26141 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
26142 2 (short) and 4 (long) Floating numbers are put out as a series of
26143 LITTLENUMS (shorts, here at least). */
26144
26145 void
26146 md_number_to_chars (char * buf, valueT val, int n)
26147 {
26148 if (target_big_endian)
26149 number_to_chars_bigendian (buf, val, n);
26150 else
26151 number_to_chars_littleendian (buf, val, n);
26152 }
26153
26154 static valueT
26155 md_chars_to_number (char * buf, int n)
26156 {
26157 valueT result = 0;
26158 unsigned char * where = (unsigned char *) buf;
26159
26160 if (target_big_endian)
26161 {
26162 while (n--)
26163 {
26164 result <<= 8;
26165 result |= (*where++ & 255);
26166 }
26167 }
26168 else
26169 {
26170 while (n--)
26171 {
26172 result <<= 8;
26173 result |= (where[n] & 255);
26174 }
26175 }
26176
26177 return result;
26178 }
26179
26180 /* MD interface: Sections. */
26181
26182 /* Calculate the maximum variable size (i.e., excluding fr_fix)
26183 that an rs_machine_dependent frag may reach. */
26184
26185 unsigned int
26186 arm_frag_max_var (fragS *fragp)
26187 {
26188 /* We only use rs_machine_dependent for variable-size Thumb instructions,
26189 which are either THUMB_SIZE (2) or INSN_SIZE (4).
26190
26191 Note that we generate relaxable instructions even for cases that don't
26192 really need it, like an immediate that's a trivial constant. So we're
26193 overestimating the instruction size for some of those cases. Rather
26194 than putting more intelligence here, it would probably be better to
26195 avoid generating a relaxation frag in the first place when it can be
26196 determined up front that a short instruction will suffice. */
26197
26198 gas_assert (fragp->fr_type == rs_machine_dependent);
26199 return INSN_SIZE;
26200 }
26201
26202 /* Estimate the size of a frag before relaxing. Assume everything fits in
26203 2 bytes. */
26204
26205 int
26206 md_estimate_size_before_relax (fragS * fragp,
26207 segT segtype ATTRIBUTE_UNUSED)
26208 {
26209 fragp->fr_var = 2;
26210 return 2;
26211 }
26212
26213 /* Convert a machine dependent frag. */
26214
26215 void
26216 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
26217 {
26218 unsigned long insn;
26219 unsigned long old_op;
26220 char *buf;
26221 expressionS exp;
26222 fixS *fixp;
26223 int reloc_type;
26224 int pc_rel;
26225 int opcode;
26226
26227 buf = fragp->fr_literal + fragp->fr_fix;
26228
26229 old_op = bfd_get_16(abfd, buf);
26230 if (fragp->fr_symbol)
26231 {
26232 exp.X_op = O_symbol;
26233 exp.X_add_symbol = fragp->fr_symbol;
26234 }
26235 else
26236 {
26237 exp.X_op = O_constant;
26238 }
26239 exp.X_add_number = fragp->fr_offset;
26240 opcode = fragp->fr_subtype;
26241 switch (opcode)
26242 {
26243 case T_MNEM_ldr_pc:
26244 case T_MNEM_ldr_pc2:
26245 case T_MNEM_ldr_sp:
26246 case T_MNEM_str_sp:
26247 case T_MNEM_ldr:
26248 case T_MNEM_ldrb:
26249 case T_MNEM_ldrh:
26250 case T_MNEM_str:
26251 case T_MNEM_strb:
26252 case T_MNEM_strh:
26253 if (fragp->fr_var == 4)
26254 {
26255 insn = THUMB_OP32 (opcode);
26256 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
26257 {
26258 insn |= (old_op & 0x700) << 4;
26259 }
26260 else
26261 {
26262 insn |= (old_op & 7) << 12;
26263 insn |= (old_op & 0x38) << 13;
26264 }
26265 insn |= 0x00000c00;
26266 put_thumb32_insn (buf, insn);
26267 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
26268 }
26269 else
26270 {
26271 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
26272 }
26273 pc_rel = (opcode == T_MNEM_ldr_pc2);
26274 break;
26275 case T_MNEM_adr:
26276 if (fragp->fr_var == 4)
26277 {
26278 insn = THUMB_OP32 (opcode);
26279 insn |= (old_op & 0xf0) << 4;
26280 put_thumb32_insn (buf, insn);
26281 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
26282 }
26283 else
26284 {
26285 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
26286 exp.X_add_number -= 4;
26287 }
26288 pc_rel = 1;
26289 break;
26290 case T_MNEM_mov:
26291 case T_MNEM_movs:
26292 case T_MNEM_cmp:
26293 case T_MNEM_cmn:
26294 if (fragp->fr_var == 4)
26295 {
26296 int r0off = (opcode == T_MNEM_mov
26297 || opcode == T_MNEM_movs) ? 0 : 8;
26298 insn = THUMB_OP32 (opcode);
26299 insn = (insn & 0xe1ffffff) | 0x10000000;
26300 insn |= (old_op & 0x700) << r0off;
26301 put_thumb32_insn (buf, insn);
26302 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
26303 }
26304 else
26305 {
26306 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
26307 }
26308 pc_rel = 0;
26309 break;
26310 case T_MNEM_b:
26311 if (fragp->fr_var == 4)
26312 {
26313 insn = THUMB_OP32(opcode);
26314 put_thumb32_insn (buf, insn);
26315 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
26316 }
26317 else
26318 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
26319 pc_rel = 1;
26320 break;
26321 case T_MNEM_bcond:
26322 if (fragp->fr_var == 4)
26323 {
26324 insn = THUMB_OP32(opcode);
26325 insn |= (old_op & 0xf00) << 14;
26326 put_thumb32_insn (buf, insn);
26327 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
26328 }
26329 else
26330 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
26331 pc_rel = 1;
26332 break;
26333 case T_MNEM_add_sp:
26334 case T_MNEM_add_pc:
26335 case T_MNEM_inc_sp:
26336 case T_MNEM_dec_sp:
26337 if (fragp->fr_var == 4)
26338 {
26339 /* ??? Choose between add and addw. */
26340 insn = THUMB_OP32 (opcode);
26341 insn |= (old_op & 0xf0) << 4;
26342 put_thumb32_insn (buf, insn);
26343 if (opcode == T_MNEM_add_pc)
26344 reloc_type = BFD_RELOC_ARM_T32_IMM12;
26345 else
26346 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
26347 }
26348 else
26349 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
26350 pc_rel = 0;
26351 break;
26352
26353 case T_MNEM_addi:
26354 case T_MNEM_addis:
26355 case T_MNEM_subi:
26356 case T_MNEM_subis:
26357 if (fragp->fr_var == 4)
26358 {
26359 insn = THUMB_OP32 (opcode);
26360 insn |= (old_op & 0xf0) << 4;
26361 insn |= (old_op & 0xf) << 16;
26362 put_thumb32_insn (buf, insn);
26363 if (insn & (1 << 20))
26364 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
26365 else
26366 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
26367 }
26368 else
26369 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
26370 pc_rel = 0;
26371 break;
26372 default:
26373 abort ();
26374 }
26375 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
26376 (enum bfd_reloc_code_real) reloc_type);
26377 fixp->fx_file = fragp->fr_file;
26378 fixp->fx_line = fragp->fr_line;
26379 fragp->fr_fix += fragp->fr_var;
26380
26381 /* Set whether we use thumb-2 ISA based on final relaxation results. */
26382 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
26383 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
26384 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
26385 }
26386
26387 /* Return the size of a relaxable immediate operand instruction.
26388 SHIFT and SIZE specify the form of the allowable immediate. */
26389 static int
26390 relax_immediate (fragS *fragp, int size, int shift)
26391 {
26392 offsetT offset;
26393 offsetT mask;
26394 offsetT low;
26395
26396 /* ??? Should be able to do better than this. */
26397 if (fragp->fr_symbol)
26398 return 4;
26399
26400 low = (1 << shift) - 1;
26401 mask = (1 << (shift + size)) - (1 << shift);
26402 offset = fragp->fr_offset;
26403 /* Force misaligned offsets to 32-bit variant. */
26404 if (offset & low)
26405 return 4;
26406 if (offset & ~mask)
26407 return 4;
26408 return 2;
26409 }
26410
26411 /* Get the address of a symbol during relaxation. */
26412 static addressT
26413 relaxed_symbol_addr (fragS *fragp, long stretch)
26414 {
26415 fragS *sym_frag;
26416 addressT addr;
26417 symbolS *sym;
26418
26419 sym = fragp->fr_symbol;
26420 sym_frag = symbol_get_frag (sym);
26421 know (S_GET_SEGMENT (sym) != absolute_section
26422 || sym_frag == &zero_address_frag);
26423 addr = S_GET_VALUE (sym) + fragp->fr_offset;
26424
26425 /* If frag has yet to be reached on this pass, assume it will
26426 move by STRETCH just as we did. If this is not so, it will
26427 be because some frag between grows, and that will force
26428 another pass. */
26429
26430 if (stretch != 0
26431 && sym_frag->relax_marker != fragp->relax_marker)
26432 {
26433 fragS *f;
26434
26435 /* Adjust stretch for any alignment frag. Note that if have
26436 been expanding the earlier code, the symbol may be
26437 defined in what appears to be an earlier frag. FIXME:
26438 This doesn't handle the fr_subtype field, which specifies
26439 a maximum number of bytes to skip when doing an
26440 alignment. */
26441 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
26442 {
26443 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
26444 {
26445 if (stretch < 0)
26446 stretch = - ((- stretch)
26447 & ~ ((1 << (int) f->fr_offset) - 1));
26448 else
26449 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
26450 if (stretch == 0)
26451 break;
26452 }
26453 }
26454 if (f != NULL)
26455 addr += stretch;
26456 }
26457
26458 return addr;
26459 }
26460
26461 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
26462 load. */
26463 static int
26464 relax_adr (fragS *fragp, asection *sec, long stretch)
26465 {
26466 addressT addr;
26467 offsetT val;
26468
26469 /* Assume worst case for symbols not known to be in the same section. */
26470 if (fragp->fr_symbol == NULL
26471 || !S_IS_DEFINED (fragp->fr_symbol)
26472 || sec != S_GET_SEGMENT (fragp->fr_symbol)
26473 || S_IS_WEAK (fragp->fr_symbol))
26474 return 4;
26475
26476 val = relaxed_symbol_addr (fragp, stretch);
26477 addr = fragp->fr_address + fragp->fr_fix;
26478 addr = (addr + 4) & ~3;
26479 /* Force misaligned targets to 32-bit variant. */
26480 if (val & 3)
26481 return 4;
26482 val -= addr;
26483 if (val < 0 || val > 1020)
26484 return 4;
26485 return 2;
26486 }
26487
26488 /* Return the size of a relaxable add/sub immediate instruction. */
26489 static int
26490 relax_addsub (fragS *fragp, asection *sec)
26491 {
26492 char *buf;
26493 int op;
26494
26495 buf = fragp->fr_literal + fragp->fr_fix;
26496 op = bfd_get_16(sec->owner, buf);
26497 if ((op & 0xf) == ((op >> 4) & 0xf))
26498 return relax_immediate (fragp, 8, 0);
26499 else
26500 return relax_immediate (fragp, 3, 0);
26501 }
26502
26503 /* Return TRUE iff the definition of symbol S could be pre-empted
26504 (overridden) at link or load time. */
26505 static bfd_boolean
26506 symbol_preemptible (symbolS *s)
26507 {
26508 /* Weak symbols can always be pre-empted. */
26509 if (S_IS_WEAK (s))
26510 return TRUE;
26511
26512 /* Non-global symbols cannot be pre-empted. */
26513 if (! S_IS_EXTERNAL (s))
26514 return FALSE;
26515
26516 #ifdef OBJ_ELF
26517 /* In ELF, a global symbol can be marked protected, or private. In that
26518 case it can't be pre-empted (other definitions in the same link unit
26519 would violate the ODR). */
26520 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
26521 return FALSE;
26522 #endif
26523
26524 /* Other global symbols might be pre-empted. */
26525 return TRUE;
26526 }
26527
26528 /* Return the size of a relaxable branch instruction. BITS is the
26529 size of the offset field in the narrow instruction. */
26530
26531 static int
26532 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
26533 {
26534 addressT addr;
26535 offsetT val;
26536 offsetT limit;
26537
26538 /* Assume worst case for symbols not known to be in the same section. */
26539 if (!S_IS_DEFINED (fragp->fr_symbol)
26540 || sec != S_GET_SEGMENT (fragp->fr_symbol)
26541 || S_IS_WEAK (fragp->fr_symbol))
26542 return 4;
26543
26544 #ifdef OBJ_ELF
26545 /* A branch to a function in ARM state will require interworking. */
26546 if (S_IS_DEFINED (fragp->fr_symbol)
26547 && ARM_IS_FUNC (fragp->fr_symbol))
26548 return 4;
26549 #endif
26550
26551 if (symbol_preemptible (fragp->fr_symbol))
26552 return 4;
26553
26554 val = relaxed_symbol_addr (fragp, stretch);
26555 addr = fragp->fr_address + fragp->fr_fix + 4;
26556 val -= addr;
26557
26558 /* Offset is a signed value *2 */
26559 limit = 1 << bits;
26560 if (val >= limit || val < -limit)
26561 return 4;
26562 return 2;
26563 }
26564
26565
26566 /* Relax a machine dependent frag. This returns the amount by which
26567 the current size of the frag should change. */
26568
26569 int
26570 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
26571 {
26572 int oldsize;
26573 int newsize;
26574
26575 oldsize = fragp->fr_var;
26576 switch (fragp->fr_subtype)
26577 {
26578 case T_MNEM_ldr_pc2:
26579 newsize = relax_adr (fragp, sec, stretch);
26580 break;
26581 case T_MNEM_ldr_pc:
26582 case T_MNEM_ldr_sp:
26583 case T_MNEM_str_sp:
26584 newsize = relax_immediate (fragp, 8, 2);
26585 break;
26586 case T_MNEM_ldr:
26587 case T_MNEM_str:
26588 newsize = relax_immediate (fragp, 5, 2);
26589 break;
26590 case T_MNEM_ldrh:
26591 case T_MNEM_strh:
26592 newsize = relax_immediate (fragp, 5, 1);
26593 break;
26594 case T_MNEM_ldrb:
26595 case T_MNEM_strb:
26596 newsize = relax_immediate (fragp, 5, 0);
26597 break;
26598 case T_MNEM_adr:
26599 newsize = relax_adr (fragp, sec, stretch);
26600 break;
26601 case T_MNEM_mov:
26602 case T_MNEM_movs:
26603 case T_MNEM_cmp:
26604 case T_MNEM_cmn:
26605 newsize = relax_immediate (fragp, 8, 0);
26606 break;
26607 case T_MNEM_b:
26608 newsize = relax_branch (fragp, sec, 11, stretch);
26609 break;
26610 case T_MNEM_bcond:
26611 newsize = relax_branch (fragp, sec, 8, stretch);
26612 break;
26613 case T_MNEM_add_sp:
26614 case T_MNEM_add_pc:
26615 newsize = relax_immediate (fragp, 8, 2);
26616 break;
26617 case T_MNEM_inc_sp:
26618 case T_MNEM_dec_sp:
26619 newsize = relax_immediate (fragp, 7, 2);
26620 break;
26621 case T_MNEM_addi:
26622 case T_MNEM_addis:
26623 case T_MNEM_subi:
26624 case T_MNEM_subis:
26625 newsize = relax_addsub (fragp, sec);
26626 break;
26627 default:
26628 abort ();
26629 }
26630
26631 fragp->fr_var = newsize;
26632 /* Freeze wide instructions that are at or before the same location as
26633 in the previous pass. This avoids infinite loops.
26634 Don't freeze them unconditionally because targets may be artificially
26635 misaligned by the expansion of preceding frags. */
26636 if (stretch <= 0 && newsize > 2)
26637 {
26638 md_convert_frag (sec->owner, sec, fragp);
26639 frag_wane (fragp);
26640 }
26641
26642 return newsize - oldsize;
26643 }
26644
26645 /* Round up a section size to the appropriate boundary. */
26646
26647 valueT
26648 md_section_align (segT segment ATTRIBUTE_UNUSED,
26649 valueT size)
26650 {
26651 return size;
26652 }
26653
26654 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
26655 of an rs_align_code fragment. */
26656
26657 void
26658 arm_handle_align (fragS * fragP)
26659 {
26660 static unsigned char const arm_noop[2][2][4] =
26661 {
26662 { /* ARMv1 */
26663 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
26664 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
26665 },
26666 { /* ARMv6k */
26667 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
26668 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
26669 },
26670 };
26671 static unsigned char const thumb_noop[2][2][2] =
26672 {
26673 { /* Thumb-1 */
26674 {0xc0, 0x46}, /* LE */
26675 {0x46, 0xc0}, /* BE */
26676 },
26677 { /* Thumb-2 */
26678 {0x00, 0xbf}, /* LE */
26679 {0xbf, 0x00} /* BE */
26680 }
26681 };
26682 static unsigned char const wide_thumb_noop[2][4] =
26683 { /* Wide Thumb-2 */
26684 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
26685 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
26686 };
26687
26688 unsigned bytes, fix, noop_size;
26689 char * p;
26690 const unsigned char * noop;
26691 const unsigned char *narrow_noop = NULL;
26692 #ifdef OBJ_ELF
26693 enum mstate state;
26694 #endif
26695
26696 if (fragP->fr_type != rs_align_code)
26697 return;
26698
26699 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
26700 p = fragP->fr_literal + fragP->fr_fix;
26701 fix = 0;
26702
26703 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
26704 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
26705
26706 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
26707
26708 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
26709 {
26710 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
26711 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
26712 {
26713 narrow_noop = thumb_noop[1][target_big_endian];
26714 noop = wide_thumb_noop[target_big_endian];
26715 }
26716 else
26717 noop = thumb_noop[0][target_big_endian];
26718 noop_size = 2;
26719 #ifdef OBJ_ELF
26720 state = MAP_THUMB;
26721 #endif
26722 }
26723 else
26724 {
26725 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
26726 ? selected_cpu : arm_arch_none,
26727 arm_ext_v6k) != 0]
26728 [target_big_endian];
26729 noop_size = 4;
26730 #ifdef OBJ_ELF
26731 state = MAP_ARM;
26732 #endif
26733 }
26734
26735 fragP->fr_var = noop_size;
26736
26737 if (bytes & (noop_size - 1))
26738 {
26739 fix = bytes & (noop_size - 1);
26740 #ifdef OBJ_ELF
26741 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
26742 #endif
26743 memset (p, 0, fix);
26744 p += fix;
26745 bytes -= fix;
26746 }
26747
26748 if (narrow_noop)
26749 {
26750 if (bytes & noop_size)
26751 {
26752 /* Insert a narrow noop. */
26753 memcpy (p, narrow_noop, noop_size);
26754 p += noop_size;
26755 bytes -= noop_size;
26756 fix += noop_size;
26757 }
26758
26759 /* Use wide noops for the remainder */
26760 noop_size = 4;
26761 }
26762
26763 while (bytes >= noop_size)
26764 {
26765 memcpy (p, noop, noop_size);
26766 p += noop_size;
26767 bytes -= noop_size;
26768 fix += noop_size;
26769 }
26770
26771 fragP->fr_fix += fix;
26772 }
26773
26774 /* Called from md_do_align. Used to create an alignment
26775 frag in a code section. */
26776
26777 void
26778 arm_frag_align_code (int n, int max)
26779 {
26780 char * p;
26781
26782 /* We assume that there will never be a requirement
26783 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
26784 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
26785 {
26786 char err_msg[128];
26787
26788 sprintf (err_msg,
26789 _("alignments greater than %d bytes not supported in .text sections."),
26790 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
26791 as_fatal ("%s", err_msg);
26792 }
26793
26794 p = frag_var (rs_align_code,
26795 MAX_MEM_FOR_RS_ALIGN_CODE,
26796 1,
26797 (relax_substateT) max,
26798 (symbolS *) NULL,
26799 (offsetT) n,
26800 (char *) NULL);
26801 *p = 0;
26802 }
26803
26804 /* Perform target specific initialisation of a frag.
26805 Note - despite the name this initialisation is not done when the frag
26806 is created, but only when its type is assigned. A frag can be created
26807 and used a long time before its type is set, so beware of assuming that
26808 this initialisation is performed first. */
26809
26810 #ifndef OBJ_ELF
26811 void
26812 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
26813 {
26814 /* Record whether this frag is in an ARM or a THUMB area. */
26815 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
26816 }
26817
26818 #else /* OBJ_ELF is defined. */
26819 void
26820 arm_init_frag (fragS * fragP, int max_chars)
26821 {
26822 bfd_boolean frag_thumb_mode;
26823
26824 /* If the current ARM vs THUMB mode has not already
26825 been recorded into this frag then do so now. */
26826 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
26827 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
26828
26829 /* PR 21809: Do not set a mapping state for debug sections
26830 - it just confuses other tools. */
26831 if (bfd_section_flags (now_seg) & SEC_DEBUGGING)
26832 return;
26833
26834 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
26835
26836 /* Record a mapping symbol for alignment frags. We will delete this
26837 later if the alignment ends up empty. */
26838 switch (fragP->fr_type)
26839 {
26840 case rs_align:
26841 case rs_align_test:
26842 case rs_fill:
26843 mapping_state_2 (MAP_DATA, max_chars);
26844 break;
26845 case rs_align_code:
26846 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
26847 break;
26848 default:
26849 break;
26850 }
26851 }
26852
26853 /* When we change sections we need to issue a new mapping symbol. */
26854
26855 void
26856 arm_elf_change_section (void)
26857 {
26858 /* Link an unlinked unwind index table section to the .text section. */
26859 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
26860 && elf_linked_to_section (now_seg) == NULL)
26861 elf_linked_to_section (now_seg) = text_section;
26862 }
26863
26864 int
26865 arm_elf_section_type (const char * str, size_t len)
26866 {
26867 if (len == 5 && strncmp (str, "exidx", 5) == 0)
26868 return SHT_ARM_EXIDX;
26869
26870 return -1;
26871 }
26872 \f
26873 /* Code to deal with unwinding tables. */
26874
26875 static void add_unwind_adjustsp (offsetT);
26876
26877 /* Generate any deferred unwind frame offset. */
26878
26879 static void
26880 flush_pending_unwind (void)
26881 {
26882 offsetT offset;
26883
26884 offset = unwind.pending_offset;
26885 unwind.pending_offset = 0;
26886 if (offset != 0)
26887 add_unwind_adjustsp (offset);
26888 }
26889
26890 /* Add an opcode to this list for this function. Two-byte opcodes should
26891 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
26892 order. */
26893
26894 static void
26895 add_unwind_opcode (valueT op, int length)
26896 {
26897 /* Add any deferred stack adjustment. */
26898 if (unwind.pending_offset)
26899 flush_pending_unwind ();
26900
26901 unwind.sp_restored = 0;
26902
26903 if (unwind.opcode_count + length > unwind.opcode_alloc)
26904 {
26905 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
26906 if (unwind.opcodes)
26907 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
26908 unwind.opcode_alloc);
26909 else
26910 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
26911 }
26912 while (length > 0)
26913 {
26914 length--;
26915 unwind.opcodes[unwind.opcode_count] = op & 0xff;
26916 op >>= 8;
26917 unwind.opcode_count++;
26918 }
26919 }
26920
26921 /* Add unwind opcodes to adjust the stack pointer. */
26922
26923 static void
26924 add_unwind_adjustsp (offsetT offset)
26925 {
26926 valueT op;
26927
26928 if (offset > 0x200)
26929 {
26930 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
26931 char bytes[5];
26932 int n;
26933 valueT o;
26934
26935 /* Long form: 0xb2, uleb128. */
26936 /* This might not fit in a word so add the individual bytes,
26937 remembering the list is built in reverse order. */
26938 o = (valueT) ((offset - 0x204) >> 2);
26939 if (o == 0)
26940 add_unwind_opcode (0, 1);
26941
26942 /* Calculate the uleb128 encoding of the offset. */
26943 n = 0;
26944 while (o)
26945 {
26946 bytes[n] = o & 0x7f;
26947 o >>= 7;
26948 if (o)
26949 bytes[n] |= 0x80;
26950 n++;
26951 }
26952 /* Add the insn. */
26953 for (; n; n--)
26954 add_unwind_opcode (bytes[n - 1], 1);
26955 add_unwind_opcode (0xb2, 1);
26956 }
26957 else if (offset > 0x100)
26958 {
26959 /* Two short opcodes. */
26960 add_unwind_opcode (0x3f, 1);
26961 op = (offset - 0x104) >> 2;
26962 add_unwind_opcode (op, 1);
26963 }
26964 else if (offset > 0)
26965 {
26966 /* Short opcode. */
26967 op = (offset - 4) >> 2;
26968 add_unwind_opcode (op, 1);
26969 }
26970 else if (offset < 0)
26971 {
26972 offset = -offset;
26973 while (offset > 0x100)
26974 {
26975 add_unwind_opcode (0x7f, 1);
26976 offset -= 0x100;
26977 }
26978 op = ((offset - 4) >> 2) | 0x40;
26979 add_unwind_opcode (op, 1);
26980 }
26981 }
26982
26983 /* Finish the list of unwind opcodes for this function. */
26984
26985 static void
26986 finish_unwind_opcodes (void)
26987 {
26988 valueT op;
26989
26990 if (unwind.fp_used)
26991 {
26992 /* Adjust sp as necessary. */
26993 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
26994 flush_pending_unwind ();
26995
26996 /* After restoring sp from the frame pointer. */
26997 op = 0x90 | unwind.fp_reg;
26998 add_unwind_opcode (op, 1);
26999 }
27000 else
27001 flush_pending_unwind ();
27002 }
27003
27004
27005 /* Start an exception table entry. If idx is nonzero this is an index table
27006 entry. */
27007
27008 static void
27009 start_unwind_section (const segT text_seg, int idx)
27010 {
27011 const char * text_name;
27012 const char * prefix;
27013 const char * prefix_once;
27014 const char * group_name;
27015 char * sec_name;
27016 int type;
27017 int flags;
27018 int linkonce;
27019
27020 if (idx)
27021 {
27022 prefix = ELF_STRING_ARM_unwind;
27023 prefix_once = ELF_STRING_ARM_unwind_once;
27024 type = SHT_ARM_EXIDX;
27025 }
27026 else
27027 {
27028 prefix = ELF_STRING_ARM_unwind_info;
27029 prefix_once = ELF_STRING_ARM_unwind_info_once;
27030 type = SHT_PROGBITS;
27031 }
27032
27033 text_name = segment_name (text_seg);
27034 if (streq (text_name, ".text"))
27035 text_name = "";
27036
27037 if (strncmp (text_name, ".gnu.linkonce.t.",
27038 strlen (".gnu.linkonce.t.")) == 0)
27039 {
27040 prefix = prefix_once;
27041 text_name += strlen (".gnu.linkonce.t.");
27042 }
27043
27044 sec_name = concat (prefix, text_name, (char *) NULL);
27045
27046 flags = SHF_ALLOC;
27047 linkonce = 0;
27048 group_name = 0;
27049
27050 /* Handle COMDAT group. */
27051 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
27052 {
27053 group_name = elf_group_name (text_seg);
27054 if (group_name == NULL)
27055 {
27056 as_bad (_("Group section `%s' has no group signature"),
27057 segment_name (text_seg));
27058 ignore_rest_of_line ();
27059 return;
27060 }
27061 flags |= SHF_GROUP;
27062 linkonce = 1;
27063 }
27064
27065 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
27066 linkonce, 0);
27067
27068 /* Set the section link for index tables. */
27069 if (idx)
27070 elf_linked_to_section (now_seg) = text_seg;
27071 }
27072
27073
27074 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
27075 personality routine data. Returns zero, or the index table value for
27076 an inline entry. */
27077
27078 static valueT
27079 create_unwind_entry (int have_data)
27080 {
27081 int size;
27082 addressT where;
27083 char *ptr;
27084 /* The current word of data. */
27085 valueT data;
27086 /* The number of bytes left in this word. */
27087 int n;
27088
27089 finish_unwind_opcodes ();
27090
27091 /* Remember the current text section. */
27092 unwind.saved_seg = now_seg;
27093 unwind.saved_subseg = now_subseg;
27094
27095 start_unwind_section (now_seg, 0);
27096
27097 if (unwind.personality_routine == NULL)
27098 {
27099 if (unwind.personality_index == -2)
27100 {
27101 if (have_data)
27102 as_bad (_("handlerdata in cantunwind frame"));
27103 return 1; /* EXIDX_CANTUNWIND. */
27104 }
27105
27106 /* Use a default personality routine if none is specified. */
27107 if (unwind.personality_index == -1)
27108 {
27109 if (unwind.opcode_count > 3)
27110 unwind.personality_index = 1;
27111 else
27112 unwind.personality_index = 0;
27113 }
27114
27115 /* Space for the personality routine entry. */
27116 if (unwind.personality_index == 0)
27117 {
27118 if (unwind.opcode_count > 3)
27119 as_bad (_("too many unwind opcodes for personality routine 0"));
27120
27121 if (!have_data)
27122 {
27123 /* All the data is inline in the index table. */
27124 data = 0x80;
27125 n = 3;
27126 while (unwind.opcode_count > 0)
27127 {
27128 unwind.opcode_count--;
27129 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
27130 n--;
27131 }
27132
27133 /* Pad with "finish" opcodes. */
27134 while (n--)
27135 data = (data << 8) | 0xb0;
27136
27137 return data;
27138 }
27139 size = 0;
27140 }
27141 else
27142 /* We get two opcodes "free" in the first word. */
27143 size = unwind.opcode_count - 2;
27144 }
27145 else
27146 {
27147 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
27148 if (unwind.personality_index != -1)
27149 {
27150 as_bad (_("attempt to recreate an unwind entry"));
27151 return 1;
27152 }
27153
27154 /* An extra byte is required for the opcode count. */
27155 size = unwind.opcode_count + 1;
27156 }
27157
27158 size = (size + 3) >> 2;
27159 if (size > 0xff)
27160 as_bad (_("too many unwind opcodes"));
27161
27162 frag_align (2, 0, 0);
27163 record_alignment (now_seg, 2);
27164 unwind.table_entry = expr_build_dot ();
27165
27166 /* Allocate the table entry. */
27167 ptr = frag_more ((size << 2) + 4);
27168 /* PR 13449: Zero the table entries in case some of them are not used. */
27169 memset (ptr, 0, (size << 2) + 4);
27170 where = frag_now_fix () - ((size << 2) + 4);
27171
27172 switch (unwind.personality_index)
27173 {
27174 case -1:
27175 /* ??? Should this be a PLT generating relocation? */
27176 /* Custom personality routine. */
27177 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
27178 BFD_RELOC_ARM_PREL31);
27179
27180 where += 4;
27181 ptr += 4;
27182
27183 /* Set the first byte to the number of additional words. */
27184 data = size > 0 ? size - 1 : 0;
27185 n = 3;
27186 break;
27187
27188 /* ABI defined personality routines. */
27189 case 0:
27190 /* Three opcodes bytes are packed into the first word. */
27191 data = 0x80;
27192 n = 3;
27193 break;
27194
27195 case 1:
27196 case 2:
27197 /* The size and first two opcode bytes go in the first word. */
27198 data = ((0x80 + unwind.personality_index) << 8) | size;
27199 n = 2;
27200 break;
27201
27202 default:
27203 /* Should never happen. */
27204 abort ();
27205 }
27206
27207 /* Pack the opcodes into words (MSB first), reversing the list at the same
27208 time. */
27209 while (unwind.opcode_count > 0)
27210 {
27211 if (n == 0)
27212 {
27213 md_number_to_chars (ptr, data, 4);
27214 ptr += 4;
27215 n = 4;
27216 data = 0;
27217 }
27218 unwind.opcode_count--;
27219 n--;
27220 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
27221 }
27222
27223 /* Finish off the last word. */
27224 if (n < 4)
27225 {
27226 /* Pad with "finish" opcodes. */
27227 while (n--)
27228 data = (data << 8) | 0xb0;
27229
27230 md_number_to_chars (ptr, data, 4);
27231 }
27232
27233 if (!have_data)
27234 {
27235 /* Add an empty descriptor if there is no user-specified data. */
27236 ptr = frag_more (4);
27237 md_number_to_chars (ptr, 0, 4);
27238 }
27239
27240 return 0;
27241 }
27242
27243
27244 /* Initialize the DWARF-2 unwind information for this procedure. */
27245
27246 void
27247 tc_arm_frame_initial_instructions (void)
27248 {
27249 cfi_add_CFA_def_cfa (REG_SP, 0);
27250 }
27251 #endif /* OBJ_ELF */
27252
27253 /* Convert REGNAME to a DWARF-2 register number. */
27254
27255 int
27256 tc_arm_regname_to_dw2regnum (char *regname)
27257 {
27258 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
27259 if (reg != FAIL)
27260 return reg;
27261
27262 /* PR 16694: Allow VFP registers as well. */
27263 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
27264 if (reg != FAIL)
27265 return 64 + reg;
27266
27267 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
27268 if (reg != FAIL)
27269 return reg + 256;
27270
27271 return FAIL;
27272 }
27273
27274 #ifdef TE_PE
27275 void
27276 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
27277 {
27278 expressionS exp;
27279
27280 exp.X_op = O_secrel;
27281 exp.X_add_symbol = symbol;
27282 exp.X_add_number = 0;
27283 emit_expr (&exp, size);
27284 }
27285 #endif
27286
27287 /* MD interface: Symbol and relocation handling. */
27288
27289 /* Return the address within the segment that a PC-relative fixup is
27290 relative to. For ARM, PC-relative fixups applied to instructions
27291 are generally relative to the location of the fixup plus 8 bytes.
27292 Thumb branches are offset by 4, and Thumb loads relative to PC
27293 require special handling. */
27294
27295 long
27296 md_pcrel_from_section (fixS * fixP, segT seg)
27297 {
27298 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
27299
27300 /* If this is pc-relative and we are going to emit a relocation
27301 then we just want to put out any pipeline compensation that the linker
27302 will need. Otherwise we want to use the calculated base.
27303 For WinCE we skip the bias for externals as well, since this
27304 is how the MS ARM-CE assembler behaves and we want to be compatible. */
27305 if (fixP->fx_pcrel
27306 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
27307 || (arm_force_relocation (fixP)
27308 #ifdef TE_WINCE
27309 && !S_IS_EXTERNAL (fixP->fx_addsy)
27310 #endif
27311 )))
27312 base = 0;
27313
27314
27315 switch (fixP->fx_r_type)
27316 {
27317 /* PC relative addressing on the Thumb is slightly odd as the
27318 bottom two bits of the PC are forced to zero for the
27319 calculation. This happens *after* application of the
27320 pipeline offset. However, Thumb adrl already adjusts for
27321 this, so we need not do it again. */
27322 case BFD_RELOC_ARM_THUMB_ADD:
27323 return base & ~3;
27324
27325 case BFD_RELOC_ARM_THUMB_OFFSET:
27326 case BFD_RELOC_ARM_T32_OFFSET_IMM:
27327 case BFD_RELOC_ARM_T32_ADD_PC12:
27328 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
27329 return (base + 4) & ~3;
27330
27331 /* Thumb branches are simply offset by +4. */
27332 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27333 case BFD_RELOC_THUMB_PCREL_BRANCH7:
27334 case BFD_RELOC_THUMB_PCREL_BRANCH9:
27335 case BFD_RELOC_THUMB_PCREL_BRANCH12:
27336 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27337 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27338 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27339 case BFD_RELOC_ARM_THUMB_BF17:
27340 case BFD_RELOC_ARM_THUMB_BF19:
27341 case BFD_RELOC_ARM_THUMB_BF13:
27342 case BFD_RELOC_ARM_THUMB_LOOP12:
27343 return base + 4;
27344
27345 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27346 if (fixP->fx_addsy
27347 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27348 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27349 && ARM_IS_FUNC (fixP->fx_addsy)
27350 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27351 base = fixP->fx_where + fixP->fx_frag->fr_address;
27352 return base + 4;
27353
27354 /* BLX is like branches above, but forces the low two bits of PC to
27355 zero. */
27356 case BFD_RELOC_THUMB_PCREL_BLX:
27357 if (fixP->fx_addsy
27358 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27359 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27360 && THUMB_IS_FUNC (fixP->fx_addsy)
27361 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27362 base = fixP->fx_where + fixP->fx_frag->fr_address;
27363 return (base + 4) & ~3;
27364
27365 /* ARM mode branches are offset by +8. However, the Windows CE
27366 loader expects the relocation not to take this into account. */
27367 case BFD_RELOC_ARM_PCREL_BLX:
27368 if (fixP->fx_addsy
27369 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27370 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27371 && ARM_IS_FUNC (fixP->fx_addsy)
27372 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27373 base = fixP->fx_where + fixP->fx_frag->fr_address;
27374 return base + 8;
27375
27376 case BFD_RELOC_ARM_PCREL_CALL:
27377 if (fixP->fx_addsy
27378 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27379 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27380 && THUMB_IS_FUNC (fixP->fx_addsy)
27381 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27382 base = fixP->fx_where + fixP->fx_frag->fr_address;
27383 return base + 8;
27384
27385 case BFD_RELOC_ARM_PCREL_BRANCH:
27386 case BFD_RELOC_ARM_PCREL_JUMP:
27387 case BFD_RELOC_ARM_PLT32:
27388 #ifdef TE_WINCE
27389 /* When handling fixups immediately, because we have already
27390 discovered the value of a symbol, or the address of the frag involved
27391 we must account for the offset by +8, as the OS loader will never see the reloc.
27392 see fixup_segment() in write.c
27393 The S_IS_EXTERNAL test handles the case of global symbols.
27394 Those need the calculated base, not just the pipe compensation the linker will need. */
27395 if (fixP->fx_pcrel
27396 && fixP->fx_addsy != NULL
27397 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27398 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
27399 return base + 8;
27400 return base;
27401 #else
27402 return base + 8;
27403 #endif
27404
27405
27406 /* ARM mode loads relative to PC are also offset by +8. Unlike
27407 branches, the Windows CE loader *does* expect the relocation
27408 to take this into account. */
27409 case BFD_RELOC_ARM_OFFSET_IMM:
27410 case BFD_RELOC_ARM_OFFSET_IMM8:
27411 case BFD_RELOC_ARM_HWLITERAL:
27412 case BFD_RELOC_ARM_LITERAL:
27413 case BFD_RELOC_ARM_CP_OFF_IMM:
27414 return base + 8;
27415
27416
27417 /* Other PC-relative relocations are un-offset. */
27418 default:
27419 return base;
27420 }
27421 }
27422
27423 static bfd_boolean flag_warn_syms = TRUE;
27424
27425 bfd_boolean
27426 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
27427 {
27428 /* PR 18347 - Warn if the user attempts to create a symbol with the same
27429 name as an ARM instruction. Whilst strictly speaking it is allowed, it
27430 does mean that the resulting code might be very confusing to the reader.
27431 Also this warning can be triggered if the user omits an operand before
27432 an immediate address, eg:
27433
27434 LDR =foo
27435
27436 GAS treats this as an assignment of the value of the symbol foo to a
27437 symbol LDR, and so (without this code) it will not issue any kind of
27438 warning or error message.
27439
27440 Note - ARM instructions are case-insensitive but the strings in the hash
27441 table are all stored in lower case, so we must first ensure that name is
27442 lower case too. */
27443 if (flag_warn_syms && arm_ops_hsh)
27444 {
27445 char * nbuf = strdup (name);
27446 char * p;
27447
27448 for (p = nbuf; *p; p++)
27449 *p = TOLOWER (*p);
27450 if (hash_find (arm_ops_hsh, nbuf) != NULL)
27451 {
27452 static struct hash_control * already_warned = NULL;
27453
27454 if (already_warned == NULL)
27455 already_warned = hash_new ();
27456 /* Only warn about the symbol once. To keep the code
27457 simple we let hash_insert do the lookup for us. */
27458 if (hash_insert (already_warned, nbuf, NULL) == NULL)
27459 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
27460 }
27461 else
27462 free (nbuf);
27463 }
27464
27465 return FALSE;
27466 }
27467
27468 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
27469 Otherwise we have no need to default values of symbols. */
27470
27471 symbolS *
27472 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
27473 {
27474 #ifdef OBJ_ELF
27475 if (name[0] == '_' && name[1] == 'G'
27476 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
27477 {
27478 if (!GOT_symbol)
27479 {
27480 if (symbol_find (name))
27481 as_bad (_("GOT already in the symbol table"));
27482
27483 GOT_symbol = symbol_new (name, undefined_section,
27484 (valueT) 0, & zero_address_frag);
27485 }
27486
27487 return GOT_symbol;
27488 }
27489 #endif
27490
27491 return NULL;
27492 }
27493
27494 /* Subroutine of md_apply_fix. Check to see if an immediate can be
27495 computed as two separate immediate values, added together. We
27496 already know that this value cannot be computed by just one ARM
27497 instruction. */
27498
27499 static unsigned int
27500 validate_immediate_twopart (unsigned int val,
27501 unsigned int * highpart)
27502 {
27503 unsigned int a;
27504 unsigned int i;
27505
27506 for (i = 0; i < 32; i += 2)
27507 if (((a = rotate_left (val, i)) & 0xff) != 0)
27508 {
27509 if (a & 0xff00)
27510 {
27511 if (a & ~ 0xffff)
27512 continue;
27513 * highpart = (a >> 8) | ((i + 24) << 7);
27514 }
27515 else if (a & 0xff0000)
27516 {
27517 if (a & 0xff000000)
27518 continue;
27519 * highpart = (a >> 16) | ((i + 16) << 7);
27520 }
27521 else
27522 {
27523 gas_assert (a & 0xff000000);
27524 * highpart = (a >> 24) | ((i + 8) << 7);
27525 }
27526
27527 return (a & 0xff) | (i << 7);
27528 }
27529
27530 return FAIL;
27531 }
27532
27533 static int
27534 validate_offset_imm (unsigned int val, int hwse)
27535 {
27536 if ((hwse && val > 255) || val > 4095)
27537 return FAIL;
27538 return val;
27539 }
27540
27541 /* Subroutine of md_apply_fix. Do those data_ops which can take a
27542 negative immediate constant by altering the instruction. A bit of
27543 a hack really.
27544 MOV <-> MVN
27545 AND <-> BIC
27546 ADC <-> SBC
27547 by inverting the second operand, and
27548 ADD <-> SUB
27549 CMP <-> CMN
27550 by negating the second operand. */
27551
27552 static int
27553 negate_data_op (unsigned long * instruction,
27554 unsigned long value)
27555 {
27556 int op, new_inst;
27557 unsigned long negated, inverted;
27558
27559 negated = encode_arm_immediate (-value);
27560 inverted = encode_arm_immediate (~value);
27561
27562 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
27563 switch (op)
27564 {
27565 /* First negates. */
27566 case OPCODE_SUB: /* ADD <-> SUB */
27567 new_inst = OPCODE_ADD;
27568 value = negated;
27569 break;
27570
27571 case OPCODE_ADD:
27572 new_inst = OPCODE_SUB;
27573 value = negated;
27574 break;
27575
27576 case OPCODE_CMP: /* CMP <-> CMN */
27577 new_inst = OPCODE_CMN;
27578 value = negated;
27579 break;
27580
27581 case OPCODE_CMN:
27582 new_inst = OPCODE_CMP;
27583 value = negated;
27584 break;
27585
27586 /* Now Inverted ops. */
27587 case OPCODE_MOV: /* MOV <-> MVN */
27588 new_inst = OPCODE_MVN;
27589 value = inverted;
27590 break;
27591
27592 case OPCODE_MVN:
27593 new_inst = OPCODE_MOV;
27594 value = inverted;
27595 break;
27596
27597 case OPCODE_AND: /* AND <-> BIC */
27598 new_inst = OPCODE_BIC;
27599 value = inverted;
27600 break;
27601
27602 case OPCODE_BIC:
27603 new_inst = OPCODE_AND;
27604 value = inverted;
27605 break;
27606
27607 case OPCODE_ADC: /* ADC <-> SBC */
27608 new_inst = OPCODE_SBC;
27609 value = inverted;
27610 break;
27611
27612 case OPCODE_SBC:
27613 new_inst = OPCODE_ADC;
27614 value = inverted;
27615 break;
27616
27617 /* We cannot do anything. */
27618 default:
27619 return FAIL;
27620 }
27621
27622 if (value == (unsigned) FAIL)
27623 return FAIL;
27624
27625 *instruction &= OPCODE_MASK;
27626 *instruction |= new_inst << DATA_OP_SHIFT;
27627 return value;
27628 }
27629
27630 /* Like negate_data_op, but for Thumb-2. */
27631
27632 static unsigned int
27633 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
27634 {
27635 int op, new_inst;
27636 int rd;
27637 unsigned int negated, inverted;
27638
27639 negated = encode_thumb32_immediate (-value);
27640 inverted = encode_thumb32_immediate (~value);
27641
27642 rd = (*instruction >> 8) & 0xf;
27643 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
27644 switch (op)
27645 {
27646 /* ADD <-> SUB. Includes CMP <-> CMN. */
27647 case T2_OPCODE_SUB:
27648 new_inst = T2_OPCODE_ADD;
27649 value = negated;
27650 break;
27651
27652 case T2_OPCODE_ADD:
27653 new_inst = T2_OPCODE_SUB;
27654 value = negated;
27655 break;
27656
27657 /* ORR <-> ORN. Includes MOV <-> MVN. */
27658 case T2_OPCODE_ORR:
27659 new_inst = T2_OPCODE_ORN;
27660 value = inverted;
27661 break;
27662
27663 case T2_OPCODE_ORN:
27664 new_inst = T2_OPCODE_ORR;
27665 value = inverted;
27666 break;
27667
27668 /* AND <-> BIC. TST has no inverted equivalent. */
27669 case T2_OPCODE_AND:
27670 new_inst = T2_OPCODE_BIC;
27671 if (rd == 15)
27672 value = FAIL;
27673 else
27674 value = inverted;
27675 break;
27676
27677 case T2_OPCODE_BIC:
27678 new_inst = T2_OPCODE_AND;
27679 value = inverted;
27680 break;
27681
27682 /* ADC <-> SBC */
27683 case T2_OPCODE_ADC:
27684 new_inst = T2_OPCODE_SBC;
27685 value = inverted;
27686 break;
27687
27688 case T2_OPCODE_SBC:
27689 new_inst = T2_OPCODE_ADC;
27690 value = inverted;
27691 break;
27692
27693 /* We cannot do anything. */
27694 default:
27695 return FAIL;
27696 }
27697
27698 if (value == (unsigned int)FAIL)
27699 return FAIL;
27700
27701 *instruction &= T2_OPCODE_MASK;
27702 *instruction |= new_inst << T2_DATA_OP_SHIFT;
27703 return value;
27704 }
27705
27706 /* Read a 32-bit thumb instruction from buf. */
27707
27708 static unsigned long
27709 get_thumb32_insn (char * buf)
27710 {
27711 unsigned long insn;
27712 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
27713 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27714
27715 return insn;
27716 }
27717
27718 /* We usually want to set the low bit on the address of thumb function
27719 symbols. In particular .word foo - . should have the low bit set.
27720 Generic code tries to fold the difference of two symbols to
27721 a constant. Prevent this and force a relocation when the first symbols
27722 is a thumb function. */
27723
27724 bfd_boolean
27725 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
27726 {
27727 if (op == O_subtract
27728 && l->X_op == O_symbol
27729 && r->X_op == O_symbol
27730 && THUMB_IS_FUNC (l->X_add_symbol))
27731 {
27732 l->X_op = O_subtract;
27733 l->X_op_symbol = r->X_add_symbol;
27734 l->X_add_number -= r->X_add_number;
27735 return TRUE;
27736 }
27737
27738 /* Process as normal. */
27739 return FALSE;
27740 }
27741
27742 /* Encode Thumb2 unconditional branches and calls. The encoding
27743 for the 2 are identical for the immediate values. */
27744
27745 static void
27746 encode_thumb2_b_bl_offset (char * buf, offsetT value)
27747 {
27748 #define T2I1I2MASK ((1 << 13) | (1 << 11))
27749 offsetT newval;
27750 offsetT newval2;
27751 addressT S, I1, I2, lo, hi;
27752
27753 S = (value >> 24) & 0x01;
27754 I1 = (value >> 23) & 0x01;
27755 I2 = (value >> 22) & 0x01;
27756 hi = (value >> 12) & 0x3ff;
27757 lo = (value >> 1) & 0x7ff;
27758 newval = md_chars_to_number (buf, THUMB_SIZE);
27759 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27760 newval |= (S << 10) | hi;
27761 newval2 &= ~T2I1I2MASK;
27762 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
27763 md_number_to_chars (buf, newval, THUMB_SIZE);
27764 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27765 }
27766
27767 void
27768 md_apply_fix (fixS * fixP,
27769 valueT * valP,
27770 segT seg)
27771 {
27772 offsetT value = * valP;
27773 offsetT newval;
27774 unsigned int newimm;
27775 unsigned long temp;
27776 int sign;
27777 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
27778
27779 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
27780
27781 /* Note whether this will delete the relocation. */
27782
27783 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
27784 fixP->fx_done = 1;
27785
27786 /* On a 64-bit host, silently truncate 'value' to 32 bits for
27787 consistency with the behaviour on 32-bit hosts. Remember value
27788 for emit_reloc. */
27789 value &= 0xffffffff;
27790 value ^= 0x80000000;
27791 value -= 0x80000000;
27792
27793 *valP = value;
27794 fixP->fx_addnumber = value;
27795
27796 /* Same treatment for fixP->fx_offset. */
27797 fixP->fx_offset &= 0xffffffff;
27798 fixP->fx_offset ^= 0x80000000;
27799 fixP->fx_offset -= 0x80000000;
27800
27801 switch (fixP->fx_r_type)
27802 {
27803 case BFD_RELOC_NONE:
27804 /* This will need to go in the object file. */
27805 fixP->fx_done = 0;
27806 break;
27807
27808 case BFD_RELOC_ARM_IMMEDIATE:
27809 /* We claim that this fixup has been processed here,
27810 even if in fact we generate an error because we do
27811 not have a reloc for it, so tc_gen_reloc will reject it. */
27812 fixP->fx_done = 1;
27813
27814 if (fixP->fx_addsy)
27815 {
27816 const char *msg = 0;
27817
27818 if (! S_IS_DEFINED (fixP->fx_addsy))
27819 msg = _("undefined symbol %s used as an immediate value");
27820 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27821 msg = _("symbol %s is in a different section");
27822 else if (S_IS_WEAK (fixP->fx_addsy))
27823 msg = _("symbol %s is weak and may be overridden later");
27824
27825 if (msg)
27826 {
27827 as_bad_where (fixP->fx_file, fixP->fx_line,
27828 msg, S_GET_NAME (fixP->fx_addsy));
27829 break;
27830 }
27831 }
27832
27833 temp = md_chars_to_number (buf, INSN_SIZE);
27834
27835 /* If the offset is negative, we should use encoding A2 for ADR. */
27836 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
27837 newimm = negate_data_op (&temp, value);
27838 else
27839 {
27840 newimm = encode_arm_immediate (value);
27841
27842 /* If the instruction will fail, see if we can fix things up by
27843 changing the opcode. */
27844 if (newimm == (unsigned int) FAIL)
27845 newimm = negate_data_op (&temp, value);
27846 /* MOV accepts both ARM modified immediate (A1 encoding) and
27847 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
27848 When disassembling, MOV is preferred when there is no encoding
27849 overlap. */
27850 if (newimm == (unsigned int) FAIL
27851 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
27852 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
27853 && !((temp >> SBIT_SHIFT) & 0x1)
27854 && value >= 0 && value <= 0xffff)
27855 {
27856 /* Clear bits[23:20] to change encoding from A1 to A2. */
27857 temp &= 0xff0fffff;
27858 /* Encoding high 4bits imm. Code below will encode the remaining
27859 low 12bits. */
27860 temp |= (value & 0x0000f000) << 4;
27861 newimm = value & 0x00000fff;
27862 }
27863 }
27864
27865 if (newimm == (unsigned int) FAIL)
27866 {
27867 as_bad_where (fixP->fx_file, fixP->fx_line,
27868 _("invalid constant (%lx) after fixup"),
27869 (unsigned long) value);
27870 break;
27871 }
27872
27873 newimm |= (temp & 0xfffff000);
27874 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
27875 break;
27876
27877 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27878 {
27879 unsigned int highpart = 0;
27880 unsigned int newinsn = 0xe1a00000; /* nop. */
27881
27882 if (fixP->fx_addsy)
27883 {
27884 const char *msg = 0;
27885
27886 if (! S_IS_DEFINED (fixP->fx_addsy))
27887 msg = _("undefined symbol %s used as an immediate value");
27888 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27889 msg = _("symbol %s is in a different section");
27890 else if (S_IS_WEAK (fixP->fx_addsy))
27891 msg = _("symbol %s is weak and may be overridden later");
27892
27893 if (msg)
27894 {
27895 as_bad_where (fixP->fx_file, fixP->fx_line,
27896 msg, S_GET_NAME (fixP->fx_addsy));
27897 break;
27898 }
27899 }
27900
27901 newimm = encode_arm_immediate (value);
27902 temp = md_chars_to_number (buf, INSN_SIZE);
27903
27904 /* If the instruction will fail, see if we can fix things up by
27905 changing the opcode. */
27906 if (newimm == (unsigned int) FAIL
27907 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
27908 {
27909 /* No ? OK - try using two ADD instructions to generate
27910 the value. */
27911 newimm = validate_immediate_twopart (value, & highpart);
27912
27913 /* Yes - then make sure that the second instruction is
27914 also an add. */
27915 if (newimm != (unsigned int) FAIL)
27916 newinsn = temp;
27917 /* Still No ? Try using a negated value. */
27918 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
27919 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
27920 /* Otherwise - give up. */
27921 else
27922 {
27923 as_bad_where (fixP->fx_file, fixP->fx_line,
27924 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
27925 (long) value);
27926 break;
27927 }
27928
27929 /* Replace the first operand in the 2nd instruction (which
27930 is the PC) with the destination register. We have
27931 already added in the PC in the first instruction and we
27932 do not want to do it again. */
27933 newinsn &= ~ 0xf0000;
27934 newinsn |= ((newinsn & 0x0f000) << 4);
27935 }
27936
27937 newimm |= (temp & 0xfffff000);
27938 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
27939
27940 highpart |= (newinsn & 0xfffff000);
27941 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
27942 }
27943 break;
27944
27945 case BFD_RELOC_ARM_OFFSET_IMM:
27946 if (!fixP->fx_done && seg->use_rela_p)
27947 value = 0;
27948 /* Fall through. */
27949
27950 case BFD_RELOC_ARM_LITERAL:
27951 sign = value > 0;
27952
27953 if (value < 0)
27954 value = - value;
27955
27956 if (validate_offset_imm (value, 0) == FAIL)
27957 {
27958 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
27959 as_bad_where (fixP->fx_file, fixP->fx_line,
27960 _("invalid literal constant: pool needs to be closer"));
27961 else
27962 as_bad_where (fixP->fx_file, fixP->fx_line,
27963 _("bad immediate value for offset (%ld)"),
27964 (long) value);
27965 break;
27966 }
27967
27968 newval = md_chars_to_number (buf, INSN_SIZE);
27969 if (value == 0)
27970 newval &= 0xfffff000;
27971 else
27972 {
27973 newval &= 0xff7ff000;
27974 newval |= value | (sign ? INDEX_UP : 0);
27975 }
27976 md_number_to_chars (buf, newval, INSN_SIZE);
27977 break;
27978
27979 case BFD_RELOC_ARM_OFFSET_IMM8:
27980 case BFD_RELOC_ARM_HWLITERAL:
27981 sign = value > 0;
27982
27983 if (value < 0)
27984 value = - value;
27985
27986 if (validate_offset_imm (value, 1) == FAIL)
27987 {
27988 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
27989 as_bad_where (fixP->fx_file, fixP->fx_line,
27990 _("invalid literal constant: pool needs to be closer"));
27991 else
27992 as_bad_where (fixP->fx_file, fixP->fx_line,
27993 _("bad immediate value for 8-bit offset (%ld)"),
27994 (long) value);
27995 break;
27996 }
27997
27998 newval = md_chars_to_number (buf, INSN_SIZE);
27999 if (value == 0)
28000 newval &= 0xfffff0f0;
28001 else
28002 {
28003 newval &= 0xff7ff0f0;
28004 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
28005 }
28006 md_number_to_chars (buf, newval, INSN_SIZE);
28007 break;
28008
28009 case BFD_RELOC_ARM_T32_OFFSET_U8:
28010 if (value < 0 || value > 1020 || value % 4 != 0)
28011 as_bad_where (fixP->fx_file, fixP->fx_line,
28012 _("bad immediate value for offset (%ld)"), (long) value);
28013 value /= 4;
28014
28015 newval = md_chars_to_number (buf+2, THUMB_SIZE);
28016 newval |= value;
28017 md_number_to_chars (buf+2, newval, THUMB_SIZE);
28018 break;
28019
28020 case BFD_RELOC_ARM_T32_OFFSET_IMM:
28021 /* This is a complicated relocation used for all varieties of Thumb32
28022 load/store instruction with immediate offset:
28023
28024 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
28025 *4, optional writeback(W)
28026 (doubleword load/store)
28027
28028 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
28029 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
28030 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
28031 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
28032 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
28033
28034 Uppercase letters indicate bits that are already encoded at
28035 this point. Lowercase letters are our problem. For the
28036 second block of instructions, the secondary opcode nybble
28037 (bits 8..11) is present, and bit 23 is zero, even if this is
28038 a PC-relative operation. */
28039 newval = md_chars_to_number (buf, THUMB_SIZE);
28040 newval <<= 16;
28041 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
28042
28043 if ((newval & 0xf0000000) == 0xe0000000)
28044 {
28045 /* Doubleword load/store: 8-bit offset, scaled by 4. */
28046 if (value >= 0)
28047 newval |= (1 << 23);
28048 else
28049 value = -value;
28050 if (value % 4 != 0)
28051 {
28052 as_bad_where (fixP->fx_file, fixP->fx_line,
28053 _("offset not a multiple of 4"));
28054 break;
28055 }
28056 value /= 4;
28057 if (value > 0xff)
28058 {
28059 as_bad_where (fixP->fx_file, fixP->fx_line,
28060 _("offset out of range"));
28061 break;
28062 }
28063 newval &= ~0xff;
28064 }
28065 else if ((newval & 0x000f0000) == 0x000f0000)
28066 {
28067 /* PC-relative, 12-bit offset. */
28068 if (value >= 0)
28069 newval |= (1 << 23);
28070 else
28071 value = -value;
28072 if (value > 0xfff)
28073 {
28074 as_bad_where (fixP->fx_file, fixP->fx_line,
28075 _("offset out of range"));
28076 break;
28077 }
28078 newval &= ~0xfff;
28079 }
28080 else if ((newval & 0x00000100) == 0x00000100)
28081 {
28082 /* Writeback: 8-bit, +/- offset. */
28083 if (value >= 0)
28084 newval |= (1 << 9);
28085 else
28086 value = -value;
28087 if (value > 0xff)
28088 {
28089 as_bad_where (fixP->fx_file, fixP->fx_line,
28090 _("offset out of range"));
28091 break;
28092 }
28093 newval &= ~0xff;
28094 }
28095 else if ((newval & 0x00000f00) == 0x00000e00)
28096 {
28097 /* T-instruction: positive 8-bit offset. */
28098 if (value < 0 || value > 0xff)
28099 {
28100 as_bad_where (fixP->fx_file, fixP->fx_line,
28101 _("offset out of range"));
28102 break;
28103 }
28104 newval &= ~0xff;
28105 newval |= value;
28106 }
28107 else
28108 {
28109 /* Positive 12-bit or negative 8-bit offset. */
28110 int limit;
28111 if (value >= 0)
28112 {
28113 newval |= (1 << 23);
28114 limit = 0xfff;
28115 }
28116 else
28117 {
28118 value = -value;
28119 limit = 0xff;
28120 }
28121 if (value > limit)
28122 {
28123 as_bad_where (fixP->fx_file, fixP->fx_line,
28124 _("offset out of range"));
28125 break;
28126 }
28127 newval &= ~limit;
28128 }
28129
28130 newval |= value;
28131 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
28132 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
28133 break;
28134
28135 case BFD_RELOC_ARM_SHIFT_IMM:
28136 newval = md_chars_to_number (buf, INSN_SIZE);
28137 if (((unsigned long) value) > 32
28138 || (value == 32
28139 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
28140 {
28141 as_bad_where (fixP->fx_file, fixP->fx_line,
28142 _("shift expression is too large"));
28143 break;
28144 }
28145
28146 if (value == 0)
28147 /* Shifts of zero must be done as lsl. */
28148 newval &= ~0x60;
28149 else if (value == 32)
28150 value = 0;
28151 newval &= 0xfffff07f;
28152 newval |= (value & 0x1f) << 7;
28153 md_number_to_chars (buf, newval, INSN_SIZE);
28154 break;
28155
28156 case BFD_RELOC_ARM_T32_IMMEDIATE:
28157 case BFD_RELOC_ARM_T32_ADD_IMM:
28158 case BFD_RELOC_ARM_T32_IMM12:
28159 case BFD_RELOC_ARM_T32_ADD_PC12:
28160 /* We claim that this fixup has been processed here,
28161 even if in fact we generate an error because we do
28162 not have a reloc for it, so tc_gen_reloc will reject it. */
28163 fixP->fx_done = 1;
28164
28165 if (fixP->fx_addsy
28166 && ! S_IS_DEFINED (fixP->fx_addsy))
28167 {
28168 as_bad_where (fixP->fx_file, fixP->fx_line,
28169 _("undefined symbol %s used as an immediate value"),
28170 S_GET_NAME (fixP->fx_addsy));
28171 break;
28172 }
28173
28174 newval = md_chars_to_number (buf, THUMB_SIZE);
28175 newval <<= 16;
28176 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
28177
28178 newimm = FAIL;
28179 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28180 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
28181 Thumb2 modified immediate encoding (T2). */
28182 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
28183 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
28184 {
28185 newimm = encode_thumb32_immediate (value);
28186 if (newimm == (unsigned int) FAIL)
28187 newimm = thumb32_negate_data_op (&newval, value);
28188 }
28189 if (newimm == (unsigned int) FAIL)
28190 {
28191 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
28192 {
28193 /* Turn add/sum into addw/subw. */
28194 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
28195 newval = (newval & 0xfeffffff) | 0x02000000;
28196 /* No flat 12-bit imm encoding for addsw/subsw. */
28197 if ((newval & 0x00100000) == 0)
28198 {
28199 /* 12 bit immediate for addw/subw. */
28200 if (value < 0)
28201 {
28202 value = -value;
28203 newval ^= 0x00a00000;
28204 }
28205 if (value > 0xfff)
28206 newimm = (unsigned int) FAIL;
28207 else
28208 newimm = value;
28209 }
28210 }
28211 else
28212 {
28213 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
28214 UINT16 (T3 encoding), MOVW only accepts UINT16. When
28215 disassembling, MOV is preferred when there is no encoding
28216 overlap. */
28217 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
28218 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
28219 but with the Rn field [19:16] set to 1111. */
28220 && (((newval >> 16) & 0xf) == 0xf)
28221 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
28222 && !((newval >> T2_SBIT_SHIFT) & 0x1)
28223 && value >= 0 && value <= 0xffff)
28224 {
28225 /* Toggle bit[25] to change encoding from T2 to T3. */
28226 newval ^= 1 << 25;
28227 /* Clear bits[19:16]. */
28228 newval &= 0xfff0ffff;
28229 /* Encoding high 4bits imm. Code below will encode the
28230 remaining low 12bits. */
28231 newval |= (value & 0x0000f000) << 4;
28232 newimm = value & 0x00000fff;
28233 }
28234 }
28235 }
28236
28237 if (newimm == (unsigned int)FAIL)
28238 {
28239 as_bad_where (fixP->fx_file, fixP->fx_line,
28240 _("invalid constant (%lx) after fixup"),
28241 (unsigned long) value);
28242 break;
28243 }
28244
28245 newval |= (newimm & 0x800) << 15;
28246 newval |= (newimm & 0x700) << 4;
28247 newval |= (newimm & 0x0ff);
28248
28249 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
28250 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
28251 break;
28252
28253 case BFD_RELOC_ARM_SMC:
28254 if (((unsigned long) value) > 0xf)
28255 as_bad_where (fixP->fx_file, fixP->fx_line,
28256 _("invalid smc expression"));
28257
28258 newval = md_chars_to_number (buf, INSN_SIZE);
28259 newval |= (value & 0xf);
28260 md_number_to_chars (buf, newval, INSN_SIZE);
28261 break;
28262
28263 case BFD_RELOC_ARM_HVC:
28264 if (((unsigned long) value) > 0xffff)
28265 as_bad_where (fixP->fx_file, fixP->fx_line,
28266 _("invalid hvc expression"));
28267 newval = md_chars_to_number (buf, INSN_SIZE);
28268 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
28269 md_number_to_chars (buf, newval, INSN_SIZE);
28270 break;
28271
28272 case BFD_RELOC_ARM_SWI:
28273 if (fixP->tc_fix_data != 0)
28274 {
28275 if (((unsigned long) value) > 0xff)
28276 as_bad_where (fixP->fx_file, fixP->fx_line,
28277 _("invalid swi expression"));
28278 newval = md_chars_to_number (buf, THUMB_SIZE);
28279 newval |= value;
28280 md_number_to_chars (buf, newval, THUMB_SIZE);
28281 }
28282 else
28283 {
28284 if (((unsigned long) value) > 0x00ffffff)
28285 as_bad_where (fixP->fx_file, fixP->fx_line,
28286 _("invalid swi expression"));
28287 newval = md_chars_to_number (buf, INSN_SIZE);
28288 newval |= value;
28289 md_number_to_chars (buf, newval, INSN_SIZE);
28290 }
28291 break;
28292
28293 case BFD_RELOC_ARM_MULTI:
28294 if (((unsigned long) value) > 0xffff)
28295 as_bad_where (fixP->fx_file, fixP->fx_line,
28296 _("invalid expression in load/store multiple"));
28297 newval = value | md_chars_to_number (buf, INSN_SIZE);
28298 md_number_to_chars (buf, newval, INSN_SIZE);
28299 break;
28300
28301 #ifdef OBJ_ELF
28302 case BFD_RELOC_ARM_PCREL_CALL:
28303
28304 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28305 && fixP->fx_addsy
28306 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28307 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28308 && THUMB_IS_FUNC (fixP->fx_addsy))
28309 /* Flip the bl to blx. This is a simple flip
28310 bit here because we generate PCREL_CALL for
28311 unconditional bls. */
28312 {
28313 newval = md_chars_to_number (buf, INSN_SIZE);
28314 newval = newval | 0x10000000;
28315 md_number_to_chars (buf, newval, INSN_SIZE);
28316 temp = 1;
28317 fixP->fx_done = 1;
28318 }
28319 else
28320 temp = 3;
28321 goto arm_branch_common;
28322
28323 case BFD_RELOC_ARM_PCREL_JUMP:
28324 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28325 && fixP->fx_addsy
28326 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28327 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28328 && THUMB_IS_FUNC (fixP->fx_addsy))
28329 {
28330 /* This would map to a bl<cond>, b<cond>,
28331 b<always> to a Thumb function. We
28332 need to force a relocation for this particular
28333 case. */
28334 newval = md_chars_to_number (buf, INSN_SIZE);
28335 fixP->fx_done = 0;
28336 }
28337 /* Fall through. */
28338
28339 case BFD_RELOC_ARM_PLT32:
28340 #endif
28341 case BFD_RELOC_ARM_PCREL_BRANCH:
28342 temp = 3;
28343 goto arm_branch_common;
28344
28345 case BFD_RELOC_ARM_PCREL_BLX:
28346
28347 temp = 1;
28348 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28349 && fixP->fx_addsy
28350 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28351 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28352 && ARM_IS_FUNC (fixP->fx_addsy))
28353 {
28354 /* Flip the blx to a bl and warn. */
28355 const char *name = S_GET_NAME (fixP->fx_addsy);
28356 newval = 0xeb000000;
28357 as_warn_where (fixP->fx_file, fixP->fx_line,
28358 _("blx to '%s' an ARM ISA state function changed to bl"),
28359 name);
28360 md_number_to_chars (buf, newval, INSN_SIZE);
28361 temp = 3;
28362 fixP->fx_done = 1;
28363 }
28364
28365 #ifdef OBJ_ELF
28366 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28367 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
28368 #endif
28369
28370 arm_branch_common:
28371 /* We are going to store value (shifted right by two) in the
28372 instruction, in a 24 bit, signed field. Bits 26 through 32 either
28373 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
28374 also be clear. */
28375 if (value & temp)
28376 as_bad_where (fixP->fx_file, fixP->fx_line,
28377 _("misaligned branch destination"));
28378 if ((value & (offsetT)0xfe000000) != (offsetT)0
28379 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
28380 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28381
28382 if (fixP->fx_done || !seg->use_rela_p)
28383 {
28384 newval = md_chars_to_number (buf, INSN_SIZE);
28385 newval |= (value >> 2) & 0x00ffffff;
28386 /* Set the H bit on BLX instructions. */
28387 if (temp == 1)
28388 {
28389 if (value & 2)
28390 newval |= 0x01000000;
28391 else
28392 newval &= ~0x01000000;
28393 }
28394 md_number_to_chars (buf, newval, INSN_SIZE);
28395 }
28396 break;
28397
28398 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
28399 /* CBZ can only branch forward. */
28400
28401 /* Attempts to use CBZ to branch to the next instruction
28402 (which, strictly speaking, are prohibited) will be turned into
28403 no-ops.
28404
28405 FIXME: It may be better to remove the instruction completely and
28406 perform relaxation. */
28407 if (value == -2)
28408 {
28409 newval = md_chars_to_number (buf, THUMB_SIZE);
28410 newval = 0xbf00; /* NOP encoding T1 */
28411 md_number_to_chars (buf, newval, THUMB_SIZE);
28412 }
28413 else
28414 {
28415 if (value & ~0x7e)
28416 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28417
28418 if (fixP->fx_done || !seg->use_rela_p)
28419 {
28420 newval = md_chars_to_number (buf, THUMB_SIZE);
28421 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
28422 md_number_to_chars (buf, newval, THUMB_SIZE);
28423 }
28424 }
28425 break;
28426
28427 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
28428 if (out_of_range_p (value, 8))
28429 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28430
28431 if (fixP->fx_done || !seg->use_rela_p)
28432 {
28433 newval = md_chars_to_number (buf, THUMB_SIZE);
28434 newval |= (value & 0x1ff) >> 1;
28435 md_number_to_chars (buf, newval, THUMB_SIZE);
28436 }
28437 break;
28438
28439 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
28440 if (out_of_range_p (value, 11))
28441 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28442
28443 if (fixP->fx_done || !seg->use_rela_p)
28444 {
28445 newval = md_chars_to_number (buf, THUMB_SIZE);
28446 newval |= (value & 0xfff) >> 1;
28447 md_number_to_chars (buf, newval, THUMB_SIZE);
28448 }
28449 break;
28450
28451 /* This relocation is misnamed, it should be BRANCH21. */
28452 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28453 if (fixP->fx_addsy
28454 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28455 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28456 && ARM_IS_FUNC (fixP->fx_addsy)
28457 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
28458 {
28459 /* Force a relocation for a branch 20 bits wide. */
28460 fixP->fx_done = 0;
28461 }
28462 if (out_of_range_p (value, 20))
28463 as_bad_where (fixP->fx_file, fixP->fx_line,
28464 _("conditional branch out of range"));
28465
28466 if (fixP->fx_done || !seg->use_rela_p)
28467 {
28468 offsetT newval2;
28469 addressT S, J1, J2, lo, hi;
28470
28471 S = (value & 0x00100000) >> 20;
28472 J2 = (value & 0x00080000) >> 19;
28473 J1 = (value & 0x00040000) >> 18;
28474 hi = (value & 0x0003f000) >> 12;
28475 lo = (value & 0x00000ffe) >> 1;
28476
28477 newval = md_chars_to_number (buf, THUMB_SIZE);
28478 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28479 newval |= (S << 10) | hi;
28480 newval2 |= (J1 << 13) | (J2 << 11) | lo;
28481 md_number_to_chars (buf, newval, THUMB_SIZE);
28482 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28483 }
28484 break;
28485
28486 case BFD_RELOC_THUMB_PCREL_BLX:
28487 /* If there is a blx from a thumb state function to
28488 another thumb function flip this to a bl and warn
28489 about it. */
28490
28491 if (fixP->fx_addsy
28492 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28493 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28494 && THUMB_IS_FUNC (fixP->fx_addsy))
28495 {
28496 const char *name = S_GET_NAME (fixP->fx_addsy);
28497 as_warn_where (fixP->fx_file, fixP->fx_line,
28498 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
28499 name);
28500 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28501 newval = newval | 0x1000;
28502 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
28503 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
28504 fixP->fx_done = 1;
28505 }
28506
28507
28508 goto thumb_bl_common;
28509
28510 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28511 /* A bl from Thumb state ISA to an internal ARM state function
28512 is converted to a blx. */
28513 if (fixP->fx_addsy
28514 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28515 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28516 && ARM_IS_FUNC (fixP->fx_addsy)
28517 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
28518 {
28519 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28520 newval = newval & ~0x1000;
28521 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
28522 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
28523 fixP->fx_done = 1;
28524 }
28525
28526 thumb_bl_common:
28527
28528 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
28529 /* For a BLX instruction, make sure that the relocation is rounded up
28530 to a word boundary. This follows the semantics of the instruction
28531 which specifies that bit 1 of the target address will come from bit
28532 1 of the base address. */
28533 value = (value + 3) & ~ 3;
28534
28535 #ifdef OBJ_ELF
28536 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
28537 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
28538 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
28539 #endif
28540
28541 if (out_of_range_p (value, 22))
28542 {
28543 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
28544 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28545 else if (out_of_range_p (value, 24))
28546 as_bad_where (fixP->fx_file, fixP->fx_line,
28547 _("Thumb2 branch out of range"));
28548 }
28549
28550 if (fixP->fx_done || !seg->use_rela_p)
28551 encode_thumb2_b_bl_offset (buf, value);
28552
28553 break;
28554
28555 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28556 if (out_of_range_p (value, 24))
28557 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28558
28559 if (fixP->fx_done || !seg->use_rela_p)
28560 encode_thumb2_b_bl_offset (buf, value);
28561
28562 break;
28563
28564 case BFD_RELOC_8:
28565 if (fixP->fx_done || !seg->use_rela_p)
28566 *buf = value;
28567 break;
28568
28569 case BFD_RELOC_16:
28570 if (fixP->fx_done || !seg->use_rela_p)
28571 md_number_to_chars (buf, value, 2);
28572 break;
28573
28574 #ifdef OBJ_ELF
28575 case BFD_RELOC_ARM_TLS_CALL:
28576 case BFD_RELOC_ARM_THM_TLS_CALL:
28577 case BFD_RELOC_ARM_TLS_DESCSEQ:
28578 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
28579 case BFD_RELOC_ARM_TLS_GOTDESC:
28580 case BFD_RELOC_ARM_TLS_GD32:
28581 case BFD_RELOC_ARM_TLS_LE32:
28582 case BFD_RELOC_ARM_TLS_IE32:
28583 case BFD_RELOC_ARM_TLS_LDM32:
28584 case BFD_RELOC_ARM_TLS_LDO32:
28585 S_SET_THREAD_LOCAL (fixP->fx_addsy);
28586 break;
28587
28588 /* Same handling as above, but with the arm_fdpic guard. */
28589 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
28590 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
28591 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
28592 if (arm_fdpic)
28593 {
28594 S_SET_THREAD_LOCAL (fixP->fx_addsy);
28595 }
28596 else
28597 {
28598 as_bad_where (fixP->fx_file, fixP->fx_line,
28599 _("Relocation supported only in FDPIC mode"));
28600 }
28601 break;
28602
28603 case BFD_RELOC_ARM_GOT32:
28604 case BFD_RELOC_ARM_GOTOFF:
28605 break;
28606
28607 case BFD_RELOC_ARM_GOT_PREL:
28608 if (fixP->fx_done || !seg->use_rela_p)
28609 md_number_to_chars (buf, value, 4);
28610 break;
28611
28612 case BFD_RELOC_ARM_TARGET2:
28613 /* TARGET2 is not partial-inplace, so we need to write the
28614 addend here for REL targets, because it won't be written out
28615 during reloc processing later. */
28616 if (fixP->fx_done || !seg->use_rela_p)
28617 md_number_to_chars (buf, fixP->fx_offset, 4);
28618 break;
28619
28620 /* Relocations for FDPIC. */
28621 case BFD_RELOC_ARM_GOTFUNCDESC:
28622 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28623 case BFD_RELOC_ARM_FUNCDESC:
28624 if (arm_fdpic)
28625 {
28626 if (fixP->fx_done || !seg->use_rela_p)
28627 md_number_to_chars (buf, 0, 4);
28628 }
28629 else
28630 {
28631 as_bad_where (fixP->fx_file, fixP->fx_line,
28632 _("Relocation supported only in FDPIC mode"));
28633 }
28634 break;
28635 #endif
28636
28637 case BFD_RELOC_RVA:
28638 case BFD_RELOC_32:
28639 case BFD_RELOC_ARM_TARGET1:
28640 case BFD_RELOC_ARM_ROSEGREL32:
28641 case BFD_RELOC_ARM_SBREL32:
28642 case BFD_RELOC_32_PCREL:
28643 #ifdef TE_PE
28644 case BFD_RELOC_32_SECREL:
28645 #endif
28646 if (fixP->fx_done || !seg->use_rela_p)
28647 #ifdef TE_WINCE
28648 /* For WinCE we only do this for pcrel fixups. */
28649 if (fixP->fx_done || fixP->fx_pcrel)
28650 #endif
28651 md_number_to_chars (buf, value, 4);
28652 break;
28653
28654 #ifdef OBJ_ELF
28655 case BFD_RELOC_ARM_PREL31:
28656 if (fixP->fx_done || !seg->use_rela_p)
28657 {
28658 newval = md_chars_to_number (buf, 4) & 0x80000000;
28659 if ((value ^ (value >> 1)) & 0x40000000)
28660 {
28661 as_bad_where (fixP->fx_file, fixP->fx_line,
28662 _("rel31 relocation overflow"));
28663 }
28664 newval |= value & 0x7fffffff;
28665 md_number_to_chars (buf, newval, 4);
28666 }
28667 break;
28668 #endif
28669
28670 case BFD_RELOC_ARM_CP_OFF_IMM:
28671 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
28672 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
28673 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
28674 newval = md_chars_to_number (buf, INSN_SIZE);
28675 else
28676 newval = get_thumb32_insn (buf);
28677 if ((newval & 0x0f200f00) == 0x0d000900)
28678 {
28679 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
28680 has permitted values that are multiples of 2, in the range 0
28681 to 510. */
28682 if (value < -510 || value > 510 || (value & 1))
28683 as_bad_where (fixP->fx_file, fixP->fx_line,
28684 _("co-processor offset out of range"));
28685 }
28686 else if ((newval & 0xfe001f80) == 0xec000f80)
28687 {
28688 if (value < -511 || value > 512 || (value & 3))
28689 as_bad_where (fixP->fx_file, fixP->fx_line,
28690 _("co-processor offset out of range"));
28691 }
28692 else if (value < -1023 || value > 1023 || (value & 3))
28693 as_bad_where (fixP->fx_file, fixP->fx_line,
28694 _("co-processor offset out of range"));
28695 cp_off_common:
28696 sign = value > 0;
28697 if (value < 0)
28698 value = -value;
28699 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28700 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
28701 newval = md_chars_to_number (buf, INSN_SIZE);
28702 else
28703 newval = get_thumb32_insn (buf);
28704 if (value == 0)
28705 {
28706 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
28707 newval &= 0xffffff80;
28708 else
28709 newval &= 0xffffff00;
28710 }
28711 else
28712 {
28713 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
28714 newval &= 0xff7fff80;
28715 else
28716 newval &= 0xff7fff00;
28717 if ((newval & 0x0f200f00) == 0x0d000900)
28718 {
28719 /* This is a fp16 vstr/vldr.
28720
28721 It requires the immediate offset in the instruction is shifted
28722 left by 1 to be a half-word offset.
28723
28724 Here, left shift by 1 first, and later right shift by 2
28725 should get the right offset. */
28726 value <<= 1;
28727 }
28728 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
28729 }
28730 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28731 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
28732 md_number_to_chars (buf, newval, INSN_SIZE);
28733 else
28734 put_thumb32_insn (buf, newval);
28735 break;
28736
28737 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
28738 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
28739 if (value < -255 || value > 255)
28740 as_bad_where (fixP->fx_file, fixP->fx_line,
28741 _("co-processor offset out of range"));
28742 value *= 4;
28743 goto cp_off_common;
28744
28745 case BFD_RELOC_ARM_THUMB_OFFSET:
28746 newval = md_chars_to_number (buf, THUMB_SIZE);
28747 /* Exactly what ranges, and where the offset is inserted depends
28748 on the type of instruction, we can establish this from the
28749 top 4 bits. */
28750 switch (newval >> 12)
28751 {
28752 case 4: /* PC load. */
28753 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
28754 forced to zero for these loads; md_pcrel_from has already
28755 compensated for this. */
28756 if (value & 3)
28757 as_bad_where (fixP->fx_file, fixP->fx_line,
28758 _("invalid offset, target not word aligned (0x%08lX)"),
28759 (((unsigned long) fixP->fx_frag->fr_address
28760 + (unsigned long) fixP->fx_where) & ~3)
28761 + (unsigned long) value);
28762
28763 if (value & ~0x3fc)
28764 as_bad_where (fixP->fx_file, fixP->fx_line,
28765 _("invalid offset, value too big (0x%08lX)"),
28766 (long) value);
28767
28768 newval |= value >> 2;
28769 break;
28770
28771 case 9: /* SP load/store. */
28772 if (value & ~0x3fc)
28773 as_bad_where (fixP->fx_file, fixP->fx_line,
28774 _("invalid offset, value too big (0x%08lX)"),
28775 (long) value);
28776 newval |= value >> 2;
28777 break;
28778
28779 case 6: /* Word load/store. */
28780 if (value & ~0x7c)
28781 as_bad_where (fixP->fx_file, fixP->fx_line,
28782 _("invalid offset, value too big (0x%08lX)"),
28783 (long) value);
28784 newval |= value << 4; /* 6 - 2. */
28785 break;
28786
28787 case 7: /* Byte load/store. */
28788 if (value & ~0x1f)
28789 as_bad_where (fixP->fx_file, fixP->fx_line,
28790 _("invalid offset, value too big (0x%08lX)"),
28791 (long) value);
28792 newval |= value << 6;
28793 break;
28794
28795 case 8: /* Halfword load/store. */
28796 if (value & ~0x3e)
28797 as_bad_where (fixP->fx_file, fixP->fx_line,
28798 _("invalid offset, value too big (0x%08lX)"),
28799 (long) value);
28800 newval |= value << 5; /* 6 - 1. */
28801 break;
28802
28803 default:
28804 as_bad_where (fixP->fx_file, fixP->fx_line,
28805 "Unable to process relocation for thumb opcode: %lx",
28806 (unsigned long) newval);
28807 break;
28808 }
28809 md_number_to_chars (buf, newval, THUMB_SIZE);
28810 break;
28811
28812 case BFD_RELOC_ARM_THUMB_ADD:
28813 /* This is a complicated relocation, since we use it for all of
28814 the following immediate relocations:
28815
28816 3bit ADD/SUB
28817 8bit ADD/SUB
28818 9bit ADD/SUB SP word-aligned
28819 10bit ADD PC/SP word-aligned
28820
28821 The type of instruction being processed is encoded in the
28822 instruction field:
28823
28824 0x8000 SUB
28825 0x00F0 Rd
28826 0x000F Rs
28827 */
28828 newval = md_chars_to_number (buf, THUMB_SIZE);
28829 {
28830 int rd = (newval >> 4) & 0xf;
28831 int rs = newval & 0xf;
28832 int subtract = !!(newval & 0x8000);
28833
28834 /* Check for HI regs, only very restricted cases allowed:
28835 Adjusting SP, and using PC or SP to get an address. */
28836 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
28837 || (rs > 7 && rs != REG_SP && rs != REG_PC))
28838 as_bad_where (fixP->fx_file, fixP->fx_line,
28839 _("invalid Hi register with immediate"));
28840
28841 /* If value is negative, choose the opposite instruction. */
28842 if (value < 0)
28843 {
28844 value = -value;
28845 subtract = !subtract;
28846 if (value < 0)
28847 as_bad_where (fixP->fx_file, fixP->fx_line,
28848 _("immediate value out of range"));
28849 }
28850
28851 if (rd == REG_SP)
28852 {
28853 if (value & ~0x1fc)
28854 as_bad_where (fixP->fx_file, fixP->fx_line,
28855 _("invalid immediate for stack address calculation"));
28856 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
28857 newval |= value >> 2;
28858 }
28859 else if (rs == REG_PC || rs == REG_SP)
28860 {
28861 /* PR gas/18541. If the addition is for a defined symbol
28862 within range of an ADR instruction then accept it. */
28863 if (subtract
28864 && value == 4
28865 && fixP->fx_addsy != NULL)
28866 {
28867 subtract = 0;
28868
28869 if (! S_IS_DEFINED (fixP->fx_addsy)
28870 || S_GET_SEGMENT (fixP->fx_addsy) != seg
28871 || S_IS_WEAK (fixP->fx_addsy))
28872 {
28873 as_bad_where (fixP->fx_file, fixP->fx_line,
28874 _("address calculation needs a strongly defined nearby symbol"));
28875 }
28876 else
28877 {
28878 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
28879
28880 /* Round up to the next 4-byte boundary. */
28881 if (v & 3)
28882 v = (v + 3) & ~ 3;
28883 else
28884 v += 4;
28885 v = S_GET_VALUE (fixP->fx_addsy) - v;
28886
28887 if (v & ~0x3fc)
28888 {
28889 as_bad_where (fixP->fx_file, fixP->fx_line,
28890 _("symbol too far away"));
28891 }
28892 else
28893 {
28894 fixP->fx_done = 1;
28895 value = v;
28896 }
28897 }
28898 }
28899
28900 if (subtract || value & ~0x3fc)
28901 as_bad_where (fixP->fx_file, fixP->fx_line,
28902 _("invalid immediate for address calculation (value = 0x%08lX)"),
28903 (unsigned long) (subtract ? - value : value));
28904 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
28905 newval |= rd << 8;
28906 newval |= value >> 2;
28907 }
28908 else if (rs == rd)
28909 {
28910 if (value & ~0xff)
28911 as_bad_where (fixP->fx_file, fixP->fx_line,
28912 _("immediate value out of range"));
28913 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
28914 newval |= (rd << 8) | value;
28915 }
28916 else
28917 {
28918 if (value & ~0x7)
28919 as_bad_where (fixP->fx_file, fixP->fx_line,
28920 _("immediate value out of range"));
28921 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
28922 newval |= rd | (rs << 3) | (value << 6);
28923 }
28924 }
28925 md_number_to_chars (buf, newval, THUMB_SIZE);
28926 break;
28927
28928 case BFD_RELOC_ARM_THUMB_IMM:
28929 newval = md_chars_to_number (buf, THUMB_SIZE);
28930 if (value < 0 || value > 255)
28931 as_bad_where (fixP->fx_file, fixP->fx_line,
28932 _("invalid immediate: %ld is out of range"),
28933 (long) value);
28934 newval |= value;
28935 md_number_to_chars (buf, newval, THUMB_SIZE);
28936 break;
28937
28938 case BFD_RELOC_ARM_THUMB_SHIFT:
28939 /* 5bit shift value (0..32). LSL cannot take 32. */
28940 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
28941 temp = newval & 0xf800;
28942 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
28943 as_bad_where (fixP->fx_file, fixP->fx_line,
28944 _("invalid shift value: %ld"), (long) value);
28945 /* Shifts of zero must be encoded as LSL. */
28946 if (value == 0)
28947 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
28948 /* Shifts of 32 are encoded as zero. */
28949 else if (value == 32)
28950 value = 0;
28951 newval |= value << 6;
28952 md_number_to_chars (buf, newval, THUMB_SIZE);
28953 break;
28954
28955 case BFD_RELOC_VTABLE_INHERIT:
28956 case BFD_RELOC_VTABLE_ENTRY:
28957 fixP->fx_done = 0;
28958 return;
28959
28960 case BFD_RELOC_ARM_MOVW:
28961 case BFD_RELOC_ARM_MOVT:
28962 case BFD_RELOC_ARM_THUMB_MOVW:
28963 case BFD_RELOC_ARM_THUMB_MOVT:
28964 if (fixP->fx_done || !seg->use_rela_p)
28965 {
28966 /* REL format relocations are limited to a 16-bit addend. */
28967 if (!fixP->fx_done)
28968 {
28969 if (value < -0x8000 || value > 0x7fff)
28970 as_bad_where (fixP->fx_file, fixP->fx_line,
28971 _("offset out of range"));
28972 }
28973 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28974 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28975 {
28976 value >>= 16;
28977 }
28978
28979 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28980 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28981 {
28982 newval = get_thumb32_insn (buf);
28983 newval &= 0xfbf08f00;
28984 newval |= (value & 0xf000) << 4;
28985 newval |= (value & 0x0800) << 15;
28986 newval |= (value & 0x0700) << 4;
28987 newval |= (value & 0x00ff);
28988 put_thumb32_insn (buf, newval);
28989 }
28990 else
28991 {
28992 newval = md_chars_to_number (buf, 4);
28993 newval &= 0xfff0f000;
28994 newval |= value & 0x0fff;
28995 newval |= (value & 0xf000) << 4;
28996 md_number_to_chars (buf, newval, 4);
28997 }
28998 }
28999 return;
29000
29001 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
29002 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
29003 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
29004 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
29005 gas_assert (!fixP->fx_done);
29006 {
29007 bfd_vma insn;
29008 bfd_boolean is_mov;
29009 bfd_vma encoded_addend = value;
29010
29011 /* Check that addend can be encoded in instruction. */
29012 if (!seg->use_rela_p && (value < 0 || value > 255))
29013 as_bad_where (fixP->fx_file, fixP->fx_line,
29014 _("the offset 0x%08lX is not representable"),
29015 (unsigned long) encoded_addend);
29016
29017 /* Extract the instruction. */
29018 insn = md_chars_to_number (buf, THUMB_SIZE);
29019 is_mov = (insn & 0xf800) == 0x2000;
29020
29021 /* Encode insn. */
29022 if (is_mov)
29023 {
29024 if (!seg->use_rela_p)
29025 insn |= encoded_addend;
29026 }
29027 else
29028 {
29029 int rd, rs;
29030
29031 /* Extract the instruction. */
29032 /* Encoding is the following
29033 0x8000 SUB
29034 0x00F0 Rd
29035 0x000F Rs
29036 */
29037 /* The following conditions must be true :
29038 - ADD
29039 - Rd == Rs
29040 - Rd <= 7
29041 */
29042 rd = (insn >> 4) & 0xf;
29043 rs = insn & 0xf;
29044 if ((insn & 0x8000) || (rd != rs) || rd > 7)
29045 as_bad_where (fixP->fx_file, fixP->fx_line,
29046 _("Unable to process relocation for thumb opcode: %lx"),
29047 (unsigned long) insn);
29048
29049 /* Encode as ADD immediate8 thumb 1 code. */
29050 insn = 0x3000 | (rd << 8);
29051
29052 /* Place the encoded addend into the first 8 bits of the
29053 instruction. */
29054 if (!seg->use_rela_p)
29055 insn |= encoded_addend;
29056 }
29057
29058 /* Update the instruction. */
29059 md_number_to_chars (buf, insn, THUMB_SIZE);
29060 }
29061 break;
29062
29063 case BFD_RELOC_ARM_ALU_PC_G0_NC:
29064 case BFD_RELOC_ARM_ALU_PC_G0:
29065 case BFD_RELOC_ARM_ALU_PC_G1_NC:
29066 case BFD_RELOC_ARM_ALU_PC_G1:
29067 case BFD_RELOC_ARM_ALU_PC_G2:
29068 case BFD_RELOC_ARM_ALU_SB_G0_NC:
29069 case BFD_RELOC_ARM_ALU_SB_G0:
29070 case BFD_RELOC_ARM_ALU_SB_G1_NC:
29071 case BFD_RELOC_ARM_ALU_SB_G1:
29072 case BFD_RELOC_ARM_ALU_SB_G2:
29073 gas_assert (!fixP->fx_done);
29074 if (!seg->use_rela_p)
29075 {
29076 bfd_vma insn;
29077 bfd_vma encoded_addend;
29078 bfd_vma addend_abs = llabs (value);
29079
29080 /* Check that the absolute value of the addend can be
29081 expressed as an 8-bit constant plus a rotation. */
29082 encoded_addend = encode_arm_immediate (addend_abs);
29083 if (encoded_addend == (unsigned int) FAIL)
29084 as_bad_where (fixP->fx_file, fixP->fx_line,
29085 _("the offset 0x%08lX is not representable"),
29086 (unsigned long) addend_abs);
29087
29088 /* Extract the instruction. */
29089 insn = md_chars_to_number (buf, INSN_SIZE);
29090
29091 /* If the addend is positive, use an ADD instruction.
29092 Otherwise use a SUB. Take care not to destroy the S bit. */
29093 insn &= 0xff1fffff;
29094 if (value < 0)
29095 insn |= 1 << 22;
29096 else
29097 insn |= 1 << 23;
29098
29099 /* Place the encoded addend into the first 12 bits of the
29100 instruction. */
29101 insn &= 0xfffff000;
29102 insn |= encoded_addend;
29103
29104 /* Update the instruction. */
29105 md_number_to_chars (buf, insn, INSN_SIZE);
29106 }
29107 break;
29108
29109 case BFD_RELOC_ARM_LDR_PC_G0:
29110 case BFD_RELOC_ARM_LDR_PC_G1:
29111 case BFD_RELOC_ARM_LDR_PC_G2:
29112 case BFD_RELOC_ARM_LDR_SB_G0:
29113 case BFD_RELOC_ARM_LDR_SB_G1:
29114 case BFD_RELOC_ARM_LDR_SB_G2:
29115 gas_assert (!fixP->fx_done);
29116 if (!seg->use_rela_p)
29117 {
29118 bfd_vma insn;
29119 bfd_vma addend_abs = llabs (value);
29120
29121 /* Check that the absolute value of the addend can be
29122 encoded in 12 bits. */
29123 if (addend_abs >= 0x1000)
29124 as_bad_where (fixP->fx_file, fixP->fx_line,
29125 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
29126 (unsigned long) addend_abs);
29127
29128 /* Extract the instruction. */
29129 insn = md_chars_to_number (buf, INSN_SIZE);
29130
29131 /* If the addend is negative, clear bit 23 of the instruction.
29132 Otherwise set it. */
29133 if (value < 0)
29134 insn &= ~(1 << 23);
29135 else
29136 insn |= 1 << 23;
29137
29138 /* Place the absolute value of the addend into the first 12 bits
29139 of the instruction. */
29140 insn &= 0xfffff000;
29141 insn |= addend_abs;
29142
29143 /* Update the instruction. */
29144 md_number_to_chars (buf, insn, INSN_SIZE);
29145 }
29146 break;
29147
29148 case BFD_RELOC_ARM_LDRS_PC_G0:
29149 case BFD_RELOC_ARM_LDRS_PC_G1:
29150 case BFD_RELOC_ARM_LDRS_PC_G2:
29151 case BFD_RELOC_ARM_LDRS_SB_G0:
29152 case BFD_RELOC_ARM_LDRS_SB_G1:
29153 case BFD_RELOC_ARM_LDRS_SB_G2:
29154 gas_assert (!fixP->fx_done);
29155 if (!seg->use_rela_p)
29156 {
29157 bfd_vma insn;
29158 bfd_vma addend_abs = llabs (value);
29159
29160 /* Check that the absolute value of the addend can be
29161 encoded in 8 bits. */
29162 if (addend_abs >= 0x100)
29163 as_bad_where (fixP->fx_file, fixP->fx_line,
29164 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
29165 (unsigned long) addend_abs);
29166
29167 /* Extract the instruction. */
29168 insn = md_chars_to_number (buf, INSN_SIZE);
29169
29170 /* If the addend is negative, clear bit 23 of the instruction.
29171 Otherwise set it. */
29172 if (value < 0)
29173 insn &= ~(1 << 23);
29174 else
29175 insn |= 1 << 23;
29176
29177 /* Place the first four bits of the absolute value of the addend
29178 into the first 4 bits of the instruction, and the remaining
29179 four into bits 8 .. 11. */
29180 insn &= 0xfffff0f0;
29181 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
29182
29183 /* Update the instruction. */
29184 md_number_to_chars (buf, insn, INSN_SIZE);
29185 }
29186 break;
29187
29188 case BFD_RELOC_ARM_LDC_PC_G0:
29189 case BFD_RELOC_ARM_LDC_PC_G1:
29190 case BFD_RELOC_ARM_LDC_PC_G2:
29191 case BFD_RELOC_ARM_LDC_SB_G0:
29192 case BFD_RELOC_ARM_LDC_SB_G1:
29193 case BFD_RELOC_ARM_LDC_SB_G2:
29194 gas_assert (!fixP->fx_done);
29195 if (!seg->use_rela_p)
29196 {
29197 bfd_vma insn;
29198 bfd_vma addend_abs = llabs (value);
29199
29200 /* Check that the absolute value of the addend is a multiple of
29201 four and, when divided by four, fits in 8 bits. */
29202 if (addend_abs & 0x3)
29203 as_bad_where (fixP->fx_file, fixP->fx_line,
29204 _("bad offset 0x%08lX (must be word-aligned)"),
29205 (unsigned long) addend_abs);
29206
29207 if ((addend_abs >> 2) > 0xff)
29208 as_bad_where (fixP->fx_file, fixP->fx_line,
29209 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
29210 (unsigned long) addend_abs);
29211
29212 /* Extract the instruction. */
29213 insn = md_chars_to_number (buf, INSN_SIZE);
29214
29215 /* If the addend is negative, clear bit 23 of the instruction.
29216 Otherwise set it. */
29217 if (value < 0)
29218 insn &= ~(1 << 23);
29219 else
29220 insn |= 1 << 23;
29221
29222 /* Place the addend (divided by four) into the first eight
29223 bits of the instruction. */
29224 insn &= 0xfffffff0;
29225 insn |= addend_abs >> 2;
29226
29227 /* Update the instruction. */
29228 md_number_to_chars (buf, insn, INSN_SIZE);
29229 }
29230 break;
29231
29232 case BFD_RELOC_THUMB_PCREL_BRANCH5:
29233 if (fixP->fx_addsy
29234 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29235 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29236 && ARM_IS_FUNC (fixP->fx_addsy)
29237 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29238 {
29239 /* Force a relocation for a branch 5 bits wide. */
29240 fixP->fx_done = 0;
29241 }
29242 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
29243 as_bad_where (fixP->fx_file, fixP->fx_line,
29244 BAD_BRANCH_OFF);
29245
29246 if (fixP->fx_done || !seg->use_rela_p)
29247 {
29248 addressT boff = value >> 1;
29249
29250 newval = md_chars_to_number (buf, THUMB_SIZE);
29251 newval |= (boff << 7);
29252 md_number_to_chars (buf, newval, THUMB_SIZE);
29253 }
29254 break;
29255
29256 case BFD_RELOC_THUMB_PCREL_BFCSEL:
29257 if (fixP->fx_addsy
29258 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29259 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29260 && ARM_IS_FUNC (fixP->fx_addsy)
29261 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29262 {
29263 fixP->fx_done = 0;
29264 }
29265 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
29266 as_bad_where (fixP->fx_file, fixP->fx_line,
29267 _("branch out of range"));
29268
29269 if (fixP->fx_done || !seg->use_rela_p)
29270 {
29271 newval = md_chars_to_number (buf, THUMB_SIZE);
29272
29273 addressT boff = ((newval & 0x0780) >> 7) << 1;
29274 addressT diff = value - boff;
29275
29276 if (diff == 4)
29277 {
29278 newval |= 1 << 1; /* T bit. */
29279 }
29280 else if (diff != 2)
29281 {
29282 as_bad_where (fixP->fx_file, fixP->fx_line,
29283 _("out of range label-relative fixup value"));
29284 }
29285 md_number_to_chars (buf, newval, THUMB_SIZE);
29286 }
29287 break;
29288
29289 case BFD_RELOC_ARM_THUMB_BF17:
29290 if (fixP->fx_addsy
29291 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29292 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29293 && ARM_IS_FUNC (fixP->fx_addsy)
29294 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29295 {
29296 /* Force a relocation for a branch 17 bits wide. */
29297 fixP->fx_done = 0;
29298 }
29299
29300 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
29301 as_bad_where (fixP->fx_file, fixP->fx_line,
29302 BAD_BRANCH_OFF);
29303
29304 if (fixP->fx_done || !seg->use_rela_p)
29305 {
29306 offsetT newval2;
29307 addressT immA, immB, immC;
29308
29309 immA = (value & 0x0001f000) >> 12;
29310 immB = (value & 0x00000ffc) >> 2;
29311 immC = (value & 0x00000002) >> 1;
29312
29313 newval = md_chars_to_number (buf, THUMB_SIZE);
29314 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29315 newval |= immA;
29316 newval2 |= (immC << 11) | (immB << 1);
29317 md_number_to_chars (buf, newval, THUMB_SIZE);
29318 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29319 }
29320 break;
29321
29322 case BFD_RELOC_ARM_THUMB_BF19:
29323 if (fixP->fx_addsy
29324 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29325 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29326 && ARM_IS_FUNC (fixP->fx_addsy)
29327 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29328 {
29329 /* Force a relocation for a branch 19 bits wide. */
29330 fixP->fx_done = 0;
29331 }
29332
29333 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
29334 as_bad_where (fixP->fx_file, fixP->fx_line,
29335 BAD_BRANCH_OFF);
29336
29337 if (fixP->fx_done || !seg->use_rela_p)
29338 {
29339 offsetT newval2;
29340 addressT immA, immB, immC;
29341
29342 immA = (value & 0x0007f000) >> 12;
29343 immB = (value & 0x00000ffc) >> 2;
29344 immC = (value & 0x00000002) >> 1;
29345
29346 newval = md_chars_to_number (buf, THUMB_SIZE);
29347 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29348 newval |= immA;
29349 newval2 |= (immC << 11) | (immB << 1);
29350 md_number_to_chars (buf, newval, THUMB_SIZE);
29351 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29352 }
29353 break;
29354
29355 case BFD_RELOC_ARM_THUMB_BF13:
29356 if (fixP->fx_addsy
29357 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29358 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29359 && ARM_IS_FUNC (fixP->fx_addsy)
29360 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29361 {
29362 /* Force a relocation for a branch 13 bits wide. */
29363 fixP->fx_done = 0;
29364 }
29365
29366 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
29367 as_bad_where (fixP->fx_file, fixP->fx_line,
29368 BAD_BRANCH_OFF);
29369
29370 if (fixP->fx_done || !seg->use_rela_p)
29371 {
29372 offsetT newval2;
29373 addressT immA, immB, immC;
29374
29375 immA = (value & 0x00001000) >> 12;
29376 immB = (value & 0x00000ffc) >> 2;
29377 immC = (value & 0x00000002) >> 1;
29378
29379 newval = md_chars_to_number (buf, THUMB_SIZE);
29380 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29381 newval |= immA;
29382 newval2 |= (immC << 11) | (immB << 1);
29383 md_number_to_chars (buf, newval, THUMB_SIZE);
29384 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
29385 }
29386 break;
29387
29388 case BFD_RELOC_ARM_THUMB_LOOP12:
29389 if (fixP->fx_addsy
29390 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
29391 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
29392 && ARM_IS_FUNC (fixP->fx_addsy)
29393 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
29394 {
29395 /* Force a relocation for a branch 12 bits wide. */
29396 fixP->fx_done = 0;
29397 }
29398
29399 bfd_vma insn = get_thumb32_insn (buf);
29400 /* le lr, <label>, le <label> or letp lr, <label> */
29401 if (((insn & 0xffffffff) == 0xf00fc001)
29402 || ((insn & 0xffffffff) == 0xf02fc001)
29403 || ((insn & 0xffffffff) == 0xf01fc001))
29404 value = -value;
29405
29406 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
29407 as_bad_where (fixP->fx_file, fixP->fx_line,
29408 BAD_BRANCH_OFF);
29409 if (fixP->fx_done || !seg->use_rela_p)
29410 {
29411 addressT imml, immh;
29412
29413 immh = (value & 0x00000ffc) >> 2;
29414 imml = (value & 0x00000002) >> 1;
29415
29416 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
29417 newval |= (imml << 11) | (immh << 1);
29418 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
29419 }
29420 break;
29421
29422 case BFD_RELOC_ARM_V4BX:
29423 /* This will need to go in the object file. */
29424 fixP->fx_done = 0;
29425 break;
29426
29427 case BFD_RELOC_UNUSED:
29428 default:
29429 as_bad_where (fixP->fx_file, fixP->fx_line,
29430 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
29431 }
29432 }
29433
29434 /* Translate internal representation of relocation info to BFD target
29435 format. */
29436
29437 arelent *
29438 tc_gen_reloc (asection *section, fixS *fixp)
29439 {
29440 arelent * reloc;
29441 bfd_reloc_code_real_type code;
29442
29443 reloc = XNEW (arelent);
29444
29445 reloc->sym_ptr_ptr = XNEW (asymbol *);
29446 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
29447 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
29448
29449 if (fixp->fx_pcrel)
29450 {
29451 if (section->use_rela_p)
29452 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
29453 else
29454 fixp->fx_offset = reloc->address;
29455 }
29456 reloc->addend = fixp->fx_offset;
29457
29458 switch (fixp->fx_r_type)
29459 {
29460 case BFD_RELOC_8:
29461 if (fixp->fx_pcrel)
29462 {
29463 code = BFD_RELOC_8_PCREL;
29464 break;
29465 }
29466 /* Fall through. */
29467
29468 case BFD_RELOC_16:
29469 if (fixp->fx_pcrel)
29470 {
29471 code = BFD_RELOC_16_PCREL;
29472 break;
29473 }
29474 /* Fall through. */
29475
29476 case BFD_RELOC_32:
29477 if (fixp->fx_pcrel)
29478 {
29479 code = BFD_RELOC_32_PCREL;
29480 break;
29481 }
29482 /* Fall through. */
29483
29484 case BFD_RELOC_ARM_MOVW:
29485 if (fixp->fx_pcrel)
29486 {
29487 code = BFD_RELOC_ARM_MOVW_PCREL;
29488 break;
29489 }
29490 /* Fall through. */
29491
29492 case BFD_RELOC_ARM_MOVT:
29493 if (fixp->fx_pcrel)
29494 {
29495 code = BFD_RELOC_ARM_MOVT_PCREL;
29496 break;
29497 }
29498 /* Fall through. */
29499
29500 case BFD_RELOC_ARM_THUMB_MOVW:
29501 if (fixp->fx_pcrel)
29502 {
29503 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
29504 break;
29505 }
29506 /* Fall through. */
29507
29508 case BFD_RELOC_ARM_THUMB_MOVT:
29509 if (fixp->fx_pcrel)
29510 {
29511 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
29512 break;
29513 }
29514 /* Fall through. */
29515
29516 case BFD_RELOC_NONE:
29517 case BFD_RELOC_ARM_PCREL_BRANCH:
29518 case BFD_RELOC_ARM_PCREL_BLX:
29519 case BFD_RELOC_RVA:
29520 case BFD_RELOC_THUMB_PCREL_BRANCH7:
29521 case BFD_RELOC_THUMB_PCREL_BRANCH9:
29522 case BFD_RELOC_THUMB_PCREL_BRANCH12:
29523 case BFD_RELOC_THUMB_PCREL_BRANCH20:
29524 case BFD_RELOC_THUMB_PCREL_BRANCH23:
29525 case BFD_RELOC_THUMB_PCREL_BRANCH25:
29526 case BFD_RELOC_VTABLE_ENTRY:
29527 case BFD_RELOC_VTABLE_INHERIT:
29528 #ifdef TE_PE
29529 case BFD_RELOC_32_SECREL:
29530 #endif
29531 code = fixp->fx_r_type;
29532 break;
29533
29534 case BFD_RELOC_THUMB_PCREL_BLX:
29535 #ifdef OBJ_ELF
29536 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
29537 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
29538 else
29539 #endif
29540 code = BFD_RELOC_THUMB_PCREL_BLX;
29541 break;
29542
29543 case BFD_RELOC_ARM_LITERAL:
29544 case BFD_RELOC_ARM_HWLITERAL:
29545 /* If this is called then the a literal has
29546 been referenced across a section boundary. */
29547 as_bad_where (fixp->fx_file, fixp->fx_line,
29548 _("literal referenced across section boundary"));
29549 return NULL;
29550
29551 #ifdef OBJ_ELF
29552 case BFD_RELOC_ARM_TLS_CALL:
29553 case BFD_RELOC_ARM_THM_TLS_CALL:
29554 case BFD_RELOC_ARM_TLS_DESCSEQ:
29555 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
29556 case BFD_RELOC_ARM_GOT32:
29557 case BFD_RELOC_ARM_GOTOFF:
29558 case BFD_RELOC_ARM_GOT_PREL:
29559 case BFD_RELOC_ARM_PLT32:
29560 case BFD_RELOC_ARM_TARGET1:
29561 case BFD_RELOC_ARM_ROSEGREL32:
29562 case BFD_RELOC_ARM_SBREL32:
29563 case BFD_RELOC_ARM_PREL31:
29564 case BFD_RELOC_ARM_TARGET2:
29565 case BFD_RELOC_ARM_TLS_LDO32:
29566 case BFD_RELOC_ARM_PCREL_CALL:
29567 case BFD_RELOC_ARM_PCREL_JUMP:
29568 case BFD_RELOC_ARM_ALU_PC_G0_NC:
29569 case BFD_RELOC_ARM_ALU_PC_G0:
29570 case BFD_RELOC_ARM_ALU_PC_G1_NC:
29571 case BFD_RELOC_ARM_ALU_PC_G1:
29572 case BFD_RELOC_ARM_ALU_PC_G2:
29573 case BFD_RELOC_ARM_LDR_PC_G0:
29574 case BFD_RELOC_ARM_LDR_PC_G1:
29575 case BFD_RELOC_ARM_LDR_PC_G2:
29576 case BFD_RELOC_ARM_LDRS_PC_G0:
29577 case BFD_RELOC_ARM_LDRS_PC_G1:
29578 case BFD_RELOC_ARM_LDRS_PC_G2:
29579 case BFD_RELOC_ARM_LDC_PC_G0:
29580 case BFD_RELOC_ARM_LDC_PC_G1:
29581 case BFD_RELOC_ARM_LDC_PC_G2:
29582 case BFD_RELOC_ARM_ALU_SB_G0_NC:
29583 case BFD_RELOC_ARM_ALU_SB_G0:
29584 case BFD_RELOC_ARM_ALU_SB_G1_NC:
29585 case BFD_RELOC_ARM_ALU_SB_G1:
29586 case BFD_RELOC_ARM_ALU_SB_G2:
29587 case BFD_RELOC_ARM_LDR_SB_G0:
29588 case BFD_RELOC_ARM_LDR_SB_G1:
29589 case BFD_RELOC_ARM_LDR_SB_G2:
29590 case BFD_RELOC_ARM_LDRS_SB_G0:
29591 case BFD_RELOC_ARM_LDRS_SB_G1:
29592 case BFD_RELOC_ARM_LDRS_SB_G2:
29593 case BFD_RELOC_ARM_LDC_SB_G0:
29594 case BFD_RELOC_ARM_LDC_SB_G1:
29595 case BFD_RELOC_ARM_LDC_SB_G2:
29596 case BFD_RELOC_ARM_V4BX:
29597 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
29598 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
29599 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
29600 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
29601 case BFD_RELOC_ARM_GOTFUNCDESC:
29602 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
29603 case BFD_RELOC_ARM_FUNCDESC:
29604 case BFD_RELOC_ARM_THUMB_BF17:
29605 case BFD_RELOC_ARM_THUMB_BF19:
29606 case BFD_RELOC_ARM_THUMB_BF13:
29607 code = fixp->fx_r_type;
29608 break;
29609
29610 case BFD_RELOC_ARM_TLS_GOTDESC:
29611 case BFD_RELOC_ARM_TLS_GD32:
29612 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
29613 case BFD_RELOC_ARM_TLS_LE32:
29614 case BFD_RELOC_ARM_TLS_IE32:
29615 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
29616 case BFD_RELOC_ARM_TLS_LDM32:
29617 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
29618 /* BFD will include the symbol's address in the addend.
29619 But we don't want that, so subtract it out again here. */
29620 if (!S_IS_COMMON (fixp->fx_addsy))
29621 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
29622 code = fixp->fx_r_type;
29623 break;
29624 #endif
29625
29626 case BFD_RELOC_ARM_IMMEDIATE:
29627 as_bad_where (fixp->fx_file, fixp->fx_line,
29628 _("internal relocation (type: IMMEDIATE) not fixed up"));
29629 return NULL;
29630
29631 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
29632 as_bad_where (fixp->fx_file, fixp->fx_line,
29633 _("ADRL used for a symbol not defined in the same file"));
29634 return NULL;
29635
29636 case BFD_RELOC_THUMB_PCREL_BRANCH5:
29637 case BFD_RELOC_THUMB_PCREL_BFCSEL:
29638 case BFD_RELOC_ARM_THUMB_LOOP12:
29639 as_bad_where (fixp->fx_file, fixp->fx_line,
29640 _("%s used for a symbol not defined in the same file"),
29641 bfd_get_reloc_code_name (fixp->fx_r_type));
29642 return NULL;
29643
29644 case BFD_RELOC_ARM_OFFSET_IMM:
29645 if (section->use_rela_p)
29646 {
29647 code = fixp->fx_r_type;
29648 break;
29649 }
29650
29651 if (fixp->fx_addsy != NULL
29652 && !S_IS_DEFINED (fixp->fx_addsy)
29653 && S_IS_LOCAL (fixp->fx_addsy))
29654 {
29655 as_bad_where (fixp->fx_file, fixp->fx_line,
29656 _("undefined local label `%s'"),
29657 S_GET_NAME (fixp->fx_addsy));
29658 return NULL;
29659 }
29660
29661 as_bad_where (fixp->fx_file, fixp->fx_line,
29662 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
29663 return NULL;
29664
29665 default:
29666 {
29667 const char * type;
29668
29669 switch (fixp->fx_r_type)
29670 {
29671 case BFD_RELOC_NONE: type = "NONE"; break;
29672 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
29673 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
29674 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
29675 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
29676 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
29677 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
29678 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
29679 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
29680 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
29681 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
29682 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
29683 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
29684 default: type = _("<unknown>"); break;
29685 }
29686 as_bad_where (fixp->fx_file, fixp->fx_line,
29687 _("cannot represent %s relocation in this object file format"),
29688 type);
29689 return NULL;
29690 }
29691 }
29692
29693 #ifdef OBJ_ELF
29694 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
29695 && GOT_symbol
29696 && fixp->fx_addsy == GOT_symbol)
29697 {
29698 code = BFD_RELOC_ARM_GOTPC;
29699 reloc->addend = fixp->fx_offset = reloc->address;
29700 }
29701 #endif
29702
29703 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
29704
29705 if (reloc->howto == NULL)
29706 {
29707 as_bad_where (fixp->fx_file, fixp->fx_line,
29708 _("cannot represent %s relocation in this object file format"),
29709 bfd_get_reloc_code_name (code));
29710 return NULL;
29711 }
29712
29713 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
29714 vtable entry to be used in the relocation's section offset. */
29715 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
29716 reloc->address = fixp->fx_offset;
29717
29718 return reloc;
29719 }
29720
29721 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
29722
29723 void
29724 cons_fix_new_arm (fragS * frag,
29725 int where,
29726 int size,
29727 expressionS * exp,
29728 bfd_reloc_code_real_type reloc)
29729 {
29730 int pcrel = 0;
29731
29732 /* Pick a reloc.
29733 FIXME: @@ Should look at CPU word size. */
29734 switch (size)
29735 {
29736 case 1:
29737 reloc = BFD_RELOC_8;
29738 break;
29739 case 2:
29740 reloc = BFD_RELOC_16;
29741 break;
29742 case 4:
29743 default:
29744 reloc = BFD_RELOC_32;
29745 break;
29746 case 8:
29747 reloc = BFD_RELOC_64;
29748 break;
29749 }
29750
29751 #ifdef TE_PE
29752 if (exp->X_op == O_secrel)
29753 {
29754 exp->X_op = O_symbol;
29755 reloc = BFD_RELOC_32_SECREL;
29756 }
29757 #endif
29758
29759 fix_new_exp (frag, where, size, exp, pcrel, reloc);
29760 }
29761
29762 #if defined (OBJ_COFF)
29763 void
29764 arm_validate_fix (fixS * fixP)
29765 {
29766 /* If the destination of the branch is a defined symbol which does not have
29767 the THUMB_FUNC attribute, then we must be calling a function which has
29768 the (interfacearm) attribute. We look for the Thumb entry point to that
29769 function and change the branch to refer to that function instead. */
29770 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
29771 && fixP->fx_addsy != NULL
29772 && S_IS_DEFINED (fixP->fx_addsy)
29773 && ! THUMB_IS_FUNC (fixP->fx_addsy))
29774 {
29775 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
29776 }
29777 }
29778 #endif
29779
29780
29781 int
29782 arm_force_relocation (struct fix * fixp)
29783 {
29784 #if defined (OBJ_COFF) && defined (TE_PE)
29785 if (fixp->fx_r_type == BFD_RELOC_RVA)
29786 return 1;
29787 #endif
29788
29789 /* In case we have a call or a branch to a function in ARM ISA mode from
29790 a thumb function or vice-versa force the relocation. These relocations
29791 are cleared off for some cores that might have blx and simple transformations
29792 are possible. */
29793
29794 #ifdef OBJ_ELF
29795 switch (fixp->fx_r_type)
29796 {
29797 case BFD_RELOC_ARM_PCREL_JUMP:
29798 case BFD_RELOC_ARM_PCREL_CALL:
29799 case BFD_RELOC_THUMB_PCREL_BLX:
29800 if (THUMB_IS_FUNC (fixp->fx_addsy))
29801 return 1;
29802 break;
29803
29804 case BFD_RELOC_ARM_PCREL_BLX:
29805 case BFD_RELOC_THUMB_PCREL_BRANCH25:
29806 case BFD_RELOC_THUMB_PCREL_BRANCH20:
29807 case BFD_RELOC_THUMB_PCREL_BRANCH23:
29808 if (ARM_IS_FUNC (fixp->fx_addsy))
29809 return 1;
29810 break;
29811
29812 default:
29813 break;
29814 }
29815 #endif
29816
29817 /* Resolve these relocations even if the symbol is extern or weak.
29818 Technically this is probably wrong due to symbol preemption.
29819 In practice these relocations do not have enough range to be useful
29820 at dynamic link time, and some code (e.g. in the Linux kernel)
29821 expects these references to be resolved. */
29822 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
29823 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
29824 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
29825 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
29826 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
29827 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
29828 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
29829 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
29830 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
29831 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
29832 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
29833 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
29834 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
29835 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
29836 return 0;
29837
29838 /* Always leave these relocations for the linker. */
29839 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29840 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29841 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
29842 return 1;
29843
29844 /* Always generate relocations against function symbols. */
29845 if (fixp->fx_r_type == BFD_RELOC_32
29846 && fixp->fx_addsy
29847 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
29848 return 1;
29849
29850 return generic_force_reloc (fixp);
29851 }
29852
29853 #if defined (OBJ_ELF) || defined (OBJ_COFF)
29854 /* Relocations against function names must be left unadjusted,
29855 so that the linker can use this information to generate interworking
29856 stubs. The MIPS version of this function
29857 also prevents relocations that are mips-16 specific, but I do not
29858 know why it does this.
29859
29860 FIXME:
29861 There is one other problem that ought to be addressed here, but
29862 which currently is not: Taking the address of a label (rather
29863 than a function) and then later jumping to that address. Such
29864 addresses also ought to have their bottom bit set (assuming that
29865 they reside in Thumb code), but at the moment they will not. */
29866
29867 bfd_boolean
29868 arm_fix_adjustable (fixS * fixP)
29869 {
29870 if (fixP->fx_addsy == NULL)
29871 return 1;
29872
29873 /* Preserve relocations against symbols with function type. */
29874 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
29875 return FALSE;
29876
29877 if (THUMB_IS_FUNC (fixP->fx_addsy)
29878 && fixP->fx_subsy == NULL)
29879 return FALSE;
29880
29881 /* We need the symbol name for the VTABLE entries. */
29882 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
29883 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
29884 return FALSE;
29885
29886 /* Don't allow symbols to be discarded on GOT related relocs. */
29887 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
29888 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
29889 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
29890 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
29891 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
29892 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
29893 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
29894 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
29895 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
29896 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
29897 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
29898 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
29899 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
29900 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
29901 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
29902 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
29903 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
29904 return FALSE;
29905
29906 /* Similarly for group relocations. */
29907 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29908 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29909 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
29910 return FALSE;
29911
29912 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
29913 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
29914 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
29915 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
29916 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
29917 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
29918 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
29919 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
29920 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
29921 return FALSE;
29922
29923 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
29924 offsets, so keep these symbols. */
29925 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
29926 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
29927 return FALSE;
29928
29929 return TRUE;
29930 }
29931 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
29932
29933 #ifdef OBJ_ELF
29934 const char *
29935 elf32_arm_target_format (void)
29936 {
29937 #ifdef TE_SYMBIAN
29938 return (target_big_endian
29939 ? "elf32-bigarm-symbian"
29940 : "elf32-littlearm-symbian");
29941 #elif defined (TE_VXWORKS)
29942 return (target_big_endian
29943 ? "elf32-bigarm-vxworks"
29944 : "elf32-littlearm-vxworks");
29945 #elif defined (TE_NACL)
29946 return (target_big_endian
29947 ? "elf32-bigarm-nacl"
29948 : "elf32-littlearm-nacl");
29949 #else
29950 if (arm_fdpic)
29951 {
29952 if (target_big_endian)
29953 return "elf32-bigarm-fdpic";
29954 else
29955 return "elf32-littlearm-fdpic";
29956 }
29957 else
29958 {
29959 if (target_big_endian)
29960 return "elf32-bigarm";
29961 else
29962 return "elf32-littlearm";
29963 }
29964 #endif
29965 }
29966
29967 void
29968 armelf_frob_symbol (symbolS * symp,
29969 int * puntp)
29970 {
29971 elf_frob_symbol (symp, puntp);
29972 }
29973 #endif
29974
29975 /* MD interface: Finalization. */
29976
29977 void
29978 arm_cleanup (void)
29979 {
29980 literal_pool * pool;
29981
29982 /* Ensure that all the predication blocks are properly closed. */
29983 check_pred_blocks_finished ();
29984
29985 for (pool = list_of_pools; pool; pool = pool->next)
29986 {
29987 /* Put it at the end of the relevant section. */
29988 subseg_set (pool->section, pool->sub_section);
29989 #ifdef OBJ_ELF
29990 arm_elf_change_section ();
29991 #endif
29992 s_ltorg (0);
29993 }
29994 }
29995
29996 #ifdef OBJ_ELF
29997 /* Remove any excess mapping symbols generated for alignment frags in
29998 SEC. We may have created a mapping symbol before a zero byte
29999 alignment; remove it if there's a mapping symbol after the
30000 alignment. */
30001 static void
30002 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
30003 void *dummy ATTRIBUTE_UNUSED)
30004 {
30005 segment_info_type *seginfo = seg_info (sec);
30006 fragS *fragp;
30007
30008 if (seginfo == NULL || seginfo->frchainP == NULL)
30009 return;
30010
30011 for (fragp = seginfo->frchainP->frch_root;
30012 fragp != NULL;
30013 fragp = fragp->fr_next)
30014 {
30015 symbolS *sym = fragp->tc_frag_data.last_map;
30016 fragS *next = fragp->fr_next;
30017
30018 /* Variable-sized frags have been converted to fixed size by
30019 this point. But if this was variable-sized to start with,
30020 there will be a fixed-size frag after it. So don't handle
30021 next == NULL. */
30022 if (sym == NULL || next == NULL)
30023 continue;
30024
30025 if (S_GET_VALUE (sym) < next->fr_address)
30026 /* Not at the end of this frag. */
30027 continue;
30028 know (S_GET_VALUE (sym) == next->fr_address);
30029
30030 do
30031 {
30032 if (next->tc_frag_data.first_map != NULL)
30033 {
30034 /* Next frag starts with a mapping symbol. Discard this
30035 one. */
30036 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
30037 break;
30038 }
30039
30040 if (next->fr_next == NULL)
30041 {
30042 /* This mapping symbol is at the end of the section. Discard
30043 it. */
30044 know (next->fr_fix == 0 && next->fr_var == 0);
30045 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
30046 break;
30047 }
30048
30049 /* As long as we have empty frags without any mapping symbols,
30050 keep looking. */
30051 /* If the next frag is non-empty and does not start with a
30052 mapping symbol, then this mapping symbol is required. */
30053 if (next->fr_address != next->fr_next->fr_address)
30054 break;
30055
30056 next = next->fr_next;
30057 }
30058 while (next != NULL);
30059 }
30060 }
30061 #endif
30062
30063 /* Adjust the symbol table. This marks Thumb symbols as distinct from
30064 ARM ones. */
30065
30066 void
30067 arm_adjust_symtab (void)
30068 {
30069 #ifdef OBJ_COFF
30070 symbolS * sym;
30071
30072 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
30073 {
30074 if (ARM_IS_THUMB (sym))
30075 {
30076 if (THUMB_IS_FUNC (sym))
30077 {
30078 /* Mark the symbol as a Thumb function. */
30079 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
30080 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
30081 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
30082
30083 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
30084 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
30085 else
30086 as_bad (_("%s: unexpected function type: %d"),
30087 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
30088 }
30089 else switch (S_GET_STORAGE_CLASS (sym))
30090 {
30091 case C_EXT:
30092 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
30093 break;
30094 case C_STAT:
30095 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
30096 break;
30097 case C_LABEL:
30098 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
30099 break;
30100 default:
30101 /* Do nothing. */
30102 break;
30103 }
30104 }
30105
30106 if (ARM_IS_INTERWORK (sym))
30107 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
30108 }
30109 #endif
30110 #ifdef OBJ_ELF
30111 symbolS * sym;
30112 char bind;
30113
30114 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
30115 {
30116 if (ARM_IS_THUMB (sym))
30117 {
30118 elf_symbol_type * elf_sym;
30119
30120 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
30121 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
30122
30123 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
30124 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
30125 {
30126 /* If it's a .thumb_func, declare it as so,
30127 otherwise tag label as .code 16. */
30128 if (THUMB_IS_FUNC (sym))
30129 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
30130 ST_BRANCH_TO_THUMB);
30131 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
30132 elf_sym->internal_elf_sym.st_info =
30133 ELF_ST_INFO (bind, STT_ARM_16BIT);
30134 }
30135 }
30136 }
30137
30138 /* Remove any overlapping mapping symbols generated by alignment frags. */
30139 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
30140 /* Now do generic ELF adjustments. */
30141 elf_adjust_symtab ();
30142 #endif
30143 }
30144
30145 /* MD interface: Initialization. */
30146
30147 static void
30148 set_constant_flonums (void)
30149 {
30150 int i;
30151
30152 for (i = 0; i < NUM_FLOAT_VALS; i++)
30153 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
30154 abort ();
30155 }
30156
30157 /* Auto-select Thumb mode if it's the only available instruction set for the
30158 given architecture. */
30159
30160 static void
30161 autoselect_thumb_from_cpu_variant (void)
30162 {
30163 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
30164 opcode_select (16);
30165 }
30166
30167 void
30168 md_begin (void)
30169 {
30170 unsigned mach;
30171 unsigned int i;
30172
30173 if ( (arm_ops_hsh = hash_new ()) == NULL
30174 || (arm_cond_hsh = hash_new ()) == NULL
30175 || (arm_vcond_hsh = hash_new ()) == NULL
30176 || (arm_shift_hsh = hash_new ()) == NULL
30177 || (arm_psr_hsh = hash_new ()) == NULL
30178 || (arm_v7m_psr_hsh = hash_new ()) == NULL
30179 || (arm_reg_hsh = hash_new ()) == NULL
30180 || (arm_reloc_hsh = hash_new ()) == NULL
30181 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
30182 as_fatal (_("virtual memory exhausted"));
30183
30184 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
30185 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
30186 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
30187 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
30188 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
30189 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
30190 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
30191 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
30192 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
30193 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
30194 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
30195 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
30196 (void *) (v7m_psrs + i));
30197 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
30198 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
30199 for (i = 0;
30200 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
30201 i++)
30202 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
30203 (void *) (barrier_opt_names + i));
30204 #ifdef OBJ_ELF
30205 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
30206 {
30207 struct reloc_entry * entry = reloc_names + i;
30208
30209 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
30210 /* This makes encode_branch() use the EABI versions of this relocation. */
30211 entry->reloc = BFD_RELOC_UNUSED;
30212
30213 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
30214 }
30215 #endif
30216
30217 set_constant_flonums ();
30218
30219 /* Set the cpu variant based on the command-line options. We prefer
30220 -mcpu= over -march= if both are set (as for GCC); and we prefer
30221 -mfpu= over any other way of setting the floating point unit.
30222 Use of legacy options with new options are faulted. */
30223 if (legacy_cpu)
30224 {
30225 if (mcpu_cpu_opt || march_cpu_opt)
30226 as_bad (_("use of old and new-style options to set CPU type"));
30227
30228 selected_arch = *legacy_cpu;
30229 }
30230 else if (mcpu_cpu_opt)
30231 {
30232 selected_arch = *mcpu_cpu_opt;
30233 selected_ext = *mcpu_ext_opt;
30234 }
30235 else if (march_cpu_opt)
30236 {
30237 selected_arch = *march_cpu_opt;
30238 selected_ext = *march_ext_opt;
30239 }
30240 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30241
30242 if (legacy_fpu)
30243 {
30244 if (mfpu_opt)
30245 as_bad (_("use of old and new-style options to set FPU type"));
30246
30247 selected_fpu = *legacy_fpu;
30248 }
30249 else if (mfpu_opt)
30250 selected_fpu = *mfpu_opt;
30251 else
30252 {
30253 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
30254 || defined (TE_NetBSD) || defined (TE_VXWORKS))
30255 /* Some environments specify a default FPU. If they don't, infer it
30256 from the processor. */
30257 if (mcpu_fpu_opt)
30258 selected_fpu = *mcpu_fpu_opt;
30259 else if (march_fpu_opt)
30260 selected_fpu = *march_fpu_opt;
30261 #else
30262 selected_fpu = fpu_default;
30263 #endif
30264 }
30265
30266 if (ARM_FEATURE_ZERO (selected_fpu))
30267 {
30268 if (!no_cpu_selected ())
30269 selected_fpu = fpu_default;
30270 else
30271 selected_fpu = fpu_arch_fpa;
30272 }
30273
30274 #ifdef CPU_DEFAULT
30275 if (ARM_FEATURE_ZERO (selected_arch))
30276 {
30277 selected_arch = cpu_default;
30278 selected_cpu = selected_arch;
30279 }
30280 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30281 #else
30282 /* Autodection of feature mode: allow all features in cpu_variant but leave
30283 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
30284 after all instruction have been processed and we can decide what CPU
30285 should be selected. */
30286 if (ARM_FEATURE_ZERO (selected_arch))
30287 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
30288 else
30289 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30290 #endif
30291
30292 autoselect_thumb_from_cpu_variant ();
30293
30294 arm_arch_used = thumb_arch_used = arm_arch_none;
30295
30296 #if defined OBJ_COFF || defined OBJ_ELF
30297 {
30298 unsigned int flags = 0;
30299
30300 #if defined OBJ_ELF
30301 flags = meabi_flags;
30302
30303 switch (meabi_flags)
30304 {
30305 case EF_ARM_EABI_UNKNOWN:
30306 #endif
30307 /* Set the flags in the private structure. */
30308 if (uses_apcs_26) flags |= F_APCS26;
30309 if (support_interwork) flags |= F_INTERWORK;
30310 if (uses_apcs_float) flags |= F_APCS_FLOAT;
30311 if (pic_code) flags |= F_PIC;
30312 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
30313 flags |= F_SOFT_FLOAT;
30314
30315 switch (mfloat_abi_opt)
30316 {
30317 case ARM_FLOAT_ABI_SOFT:
30318 case ARM_FLOAT_ABI_SOFTFP:
30319 flags |= F_SOFT_FLOAT;
30320 break;
30321
30322 case ARM_FLOAT_ABI_HARD:
30323 if (flags & F_SOFT_FLOAT)
30324 as_bad (_("hard-float conflicts with specified fpu"));
30325 break;
30326 }
30327
30328 /* Using pure-endian doubles (even if soft-float). */
30329 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
30330 flags |= F_VFP_FLOAT;
30331
30332 #if defined OBJ_ELF
30333 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
30334 flags |= EF_ARM_MAVERICK_FLOAT;
30335 break;
30336
30337 case EF_ARM_EABI_VER4:
30338 case EF_ARM_EABI_VER5:
30339 /* No additional flags to set. */
30340 break;
30341
30342 default:
30343 abort ();
30344 }
30345 #endif
30346 bfd_set_private_flags (stdoutput, flags);
30347
30348 /* We have run out flags in the COFF header to encode the
30349 status of ATPCS support, so instead we create a dummy,
30350 empty, debug section called .arm.atpcs. */
30351 if (atpcs)
30352 {
30353 asection * sec;
30354
30355 sec = bfd_make_section (stdoutput, ".arm.atpcs");
30356
30357 if (sec != NULL)
30358 {
30359 bfd_set_section_flags (sec, SEC_READONLY | SEC_DEBUGGING);
30360 bfd_set_section_size (sec, 0);
30361 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
30362 }
30363 }
30364 }
30365 #endif
30366
30367 /* Record the CPU type as well. */
30368 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
30369 mach = bfd_mach_arm_iWMMXt2;
30370 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
30371 mach = bfd_mach_arm_iWMMXt;
30372 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
30373 mach = bfd_mach_arm_XScale;
30374 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
30375 mach = bfd_mach_arm_ep9312;
30376 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
30377 mach = bfd_mach_arm_5TE;
30378 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
30379 {
30380 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
30381 mach = bfd_mach_arm_5T;
30382 else
30383 mach = bfd_mach_arm_5;
30384 }
30385 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
30386 {
30387 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
30388 mach = bfd_mach_arm_4T;
30389 else
30390 mach = bfd_mach_arm_4;
30391 }
30392 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
30393 mach = bfd_mach_arm_3M;
30394 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
30395 mach = bfd_mach_arm_3;
30396 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
30397 mach = bfd_mach_arm_2a;
30398 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
30399 mach = bfd_mach_arm_2;
30400 else
30401 mach = bfd_mach_arm_unknown;
30402
30403 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
30404 }
30405
30406 /* Command line processing. */
30407
30408 /* md_parse_option
30409 Invocation line includes a switch not recognized by the base assembler.
30410 See if it's a processor-specific option.
30411
30412 This routine is somewhat complicated by the need for backwards
30413 compatibility (since older releases of gcc can't be changed).
30414 The new options try to make the interface as compatible as
30415 possible with GCC.
30416
30417 New options (supported) are:
30418
30419 -mcpu=<cpu name> Assemble for selected processor
30420 -march=<architecture name> Assemble for selected architecture
30421 -mfpu=<fpu architecture> Assemble for selected FPU.
30422 -EB/-mbig-endian Big-endian
30423 -EL/-mlittle-endian Little-endian
30424 -k Generate PIC code
30425 -mthumb Start in Thumb mode
30426 -mthumb-interwork Code supports ARM/Thumb interworking
30427
30428 -m[no-]warn-deprecated Warn about deprecated features
30429 -m[no-]warn-syms Warn when symbols match instructions
30430
30431 For now we will also provide support for:
30432
30433 -mapcs-32 32-bit Program counter
30434 -mapcs-26 26-bit Program counter
30435 -macps-float Floats passed in FP registers
30436 -mapcs-reentrant Reentrant code
30437 -matpcs
30438 (sometime these will probably be replaced with -mapcs=<list of options>
30439 and -matpcs=<list of options>)
30440
30441 The remaining options are only supported for back-wards compatibility.
30442 Cpu variants, the arm part is optional:
30443 -m[arm]1 Currently not supported.
30444 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
30445 -m[arm]3 Arm 3 processor
30446 -m[arm]6[xx], Arm 6 processors
30447 -m[arm]7[xx][t][[d]m] Arm 7 processors
30448 -m[arm]8[10] Arm 8 processors
30449 -m[arm]9[20][tdmi] Arm 9 processors
30450 -mstrongarm[110[0]] StrongARM processors
30451 -mxscale XScale processors
30452 -m[arm]v[2345[t[e]]] Arm architectures
30453 -mall All (except the ARM1)
30454 FP variants:
30455 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
30456 -mfpe-old (No float load/store multiples)
30457 -mvfpxd VFP Single precision
30458 -mvfp All VFP
30459 -mno-fpu Disable all floating point instructions
30460
30461 The following CPU names are recognized:
30462 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
30463 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
30464 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
30465 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
30466 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
30467 arm10t arm10e, arm1020t, arm1020e, arm10200e,
30468 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
30469
30470 */
30471
30472 const char * md_shortopts = "m:k";
30473
30474 #ifdef ARM_BI_ENDIAN
30475 #define OPTION_EB (OPTION_MD_BASE + 0)
30476 #define OPTION_EL (OPTION_MD_BASE + 1)
30477 #else
30478 #if TARGET_BYTES_BIG_ENDIAN
30479 #define OPTION_EB (OPTION_MD_BASE + 0)
30480 #else
30481 #define OPTION_EL (OPTION_MD_BASE + 1)
30482 #endif
30483 #endif
30484 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
30485 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
30486
30487 struct option md_longopts[] =
30488 {
30489 #ifdef OPTION_EB
30490 {"EB", no_argument, NULL, OPTION_EB},
30491 #endif
30492 #ifdef OPTION_EL
30493 {"EL", no_argument, NULL, OPTION_EL},
30494 #endif
30495 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
30496 #ifdef OBJ_ELF
30497 {"fdpic", no_argument, NULL, OPTION_FDPIC},
30498 #endif
30499 {NULL, no_argument, NULL, 0}
30500 };
30501
30502 size_t md_longopts_size = sizeof (md_longopts);
30503
30504 struct arm_option_table
30505 {
30506 const char * option; /* Option name to match. */
30507 const char * help; /* Help information. */
30508 int * var; /* Variable to change. */
30509 int value; /* What to change it to. */
30510 const char * deprecated; /* If non-null, print this message. */
30511 };
30512
30513 struct arm_option_table arm_opts[] =
30514 {
30515 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
30516 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
30517 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
30518 &support_interwork, 1, NULL},
30519 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
30520 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
30521 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
30522 1, NULL},
30523 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
30524 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
30525 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
30526 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
30527 NULL},
30528
30529 /* These are recognized by the assembler, but have no affect on code. */
30530 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
30531 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
30532
30533 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
30534 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
30535 &warn_on_deprecated, 0, NULL},
30536
30537 {"mwarn-restrict-it", N_("warn about performance deprecated IT instructions"
30538 " in ARMv8-A and ARMv8-R"), &warn_on_restrict_it, 1, NULL},
30539 {"mno-warn-restrict-it", NULL, &warn_on_restrict_it, 0, NULL},
30540
30541 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
30542 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
30543 {NULL, NULL, NULL, 0, NULL}
30544 };
30545
30546 struct arm_legacy_option_table
30547 {
30548 const char * option; /* Option name to match. */
30549 const arm_feature_set ** var; /* Variable to change. */
30550 const arm_feature_set value; /* What to change it to. */
30551 const char * deprecated; /* If non-null, print this message. */
30552 };
30553
30554 const struct arm_legacy_option_table arm_legacy_opts[] =
30555 {
30556 /* DON'T add any new processors to this list -- we want the whole list
30557 to go away... Add them to the processors table instead. */
30558 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
30559 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
30560 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
30561 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
30562 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
30563 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
30564 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
30565 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
30566 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
30567 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
30568 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
30569 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
30570 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
30571 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
30572 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
30573 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
30574 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
30575 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
30576 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
30577 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
30578 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
30579 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
30580 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
30581 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
30582 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
30583 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
30584 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
30585 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
30586 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
30587 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
30588 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
30589 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
30590 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
30591 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
30592 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
30593 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
30594 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
30595 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
30596 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
30597 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
30598 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
30599 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
30600 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
30601 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
30602 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
30603 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
30604 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30605 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30606 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30607 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30608 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
30609 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
30610 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
30611 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
30612 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
30613 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
30614 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
30615 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
30616 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
30617 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
30618 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
30619 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
30620 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
30621 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
30622 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
30623 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
30624 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
30625 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
30626 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
30627 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
30628 N_("use -mcpu=strongarm110")},
30629 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
30630 N_("use -mcpu=strongarm1100")},
30631 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
30632 N_("use -mcpu=strongarm1110")},
30633 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
30634 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
30635 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
30636
30637 /* Architecture variants -- don't add any more to this list either. */
30638 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
30639 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
30640 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
30641 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
30642 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
30643 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
30644 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
30645 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
30646 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
30647 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
30648 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
30649 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
30650 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
30651 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
30652 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
30653 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
30654 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
30655 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
30656
30657 /* Floating point variants -- don't add any more to this list either. */
30658 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
30659 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
30660 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
30661 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
30662 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
30663
30664 {NULL, NULL, ARM_ARCH_NONE, NULL}
30665 };
30666
30667 struct arm_cpu_option_table
30668 {
30669 const char * name;
30670 size_t name_len;
30671 const arm_feature_set value;
30672 const arm_feature_set ext;
30673 /* For some CPUs we assume an FPU unless the user explicitly sets
30674 -mfpu=... */
30675 const arm_feature_set default_fpu;
30676 /* The canonical name of the CPU, or NULL to use NAME converted to upper
30677 case. */
30678 const char * canonical_name;
30679 };
30680
30681 /* This list should, at a minimum, contain all the cpu names
30682 recognized by GCC. */
30683 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
30684
30685 static const struct arm_cpu_option_table arm_cpus[] =
30686 {
30687 ARM_CPU_OPT ("all", NULL, ARM_ANY,
30688 ARM_ARCH_NONE,
30689 FPU_ARCH_FPA),
30690 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
30691 ARM_ARCH_NONE,
30692 FPU_ARCH_FPA),
30693 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
30694 ARM_ARCH_NONE,
30695 FPU_ARCH_FPA),
30696 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
30697 ARM_ARCH_NONE,
30698 FPU_ARCH_FPA),
30699 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
30700 ARM_ARCH_NONE,
30701 FPU_ARCH_FPA),
30702 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
30703 ARM_ARCH_NONE,
30704 FPU_ARCH_FPA),
30705 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
30706 ARM_ARCH_NONE,
30707 FPU_ARCH_FPA),
30708 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
30709 ARM_ARCH_NONE,
30710 FPU_ARCH_FPA),
30711 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
30712 ARM_ARCH_NONE,
30713 FPU_ARCH_FPA),
30714 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
30715 ARM_ARCH_NONE,
30716 FPU_ARCH_FPA),
30717 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
30718 ARM_ARCH_NONE,
30719 FPU_ARCH_FPA),
30720 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
30721 ARM_ARCH_NONE,
30722 FPU_ARCH_FPA),
30723 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
30724 ARM_ARCH_NONE,
30725 FPU_ARCH_FPA),
30726 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
30727 ARM_ARCH_NONE,
30728 FPU_ARCH_FPA),
30729 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
30730 ARM_ARCH_NONE,
30731 FPU_ARCH_FPA),
30732 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
30733 ARM_ARCH_NONE,
30734 FPU_ARCH_FPA),
30735 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
30736 ARM_ARCH_NONE,
30737 FPU_ARCH_FPA),
30738 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
30739 ARM_ARCH_NONE,
30740 FPU_ARCH_FPA),
30741 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
30742 ARM_ARCH_NONE,
30743 FPU_ARCH_FPA),
30744 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
30745 ARM_ARCH_NONE,
30746 FPU_ARCH_FPA),
30747 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
30748 ARM_ARCH_NONE,
30749 FPU_ARCH_FPA),
30750 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
30751 ARM_ARCH_NONE,
30752 FPU_ARCH_FPA),
30753 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
30754 ARM_ARCH_NONE,
30755 FPU_ARCH_FPA),
30756 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
30757 ARM_ARCH_NONE,
30758 FPU_ARCH_FPA),
30759 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
30760 ARM_ARCH_NONE,
30761 FPU_ARCH_FPA),
30762 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
30763 ARM_ARCH_NONE,
30764 FPU_ARCH_FPA),
30765 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
30766 ARM_ARCH_NONE,
30767 FPU_ARCH_FPA),
30768 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
30769 ARM_ARCH_NONE,
30770 FPU_ARCH_FPA),
30771 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
30772 ARM_ARCH_NONE,
30773 FPU_ARCH_FPA),
30774 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
30775 ARM_ARCH_NONE,
30776 FPU_ARCH_FPA),
30777 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
30778 ARM_ARCH_NONE,
30779 FPU_ARCH_FPA),
30780 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
30781 ARM_ARCH_NONE,
30782 FPU_ARCH_FPA),
30783 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
30784 ARM_ARCH_NONE,
30785 FPU_ARCH_FPA),
30786 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
30787 ARM_ARCH_NONE,
30788 FPU_ARCH_FPA),
30789 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
30790 ARM_ARCH_NONE,
30791 FPU_ARCH_FPA),
30792 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
30793 ARM_ARCH_NONE,
30794 FPU_ARCH_FPA),
30795 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
30796 ARM_ARCH_NONE,
30797 FPU_ARCH_FPA),
30798 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
30799 ARM_ARCH_NONE,
30800 FPU_ARCH_FPA),
30801 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
30802 ARM_ARCH_NONE,
30803 FPU_ARCH_FPA),
30804 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
30805 ARM_ARCH_NONE,
30806 FPU_ARCH_FPA),
30807 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
30808 ARM_ARCH_NONE,
30809 FPU_ARCH_FPA),
30810 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
30811 ARM_ARCH_NONE,
30812 FPU_ARCH_FPA),
30813 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
30814 ARM_ARCH_NONE,
30815 FPU_ARCH_FPA),
30816 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
30817 ARM_ARCH_NONE,
30818 FPU_ARCH_FPA),
30819 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
30820 ARM_ARCH_NONE,
30821 FPU_ARCH_FPA),
30822 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
30823 ARM_ARCH_NONE,
30824 FPU_ARCH_FPA),
30825
30826 /* For V5 or later processors we default to using VFP; but the user
30827 should really set the FPU type explicitly. */
30828 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
30829 ARM_ARCH_NONE,
30830 FPU_ARCH_VFP_V2),
30831 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
30832 ARM_ARCH_NONE,
30833 FPU_ARCH_VFP_V2),
30834 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30835 ARM_ARCH_NONE,
30836 FPU_ARCH_VFP_V2),
30837 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30838 ARM_ARCH_NONE,
30839 FPU_ARCH_VFP_V2),
30840 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
30841 ARM_ARCH_NONE,
30842 FPU_ARCH_VFP_V2),
30843 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
30844 ARM_ARCH_NONE,
30845 FPU_ARCH_VFP_V2),
30846 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
30847 ARM_ARCH_NONE,
30848 FPU_ARCH_VFP_V2),
30849 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
30850 ARM_ARCH_NONE,
30851 FPU_ARCH_VFP_V2),
30852 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
30853 ARM_ARCH_NONE,
30854 FPU_ARCH_VFP_V2),
30855 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
30856 ARM_ARCH_NONE,
30857 FPU_ARCH_VFP_V2),
30858 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
30859 ARM_ARCH_NONE,
30860 FPU_ARCH_VFP_V2),
30861 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
30862 ARM_ARCH_NONE,
30863 FPU_ARCH_VFP_V2),
30864 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
30865 ARM_ARCH_NONE,
30866 FPU_ARCH_VFP_V1),
30867 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
30868 ARM_ARCH_NONE,
30869 FPU_ARCH_VFP_V1),
30870 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
30871 ARM_ARCH_NONE,
30872 FPU_ARCH_VFP_V2),
30873 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
30874 ARM_ARCH_NONE,
30875 FPU_ARCH_VFP_V2),
30876 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
30877 ARM_ARCH_NONE,
30878 FPU_ARCH_VFP_V1),
30879 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
30880 ARM_ARCH_NONE,
30881 FPU_ARCH_VFP_V2),
30882 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
30883 ARM_ARCH_NONE,
30884 FPU_ARCH_VFP_V2),
30885 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
30886 ARM_ARCH_NONE,
30887 FPU_ARCH_VFP_V2),
30888 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
30889 ARM_ARCH_NONE,
30890 FPU_ARCH_VFP_V2),
30891 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
30892 ARM_ARCH_NONE,
30893 FPU_ARCH_VFP_V2),
30894 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
30895 ARM_ARCH_NONE,
30896 FPU_ARCH_VFP_V2),
30897 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
30898 ARM_ARCH_NONE,
30899 FPU_ARCH_VFP_V2),
30900 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
30901 ARM_ARCH_NONE,
30902 FPU_ARCH_VFP_V2),
30903 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
30904 ARM_ARCH_NONE,
30905 FPU_ARCH_VFP_V2),
30906 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
30907 ARM_ARCH_NONE,
30908 FPU_NONE),
30909 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
30910 ARM_ARCH_NONE,
30911 FPU_NONE),
30912 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
30913 ARM_ARCH_NONE,
30914 FPU_ARCH_VFP_V2),
30915 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
30916 ARM_ARCH_NONE,
30917 FPU_ARCH_VFP_V2),
30918 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
30919 ARM_ARCH_NONE,
30920 FPU_ARCH_VFP_V2),
30921 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
30922 ARM_ARCH_NONE,
30923 FPU_NONE),
30924 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
30925 ARM_ARCH_NONE,
30926 FPU_NONE),
30927 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
30928 ARM_ARCH_NONE,
30929 FPU_ARCH_VFP_V2),
30930 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
30931 ARM_ARCH_NONE,
30932 FPU_NONE),
30933 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
30934 ARM_ARCH_NONE,
30935 FPU_ARCH_VFP_V2),
30936 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
30937 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30938 FPU_NONE),
30939 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
30940 ARM_ARCH_NONE,
30941 FPU_ARCH_NEON_VFP_V4),
30942 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
30943 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30944 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30945 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
30946 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30947 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30948 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
30949 ARM_ARCH_NONE,
30950 FPU_ARCH_NEON_VFP_V4),
30951 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
30952 ARM_ARCH_NONE,
30953 FPU_ARCH_NEON_VFP_V4),
30954 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
30955 ARM_ARCH_NONE,
30956 FPU_ARCH_NEON_VFP_V4),
30957 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
30958 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
30959 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30960 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
30961 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
30962 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30963 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
30964 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
30965 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30966 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
30967 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30968 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30969 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
30970 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
30971 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30972 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
30973 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
30974 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30975 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
30976 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
30977 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30978 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
30979 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30980 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30981 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
30982 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30983 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30984 ARM_CPU_OPT ("cortex-a76ae", "Cortex-A76AE", ARM_ARCH_V8_2A,
30985 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30986 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30987 ARM_CPU_OPT ("cortex-a77", "Cortex-A77", ARM_ARCH_V8_2A,
30988 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30989 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30990 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
30991 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30992 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30993 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
30994 ARM_ARCH_NONE,
30995 FPU_NONE),
30996 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
30997 ARM_ARCH_NONE,
30998 FPU_ARCH_VFP_V3D16),
30999 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
31000 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
31001 FPU_NONE),
31002 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
31003 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
31004 FPU_ARCH_VFP_V3D16),
31005 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
31006 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
31007 FPU_ARCH_VFP_V3D16),
31008 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
31009 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31010 FPU_ARCH_NEON_VFP_ARMV8),
31011 ARM_CPU_OPT ("cortex-m35p", "Cortex-M35P", ARM_ARCH_V8M_MAIN,
31012 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31013 FPU_NONE),
31014 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
31015 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31016 FPU_NONE),
31017 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
31018 ARM_ARCH_NONE,
31019 FPU_NONE),
31020 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
31021 ARM_ARCH_NONE,
31022 FPU_NONE),
31023 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
31024 ARM_ARCH_NONE,
31025 FPU_NONE),
31026 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
31027 ARM_ARCH_NONE,
31028 FPU_NONE),
31029 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
31030 ARM_ARCH_NONE,
31031 FPU_NONE),
31032 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
31033 ARM_ARCH_NONE,
31034 FPU_NONE),
31035 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
31036 ARM_ARCH_NONE,
31037 FPU_NONE),
31038 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
31039 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31040 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31041 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
31042 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31043 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
31044 /* ??? XSCALE is really an architecture. */
31045 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
31046 ARM_ARCH_NONE,
31047 FPU_ARCH_VFP_V2),
31048
31049 /* ??? iwmmxt is not a processor. */
31050 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
31051 ARM_ARCH_NONE,
31052 FPU_ARCH_VFP_V2),
31053 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
31054 ARM_ARCH_NONE,
31055 FPU_ARCH_VFP_V2),
31056 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
31057 ARM_ARCH_NONE,
31058 FPU_ARCH_VFP_V2),
31059
31060 /* Maverick. */
31061 ARM_CPU_OPT ("ep9312", "ARM920T",
31062 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
31063 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
31064
31065 /* Marvell processors. */
31066 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
31067 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
31068 FPU_ARCH_VFP_V3D16),
31069 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
31070 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
31071 FPU_ARCH_NEON_VFP_V4),
31072
31073 /* APM X-Gene family. */
31074 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
31075 ARM_ARCH_NONE,
31076 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31077 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
31078 ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC),
31079 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
31080
31081 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
31082 };
31083 #undef ARM_CPU_OPT
31084
31085 struct arm_ext_table
31086 {
31087 const char * name;
31088 size_t name_len;
31089 const arm_feature_set merge;
31090 const arm_feature_set clear;
31091 };
31092
31093 struct arm_arch_option_table
31094 {
31095 const char * name;
31096 size_t name_len;
31097 const arm_feature_set value;
31098 const arm_feature_set default_fpu;
31099 const struct arm_ext_table * ext_table;
31100 };
31101
31102 /* Used to add support for +E and +noE extension. */
31103 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
31104 /* Used to add support for a +E extension. */
31105 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
31106 /* Used to add support for a +noE extension. */
31107 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
31108
31109 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
31110 ~0 & ~FPU_ENDIAN_PURE)
31111
31112 static const struct arm_ext_table armv5te_ext_table[] =
31113 {
31114 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
31115 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31116 };
31117
31118 static const struct arm_ext_table armv7_ext_table[] =
31119 {
31120 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
31121 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31122 };
31123
31124 static const struct arm_ext_table armv7ve_ext_table[] =
31125 {
31126 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
31127 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
31128 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
31129 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
31130 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
31131 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
31132 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
31133
31134 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
31135 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
31136
31137 /* Aliases for +simd. */
31138 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
31139
31140 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31141 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31142 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
31143
31144 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31145 };
31146
31147 static const struct arm_ext_table armv7a_ext_table[] =
31148 {
31149 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
31150 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
31151 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
31152 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
31153 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
31154 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
31155 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
31156
31157 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
31158 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
31159
31160 /* Aliases for +simd. */
31161 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31162 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
31163
31164 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
31165 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
31166
31167 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
31168 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
31169 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31170 };
31171
31172 static const struct arm_ext_table armv7r_ext_table[] =
31173 {
31174 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
31175 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
31176 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
31177 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
31178 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
31179 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
31180 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
31181 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
31182 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31183 };
31184
31185 static const struct arm_ext_table armv7em_ext_table[] =
31186 {
31187 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
31188 /* Alias for +fp, used to be known as fpv4-sp-d16. */
31189 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
31190 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
31191 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
31192 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
31193 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31194 };
31195
31196 static const struct arm_ext_table armv8a_ext_table[] =
31197 {
31198 ARM_ADD ("crc", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC)),
31199 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
31200 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
31201 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31202
31203 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31204 should use the +simd option to turn on FP. */
31205 ARM_REMOVE ("fp", ALL_FP),
31206 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31207 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31208 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31209 };
31210
31211
31212 static const struct arm_ext_table armv81a_ext_table[] =
31213 {
31214 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
31215 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
31216 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31217
31218 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31219 should use the +simd option to turn on FP. */
31220 ARM_REMOVE ("fp", ALL_FP),
31221 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31222 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31223 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31224 };
31225
31226 static const struct arm_ext_table armv82a_ext_table[] =
31227 {
31228 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
31229 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
31230 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
31231 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16)),
31232 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
31233 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
31234 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31235 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
31236
31237 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31238 should use the +simd option to turn on FP. */
31239 ARM_REMOVE ("fp", ALL_FP),
31240 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31241 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31242 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31243 };
31244
31245 static const struct arm_ext_table armv84a_ext_table[] =
31246 {
31247 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
31248 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
31249 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16)),
31250 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
31251 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
31252 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31253
31254 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31255 should use the +simd option to turn on FP. */
31256 ARM_REMOVE ("fp", ALL_FP),
31257 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
31258 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
31259 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31260 };
31261
31262 static const struct arm_ext_table armv85a_ext_table[] =
31263 {
31264 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
31265 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
31266 ARM_ADD ("bf16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_BF16)),
31267 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
31268 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
31269 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31270
31271 /* Armv8-a does not allow an FP implementation without SIMD, so the user
31272 should use the +simd option to turn on FP. */
31273 ARM_REMOVE ("fp", ALL_FP),
31274 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31275 };
31276
31277 static const struct arm_ext_table armv86a_ext_table[] =
31278 {
31279 ARM_ADD ("i8mm", ARM_FEATURE_CORE_HIGH (ARM_EXT2_I8MM)),
31280 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31281 };
31282
31283 static const struct arm_ext_table armv8m_main_ext_table[] =
31284 {
31285 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31286 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
31287 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
31288 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
31289 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31290 };
31291
31292 static const struct arm_ext_table armv8_1m_main_ext_table[] =
31293 {
31294 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31295 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
31296 ARM_EXT ("fp",
31297 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
31298 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
31299 ALL_FP),
31300 ARM_ADD ("fp.dp",
31301 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
31302 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
31303 ARM_EXT ("mve", ARM_FEATURE_CORE_HIGH (ARM_EXT2_MVE),
31304 ARM_FEATURE_CORE_HIGH (ARM_EXT2_MVE | ARM_EXT2_MVE_FP)),
31305 ARM_ADD ("mve.fp",
31306 ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_MVE | ARM_EXT2_MVE_FP,
31307 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
31308 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31309 };
31310
31311 static const struct arm_ext_table armv8r_ext_table[] =
31312 {
31313 ARM_ADD ("crc", ARM_FEATURE_CORE_HIGH (ARM_EXT2_CRC)),
31314 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
31315 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
31316 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
31317 ARM_REMOVE ("fp", ALL_FP),
31318 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
31319 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
31320 };
31321
31322 /* This list should, at a minimum, contain all the architecture names
31323 recognized by GCC. */
31324 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
31325 #define ARM_ARCH_OPT2(N, V, DF, ext) \
31326 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
31327
31328 static const struct arm_arch_option_table arm_archs[] =
31329 {
31330 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
31331 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
31332 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
31333 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
31334 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
31335 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
31336 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
31337 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
31338 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
31339 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
31340 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
31341 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
31342 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
31343 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
31344 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
31345 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
31346 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
31347 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
31348 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
31349 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
31350 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
31351 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
31352 kept to preserve existing behaviour. */
31353 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
31354 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
31355 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
31356 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
31357 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
31358 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
31359 kept to preserve existing behaviour. */
31360 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
31361 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
31362 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
31363 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
31364 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
31365 /* The official spelling of the ARMv7 profile variants is the dashed form.
31366 Accept the non-dashed form for compatibility with old toolchains. */
31367 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
31368 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
31369 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
31370 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
31371 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
31372 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
31373 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
31374 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
31375 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
31376 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
31377 armv8m_main),
31378 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
31379 armv8_1m_main),
31380 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
31381 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
31382 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
31383 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
31384 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
31385 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
31386 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
31387 ARM_ARCH_OPT2 ("armv8.6-a", ARM_ARCH_V8_6A, FPU_ARCH_VFP, armv86a),
31388 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
31389 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
31390 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
31391 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
31392 };
31393 #undef ARM_ARCH_OPT
31394
31395 /* ISA extensions in the co-processor and main instruction set space. */
31396
31397 struct arm_option_extension_value_table
31398 {
31399 const char * name;
31400 size_t name_len;
31401 const arm_feature_set merge_value;
31402 const arm_feature_set clear_value;
31403 /* List of architectures for which an extension is available. ARM_ARCH_NONE
31404 indicates that an extension is available for all architectures while
31405 ARM_ANY marks an empty entry. */
31406 const arm_feature_set allowed_archs[2];
31407 };
31408
31409 /* The following table must be in alphabetical order with a NULL last entry. */
31410
31411 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
31412 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
31413
31414 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
31415 use the context sensitive approach using arm_ext_table's. */
31416 static const struct arm_option_extension_value_table arm_extensions[] =
31417 {
31418 ARM_EXT_OPT ("crc", ARM_FEATURE_CORE_HIGH(ARM_EXT2_CRC),
31419 ARM_FEATURE_CORE_HIGH(ARM_EXT2_CRC),
31420 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31421 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
31422 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
31423 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31424 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
31425 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
31426 ARM_ARCH_V8_2A),
31427 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31428 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
31429 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
31430 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
31431 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31432 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31433 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
31434 ARM_ARCH_V8_2A),
31435 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
31436 | ARM_EXT2_FP16_FML),
31437 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
31438 | ARM_EXT2_FP16_FML),
31439 ARM_ARCH_V8_2A),
31440 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
31441 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
31442 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
31443 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
31444 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
31445 Thumb divide instruction. Due to this having the same name as the
31446 previous entry, this will be ignored when doing command-line parsing and
31447 only considered by build attribute selection code. */
31448 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
31449 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
31450 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
31451 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
31452 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
31453 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
31454 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
31455 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
31456 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
31457 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
31458 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
31459 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
31460 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
31461 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
31462 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
31463 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
31464 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
31465 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
31466 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
31467 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
31468 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
31469 ARM_ARCH_V8A),
31470 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
31471 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
31472 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
31473 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
31474 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
31475 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
31476 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
31477 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
31478 ARM_ARCH_V8A),
31479 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
31480 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
31481 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
31482 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
31483 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
31484 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
31485 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31486 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
31487 | ARM_EXT_DIV),
31488 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
31489 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
31490 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
31491 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
31492 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
31493 };
31494 #undef ARM_EXT_OPT
31495
31496 /* ISA floating-point and Advanced SIMD extensions. */
31497 struct arm_option_fpu_value_table
31498 {
31499 const char * name;
31500 const arm_feature_set value;
31501 };
31502
31503 /* This list should, at a minimum, contain all the fpu names
31504 recognized by GCC. */
31505 static const struct arm_option_fpu_value_table arm_fpus[] =
31506 {
31507 {"softfpa", FPU_NONE},
31508 {"fpe", FPU_ARCH_FPE},
31509 {"fpe2", FPU_ARCH_FPE},
31510 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
31511 {"fpa", FPU_ARCH_FPA},
31512 {"fpa10", FPU_ARCH_FPA},
31513 {"fpa11", FPU_ARCH_FPA},
31514 {"arm7500fe", FPU_ARCH_FPA},
31515 {"softvfp", FPU_ARCH_VFP},
31516 {"softvfp+vfp", FPU_ARCH_VFP_V2},
31517 {"vfp", FPU_ARCH_VFP_V2},
31518 {"vfp9", FPU_ARCH_VFP_V2},
31519 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
31520 {"vfp10", FPU_ARCH_VFP_V2},
31521 {"vfp10-r0", FPU_ARCH_VFP_V1},
31522 {"vfpxd", FPU_ARCH_VFP_V1xD},
31523 {"vfpv2", FPU_ARCH_VFP_V2},
31524 {"vfpv3", FPU_ARCH_VFP_V3},
31525 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
31526 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
31527 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
31528 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
31529 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
31530 {"arm1020t", FPU_ARCH_VFP_V1},
31531 {"arm1020e", FPU_ARCH_VFP_V2},
31532 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
31533 {"arm1136jf-s", FPU_ARCH_VFP_V2},
31534 {"maverick", FPU_ARCH_MAVERICK},
31535 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
31536 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
31537 {"neon-fp16", FPU_ARCH_NEON_FP16},
31538 {"vfpv4", FPU_ARCH_VFP_V4},
31539 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
31540 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
31541 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
31542 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
31543 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
31544 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
31545 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
31546 {"crypto-neon-fp-armv8",
31547 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
31548 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
31549 {"crypto-neon-fp-armv8.1",
31550 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
31551 {NULL, ARM_ARCH_NONE}
31552 };
31553
31554 struct arm_option_value_table
31555 {
31556 const char *name;
31557 long value;
31558 };
31559
31560 static const struct arm_option_value_table arm_float_abis[] =
31561 {
31562 {"hard", ARM_FLOAT_ABI_HARD},
31563 {"softfp", ARM_FLOAT_ABI_SOFTFP},
31564 {"soft", ARM_FLOAT_ABI_SOFT},
31565 {NULL, 0}
31566 };
31567
31568 #ifdef OBJ_ELF
31569 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
31570 static const struct arm_option_value_table arm_eabis[] =
31571 {
31572 {"gnu", EF_ARM_EABI_UNKNOWN},
31573 {"4", EF_ARM_EABI_VER4},
31574 {"5", EF_ARM_EABI_VER5},
31575 {NULL, 0}
31576 };
31577 #endif
31578
31579 struct arm_long_option_table
31580 {
31581 const char * option; /* Substring to match. */
31582 const char * help; /* Help information. */
31583 int (* func) (const char * subopt); /* Function to decode sub-option. */
31584 const char * deprecated; /* If non-null, print this message. */
31585 };
31586
31587 static bfd_boolean
31588 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
31589 arm_feature_set *ext_set,
31590 const struct arm_ext_table *ext_table)
31591 {
31592 /* We insist on extensions being specified in alphabetical order, and with
31593 extensions being added before being removed. We achieve this by having
31594 the global ARM_EXTENSIONS table in alphabetical order, and using the
31595 ADDING_VALUE variable to indicate whether we are adding an extension (1)
31596 or removing it (0) and only allowing it to change in the order
31597 -1 -> 1 -> 0. */
31598 const struct arm_option_extension_value_table * opt = NULL;
31599 const arm_feature_set arm_any = ARM_ANY;
31600 int adding_value = -1;
31601
31602 while (str != NULL && *str != 0)
31603 {
31604 const char *ext;
31605 size_t len;
31606
31607 if (*str != '+')
31608 {
31609 as_bad (_("invalid architectural extension"));
31610 return FALSE;
31611 }
31612
31613 str++;
31614 ext = strchr (str, '+');
31615
31616 if (ext != NULL)
31617 len = ext - str;
31618 else
31619 len = strlen (str);
31620
31621 if (len >= 2 && strncmp (str, "no", 2) == 0)
31622 {
31623 if (adding_value != 0)
31624 {
31625 adding_value = 0;
31626 opt = arm_extensions;
31627 }
31628
31629 len -= 2;
31630 str += 2;
31631 }
31632 else if (len > 0)
31633 {
31634 if (adding_value == -1)
31635 {
31636 adding_value = 1;
31637 opt = arm_extensions;
31638 }
31639 else if (adding_value != 1)
31640 {
31641 as_bad (_("must specify extensions to add before specifying "
31642 "those to remove"));
31643 return FALSE;
31644 }
31645 }
31646
31647 if (len == 0)
31648 {
31649 as_bad (_("missing architectural extension"));
31650 return FALSE;
31651 }
31652
31653 gas_assert (adding_value != -1);
31654 gas_assert (opt != NULL);
31655
31656 if (ext_table != NULL)
31657 {
31658 const struct arm_ext_table * ext_opt = ext_table;
31659 bfd_boolean found = FALSE;
31660 for (; ext_opt->name != NULL; ext_opt++)
31661 if (ext_opt->name_len == len
31662 && strncmp (ext_opt->name, str, len) == 0)
31663 {
31664 if (adding_value)
31665 {
31666 if (ARM_FEATURE_ZERO (ext_opt->merge))
31667 /* TODO: Option not supported. When we remove the
31668 legacy table this case should error out. */
31669 continue;
31670
31671 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
31672 }
31673 else
31674 {
31675 if (ARM_FEATURE_ZERO (ext_opt->clear))
31676 /* TODO: Option not supported. When we remove the
31677 legacy table this case should error out. */
31678 continue;
31679 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
31680 }
31681 found = TRUE;
31682 break;
31683 }
31684 if (found)
31685 {
31686 str = ext;
31687 continue;
31688 }
31689 }
31690
31691 /* Scan over the options table trying to find an exact match. */
31692 for (; opt->name != NULL; opt++)
31693 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31694 {
31695 int i, nb_allowed_archs =
31696 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31697 /* Check we can apply the extension to this architecture. */
31698 for (i = 0; i < nb_allowed_archs; i++)
31699 {
31700 /* Empty entry. */
31701 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
31702 continue;
31703 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
31704 break;
31705 }
31706 if (i == nb_allowed_archs)
31707 {
31708 as_bad (_("extension does not apply to the base architecture"));
31709 return FALSE;
31710 }
31711
31712 /* Add or remove the extension. */
31713 if (adding_value)
31714 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
31715 else
31716 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
31717
31718 /* Allowing Thumb division instructions for ARMv7 in autodetection
31719 rely on this break so that duplicate extensions (extensions
31720 with the same name as a previous extension in the list) are not
31721 considered for command-line parsing. */
31722 break;
31723 }
31724
31725 if (opt->name == NULL)
31726 {
31727 /* Did we fail to find an extension because it wasn't specified in
31728 alphabetical order, or because it does not exist? */
31729
31730 for (opt = arm_extensions; opt->name != NULL; opt++)
31731 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31732 break;
31733
31734 if (opt->name == NULL)
31735 as_bad (_("unknown architectural extension `%s'"), str);
31736 else
31737 as_bad (_("architectural extensions must be specified in "
31738 "alphabetical order"));
31739
31740 return FALSE;
31741 }
31742 else
31743 {
31744 /* We should skip the extension we've just matched the next time
31745 round. */
31746 opt++;
31747 }
31748
31749 str = ext;
31750 };
31751
31752 return TRUE;
31753 }
31754
31755 static bfd_boolean
31756 arm_parse_fp16_opt (const char *str)
31757 {
31758 if (strcasecmp (str, "ieee") == 0)
31759 fp16_format = ARM_FP16_FORMAT_IEEE;
31760 else if (strcasecmp (str, "alternative") == 0)
31761 fp16_format = ARM_FP16_FORMAT_ALTERNATIVE;
31762 else
31763 {
31764 as_bad (_("unrecognised float16 format \"%s\""), str);
31765 return FALSE;
31766 }
31767
31768 return TRUE;
31769 }
31770
31771 static bfd_boolean
31772 arm_parse_cpu (const char *str)
31773 {
31774 const struct arm_cpu_option_table *opt;
31775 const char *ext = strchr (str, '+');
31776 size_t len;
31777
31778 if (ext != NULL)
31779 len = ext - str;
31780 else
31781 len = strlen (str);
31782
31783 if (len == 0)
31784 {
31785 as_bad (_("missing cpu name `%s'"), str);
31786 return FALSE;
31787 }
31788
31789 for (opt = arm_cpus; opt->name != NULL; opt++)
31790 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31791 {
31792 mcpu_cpu_opt = &opt->value;
31793 if (mcpu_ext_opt == NULL)
31794 mcpu_ext_opt = XNEW (arm_feature_set);
31795 *mcpu_ext_opt = opt->ext;
31796 mcpu_fpu_opt = &opt->default_fpu;
31797 if (opt->canonical_name)
31798 {
31799 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
31800 strcpy (selected_cpu_name, opt->canonical_name);
31801 }
31802 else
31803 {
31804 size_t i;
31805
31806 if (len >= sizeof selected_cpu_name)
31807 len = (sizeof selected_cpu_name) - 1;
31808
31809 for (i = 0; i < len; i++)
31810 selected_cpu_name[i] = TOUPPER (opt->name[i]);
31811 selected_cpu_name[i] = 0;
31812 }
31813
31814 if (ext != NULL)
31815 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
31816
31817 return TRUE;
31818 }
31819
31820 as_bad (_("unknown cpu `%s'"), str);
31821 return FALSE;
31822 }
31823
31824 static bfd_boolean
31825 arm_parse_arch (const char *str)
31826 {
31827 const struct arm_arch_option_table *opt;
31828 const char *ext = strchr (str, '+');
31829 size_t len;
31830
31831 if (ext != NULL)
31832 len = ext - str;
31833 else
31834 len = strlen (str);
31835
31836 if (len == 0)
31837 {
31838 as_bad (_("missing architecture name `%s'"), str);
31839 return FALSE;
31840 }
31841
31842 for (opt = arm_archs; opt->name != NULL; opt++)
31843 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31844 {
31845 march_cpu_opt = &opt->value;
31846 if (march_ext_opt == NULL)
31847 march_ext_opt = XNEW (arm_feature_set);
31848 *march_ext_opt = arm_arch_none;
31849 march_fpu_opt = &opt->default_fpu;
31850 selected_ctx_ext_table = opt->ext_table;
31851 strcpy (selected_cpu_name, opt->name);
31852
31853 if (ext != NULL)
31854 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
31855 opt->ext_table);
31856
31857 return TRUE;
31858 }
31859
31860 as_bad (_("unknown architecture `%s'\n"), str);
31861 return FALSE;
31862 }
31863
31864 static bfd_boolean
31865 arm_parse_fpu (const char * str)
31866 {
31867 const struct arm_option_fpu_value_table * opt;
31868
31869 for (opt = arm_fpus; opt->name != NULL; opt++)
31870 if (streq (opt->name, str))
31871 {
31872 mfpu_opt = &opt->value;
31873 return TRUE;
31874 }
31875
31876 as_bad (_("unknown floating point format `%s'\n"), str);
31877 return FALSE;
31878 }
31879
31880 static bfd_boolean
31881 arm_parse_float_abi (const char * str)
31882 {
31883 const struct arm_option_value_table * opt;
31884
31885 for (opt = arm_float_abis; opt->name != NULL; opt++)
31886 if (streq (opt->name, str))
31887 {
31888 mfloat_abi_opt = opt->value;
31889 return TRUE;
31890 }
31891
31892 as_bad (_("unknown floating point abi `%s'\n"), str);
31893 return FALSE;
31894 }
31895
31896 #ifdef OBJ_ELF
31897 static bfd_boolean
31898 arm_parse_eabi (const char * str)
31899 {
31900 const struct arm_option_value_table *opt;
31901
31902 for (opt = arm_eabis; opt->name != NULL; opt++)
31903 if (streq (opt->name, str))
31904 {
31905 meabi_flags = opt->value;
31906 return TRUE;
31907 }
31908 as_bad (_("unknown EABI `%s'\n"), str);
31909 return FALSE;
31910 }
31911 #endif
31912
31913 static bfd_boolean
31914 arm_parse_it_mode (const char * str)
31915 {
31916 bfd_boolean ret = TRUE;
31917
31918 if (streq ("arm", str))
31919 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
31920 else if (streq ("thumb", str))
31921 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
31922 else if (streq ("always", str))
31923 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
31924 else if (streq ("never", str))
31925 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
31926 else
31927 {
31928 as_bad (_("unknown implicit IT mode `%s', should be "\
31929 "arm, thumb, always, or never."), str);
31930 ret = FALSE;
31931 }
31932
31933 return ret;
31934 }
31935
31936 static bfd_boolean
31937 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
31938 {
31939 codecomposer_syntax = TRUE;
31940 arm_comment_chars[0] = ';';
31941 arm_line_separator_chars[0] = 0;
31942 return TRUE;
31943 }
31944
31945 struct arm_long_option_table arm_long_opts[] =
31946 {
31947 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
31948 arm_parse_cpu, NULL},
31949 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
31950 arm_parse_arch, NULL},
31951 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
31952 arm_parse_fpu, NULL},
31953 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
31954 arm_parse_float_abi, NULL},
31955 #ifdef OBJ_ELF
31956 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
31957 arm_parse_eabi, NULL},
31958 #endif
31959 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
31960 arm_parse_it_mode, NULL},
31961 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
31962 arm_ccs_mode, NULL},
31963 {"mfp16-format=",
31964 N_("[ieee|alternative]\n\
31965 set the encoding for half precision floating point "
31966 "numbers to IEEE\n\
31967 or Arm alternative format."),
31968 arm_parse_fp16_opt, NULL },
31969 {NULL, NULL, 0, NULL}
31970 };
31971
31972 int
31973 md_parse_option (int c, const char * arg)
31974 {
31975 struct arm_option_table *opt;
31976 const struct arm_legacy_option_table *fopt;
31977 struct arm_long_option_table *lopt;
31978
31979 switch (c)
31980 {
31981 #ifdef OPTION_EB
31982 case OPTION_EB:
31983 target_big_endian = 1;
31984 break;
31985 #endif
31986
31987 #ifdef OPTION_EL
31988 case OPTION_EL:
31989 target_big_endian = 0;
31990 break;
31991 #endif
31992
31993 case OPTION_FIX_V4BX:
31994 fix_v4bx = TRUE;
31995 break;
31996
31997 #ifdef OBJ_ELF
31998 case OPTION_FDPIC:
31999 arm_fdpic = TRUE;
32000 break;
32001 #endif /* OBJ_ELF */
32002
32003 case 'a':
32004 /* Listing option. Just ignore these, we don't support additional
32005 ones. */
32006 return 0;
32007
32008 default:
32009 for (opt = arm_opts; opt->option != NULL; opt++)
32010 {
32011 if (c == opt->option[0]
32012 && ((arg == NULL && opt->option[1] == 0)
32013 || streq (arg, opt->option + 1)))
32014 {
32015 /* If the option is deprecated, tell the user. */
32016 if (warn_on_deprecated && opt->deprecated != NULL)
32017 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
32018 arg ? arg : "", _(opt->deprecated));
32019
32020 if (opt->var != NULL)
32021 *opt->var = opt->value;
32022
32023 return 1;
32024 }
32025 }
32026
32027 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
32028 {
32029 if (c == fopt->option[0]
32030 && ((arg == NULL && fopt->option[1] == 0)
32031 || streq (arg, fopt->option + 1)))
32032 {
32033 /* If the option is deprecated, tell the user. */
32034 if (warn_on_deprecated && fopt->deprecated != NULL)
32035 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
32036 arg ? arg : "", _(fopt->deprecated));
32037
32038 if (fopt->var != NULL)
32039 *fopt->var = &fopt->value;
32040
32041 return 1;
32042 }
32043 }
32044
32045 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
32046 {
32047 /* These options are expected to have an argument. */
32048 if (c == lopt->option[0]
32049 && arg != NULL
32050 && strncmp (arg, lopt->option + 1,
32051 strlen (lopt->option + 1)) == 0)
32052 {
32053 /* If the option is deprecated, tell the user. */
32054 if (warn_on_deprecated && lopt->deprecated != NULL)
32055 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
32056 _(lopt->deprecated));
32057
32058 /* Call the sup-option parser. */
32059 return lopt->func (arg + strlen (lopt->option) - 1);
32060 }
32061 }
32062
32063 return 0;
32064 }
32065
32066 return 1;
32067 }
32068
32069 void
32070 md_show_usage (FILE * fp)
32071 {
32072 struct arm_option_table *opt;
32073 struct arm_long_option_table *lopt;
32074
32075 fprintf (fp, _(" ARM-specific assembler options:\n"));
32076
32077 for (opt = arm_opts; opt->option != NULL; opt++)
32078 if (opt->help != NULL)
32079 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
32080
32081 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
32082 if (lopt->help != NULL)
32083 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
32084
32085 #ifdef OPTION_EB
32086 fprintf (fp, _("\
32087 -EB assemble code for a big-endian cpu\n"));
32088 #endif
32089
32090 #ifdef OPTION_EL
32091 fprintf (fp, _("\
32092 -EL assemble code for a little-endian cpu\n"));
32093 #endif
32094
32095 fprintf (fp, _("\
32096 --fix-v4bx Allow BX in ARMv4 code\n"));
32097
32098 #ifdef OBJ_ELF
32099 fprintf (fp, _("\
32100 --fdpic generate an FDPIC object file\n"));
32101 #endif /* OBJ_ELF */
32102 }
32103
32104 #ifdef OBJ_ELF
32105
32106 typedef struct
32107 {
32108 int val;
32109 arm_feature_set flags;
32110 } cpu_arch_ver_table;
32111
32112 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
32113 chronologically for architectures, with an exception for ARMv6-M and
32114 ARMv6S-M due to legacy reasons. No new architecture should have a
32115 special case. This allows for build attribute selection results to be
32116 stable when new architectures are added. */
32117 static const cpu_arch_ver_table cpu_arch_ver[] =
32118 {
32119 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
32120 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
32121 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
32122 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
32123 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
32124 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
32125 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
32126 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
32127 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
32128 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
32129 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
32130 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
32131 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
32132 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
32133 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
32134 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
32135 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
32136 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
32137 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
32138 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
32139 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
32140 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
32141 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
32142 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
32143
32144 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
32145 always selected build attributes to match those of ARMv6-M
32146 (resp. ARMv6S-M). However, due to these architectures being a strict
32147 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
32148 would be selected when fully respecting chronology of architectures.
32149 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
32150 move them before ARMv7 architectures. */
32151 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
32152 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
32153
32154 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
32155 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
32156 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
32157 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
32158 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
32159 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
32160 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
32161 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
32162 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
32163 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
32164 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
32165 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
32166 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
32167 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
32168 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
32169 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
32170 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_6A},
32171 {-1, ARM_ARCH_NONE}
32172 };
32173
32174 /* Set an attribute if it has not already been set by the user. */
32175
32176 static void
32177 aeabi_set_attribute_int (int tag, int value)
32178 {
32179 if (tag < 1
32180 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
32181 || !attributes_set_explicitly[tag])
32182 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
32183 }
32184
32185 static void
32186 aeabi_set_attribute_string (int tag, const char *value)
32187 {
32188 if (tag < 1
32189 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
32190 || !attributes_set_explicitly[tag])
32191 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
32192 }
32193
32194 /* Return whether features in the *NEEDED feature set are available via
32195 extensions for the architecture whose feature set is *ARCH_FSET. */
32196
32197 static bfd_boolean
32198 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
32199 const arm_feature_set *needed)
32200 {
32201 int i, nb_allowed_archs;
32202 arm_feature_set ext_fset;
32203 const struct arm_option_extension_value_table *opt;
32204
32205 ext_fset = arm_arch_none;
32206 for (opt = arm_extensions; opt->name != NULL; opt++)
32207 {
32208 /* Extension does not provide any feature we need. */
32209 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
32210 continue;
32211
32212 nb_allowed_archs =
32213 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
32214 for (i = 0; i < nb_allowed_archs; i++)
32215 {
32216 /* Empty entry. */
32217 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
32218 break;
32219
32220 /* Extension is available, add it. */
32221 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
32222 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
32223 }
32224 }
32225
32226 /* Can we enable all features in *needed? */
32227 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
32228 }
32229
32230 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
32231 a given architecture feature set *ARCH_EXT_FSET including extension feature
32232 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
32233 - if true, check for an exact match of the architecture modulo extensions;
32234 - otherwise, select build attribute value of the first superset
32235 architecture released so that results remains stable when new architectures
32236 are added.
32237 For -march/-mcpu=all the build attribute value of the most featureful
32238 architecture is returned. Tag_CPU_arch_profile result is returned in
32239 PROFILE. */
32240
32241 static int
32242 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
32243 const arm_feature_set *ext_fset,
32244 char *profile, int exact_match)
32245 {
32246 arm_feature_set arch_fset;
32247 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
32248
32249 /* Select most featureful architecture with all its extensions if building
32250 for -march=all as the feature sets used to set build attributes. */
32251 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
32252 {
32253 /* Force revisiting of decision for each new architecture. */
32254 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
32255 *profile = 'A';
32256 return TAG_CPU_ARCH_V8;
32257 }
32258
32259 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
32260
32261 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
32262 {
32263 arm_feature_set known_arch_fset;
32264
32265 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
32266 if (exact_match)
32267 {
32268 /* Base architecture match user-specified architecture and
32269 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
32270 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
32271 {
32272 p_ver_ret = p_ver;
32273 goto found;
32274 }
32275 /* Base architecture match user-specified architecture only
32276 (eg. ARMv6-M in the same case as above). Record it in case we
32277 find a match with above condition. */
32278 else if (p_ver_ret == NULL
32279 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
32280 p_ver_ret = p_ver;
32281 }
32282 else
32283 {
32284
32285 /* Architecture has all features wanted. */
32286 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
32287 {
32288 arm_feature_set added_fset;
32289
32290 /* Compute features added by this architecture over the one
32291 recorded in p_ver_ret. */
32292 if (p_ver_ret != NULL)
32293 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
32294 p_ver_ret->flags);
32295 /* First architecture that match incl. with extensions, or the
32296 only difference in features over the recorded match is
32297 features that were optional and are now mandatory. */
32298 if (p_ver_ret == NULL
32299 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
32300 {
32301 p_ver_ret = p_ver;
32302 goto found;
32303 }
32304 }
32305 else if (p_ver_ret == NULL)
32306 {
32307 arm_feature_set needed_ext_fset;
32308
32309 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
32310
32311 /* Architecture has all features needed when using some
32312 extensions. Record it and continue searching in case there
32313 exist an architecture providing all needed features without
32314 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
32315 OS extension). */
32316 if (have_ext_for_needed_feat_p (&known_arch_fset,
32317 &needed_ext_fset))
32318 p_ver_ret = p_ver;
32319 }
32320 }
32321 }
32322
32323 if (p_ver_ret == NULL)
32324 return -1;
32325
32326 found:
32327 /* Tag_CPU_arch_profile. */
32328 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
32329 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
32330 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
32331 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
32332 *profile = 'A';
32333 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
32334 *profile = 'R';
32335 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
32336 *profile = 'M';
32337 else
32338 *profile = '\0';
32339 return p_ver_ret->val;
32340 }
32341
32342 /* Set the public EABI object attributes. */
32343
32344 static void
32345 aeabi_set_public_attributes (void)
32346 {
32347 char profile = '\0';
32348 int arch = -1;
32349 int virt_sec = 0;
32350 int fp16_optional = 0;
32351 int skip_exact_match = 0;
32352 arm_feature_set flags, flags_arch, flags_ext;
32353
32354 /* Autodetection mode, choose the architecture based the instructions
32355 actually used. */
32356 if (no_cpu_selected ())
32357 {
32358 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
32359
32360 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
32361 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
32362
32363 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
32364 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
32365
32366 /* Code run during relaxation relies on selected_cpu being set. */
32367 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
32368 flags_ext = arm_arch_none;
32369 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
32370 selected_ext = flags_ext;
32371 selected_cpu = flags;
32372 }
32373 /* Otherwise, choose the architecture based on the capabilities of the
32374 requested cpu. */
32375 else
32376 {
32377 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
32378 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
32379 flags_ext = selected_ext;
32380 flags = selected_cpu;
32381 }
32382 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
32383
32384 /* Allow the user to override the reported architecture. */
32385 if (!ARM_FEATURE_ZERO (selected_object_arch))
32386 {
32387 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
32388 flags_ext = arm_arch_none;
32389 }
32390 else
32391 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
32392
32393 /* When this function is run again after relaxation has happened there is no
32394 way to determine whether an architecture or CPU was specified by the user:
32395 - selected_cpu is set above for relaxation to work;
32396 - march_cpu_opt is not set if only -mcpu or .cpu is used;
32397 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
32398 Therefore, if not in -march=all case we first try an exact match and fall
32399 back to autodetection. */
32400 if (!skip_exact_match)
32401 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
32402 if (arch == -1)
32403 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
32404 if (arch == -1)
32405 as_bad (_("no architecture contains all the instructions used\n"));
32406
32407 /* Tag_CPU_name. */
32408 if (selected_cpu_name[0])
32409 {
32410 char *q;
32411
32412 q = selected_cpu_name;
32413 if (strncmp (q, "armv", 4) == 0)
32414 {
32415 int i;
32416
32417 q += 4;
32418 for (i = 0; q[i]; i++)
32419 q[i] = TOUPPER (q[i]);
32420 }
32421 aeabi_set_attribute_string (Tag_CPU_name, q);
32422 }
32423
32424 /* Tag_CPU_arch. */
32425 aeabi_set_attribute_int (Tag_CPU_arch, arch);
32426
32427 /* Tag_CPU_arch_profile. */
32428 if (profile != '\0')
32429 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
32430
32431 /* Tag_DSP_extension. */
32432 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
32433 aeabi_set_attribute_int (Tag_DSP_extension, 1);
32434
32435 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
32436 /* Tag_ARM_ISA_use. */
32437 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
32438 || ARM_FEATURE_ZERO (flags_arch))
32439 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
32440
32441 /* Tag_THUMB_ISA_use. */
32442 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
32443 || ARM_FEATURE_ZERO (flags_arch))
32444 {
32445 int thumb_isa_use;
32446
32447 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
32448 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
32449 thumb_isa_use = 3;
32450 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
32451 thumb_isa_use = 2;
32452 else
32453 thumb_isa_use = 1;
32454 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
32455 }
32456
32457 /* Tag_VFP_arch. */
32458 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
32459 aeabi_set_attribute_int (Tag_VFP_arch,
32460 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
32461 ? 7 : 8);
32462 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
32463 aeabi_set_attribute_int (Tag_VFP_arch,
32464 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
32465 ? 5 : 6);
32466 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
32467 {
32468 fp16_optional = 1;
32469 aeabi_set_attribute_int (Tag_VFP_arch, 3);
32470 }
32471 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
32472 {
32473 aeabi_set_attribute_int (Tag_VFP_arch, 4);
32474 fp16_optional = 1;
32475 }
32476 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
32477 aeabi_set_attribute_int (Tag_VFP_arch, 2);
32478 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
32479 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
32480 aeabi_set_attribute_int (Tag_VFP_arch, 1);
32481
32482 /* Tag_ABI_HardFP_use. */
32483 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
32484 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
32485 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
32486
32487 /* Tag_WMMX_arch. */
32488 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
32489 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
32490 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
32491 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
32492
32493 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
32494 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
32495 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
32496 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
32497 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
32498 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
32499 {
32500 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
32501 {
32502 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
32503 }
32504 else
32505 {
32506 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
32507 fp16_optional = 1;
32508 }
32509 }
32510
32511 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
32512 aeabi_set_attribute_int (Tag_MVE_arch, 2);
32513 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
32514 aeabi_set_attribute_int (Tag_MVE_arch, 1);
32515
32516 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
32517 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
32518 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
32519
32520 /* Tag_DIV_use.
32521
32522 We set Tag_DIV_use to two when integer divide instructions have been used
32523 in ARM state, or when Thumb integer divide instructions have been used,
32524 but we have no architecture profile set, nor have we any ARM instructions.
32525
32526 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
32527 by the base architecture.
32528
32529 For new architectures we will have to check these tests. */
32530 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
32531 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
32532 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
32533 aeabi_set_attribute_int (Tag_DIV_use, 0);
32534 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
32535 || (profile == '\0'
32536 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
32537 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
32538 aeabi_set_attribute_int (Tag_DIV_use, 2);
32539
32540 /* Tag_MP_extension_use. */
32541 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
32542 aeabi_set_attribute_int (Tag_MPextension_use, 1);
32543
32544 /* Tag Virtualization_use. */
32545 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
32546 virt_sec |= 1;
32547 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
32548 virt_sec |= 2;
32549 if (virt_sec != 0)
32550 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
32551
32552 if (fp16_format != ARM_FP16_FORMAT_DEFAULT)
32553 aeabi_set_attribute_int (Tag_ABI_FP_16bit_format, fp16_format);
32554 }
32555
32556 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
32557 finished and free extension feature bits which will not be used anymore. */
32558
32559 void
32560 arm_md_post_relax (void)
32561 {
32562 aeabi_set_public_attributes ();
32563 XDELETE (mcpu_ext_opt);
32564 mcpu_ext_opt = NULL;
32565 XDELETE (march_ext_opt);
32566 march_ext_opt = NULL;
32567 }
32568
32569 /* Add the default contents for the .ARM.attributes section. */
32570
32571 void
32572 arm_md_end (void)
32573 {
32574 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
32575 return;
32576
32577 aeabi_set_public_attributes ();
32578 }
32579 #endif /* OBJ_ELF */
32580
32581 /* Parse a .cpu directive. */
32582
32583 static void
32584 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
32585 {
32586 const struct arm_cpu_option_table *opt;
32587 char *name;
32588 char saved_char;
32589
32590 name = input_line_pointer;
32591 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32592 input_line_pointer++;
32593 saved_char = *input_line_pointer;
32594 *input_line_pointer = 0;
32595
32596 /* Skip the first "all" entry. */
32597 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
32598 if (streq (opt->name, name))
32599 {
32600 selected_arch = opt->value;
32601 selected_ext = opt->ext;
32602 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
32603 if (opt->canonical_name)
32604 strcpy (selected_cpu_name, opt->canonical_name);
32605 else
32606 {
32607 int i;
32608 for (i = 0; opt->name[i]; i++)
32609 selected_cpu_name[i] = TOUPPER (opt->name[i]);
32610
32611 selected_cpu_name[i] = 0;
32612 }
32613 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32614
32615 *input_line_pointer = saved_char;
32616 demand_empty_rest_of_line ();
32617 return;
32618 }
32619 as_bad (_("unknown cpu `%s'"), name);
32620 *input_line_pointer = saved_char;
32621 ignore_rest_of_line ();
32622 }
32623
32624 /* Parse a .arch directive. */
32625
32626 static void
32627 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
32628 {
32629 const struct arm_arch_option_table *opt;
32630 char saved_char;
32631 char *name;
32632
32633 name = input_line_pointer;
32634 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32635 input_line_pointer++;
32636 saved_char = *input_line_pointer;
32637 *input_line_pointer = 0;
32638
32639 /* Skip the first "all" entry. */
32640 for (opt = arm_archs + 1; opt->name != NULL; opt++)
32641 if (streq (opt->name, name))
32642 {
32643 selected_arch = opt->value;
32644 selected_ctx_ext_table = opt->ext_table;
32645 selected_ext = arm_arch_none;
32646 selected_cpu = selected_arch;
32647 strcpy (selected_cpu_name, opt->name);
32648 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32649 *input_line_pointer = saved_char;
32650 demand_empty_rest_of_line ();
32651 return;
32652 }
32653
32654 as_bad (_("unknown architecture `%s'\n"), name);
32655 *input_line_pointer = saved_char;
32656 ignore_rest_of_line ();
32657 }
32658
32659 /* Parse a .object_arch directive. */
32660
32661 static void
32662 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
32663 {
32664 const struct arm_arch_option_table *opt;
32665 char saved_char;
32666 char *name;
32667
32668 name = input_line_pointer;
32669 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32670 input_line_pointer++;
32671 saved_char = *input_line_pointer;
32672 *input_line_pointer = 0;
32673
32674 /* Skip the first "all" entry. */
32675 for (opt = arm_archs + 1; opt->name != NULL; opt++)
32676 if (streq (opt->name, name))
32677 {
32678 selected_object_arch = opt->value;
32679 *input_line_pointer = saved_char;
32680 demand_empty_rest_of_line ();
32681 return;
32682 }
32683
32684 as_bad (_("unknown architecture `%s'\n"), name);
32685 *input_line_pointer = saved_char;
32686 ignore_rest_of_line ();
32687 }
32688
32689 /* Parse a .arch_extension directive. */
32690
32691 static void
32692 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
32693 {
32694 const struct arm_option_extension_value_table *opt;
32695 char saved_char;
32696 char *name;
32697 int adding_value = 1;
32698
32699 name = input_line_pointer;
32700 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32701 input_line_pointer++;
32702 saved_char = *input_line_pointer;
32703 *input_line_pointer = 0;
32704
32705 if (strlen (name) >= 2
32706 && strncmp (name, "no", 2) == 0)
32707 {
32708 adding_value = 0;
32709 name += 2;
32710 }
32711
32712 /* Check the context specific extension table */
32713 if (selected_ctx_ext_table)
32714 {
32715 const struct arm_ext_table * ext_opt;
32716 for (ext_opt = selected_ctx_ext_table; ext_opt->name != NULL; ext_opt++)
32717 {
32718 if (streq (ext_opt->name, name))
32719 {
32720 if (adding_value)
32721 {
32722 if (ARM_FEATURE_ZERO (ext_opt->merge))
32723 /* TODO: Option not supported. When we remove the
32724 legacy table this case should error out. */
32725 continue;
32726 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
32727 ext_opt->merge);
32728 }
32729 else
32730 ARM_CLEAR_FEATURE (selected_ext, selected_ext, ext_opt->clear);
32731
32732 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
32733 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32734 *input_line_pointer = saved_char;
32735 demand_empty_rest_of_line ();
32736 return;
32737 }
32738 }
32739 }
32740
32741 for (opt = arm_extensions; opt->name != NULL; opt++)
32742 if (streq (opt->name, name))
32743 {
32744 int i, nb_allowed_archs =
32745 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
32746 for (i = 0; i < nb_allowed_archs; i++)
32747 {
32748 /* Empty entry. */
32749 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
32750 continue;
32751 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
32752 break;
32753 }
32754
32755 if (i == nb_allowed_archs)
32756 {
32757 as_bad (_("architectural extension `%s' is not allowed for the "
32758 "current base architecture"), name);
32759 break;
32760 }
32761
32762 if (adding_value)
32763 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
32764 opt->merge_value);
32765 else
32766 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
32767
32768 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
32769 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32770 *input_line_pointer = saved_char;
32771 demand_empty_rest_of_line ();
32772 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
32773 on this return so that duplicate extensions (extensions with the
32774 same name as a previous extension in the list) are not considered
32775 for command-line parsing. */
32776 return;
32777 }
32778
32779 if (opt->name == NULL)
32780 as_bad (_("unknown architecture extension `%s'\n"), name);
32781
32782 *input_line_pointer = saved_char;
32783 ignore_rest_of_line ();
32784 }
32785
32786 /* Parse a .fpu directive. */
32787
32788 static void
32789 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
32790 {
32791 const struct arm_option_fpu_value_table *opt;
32792 char saved_char;
32793 char *name;
32794
32795 name = input_line_pointer;
32796 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32797 input_line_pointer++;
32798 saved_char = *input_line_pointer;
32799 *input_line_pointer = 0;
32800
32801 for (opt = arm_fpus; opt->name != NULL; opt++)
32802 if (streq (opt->name, name))
32803 {
32804 selected_fpu = opt->value;
32805 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, fpu_any);
32806 #ifndef CPU_DEFAULT
32807 if (no_cpu_selected ())
32808 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
32809 else
32810 #endif
32811 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32812 *input_line_pointer = saved_char;
32813 demand_empty_rest_of_line ();
32814 return;
32815 }
32816
32817 as_bad (_("unknown floating point format `%s'\n"), name);
32818 *input_line_pointer = saved_char;
32819 ignore_rest_of_line ();
32820 }
32821
32822 /* Copy symbol information. */
32823
32824 void
32825 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
32826 {
32827 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
32828 }
32829
32830 #ifdef OBJ_ELF
32831 /* Given a symbolic attribute NAME, return the proper integer value.
32832 Returns -1 if the attribute is not known. */
32833
32834 int
32835 arm_convert_symbolic_attribute (const char *name)
32836 {
32837 static const struct
32838 {
32839 const char * name;
32840 const int tag;
32841 }
32842 attribute_table[] =
32843 {
32844 /* When you modify this table you should
32845 also modify the list in doc/c-arm.texi. */
32846 #define T(tag) {#tag, tag}
32847 T (Tag_CPU_raw_name),
32848 T (Tag_CPU_name),
32849 T (Tag_CPU_arch),
32850 T (Tag_CPU_arch_profile),
32851 T (Tag_ARM_ISA_use),
32852 T (Tag_THUMB_ISA_use),
32853 T (Tag_FP_arch),
32854 T (Tag_VFP_arch),
32855 T (Tag_WMMX_arch),
32856 T (Tag_Advanced_SIMD_arch),
32857 T (Tag_PCS_config),
32858 T (Tag_ABI_PCS_R9_use),
32859 T (Tag_ABI_PCS_RW_data),
32860 T (Tag_ABI_PCS_RO_data),
32861 T (Tag_ABI_PCS_GOT_use),
32862 T (Tag_ABI_PCS_wchar_t),
32863 T (Tag_ABI_FP_rounding),
32864 T (Tag_ABI_FP_denormal),
32865 T (Tag_ABI_FP_exceptions),
32866 T (Tag_ABI_FP_user_exceptions),
32867 T (Tag_ABI_FP_number_model),
32868 T (Tag_ABI_align_needed),
32869 T (Tag_ABI_align8_needed),
32870 T (Tag_ABI_align_preserved),
32871 T (Tag_ABI_align8_preserved),
32872 T (Tag_ABI_enum_size),
32873 T (Tag_ABI_HardFP_use),
32874 T (Tag_ABI_VFP_args),
32875 T (Tag_ABI_WMMX_args),
32876 T (Tag_ABI_optimization_goals),
32877 T (Tag_ABI_FP_optimization_goals),
32878 T (Tag_compatibility),
32879 T (Tag_CPU_unaligned_access),
32880 T (Tag_FP_HP_extension),
32881 T (Tag_VFP_HP_extension),
32882 T (Tag_ABI_FP_16bit_format),
32883 T (Tag_MPextension_use),
32884 T (Tag_DIV_use),
32885 T (Tag_nodefaults),
32886 T (Tag_also_compatible_with),
32887 T (Tag_conformance),
32888 T (Tag_T2EE_use),
32889 T (Tag_Virtualization_use),
32890 T (Tag_DSP_extension),
32891 T (Tag_MVE_arch),
32892 /* We deliberately do not include Tag_MPextension_use_legacy. */
32893 #undef T
32894 };
32895 unsigned int i;
32896
32897 if (name == NULL)
32898 return -1;
32899
32900 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
32901 if (streq (name, attribute_table[i].name))
32902 return attribute_table[i].tag;
32903
32904 return -1;
32905 }
32906
32907 /* Apply sym value for relocations only in the case that they are for
32908 local symbols in the same segment as the fixup and you have the
32909 respective architectural feature for blx and simple switches. */
32910
32911 int
32912 arm_apply_sym_value (struct fix * fixP, segT this_seg)
32913 {
32914 if (fixP->fx_addsy
32915 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
32916 /* PR 17444: If the local symbol is in a different section then a reloc
32917 will always be generated for it, so applying the symbol value now
32918 will result in a double offset being stored in the relocation. */
32919 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
32920 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
32921 {
32922 switch (fixP->fx_r_type)
32923 {
32924 case BFD_RELOC_ARM_PCREL_BLX:
32925 case BFD_RELOC_THUMB_PCREL_BRANCH23:
32926 if (ARM_IS_FUNC (fixP->fx_addsy))
32927 return 1;
32928 break;
32929
32930 case BFD_RELOC_ARM_PCREL_CALL:
32931 case BFD_RELOC_THUMB_PCREL_BLX:
32932 if (THUMB_IS_FUNC (fixP->fx_addsy))
32933 return 1;
32934 break;
32935
32936 default:
32937 break;
32938 }
32939
32940 }
32941 return 0;
32942 }
32943 #endif /* OBJ_ELF */