]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-i386.c
x86: Remove 32-bit sign extension in offset_in_range
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* parse_register() returns this when a register alias cannot be used. */
214 static const reg_entry bad_reg = { "<bad>", OPERAND_TYPE_NONE, 0, 0,
215 { Dw2Inval, Dw2Inval } };
216
217 /* This struct describes rounding control and SAE in the instruction. */
218 struct RC_Operation
219 {
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229 };
230
231 static struct RC_Operation rc_op;
232
233 /* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236 struct Mask_Operation
237 {
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242 };
243
244 static struct Mask_Operation mask_op;
245
246 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248 struct Broadcast_Operation
249 {
250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
255
256 /* Number of bytes to broadcast. */
257 int bytes;
258 };
259
260 static struct Broadcast_Operation broadcast_op;
261
262 /* VEX prefix. */
263 typedef struct
264 {
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270 } vex_prefix;
271
272 /* 'md_assemble ()' gathers together information and puts it into a
273 i386_insn. */
274
275 union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
282 enum i386_error
283 {
284 operand_size_mismatch,
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
292 unsupported,
293 invalid_sib_address,
294 invalid_vsib_address,
295 invalid_vector_register_set,
296 invalid_tmm_register_set,
297 unsupported_vector_index_register,
298 unsupported_broadcast,
299 broadcast_needed,
300 unsupported_masking,
301 mask_not_on_destination,
302 no_default_mask,
303 unsupported_rc_sae,
304 rc_sae_operand_not_last_imm,
305 invalid_register_operand,
306 };
307
308 struct _i386_insn
309 {
310 /* TM holds the template for the insn were currently assembling. */
311 insn_template tm;
312
313 /* SUFFIX holds the instruction size suffix for byte, word, dword
314 or qword, if given. */
315 char suffix;
316
317 /* OPERANDS gives the number of given operands. */
318 unsigned int operands;
319
320 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
321 of given register, displacement, memory operands and immediate
322 operands. */
323 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
324
325 /* TYPES [i] is the type (see above #defines) which tells us how to
326 use OP[i] for the corresponding operand. */
327 i386_operand_type types[MAX_OPERANDS];
328
329 /* Displacement expression, immediate expression, or register for each
330 operand. */
331 union i386_op op[MAX_OPERANDS];
332
333 /* Flags for operands. */
334 unsigned int flags[MAX_OPERANDS];
335 #define Operand_PCrel 1
336 #define Operand_Mem 2
337
338 /* Relocation type for operand */
339 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
340
341 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
342 the base index byte below. */
343 const reg_entry *base_reg;
344 const reg_entry *index_reg;
345 unsigned int log2_scale_factor;
346
347 /* SEG gives the seg_entries of this insn. They are zero unless
348 explicit segment overrides are given. */
349 const seg_entry *seg[2];
350
351 /* Copied first memory operand string, for re-checking. */
352 char *memop1_string;
353
354 /* PREFIX holds all the given prefix opcodes (usually null).
355 PREFIXES is the number of prefix opcodes. */
356 unsigned int prefixes;
357 unsigned char prefix[MAX_PREFIXES];
358
359 /* Register is in low 3 bits of opcode. */
360 bfd_boolean short_form;
361
362 /* The operand to a branch insn indicates an absolute branch. */
363 bfd_boolean jumpabsolute;
364
365 /* Extended states. */
366 enum
367 {
368 /* Use MMX state. */
369 xstate_mmx = 1 << 0,
370 /* Use XMM state. */
371 xstate_xmm = 1 << 1,
372 /* Use YMM state. */
373 xstate_ymm = 1 << 2 | xstate_xmm,
374 /* Use ZMM state. */
375 xstate_zmm = 1 << 3 | xstate_ymm,
376 /* Use TMM state. */
377 xstate_tmm = 1 << 4
378 } xstate;
379
380 /* Has GOTPC or TLS relocation. */
381 bfd_boolean has_gotpc_tls_reloc;
382
383 /* RM and SIB are the modrm byte and the sib byte where the
384 addressing modes of this insn are encoded. */
385 modrm_byte rm;
386 rex_byte rex;
387 rex_byte vrex;
388 sib_byte sib;
389 vex_prefix vex;
390
391 /* Masking attributes. */
392 struct Mask_Operation *mask;
393
394 /* Rounding control and SAE attributes. */
395 struct RC_Operation *rounding;
396
397 /* Broadcasting attributes. */
398 struct Broadcast_Operation *broadcast;
399
400 /* Compressed disp8*N attribute. */
401 unsigned int memshift;
402
403 /* Prefer load or store in encoding. */
404 enum
405 {
406 dir_encoding_default = 0,
407 dir_encoding_load,
408 dir_encoding_store,
409 dir_encoding_swap
410 } dir_encoding;
411
412 /* Prefer 8bit or 32bit displacement in encoding. */
413 enum
414 {
415 disp_encoding_default = 0,
416 disp_encoding_8bit,
417 disp_encoding_32bit
418 } disp_encoding;
419
420 /* Prefer the REX byte in encoding. */
421 bfd_boolean rex_encoding;
422
423 /* Disable instruction size optimization. */
424 bfd_boolean no_optimize;
425
426 /* How to encode vector instructions. */
427 enum
428 {
429 vex_encoding_default = 0,
430 vex_encoding_vex,
431 vex_encoding_vex3,
432 vex_encoding_evex,
433 vex_encoding_error
434 } vec_encoding;
435
436 /* REP prefix. */
437 const char *rep_prefix;
438
439 /* HLE prefix. */
440 const char *hle_prefix;
441
442 /* Have BND prefix. */
443 const char *bnd_prefix;
444
445 /* Have NOTRACK prefix. */
446 const char *notrack_prefix;
447
448 /* Error message. */
449 enum i386_error error;
450 };
451
452 typedef struct _i386_insn i386_insn;
453
454 /* Link RC type with corresponding string, that'll be looked for in
455 asm. */
456 struct RC_name
457 {
458 enum rc_type type;
459 const char *name;
460 unsigned int len;
461 };
462
463 static const struct RC_name RC_NamesTable[] =
464 {
465 { rne, STRING_COMMA_LEN ("rn-sae") },
466 { rd, STRING_COMMA_LEN ("rd-sae") },
467 { ru, STRING_COMMA_LEN ("ru-sae") },
468 { rz, STRING_COMMA_LEN ("rz-sae") },
469 { saeonly, STRING_COMMA_LEN ("sae") },
470 };
471
472 /* List of chars besides those in app.c:symbol_chars that can start an
473 operand. Used to prevent the scrubber eating vital white-space. */
474 const char extra_symbol_chars[] = "*%-([{}"
475 #ifdef LEX_AT
476 "@"
477 #endif
478 #ifdef LEX_QM
479 "?"
480 #endif
481 ;
482
483 #if (defined (TE_I386AIX) \
484 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
485 && !defined (TE_GNU) \
486 && !defined (TE_LINUX) \
487 && !defined (TE_FreeBSD) \
488 && !defined (TE_DragonFly) \
489 && !defined (TE_NetBSD)))
490 /* This array holds the chars that always start a comment. If the
491 pre-processor is disabled, these aren't very useful. The option
492 --divide will remove '/' from this list. */
493 const char *i386_comment_chars = "#/";
494 #define SVR4_COMMENT_CHARS 1
495 #define PREFIX_SEPARATOR '\\'
496
497 #else
498 const char *i386_comment_chars = "#";
499 #define PREFIX_SEPARATOR '/'
500 #endif
501
502 /* This array holds the chars that only start a comment at the beginning of
503 a line. If the line seems to have the form '# 123 filename'
504 .line and .file directives will appear in the pre-processed output.
505 Note that input_file.c hand checks for '#' at the beginning of the
506 first line of the input file. This is because the compiler outputs
507 #NO_APP at the beginning of its output.
508 Also note that comments started like this one will always work if
509 '/' isn't otherwise defined. */
510 const char line_comment_chars[] = "#/";
511
512 const char line_separator_chars[] = ";";
513
514 /* Chars that can be used to separate mant from exp in floating point
515 nums. */
516 const char EXP_CHARS[] = "eE";
517
518 /* Chars that mean this number is a floating point constant
519 As in 0f12.456
520 or 0d1.2345e12. */
521 const char FLT_CHARS[] = "fFdDxX";
522
523 /* Tables for lexical analysis. */
524 static char mnemonic_chars[256];
525 static char register_chars[256];
526 static char operand_chars[256];
527 static char identifier_chars[256];
528 static char digit_chars[256];
529
530 /* Lexical macros. */
531 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
532 #define is_operand_char(x) (operand_chars[(unsigned char) x])
533 #define is_register_char(x) (register_chars[(unsigned char) x])
534 #define is_space_char(x) ((x) == ' ')
535 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
536 #define is_digit_char(x) (digit_chars[(unsigned char) x])
537
538 /* All non-digit non-letter characters that may occur in an operand. */
539 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
540
541 /* md_assemble() always leaves the strings it's passed unaltered. To
542 effect this we maintain a stack of saved characters that we've smashed
543 with '\0's (indicating end of strings for various sub-fields of the
544 assembler instruction). */
545 static char save_stack[32];
546 static char *save_stack_p;
547 #define END_STRING_AND_SAVE(s) \
548 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
549 #define RESTORE_END_STRING(s) \
550 do { *(s) = *--save_stack_p; } while (0)
551
552 /* The instruction we're assembling. */
553 static i386_insn i;
554
555 /* Possible templates for current insn. */
556 static const templates *current_templates;
557
558 /* Per instruction expressionS buffers: max displacements & immediates. */
559 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
560 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
561
562 /* Current operand we are working on. */
563 static int this_operand = -1;
564
565 /* We support four different modes. FLAG_CODE variable is used to distinguish
566 these. */
567
568 enum flag_code {
569 CODE_32BIT,
570 CODE_16BIT,
571 CODE_64BIT };
572
573 static enum flag_code flag_code;
574 static unsigned int object_64bit;
575 static unsigned int disallow_64bit_reloc;
576 static int use_rela_relocations = 0;
577 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
578 static const char *tls_get_addr;
579
580 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
581 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
582 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
583
584 /* The ELF ABI to use. */
585 enum x86_elf_abi
586 {
587 I386_ABI,
588 X86_64_ABI,
589 X86_64_X32_ABI
590 };
591
592 static enum x86_elf_abi x86_elf_abi = I386_ABI;
593 #endif
594
595 #if defined (TE_PE) || defined (TE_PEP)
596 /* Use big object file format. */
597 static int use_big_obj = 0;
598 #endif
599
600 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
601 /* 1 if generating code for a shared library. */
602 static int shared = 0;
603 #endif
604
605 /* 1 for intel syntax,
606 0 if att syntax. */
607 static int intel_syntax = 0;
608
609 static enum x86_64_isa
610 {
611 amd64 = 1, /* AMD64 ISA. */
612 intel64 /* Intel64 ISA. */
613 } isa64;
614
615 /* 1 for intel mnemonic,
616 0 if att mnemonic. */
617 static int intel_mnemonic = !SYSV386_COMPAT;
618
619 /* 1 if pseudo registers are permitted. */
620 static int allow_pseudo_reg = 0;
621
622 /* 1 if register prefix % not required. */
623 static int allow_naked_reg = 0;
624
625 /* 1 if the assembler should add BND prefix for all control-transferring
626 instructions supporting it, even if this prefix wasn't specified
627 explicitly. */
628 static int add_bnd_prefix = 0;
629
630 /* 1 if pseudo index register, eiz/riz, is allowed . */
631 static int allow_index_reg = 0;
632
633 /* 1 if the assembler should ignore LOCK prefix, even if it was
634 specified explicitly. */
635 static int omit_lock_prefix = 0;
636
637 /* 1 if the assembler should encode lfence, mfence, and sfence as
638 "lock addl $0, (%{re}sp)". */
639 static int avoid_fence = 0;
640
641 /* 1 if lfence should be inserted after every load. */
642 static int lfence_after_load = 0;
643
644 /* Non-zero if lfence should be inserted before indirect branch. */
645 static enum lfence_before_indirect_branch_kind
646 {
647 lfence_branch_none = 0,
648 lfence_branch_register,
649 lfence_branch_memory,
650 lfence_branch_all
651 }
652 lfence_before_indirect_branch;
653
654 /* Non-zero if lfence should be inserted before ret. */
655 static enum lfence_before_ret_kind
656 {
657 lfence_before_ret_none = 0,
658 lfence_before_ret_not,
659 lfence_before_ret_or,
660 lfence_before_ret_shl
661 }
662 lfence_before_ret;
663
664 /* Types of previous instruction is .byte or prefix. */
665 static struct
666 {
667 segT seg;
668 const char *file;
669 const char *name;
670 unsigned int line;
671 enum last_insn_kind
672 {
673 last_insn_other = 0,
674 last_insn_directive,
675 last_insn_prefix
676 } kind;
677 } last_insn;
678
679 /* 1 if the assembler should generate relax relocations. */
680
681 static int generate_relax_relocations
682 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
683
684 static enum check_kind
685 {
686 check_none = 0,
687 check_warning,
688 check_error
689 }
690 sse_check, operand_check = check_warning;
691
692 /* Non-zero if branches should be aligned within power of 2 boundary. */
693 static int align_branch_power = 0;
694
695 /* Types of branches to align. */
696 enum align_branch_kind
697 {
698 align_branch_none = 0,
699 align_branch_jcc = 1,
700 align_branch_fused = 2,
701 align_branch_jmp = 3,
702 align_branch_call = 4,
703 align_branch_indirect = 5,
704 align_branch_ret = 6
705 };
706
707 /* Type bits of branches to align. */
708 enum align_branch_bit
709 {
710 align_branch_jcc_bit = 1 << align_branch_jcc,
711 align_branch_fused_bit = 1 << align_branch_fused,
712 align_branch_jmp_bit = 1 << align_branch_jmp,
713 align_branch_call_bit = 1 << align_branch_call,
714 align_branch_indirect_bit = 1 << align_branch_indirect,
715 align_branch_ret_bit = 1 << align_branch_ret
716 };
717
718 static unsigned int align_branch = (align_branch_jcc_bit
719 | align_branch_fused_bit
720 | align_branch_jmp_bit);
721
722 /* Types of condition jump used by macro-fusion. */
723 enum mf_jcc_kind
724 {
725 mf_jcc_jo = 0, /* base opcode 0x70 */
726 mf_jcc_jc, /* base opcode 0x72 */
727 mf_jcc_je, /* base opcode 0x74 */
728 mf_jcc_jna, /* base opcode 0x76 */
729 mf_jcc_js, /* base opcode 0x78 */
730 mf_jcc_jp, /* base opcode 0x7a */
731 mf_jcc_jl, /* base opcode 0x7c */
732 mf_jcc_jle, /* base opcode 0x7e */
733 };
734
735 /* Types of compare flag-modifying insntructions used by macro-fusion. */
736 enum mf_cmp_kind
737 {
738 mf_cmp_test_and, /* test/cmp */
739 mf_cmp_alu_cmp, /* add/sub/cmp */
740 mf_cmp_incdec /* inc/dec */
741 };
742
743 /* The maximum padding size for fused jcc. CMP like instruction can
744 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
745 prefixes. */
746 #define MAX_FUSED_JCC_PADDING_SIZE 20
747
748 /* The maximum number of prefixes added for an instruction. */
749 static unsigned int align_branch_prefix_size = 5;
750
751 /* Optimization:
752 1. Clear the REX_W bit with register operand if possible.
753 2. Above plus use 128bit vector instruction to clear the full vector
754 register.
755 */
756 static int optimize = 0;
757
758 /* Optimization:
759 1. Clear the REX_W bit with register operand if possible.
760 2. Above plus use 128bit vector instruction to clear the full vector
761 register.
762 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
763 "testb $imm7,%r8".
764 */
765 static int optimize_for_space = 0;
766
767 /* Register prefix used for error message. */
768 static const char *register_prefix = "%";
769
770 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
771 leave, push, and pop instructions so that gcc has the same stack
772 frame as in 32 bit mode. */
773 static char stackop_size = '\0';
774
775 /* Non-zero to optimize code alignment. */
776 int optimize_align_code = 1;
777
778 /* Non-zero to quieten some warnings. */
779 static int quiet_warnings = 0;
780
781 /* CPU name. */
782 static const char *cpu_arch_name = NULL;
783 static char *cpu_sub_arch_name = NULL;
784
785 /* CPU feature flags. */
786 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
787
788 /* If we have selected a cpu we are generating instructions for. */
789 static int cpu_arch_tune_set = 0;
790
791 /* Cpu we are generating instructions for. */
792 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
793
794 /* CPU feature flags of cpu we are generating instructions for. */
795 static i386_cpu_flags cpu_arch_tune_flags;
796
797 /* CPU instruction set architecture used. */
798 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
799
800 /* CPU feature flags of instruction set architecture used. */
801 i386_cpu_flags cpu_arch_isa_flags;
802
803 /* If set, conditional jumps are not automatically promoted to handle
804 larger than a byte offset. */
805 static unsigned int no_cond_jump_promotion = 0;
806
807 /* Encode SSE instructions with VEX prefix. */
808 static unsigned int sse2avx;
809
810 /* Encode scalar AVX instructions with specific vector length. */
811 static enum
812 {
813 vex128 = 0,
814 vex256
815 } avxscalar;
816
817 /* Encode VEX WIG instructions with specific vex.w. */
818 static enum
819 {
820 vexw0 = 0,
821 vexw1
822 } vexwig;
823
824 /* Encode scalar EVEX LIG instructions with specific vector length. */
825 static enum
826 {
827 evexl128 = 0,
828 evexl256,
829 evexl512
830 } evexlig;
831
832 /* Encode EVEX WIG instructions with specific evex.w. */
833 static enum
834 {
835 evexw0 = 0,
836 evexw1
837 } evexwig;
838
839 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
840 static enum rc_type evexrcig = rne;
841
842 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
843 static symbolS *GOT_symbol;
844
845 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
846 unsigned int x86_dwarf2_return_column;
847
848 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
849 int x86_cie_data_alignment;
850
851 /* Interface to relax_segment.
852 There are 3 major relax states for 386 jump insns because the
853 different types of jumps add different sizes to frags when we're
854 figuring out what sort of jump to choose to reach a given label.
855
856 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
857 branches which are handled by md_estimate_size_before_relax() and
858 i386_generic_table_relax_frag(). */
859
860 /* Types. */
861 #define UNCOND_JUMP 0
862 #define COND_JUMP 1
863 #define COND_JUMP86 2
864 #define BRANCH_PADDING 3
865 #define BRANCH_PREFIX 4
866 #define FUSED_JCC_PADDING 5
867
868 /* Sizes. */
869 #define CODE16 1
870 #define SMALL 0
871 #define SMALL16 (SMALL | CODE16)
872 #define BIG 2
873 #define BIG16 (BIG | CODE16)
874
875 #ifndef INLINE
876 #ifdef __GNUC__
877 #define INLINE __inline__
878 #else
879 #define INLINE
880 #endif
881 #endif
882
883 #define ENCODE_RELAX_STATE(type, size) \
884 ((relax_substateT) (((type) << 2) | (size)))
885 #define TYPE_FROM_RELAX_STATE(s) \
886 ((s) >> 2)
887 #define DISP_SIZE_FROM_RELAX_STATE(s) \
888 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
889
890 /* This table is used by relax_frag to promote short jumps to long
891 ones where necessary. SMALL (short) jumps may be promoted to BIG
892 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
893 don't allow a short jump in a 32 bit code segment to be promoted to
894 a 16 bit offset jump because it's slower (requires data size
895 prefix), and doesn't work, unless the destination is in the bottom
896 64k of the code segment (The top 16 bits of eip are zeroed). */
897
898 const relax_typeS md_relax_table[] =
899 {
900 /* The fields are:
901 1) most positive reach of this state,
902 2) most negative reach of this state,
903 3) how many bytes this mode will have in the variable part of the frag
904 4) which index into the table to try if we can't fit into this one. */
905
906 /* UNCOND_JUMP states. */
907 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
908 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
909 /* dword jmp adds 4 bytes to frag:
910 0 extra opcode bytes, 4 displacement bytes. */
911 {0, 0, 4, 0},
912 /* word jmp adds 2 byte2 to frag:
913 0 extra opcode bytes, 2 displacement bytes. */
914 {0, 0, 2, 0},
915
916 /* COND_JUMP states. */
917 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
918 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
919 /* dword conditionals adds 5 bytes to frag:
920 1 extra opcode byte, 4 displacement bytes. */
921 {0, 0, 5, 0},
922 /* word conditionals add 3 bytes to frag:
923 1 extra opcode byte, 2 displacement bytes. */
924 {0, 0, 3, 0},
925
926 /* COND_JUMP86 states. */
927 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
928 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
929 /* dword conditionals adds 5 bytes to frag:
930 1 extra opcode byte, 4 displacement bytes. */
931 {0, 0, 5, 0},
932 /* word conditionals add 4 bytes to frag:
933 1 displacement byte and a 3 byte long branch insn. */
934 {0, 0, 4, 0}
935 };
936
937 static const arch_entry cpu_arch[] =
938 {
939 /* Do not replace the first two entries - i386_target_format()
940 relies on them being there in this order. */
941 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
942 CPU_GENERIC32_FLAGS, 0 },
943 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
944 CPU_GENERIC64_FLAGS, 0 },
945 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
946 CPU_NONE_FLAGS, 0 },
947 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
948 CPU_I186_FLAGS, 0 },
949 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
950 CPU_I286_FLAGS, 0 },
951 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
952 CPU_I386_FLAGS, 0 },
953 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
954 CPU_I486_FLAGS, 0 },
955 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
956 CPU_I586_FLAGS, 0 },
957 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
958 CPU_I686_FLAGS, 0 },
959 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
960 CPU_I586_FLAGS, 0 },
961 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
962 CPU_PENTIUMPRO_FLAGS, 0 },
963 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
964 CPU_P2_FLAGS, 0 },
965 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
966 CPU_P3_FLAGS, 0 },
967 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
968 CPU_P4_FLAGS, 0 },
969 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
970 CPU_CORE_FLAGS, 0 },
971 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
972 CPU_NOCONA_FLAGS, 0 },
973 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
974 CPU_CORE_FLAGS, 1 },
975 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
976 CPU_CORE_FLAGS, 0 },
977 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
978 CPU_CORE2_FLAGS, 1 },
979 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
980 CPU_CORE2_FLAGS, 0 },
981 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
982 CPU_COREI7_FLAGS, 0 },
983 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
984 CPU_L1OM_FLAGS, 0 },
985 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
986 CPU_K1OM_FLAGS, 0 },
987 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
988 CPU_IAMCU_FLAGS, 0 },
989 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
990 CPU_K6_FLAGS, 0 },
991 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
992 CPU_K6_2_FLAGS, 0 },
993 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
994 CPU_ATHLON_FLAGS, 0 },
995 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
996 CPU_K8_FLAGS, 1 },
997 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
998 CPU_K8_FLAGS, 0 },
999 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
1000 CPU_K8_FLAGS, 0 },
1001 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
1002 CPU_AMDFAM10_FLAGS, 0 },
1003 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
1004 CPU_BDVER1_FLAGS, 0 },
1005 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
1006 CPU_BDVER2_FLAGS, 0 },
1007 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
1008 CPU_BDVER3_FLAGS, 0 },
1009 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
1010 CPU_BDVER4_FLAGS, 0 },
1011 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
1012 CPU_ZNVER1_FLAGS, 0 },
1013 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
1014 CPU_ZNVER2_FLAGS, 0 },
1015 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
1016 CPU_BTVER1_FLAGS, 0 },
1017 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
1018 CPU_BTVER2_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
1020 CPU_8087_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
1022 CPU_287_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
1024 CPU_387_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
1026 CPU_687_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
1028 CPU_CMOV_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
1030 CPU_FXSR_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
1032 CPU_MMX_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
1034 CPU_SSE_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
1036 CPU_SSE2_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
1038 CPU_SSE3_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1040 CPU_SSE4A_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
1042 CPU_SSSE3_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
1044 CPU_SSE4_1_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
1046 CPU_SSE4_2_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
1048 CPU_SSE4_2_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
1050 CPU_AVX_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
1052 CPU_AVX2_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
1054 CPU_AVX512F_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1056 CPU_AVX512CD_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1058 CPU_AVX512ER_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1060 CPU_AVX512PF_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1062 CPU_AVX512DQ_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1064 CPU_AVX512BW_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1066 CPU_AVX512VL_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1068 CPU_VMX_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1070 CPU_VMFUNC_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1072 CPU_SMX_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1074 CPU_XSAVE_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1076 CPU_XSAVEOPT_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1078 CPU_XSAVEC_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1080 CPU_XSAVES_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1082 CPU_AES_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1084 CPU_PCLMUL_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1086 CPU_PCLMUL_FLAGS, 1 },
1087 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1088 CPU_FSGSBASE_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1090 CPU_RDRND_FLAGS, 0 },
1091 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1092 CPU_F16C_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1094 CPU_BMI2_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1096 CPU_FMA_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1098 CPU_FMA4_FLAGS, 0 },
1099 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1100 CPU_XOP_FLAGS, 0 },
1101 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1102 CPU_LWP_FLAGS, 0 },
1103 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1104 CPU_MOVBE_FLAGS, 0 },
1105 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1106 CPU_CX16_FLAGS, 0 },
1107 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1108 CPU_EPT_FLAGS, 0 },
1109 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1110 CPU_LZCNT_FLAGS, 0 },
1111 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1112 CPU_POPCNT_FLAGS, 0 },
1113 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1114 CPU_HLE_FLAGS, 0 },
1115 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1116 CPU_RTM_FLAGS, 0 },
1117 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1118 CPU_INVPCID_FLAGS, 0 },
1119 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1120 CPU_CLFLUSH_FLAGS, 0 },
1121 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1122 CPU_NOP_FLAGS, 0 },
1123 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1124 CPU_SYSCALL_FLAGS, 0 },
1125 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1126 CPU_RDTSCP_FLAGS, 0 },
1127 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1128 CPU_3DNOW_FLAGS, 0 },
1129 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1130 CPU_3DNOWA_FLAGS, 0 },
1131 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1132 CPU_PADLOCK_FLAGS, 0 },
1133 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1134 CPU_SVME_FLAGS, 1 },
1135 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1136 CPU_SVME_FLAGS, 0 },
1137 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1138 CPU_SSE4A_FLAGS, 0 },
1139 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1140 CPU_ABM_FLAGS, 0 },
1141 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1142 CPU_BMI_FLAGS, 0 },
1143 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1144 CPU_TBM_FLAGS, 0 },
1145 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1146 CPU_ADX_FLAGS, 0 },
1147 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1148 CPU_RDSEED_FLAGS, 0 },
1149 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1150 CPU_PRFCHW_FLAGS, 0 },
1151 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1152 CPU_SMAP_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1154 CPU_MPX_FLAGS, 0 },
1155 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1156 CPU_SHA_FLAGS, 0 },
1157 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1158 CPU_CLFLUSHOPT_FLAGS, 0 },
1159 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1160 CPU_PREFETCHWT1_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1162 CPU_SE1_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1164 CPU_CLWB_FLAGS, 0 },
1165 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1166 CPU_AVX512IFMA_FLAGS, 0 },
1167 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1168 CPU_AVX512VBMI_FLAGS, 0 },
1169 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1170 CPU_AVX512_4FMAPS_FLAGS, 0 },
1171 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1172 CPU_AVX512_4VNNIW_FLAGS, 0 },
1173 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1174 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1175 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1176 CPU_AVX512_VBMI2_FLAGS, 0 },
1177 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1178 CPU_AVX512_VNNI_FLAGS, 0 },
1179 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1180 CPU_AVX512_BITALG_FLAGS, 0 },
1181 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1182 CPU_CLZERO_FLAGS, 0 },
1183 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1184 CPU_MWAITX_FLAGS, 0 },
1185 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1186 CPU_OSPKE_FLAGS, 0 },
1187 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1188 CPU_RDPID_FLAGS, 0 },
1189 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1190 CPU_PTWRITE_FLAGS, 0 },
1191 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1192 CPU_IBT_FLAGS, 0 },
1193 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1194 CPU_SHSTK_FLAGS, 0 },
1195 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1196 CPU_GFNI_FLAGS, 0 },
1197 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1198 CPU_VAES_FLAGS, 0 },
1199 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1200 CPU_VPCLMULQDQ_FLAGS, 0 },
1201 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1202 CPU_WBNOINVD_FLAGS, 0 },
1203 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1204 CPU_PCONFIG_FLAGS, 0 },
1205 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1206 CPU_WAITPKG_FLAGS, 0 },
1207 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1208 CPU_CLDEMOTE_FLAGS, 0 },
1209 { STRING_COMMA_LEN (".amx_int8"), PROCESSOR_UNKNOWN,
1210 CPU_AMX_INT8_FLAGS, 0 },
1211 { STRING_COMMA_LEN (".amx_bf16"), PROCESSOR_UNKNOWN,
1212 CPU_AMX_BF16_FLAGS, 0 },
1213 { STRING_COMMA_LEN (".amx_tile"), PROCESSOR_UNKNOWN,
1214 CPU_AMX_TILE_FLAGS, 0 },
1215 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1216 CPU_MOVDIRI_FLAGS, 0 },
1217 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1218 CPU_MOVDIR64B_FLAGS, 0 },
1219 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1220 CPU_AVX512_BF16_FLAGS, 0 },
1221 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1222 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1223 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1224 CPU_ENQCMD_FLAGS, 0 },
1225 { STRING_COMMA_LEN (".serialize"), PROCESSOR_UNKNOWN,
1226 CPU_SERIALIZE_FLAGS, 0 },
1227 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1228 CPU_RDPRU_FLAGS, 0 },
1229 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1230 CPU_MCOMMIT_FLAGS, 0 },
1231 { STRING_COMMA_LEN (".sev_es"), PROCESSOR_UNKNOWN,
1232 CPU_SEV_ES_FLAGS, 0 },
1233 { STRING_COMMA_LEN (".tsxldtrk"), PROCESSOR_UNKNOWN,
1234 CPU_TSXLDTRK_FLAGS, 0 },
1235 };
1236
1237 static const noarch_entry cpu_noarch[] =
1238 {
1239 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1240 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1241 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1242 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1243 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1244 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1245 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1246 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1247 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1248 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1249 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1250 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1251 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1252 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1253 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1254 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1255 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1256 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1257 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1258 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1259 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1260 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1261 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1262 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1263 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1264 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1265 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1266 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1267 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1268 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1269 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1270 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1271 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1272 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1273 { STRING_COMMA_LEN ("noamx_int8"), CPU_ANY_AMX_INT8_FLAGS },
1274 { STRING_COMMA_LEN ("noamx_bf16"), CPU_ANY_AMX_BF16_FLAGS },
1275 { STRING_COMMA_LEN ("noamx_tile"), CPU_ANY_AMX_TILE_FLAGS },
1276 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1277 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1278 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1279 { STRING_COMMA_LEN ("noavx512_vp2intersect"),
1280 CPU_ANY_AVX512_VP2INTERSECT_FLAGS },
1281 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1282 { STRING_COMMA_LEN ("noserialize"), CPU_ANY_SERIALIZE_FLAGS },
1283 { STRING_COMMA_LEN ("notsxldtrk"), CPU_ANY_TSXLDTRK_FLAGS },
1284 };
1285
1286 #ifdef I386COFF
1287 /* Like s_lcomm_internal in gas/read.c but the alignment string
1288 is allowed to be optional. */
1289
1290 static symbolS *
1291 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1292 {
1293 addressT align = 0;
1294
1295 SKIP_WHITESPACE ();
1296
1297 if (needs_align
1298 && *input_line_pointer == ',')
1299 {
1300 align = parse_align (needs_align - 1);
1301
1302 if (align == (addressT) -1)
1303 return NULL;
1304 }
1305 else
1306 {
1307 if (size >= 8)
1308 align = 3;
1309 else if (size >= 4)
1310 align = 2;
1311 else if (size >= 2)
1312 align = 1;
1313 else
1314 align = 0;
1315 }
1316
1317 bss_alloc (symbolP, size, align);
1318 return symbolP;
1319 }
1320
1321 static void
1322 pe_lcomm (int needs_align)
1323 {
1324 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1325 }
1326 #endif
1327
1328 const pseudo_typeS md_pseudo_table[] =
1329 {
1330 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1331 {"align", s_align_bytes, 0},
1332 #else
1333 {"align", s_align_ptwo, 0},
1334 #endif
1335 {"arch", set_cpu_arch, 0},
1336 #ifndef I386COFF
1337 {"bss", s_bss, 0},
1338 #else
1339 {"lcomm", pe_lcomm, 1},
1340 #endif
1341 {"ffloat", float_cons, 'f'},
1342 {"dfloat", float_cons, 'd'},
1343 {"tfloat", float_cons, 'x'},
1344 {"value", cons, 2},
1345 {"slong", signed_cons, 4},
1346 {"noopt", s_ignore, 0},
1347 {"optim", s_ignore, 0},
1348 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1349 {"code16", set_code_flag, CODE_16BIT},
1350 {"code32", set_code_flag, CODE_32BIT},
1351 #ifdef BFD64
1352 {"code64", set_code_flag, CODE_64BIT},
1353 #endif
1354 {"intel_syntax", set_intel_syntax, 1},
1355 {"att_syntax", set_intel_syntax, 0},
1356 {"intel_mnemonic", set_intel_mnemonic, 1},
1357 {"att_mnemonic", set_intel_mnemonic, 0},
1358 {"allow_index_reg", set_allow_index_reg, 1},
1359 {"disallow_index_reg", set_allow_index_reg, 0},
1360 {"sse_check", set_check, 0},
1361 {"operand_check", set_check, 1},
1362 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1363 {"largecomm", handle_large_common, 0},
1364 #else
1365 {"file", dwarf2_directive_file, 0},
1366 {"loc", dwarf2_directive_loc, 0},
1367 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1368 #endif
1369 #ifdef TE_PE
1370 {"secrel32", pe_directive_secrel, 0},
1371 #endif
1372 {0, 0, 0}
1373 };
1374
1375 /* For interface with expression (). */
1376 extern char *input_line_pointer;
1377
1378 /* Hash table for instruction mnemonic lookup. */
1379 static struct hash_control *op_hash;
1380
1381 /* Hash table for register lookup. */
1382 static struct hash_control *reg_hash;
1383 \f
1384 /* Various efficient no-op patterns for aligning code labels.
1385 Note: Don't try to assemble the instructions in the comments.
1386 0L and 0w are not legal. */
1387 static const unsigned char f32_1[] =
1388 {0x90}; /* nop */
1389 static const unsigned char f32_2[] =
1390 {0x66,0x90}; /* xchg %ax,%ax */
1391 static const unsigned char f32_3[] =
1392 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1393 static const unsigned char f32_4[] =
1394 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1395 static const unsigned char f32_6[] =
1396 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1397 static const unsigned char f32_7[] =
1398 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1399 static const unsigned char f16_3[] =
1400 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1401 static const unsigned char f16_4[] =
1402 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1403 static const unsigned char jump_disp8[] =
1404 {0xeb}; /* jmp disp8 */
1405 static const unsigned char jump32_disp32[] =
1406 {0xe9}; /* jmp disp32 */
1407 static const unsigned char jump16_disp32[] =
1408 {0x66,0xe9}; /* jmp disp32 */
1409 /* 32-bit NOPs patterns. */
1410 static const unsigned char *const f32_patt[] = {
1411 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1412 };
1413 /* 16-bit NOPs patterns. */
1414 static const unsigned char *const f16_patt[] = {
1415 f32_1, f32_2, f16_3, f16_4
1416 };
1417 /* nopl (%[re]ax) */
1418 static const unsigned char alt_3[] =
1419 {0x0f,0x1f,0x00};
1420 /* nopl 0(%[re]ax) */
1421 static const unsigned char alt_4[] =
1422 {0x0f,0x1f,0x40,0x00};
1423 /* nopl 0(%[re]ax,%[re]ax,1) */
1424 static const unsigned char alt_5[] =
1425 {0x0f,0x1f,0x44,0x00,0x00};
1426 /* nopw 0(%[re]ax,%[re]ax,1) */
1427 static const unsigned char alt_6[] =
1428 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1429 /* nopl 0L(%[re]ax) */
1430 static const unsigned char alt_7[] =
1431 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1432 /* nopl 0L(%[re]ax,%[re]ax,1) */
1433 static const unsigned char alt_8[] =
1434 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1435 /* nopw 0L(%[re]ax,%[re]ax,1) */
1436 static const unsigned char alt_9[] =
1437 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1438 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1439 static const unsigned char alt_10[] =
1440 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1441 /* data16 nopw %cs:0L(%eax,%eax,1) */
1442 static const unsigned char alt_11[] =
1443 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1444 /* 32-bit and 64-bit NOPs patterns. */
1445 static const unsigned char *const alt_patt[] = {
1446 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1447 alt_9, alt_10, alt_11
1448 };
1449
1450 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1451 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1452
1453 static void
1454 i386_output_nops (char *where, const unsigned char *const *patt,
1455 int count, int max_single_nop_size)
1456
1457 {
1458 /* Place the longer NOP first. */
1459 int last;
1460 int offset;
1461 const unsigned char *nops;
1462
1463 if (max_single_nop_size < 1)
1464 {
1465 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1466 max_single_nop_size);
1467 return;
1468 }
1469
1470 nops = patt[max_single_nop_size - 1];
1471
1472 /* Use the smaller one if the requsted one isn't available. */
1473 if (nops == NULL)
1474 {
1475 max_single_nop_size--;
1476 nops = patt[max_single_nop_size - 1];
1477 }
1478
1479 last = count % max_single_nop_size;
1480
1481 count -= last;
1482 for (offset = 0; offset < count; offset += max_single_nop_size)
1483 memcpy (where + offset, nops, max_single_nop_size);
1484
1485 if (last)
1486 {
1487 nops = patt[last - 1];
1488 if (nops == NULL)
1489 {
1490 /* Use the smaller one plus one-byte NOP if the needed one
1491 isn't available. */
1492 last--;
1493 nops = patt[last - 1];
1494 memcpy (where + offset, nops, last);
1495 where[offset + last] = *patt[0];
1496 }
1497 else
1498 memcpy (where + offset, nops, last);
1499 }
1500 }
1501
1502 static INLINE int
1503 fits_in_imm7 (offsetT num)
1504 {
1505 return (num & 0x7f) == num;
1506 }
1507
1508 static INLINE int
1509 fits_in_imm31 (offsetT num)
1510 {
1511 return (num & 0x7fffffff) == num;
1512 }
1513
1514 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1515 single NOP instruction LIMIT. */
1516
1517 void
1518 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1519 {
1520 const unsigned char *const *patt = NULL;
1521 int max_single_nop_size;
1522 /* Maximum number of NOPs before switching to jump over NOPs. */
1523 int max_number_of_nops;
1524
1525 switch (fragP->fr_type)
1526 {
1527 case rs_fill_nop:
1528 case rs_align_code:
1529 break;
1530 case rs_machine_dependent:
1531 /* Allow NOP padding for jumps and calls. */
1532 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1533 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1534 break;
1535 /* Fall through. */
1536 default:
1537 return;
1538 }
1539
1540 /* We need to decide which NOP sequence to use for 32bit and
1541 64bit. When -mtune= is used:
1542
1543 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1544 PROCESSOR_GENERIC32, f32_patt will be used.
1545 2. For the rest, alt_patt will be used.
1546
1547 When -mtune= isn't used, alt_patt will be used if
1548 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1549 be used.
1550
1551 When -march= or .arch is used, we can't use anything beyond
1552 cpu_arch_isa_flags. */
1553
1554 if (flag_code == CODE_16BIT)
1555 {
1556 patt = f16_patt;
1557 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1558 /* Limit number of NOPs to 2 in 16-bit mode. */
1559 max_number_of_nops = 2;
1560 }
1561 else
1562 {
1563 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1564 {
1565 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1566 switch (cpu_arch_tune)
1567 {
1568 case PROCESSOR_UNKNOWN:
1569 /* We use cpu_arch_isa_flags to check if we SHOULD
1570 optimize with nops. */
1571 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1572 patt = alt_patt;
1573 else
1574 patt = f32_patt;
1575 break;
1576 case PROCESSOR_PENTIUM4:
1577 case PROCESSOR_NOCONA:
1578 case PROCESSOR_CORE:
1579 case PROCESSOR_CORE2:
1580 case PROCESSOR_COREI7:
1581 case PROCESSOR_L1OM:
1582 case PROCESSOR_K1OM:
1583 case PROCESSOR_GENERIC64:
1584 case PROCESSOR_K6:
1585 case PROCESSOR_ATHLON:
1586 case PROCESSOR_K8:
1587 case PROCESSOR_AMDFAM10:
1588 case PROCESSOR_BD:
1589 case PROCESSOR_ZNVER:
1590 case PROCESSOR_BT:
1591 patt = alt_patt;
1592 break;
1593 case PROCESSOR_I386:
1594 case PROCESSOR_I486:
1595 case PROCESSOR_PENTIUM:
1596 case PROCESSOR_PENTIUMPRO:
1597 case PROCESSOR_IAMCU:
1598 case PROCESSOR_GENERIC32:
1599 patt = f32_patt;
1600 break;
1601 }
1602 }
1603 else
1604 {
1605 switch (fragP->tc_frag_data.tune)
1606 {
1607 case PROCESSOR_UNKNOWN:
1608 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1609 PROCESSOR_UNKNOWN. */
1610 abort ();
1611 break;
1612
1613 case PROCESSOR_I386:
1614 case PROCESSOR_I486:
1615 case PROCESSOR_PENTIUM:
1616 case PROCESSOR_IAMCU:
1617 case PROCESSOR_K6:
1618 case PROCESSOR_ATHLON:
1619 case PROCESSOR_K8:
1620 case PROCESSOR_AMDFAM10:
1621 case PROCESSOR_BD:
1622 case PROCESSOR_ZNVER:
1623 case PROCESSOR_BT:
1624 case PROCESSOR_GENERIC32:
1625 /* We use cpu_arch_isa_flags to check if we CAN optimize
1626 with nops. */
1627 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1628 patt = alt_patt;
1629 else
1630 patt = f32_patt;
1631 break;
1632 case PROCESSOR_PENTIUMPRO:
1633 case PROCESSOR_PENTIUM4:
1634 case PROCESSOR_NOCONA:
1635 case PROCESSOR_CORE:
1636 case PROCESSOR_CORE2:
1637 case PROCESSOR_COREI7:
1638 case PROCESSOR_L1OM:
1639 case PROCESSOR_K1OM:
1640 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1641 patt = alt_patt;
1642 else
1643 patt = f32_patt;
1644 break;
1645 case PROCESSOR_GENERIC64:
1646 patt = alt_patt;
1647 break;
1648 }
1649 }
1650
1651 if (patt == f32_patt)
1652 {
1653 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1654 /* Limit number of NOPs to 2 for older processors. */
1655 max_number_of_nops = 2;
1656 }
1657 else
1658 {
1659 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1660 /* Limit number of NOPs to 7 for newer processors. */
1661 max_number_of_nops = 7;
1662 }
1663 }
1664
1665 if (limit == 0)
1666 limit = max_single_nop_size;
1667
1668 if (fragP->fr_type == rs_fill_nop)
1669 {
1670 /* Output NOPs for .nop directive. */
1671 if (limit > max_single_nop_size)
1672 {
1673 as_bad_where (fragP->fr_file, fragP->fr_line,
1674 _("invalid single nop size: %d "
1675 "(expect within [0, %d])"),
1676 limit, max_single_nop_size);
1677 return;
1678 }
1679 }
1680 else if (fragP->fr_type != rs_machine_dependent)
1681 fragP->fr_var = count;
1682
1683 if ((count / max_single_nop_size) > max_number_of_nops)
1684 {
1685 /* Generate jump over NOPs. */
1686 offsetT disp = count - 2;
1687 if (fits_in_imm7 (disp))
1688 {
1689 /* Use "jmp disp8" if possible. */
1690 count = disp;
1691 where[0] = jump_disp8[0];
1692 where[1] = count;
1693 where += 2;
1694 }
1695 else
1696 {
1697 unsigned int size_of_jump;
1698
1699 if (flag_code == CODE_16BIT)
1700 {
1701 where[0] = jump16_disp32[0];
1702 where[1] = jump16_disp32[1];
1703 size_of_jump = 2;
1704 }
1705 else
1706 {
1707 where[0] = jump32_disp32[0];
1708 size_of_jump = 1;
1709 }
1710
1711 count -= size_of_jump + 4;
1712 if (!fits_in_imm31 (count))
1713 {
1714 as_bad_where (fragP->fr_file, fragP->fr_line,
1715 _("jump over nop padding out of range"));
1716 return;
1717 }
1718
1719 md_number_to_chars (where + size_of_jump, count, 4);
1720 where += size_of_jump + 4;
1721 }
1722 }
1723
1724 /* Generate multiple NOPs. */
1725 i386_output_nops (where, patt, count, limit);
1726 }
1727
1728 static INLINE int
1729 operand_type_all_zero (const union i386_operand_type *x)
1730 {
1731 switch (ARRAY_SIZE(x->array))
1732 {
1733 case 3:
1734 if (x->array[2])
1735 return 0;
1736 /* Fall through. */
1737 case 2:
1738 if (x->array[1])
1739 return 0;
1740 /* Fall through. */
1741 case 1:
1742 return !x->array[0];
1743 default:
1744 abort ();
1745 }
1746 }
1747
1748 static INLINE void
1749 operand_type_set (union i386_operand_type *x, unsigned int v)
1750 {
1751 switch (ARRAY_SIZE(x->array))
1752 {
1753 case 3:
1754 x->array[2] = v;
1755 /* Fall through. */
1756 case 2:
1757 x->array[1] = v;
1758 /* Fall through. */
1759 case 1:
1760 x->array[0] = v;
1761 /* Fall through. */
1762 break;
1763 default:
1764 abort ();
1765 }
1766
1767 x->bitfield.class = ClassNone;
1768 x->bitfield.instance = InstanceNone;
1769 }
1770
1771 static INLINE int
1772 operand_type_equal (const union i386_operand_type *x,
1773 const union i386_operand_type *y)
1774 {
1775 switch (ARRAY_SIZE(x->array))
1776 {
1777 case 3:
1778 if (x->array[2] != y->array[2])
1779 return 0;
1780 /* Fall through. */
1781 case 2:
1782 if (x->array[1] != y->array[1])
1783 return 0;
1784 /* Fall through. */
1785 case 1:
1786 return x->array[0] == y->array[0];
1787 break;
1788 default:
1789 abort ();
1790 }
1791 }
1792
1793 static INLINE int
1794 cpu_flags_all_zero (const union i386_cpu_flags *x)
1795 {
1796 switch (ARRAY_SIZE(x->array))
1797 {
1798 case 4:
1799 if (x->array[3])
1800 return 0;
1801 /* Fall through. */
1802 case 3:
1803 if (x->array[2])
1804 return 0;
1805 /* Fall through. */
1806 case 2:
1807 if (x->array[1])
1808 return 0;
1809 /* Fall through. */
1810 case 1:
1811 return !x->array[0];
1812 default:
1813 abort ();
1814 }
1815 }
1816
1817 static INLINE int
1818 cpu_flags_equal (const union i386_cpu_flags *x,
1819 const union i386_cpu_flags *y)
1820 {
1821 switch (ARRAY_SIZE(x->array))
1822 {
1823 case 4:
1824 if (x->array[3] != y->array[3])
1825 return 0;
1826 /* Fall through. */
1827 case 3:
1828 if (x->array[2] != y->array[2])
1829 return 0;
1830 /* Fall through. */
1831 case 2:
1832 if (x->array[1] != y->array[1])
1833 return 0;
1834 /* Fall through. */
1835 case 1:
1836 return x->array[0] == y->array[0];
1837 break;
1838 default:
1839 abort ();
1840 }
1841 }
1842
1843 static INLINE int
1844 cpu_flags_check_cpu64 (i386_cpu_flags f)
1845 {
1846 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1847 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1848 }
1849
1850 static INLINE i386_cpu_flags
1851 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1852 {
1853 switch (ARRAY_SIZE (x.array))
1854 {
1855 case 4:
1856 x.array [3] &= y.array [3];
1857 /* Fall through. */
1858 case 3:
1859 x.array [2] &= y.array [2];
1860 /* Fall through. */
1861 case 2:
1862 x.array [1] &= y.array [1];
1863 /* Fall through. */
1864 case 1:
1865 x.array [0] &= y.array [0];
1866 break;
1867 default:
1868 abort ();
1869 }
1870 return x;
1871 }
1872
1873 static INLINE i386_cpu_flags
1874 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1875 {
1876 switch (ARRAY_SIZE (x.array))
1877 {
1878 case 4:
1879 x.array [3] |= y.array [3];
1880 /* Fall through. */
1881 case 3:
1882 x.array [2] |= y.array [2];
1883 /* Fall through. */
1884 case 2:
1885 x.array [1] |= y.array [1];
1886 /* Fall through. */
1887 case 1:
1888 x.array [0] |= y.array [0];
1889 break;
1890 default:
1891 abort ();
1892 }
1893 return x;
1894 }
1895
1896 static INLINE i386_cpu_flags
1897 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1898 {
1899 switch (ARRAY_SIZE (x.array))
1900 {
1901 case 4:
1902 x.array [3] &= ~y.array [3];
1903 /* Fall through. */
1904 case 3:
1905 x.array [2] &= ~y.array [2];
1906 /* Fall through. */
1907 case 2:
1908 x.array [1] &= ~y.array [1];
1909 /* Fall through. */
1910 case 1:
1911 x.array [0] &= ~y.array [0];
1912 break;
1913 default:
1914 abort ();
1915 }
1916 return x;
1917 }
1918
1919 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1920
1921 #define CPU_FLAGS_ARCH_MATCH 0x1
1922 #define CPU_FLAGS_64BIT_MATCH 0x2
1923
1924 #define CPU_FLAGS_PERFECT_MATCH \
1925 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1926
1927 /* Return CPU flags match bits. */
1928
1929 static int
1930 cpu_flags_match (const insn_template *t)
1931 {
1932 i386_cpu_flags x = t->cpu_flags;
1933 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1934
1935 x.bitfield.cpu64 = 0;
1936 x.bitfield.cpuno64 = 0;
1937
1938 if (cpu_flags_all_zero (&x))
1939 {
1940 /* This instruction is available on all archs. */
1941 match |= CPU_FLAGS_ARCH_MATCH;
1942 }
1943 else
1944 {
1945 /* This instruction is available only on some archs. */
1946 i386_cpu_flags cpu = cpu_arch_flags;
1947
1948 /* AVX512VL is no standalone feature - match it and then strip it. */
1949 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1950 return match;
1951 x.bitfield.cpuavx512vl = 0;
1952
1953 cpu = cpu_flags_and (x, cpu);
1954 if (!cpu_flags_all_zero (&cpu))
1955 {
1956 if (x.bitfield.cpuavx)
1957 {
1958 /* We need to check a few extra flags with AVX. */
1959 if (cpu.bitfield.cpuavx
1960 && (!t->opcode_modifier.sse2avx
1961 || (sse2avx && !i.prefix[DATA_PREFIX]))
1962 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1963 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1964 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1965 match |= CPU_FLAGS_ARCH_MATCH;
1966 }
1967 else if (x.bitfield.cpuavx512f)
1968 {
1969 /* We need to check a few extra flags with AVX512F. */
1970 if (cpu.bitfield.cpuavx512f
1971 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1972 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1973 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1974 match |= CPU_FLAGS_ARCH_MATCH;
1975 }
1976 else
1977 match |= CPU_FLAGS_ARCH_MATCH;
1978 }
1979 }
1980 return match;
1981 }
1982
1983 static INLINE i386_operand_type
1984 operand_type_and (i386_operand_type x, i386_operand_type y)
1985 {
1986 if (x.bitfield.class != y.bitfield.class)
1987 x.bitfield.class = ClassNone;
1988 if (x.bitfield.instance != y.bitfield.instance)
1989 x.bitfield.instance = InstanceNone;
1990
1991 switch (ARRAY_SIZE (x.array))
1992 {
1993 case 3:
1994 x.array [2] &= y.array [2];
1995 /* Fall through. */
1996 case 2:
1997 x.array [1] &= y.array [1];
1998 /* Fall through. */
1999 case 1:
2000 x.array [0] &= y.array [0];
2001 break;
2002 default:
2003 abort ();
2004 }
2005 return x;
2006 }
2007
2008 static INLINE i386_operand_type
2009 operand_type_and_not (i386_operand_type x, i386_operand_type y)
2010 {
2011 gas_assert (y.bitfield.class == ClassNone);
2012 gas_assert (y.bitfield.instance == InstanceNone);
2013
2014 switch (ARRAY_SIZE (x.array))
2015 {
2016 case 3:
2017 x.array [2] &= ~y.array [2];
2018 /* Fall through. */
2019 case 2:
2020 x.array [1] &= ~y.array [1];
2021 /* Fall through. */
2022 case 1:
2023 x.array [0] &= ~y.array [0];
2024 break;
2025 default:
2026 abort ();
2027 }
2028 return x;
2029 }
2030
2031 static INLINE i386_operand_type
2032 operand_type_or (i386_operand_type x, i386_operand_type y)
2033 {
2034 gas_assert (x.bitfield.class == ClassNone ||
2035 y.bitfield.class == ClassNone ||
2036 x.bitfield.class == y.bitfield.class);
2037 gas_assert (x.bitfield.instance == InstanceNone ||
2038 y.bitfield.instance == InstanceNone ||
2039 x.bitfield.instance == y.bitfield.instance);
2040
2041 switch (ARRAY_SIZE (x.array))
2042 {
2043 case 3:
2044 x.array [2] |= y.array [2];
2045 /* Fall through. */
2046 case 2:
2047 x.array [1] |= y.array [1];
2048 /* Fall through. */
2049 case 1:
2050 x.array [0] |= y.array [0];
2051 break;
2052 default:
2053 abort ();
2054 }
2055 return x;
2056 }
2057
2058 static INLINE i386_operand_type
2059 operand_type_xor (i386_operand_type x, i386_operand_type y)
2060 {
2061 gas_assert (y.bitfield.class == ClassNone);
2062 gas_assert (y.bitfield.instance == InstanceNone);
2063
2064 switch (ARRAY_SIZE (x.array))
2065 {
2066 case 3:
2067 x.array [2] ^= y.array [2];
2068 /* Fall through. */
2069 case 2:
2070 x.array [1] ^= y.array [1];
2071 /* Fall through. */
2072 case 1:
2073 x.array [0] ^= y.array [0];
2074 break;
2075 default:
2076 abort ();
2077 }
2078 return x;
2079 }
2080
2081 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2082 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2083 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2084 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2085 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2086 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2087 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2088 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2089 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2090 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2091 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2092 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2093 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2094 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2095 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2096 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2097 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2098
2099 enum operand_type
2100 {
2101 reg,
2102 imm,
2103 disp,
2104 anymem
2105 };
2106
2107 static INLINE int
2108 operand_type_check (i386_operand_type t, enum operand_type c)
2109 {
2110 switch (c)
2111 {
2112 case reg:
2113 return t.bitfield.class == Reg;
2114
2115 case imm:
2116 return (t.bitfield.imm8
2117 || t.bitfield.imm8s
2118 || t.bitfield.imm16
2119 || t.bitfield.imm32
2120 || t.bitfield.imm32s
2121 || t.bitfield.imm64);
2122
2123 case disp:
2124 return (t.bitfield.disp8
2125 || t.bitfield.disp16
2126 || t.bitfield.disp32
2127 || t.bitfield.disp32s
2128 || t.bitfield.disp64);
2129
2130 case anymem:
2131 return (t.bitfield.disp8
2132 || t.bitfield.disp16
2133 || t.bitfield.disp32
2134 || t.bitfield.disp32s
2135 || t.bitfield.disp64
2136 || t.bitfield.baseindex);
2137
2138 default:
2139 abort ();
2140 }
2141
2142 return 0;
2143 }
2144
2145 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2146 between operand GIVEN and opeand WANTED for instruction template T. */
2147
2148 static INLINE int
2149 match_operand_size (const insn_template *t, unsigned int wanted,
2150 unsigned int given)
2151 {
2152 return !((i.types[given].bitfield.byte
2153 && !t->operand_types[wanted].bitfield.byte)
2154 || (i.types[given].bitfield.word
2155 && !t->operand_types[wanted].bitfield.word)
2156 || (i.types[given].bitfield.dword
2157 && !t->operand_types[wanted].bitfield.dword)
2158 || (i.types[given].bitfield.qword
2159 && !t->operand_types[wanted].bitfield.qword)
2160 || (i.types[given].bitfield.tbyte
2161 && !t->operand_types[wanted].bitfield.tbyte));
2162 }
2163
2164 /* Return 1 if there is no conflict in SIMD register between operand
2165 GIVEN and opeand WANTED for instruction template T. */
2166
2167 static INLINE int
2168 match_simd_size (const insn_template *t, unsigned int wanted,
2169 unsigned int given)
2170 {
2171 return !((i.types[given].bitfield.xmmword
2172 && !t->operand_types[wanted].bitfield.xmmword)
2173 || (i.types[given].bitfield.ymmword
2174 && !t->operand_types[wanted].bitfield.ymmword)
2175 || (i.types[given].bitfield.zmmword
2176 && !t->operand_types[wanted].bitfield.zmmword)
2177 || (i.types[given].bitfield.tmmword
2178 && !t->operand_types[wanted].bitfield.tmmword));
2179 }
2180
2181 /* Return 1 if there is no conflict in any size between operand GIVEN
2182 and opeand WANTED for instruction template T. */
2183
2184 static INLINE int
2185 match_mem_size (const insn_template *t, unsigned int wanted,
2186 unsigned int given)
2187 {
2188 return (match_operand_size (t, wanted, given)
2189 && !((i.types[given].bitfield.unspecified
2190 && !i.broadcast
2191 && !t->operand_types[wanted].bitfield.unspecified)
2192 || (i.types[given].bitfield.fword
2193 && !t->operand_types[wanted].bitfield.fword)
2194 /* For scalar opcode templates to allow register and memory
2195 operands at the same time, some special casing is needed
2196 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2197 down-conversion vpmov*. */
2198 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2199 && t->operand_types[wanted].bitfield.byte
2200 + t->operand_types[wanted].bitfield.word
2201 + t->operand_types[wanted].bitfield.dword
2202 + t->operand_types[wanted].bitfield.qword
2203 > !!t->opcode_modifier.broadcast)
2204 ? (i.types[given].bitfield.xmmword
2205 || i.types[given].bitfield.ymmword
2206 || i.types[given].bitfield.zmmword)
2207 : !match_simd_size(t, wanted, given))));
2208 }
2209
2210 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2211 operands for instruction template T, and it has MATCH_REVERSE set if there
2212 is no size conflict on any operands for the template with operands reversed
2213 (and the template allows for reversing in the first place). */
2214
2215 #define MATCH_STRAIGHT 1
2216 #define MATCH_REVERSE 2
2217
2218 static INLINE unsigned int
2219 operand_size_match (const insn_template *t)
2220 {
2221 unsigned int j, match = MATCH_STRAIGHT;
2222
2223 /* Don't check non-absolute jump instructions. */
2224 if (t->opcode_modifier.jump
2225 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2226 return match;
2227
2228 /* Check memory and accumulator operand size. */
2229 for (j = 0; j < i.operands; j++)
2230 {
2231 if (i.types[j].bitfield.class != Reg
2232 && i.types[j].bitfield.class != RegSIMD
2233 && t->opcode_modifier.anysize)
2234 continue;
2235
2236 if (t->operand_types[j].bitfield.class == Reg
2237 && !match_operand_size (t, j, j))
2238 {
2239 match = 0;
2240 break;
2241 }
2242
2243 if (t->operand_types[j].bitfield.class == RegSIMD
2244 && !match_simd_size (t, j, j))
2245 {
2246 match = 0;
2247 break;
2248 }
2249
2250 if (t->operand_types[j].bitfield.instance == Accum
2251 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2252 {
2253 match = 0;
2254 break;
2255 }
2256
2257 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2258 {
2259 match = 0;
2260 break;
2261 }
2262 }
2263
2264 if (!t->opcode_modifier.d)
2265 {
2266 mismatch:
2267 if (!match)
2268 i.error = operand_size_mismatch;
2269 return match;
2270 }
2271
2272 /* Check reverse. */
2273 gas_assert (i.operands >= 2 && i.operands <= 3);
2274
2275 for (j = 0; j < i.operands; j++)
2276 {
2277 unsigned int given = i.operands - j - 1;
2278
2279 if (t->operand_types[j].bitfield.class == Reg
2280 && !match_operand_size (t, j, given))
2281 goto mismatch;
2282
2283 if (t->operand_types[j].bitfield.class == RegSIMD
2284 && !match_simd_size (t, j, given))
2285 goto mismatch;
2286
2287 if (t->operand_types[j].bitfield.instance == Accum
2288 && (!match_operand_size (t, j, given)
2289 || !match_simd_size (t, j, given)))
2290 goto mismatch;
2291
2292 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2293 goto mismatch;
2294 }
2295
2296 return match | MATCH_REVERSE;
2297 }
2298
2299 static INLINE int
2300 operand_type_match (i386_operand_type overlap,
2301 i386_operand_type given)
2302 {
2303 i386_operand_type temp = overlap;
2304
2305 temp.bitfield.unspecified = 0;
2306 temp.bitfield.byte = 0;
2307 temp.bitfield.word = 0;
2308 temp.bitfield.dword = 0;
2309 temp.bitfield.fword = 0;
2310 temp.bitfield.qword = 0;
2311 temp.bitfield.tbyte = 0;
2312 temp.bitfield.xmmword = 0;
2313 temp.bitfield.ymmword = 0;
2314 temp.bitfield.zmmword = 0;
2315 temp.bitfield.tmmword = 0;
2316 if (operand_type_all_zero (&temp))
2317 goto mismatch;
2318
2319 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2320 return 1;
2321
2322 mismatch:
2323 i.error = operand_type_mismatch;
2324 return 0;
2325 }
2326
2327 /* If given types g0 and g1 are registers they must be of the same type
2328 unless the expected operand type register overlap is null.
2329 Some Intel syntax memory operand size checking also happens here. */
2330
2331 static INLINE int
2332 operand_type_register_match (i386_operand_type g0,
2333 i386_operand_type t0,
2334 i386_operand_type g1,
2335 i386_operand_type t1)
2336 {
2337 if (g0.bitfield.class != Reg
2338 && g0.bitfield.class != RegSIMD
2339 && (!operand_type_check (g0, anymem)
2340 || g0.bitfield.unspecified
2341 || (t0.bitfield.class != Reg
2342 && t0.bitfield.class != RegSIMD)))
2343 return 1;
2344
2345 if (g1.bitfield.class != Reg
2346 && g1.bitfield.class != RegSIMD
2347 && (!operand_type_check (g1, anymem)
2348 || g1.bitfield.unspecified
2349 || (t1.bitfield.class != Reg
2350 && t1.bitfield.class != RegSIMD)))
2351 return 1;
2352
2353 if (g0.bitfield.byte == g1.bitfield.byte
2354 && g0.bitfield.word == g1.bitfield.word
2355 && g0.bitfield.dword == g1.bitfield.dword
2356 && g0.bitfield.qword == g1.bitfield.qword
2357 && g0.bitfield.xmmword == g1.bitfield.xmmword
2358 && g0.bitfield.ymmword == g1.bitfield.ymmword
2359 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2360 return 1;
2361
2362 if (!(t0.bitfield.byte & t1.bitfield.byte)
2363 && !(t0.bitfield.word & t1.bitfield.word)
2364 && !(t0.bitfield.dword & t1.bitfield.dword)
2365 && !(t0.bitfield.qword & t1.bitfield.qword)
2366 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2367 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2368 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2369 return 1;
2370
2371 i.error = register_type_mismatch;
2372
2373 return 0;
2374 }
2375
2376 static INLINE unsigned int
2377 register_number (const reg_entry *r)
2378 {
2379 unsigned int nr = r->reg_num;
2380
2381 if (r->reg_flags & RegRex)
2382 nr += 8;
2383
2384 if (r->reg_flags & RegVRex)
2385 nr += 16;
2386
2387 return nr;
2388 }
2389
2390 static INLINE unsigned int
2391 mode_from_disp_size (i386_operand_type t)
2392 {
2393 if (t.bitfield.disp8)
2394 return 1;
2395 else if (t.bitfield.disp16
2396 || t.bitfield.disp32
2397 || t.bitfield.disp32s)
2398 return 2;
2399 else
2400 return 0;
2401 }
2402
2403 static INLINE int
2404 fits_in_signed_byte (addressT num)
2405 {
2406 return num + 0x80 <= 0xff;
2407 }
2408
2409 static INLINE int
2410 fits_in_unsigned_byte (addressT num)
2411 {
2412 return num <= 0xff;
2413 }
2414
2415 static INLINE int
2416 fits_in_unsigned_word (addressT num)
2417 {
2418 return num <= 0xffff;
2419 }
2420
2421 static INLINE int
2422 fits_in_signed_word (addressT num)
2423 {
2424 return num + 0x8000 <= 0xffff;
2425 }
2426
2427 static INLINE int
2428 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2429 {
2430 #ifndef BFD64
2431 return 1;
2432 #else
2433 return num + 0x80000000 <= 0xffffffff;
2434 #endif
2435 } /* fits_in_signed_long() */
2436
2437 static INLINE int
2438 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2439 {
2440 #ifndef BFD64
2441 return 1;
2442 #else
2443 return num <= 0xffffffff;
2444 #endif
2445 } /* fits_in_unsigned_long() */
2446
2447 static INLINE int
2448 fits_in_disp8 (offsetT num)
2449 {
2450 int shift = i.memshift;
2451 unsigned int mask;
2452
2453 if (shift == -1)
2454 abort ();
2455
2456 mask = (1 << shift) - 1;
2457
2458 /* Return 0 if NUM isn't properly aligned. */
2459 if ((num & mask))
2460 return 0;
2461
2462 /* Check if NUM will fit in 8bit after shift. */
2463 return fits_in_signed_byte (num >> shift);
2464 }
2465
2466 static INLINE int
2467 fits_in_imm4 (offsetT num)
2468 {
2469 return (num & 0xf) == num;
2470 }
2471
2472 static i386_operand_type
2473 smallest_imm_type (offsetT num)
2474 {
2475 i386_operand_type t;
2476
2477 operand_type_set (&t, 0);
2478 t.bitfield.imm64 = 1;
2479
2480 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2481 {
2482 /* This code is disabled on the 486 because all the Imm1 forms
2483 in the opcode table are slower on the i486. They're the
2484 versions with the implicitly specified single-position
2485 displacement, which has another syntax if you really want to
2486 use that form. */
2487 t.bitfield.imm1 = 1;
2488 t.bitfield.imm8 = 1;
2489 t.bitfield.imm8s = 1;
2490 t.bitfield.imm16 = 1;
2491 t.bitfield.imm32 = 1;
2492 t.bitfield.imm32s = 1;
2493 }
2494 else if (fits_in_signed_byte (num))
2495 {
2496 t.bitfield.imm8 = 1;
2497 t.bitfield.imm8s = 1;
2498 t.bitfield.imm16 = 1;
2499 t.bitfield.imm32 = 1;
2500 t.bitfield.imm32s = 1;
2501 }
2502 else if (fits_in_unsigned_byte (num))
2503 {
2504 t.bitfield.imm8 = 1;
2505 t.bitfield.imm16 = 1;
2506 t.bitfield.imm32 = 1;
2507 t.bitfield.imm32s = 1;
2508 }
2509 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2510 {
2511 t.bitfield.imm16 = 1;
2512 t.bitfield.imm32 = 1;
2513 t.bitfield.imm32s = 1;
2514 }
2515 else if (fits_in_signed_long (num))
2516 {
2517 t.bitfield.imm32 = 1;
2518 t.bitfield.imm32s = 1;
2519 }
2520 else if (fits_in_unsigned_long (num))
2521 t.bitfield.imm32 = 1;
2522
2523 return t;
2524 }
2525
2526 static offsetT
2527 offset_in_range (offsetT val, int size)
2528 {
2529 addressT mask;
2530
2531 switch (size)
2532 {
2533 case 1: mask = ((addressT) 1 << 8) - 1; break;
2534 case 2: mask = ((addressT) 1 << 16) - 1; break;
2535 case 4: mask = ((addressT) 2 << 31) - 1; break;
2536 #ifdef BFD64
2537 case 8: mask = ((addressT) 2 << 63) - 1; break;
2538 #endif
2539 default: abort ();
2540 }
2541
2542 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2543 {
2544 char buf1[40], buf2[40];
2545
2546 sprint_value (buf1, val);
2547 sprint_value (buf2, val & mask);
2548 as_warn (_("%s shortened to %s"), buf1, buf2);
2549 }
2550 return val & mask;
2551 }
2552
2553 enum PREFIX_GROUP
2554 {
2555 PREFIX_EXIST = 0,
2556 PREFIX_LOCK,
2557 PREFIX_REP,
2558 PREFIX_DS,
2559 PREFIX_OTHER
2560 };
2561
2562 /* Returns
2563 a. PREFIX_EXIST if attempting to add a prefix where one from the
2564 same class already exists.
2565 b. PREFIX_LOCK if lock prefix is added.
2566 c. PREFIX_REP if rep/repne prefix is added.
2567 d. PREFIX_DS if ds prefix is added.
2568 e. PREFIX_OTHER if other prefix is added.
2569 */
2570
2571 static enum PREFIX_GROUP
2572 add_prefix (unsigned int prefix)
2573 {
2574 enum PREFIX_GROUP ret = PREFIX_OTHER;
2575 unsigned int q;
2576
2577 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2578 && flag_code == CODE_64BIT)
2579 {
2580 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2581 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2582 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2583 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2584 ret = PREFIX_EXIST;
2585 q = REX_PREFIX;
2586 }
2587 else
2588 {
2589 switch (prefix)
2590 {
2591 default:
2592 abort ();
2593
2594 case DS_PREFIX_OPCODE:
2595 ret = PREFIX_DS;
2596 /* Fall through. */
2597 case CS_PREFIX_OPCODE:
2598 case ES_PREFIX_OPCODE:
2599 case FS_PREFIX_OPCODE:
2600 case GS_PREFIX_OPCODE:
2601 case SS_PREFIX_OPCODE:
2602 q = SEG_PREFIX;
2603 break;
2604
2605 case REPNE_PREFIX_OPCODE:
2606 case REPE_PREFIX_OPCODE:
2607 q = REP_PREFIX;
2608 ret = PREFIX_REP;
2609 break;
2610
2611 case LOCK_PREFIX_OPCODE:
2612 q = LOCK_PREFIX;
2613 ret = PREFIX_LOCK;
2614 break;
2615
2616 case FWAIT_OPCODE:
2617 q = WAIT_PREFIX;
2618 break;
2619
2620 case ADDR_PREFIX_OPCODE:
2621 q = ADDR_PREFIX;
2622 break;
2623
2624 case DATA_PREFIX_OPCODE:
2625 q = DATA_PREFIX;
2626 break;
2627 }
2628 if (i.prefix[q] != 0)
2629 ret = PREFIX_EXIST;
2630 }
2631
2632 if (ret)
2633 {
2634 if (!i.prefix[q])
2635 ++i.prefixes;
2636 i.prefix[q] |= prefix;
2637 }
2638 else
2639 as_bad (_("same type of prefix used twice"));
2640
2641 return ret;
2642 }
2643
2644 static void
2645 update_code_flag (int value, int check)
2646 {
2647 PRINTF_LIKE ((*as_error));
2648
2649 flag_code = (enum flag_code) value;
2650 if (flag_code == CODE_64BIT)
2651 {
2652 cpu_arch_flags.bitfield.cpu64 = 1;
2653 cpu_arch_flags.bitfield.cpuno64 = 0;
2654 }
2655 else
2656 {
2657 cpu_arch_flags.bitfield.cpu64 = 0;
2658 cpu_arch_flags.bitfield.cpuno64 = 1;
2659 }
2660 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2661 {
2662 if (check)
2663 as_error = as_fatal;
2664 else
2665 as_error = as_bad;
2666 (*as_error) (_("64bit mode not supported on `%s'."),
2667 cpu_arch_name ? cpu_arch_name : default_arch);
2668 }
2669 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2670 {
2671 if (check)
2672 as_error = as_fatal;
2673 else
2674 as_error = as_bad;
2675 (*as_error) (_("32bit mode not supported on `%s'."),
2676 cpu_arch_name ? cpu_arch_name : default_arch);
2677 }
2678 stackop_size = '\0';
2679 }
2680
2681 static void
2682 set_code_flag (int value)
2683 {
2684 update_code_flag (value, 0);
2685 }
2686
2687 static void
2688 set_16bit_gcc_code_flag (int new_code_flag)
2689 {
2690 flag_code = (enum flag_code) new_code_flag;
2691 if (flag_code != CODE_16BIT)
2692 abort ();
2693 cpu_arch_flags.bitfield.cpu64 = 0;
2694 cpu_arch_flags.bitfield.cpuno64 = 1;
2695 stackop_size = LONG_MNEM_SUFFIX;
2696 }
2697
2698 static void
2699 set_intel_syntax (int syntax_flag)
2700 {
2701 /* Find out if register prefixing is specified. */
2702 int ask_naked_reg = 0;
2703
2704 SKIP_WHITESPACE ();
2705 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2706 {
2707 char *string;
2708 int e = get_symbol_name (&string);
2709
2710 if (strcmp (string, "prefix") == 0)
2711 ask_naked_reg = 1;
2712 else if (strcmp (string, "noprefix") == 0)
2713 ask_naked_reg = -1;
2714 else
2715 as_bad (_("bad argument to syntax directive."));
2716 (void) restore_line_pointer (e);
2717 }
2718 demand_empty_rest_of_line ();
2719
2720 intel_syntax = syntax_flag;
2721
2722 if (ask_naked_reg == 0)
2723 allow_naked_reg = (intel_syntax
2724 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2725 else
2726 allow_naked_reg = (ask_naked_reg < 0);
2727
2728 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2729
2730 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2731 identifier_chars['$'] = intel_syntax ? '$' : 0;
2732 register_prefix = allow_naked_reg ? "" : "%";
2733 }
2734
2735 static void
2736 set_intel_mnemonic (int mnemonic_flag)
2737 {
2738 intel_mnemonic = mnemonic_flag;
2739 }
2740
2741 static void
2742 set_allow_index_reg (int flag)
2743 {
2744 allow_index_reg = flag;
2745 }
2746
2747 static void
2748 set_check (int what)
2749 {
2750 enum check_kind *kind;
2751 const char *str;
2752
2753 if (what)
2754 {
2755 kind = &operand_check;
2756 str = "operand";
2757 }
2758 else
2759 {
2760 kind = &sse_check;
2761 str = "sse";
2762 }
2763
2764 SKIP_WHITESPACE ();
2765
2766 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2767 {
2768 char *string;
2769 int e = get_symbol_name (&string);
2770
2771 if (strcmp (string, "none") == 0)
2772 *kind = check_none;
2773 else if (strcmp (string, "warning") == 0)
2774 *kind = check_warning;
2775 else if (strcmp (string, "error") == 0)
2776 *kind = check_error;
2777 else
2778 as_bad (_("bad argument to %s_check directive."), str);
2779 (void) restore_line_pointer (e);
2780 }
2781 else
2782 as_bad (_("missing argument for %s_check directive"), str);
2783
2784 demand_empty_rest_of_line ();
2785 }
2786
2787 static void
2788 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2789 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2790 {
2791 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2792 static const char *arch;
2793
2794 /* Intel LIOM is only supported on ELF. */
2795 if (!IS_ELF)
2796 return;
2797
2798 if (!arch)
2799 {
2800 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2801 use default_arch. */
2802 arch = cpu_arch_name;
2803 if (!arch)
2804 arch = default_arch;
2805 }
2806
2807 /* If we are targeting Intel MCU, we must enable it. */
2808 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2809 || new_flag.bitfield.cpuiamcu)
2810 return;
2811
2812 /* If we are targeting Intel L1OM, we must enable it. */
2813 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2814 || new_flag.bitfield.cpul1om)
2815 return;
2816
2817 /* If we are targeting Intel K1OM, we must enable it. */
2818 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2819 || new_flag.bitfield.cpuk1om)
2820 return;
2821
2822 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2823 #endif
2824 }
2825
2826 static void
2827 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2828 {
2829 SKIP_WHITESPACE ();
2830
2831 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2832 {
2833 char *string;
2834 int e = get_symbol_name (&string);
2835 unsigned int j;
2836 i386_cpu_flags flags;
2837
2838 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2839 {
2840 if (strcmp (string, cpu_arch[j].name) == 0)
2841 {
2842 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2843
2844 if (*string != '.')
2845 {
2846 cpu_arch_name = cpu_arch[j].name;
2847 cpu_sub_arch_name = NULL;
2848 cpu_arch_flags = cpu_arch[j].flags;
2849 if (flag_code == CODE_64BIT)
2850 {
2851 cpu_arch_flags.bitfield.cpu64 = 1;
2852 cpu_arch_flags.bitfield.cpuno64 = 0;
2853 }
2854 else
2855 {
2856 cpu_arch_flags.bitfield.cpu64 = 0;
2857 cpu_arch_flags.bitfield.cpuno64 = 1;
2858 }
2859 cpu_arch_isa = cpu_arch[j].type;
2860 cpu_arch_isa_flags = cpu_arch[j].flags;
2861 if (!cpu_arch_tune_set)
2862 {
2863 cpu_arch_tune = cpu_arch_isa;
2864 cpu_arch_tune_flags = cpu_arch_isa_flags;
2865 }
2866 break;
2867 }
2868
2869 flags = cpu_flags_or (cpu_arch_flags,
2870 cpu_arch[j].flags);
2871
2872 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2873 {
2874 if (cpu_sub_arch_name)
2875 {
2876 char *name = cpu_sub_arch_name;
2877 cpu_sub_arch_name = concat (name,
2878 cpu_arch[j].name,
2879 (const char *) NULL);
2880 free (name);
2881 }
2882 else
2883 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2884 cpu_arch_flags = flags;
2885 cpu_arch_isa_flags = flags;
2886 }
2887 else
2888 cpu_arch_isa_flags
2889 = cpu_flags_or (cpu_arch_isa_flags,
2890 cpu_arch[j].flags);
2891 (void) restore_line_pointer (e);
2892 demand_empty_rest_of_line ();
2893 return;
2894 }
2895 }
2896
2897 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2898 {
2899 /* Disable an ISA extension. */
2900 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2901 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2902 {
2903 flags = cpu_flags_and_not (cpu_arch_flags,
2904 cpu_noarch[j].flags);
2905 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2906 {
2907 if (cpu_sub_arch_name)
2908 {
2909 char *name = cpu_sub_arch_name;
2910 cpu_sub_arch_name = concat (name, string,
2911 (const char *) NULL);
2912 free (name);
2913 }
2914 else
2915 cpu_sub_arch_name = xstrdup (string);
2916 cpu_arch_flags = flags;
2917 cpu_arch_isa_flags = flags;
2918 }
2919 (void) restore_line_pointer (e);
2920 demand_empty_rest_of_line ();
2921 return;
2922 }
2923
2924 j = ARRAY_SIZE (cpu_arch);
2925 }
2926
2927 if (j >= ARRAY_SIZE (cpu_arch))
2928 as_bad (_("no such architecture: `%s'"), string);
2929
2930 *input_line_pointer = e;
2931 }
2932 else
2933 as_bad (_("missing cpu architecture"));
2934
2935 no_cond_jump_promotion = 0;
2936 if (*input_line_pointer == ','
2937 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2938 {
2939 char *string;
2940 char e;
2941
2942 ++input_line_pointer;
2943 e = get_symbol_name (&string);
2944
2945 if (strcmp (string, "nojumps") == 0)
2946 no_cond_jump_promotion = 1;
2947 else if (strcmp (string, "jumps") == 0)
2948 ;
2949 else
2950 as_bad (_("no such architecture modifier: `%s'"), string);
2951
2952 (void) restore_line_pointer (e);
2953 }
2954
2955 demand_empty_rest_of_line ();
2956 }
2957
2958 enum bfd_architecture
2959 i386_arch (void)
2960 {
2961 if (cpu_arch_isa == PROCESSOR_L1OM)
2962 {
2963 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2964 || flag_code != CODE_64BIT)
2965 as_fatal (_("Intel L1OM is 64bit ELF only"));
2966 return bfd_arch_l1om;
2967 }
2968 else if (cpu_arch_isa == PROCESSOR_K1OM)
2969 {
2970 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2971 || flag_code != CODE_64BIT)
2972 as_fatal (_("Intel K1OM is 64bit ELF only"));
2973 return bfd_arch_k1om;
2974 }
2975 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2976 {
2977 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2978 || flag_code == CODE_64BIT)
2979 as_fatal (_("Intel MCU is 32bit ELF only"));
2980 return bfd_arch_iamcu;
2981 }
2982 else
2983 return bfd_arch_i386;
2984 }
2985
2986 unsigned long
2987 i386_mach (void)
2988 {
2989 if (!strncmp (default_arch, "x86_64", 6))
2990 {
2991 if (cpu_arch_isa == PROCESSOR_L1OM)
2992 {
2993 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2994 || default_arch[6] != '\0')
2995 as_fatal (_("Intel L1OM is 64bit ELF only"));
2996 return bfd_mach_l1om;
2997 }
2998 else if (cpu_arch_isa == PROCESSOR_K1OM)
2999 {
3000 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3001 || default_arch[6] != '\0')
3002 as_fatal (_("Intel K1OM is 64bit ELF only"));
3003 return bfd_mach_k1om;
3004 }
3005 else if (default_arch[6] == '\0')
3006 return bfd_mach_x86_64;
3007 else
3008 return bfd_mach_x64_32;
3009 }
3010 else if (!strcmp (default_arch, "i386")
3011 || !strcmp (default_arch, "iamcu"))
3012 {
3013 if (cpu_arch_isa == PROCESSOR_IAMCU)
3014 {
3015 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
3016 as_fatal (_("Intel MCU is 32bit ELF only"));
3017 return bfd_mach_i386_iamcu;
3018 }
3019 else
3020 return bfd_mach_i386_i386;
3021 }
3022 else
3023 as_fatal (_("unknown architecture"));
3024 }
3025 \f
3026 void
3027 md_begin (void)
3028 {
3029 const char *hash_err;
3030
3031 /* Support pseudo prefixes like {disp32}. */
3032 lex_type ['{'] = LEX_BEGIN_NAME;
3033
3034 /* Initialize op_hash hash table. */
3035 op_hash = hash_new ();
3036
3037 {
3038 const insn_template *optab;
3039 templates *core_optab;
3040
3041 /* Setup for loop. */
3042 optab = i386_optab;
3043 core_optab = XNEW (templates);
3044 core_optab->start = optab;
3045
3046 while (1)
3047 {
3048 ++optab;
3049 if (optab->name == NULL
3050 || strcmp (optab->name, (optab - 1)->name) != 0)
3051 {
3052 /* different name --> ship out current template list;
3053 add to hash table; & begin anew. */
3054 core_optab->end = optab;
3055 hash_err = hash_insert (op_hash,
3056 (optab - 1)->name,
3057 (void *) core_optab);
3058 if (hash_err)
3059 {
3060 as_fatal (_("can't hash %s: %s"),
3061 (optab - 1)->name,
3062 hash_err);
3063 }
3064 if (optab->name == NULL)
3065 break;
3066 core_optab = XNEW (templates);
3067 core_optab->start = optab;
3068 }
3069 }
3070 }
3071
3072 /* Initialize reg_hash hash table. */
3073 reg_hash = hash_new ();
3074 {
3075 const reg_entry *regtab;
3076 unsigned int regtab_size = i386_regtab_size;
3077
3078 for (regtab = i386_regtab; regtab_size--; regtab++)
3079 {
3080 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3081 if (hash_err)
3082 as_fatal (_("can't hash %s: %s"),
3083 regtab->reg_name,
3084 hash_err);
3085 }
3086 }
3087
3088 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3089 {
3090 int c;
3091 char *p;
3092
3093 for (c = 0; c < 256; c++)
3094 {
3095 if (ISDIGIT (c))
3096 {
3097 digit_chars[c] = c;
3098 mnemonic_chars[c] = c;
3099 register_chars[c] = c;
3100 operand_chars[c] = c;
3101 }
3102 else if (ISLOWER (c))
3103 {
3104 mnemonic_chars[c] = c;
3105 register_chars[c] = c;
3106 operand_chars[c] = c;
3107 }
3108 else if (ISUPPER (c))
3109 {
3110 mnemonic_chars[c] = TOLOWER (c);
3111 register_chars[c] = mnemonic_chars[c];
3112 operand_chars[c] = c;
3113 }
3114 else if (c == '{' || c == '}')
3115 {
3116 mnemonic_chars[c] = c;
3117 operand_chars[c] = c;
3118 }
3119
3120 if (ISALPHA (c) || ISDIGIT (c))
3121 identifier_chars[c] = c;
3122 else if (c >= 128)
3123 {
3124 identifier_chars[c] = c;
3125 operand_chars[c] = c;
3126 }
3127 }
3128
3129 #ifdef LEX_AT
3130 identifier_chars['@'] = '@';
3131 #endif
3132 #ifdef LEX_QM
3133 identifier_chars['?'] = '?';
3134 operand_chars['?'] = '?';
3135 #endif
3136 digit_chars['-'] = '-';
3137 mnemonic_chars['_'] = '_';
3138 mnemonic_chars['-'] = '-';
3139 mnemonic_chars['.'] = '.';
3140 identifier_chars['_'] = '_';
3141 identifier_chars['.'] = '.';
3142
3143 for (p = operand_special_chars; *p != '\0'; p++)
3144 operand_chars[(unsigned char) *p] = *p;
3145 }
3146
3147 if (flag_code == CODE_64BIT)
3148 {
3149 #if defined (OBJ_COFF) && defined (TE_PE)
3150 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3151 ? 32 : 16);
3152 #else
3153 x86_dwarf2_return_column = 16;
3154 #endif
3155 x86_cie_data_alignment = -8;
3156 }
3157 else
3158 {
3159 x86_dwarf2_return_column = 8;
3160 x86_cie_data_alignment = -4;
3161 }
3162
3163 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3164 can be turned into BRANCH_PREFIX frag. */
3165 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3166 abort ();
3167 }
3168
3169 void
3170 i386_print_statistics (FILE *file)
3171 {
3172 hash_print_statistics (file, "i386 opcode", op_hash);
3173 hash_print_statistics (file, "i386 register", reg_hash);
3174 }
3175 \f
3176 #ifdef DEBUG386
3177
3178 /* Debugging routines for md_assemble. */
3179 static void pte (insn_template *);
3180 static void pt (i386_operand_type);
3181 static void pe (expressionS *);
3182 static void ps (symbolS *);
3183
3184 static void
3185 pi (const char *line, i386_insn *x)
3186 {
3187 unsigned int j;
3188
3189 fprintf (stdout, "%s: template ", line);
3190 pte (&x->tm);
3191 fprintf (stdout, " address: base %s index %s scale %x\n",
3192 x->base_reg ? x->base_reg->reg_name : "none",
3193 x->index_reg ? x->index_reg->reg_name : "none",
3194 x->log2_scale_factor);
3195 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3196 x->rm.mode, x->rm.reg, x->rm.regmem);
3197 fprintf (stdout, " sib: base %x index %x scale %x\n",
3198 x->sib.base, x->sib.index, x->sib.scale);
3199 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3200 (x->rex & REX_W) != 0,
3201 (x->rex & REX_R) != 0,
3202 (x->rex & REX_X) != 0,
3203 (x->rex & REX_B) != 0);
3204 for (j = 0; j < x->operands; j++)
3205 {
3206 fprintf (stdout, " #%d: ", j + 1);
3207 pt (x->types[j]);
3208 fprintf (stdout, "\n");
3209 if (x->types[j].bitfield.class == Reg
3210 || x->types[j].bitfield.class == RegMMX
3211 || x->types[j].bitfield.class == RegSIMD
3212 || x->types[j].bitfield.class == RegMask
3213 || x->types[j].bitfield.class == SReg
3214 || x->types[j].bitfield.class == RegCR
3215 || x->types[j].bitfield.class == RegDR
3216 || x->types[j].bitfield.class == RegTR
3217 || x->types[j].bitfield.class == RegBND)
3218 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3219 if (operand_type_check (x->types[j], imm))
3220 pe (x->op[j].imms);
3221 if (operand_type_check (x->types[j], disp))
3222 pe (x->op[j].disps);
3223 }
3224 }
3225
3226 static void
3227 pte (insn_template *t)
3228 {
3229 unsigned int j;
3230 fprintf (stdout, " %d operands ", t->operands);
3231 fprintf (stdout, "opcode %x ", t->base_opcode);
3232 if (t->extension_opcode != None)
3233 fprintf (stdout, "ext %x ", t->extension_opcode);
3234 if (t->opcode_modifier.d)
3235 fprintf (stdout, "D");
3236 if (t->opcode_modifier.w)
3237 fprintf (stdout, "W");
3238 fprintf (stdout, "\n");
3239 for (j = 0; j < t->operands; j++)
3240 {
3241 fprintf (stdout, " #%d type ", j + 1);
3242 pt (t->operand_types[j]);
3243 fprintf (stdout, "\n");
3244 }
3245 }
3246
3247 static void
3248 pe (expressionS *e)
3249 {
3250 fprintf (stdout, " operation %d\n", e->X_op);
3251 fprintf (stdout, " add_number %ld (%lx)\n",
3252 (long) e->X_add_number, (long) e->X_add_number);
3253 if (e->X_add_symbol)
3254 {
3255 fprintf (stdout, " add_symbol ");
3256 ps (e->X_add_symbol);
3257 fprintf (stdout, "\n");
3258 }
3259 if (e->X_op_symbol)
3260 {
3261 fprintf (stdout, " op_symbol ");
3262 ps (e->X_op_symbol);
3263 fprintf (stdout, "\n");
3264 }
3265 }
3266
3267 static void
3268 ps (symbolS *s)
3269 {
3270 fprintf (stdout, "%s type %s%s",
3271 S_GET_NAME (s),
3272 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3273 segment_name (S_GET_SEGMENT (s)));
3274 }
3275
3276 static struct type_name
3277 {
3278 i386_operand_type mask;
3279 const char *name;
3280 }
3281 const type_names[] =
3282 {
3283 { OPERAND_TYPE_REG8, "r8" },
3284 { OPERAND_TYPE_REG16, "r16" },
3285 { OPERAND_TYPE_REG32, "r32" },
3286 { OPERAND_TYPE_REG64, "r64" },
3287 { OPERAND_TYPE_ACC8, "acc8" },
3288 { OPERAND_TYPE_ACC16, "acc16" },
3289 { OPERAND_TYPE_ACC32, "acc32" },
3290 { OPERAND_TYPE_ACC64, "acc64" },
3291 { OPERAND_TYPE_IMM8, "i8" },
3292 { OPERAND_TYPE_IMM8, "i8s" },
3293 { OPERAND_TYPE_IMM16, "i16" },
3294 { OPERAND_TYPE_IMM32, "i32" },
3295 { OPERAND_TYPE_IMM32S, "i32s" },
3296 { OPERAND_TYPE_IMM64, "i64" },
3297 { OPERAND_TYPE_IMM1, "i1" },
3298 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3299 { OPERAND_TYPE_DISP8, "d8" },
3300 { OPERAND_TYPE_DISP16, "d16" },
3301 { OPERAND_TYPE_DISP32, "d32" },
3302 { OPERAND_TYPE_DISP32S, "d32s" },
3303 { OPERAND_TYPE_DISP64, "d64" },
3304 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3305 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3306 { OPERAND_TYPE_CONTROL, "control reg" },
3307 { OPERAND_TYPE_TEST, "test reg" },
3308 { OPERAND_TYPE_DEBUG, "debug reg" },
3309 { OPERAND_TYPE_FLOATREG, "FReg" },
3310 { OPERAND_TYPE_FLOATACC, "FAcc" },
3311 { OPERAND_TYPE_SREG, "SReg" },
3312 { OPERAND_TYPE_REGMMX, "rMMX" },
3313 { OPERAND_TYPE_REGXMM, "rXMM" },
3314 { OPERAND_TYPE_REGYMM, "rYMM" },
3315 { OPERAND_TYPE_REGZMM, "rZMM" },
3316 { OPERAND_TYPE_REGTMM, "rTMM" },
3317 { OPERAND_TYPE_REGMASK, "Mask reg" },
3318 };
3319
3320 static void
3321 pt (i386_operand_type t)
3322 {
3323 unsigned int j;
3324 i386_operand_type a;
3325
3326 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3327 {
3328 a = operand_type_and (t, type_names[j].mask);
3329 if (operand_type_equal (&a, &type_names[j].mask))
3330 fprintf (stdout, "%s, ", type_names[j].name);
3331 }
3332 fflush (stdout);
3333 }
3334
3335 #endif /* DEBUG386 */
3336 \f
3337 static bfd_reloc_code_real_type
3338 reloc (unsigned int size,
3339 int pcrel,
3340 int sign,
3341 bfd_reloc_code_real_type other)
3342 {
3343 if (other != NO_RELOC)
3344 {
3345 reloc_howto_type *rel;
3346
3347 if (size == 8)
3348 switch (other)
3349 {
3350 case BFD_RELOC_X86_64_GOT32:
3351 return BFD_RELOC_X86_64_GOT64;
3352 break;
3353 case BFD_RELOC_X86_64_GOTPLT64:
3354 return BFD_RELOC_X86_64_GOTPLT64;
3355 break;
3356 case BFD_RELOC_X86_64_PLTOFF64:
3357 return BFD_RELOC_X86_64_PLTOFF64;
3358 break;
3359 case BFD_RELOC_X86_64_GOTPC32:
3360 other = BFD_RELOC_X86_64_GOTPC64;
3361 break;
3362 case BFD_RELOC_X86_64_GOTPCREL:
3363 other = BFD_RELOC_X86_64_GOTPCREL64;
3364 break;
3365 case BFD_RELOC_X86_64_TPOFF32:
3366 other = BFD_RELOC_X86_64_TPOFF64;
3367 break;
3368 case BFD_RELOC_X86_64_DTPOFF32:
3369 other = BFD_RELOC_X86_64_DTPOFF64;
3370 break;
3371 default:
3372 break;
3373 }
3374
3375 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3376 if (other == BFD_RELOC_SIZE32)
3377 {
3378 if (size == 8)
3379 other = BFD_RELOC_SIZE64;
3380 if (pcrel)
3381 {
3382 as_bad (_("there are no pc-relative size relocations"));
3383 return NO_RELOC;
3384 }
3385 }
3386 #endif
3387
3388 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3389 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3390 sign = -1;
3391
3392 rel = bfd_reloc_type_lookup (stdoutput, other);
3393 if (!rel)
3394 as_bad (_("unknown relocation (%u)"), other);
3395 else if (size != bfd_get_reloc_size (rel))
3396 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3397 bfd_get_reloc_size (rel),
3398 size);
3399 else if (pcrel && !rel->pc_relative)
3400 as_bad (_("non-pc-relative relocation for pc-relative field"));
3401 else if ((rel->complain_on_overflow == complain_overflow_signed
3402 && !sign)
3403 || (rel->complain_on_overflow == complain_overflow_unsigned
3404 && sign > 0))
3405 as_bad (_("relocated field and relocation type differ in signedness"));
3406 else
3407 return other;
3408 return NO_RELOC;
3409 }
3410
3411 if (pcrel)
3412 {
3413 if (!sign)
3414 as_bad (_("there are no unsigned pc-relative relocations"));
3415 switch (size)
3416 {
3417 case 1: return BFD_RELOC_8_PCREL;
3418 case 2: return BFD_RELOC_16_PCREL;
3419 case 4: return BFD_RELOC_32_PCREL;
3420 case 8: return BFD_RELOC_64_PCREL;
3421 }
3422 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3423 }
3424 else
3425 {
3426 if (sign > 0)
3427 switch (size)
3428 {
3429 case 4: return BFD_RELOC_X86_64_32S;
3430 }
3431 else
3432 switch (size)
3433 {
3434 case 1: return BFD_RELOC_8;
3435 case 2: return BFD_RELOC_16;
3436 case 4: return BFD_RELOC_32;
3437 case 8: return BFD_RELOC_64;
3438 }
3439 as_bad (_("cannot do %s %u byte relocation"),
3440 sign > 0 ? "signed" : "unsigned", size);
3441 }
3442
3443 return NO_RELOC;
3444 }
3445
3446 /* Here we decide which fixups can be adjusted to make them relative to
3447 the beginning of the section instead of the symbol. Basically we need
3448 to make sure that the dynamic relocations are done correctly, so in
3449 some cases we force the original symbol to be used. */
3450
3451 int
3452 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3453 {
3454 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3455 if (!IS_ELF)
3456 return 1;
3457
3458 /* Don't adjust pc-relative references to merge sections in 64-bit
3459 mode. */
3460 if (use_rela_relocations
3461 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3462 && fixP->fx_pcrel)
3463 return 0;
3464
3465 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3466 and changed later by validate_fix. */
3467 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3468 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3469 return 0;
3470
3471 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3472 for size relocations. */
3473 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3474 || fixP->fx_r_type == BFD_RELOC_SIZE64
3475 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3476 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3477 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3478 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3479 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3480 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3481 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3482 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3483 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3484 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3485 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3486 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3487 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3488 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3489 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3490 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3491 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3492 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3493 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3494 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3495 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3496 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3497 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3498 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3499 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3500 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3501 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3502 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3503 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3504 return 0;
3505 #endif
3506 return 1;
3507 }
3508
3509 static int
3510 intel_float_operand (const char *mnemonic)
3511 {
3512 /* Note that the value returned is meaningful only for opcodes with (memory)
3513 operands, hence the code here is free to improperly handle opcodes that
3514 have no operands (for better performance and smaller code). */
3515
3516 if (mnemonic[0] != 'f')
3517 return 0; /* non-math */
3518
3519 switch (mnemonic[1])
3520 {
3521 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3522 the fs segment override prefix not currently handled because no
3523 call path can make opcodes without operands get here */
3524 case 'i':
3525 return 2 /* integer op */;
3526 case 'l':
3527 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3528 return 3; /* fldcw/fldenv */
3529 break;
3530 case 'n':
3531 if (mnemonic[2] != 'o' /* fnop */)
3532 return 3; /* non-waiting control op */
3533 break;
3534 case 'r':
3535 if (mnemonic[2] == 's')
3536 return 3; /* frstor/frstpm */
3537 break;
3538 case 's':
3539 if (mnemonic[2] == 'a')
3540 return 3; /* fsave */
3541 if (mnemonic[2] == 't')
3542 {
3543 switch (mnemonic[3])
3544 {
3545 case 'c': /* fstcw */
3546 case 'd': /* fstdw */
3547 case 'e': /* fstenv */
3548 case 's': /* fsts[gw] */
3549 return 3;
3550 }
3551 }
3552 break;
3553 case 'x':
3554 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3555 return 0; /* fxsave/fxrstor are not really math ops */
3556 break;
3557 }
3558
3559 return 1;
3560 }
3561
3562 /* Build the VEX prefix. */
3563
3564 static void
3565 build_vex_prefix (const insn_template *t)
3566 {
3567 unsigned int register_specifier;
3568 unsigned int implied_prefix;
3569 unsigned int vector_length;
3570 unsigned int w;
3571
3572 /* Check register specifier. */
3573 if (i.vex.register_specifier)
3574 {
3575 register_specifier =
3576 ~register_number (i.vex.register_specifier) & 0xf;
3577 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3578 }
3579 else
3580 register_specifier = 0xf;
3581
3582 /* Use 2-byte VEX prefix by swapping destination and source operand
3583 if there are more than 1 register operand. */
3584 if (i.reg_operands > 1
3585 && i.vec_encoding != vex_encoding_vex3
3586 && i.dir_encoding == dir_encoding_default
3587 && i.operands == i.reg_operands
3588 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3589 && i.tm.opcode_modifier.vexopcode == VEX0F
3590 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3591 && i.rex == REX_B)
3592 {
3593 unsigned int xchg = i.operands - 1;
3594 union i386_op temp_op;
3595 i386_operand_type temp_type;
3596
3597 temp_type = i.types[xchg];
3598 i.types[xchg] = i.types[0];
3599 i.types[0] = temp_type;
3600 temp_op = i.op[xchg];
3601 i.op[xchg] = i.op[0];
3602 i.op[0] = temp_op;
3603
3604 gas_assert (i.rm.mode == 3);
3605
3606 i.rex = REX_R;
3607 xchg = i.rm.regmem;
3608 i.rm.regmem = i.rm.reg;
3609 i.rm.reg = xchg;
3610
3611 if (i.tm.opcode_modifier.d)
3612 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3613 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3614 else /* Use the next insn. */
3615 i.tm = t[1];
3616 }
3617
3618 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3619 are no memory operands and at least 3 register ones. */
3620 if (i.reg_operands >= 3
3621 && i.vec_encoding != vex_encoding_vex3
3622 && i.reg_operands == i.operands - i.imm_operands
3623 && i.tm.opcode_modifier.vex
3624 && i.tm.opcode_modifier.commutative
3625 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3626 && i.rex == REX_B
3627 && i.vex.register_specifier
3628 && !(i.vex.register_specifier->reg_flags & RegRex))
3629 {
3630 unsigned int xchg = i.operands - i.reg_operands;
3631 union i386_op temp_op;
3632 i386_operand_type temp_type;
3633
3634 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3635 gas_assert (!i.tm.opcode_modifier.sae);
3636 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3637 &i.types[i.operands - 3]));
3638 gas_assert (i.rm.mode == 3);
3639
3640 temp_type = i.types[xchg];
3641 i.types[xchg] = i.types[xchg + 1];
3642 i.types[xchg + 1] = temp_type;
3643 temp_op = i.op[xchg];
3644 i.op[xchg] = i.op[xchg + 1];
3645 i.op[xchg + 1] = temp_op;
3646
3647 i.rex = 0;
3648 xchg = i.rm.regmem | 8;
3649 i.rm.regmem = ~register_specifier & 0xf;
3650 gas_assert (!(i.rm.regmem & 8));
3651 i.vex.register_specifier += xchg - i.rm.regmem;
3652 register_specifier = ~xchg & 0xf;
3653 }
3654
3655 if (i.tm.opcode_modifier.vex == VEXScalar)
3656 vector_length = avxscalar;
3657 else if (i.tm.opcode_modifier.vex == VEX256)
3658 vector_length = 1;
3659 else
3660 {
3661 unsigned int op;
3662
3663 /* Determine vector length from the last multi-length vector
3664 operand. */
3665 vector_length = 0;
3666 for (op = t->operands; op--;)
3667 if (t->operand_types[op].bitfield.xmmword
3668 && t->operand_types[op].bitfield.ymmword
3669 && i.types[op].bitfield.ymmword)
3670 {
3671 vector_length = 1;
3672 break;
3673 }
3674 }
3675
3676 switch ((i.tm.base_opcode >> (i.tm.opcode_length << 3)) & 0xff)
3677 {
3678 case 0:
3679 implied_prefix = 0;
3680 break;
3681 case DATA_PREFIX_OPCODE:
3682 implied_prefix = 1;
3683 break;
3684 case REPE_PREFIX_OPCODE:
3685 implied_prefix = 2;
3686 break;
3687 case REPNE_PREFIX_OPCODE:
3688 implied_prefix = 3;
3689 break;
3690 default:
3691 abort ();
3692 }
3693
3694 /* Check the REX.W bit and VEXW. */
3695 if (i.tm.opcode_modifier.vexw == VEXWIG)
3696 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3697 else if (i.tm.opcode_modifier.vexw)
3698 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3699 else
3700 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3701
3702 /* Use 2-byte VEX prefix if possible. */
3703 if (w == 0
3704 && i.vec_encoding != vex_encoding_vex3
3705 && i.tm.opcode_modifier.vexopcode == VEX0F
3706 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3707 {
3708 /* 2-byte VEX prefix. */
3709 unsigned int r;
3710
3711 i.vex.length = 2;
3712 i.vex.bytes[0] = 0xc5;
3713
3714 /* Check the REX.R bit. */
3715 r = (i.rex & REX_R) ? 0 : 1;
3716 i.vex.bytes[1] = (r << 7
3717 | register_specifier << 3
3718 | vector_length << 2
3719 | implied_prefix);
3720 }
3721 else
3722 {
3723 /* 3-byte VEX prefix. */
3724 unsigned int m;
3725
3726 i.vex.length = 3;
3727
3728 switch (i.tm.opcode_modifier.vexopcode)
3729 {
3730 case VEX0F:
3731 m = 0x1;
3732 i.vex.bytes[0] = 0xc4;
3733 break;
3734 case VEX0F38:
3735 m = 0x2;
3736 i.vex.bytes[0] = 0xc4;
3737 break;
3738 case VEX0F3A:
3739 m = 0x3;
3740 i.vex.bytes[0] = 0xc4;
3741 break;
3742 case XOP08:
3743 m = 0x8;
3744 i.vex.bytes[0] = 0x8f;
3745 break;
3746 case XOP09:
3747 m = 0x9;
3748 i.vex.bytes[0] = 0x8f;
3749 break;
3750 case XOP0A:
3751 m = 0xa;
3752 i.vex.bytes[0] = 0x8f;
3753 break;
3754 default:
3755 abort ();
3756 }
3757
3758 /* The high 3 bits of the second VEX byte are 1's compliment
3759 of RXB bits from REX. */
3760 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3761
3762 i.vex.bytes[2] = (w << 7
3763 | register_specifier << 3
3764 | vector_length << 2
3765 | implied_prefix);
3766 }
3767 }
3768
3769 static INLINE bfd_boolean
3770 is_evex_encoding (const insn_template *t)
3771 {
3772 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3773 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3774 || t->opcode_modifier.sae;
3775 }
3776
3777 static INLINE bfd_boolean
3778 is_any_vex_encoding (const insn_template *t)
3779 {
3780 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3781 || is_evex_encoding (t);
3782 }
3783
3784 /* Build the EVEX prefix. */
3785
3786 static void
3787 build_evex_prefix (void)
3788 {
3789 unsigned int register_specifier;
3790 unsigned int implied_prefix;
3791 unsigned int m, w;
3792 rex_byte vrex_used = 0;
3793
3794 /* Check register specifier. */
3795 if (i.vex.register_specifier)
3796 {
3797 gas_assert ((i.vrex & REX_X) == 0);
3798
3799 register_specifier = i.vex.register_specifier->reg_num;
3800 if ((i.vex.register_specifier->reg_flags & RegRex))
3801 register_specifier += 8;
3802 /* The upper 16 registers are encoded in the fourth byte of the
3803 EVEX prefix. */
3804 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3805 i.vex.bytes[3] = 0x8;
3806 register_specifier = ~register_specifier & 0xf;
3807 }
3808 else
3809 {
3810 register_specifier = 0xf;
3811
3812 /* Encode upper 16 vector index register in the fourth byte of
3813 the EVEX prefix. */
3814 if (!(i.vrex & REX_X))
3815 i.vex.bytes[3] = 0x8;
3816 else
3817 vrex_used |= REX_X;
3818 }
3819
3820 switch ((i.tm.base_opcode >> 8) & 0xff)
3821 {
3822 case 0:
3823 implied_prefix = 0;
3824 break;
3825 case DATA_PREFIX_OPCODE:
3826 implied_prefix = 1;
3827 break;
3828 case REPE_PREFIX_OPCODE:
3829 implied_prefix = 2;
3830 break;
3831 case REPNE_PREFIX_OPCODE:
3832 implied_prefix = 3;
3833 break;
3834 default:
3835 abort ();
3836 }
3837
3838 /* 4 byte EVEX prefix. */
3839 i.vex.length = 4;
3840 i.vex.bytes[0] = 0x62;
3841
3842 /* mmmm bits. */
3843 switch (i.tm.opcode_modifier.vexopcode)
3844 {
3845 case VEX0F:
3846 m = 1;
3847 break;
3848 case VEX0F38:
3849 m = 2;
3850 break;
3851 case VEX0F3A:
3852 m = 3;
3853 break;
3854 default:
3855 abort ();
3856 break;
3857 }
3858
3859 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3860 bits from REX. */
3861 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3862
3863 /* The fifth bit of the second EVEX byte is 1's compliment of the
3864 REX_R bit in VREX. */
3865 if (!(i.vrex & REX_R))
3866 i.vex.bytes[1] |= 0x10;
3867 else
3868 vrex_used |= REX_R;
3869
3870 if ((i.reg_operands + i.imm_operands) == i.operands)
3871 {
3872 /* When all operands are registers, the REX_X bit in REX is not
3873 used. We reuse it to encode the upper 16 registers, which is
3874 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3875 as 1's compliment. */
3876 if ((i.vrex & REX_B))
3877 {
3878 vrex_used |= REX_B;
3879 i.vex.bytes[1] &= ~0x40;
3880 }
3881 }
3882
3883 /* EVEX instructions shouldn't need the REX prefix. */
3884 i.vrex &= ~vrex_used;
3885 gas_assert (i.vrex == 0);
3886
3887 /* Check the REX.W bit and VEXW. */
3888 if (i.tm.opcode_modifier.vexw == VEXWIG)
3889 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3890 else if (i.tm.opcode_modifier.vexw)
3891 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3892 else
3893 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3894
3895 /* Encode the U bit. */
3896 implied_prefix |= 0x4;
3897
3898 /* The third byte of the EVEX prefix. */
3899 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3900
3901 /* The fourth byte of the EVEX prefix. */
3902 /* The zeroing-masking bit. */
3903 if (i.mask && i.mask->zeroing)
3904 i.vex.bytes[3] |= 0x80;
3905
3906 /* Don't always set the broadcast bit if there is no RC. */
3907 if (!i.rounding)
3908 {
3909 /* Encode the vector length. */
3910 unsigned int vec_length;
3911
3912 if (!i.tm.opcode_modifier.evex
3913 || i.tm.opcode_modifier.evex == EVEXDYN)
3914 {
3915 unsigned int op;
3916
3917 /* Determine vector length from the last multi-length vector
3918 operand. */
3919 for (op = i.operands; op--;)
3920 if (i.tm.operand_types[op].bitfield.xmmword
3921 + i.tm.operand_types[op].bitfield.ymmword
3922 + i.tm.operand_types[op].bitfield.zmmword > 1)
3923 {
3924 if (i.types[op].bitfield.zmmword)
3925 {
3926 i.tm.opcode_modifier.evex = EVEX512;
3927 break;
3928 }
3929 else if (i.types[op].bitfield.ymmword)
3930 {
3931 i.tm.opcode_modifier.evex = EVEX256;
3932 break;
3933 }
3934 else if (i.types[op].bitfield.xmmword)
3935 {
3936 i.tm.opcode_modifier.evex = EVEX128;
3937 break;
3938 }
3939 else if (i.broadcast && (int) op == i.broadcast->operand)
3940 {
3941 switch (i.broadcast->bytes)
3942 {
3943 case 64:
3944 i.tm.opcode_modifier.evex = EVEX512;
3945 break;
3946 case 32:
3947 i.tm.opcode_modifier.evex = EVEX256;
3948 break;
3949 case 16:
3950 i.tm.opcode_modifier.evex = EVEX128;
3951 break;
3952 default:
3953 abort ();
3954 }
3955 break;
3956 }
3957 }
3958
3959 if (op >= MAX_OPERANDS)
3960 abort ();
3961 }
3962
3963 switch (i.tm.opcode_modifier.evex)
3964 {
3965 case EVEXLIG: /* LL' is ignored */
3966 vec_length = evexlig << 5;
3967 break;
3968 case EVEX128:
3969 vec_length = 0 << 5;
3970 break;
3971 case EVEX256:
3972 vec_length = 1 << 5;
3973 break;
3974 case EVEX512:
3975 vec_length = 2 << 5;
3976 break;
3977 default:
3978 abort ();
3979 break;
3980 }
3981 i.vex.bytes[3] |= vec_length;
3982 /* Encode the broadcast bit. */
3983 if (i.broadcast)
3984 i.vex.bytes[3] |= 0x10;
3985 }
3986 else
3987 {
3988 if (i.rounding->type != saeonly)
3989 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3990 else
3991 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3992 }
3993
3994 if (i.mask && i.mask->mask)
3995 i.vex.bytes[3] |= i.mask->mask->reg_num;
3996 }
3997
3998 static void
3999 process_immext (void)
4000 {
4001 expressionS *exp;
4002
4003 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
4004 which is coded in the same place as an 8-bit immediate field
4005 would be. Here we fake an 8-bit immediate operand from the
4006 opcode suffix stored in tm.extension_opcode.
4007
4008 AVX instructions also use this encoding, for some of
4009 3 argument instructions. */
4010
4011 gas_assert (i.imm_operands <= 1
4012 && (i.operands <= 2
4013 || (is_any_vex_encoding (&i.tm)
4014 && i.operands <= 4)));
4015
4016 exp = &im_expressions[i.imm_operands++];
4017 i.op[i.operands].imms = exp;
4018 i.types[i.operands] = imm8;
4019 i.operands++;
4020 exp->X_op = O_constant;
4021 exp->X_add_number = i.tm.extension_opcode;
4022 i.tm.extension_opcode = None;
4023 }
4024
4025
4026 static int
4027 check_hle (void)
4028 {
4029 switch (i.tm.opcode_modifier.hleprefixok)
4030 {
4031 default:
4032 abort ();
4033 case HLEPrefixNone:
4034 as_bad (_("invalid instruction `%s' after `%s'"),
4035 i.tm.name, i.hle_prefix);
4036 return 0;
4037 case HLEPrefixLock:
4038 if (i.prefix[LOCK_PREFIX])
4039 return 1;
4040 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
4041 return 0;
4042 case HLEPrefixAny:
4043 return 1;
4044 case HLEPrefixRelease:
4045 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4046 {
4047 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4048 i.tm.name);
4049 return 0;
4050 }
4051 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
4052 {
4053 as_bad (_("memory destination needed for instruction `%s'"
4054 " after `xrelease'"), i.tm.name);
4055 return 0;
4056 }
4057 return 1;
4058 }
4059 }
4060
4061 /* Try the shortest encoding by shortening operand size. */
4062
4063 static void
4064 optimize_encoding (void)
4065 {
4066 unsigned int j;
4067
4068 if (optimize_for_space
4069 && !is_any_vex_encoding (&i.tm)
4070 && i.reg_operands == 1
4071 && i.imm_operands == 1
4072 && !i.types[1].bitfield.byte
4073 && i.op[0].imms->X_op == O_constant
4074 && fits_in_imm7 (i.op[0].imms->X_add_number)
4075 && (i.tm.base_opcode == 0xa8
4076 || (i.tm.base_opcode == 0xf6
4077 && i.tm.extension_opcode == 0x0)))
4078 {
4079 /* Optimize: -Os:
4080 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4081 */
4082 unsigned int base_regnum = i.op[1].regs->reg_num;
4083 if (flag_code == CODE_64BIT || base_regnum < 4)
4084 {
4085 i.types[1].bitfield.byte = 1;
4086 /* Ignore the suffix. */
4087 i.suffix = 0;
4088 /* Convert to byte registers. */
4089 if (i.types[1].bitfield.word)
4090 j = 16;
4091 else if (i.types[1].bitfield.dword)
4092 j = 32;
4093 else
4094 j = 48;
4095 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4096 j += 8;
4097 i.op[1].regs -= j;
4098 }
4099 }
4100 else if (flag_code == CODE_64BIT
4101 && !is_any_vex_encoding (&i.tm)
4102 && ((i.types[1].bitfield.qword
4103 && i.reg_operands == 1
4104 && i.imm_operands == 1
4105 && i.op[0].imms->X_op == O_constant
4106 && ((i.tm.base_opcode == 0xb8
4107 && i.tm.extension_opcode == None
4108 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4109 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4110 && ((i.tm.base_opcode == 0x24
4111 || i.tm.base_opcode == 0xa8)
4112 || (i.tm.base_opcode == 0x80
4113 && i.tm.extension_opcode == 0x4)
4114 || ((i.tm.base_opcode == 0xf6
4115 || (i.tm.base_opcode | 1) == 0xc7)
4116 && i.tm.extension_opcode == 0x0)))
4117 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4118 && i.tm.base_opcode == 0x83
4119 && i.tm.extension_opcode == 0x4)))
4120 || (i.types[0].bitfield.qword
4121 && ((i.reg_operands == 2
4122 && i.op[0].regs == i.op[1].regs
4123 && (i.tm.base_opcode == 0x30
4124 || i.tm.base_opcode == 0x28))
4125 || (i.reg_operands == 1
4126 && i.operands == 1
4127 && i.tm.base_opcode == 0x30)))))
4128 {
4129 /* Optimize: -O:
4130 andq $imm31, %r64 -> andl $imm31, %r32
4131 andq $imm7, %r64 -> andl $imm7, %r32
4132 testq $imm31, %r64 -> testl $imm31, %r32
4133 xorq %r64, %r64 -> xorl %r32, %r32
4134 subq %r64, %r64 -> subl %r32, %r32
4135 movq $imm31, %r64 -> movl $imm31, %r32
4136 movq $imm32, %r64 -> movl $imm32, %r32
4137 */
4138 i.tm.opcode_modifier.norex64 = 1;
4139 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4140 {
4141 /* Handle
4142 movq $imm31, %r64 -> movl $imm31, %r32
4143 movq $imm32, %r64 -> movl $imm32, %r32
4144 */
4145 i.tm.operand_types[0].bitfield.imm32 = 1;
4146 i.tm.operand_types[0].bitfield.imm32s = 0;
4147 i.tm.operand_types[0].bitfield.imm64 = 0;
4148 i.types[0].bitfield.imm32 = 1;
4149 i.types[0].bitfield.imm32s = 0;
4150 i.types[0].bitfield.imm64 = 0;
4151 i.types[1].bitfield.dword = 1;
4152 i.types[1].bitfield.qword = 0;
4153 if ((i.tm.base_opcode | 1) == 0xc7)
4154 {
4155 /* Handle
4156 movq $imm31, %r64 -> movl $imm31, %r32
4157 */
4158 i.tm.base_opcode = 0xb8;
4159 i.tm.extension_opcode = None;
4160 i.tm.opcode_modifier.w = 0;
4161 i.tm.opcode_modifier.modrm = 0;
4162 }
4163 }
4164 }
4165 else if (optimize > 1
4166 && !optimize_for_space
4167 && !is_any_vex_encoding (&i.tm)
4168 && i.reg_operands == 2
4169 && i.op[0].regs == i.op[1].regs
4170 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4171 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4172 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4173 {
4174 /* Optimize: -O2:
4175 andb %rN, %rN -> testb %rN, %rN
4176 andw %rN, %rN -> testw %rN, %rN
4177 andq %rN, %rN -> testq %rN, %rN
4178 orb %rN, %rN -> testb %rN, %rN
4179 orw %rN, %rN -> testw %rN, %rN
4180 orq %rN, %rN -> testq %rN, %rN
4181
4182 and outside of 64-bit mode
4183
4184 andl %rN, %rN -> testl %rN, %rN
4185 orl %rN, %rN -> testl %rN, %rN
4186 */
4187 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4188 }
4189 else if (i.reg_operands == 3
4190 && i.op[0].regs == i.op[1].regs
4191 && !i.types[2].bitfield.xmmword
4192 && (i.tm.opcode_modifier.vex
4193 || ((!i.mask || i.mask->zeroing)
4194 && !i.rounding
4195 && is_evex_encoding (&i.tm)
4196 && (i.vec_encoding != vex_encoding_evex
4197 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4198 || i.tm.cpu_flags.bitfield.cpuavx512vl
4199 || (i.tm.operand_types[2].bitfield.zmmword
4200 && i.types[2].bitfield.ymmword))))
4201 && ((i.tm.base_opcode == 0x55
4202 || i.tm.base_opcode == 0x6655
4203 || i.tm.base_opcode == 0x66df
4204 || i.tm.base_opcode == 0x57
4205 || i.tm.base_opcode == 0x6657
4206 || i.tm.base_opcode == 0x66ef
4207 || i.tm.base_opcode == 0x66f8
4208 || i.tm.base_opcode == 0x66f9
4209 || i.tm.base_opcode == 0x66fa
4210 || i.tm.base_opcode == 0x66fb
4211 || i.tm.base_opcode == 0x42
4212 || i.tm.base_opcode == 0x6642
4213 || i.tm.base_opcode == 0x47
4214 || i.tm.base_opcode == 0x6647)
4215 && i.tm.extension_opcode == None))
4216 {
4217 /* Optimize: -O1:
4218 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4219 vpsubq and vpsubw:
4220 EVEX VOP %zmmM, %zmmM, %zmmN
4221 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4222 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4223 EVEX VOP %ymmM, %ymmM, %ymmN
4224 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4225 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4226 VEX VOP %ymmM, %ymmM, %ymmN
4227 -> VEX VOP %xmmM, %xmmM, %xmmN
4228 VOP, one of vpandn and vpxor:
4229 VEX VOP %ymmM, %ymmM, %ymmN
4230 -> VEX VOP %xmmM, %xmmM, %xmmN
4231 VOP, one of vpandnd and vpandnq:
4232 EVEX VOP %zmmM, %zmmM, %zmmN
4233 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4234 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4235 EVEX VOP %ymmM, %ymmM, %ymmN
4236 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4237 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4238 VOP, one of vpxord and vpxorq:
4239 EVEX VOP %zmmM, %zmmM, %zmmN
4240 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4241 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4242 EVEX VOP %ymmM, %ymmM, %ymmN
4243 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4244 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4245 VOP, one of kxord and kxorq:
4246 VEX VOP %kM, %kM, %kN
4247 -> VEX kxorw %kM, %kM, %kN
4248 VOP, one of kandnd and kandnq:
4249 VEX VOP %kM, %kM, %kN
4250 -> VEX kandnw %kM, %kM, %kN
4251 */
4252 if (is_evex_encoding (&i.tm))
4253 {
4254 if (i.vec_encoding != vex_encoding_evex)
4255 {
4256 i.tm.opcode_modifier.vex = VEX128;
4257 i.tm.opcode_modifier.vexw = VEXW0;
4258 i.tm.opcode_modifier.evex = 0;
4259 }
4260 else if (optimize > 1)
4261 i.tm.opcode_modifier.evex = EVEX128;
4262 else
4263 return;
4264 }
4265 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4266 {
4267 i.tm.base_opcode &= 0xff;
4268 i.tm.opcode_modifier.vexw = VEXW0;
4269 }
4270 else
4271 i.tm.opcode_modifier.vex = VEX128;
4272
4273 if (i.tm.opcode_modifier.vex)
4274 for (j = 0; j < 3; j++)
4275 {
4276 i.types[j].bitfield.xmmword = 1;
4277 i.types[j].bitfield.ymmword = 0;
4278 }
4279 }
4280 else if (i.vec_encoding != vex_encoding_evex
4281 && !i.types[0].bitfield.zmmword
4282 && !i.types[1].bitfield.zmmword
4283 && !i.mask
4284 && !i.broadcast
4285 && is_evex_encoding (&i.tm)
4286 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4287 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4288 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4289 || (i.tm.base_opcode & ~4) == 0x66db
4290 || (i.tm.base_opcode & ~4) == 0x66eb)
4291 && i.tm.extension_opcode == None)
4292 {
4293 /* Optimize: -O1:
4294 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4295 vmovdqu32 and vmovdqu64:
4296 EVEX VOP %xmmM, %xmmN
4297 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4298 EVEX VOP %ymmM, %ymmN
4299 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4300 EVEX VOP %xmmM, mem
4301 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4302 EVEX VOP %ymmM, mem
4303 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4304 EVEX VOP mem, %xmmN
4305 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4306 EVEX VOP mem, %ymmN
4307 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4308 VOP, one of vpand, vpandn, vpor, vpxor:
4309 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4310 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4311 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4312 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4313 EVEX VOP{d,q} mem, %xmmM, %xmmN
4314 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4315 EVEX VOP{d,q} mem, %ymmM, %ymmN
4316 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4317 */
4318 for (j = 0; j < i.operands; j++)
4319 if (operand_type_check (i.types[j], disp)
4320 && i.op[j].disps->X_op == O_constant)
4321 {
4322 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4323 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4324 bytes, we choose EVEX Disp8 over VEX Disp32. */
4325 int evex_disp8, vex_disp8;
4326 unsigned int memshift = i.memshift;
4327 offsetT n = i.op[j].disps->X_add_number;
4328
4329 evex_disp8 = fits_in_disp8 (n);
4330 i.memshift = 0;
4331 vex_disp8 = fits_in_disp8 (n);
4332 if (evex_disp8 != vex_disp8)
4333 {
4334 i.memshift = memshift;
4335 return;
4336 }
4337
4338 i.types[j].bitfield.disp8 = vex_disp8;
4339 break;
4340 }
4341 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4342 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4343 i.tm.opcode_modifier.vex
4344 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4345 i.tm.opcode_modifier.vexw = VEXW0;
4346 /* VPAND, VPOR, and VPXOR are commutative. */
4347 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4348 i.tm.opcode_modifier.commutative = 1;
4349 i.tm.opcode_modifier.evex = 0;
4350 i.tm.opcode_modifier.masking = 0;
4351 i.tm.opcode_modifier.broadcast = 0;
4352 i.tm.opcode_modifier.disp8memshift = 0;
4353 i.memshift = 0;
4354 if (j < i.operands)
4355 i.types[j].bitfield.disp8
4356 = fits_in_disp8 (i.op[j].disps->X_add_number);
4357 }
4358 }
4359
4360 /* Return non-zero for load instruction. */
4361
4362 static int
4363 load_insn_p (void)
4364 {
4365 unsigned int dest;
4366 int any_vex_p = is_any_vex_encoding (&i.tm);
4367 unsigned int base_opcode = i.tm.base_opcode | 1;
4368
4369 if (!any_vex_p)
4370 {
4371 /* Anysize insns: lea, invlpg, clflush, prefetchnta, prefetcht0,
4372 prefetcht1, prefetcht2, prefetchtw, bndmk, bndcl, bndcu, bndcn,
4373 bndstx, bndldx, prefetchwt1, clflushopt, clwb, cldemote. */
4374 if (i.tm.opcode_modifier.anysize)
4375 return 0;
4376
4377 /* pop, popf, popa. */
4378 if (strcmp (i.tm.name, "pop") == 0
4379 || i.tm.base_opcode == 0x9d
4380 || i.tm.base_opcode == 0x61)
4381 return 1;
4382
4383 /* movs, cmps, lods, scas. */
4384 if ((i.tm.base_opcode | 0xb) == 0xaf)
4385 return 1;
4386
4387 /* outs, xlatb. */
4388 if (base_opcode == 0x6f
4389 || i.tm.base_opcode == 0xd7)
4390 return 1;
4391 /* NB: For AMD-specific insns with implicit memory operands,
4392 they're intentionally not covered. */
4393 }
4394
4395 /* No memory operand. */
4396 if (!i.mem_operands)
4397 return 0;
4398
4399 if (any_vex_p)
4400 {
4401 /* vldmxcsr. */
4402 if (i.tm.base_opcode == 0xae
4403 && i.tm.opcode_modifier.vex
4404 && i.tm.opcode_modifier.vexopcode == VEX0F
4405 && i.tm.extension_opcode == 2)
4406 return 1;
4407 }
4408 else
4409 {
4410 /* test, not, neg, mul, imul, div, idiv. */
4411 if ((i.tm.base_opcode == 0xf6 || i.tm.base_opcode == 0xf7)
4412 && i.tm.extension_opcode != 1)
4413 return 1;
4414
4415 /* inc, dec. */
4416 if (base_opcode == 0xff && i.tm.extension_opcode <= 1)
4417 return 1;
4418
4419 /* add, or, adc, sbb, and, sub, xor, cmp. */
4420 if (i.tm.base_opcode >= 0x80 && i.tm.base_opcode <= 0x83)
4421 return 1;
4422
4423 /* bt, bts, btr, btc. */
4424 if (i.tm.base_opcode == 0xfba
4425 && (i.tm.extension_opcode >= 4 && i.tm.extension_opcode <= 7))
4426 return 1;
4427
4428 /* rol, ror, rcl, rcr, shl/sal, shr, sar. */
4429 if ((base_opcode == 0xc1
4430 || (i.tm.base_opcode >= 0xd0 && i.tm.base_opcode <= 0xd3))
4431 && i.tm.extension_opcode != 6)
4432 return 1;
4433
4434 /* cmpxchg8b, cmpxchg16b, xrstors. */
4435 if (i.tm.base_opcode == 0xfc7
4436 && (i.tm.extension_opcode == 1 || i.tm.extension_opcode == 3))
4437 return 1;
4438
4439 /* fxrstor, ldmxcsr, xrstor. */
4440 if (i.tm.base_opcode == 0xfae
4441 && (i.tm.extension_opcode == 1
4442 || i.tm.extension_opcode == 2
4443 || i.tm.extension_opcode == 5))
4444 return 1;
4445
4446 /* lgdt, lidt, lmsw. */
4447 if (i.tm.base_opcode == 0xf01
4448 && (i.tm.extension_opcode == 2
4449 || i.tm.extension_opcode == 3
4450 || i.tm.extension_opcode == 6))
4451 return 1;
4452
4453 /* vmptrld */
4454 if (i.tm.base_opcode == 0xfc7
4455 && i.tm.extension_opcode == 6)
4456 return 1;
4457
4458 /* Check for x87 instructions. */
4459 if (i.tm.base_opcode >= 0xd8 && i.tm.base_opcode <= 0xdf)
4460 {
4461 /* Skip fst, fstp, fstenv, fstcw. */
4462 if (i.tm.base_opcode == 0xd9
4463 && (i.tm.extension_opcode == 2
4464 || i.tm.extension_opcode == 3
4465 || i.tm.extension_opcode == 6
4466 || i.tm.extension_opcode == 7))
4467 return 0;
4468
4469 /* Skip fisttp, fist, fistp, fstp. */
4470 if (i.tm.base_opcode == 0xdb
4471 && (i.tm.extension_opcode == 1
4472 || i.tm.extension_opcode == 2
4473 || i.tm.extension_opcode == 3
4474 || i.tm.extension_opcode == 7))
4475 return 0;
4476
4477 /* Skip fisttp, fst, fstp, fsave, fstsw. */
4478 if (i.tm.base_opcode == 0xdd
4479 && (i.tm.extension_opcode == 1
4480 || i.tm.extension_opcode == 2
4481 || i.tm.extension_opcode == 3
4482 || i.tm.extension_opcode == 6
4483 || i.tm.extension_opcode == 7))
4484 return 0;
4485
4486 /* Skip fisttp, fist, fistp, fbstp, fistp. */
4487 if (i.tm.base_opcode == 0xdf
4488 && (i.tm.extension_opcode == 1
4489 || i.tm.extension_opcode == 2
4490 || i.tm.extension_opcode == 3
4491 || i.tm.extension_opcode == 6
4492 || i.tm.extension_opcode == 7))
4493 return 0;
4494
4495 return 1;
4496 }
4497 }
4498
4499 dest = i.operands - 1;
4500
4501 /* Check fake imm8 operand and 3 source operands. */
4502 if ((i.tm.opcode_modifier.immext
4503 || i.tm.opcode_modifier.vexsources == VEX3SOURCES)
4504 && i.types[dest].bitfield.imm8)
4505 dest--;
4506
4507 /* add, or, adc, sbb, and, sub, xor, cmp, test, xchg, xadd */
4508 if (!any_vex_p
4509 && (base_opcode == 0x1
4510 || base_opcode == 0x9
4511 || base_opcode == 0x11
4512 || base_opcode == 0x19
4513 || base_opcode == 0x21
4514 || base_opcode == 0x29
4515 || base_opcode == 0x31
4516 || base_opcode == 0x39
4517 || (i.tm.base_opcode >= 0x84 && i.tm.base_opcode <= 0x87)
4518 || base_opcode == 0xfc1))
4519 return 1;
4520
4521 /* Check for load instruction. */
4522 return (i.types[dest].bitfield.class != ClassNone
4523 || i.types[dest].bitfield.instance == Accum);
4524 }
4525
4526 /* Output lfence, 0xfaee8, after instruction. */
4527
4528 static void
4529 insert_lfence_after (void)
4530 {
4531 if (lfence_after_load && load_insn_p ())
4532 {
4533 /* There are also two REP string instructions that require
4534 special treatment. Specifically, the compare string (CMPS)
4535 and scan string (SCAS) instructions set EFLAGS in a manner
4536 that depends on the data being compared/scanned. When used
4537 with a REP prefix, the number of iterations may therefore
4538 vary depending on this data. If the data is a program secret
4539 chosen by the adversary using an LVI method,
4540 then this data-dependent behavior may leak some aspect
4541 of the secret. */
4542 if (((i.tm.base_opcode | 0x1) == 0xa7
4543 || (i.tm.base_opcode | 0x1) == 0xaf)
4544 && i.prefix[REP_PREFIX])
4545 {
4546 as_warn (_("`%s` changes flags which would affect control flow behavior"),
4547 i.tm.name);
4548 }
4549 char *p = frag_more (3);
4550 *p++ = 0xf;
4551 *p++ = 0xae;
4552 *p = 0xe8;
4553 }
4554 }
4555
4556 /* Output lfence, 0xfaee8, before instruction. */
4557
4558 static void
4559 insert_lfence_before (void)
4560 {
4561 char *p;
4562
4563 if (is_any_vex_encoding (&i.tm))
4564 return;
4565
4566 if (i.tm.base_opcode == 0xff
4567 && (i.tm.extension_opcode == 2 || i.tm.extension_opcode == 4))
4568 {
4569 /* Insert lfence before indirect branch if needed. */
4570
4571 if (lfence_before_indirect_branch == lfence_branch_none)
4572 return;
4573
4574 if (i.operands != 1)
4575 abort ();
4576
4577 if (i.reg_operands == 1)
4578 {
4579 /* Indirect branch via register. Don't insert lfence with
4580 -mlfence-after-load=yes. */
4581 if (lfence_after_load
4582 || lfence_before_indirect_branch == lfence_branch_memory)
4583 return;
4584 }
4585 else if (i.mem_operands == 1
4586 && lfence_before_indirect_branch != lfence_branch_register)
4587 {
4588 as_warn (_("indirect `%s` with memory operand should be avoided"),
4589 i.tm.name);
4590 return;
4591 }
4592 else
4593 return;
4594
4595 if (last_insn.kind != last_insn_other
4596 && last_insn.seg == now_seg)
4597 {
4598 as_warn_where (last_insn.file, last_insn.line,
4599 _("`%s` skips -mlfence-before-indirect-branch on `%s`"),
4600 last_insn.name, i.tm.name);
4601 return;
4602 }
4603
4604 p = frag_more (3);
4605 *p++ = 0xf;
4606 *p++ = 0xae;
4607 *p = 0xe8;
4608 return;
4609 }
4610
4611 /* Output or/not/shl and lfence before near ret. */
4612 if (lfence_before_ret != lfence_before_ret_none
4613 && (i.tm.base_opcode == 0xc2
4614 || i.tm.base_opcode == 0xc3))
4615 {
4616 if (last_insn.kind != last_insn_other
4617 && last_insn.seg == now_seg)
4618 {
4619 as_warn_where (last_insn.file, last_insn.line,
4620 _("`%s` skips -mlfence-before-ret on `%s`"),
4621 last_insn.name, i.tm.name);
4622 return;
4623 }
4624
4625 /* Near ret ingore operand size override under CPU64. */
4626 char prefix = flag_code == CODE_64BIT
4627 ? 0x48
4628 : i.prefix[DATA_PREFIX] ? 0x66 : 0x0;
4629
4630 if (lfence_before_ret == lfence_before_ret_not)
4631 {
4632 /* not: 0xf71424, may add prefix
4633 for operand size override or 64-bit code. */
4634 p = frag_more ((prefix ? 2 : 0) + 6 + 3);
4635 if (prefix)
4636 *p++ = prefix;
4637 *p++ = 0xf7;
4638 *p++ = 0x14;
4639 *p++ = 0x24;
4640 if (prefix)
4641 *p++ = prefix;
4642 *p++ = 0xf7;
4643 *p++ = 0x14;
4644 *p++ = 0x24;
4645 }
4646 else
4647 {
4648 p = frag_more ((prefix ? 1 : 0) + 4 + 3);
4649 if (prefix)
4650 *p++ = prefix;
4651 if (lfence_before_ret == lfence_before_ret_or)
4652 {
4653 /* or: 0x830c2400, may add prefix
4654 for operand size override or 64-bit code. */
4655 *p++ = 0x83;
4656 *p++ = 0x0c;
4657 }
4658 else
4659 {
4660 /* shl: 0xc1242400, may add prefix
4661 for operand size override or 64-bit code. */
4662 *p++ = 0xc1;
4663 *p++ = 0x24;
4664 }
4665
4666 *p++ = 0x24;
4667 *p++ = 0x0;
4668 }
4669
4670 *p++ = 0xf;
4671 *p++ = 0xae;
4672 *p = 0xe8;
4673 }
4674 }
4675
4676 /* This is the guts of the machine-dependent assembler. LINE points to a
4677 machine dependent instruction. This function is supposed to emit
4678 the frags/bytes it assembles to. */
4679
4680 void
4681 md_assemble (char *line)
4682 {
4683 unsigned int j;
4684 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4685 const insn_template *t;
4686
4687 /* Initialize globals. */
4688 memset (&i, '\0', sizeof (i));
4689 for (j = 0; j < MAX_OPERANDS; j++)
4690 i.reloc[j] = NO_RELOC;
4691 memset (disp_expressions, '\0', sizeof (disp_expressions));
4692 memset (im_expressions, '\0', sizeof (im_expressions));
4693 save_stack_p = save_stack;
4694
4695 /* First parse an instruction mnemonic & call i386_operand for the operands.
4696 We assume that the scrubber has arranged it so that line[0] is the valid
4697 start of a (possibly prefixed) mnemonic. */
4698
4699 line = parse_insn (line, mnemonic);
4700 if (line == NULL)
4701 return;
4702 mnem_suffix = i.suffix;
4703
4704 line = parse_operands (line, mnemonic);
4705 this_operand = -1;
4706 xfree (i.memop1_string);
4707 i.memop1_string = NULL;
4708 if (line == NULL)
4709 return;
4710
4711 /* Now we've parsed the mnemonic into a set of templates, and have the
4712 operands at hand. */
4713
4714 /* All Intel opcodes have reversed operands except for "bound", "enter",
4715 "monitor*", "mwait*", "tpause", and "umwait". We also don't reverse
4716 intersegment "jmp" and "call" instructions with 2 immediate operands so
4717 that the immediate segment precedes the offset, as it does when in AT&T
4718 mode. */
4719 if (intel_syntax
4720 && i.operands > 1
4721 && (strcmp (mnemonic, "bound") != 0)
4722 && (strcmp (mnemonic, "invlpga") != 0)
4723 && (strncmp (mnemonic, "monitor", 7) != 0)
4724 && (strncmp (mnemonic, "mwait", 5) != 0)
4725 && (strcmp (mnemonic, "tpause") != 0)
4726 && (strcmp (mnemonic, "umwait") != 0)
4727 && !(operand_type_check (i.types[0], imm)
4728 && operand_type_check (i.types[1], imm)))
4729 swap_operands ();
4730
4731 /* The order of the immediates should be reversed
4732 for 2 immediates extrq and insertq instructions */
4733 if (i.imm_operands == 2
4734 && (strcmp (mnemonic, "extrq") == 0
4735 || strcmp (mnemonic, "insertq") == 0))
4736 swap_2_operands (0, 1);
4737
4738 if (i.imm_operands)
4739 optimize_imm ();
4740
4741 /* Don't optimize displacement for movabs since it only takes 64bit
4742 displacement. */
4743 if (i.disp_operands
4744 && i.disp_encoding != disp_encoding_32bit
4745 && (flag_code != CODE_64BIT
4746 || strcmp (mnemonic, "movabs") != 0))
4747 optimize_disp ();
4748
4749 /* Next, we find a template that matches the given insn,
4750 making sure the overlap of the given operands types is consistent
4751 with the template operand types. */
4752
4753 if (!(t = match_template (mnem_suffix)))
4754 return;
4755
4756 if (sse_check != check_none
4757 && !i.tm.opcode_modifier.noavx
4758 && !i.tm.cpu_flags.bitfield.cpuavx
4759 && !i.tm.cpu_flags.bitfield.cpuavx512f
4760 && (i.tm.cpu_flags.bitfield.cpusse
4761 || i.tm.cpu_flags.bitfield.cpusse2
4762 || i.tm.cpu_flags.bitfield.cpusse3
4763 || i.tm.cpu_flags.bitfield.cpussse3
4764 || i.tm.cpu_flags.bitfield.cpusse4_1
4765 || i.tm.cpu_flags.bitfield.cpusse4_2
4766 || i.tm.cpu_flags.bitfield.cpupclmul
4767 || i.tm.cpu_flags.bitfield.cpuaes
4768 || i.tm.cpu_flags.bitfield.cpusha
4769 || i.tm.cpu_flags.bitfield.cpugfni))
4770 {
4771 (sse_check == check_warning
4772 ? as_warn
4773 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4774 }
4775
4776 if (i.tm.opcode_modifier.fwait)
4777 if (!add_prefix (FWAIT_OPCODE))
4778 return;
4779
4780 /* Check if REP prefix is OK. */
4781 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4782 {
4783 as_bad (_("invalid instruction `%s' after `%s'"),
4784 i.tm.name, i.rep_prefix);
4785 return;
4786 }
4787
4788 /* Check for lock without a lockable instruction. Destination operand
4789 must be memory unless it is xchg (0x86). */
4790 if (i.prefix[LOCK_PREFIX]
4791 && (!i.tm.opcode_modifier.islockable
4792 || i.mem_operands == 0
4793 || (i.tm.base_opcode != 0x86
4794 && !(i.flags[i.operands - 1] & Operand_Mem))))
4795 {
4796 as_bad (_("expecting lockable instruction after `lock'"));
4797 return;
4798 }
4799
4800 /* Check for data size prefix on VEX/XOP/EVEX encoded and SIMD insns. */
4801 if (i.prefix[DATA_PREFIX]
4802 && (is_any_vex_encoding (&i.tm)
4803 || i.tm.operand_types[i.imm_operands].bitfield.class >= RegMMX
4804 || i.tm.operand_types[i.imm_operands + 1].bitfield.class >= RegMMX))
4805 {
4806 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4807 return;
4808 }
4809
4810 /* Check if HLE prefix is OK. */
4811 if (i.hle_prefix && !check_hle ())
4812 return;
4813
4814 /* Check BND prefix. */
4815 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4816 as_bad (_("expecting valid branch instruction after `bnd'"));
4817
4818 /* Check NOTRACK prefix. */
4819 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4820 as_bad (_("expecting indirect branch instruction after `notrack'"));
4821
4822 if (i.tm.cpu_flags.bitfield.cpumpx)
4823 {
4824 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4825 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4826 else if (flag_code != CODE_16BIT
4827 ? i.prefix[ADDR_PREFIX]
4828 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4829 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4830 }
4831
4832 /* Insert BND prefix. */
4833 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4834 {
4835 if (!i.prefix[BND_PREFIX])
4836 add_prefix (BND_PREFIX_OPCODE);
4837 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4838 {
4839 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4840 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4841 }
4842 }
4843
4844 /* Check string instruction segment overrides. */
4845 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4846 {
4847 gas_assert (i.mem_operands);
4848 if (!check_string ())
4849 return;
4850 i.disp_operands = 0;
4851 }
4852
4853 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4854 optimize_encoding ();
4855
4856 if (!process_suffix ())
4857 return;
4858
4859 /* Update operand types and check extended states. */
4860 for (j = 0; j < i.operands; j++)
4861 {
4862 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4863 switch (i.tm.operand_types[j].bitfield.class)
4864 {
4865 default:
4866 break;
4867 case RegMMX:
4868 i.xstate |= xstate_mmx;
4869 break;
4870 case RegMask:
4871 i.xstate |= xstate_zmm;
4872 break;
4873 case RegSIMD:
4874 if (i.tm.operand_types[j].bitfield.tmmword)
4875 i.xstate |= xstate_tmm;
4876 else if (i.tm.operand_types[j].bitfield.zmmword)
4877 i.xstate |= xstate_zmm;
4878 else if (i.tm.operand_types[j].bitfield.ymmword)
4879 i.xstate |= xstate_ymm;
4880 else if (i.tm.operand_types[j].bitfield.xmmword)
4881 i.xstate |= xstate_xmm;
4882 break;
4883 }
4884 }
4885
4886 /* Make still unresolved immediate matches conform to size of immediate
4887 given in i.suffix. */
4888 if (!finalize_imm ())
4889 return;
4890
4891 if (i.types[0].bitfield.imm1)
4892 i.imm_operands = 0; /* kludge for shift insns. */
4893
4894 /* We only need to check those implicit registers for instructions
4895 with 3 operands or less. */
4896 if (i.operands <= 3)
4897 for (j = 0; j < i.operands; j++)
4898 if (i.types[j].bitfield.instance != InstanceNone
4899 && !i.types[j].bitfield.xmmword)
4900 i.reg_operands--;
4901
4902 /* For insns with operands there are more diddles to do to the opcode. */
4903 if (i.operands)
4904 {
4905 if (!process_operands ())
4906 return;
4907 }
4908 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4909 {
4910 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4911 as_warn (_("translating to `%sp'"), i.tm.name);
4912 }
4913
4914 if (is_any_vex_encoding (&i.tm))
4915 {
4916 if (!cpu_arch_flags.bitfield.cpui286)
4917 {
4918 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4919 i.tm.name);
4920 return;
4921 }
4922
4923 /* Check for explicit REX prefix. */
4924 if (i.prefix[REX_PREFIX] || i.rex_encoding)
4925 {
4926 as_bad (_("REX prefix invalid with `%s'"), i.tm.name);
4927 return;
4928 }
4929
4930 if (i.tm.opcode_modifier.vex)
4931 build_vex_prefix (t);
4932 else
4933 build_evex_prefix ();
4934
4935 /* The individual REX.RXBW bits got consumed. */
4936 i.rex &= REX_OPCODE;
4937 }
4938
4939 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4940 instructions may define INT_OPCODE as well, so avoid this corner
4941 case for those instructions that use MODRM. */
4942 if (i.tm.base_opcode == INT_OPCODE
4943 && !i.tm.opcode_modifier.modrm
4944 && i.op[0].imms->X_add_number == 3)
4945 {
4946 i.tm.base_opcode = INT3_OPCODE;
4947 i.imm_operands = 0;
4948 }
4949
4950 if ((i.tm.opcode_modifier.jump == JUMP
4951 || i.tm.opcode_modifier.jump == JUMP_BYTE
4952 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4953 && i.op[0].disps->X_op == O_constant)
4954 {
4955 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4956 the absolute address given by the constant. Since ix86 jumps and
4957 calls are pc relative, we need to generate a reloc. */
4958 i.op[0].disps->X_add_symbol = &abs_symbol;
4959 i.op[0].disps->X_op = O_symbol;
4960 }
4961
4962 /* For 8 bit registers we need an empty rex prefix. Also if the
4963 instruction already has a prefix, we need to convert old
4964 registers to new ones. */
4965
4966 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4967 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4968 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4969 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4970 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4971 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4972 && i.rex != 0))
4973 {
4974 int x;
4975
4976 i.rex |= REX_OPCODE;
4977 for (x = 0; x < 2; x++)
4978 {
4979 /* Look for 8 bit operand that uses old registers. */
4980 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4981 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4982 {
4983 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4984 /* In case it is "hi" register, give up. */
4985 if (i.op[x].regs->reg_num > 3)
4986 as_bad (_("can't encode register '%s%s' in an "
4987 "instruction requiring REX prefix."),
4988 register_prefix, i.op[x].regs->reg_name);
4989
4990 /* Otherwise it is equivalent to the extended register.
4991 Since the encoding doesn't change this is merely
4992 cosmetic cleanup for debug output. */
4993
4994 i.op[x].regs = i.op[x].regs + 8;
4995 }
4996 }
4997 }
4998
4999 if (i.rex == 0 && i.rex_encoding)
5000 {
5001 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
5002 that uses legacy register. If it is "hi" register, don't add
5003 the REX_OPCODE byte. */
5004 int x;
5005 for (x = 0; x < 2; x++)
5006 if (i.types[x].bitfield.class == Reg
5007 && i.types[x].bitfield.byte
5008 && (i.op[x].regs->reg_flags & RegRex64) == 0
5009 && i.op[x].regs->reg_num > 3)
5010 {
5011 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
5012 i.rex_encoding = FALSE;
5013 break;
5014 }
5015
5016 if (i.rex_encoding)
5017 i.rex = REX_OPCODE;
5018 }
5019
5020 if (i.rex != 0)
5021 add_prefix (REX_OPCODE | i.rex);
5022
5023 insert_lfence_before ();
5024
5025 /* We are ready to output the insn. */
5026 output_insn ();
5027
5028 insert_lfence_after ();
5029
5030 last_insn.seg = now_seg;
5031
5032 if (i.tm.opcode_modifier.isprefix)
5033 {
5034 last_insn.kind = last_insn_prefix;
5035 last_insn.name = i.tm.name;
5036 last_insn.file = as_where (&last_insn.line);
5037 }
5038 else
5039 last_insn.kind = last_insn_other;
5040 }
5041
5042 static char *
5043 parse_insn (char *line, char *mnemonic)
5044 {
5045 char *l = line;
5046 char *token_start = l;
5047 char *mnem_p;
5048 int supported;
5049 const insn_template *t;
5050 char *dot_p = NULL;
5051
5052 while (1)
5053 {
5054 mnem_p = mnemonic;
5055 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
5056 {
5057 if (*mnem_p == '.')
5058 dot_p = mnem_p;
5059 mnem_p++;
5060 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
5061 {
5062 as_bad (_("no such instruction: `%s'"), token_start);
5063 return NULL;
5064 }
5065 l++;
5066 }
5067 if (!is_space_char (*l)
5068 && *l != END_OF_INSN
5069 && (intel_syntax
5070 || (*l != PREFIX_SEPARATOR
5071 && *l != ',')))
5072 {
5073 as_bad (_("invalid character %s in mnemonic"),
5074 output_invalid (*l));
5075 return NULL;
5076 }
5077 if (token_start == l)
5078 {
5079 if (!intel_syntax && *l == PREFIX_SEPARATOR)
5080 as_bad (_("expecting prefix; got nothing"));
5081 else
5082 as_bad (_("expecting mnemonic; got nothing"));
5083 return NULL;
5084 }
5085
5086 /* Look up instruction (or prefix) via hash table. */
5087 current_templates = (const templates *) hash_find (op_hash, mnemonic);
5088
5089 if (*l != END_OF_INSN
5090 && (!is_space_char (*l) || l[1] != END_OF_INSN)
5091 && current_templates
5092 && current_templates->start->opcode_modifier.isprefix)
5093 {
5094 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
5095 {
5096 as_bad ((flag_code != CODE_64BIT
5097 ? _("`%s' is only supported in 64-bit mode")
5098 : _("`%s' is not supported in 64-bit mode")),
5099 current_templates->start->name);
5100 return NULL;
5101 }
5102 /* If we are in 16-bit mode, do not allow addr16 or data16.
5103 Similarly, in 32-bit mode, do not allow addr32 or data32. */
5104 if ((current_templates->start->opcode_modifier.size == SIZE16
5105 || current_templates->start->opcode_modifier.size == SIZE32)
5106 && flag_code != CODE_64BIT
5107 && ((current_templates->start->opcode_modifier.size == SIZE32)
5108 ^ (flag_code == CODE_16BIT)))
5109 {
5110 as_bad (_("redundant %s prefix"),
5111 current_templates->start->name);
5112 return NULL;
5113 }
5114 if (current_templates->start->opcode_length == 0)
5115 {
5116 /* Handle pseudo prefixes. */
5117 switch (current_templates->start->base_opcode)
5118 {
5119 case 0x0:
5120 /* {disp8} */
5121 i.disp_encoding = disp_encoding_8bit;
5122 break;
5123 case 0x1:
5124 /* {disp32} */
5125 i.disp_encoding = disp_encoding_32bit;
5126 break;
5127 case 0x2:
5128 /* {load} */
5129 i.dir_encoding = dir_encoding_load;
5130 break;
5131 case 0x3:
5132 /* {store} */
5133 i.dir_encoding = dir_encoding_store;
5134 break;
5135 case 0x4:
5136 /* {vex} */
5137 i.vec_encoding = vex_encoding_vex;
5138 break;
5139 case 0x5:
5140 /* {vex3} */
5141 i.vec_encoding = vex_encoding_vex3;
5142 break;
5143 case 0x6:
5144 /* {evex} */
5145 i.vec_encoding = vex_encoding_evex;
5146 break;
5147 case 0x7:
5148 /* {rex} */
5149 i.rex_encoding = TRUE;
5150 break;
5151 case 0x8:
5152 /* {nooptimize} */
5153 i.no_optimize = TRUE;
5154 break;
5155 default:
5156 abort ();
5157 }
5158 }
5159 else
5160 {
5161 /* Add prefix, checking for repeated prefixes. */
5162 switch (add_prefix (current_templates->start->base_opcode))
5163 {
5164 case PREFIX_EXIST:
5165 return NULL;
5166 case PREFIX_DS:
5167 if (current_templates->start->cpu_flags.bitfield.cpuibt)
5168 i.notrack_prefix = current_templates->start->name;
5169 break;
5170 case PREFIX_REP:
5171 if (current_templates->start->cpu_flags.bitfield.cpuhle)
5172 i.hle_prefix = current_templates->start->name;
5173 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
5174 i.bnd_prefix = current_templates->start->name;
5175 else
5176 i.rep_prefix = current_templates->start->name;
5177 break;
5178 default:
5179 break;
5180 }
5181 }
5182 /* Skip past PREFIX_SEPARATOR and reset token_start. */
5183 token_start = ++l;
5184 }
5185 else
5186 break;
5187 }
5188
5189 if (!current_templates)
5190 {
5191 /* Deprecated functionality (new code should use pseudo-prefixes instead):
5192 Check if we should swap operand or force 32bit displacement in
5193 encoding. */
5194 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
5195 i.dir_encoding = dir_encoding_swap;
5196 else if (mnem_p - 3 == dot_p
5197 && dot_p[1] == 'd'
5198 && dot_p[2] == '8')
5199 i.disp_encoding = disp_encoding_8bit;
5200 else if (mnem_p - 4 == dot_p
5201 && dot_p[1] == 'd'
5202 && dot_p[2] == '3'
5203 && dot_p[3] == '2')
5204 i.disp_encoding = disp_encoding_32bit;
5205 else
5206 goto check_suffix;
5207 mnem_p = dot_p;
5208 *dot_p = '\0';
5209 current_templates = (const templates *) hash_find (op_hash, mnemonic);
5210 }
5211
5212 if (!current_templates)
5213 {
5214 check_suffix:
5215 if (mnem_p > mnemonic)
5216 {
5217 /* See if we can get a match by trimming off a suffix. */
5218 switch (mnem_p[-1])
5219 {
5220 case WORD_MNEM_SUFFIX:
5221 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
5222 i.suffix = SHORT_MNEM_SUFFIX;
5223 else
5224 /* Fall through. */
5225 case BYTE_MNEM_SUFFIX:
5226 case QWORD_MNEM_SUFFIX:
5227 i.suffix = mnem_p[-1];
5228 mnem_p[-1] = '\0';
5229 current_templates = (const templates *) hash_find (op_hash,
5230 mnemonic);
5231 break;
5232 case SHORT_MNEM_SUFFIX:
5233 case LONG_MNEM_SUFFIX:
5234 if (!intel_syntax)
5235 {
5236 i.suffix = mnem_p[-1];
5237 mnem_p[-1] = '\0';
5238 current_templates = (const templates *) hash_find (op_hash,
5239 mnemonic);
5240 }
5241 break;
5242
5243 /* Intel Syntax. */
5244 case 'd':
5245 if (intel_syntax)
5246 {
5247 if (intel_float_operand (mnemonic) == 1)
5248 i.suffix = SHORT_MNEM_SUFFIX;
5249 else
5250 i.suffix = LONG_MNEM_SUFFIX;
5251 mnem_p[-1] = '\0';
5252 current_templates = (const templates *) hash_find (op_hash,
5253 mnemonic);
5254 }
5255 break;
5256 }
5257 }
5258
5259 if (!current_templates)
5260 {
5261 as_bad (_("no such instruction: `%s'"), token_start);
5262 return NULL;
5263 }
5264 }
5265
5266 if (current_templates->start->opcode_modifier.jump == JUMP
5267 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
5268 {
5269 /* Check for a branch hint. We allow ",pt" and ",pn" for
5270 predict taken and predict not taken respectively.
5271 I'm not sure that branch hints actually do anything on loop
5272 and jcxz insns (JumpByte) for current Pentium4 chips. They
5273 may work in the future and it doesn't hurt to accept them
5274 now. */
5275 if (l[0] == ',' && l[1] == 'p')
5276 {
5277 if (l[2] == 't')
5278 {
5279 if (!add_prefix (DS_PREFIX_OPCODE))
5280 return NULL;
5281 l += 3;
5282 }
5283 else if (l[2] == 'n')
5284 {
5285 if (!add_prefix (CS_PREFIX_OPCODE))
5286 return NULL;
5287 l += 3;
5288 }
5289 }
5290 }
5291 /* Any other comma loses. */
5292 if (*l == ',')
5293 {
5294 as_bad (_("invalid character %s in mnemonic"),
5295 output_invalid (*l));
5296 return NULL;
5297 }
5298
5299 /* Check if instruction is supported on specified architecture. */
5300 supported = 0;
5301 for (t = current_templates->start; t < current_templates->end; ++t)
5302 {
5303 supported |= cpu_flags_match (t);
5304 if (supported == CPU_FLAGS_PERFECT_MATCH)
5305 {
5306 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
5307 as_warn (_("use .code16 to ensure correct addressing mode"));
5308
5309 return l;
5310 }
5311 }
5312
5313 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5314 as_bad (flag_code == CODE_64BIT
5315 ? _("`%s' is not supported in 64-bit mode")
5316 : _("`%s' is only supported in 64-bit mode"),
5317 current_templates->start->name);
5318 else
5319 as_bad (_("`%s' is not supported on `%s%s'"),
5320 current_templates->start->name,
5321 cpu_arch_name ? cpu_arch_name : default_arch,
5322 cpu_sub_arch_name ? cpu_sub_arch_name : "");
5323
5324 return NULL;
5325 }
5326
5327 static char *
5328 parse_operands (char *l, const char *mnemonic)
5329 {
5330 char *token_start;
5331
5332 /* 1 if operand is pending after ','. */
5333 unsigned int expecting_operand = 0;
5334
5335 /* Non-zero if operand parens not balanced. */
5336 unsigned int paren_not_balanced;
5337
5338 while (*l != END_OF_INSN)
5339 {
5340 /* Skip optional white space before operand. */
5341 if (is_space_char (*l))
5342 ++l;
5343 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
5344 {
5345 as_bad (_("invalid character %s before operand %d"),
5346 output_invalid (*l),
5347 i.operands + 1);
5348 return NULL;
5349 }
5350 token_start = l; /* After white space. */
5351 paren_not_balanced = 0;
5352 while (paren_not_balanced || *l != ',')
5353 {
5354 if (*l == END_OF_INSN)
5355 {
5356 if (paren_not_balanced)
5357 {
5358 if (!intel_syntax)
5359 as_bad (_("unbalanced parenthesis in operand %d."),
5360 i.operands + 1);
5361 else
5362 as_bad (_("unbalanced brackets in operand %d."),
5363 i.operands + 1);
5364 return NULL;
5365 }
5366 else
5367 break; /* we are done */
5368 }
5369 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
5370 {
5371 as_bad (_("invalid character %s in operand %d"),
5372 output_invalid (*l),
5373 i.operands + 1);
5374 return NULL;
5375 }
5376 if (!intel_syntax)
5377 {
5378 if (*l == '(')
5379 ++paren_not_balanced;
5380 if (*l == ')')
5381 --paren_not_balanced;
5382 }
5383 else
5384 {
5385 if (*l == '[')
5386 ++paren_not_balanced;
5387 if (*l == ']')
5388 --paren_not_balanced;
5389 }
5390 l++;
5391 }
5392 if (l != token_start)
5393 { /* Yes, we've read in another operand. */
5394 unsigned int operand_ok;
5395 this_operand = i.operands++;
5396 if (i.operands > MAX_OPERANDS)
5397 {
5398 as_bad (_("spurious operands; (%d operands/instruction max)"),
5399 MAX_OPERANDS);
5400 return NULL;
5401 }
5402 i.types[this_operand].bitfield.unspecified = 1;
5403 /* Now parse operand adding info to 'i' as we go along. */
5404 END_STRING_AND_SAVE (l);
5405
5406 if (i.mem_operands > 1)
5407 {
5408 as_bad (_("too many memory references for `%s'"),
5409 mnemonic);
5410 return 0;
5411 }
5412
5413 if (intel_syntax)
5414 operand_ok =
5415 i386_intel_operand (token_start,
5416 intel_float_operand (mnemonic));
5417 else
5418 operand_ok = i386_att_operand (token_start);
5419
5420 RESTORE_END_STRING (l);
5421 if (!operand_ok)
5422 return NULL;
5423 }
5424 else
5425 {
5426 if (expecting_operand)
5427 {
5428 expecting_operand_after_comma:
5429 as_bad (_("expecting operand after ','; got nothing"));
5430 return NULL;
5431 }
5432 if (*l == ',')
5433 {
5434 as_bad (_("expecting operand before ','; got nothing"));
5435 return NULL;
5436 }
5437 }
5438
5439 /* Now *l must be either ',' or END_OF_INSN. */
5440 if (*l == ',')
5441 {
5442 if (*++l == END_OF_INSN)
5443 {
5444 /* Just skip it, if it's \n complain. */
5445 goto expecting_operand_after_comma;
5446 }
5447 expecting_operand = 1;
5448 }
5449 }
5450 return l;
5451 }
5452
5453 static void
5454 swap_2_operands (int xchg1, int xchg2)
5455 {
5456 union i386_op temp_op;
5457 i386_operand_type temp_type;
5458 unsigned int temp_flags;
5459 enum bfd_reloc_code_real temp_reloc;
5460
5461 temp_type = i.types[xchg2];
5462 i.types[xchg2] = i.types[xchg1];
5463 i.types[xchg1] = temp_type;
5464
5465 temp_flags = i.flags[xchg2];
5466 i.flags[xchg2] = i.flags[xchg1];
5467 i.flags[xchg1] = temp_flags;
5468
5469 temp_op = i.op[xchg2];
5470 i.op[xchg2] = i.op[xchg1];
5471 i.op[xchg1] = temp_op;
5472
5473 temp_reloc = i.reloc[xchg2];
5474 i.reloc[xchg2] = i.reloc[xchg1];
5475 i.reloc[xchg1] = temp_reloc;
5476
5477 if (i.mask)
5478 {
5479 if (i.mask->operand == xchg1)
5480 i.mask->operand = xchg2;
5481 else if (i.mask->operand == xchg2)
5482 i.mask->operand = xchg1;
5483 }
5484 if (i.broadcast)
5485 {
5486 if (i.broadcast->operand == xchg1)
5487 i.broadcast->operand = xchg2;
5488 else if (i.broadcast->operand == xchg2)
5489 i.broadcast->operand = xchg1;
5490 }
5491 if (i.rounding)
5492 {
5493 if (i.rounding->operand == xchg1)
5494 i.rounding->operand = xchg2;
5495 else if (i.rounding->operand == xchg2)
5496 i.rounding->operand = xchg1;
5497 }
5498 }
5499
5500 static void
5501 swap_operands (void)
5502 {
5503 switch (i.operands)
5504 {
5505 case 5:
5506 case 4:
5507 swap_2_operands (1, i.operands - 2);
5508 /* Fall through. */
5509 case 3:
5510 case 2:
5511 swap_2_operands (0, i.operands - 1);
5512 break;
5513 default:
5514 abort ();
5515 }
5516
5517 if (i.mem_operands == 2)
5518 {
5519 const seg_entry *temp_seg;
5520 temp_seg = i.seg[0];
5521 i.seg[0] = i.seg[1];
5522 i.seg[1] = temp_seg;
5523 }
5524 }
5525
5526 /* Try to ensure constant immediates are represented in the smallest
5527 opcode possible. */
5528 static void
5529 optimize_imm (void)
5530 {
5531 char guess_suffix = 0;
5532 int op;
5533
5534 if (i.suffix)
5535 guess_suffix = i.suffix;
5536 else if (i.reg_operands)
5537 {
5538 /* Figure out a suffix from the last register operand specified.
5539 We can't do this properly yet, i.e. excluding special register
5540 instances, but the following works for instructions with
5541 immediates. In any case, we can't set i.suffix yet. */
5542 for (op = i.operands; --op >= 0;)
5543 if (i.types[op].bitfield.class != Reg)
5544 continue;
5545 else if (i.types[op].bitfield.byte)
5546 {
5547 guess_suffix = BYTE_MNEM_SUFFIX;
5548 break;
5549 }
5550 else if (i.types[op].bitfield.word)
5551 {
5552 guess_suffix = WORD_MNEM_SUFFIX;
5553 break;
5554 }
5555 else if (i.types[op].bitfield.dword)
5556 {
5557 guess_suffix = LONG_MNEM_SUFFIX;
5558 break;
5559 }
5560 else if (i.types[op].bitfield.qword)
5561 {
5562 guess_suffix = QWORD_MNEM_SUFFIX;
5563 break;
5564 }
5565 }
5566 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5567 guess_suffix = WORD_MNEM_SUFFIX;
5568
5569 for (op = i.operands; --op >= 0;)
5570 if (operand_type_check (i.types[op], imm))
5571 {
5572 switch (i.op[op].imms->X_op)
5573 {
5574 case O_constant:
5575 /* If a suffix is given, this operand may be shortened. */
5576 switch (guess_suffix)
5577 {
5578 case LONG_MNEM_SUFFIX:
5579 i.types[op].bitfield.imm32 = 1;
5580 i.types[op].bitfield.imm64 = 1;
5581 break;
5582 case WORD_MNEM_SUFFIX:
5583 i.types[op].bitfield.imm16 = 1;
5584 i.types[op].bitfield.imm32 = 1;
5585 i.types[op].bitfield.imm32s = 1;
5586 i.types[op].bitfield.imm64 = 1;
5587 break;
5588 case BYTE_MNEM_SUFFIX:
5589 i.types[op].bitfield.imm8 = 1;
5590 i.types[op].bitfield.imm8s = 1;
5591 i.types[op].bitfield.imm16 = 1;
5592 i.types[op].bitfield.imm32 = 1;
5593 i.types[op].bitfield.imm32s = 1;
5594 i.types[op].bitfield.imm64 = 1;
5595 break;
5596 }
5597
5598 /* If this operand is at most 16 bits, convert it
5599 to a signed 16 bit number before trying to see
5600 whether it will fit in an even smaller size.
5601 This allows a 16-bit operand such as $0xffe0 to
5602 be recognised as within Imm8S range. */
5603 if ((i.types[op].bitfield.imm16)
5604 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5605 {
5606 i.op[op].imms->X_add_number =
5607 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5608 }
5609 #ifdef BFD64
5610 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5611 if ((i.types[op].bitfield.imm32)
5612 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5613 == 0))
5614 {
5615 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5616 ^ ((offsetT) 1 << 31))
5617 - ((offsetT) 1 << 31));
5618 }
5619 #endif
5620 i.types[op]
5621 = operand_type_or (i.types[op],
5622 smallest_imm_type (i.op[op].imms->X_add_number));
5623
5624 /* We must avoid matching of Imm32 templates when 64bit
5625 only immediate is available. */
5626 if (guess_suffix == QWORD_MNEM_SUFFIX)
5627 i.types[op].bitfield.imm32 = 0;
5628 break;
5629
5630 case O_absent:
5631 case O_register:
5632 abort ();
5633
5634 /* Symbols and expressions. */
5635 default:
5636 /* Convert symbolic operand to proper sizes for matching, but don't
5637 prevent matching a set of insns that only supports sizes other
5638 than those matching the insn suffix. */
5639 {
5640 i386_operand_type mask, allowed;
5641 const insn_template *t;
5642
5643 operand_type_set (&mask, 0);
5644 operand_type_set (&allowed, 0);
5645
5646 for (t = current_templates->start;
5647 t < current_templates->end;
5648 ++t)
5649 {
5650 allowed = operand_type_or (allowed, t->operand_types[op]);
5651 allowed = operand_type_and (allowed, anyimm);
5652 }
5653 switch (guess_suffix)
5654 {
5655 case QWORD_MNEM_SUFFIX:
5656 mask.bitfield.imm64 = 1;
5657 mask.bitfield.imm32s = 1;
5658 break;
5659 case LONG_MNEM_SUFFIX:
5660 mask.bitfield.imm32 = 1;
5661 break;
5662 case WORD_MNEM_SUFFIX:
5663 mask.bitfield.imm16 = 1;
5664 break;
5665 case BYTE_MNEM_SUFFIX:
5666 mask.bitfield.imm8 = 1;
5667 break;
5668 default:
5669 break;
5670 }
5671 allowed = operand_type_and (mask, allowed);
5672 if (!operand_type_all_zero (&allowed))
5673 i.types[op] = operand_type_and (i.types[op], mask);
5674 }
5675 break;
5676 }
5677 }
5678 }
5679
5680 /* Try to use the smallest displacement type too. */
5681 static void
5682 optimize_disp (void)
5683 {
5684 int op;
5685
5686 for (op = i.operands; --op >= 0;)
5687 if (operand_type_check (i.types[op], disp))
5688 {
5689 if (i.op[op].disps->X_op == O_constant)
5690 {
5691 offsetT op_disp = i.op[op].disps->X_add_number;
5692
5693 if (i.types[op].bitfield.disp16
5694 && (op_disp & ~(offsetT) 0xffff) == 0)
5695 {
5696 /* If this operand is at most 16 bits, convert
5697 to a signed 16 bit number and don't use 64bit
5698 displacement. */
5699 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5700 i.types[op].bitfield.disp64 = 0;
5701 }
5702 #ifdef BFD64
5703 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5704 if (i.types[op].bitfield.disp32
5705 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5706 {
5707 /* If this operand is at most 32 bits, convert
5708 to a signed 32 bit number and don't use 64bit
5709 displacement. */
5710 op_disp &= (((offsetT) 2 << 31) - 1);
5711 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5712 i.types[op].bitfield.disp64 = 0;
5713 }
5714 #endif
5715 if (!op_disp && i.types[op].bitfield.baseindex)
5716 {
5717 i.types[op].bitfield.disp8 = 0;
5718 i.types[op].bitfield.disp16 = 0;
5719 i.types[op].bitfield.disp32 = 0;
5720 i.types[op].bitfield.disp32s = 0;
5721 i.types[op].bitfield.disp64 = 0;
5722 i.op[op].disps = 0;
5723 i.disp_operands--;
5724 }
5725 else if (flag_code == CODE_64BIT)
5726 {
5727 if (fits_in_signed_long (op_disp))
5728 {
5729 i.types[op].bitfield.disp64 = 0;
5730 i.types[op].bitfield.disp32s = 1;
5731 }
5732 if (i.prefix[ADDR_PREFIX]
5733 && fits_in_unsigned_long (op_disp))
5734 i.types[op].bitfield.disp32 = 1;
5735 }
5736 if ((i.types[op].bitfield.disp32
5737 || i.types[op].bitfield.disp32s
5738 || i.types[op].bitfield.disp16)
5739 && fits_in_disp8 (op_disp))
5740 i.types[op].bitfield.disp8 = 1;
5741 }
5742 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5743 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5744 {
5745 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5746 i.op[op].disps, 0, i.reloc[op]);
5747 i.types[op].bitfield.disp8 = 0;
5748 i.types[op].bitfield.disp16 = 0;
5749 i.types[op].bitfield.disp32 = 0;
5750 i.types[op].bitfield.disp32s = 0;
5751 i.types[op].bitfield.disp64 = 0;
5752 }
5753 else
5754 /* We only support 64bit displacement on constants. */
5755 i.types[op].bitfield.disp64 = 0;
5756 }
5757 }
5758
5759 /* Return 1 if there is a match in broadcast bytes between operand
5760 GIVEN and instruction template T. */
5761
5762 static INLINE int
5763 match_broadcast_size (const insn_template *t, unsigned int given)
5764 {
5765 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5766 && i.types[given].bitfield.byte)
5767 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5768 && i.types[given].bitfield.word)
5769 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5770 && i.types[given].bitfield.dword)
5771 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5772 && i.types[given].bitfield.qword));
5773 }
5774
5775 /* Check if operands are valid for the instruction. */
5776
5777 static int
5778 check_VecOperands (const insn_template *t)
5779 {
5780 unsigned int op;
5781 i386_cpu_flags cpu;
5782
5783 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5784 any one operand are implicity requiring AVX512VL support if the actual
5785 operand size is YMMword or XMMword. Since this function runs after
5786 template matching, there's no need to check for YMMword/XMMword in
5787 the template. */
5788 cpu = cpu_flags_and (t->cpu_flags, avx512);
5789 if (!cpu_flags_all_zero (&cpu)
5790 && !t->cpu_flags.bitfield.cpuavx512vl
5791 && !cpu_arch_flags.bitfield.cpuavx512vl)
5792 {
5793 for (op = 0; op < t->operands; ++op)
5794 {
5795 if (t->operand_types[op].bitfield.zmmword
5796 && (i.types[op].bitfield.ymmword
5797 || i.types[op].bitfield.xmmword))
5798 {
5799 i.error = unsupported;
5800 return 1;
5801 }
5802 }
5803 }
5804
5805 /* Without VSIB byte, we can't have a vector register for index. */
5806 if (!t->opcode_modifier.sib
5807 && i.index_reg
5808 && (i.index_reg->reg_type.bitfield.xmmword
5809 || i.index_reg->reg_type.bitfield.ymmword
5810 || i.index_reg->reg_type.bitfield.zmmword))
5811 {
5812 i.error = unsupported_vector_index_register;
5813 return 1;
5814 }
5815
5816 /* Check if default mask is allowed. */
5817 if (t->opcode_modifier.nodefmask
5818 && (!i.mask || i.mask->mask->reg_num == 0))
5819 {
5820 i.error = no_default_mask;
5821 return 1;
5822 }
5823
5824 /* For VSIB byte, we need a vector register for index, and all vector
5825 registers must be distinct. */
5826 if (t->opcode_modifier.sib && t->opcode_modifier.sib != SIBMEM)
5827 {
5828 if (!i.index_reg
5829 || !((t->opcode_modifier.sib == VECSIB128
5830 && i.index_reg->reg_type.bitfield.xmmword)
5831 || (t->opcode_modifier.sib == VECSIB256
5832 && i.index_reg->reg_type.bitfield.ymmword)
5833 || (t->opcode_modifier.sib == VECSIB512
5834 && i.index_reg->reg_type.bitfield.zmmword)))
5835 {
5836 i.error = invalid_vsib_address;
5837 return 1;
5838 }
5839
5840 gas_assert (i.reg_operands == 2 || i.mask);
5841 if (i.reg_operands == 2 && !i.mask)
5842 {
5843 gas_assert (i.types[0].bitfield.class == RegSIMD);
5844 gas_assert (i.types[0].bitfield.xmmword
5845 || i.types[0].bitfield.ymmword);
5846 gas_assert (i.types[2].bitfield.class == RegSIMD);
5847 gas_assert (i.types[2].bitfield.xmmword
5848 || i.types[2].bitfield.ymmword);
5849 if (operand_check == check_none)
5850 return 0;
5851 if (register_number (i.op[0].regs)
5852 != register_number (i.index_reg)
5853 && register_number (i.op[2].regs)
5854 != register_number (i.index_reg)
5855 && register_number (i.op[0].regs)
5856 != register_number (i.op[2].regs))
5857 return 0;
5858 if (operand_check == check_error)
5859 {
5860 i.error = invalid_vector_register_set;
5861 return 1;
5862 }
5863 as_warn (_("mask, index, and destination registers should be distinct"));
5864 }
5865 else if (i.reg_operands == 1 && i.mask)
5866 {
5867 if (i.types[1].bitfield.class == RegSIMD
5868 && (i.types[1].bitfield.xmmword
5869 || i.types[1].bitfield.ymmword
5870 || i.types[1].bitfield.zmmword)
5871 && (register_number (i.op[1].regs)
5872 == register_number (i.index_reg)))
5873 {
5874 if (operand_check == check_error)
5875 {
5876 i.error = invalid_vector_register_set;
5877 return 1;
5878 }
5879 if (operand_check != check_none)
5880 as_warn (_("index and destination registers should be distinct"));
5881 }
5882 }
5883 }
5884
5885 /* For AMX instructions with three tmmword operands, all tmmword operand must be
5886 distinct */
5887 if (t->operand_types[0].bitfield.tmmword
5888 && i.reg_operands == 3)
5889 {
5890 if (register_number (i.op[0].regs)
5891 == register_number (i.op[1].regs)
5892 || register_number (i.op[0].regs)
5893 == register_number (i.op[2].regs)
5894 || register_number (i.op[1].regs)
5895 == register_number (i.op[2].regs))
5896 {
5897 i.error = invalid_tmm_register_set;
5898 return 1;
5899 }
5900 }
5901
5902 /* Check if broadcast is supported by the instruction and is applied
5903 to the memory operand. */
5904 if (i.broadcast)
5905 {
5906 i386_operand_type type, overlap;
5907
5908 /* Check if specified broadcast is supported in this instruction,
5909 and its broadcast bytes match the memory operand. */
5910 op = i.broadcast->operand;
5911 if (!t->opcode_modifier.broadcast
5912 || !(i.flags[op] & Operand_Mem)
5913 || (!i.types[op].bitfield.unspecified
5914 && !match_broadcast_size (t, op)))
5915 {
5916 bad_broadcast:
5917 i.error = unsupported_broadcast;
5918 return 1;
5919 }
5920
5921 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5922 * i.broadcast->type);
5923 operand_type_set (&type, 0);
5924 switch (i.broadcast->bytes)
5925 {
5926 case 2:
5927 type.bitfield.word = 1;
5928 break;
5929 case 4:
5930 type.bitfield.dword = 1;
5931 break;
5932 case 8:
5933 type.bitfield.qword = 1;
5934 break;
5935 case 16:
5936 type.bitfield.xmmword = 1;
5937 break;
5938 case 32:
5939 type.bitfield.ymmword = 1;
5940 break;
5941 case 64:
5942 type.bitfield.zmmword = 1;
5943 break;
5944 default:
5945 goto bad_broadcast;
5946 }
5947
5948 overlap = operand_type_and (type, t->operand_types[op]);
5949 if (t->operand_types[op].bitfield.class == RegSIMD
5950 && t->operand_types[op].bitfield.byte
5951 + t->operand_types[op].bitfield.word
5952 + t->operand_types[op].bitfield.dword
5953 + t->operand_types[op].bitfield.qword > 1)
5954 {
5955 overlap.bitfield.xmmword = 0;
5956 overlap.bitfield.ymmword = 0;
5957 overlap.bitfield.zmmword = 0;
5958 }
5959 if (operand_type_all_zero (&overlap))
5960 goto bad_broadcast;
5961
5962 if (t->opcode_modifier.checkregsize)
5963 {
5964 unsigned int j;
5965
5966 type.bitfield.baseindex = 1;
5967 for (j = 0; j < i.operands; ++j)
5968 {
5969 if (j != op
5970 && !operand_type_register_match(i.types[j],
5971 t->operand_types[j],
5972 type,
5973 t->operand_types[op]))
5974 goto bad_broadcast;
5975 }
5976 }
5977 }
5978 /* If broadcast is supported in this instruction, we need to check if
5979 operand of one-element size isn't specified without broadcast. */
5980 else if (t->opcode_modifier.broadcast && i.mem_operands)
5981 {
5982 /* Find memory operand. */
5983 for (op = 0; op < i.operands; op++)
5984 if (i.flags[op] & Operand_Mem)
5985 break;
5986 gas_assert (op < i.operands);
5987 /* Check size of the memory operand. */
5988 if (match_broadcast_size (t, op))
5989 {
5990 i.error = broadcast_needed;
5991 return 1;
5992 }
5993 }
5994 else
5995 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5996
5997 /* Check if requested masking is supported. */
5998 if (i.mask)
5999 {
6000 switch (t->opcode_modifier.masking)
6001 {
6002 case BOTH_MASKING:
6003 break;
6004 case MERGING_MASKING:
6005 if (i.mask->zeroing)
6006 {
6007 case 0:
6008 i.error = unsupported_masking;
6009 return 1;
6010 }
6011 break;
6012 case DYNAMIC_MASKING:
6013 /* Memory destinations allow only merging masking. */
6014 if (i.mask->zeroing && i.mem_operands)
6015 {
6016 /* Find memory operand. */
6017 for (op = 0; op < i.operands; op++)
6018 if (i.flags[op] & Operand_Mem)
6019 break;
6020 gas_assert (op < i.operands);
6021 if (op == i.operands - 1)
6022 {
6023 i.error = unsupported_masking;
6024 return 1;
6025 }
6026 }
6027 break;
6028 default:
6029 abort ();
6030 }
6031 }
6032
6033 /* Check if masking is applied to dest operand. */
6034 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
6035 {
6036 i.error = mask_not_on_destination;
6037 return 1;
6038 }
6039
6040 /* Check RC/SAE. */
6041 if (i.rounding)
6042 {
6043 if (!t->opcode_modifier.sae
6044 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
6045 {
6046 i.error = unsupported_rc_sae;
6047 return 1;
6048 }
6049 /* If the instruction has several immediate operands and one of
6050 them is rounding, the rounding operand should be the last
6051 immediate operand. */
6052 if (i.imm_operands > 1
6053 && i.rounding->operand != (int) (i.imm_operands - 1))
6054 {
6055 i.error = rc_sae_operand_not_last_imm;
6056 return 1;
6057 }
6058 }
6059
6060 /* Check the special Imm4 cases; must be the first operand. */
6061 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
6062 {
6063 if (i.op[0].imms->X_op != O_constant
6064 || !fits_in_imm4 (i.op[0].imms->X_add_number))
6065 {
6066 i.error = bad_imm4;
6067 return 1;
6068 }
6069
6070 /* Turn off Imm<N> so that update_imm won't complain. */
6071 operand_type_set (&i.types[0], 0);
6072 }
6073
6074 /* Check vector Disp8 operand. */
6075 if (t->opcode_modifier.disp8memshift
6076 && i.disp_encoding != disp_encoding_32bit)
6077 {
6078 if (i.broadcast)
6079 i.memshift = t->opcode_modifier.broadcast - 1;
6080 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
6081 i.memshift = t->opcode_modifier.disp8memshift;
6082 else
6083 {
6084 const i386_operand_type *type = NULL;
6085
6086 i.memshift = 0;
6087 for (op = 0; op < i.operands; op++)
6088 if (i.flags[op] & Operand_Mem)
6089 {
6090 if (t->opcode_modifier.evex == EVEXLIG)
6091 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
6092 else if (t->operand_types[op].bitfield.xmmword
6093 + t->operand_types[op].bitfield.ymmword
6094 + t->operand_types[op].bitfield.zmmword <= 1)
6095 type = &t->operand_types[op];
6096 else if (!i.types[op].bitfield.unspecified)
6097 type = &i.types[op];
6098 }
6099 else if (i.types[op].bitfield.class == RegSIMD
6100 && t->opcode_modifier.evex != EVEXLIG)
6101 {
6102 if (i.types[op].bitfield.zmmword)
6103 i.memshift = 6;
6104 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
6105 i.memshift = 5;
6106 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
6107 i.memshift = 4;
6108 }
6109
6110 if (type)
6111 {
6112 if (type->bitfield.zmmword)
6113 i.memshift = 6;
6114 else if (type->bitfield.ymmword)
6115 i.memshift = 5;
6116 else if (type->bitfield.xmmword)
6117 i.memshift = 4;
6118 }
6119
6120 /* For the check in fits_in_disp8(). */
6121 if (i.memshift == 0)
6122 i.memshift = -1;
6123 }
6124
6125 for (op = 0; op < i.operands; op++)
6126 if (operand_type_check (i.types[op], disp)
6127 && i.op[op].disps->X_op == O_constant)
6128 {
6129 if (fits_in_disp8 (i.op[op].disps->X_add_number))
6130 {
6131 i.types[op].bitfield.disp8 = 1;
6132 return 0;
6133 }
6134 i.types[op].bitfield.disp8 = 0;
6135 }
6136 }
6137
6138 i.memshift = 0;
6139
6140 return 0;
6141 }
6142
6143 /* Check if encoding requirements are met by the instruction. */
6144
6145 static int
6146 VEX_check_encoding (const insn_template *t)
6147 {
6148 if (i.vec_encoding == vex_encoding_error)
6149 {
6150 i.error = unsupported;
6151 return 1;
6152 }
6153
6154 if (i.vec_encoding == vex_encoding_evex)
6155 {
6156 /* This instruction must be encoded with EVEX prefix. */
6157 if (!is_evex_encoding (t))
6158 {
6159 i.error = unsupported;
6160 return 1;
6161 }
6162 return 0;
6163 }
6164
6165 if (!t->opcode_modifier.vex)
6166 {
6167 /* This instruction template doesn't have VEX prefix. */
6168 if (i.vec_encoding != vex_encoding_default)
6169 {
6170 i.error = unsupported;
6171 return 1;
6172 }
6173 return 0;
6174 }
6175
6176 return 0;
6177 }
6178
6179 static const insn_template *
6180 match_template (char mnem_suffix)
6181 {
6182 /* Points to template once we've found it. */
6183 const insn_template *t;
6184 i386_operand_type overlap0, overlap1, overlap2, overlap3;
6185 i386_operand_type overlap4;
6186 unsigned int found_reverse_match;
6187 i386_opcode_modifier suffix_check;
6188 i386_operand_type operand_types [MAX_OPERANDS];
6189 int addr_prefix_disp;
6190 unsigned int j, size_match, check_register;
6191 enum i386_error specific_error = 0;
6192
6193 #if MAX_OPERANDS != 5
6194 # error "MAX_OPERANDS must be 5."
6195 #endif
6196
6197 found_reverse_match = 0;
6198 addr_prefix_disp = -1;
6199
6200 /* Prepare for mnemonic suffix check. */
6201 memset (&suffix_check, 0, sizeof (suffix_check));
6202 switch (mnem_suffix)
6203 {
6204 case BYTE_MNEM_SUFFIX:
6205 suffix_check.no_bsuf = 1;
6206 break;
6207 case WORD_MNEM_SUFFIX:
6208 suffix_check.no_wsuf = 1;
6209 break;
6210 case SHORT_MNEM_SUFFIX:
6211 suffix_check.no_ssuf = 1;
6212 break;
6213 case LONG_MNEM_SUFFIX:
6214 suffix_check.no_lsuf = 1;
6215 break;
6216 case QWORD_MNEM_SUFFIX:
6217 suffix_check.no_qsuf = 1;
6218 break;
6219 default:
6220 /* NB: In Intel syntax, normally we can check for memory operand
6221 size when there is no mnemonic suffix. But jmp and call have
6222 2 different encodings with Dword memory operand size, one with
6223 No_ldSuf and the other without. i.suffix is set to
6224 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
6225 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
6226 suffix_check.no_ldsuf = 1;
6227 }
6228
6229 /* Must have right number of operands. */
6230 i.error = number_of_operands_mismatch;
6231
6232 for (t = current_templates->start; t < current_templates->end; t++)
6233 {
6234 addr_prefix_disp = -1;
6235 found_reverse_match = 0;
6236
6237 if (i.operands != t->operands)
6238 continue;
6239
6240 /* Check processor support. */
6241 i.error = unsupported;
6242 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
6243 continue;
6244
6245 /* Check AT&T mnemonic. */
6246 i.error = unsupported_with_intel_mnemonic;
6247 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
6248 continue;
6249
6250 /* Check AT&T/Intel syntax. */
6251 i.error = unsupported_syntax;
6252 if ((intel_syntax && t->opcode_modifier.attsyntax)
6253 || (!intel_syntax && t->opcode_modifier.intelsyntax))
6254 continue;
6255
6256 /* Check Intel64/AMD64 ISA. */
6257 switch (isa64)
6258 {
6259 default:
6260 /* Default: Don't accept Intel64. */
6261 if (t->opcode_modifier.isa64 == INTEL64)
6262 continue;
6263 break;
6264 case amd64:
6265 /* -mamd64: Don't accept Intel64 and Intel64 only. */
6266 if (t->opcode_modifier.isa64 >= INTEL64)
6267 continue;
6268 break;
6269 case intel64:
6270 /* -mintel64: Don't accept AMD64. */
6271 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
6272 continue;
6273 break;
6274 }
6275
6276 /* Check the suffix. */
6277 i.error = invalid_instruction_suffix;
6278 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
6279 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
6280 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
6281 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
6282 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
6283 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
6284 continue;
6285
6286 size_match = operand_size_match (t);
6287 if (!size_match)
6288 continue;
6289
6290 /* This is intentionally not
6291
6292 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6293
6294 as the case of a missing * on the operand is accepted (perhaps with
6295 a warning, issued further down). */
6296 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6297 {
6298 i.error = operand_type_mismatch;
6299 continue;
6300 }
6301
6302 for (j = 0; j < MAX_OPERANDS; j++)
6303 operand_types[j] = t->operand_types[j];
6304
6305 /* In general, don't allow
6306 - 64-bit operands outside of 64-bit mode,
6307 - 32-bit operands on pre-386. */
6308 j = i.imm_operands + (t->operands > i.imm_operands + 1);
6309 if (((i.suffix == QWORD_MNEM_SUFFIX
6310 && flag_code != CODE_64BIT
6311 && (t->base_opcode != 0x0fc7
6312 || t->extension_opcode != 1 /* cmpxchg8b */))
6313 || (i.suffix == LONG_MNEM_SUFFIX
6314 && !cpu_arch_flags.bitfield.cpui386))
6315 && (intel_syntax
6316 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
6317 && !intel_float_operand (t->name))
6318 : intel_float_operand (t->name) != 2)
6319 && (t->operands == i.imm_operands
6320 || (operand_types[i.imm_operands].bitfield.class != RegMMX
6321 && operand_types[i.imm_operands].bitfield.class != RegSIMD
6322 && operand_types[i.imm_operands].bitfield.class != RegMask)
6323 || (operand_types[j].bitfield.class != RegMMX
6324 && operand_types[j].bitfield.class != RegSIMD
6325 && operand_types[j].bitfield.class != RegMask))
6326 && !t->opcode_modifier.sib)
6327 continue;
6328
6329 /* Do not verify operands when there are none. */
6330 if (!t->operands)
6331 {
6332 if (VEX_check_encoding (t))
6333 {
6334 specific_error = i.error;
6335 continue;
6336 }
6337
6338 /* We've found a match; break out of loop. */
6339 break;
6340 }
6341
6342 if (!t->opcode_modifier.jump
6343 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
6344 {
6345 /* There should be only one Disp operand. */
6346 for (j = 0; j < MAX_OPERANDS; j++)
6347 if (operand_type_check (operand_types[j], disp))
6348 break;
6349 if (j < MAX_OPERANDS)
6350 {
6351 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
6352
6353 addr_prefix_disp = j;
6354
6355 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
6356 operand into Disp32/Disp32/Disp16/Disp32 operand. */
6357 switch (flag_code)
6358 {
6359 case CODE_16BIT:
6360 override = !override;
6361 /* Fall through. */
6362 case CODE_32BIT:
6363 if (operand_types[j].bitfield.disp32
6364 && operand_types[j].bitfield.disp16)
6365 {
6366 operand_types[j].bitfield.disp16 = override;
6367 operand_types[j].bitfield.disp32 = !override;
6368 }
6369 operand_types[j].bitfield.disp32s = 0;
6370 operand_types[j].bitfield.disp64 = 0;
6371 break;
6372
6373 case CODE_64BIT:
6374 if (operand_types[j].bitfield.disp32s
6375 || operand_types[j].bitfield.disp64)
6376 {
6377 operand_types[j].bitfield.disp64 &= !override;
6378 operand_types[j].bitfield.disp32s &= !override;
6379 operand_types[j].bitfield.disp32 = override;
6380 }
6381 operand_types[j].bitfield.disp16 = 0;
6382 break;
6383 }
6384 }
6385 }
6386
6387 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
6388 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
6389 continue;
6390
6391 /* We check register size if needed. */
6392 if (t->opcode_modifier.checkregsize)
6393 {
6394 check_register = (1 << t->operands) - 1;
6395 if (i.broadcast)
6396 check_register &= ~(1 << i.broadcast->operand);
6397 }
6398 else
6399 check_register = 0;
6400
6401 overlap0 = operand_type_and (i.types[0], operand_types[0]);
6402 switch (t->operands)
6403 {
6404 case 1:
6405 if (!operand_type_match (overlap0, i.types[0]))
6406 continue;
6407 break;
6408 case 2:
6409 /* xchg %eax, %eax is a special case. It is an alias for nop
6410 only in 32bit mode and we can use opcode 0x90. In 64bit
6411 mode, we can't use 0x90 for xchg %eax, %eax since it should
6412 zero-extend %eax to %rax. */
6413 if (flag_code == CODE_64BIT
6414 && t->base_opcode == 0x90
6415 && i.types[0].bitfield.instance == Accum
6416 && i.types[0].bitfield.dword
6417 && i.types[1].bitfield.instance == Accum
6418 && i.types[1].bitfield.dword)
6419 continue;
6420 /* xrelease mov %eax, <disp> is another special case. It must not
6421 match the accumulator-only encoding of mov. */
6422 if (flag_code != CODE_64BIT
6423 && i.hle_prefix
6424 && t->base_opcode == 0xa0
6425 && i.types[0].bitfield.instance == Accum
6426 && (i.flags[1] & Operand_Mem))
6427 continue;
6428 /* Fall through. */
6429
6430 case 3:
6431 if (!(size_match & MATCH_STRAIGHT))
6432 goto check_reverse;
6433 /* Reverse direction of operands if swapping is possible in the first
6434 place (operands need to be symmetric) and
6435 - the load form is requested, and the template is a store form,
6436 - the store form is requested, and the template is a load form,
6437 - the non-default (swapped) form is requested. */
6438 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
6439 if (t->opcode_modifier.d && i.reg_operands == i.operands
6440 && !operand_type_all_zero (&overlap1))
6441 switch (i.dir_encoding)
6442 {
6443 case dir_encoding_load:
6444 if (operand_type_check (operand_types[i.operands - 1], anymem)
6445 || t->opcode_modifier.regmem)
6446 goto check_reverse;
6447 break;
6448
6449 case dir_encoding_store:
6450 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6451 && !t->opcode_modifier.regmem)
6452 goto check_reverse;
6453 break;
6454
6455 case dir_encoding_swap:
6456 goto check_reverse;
6457
6458 case dir_encoding_default:
6459 break;
6460 }
6461 /* If we want store form, we skip the current load. */
6462 if ((i.dir_encoding == dir_encoding_store
6463 || i.dir_encoding == dir_encoding_swap)
6464 && i.mem_operands == 0
6465 && t->opcode_modifier.load)
6466 continue;
6467 /* Fall through. */
6468 case 4:
6469 case 5:
6470 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6471 if (!operand_type_match (overlap0, i.types[0])
6472 || !operand_type_match (overlap1, i.types[1])
6473 || ((check_register & 3) == 3
6474 && !operand_type_register_match (i.types[0],
6475 operand_types[0],
6476 i.types[1],
6477 operand_types[1])))
6478 {
6479 /* Check if other direction is valid ... */
6480 if (!t->opcode_modifier.d)
6481 continue;
6482
6483 check_reverse:
6484 if (!(size_match & MATCH_REVERSE))
6485 continue;
6486 /* Try reversing direction of operands. */
6487 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6488 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6489 if (!operand_type_match (overlap0, i.types[0])
6490 || !operand_type_match (overlap1, i.types[i.operands - 1])
6491 || (check_register
6492 && !operand_type_register_match (i.types[0],
6493 operand_types[i.operands - 1],
6494 i.types[i.operands - 1],
6495 operand_types[0])))
6496 {
6497 /* Does not match either direction. */
6498 continue;
6499 }
6500 /* found_reverse_match holds which of D or FloatR
6501 we've found. */
6502 if (!t->opcode_modifier.d)
6503 found_reverse_match = 0;
6504 else if (operand_types[0].bitfield.tbyte)
6505 found_reverse_match = Opcode_FloatD;
6506 else if (operand_types[0].bitfield.xmmword
6507 || operand_types[i.operands - 1].bitfield.xmmword
6508 || operand_types[0].bitfield.class == RegMMX
6509 || operand_types[i.operands - 1].bitfield.class == RegMMX
6510 || is_any_vex_encoding(t))
6511 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6512 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6513 else
6514 found_reverse_match = Opcode_D;
6515 if (t->opcode_modifier.floatr)
6516 found_reverse_match |= Opcode_FloatR;
6517 }
6518 else
6519 {
6520 /* Found a forward 2 operand match here. */
6521 switch (t->operands)
6522 {
6523 case 5:
6524 overlap4 = operand_type_and (i.types[4],
6525 operand_types[4]);
6526 /* Fall through. */
6527 case 4:
6528 overlap3 = operand_type_and (i.types[3],
6529 operand_types[3]);
6530 /* Fall through. */
6531 case 3:
6532 overlap2 = operand_type_and (i.types[2],
6533 operand_types[2]);
6534 break;
6535 }
6536
6537 switch (t->operands)
6538 {
6539 case 5:
6540 if (!operand_type_match (overlap4, i.types[4])
6541 || !operand_type_register_match (i.types[3],
6542 operand_types[3],
6543 i.types[4],
6544 operand_types[4]))
6545 continue;
6546 /* Fall through. */
6547 case 4:
6548 if (!operand_type_match (overlap3, i.types[3])
6549 || ((check_register & 0xa) == 0xa
6550 && !operand_type_register_match (i.types[1],
6551 operand_types[1],
6552 i.types[3],
6553 operand_types[3]))
6554 || ((check_register & 0xc) == 0xc
6555 && !operand_type_register_match (i.types[2],
6556 operand_types[2],
6557 i.types[3],
6558 operand_types[3])))
6559 continue;
6560 /* Fall through. */
6561 case 3:
6562 /* Here we make use of the fact that there are no
6563 reverse match 3 operand instructions. */
6564 if (!operand_type_match (overlap2, i.types[2])
6565 || ((check_register & 5) == 5
6566 && !operand_type_register_match (i.types[0],
6567 operand_types[0],
6568 i.types[2],
6569 operand_types[2]))
6570 || ((check_register & 6) == 6
6571 && !operand_type_register_match (i.types[1],
6572 operand_types[1],
6573 i.types[2],
6574 operand_types[2])))
6575 continue;
6576 break;
6577 }
6578 }
6579 /* Found either forward/reverse 2, 3 or 4 operand match here:
6580 slip through to break. */
6581 }
6582
6583 /* Check if vector operands are valid. */
6584 if (check_VecOperands (t))
6585 {
6586 specific_error = i.error;
6587 continue;
6588 }
6589
6590 /* Check if VEX/EVEX encoding requirements can be satisfied. */
6591 if (VEX_check_encoding (t))
6592 {
6593 specific_error = i.error;
6594 continue;
6595 }
6596
6597 /* We've found a match; break out of loop. */
6598 break;
6599 }
6600
6601 if (t == current_templates->end)
6602 {
6603 /* We found no match. */
6604 const char *err_msg;
6605 switch (specific_error ? specific_error : i.error)
6606 {
6607 default:
6608 abort ();
6609 case operand_size_mismatch:
6610 err_msg = _("operand size mismatch");
6611 break;
6612 case operand_type_mismatch:
6613 err_msg = _("operand type mismatch");
6614 break;
6615 case register_type_mismatch:
6616 err_msg = _("register type mismatch");
6617 break;
6618 case number_of_operands_mismatch:
6619 err_msg = _("number of operands mismatch");
6620 break;
6621 case invalid_instruction_suffix:
6622 err_msg = _("invalid instruction suffix");
6623 break;
6624 case bad_imm4:
6625 err_msg = _("constant doesn't fit in 4 bits");
6626 break;
6627 case unsupported_with_intel_mnemonic:
6628 err_msg = _("unsupported with Intel mnemonic");
6629 break;
6630 case unsupported_syntax:
6631 err_msg = _("unsupported syntax");
6632 break;
6633 case unsupported:
6634 as_bad (_("unsupported instruction `%s'"),
6635 current_templates->start->name);
6636 return NULL;
6637 case invalid_sib_address:
6638 err_msg = _("invalid SIB address");
6639 break;
6640 case invalid_vsib_address:
6641 err_msg = _("invalid VSIB address");
6642 break;
6643 case invalid_vector_register_set:
6644 err_msg = _("mask, index, and destination registers must be distinct");
6645 break;
6646 case invalid_tmm_register_set:
6647 err_msg = _("all tmm registers must be distinct");
6648 break;
6649 case unsupported_vector_index_register:
6650 err_msg = _("unsupported vector index register");
6651 break;
6652 case unsupported_broadcast:
6653 err_msg = _("unsupported broadcast");
6654 break;
6655 case broadcast_needed:
6656 err_msg = _("broadcast is needed for operand of such type");
6657 break;
6658 case unsupported_masking:
6659 err_msg = _("unsupported masking");
6660 break;
6661 case mask_not_on_destination:
6662 err_msg = _("mask not on destination operand");
6663 break;
6664 case no_default_mask:
6665 err_msg = _("default mask isn't allowed");
6666 break;
6667 case unsupported_rc_sae:
6668 err_msg = _("unsupported static rounding/sae");
6669 break;
6670 case rc_sae_operand_not_last_imm:
6671 if (intel_syntax)
6672 err_msg = _("RC/SAE operand must precede immediate operands");
6673 else
6674 err_msg = _("RC/SAE operand must follow immediate operands");
6675 break;
6676 case invalid_register_operand:
6677 err_msg = _("invalid register operand");
6678 break;
6679 }
6680 as_bad (_("%s for `%s'"), err_msg,
6681 current_templates->start->name);
6682 return NULL;
6683 }
6684
6685 if (!quiet_warnings)
6686 {
6687 if (!intel_syntax
6688 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6689 as_warn (_("indirect %s without `*'"), t->name);
6690
6691 if (t->opcode_modifier.isprefix
6692 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
6693 {
6694 /* Warn them that a data or address size prefix doesn't
6695 affect assembly of the next line of code. */
6696 as_warn (_("stand-alone `%s' prefix"), t->name);
6697 }
6698 }
6699
6700 /* Copy the template we found. */
6701 i.tm = *t;
6702
6703 if (addr_prefix_disp != -1)
6704 i.tm.operand_types[addr_prefix_disp]
6705 = operand_types[addr_prefix_disp];
6706
6707 if (found_reverse_match)
6708 {
6709 /* If we found a reverse match we must alter the opcode direction
6710 bit and clear/flip the regmem modifier one. found_reverse_match
6711 holds bits to change (different for int & float insns). */
6712
6713 i.tm.base_opcode ^= found_reverse_match;
6714
6715 i.tm.operand_types[0] = operand_types[i.operands - 1];
6716 i.tm.operand_types[i.operands - 1] = operand_types[0];
6717
6718 /* Certain SIMD insns have their load forms specified in the opcode
6719 table, and hence we need to _set_ RegMem instead of clearing it.
6720 We need to avoid setting the bit though on insns like KMOVW. */
6721 i.tm.opcode_modifier.regmem
6722 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6723 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6724 && !i.tm.opcode_modifier.regmem;
6725 }
6726
6727 return t;
6728 }
6729
6730 static int
6731 check_string (void)
6732 {
6733 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6734 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6735
6736 if (i.seg[op] != NULL && i.seg[op] != &es)
6737 {
6738 as_bad (_("`%s' operand %u must use `%ses' segment"),
6739 i.tm.name,
6740 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6741 register_prefix);
6742 return 0;
6743 }
6744
6745 /* There's only ever one segment override allowed per instruction.
6746 This instruction possibly has a legal segment override on the
6747 second operand, so copy the segment to where non-string
6748 instructions store it, allowing common code. */
6749 i.seg[op] = i.seg[1];
6750
6751 return 1;
6752 }
6753
6754 static int
6755 process_suffix (void)
6756 {
6757 /* If matched instruction specifies an explicit instruction mnemonic
6758 suffix, use it. */
6759 if (i.tm.opcode_modifier.size == SIZE16)
6760 i.suffix = WORD_MNEM_SUFFIX;
6761 else if (i.tm.opcode_modifier.size == SIZE32)
6762 i.suffix = LONG_MNEM_SUFFIX;
6763 else if (i.tm.opcode_modifier.size == SIZE64)
6764 i.suffix = QWORD_MNEM_SUFFIX;
6765 else if (i.reg_operands
6766 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6767 && !i.tm.opcode_modifier.addrprefixopreg)
6768 {
6769 unsigned int numop = i.operands;
6770
6771 /* movsx/movzx want only their source operand considered here, for the
6772 ambiguity checking below. The suffix will be replaced afterwards
6773 to represent the destination (register). */
6774 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6775 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6776 --i.operands;
6777
6778 /* crc32 needs REX.W set regardless of suffix / source operand size. */
6779 if (i.tm.base_opcode == 0xf20f38f0
6780 && i.tm.operand_types[1].bitfield.qword)
6781 i.rex |= REX_W;
6782
6783 /* If there's no instruction mnemonic suffix we try to invent one
6784 based on GPR operands. */
6785 if (!i.suffix)
6786 {
6787 /* We take i.suffix from the last register operand specified,
6788 Destination register type is more significant than source
6789 register type. crc32 in SSE4.2 prefers source register
6790 type. */
6791 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6792
6793 while (op--)
6794 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6795 || i.tm.operand_types[op].bitfield.instance == Accum)
6796 {
6797 if (i.types[op].bitfield.class != Reg)
6798 continue;
6799 if (i.types[op].bitfield.byte)
6800 i.suffix = BYTE_MNEM_SUFFIX;
6801 else if (i.types[op].bitfield.word)
6802 i.suffix = WORD_MNEM_SUFFIX;
6803 else if (i.types[op].bitfield.dword)
6804 i.suffix = LONG_MNEM_SUFFIX;
6805 else if (i.types[op].bitfield.qword)
6806 i.suffix = QWORD_MNEM_SUFFIX;
6807 else
6808 continue;
6809 break;
6810 }
6811
6812 /* As an exception, movsx/movzx silently default to a byte source
6813 in AT&T mode. */
6814 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6815 && !i.suffix && !intel_syntax)
6816 i.suffix = BYTE_MNEM_SUFFIX;
6817 }
6818 else if (i.suffix == BYTE_MNEM_SUFFIX)
6819 {
6820 if (intel_syntax
6821 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6822 && i.tm.opcode_modifier.no_bsuf)
6823 i.suffix = 0;
6824 else if (!check_byte_reg ())
6825 return 0;
6826 }
6827 else if (i.suffix == LONG_MNEM_SUFFIX)
6828 {
6829 if (intel_syntax
6830 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6831 && i.tm.opcode_modifier.no_lsuf
6832 && !i.tm.opcode_modifier.todword
6833 && !i.tm.opcode_modifier.toqword)
6834 i.suffix = 0;
6835 else if (!check_long_reg ())
6836 return 0;
6837 }
6838 else if (i.suffix == QWORD_MNEM_SUFFIX)
6839 {
6840 if (intel_syntax
6841 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6842 && i.tm.opcode_modifier.no_qsuf
6843 && !i.tm.opcode_modifier.todword
6844 && !i.tm.opcode_modifier.toqword)
6845 i.suffix = 0;
6846 else if (!check_qword_reg ())
6847 return 0;
6848 }
6849 else if (i.suffix == WORD_MNEM_SUFFIX)
6850 {
6851 if (intel_syntax
6852 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6853 && i.tm.opcode_modifier.no_wsuf)
6854 i.suffix = 0;
6855 else if (!check_word_reg ())
6856 return 0;
6857 }
6858 else if (intel_syntax
6859 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
6860 /* Do nothing if the instruction is going to ignore the prefix. */
6861 ;
6862 else
6863 abort ();
6864
6865 /* Undo the movsx/movzx change done above. */
6866 i.operands = numop;
6867 }
6868 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
6869 && !i.suffix)
6870 {
6871 i.suffix = stackop_size;
6872 if (stackop_size == LONG_MNEM_SUFFIX)
6873 {
6874 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6875 .code16gcc directive to support 16-bit mode with
6876 32-bit address. For IRET without a suffix, generate
6877 16-bit IRET (opcode 0xcf) to return from an interrupt
6878 handler. */
6879 if (i.tm.base_opcode == 0xcf)
6880 {
6881 i.suffix = WORD_MNEM_SUFFIX;
6882 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6883 }
6884 /* Warn about changed behavior for segment register push/pop. */
6885 else if ((i.tm.base_opcode | 1) == 0x07)
6886 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6887 i.tm.name);
6888 }
6889 }
6890 else if (!i.suffix
6891 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6892 || i.tm.opcode_modifier.jump == JUMP_BYTE
6893 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6894 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6895 && i.tm.extension_opcode <= 3)))
6896 {
6897 switch (flag_code)
6898 {
6899 case CODE_64BIT:
6900 if (!i.tm.opcode_modifier.no_qsuf)
6901 {
6902 if (i.tm.opcode_modifier.jump == JUMP_BYTE
6903 || i.tm.opcode_modifier.no_lsuf)
6904 i.suffix = QWORD_MNEM_SUFFIX;
6905 break;
6906 }
6907 /* Fall through. */
6908 case CODE_32BIT:
6909 if (!i.tm.opcode_modifier.no_lsuf)
6910 i.suffix = LONG_MNEM_SUFFIX;
6911 break;
6912 case CODE_16BIT:
6913 if (!i.tm.opcode_modifier.no_wsuf)
6914 i.suffix = WORD_MNEM_SUFFIX;
6915 break;
6916 }
6917 }
6918
6919 if (!i.suffix
6920 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
6921 /* Also cover lret/retf/iret in 64-bit mode. */
6922 || (flag_code == CODE_64BIT
6923 && !i.tm.opcode_modifier.no_lsuf
6924 && !i.tm.opcode_modifier.no_qsuf))
6925 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
6926 /* Explicit sizing prefixes are assumed to disambiguate insns. */
6927 && !i.prefix[DATA_PREFIX] && !(i.prefix[REX_PREFIX] & REX_W)
6928 /* Accept FLDENV et al without suffix. */
6929 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6930 {
6931 unsigned int suffixes, evex = 0;
6932
6933 suffixes = !i.tm.opcode_modifier.no_bsuf;
6934 if (!i.tm.opcode_modifier.no_wsuf)
6935 suffixes |= 1 << 1;
6936 if (!i.tm.opcode_modifier.no_lsuf)
6937 suffixes |= 1 << 2;
6938 if (!i.tm.opcode_modifier.no_ldsuf)
6939 suffixes |= 1 << 3;
6940 if (!i.tm.opcode_modifier.no_ssuf)
6941 suffixes |= 1 << 4;
6942 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6943 suffixes |= 1 << 5;
6944
6945 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6946 also suitable for AT&T syntax mode, it was requested that this be
6947 restricted to just Intel syntax. */
6948 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6949 {
6950 unsigned int op;
6951
6952 for (op = 0; op < i.tm.operands; ++op)
6953 {
6954 if (is_evex_encoding (&i.tm)
6955 && !cpu_arch_flags.bitfield.cpuavx512vl)
6956 {
6957 if (i.tm.operand_types[op].bitfield.ymmword)
6958 i.tm.operand_types[op].bitfield.xmmword = 0;
6959 if (i.tm.operand_types[op].bitfield.zmmword)
6960 i.tm.operand_types[op].bitfield.ymmword = 0;
6961 if (!i.tm.opcode_modifier.evex
6962 || i.tm.opcode_modifier.evex == EVEXDYN)
6963 i.tm.opcode_modifier.evex = EVEX512;
6964 }
6965
6966 if (i.tm.operand_types[op].bitfield.xmmword
6967 + i.tm.operand_types[op].bitfield.ymmword
6968 + i.tm.operand_types[op].bitfield.zmmword < 2)
6969 continue;
6970
6971 /* Any properly sized operand disambiguates the insn. */
6972 if (i.types[op].bitfield.xmmword
6973 || i.types[op].bitfield.ymmword
6974 || i.types[op].bitfield.zmmword)
6975 {
6976 suffixes &= ~(7 << 6);
6977 evex = 0;
6978 break;
6979 }
6980
6981 if ((i.flags[op] & Operand_Mem)
6982 && i.tm.operand_types[op].bitfield.unspecified)
6983 {
6984 if (i.tm.operand_types[op].bitfield.xmmword)
6985 suffixes |= 1 << 6;
6986 if (i.tm.operand_types[op].bitfield.ymmword)
6987 suffixes |= 1 << 7;
6988 if (i.tm.operand_types[op].bitfield.zmmword)
6989 suffixes |= 1 << 8;
6990 if (is_evex_encoding (&i.tm))
6991 evex = EVEX512;
6992 }
6993 }
6994 }
6995
6996 /* Are multiple suffixes / operand sizes allowed? */
6997 if (suffixes & (suffixes - 1))
6998 {
6999 if (intel_syntax
7000 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
7001 || operand_check == check_error))
7002 {
7003 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
7004 return 0;
7005 }
7006 if (operand_check == check_error)
7007 {
7008 as_bad (_("no instruction mnemonic suffix given and "
7009 "no register operands; can't size `%s'"), i.tm.name);
7010 return 0;
7011 }
7012 if (operand_check == check_warning)
7013 as_warn (_("%s; using default for `%s'"),
7014 intel_syntax
7015 ? _("ambiguous operand size")
7016 : _("no instruction mnemonic suffix given and "
7017 "no register operands"),
7018 i.tm.name);
7019
7020 if (i.tm.opcode_modifier.floatmf)
7021 i.suffix = SHORT_MNEM_SUFFIX;
7022 else if ((i.tm.base_opcode | 8) == 0xfbe
7023 || (i.tm.base_opcode == 0x63
7024 && i.tm.cpu_flags.bitfield.cpu64))
7025 /* handled below */;
7026 else if (evex)
7027 i.tm.opcode_modifier.evex = evex;
7028 else if (flag_code == CODE_16BIT)
7029 i.suffix = WORD_MNEM_SUFFIX;
7030 else if (!i.tm.opcode_modifier.no_lsuf)
7031 i.suffix = LONG_MNEM_SUFFIX;
7032 else
7033 i.suffix = QWORD_MNEM_SUFFIX;
7034 }
7035 }
7036
7037 if ((i.tm.base_opcode | 8) == 0xfbe
7038 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
7039 {
7040 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
7041 In AT&T syntax, if there is no suffix (warned about above), the default
7042 will be byte extension. */
7043 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
7044 i.tm.base_opcode |= 1;
7045
7046 /* For further processing, the suffix should represent the destination
7047 (register). This is already the case when one was used with
7048 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
7049 no suffix to begin with. */
7050 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
7051 {
7052 if (i.types[1].bitfield.word)
7053 i.suffix = WORD_MNEM_SUFFIX;
7054 else if (i.types[1].bitfield.qword)
7055 i.suffix = QWORD_MNEM_SUFFIX;
7056 else
7057 i.suffix = LONG_MNEM_SUFFIX;
7058
7059 i.tm.opcode_modifier.w = 0;
7060 }
7061 }
7062
7063 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
7064 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
7065 != (i.tm.operand_types[1].bitfield.class == Reg);
7066
7067 /* Change the opcode based on the operand size given by i.suffix. */
7068 switch (i.suffix)
7069 {
7070 /* Size floating point instruction. */
7071 case LONG_MNEM_SUFFIX:
7072 if (i.tm.opcode_modifier.floatmf)
7073 {
7074 i.tm.base_opcode ^= 4;
7075 break;
7076 }
7077 /* fall through */
7078 case WORD_MNEM_SUFFIX:
7079 case QWORD_MNEM_SUFFIX:
7080 /* It's not a byte, select word/dword operation. */
7081 if (i.tm.opcode_modifier.w)
7082 {
7083 if (i.short_form)
7084 i.tm.base_opcode |= 8;
7085 else
7086 i.tm.base_opcode |= 1;
7087 }
7088 /* fall through */
7089 case SHORT_MNEM_SUFFIX:
7090 /* Now select between word & dword operations via the operand
7091 size prefix, except for instructions that will ignore this
7092 prefix anyway. */
7093 if (i.suffix != QWORD_MNEM_SUFFIX
7094 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
7095 && !i.tm.opcode_modifier.floatmf
7096 && !is_any_vex_encoding (&i.tm)
7097 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
7098 || (flag_code == CODE_64BIT
7099 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
7100 {
7101 unsigned int prefix = DATA_PREFIX_OPCODE;
7102
7103 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
7104 prefix = ADDR_PREFIX_OPCODE;
7105
7106 if (!add_prefix (prefix))
7107 return 0;
7108 }
7109
7110 /* Set mode64 for an operand. */
7111 if (i.suffix == QWORD_MNEM_SUFFIX
7112 && flag_code == CODE_64BIT
7113 && !i.tm.opcode_modifier.norex64
7114 && !i.tm.opcode_modifier.vexw
7115 /* Special case for xchg %rax,%rax. It is NOP and doesn't
7116 need rex64. */
7117 && ! (i.operands == 2
7118 && i.tm.base_opcode == 0x90
7119 && i.tm.extension_opcode == None
7120 && i.types[0].bitfield.instance == Accum
7121 && i.types[0].bitfield.qword
7122 && i.types[1].bitfield.instance == Accum
7123 && i.types[1].bitfield.qword))
7124 i.rex |= REX_W;
7125
7126 break;
7127
7128 case 0:
7129 /* Select word/dword/qword operation with explict data sizing prefix
7130 when there are no suitable register operands. */
7131 if (i.tm.opcode_modifier.w
7132 && (i.prefix[DATA_PREFIX] || (i.prefix[REX_PREFIX] & REX_W))
7133 && (!i.reg_operands
7134 || (i.reg_operands == 1
7135 /* ShiftCount */
7136 && (i.tm.operand_types[0].bitfield.instance == RegC
7137 /* InOutPortReg */
7138 || i.tm.operand_types[0].bitfield.instance == RegD
7139 || i.tm.operand_types[1].bitfield.instance == RegD
7140 /* CRC32 */
7141 || i.tm.base_opcode == 0xf20f38f0))))
7142 i.tm.base_opcode |= 1;
7143 break;
7144 }
7145
7146 if (i.tm.opcode_modifier.addrprefixopreg)
7147 {
7148 gas_assert (!i.suffix);
7149 gas_assert (i.reg_operands);
7150
7151 if (i.tm.operand_types[0].bitfield.instance == Accum
7152 || i.operands == 1)
7153 {
7154 /* The address size override prefix changes the size of the
7155 first operand. */
7156 if (flag_code == CODE_64BIT
7157 && i.op[0].regs->reg_type.bitfield.word)
7158 {
7159 as_bad (_("16-bit addressing unavailable for `%s'"),
7160 i.tm.name);
7161 return 0;
7162 }
7163
7164 if ((flag_code == CODE_32BIT
7165 ? i.op[0].regs->reg_type.bitfield.word
7166 : i.op[0].regs->reg_type.bitfield.dword)
7167 && !add_prefix (ADDR_PREFIX_OPCODE))
7168 return 0;
7169 }
7170 else
7171 {
7172 /* Check invalid register operand when the address size override
7173 prefix changes the size of register operands. */
7174 unsigned int op;
7175 enum { need_word, need_dword, need_qword } need;
7176
7177 if (flag_code == CODE_32BIT)
7178 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
7179 else if (i.prefix[ADDR_PREFIX])
7180 need = need_dword;
7181 else
7182 need = flag_code == CODE_64BIT ? need_qword : need_word;
7183
7184 for (op = 0; op < i.operands; op++)
7185 {
7186 if (i.types[op].bitfield.class != Reg)
7187 continue;
7188
7189 switch (need)
7190 {
7191 case need_word:
7192 if (i.op[op].regs->reg_type.bitfield.word)
7193 continue;
7194 break;
7195 case need_dword:
7196 if (i.op[op].regs->reg_type.bitfield.dword)
7197 continue;
7198 break;
7199 case need_qword:
7200 if (i.op[op].regs->reg_type.bitfield.qword)
7201 continue;
7202 break;
7203 }
7204
7205 as_bad (_("invalid register operand size for `%s'"),
7206 i.tm.name);
7207 return 0;
7208 }
7209 }
7210 }
7211
7212 return 1;
7213 }
7214
7215 static int
7216 check_byte_reg (void)
7217 {
7218 int op;
7219
7220 for (op = i.operands; --op >= 0;)
7221 {
7222 /* Skip non-register operands. */
7223 if (i.types[op].bitfield.class != Reg)
7224 continue;
7225
7226 /* If this is an eight bit register, it's OK. If it's the 16 or
7227 32 bit version of an eight bit register, we will just use the
7228 low portion, and that's OK too. */
7229 if (i.types[op].bitfield.byte)
7230 continue;
7231
7232 /* I/O port address operands are OK too. */
7233 if (i.tm.operand_types[op].bitfield.instance == RegD
7234 && i.tm.operand_types[op].bitfield.word)
7235 continue;
7236
7237 /* crc32 only wants its source operand checked here. */
7238 if (i.tm.base_opcode == 0xf20f38f0 && op)
7239 continue;
7240
7241 /* Any other register is bad. */
7242 as_bad (_("`%s%s' not allowed with `%s%c'"),
7243 register_prefix, i.op[op].regs->reg_name,
7244 i.tm.name, i.suffix);
7245 return 0;
7246 }
7247 return 1;
7248 }
7249
7250 static int
7251 check_long_reg (void)
7252 {
7253 int op;
7254
7255 for (op = i.operands; --op >= 0;)
7256 /* Skip non-register operands. */
7257 if (i.types[op].bitfield.class != Reg)
7258 continue;
7259 /* Reject eight bit registers, except where the template requires
7260 them. (eg. movzb) */
7261 else if (i.types[op].bitfield.byte
7262 && (i.tm.operand_types[op].bitfield.class == Reg
7263 || i.tm.operand_types[op].bitfield.instance == Accum)
7264 && (i.tm.operand_types[op].bitfield.word
7265 || i.tm.operand_types[op].bitfield.dword))
7266 {
7267 as_bad (_("`%s%s' not allowed with `%s%c'"),
7268 register_prefix,
7269 i.op[op].regs->reg_name,
7270 i.tm.name,
7271 i.suffix);
7272 return 0;
7273 }
7274 /* Error if the e prefix on a general reg is missing. */
7275 else if (i.types[op].bitfield.word
7276 && (i.tm.operand_types[op].bitfield.class == Reg
7277 || i.tm.operand_types[op].bitfield.instance == Accum)
7278 && i.tm.operand_types[op].bitfield.dword)
7279 {
7280 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7281 register_prefix, i.op[op].regs->reg_name,
7282 i.suffix);
7283 return 0;
7284 }
7285 /* Warn if the r prefix on a general reg is present. */
7286 else if (i.types[op].bitfield.qword
7287 && (i.tm.operand_types[op].bitfield.class == Reg
7288 || i.tm.operand_types[op].bitfield.instance == Accum)
7289 && i.tm.operand_types[op].bitfield.dword)
7290 {
7291 if (intel_syntax
7292 && i.tm.opcode_modifier.toqword
7293 && i.types[0].bitfield.class != RegSIMD)
7294 {
7295 /* Convert to QWORD. We want REX byte. */
7296 i.suffix = QWORD_MNEM_SUFFIX;
7297 }
7298 else
7299 {
7300 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7301 register_prefix, i.op[op].regs->reg_name,
7302 i.suffix);
7303 return 0;
7304 }
7305 }
7306 return 1;
7307 }
7308
7309 static int
7310 check_qword_reg (void)
7311 {
7312 int op;
7313
7314 for (op = i.operands; --op >= 0; )
7315 /* Skip non-register operands. */
7316 if (i.types[op].bitfield.class != Reg)
7317 continue;
7318 /* Reject eight bit registers, except where the template requires
7319 them. (eg. movzb) */
7320 else if (i.types[op].bitfield.byte
7321 && (i.tm.operand_types[op].bitfield.class == Reg
7322 || i.tm.operand_types[op].bitfield.instance == Accum)
7323 && (i.tm.operand_types[op].bitfield.word
7324 || i.tm.operand_types[op].bitfield.dword))
7325 {
7326 as_bad (_("`%s%s' not allowed with `%s%c'"),
7327 register_prefix,
7328 i.op[op].regs->reg_name,
7329 i.tm.name,
7330 i.suffix);
7331 return 0;
7332 }
7333 /* Warn if the r prefix on a general reg is missing. */
7334 else if ((i.types[op].bitfield.word
7335 || i.types[op].bitfield.dword)
7336 && (i.tm.operand_types[op].bitfield.class == Reg
7337 || i.tm.operand_types[op].bitfield.instance == Accum)
7338 && i.tm.operand_types[op].bitfield.qword)
7339 {
7340 /* Prohibit these changes in the 64bit mode, since the
7341 lowering is more complicated. */
7342 if (intel_syntax
7343 && i.tm.opcode_modifier.todword
7344 && i.types[0].bitfield.class != RegSIMD)
7345 {
7346 /* Convert to DWORD. We don't want REX byte. */
7347 i.suffix = LONG_MNEM_SUFFIX;
7348 }
7349 else
7350 {
7351 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7352 register_prefix, i.op[op].regs->reg_name,
7353 i.suffix);
7354 return 0;
7355 }
7356 }
7357 return 1;
7358 }
7359
7360 static int
7361 check_word_reg (void)
7362 {
7363 int op;
7364 for (op = i.operands; --op >= 0;)
7365 /* Skip non-register operands. */
7366 if (i.types[op].bitfield.class != Reg)
7367 continue;
7368 /* Reject eight bit registers, except where the template requires
7369 them. (eg. movzb) */
7370 else if (i.types[op].bitfield.byte
7371 && (i.tm.operand_types[op].bitfield.class == Reg
7372 || i.tm.operand_types[op].bitfield.instance == Accum)
7373 && (i.tm.operand_types[op].bitfield.word
7374 || i.tm.operand_types[op].bitfield.dword))
7375 {
7376 as_bad (_("`%s%s' not allowed with `%s%c'"),
7377 register_prefix,
7378 i.op[op].regs->reg_name,
7379 i.tm.name,
7380 i.suffix);
7381 return 0;
7382 }
7383 /* Error if the e or r prefix on a general reg is present. */
7384 else if ((i.types[op].bitfield.dword
7385 || i.types[op].bitfield.qword)
7386 && (i.tm.operand_types[op].bitfield.class == Reg
7387 || i.tm.operand_types[op].bitfield.instance == Accum)
7388 && i.tm.operand_types[op].bitfield.word)
7389 {
7390 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7391 register_prefix, i.op[op].regs->reg_name,
7392 i.suffix);
7393 return 0;
7394 }
7395 return 1;
7396 }
7397
7398 static int
7399 update_imm (unsigned int j)
7400 {
7401 i386_operand_type overlap = i.types[j];
7402 if ((overlap.bitfield.imm8
7403 || overlap.bitfield.imm8s
7404 || overlap.bitfield.imm16
7405 || overlap.bitfield.imm32
7406 || overlap.bitfield.imm32s
7407 || overlap.bitfield.imm64)
7408 && !operand_type_equal (&overlap, &imm8)
7409 && !operand_type_equal (&overlap, &imm8s)
7410 && !operand_type_equal (&overlap, &imm16)
7411 && !operand_type_equal (&overlap, &imm32)
7412 && !operand_type_equal (&overlap, &imm32s)
7413 && !operand_type_equal (&overlap, &imm64))
7414 {
7415 if (i.suffix)
7416 {
7417 i386_operand_type temp;
7418
7419 operand_type_set (&temp, 0);
7420 if (i.suffix == BYTE_MNEM_SUFFIX)
7421 {
7422 temp.bitfield.imm8 = overlap.bitfield.imm8;
7423 temp.bitfield.imm8s = overlap.bitfield.imm8s;
7424 }
7425 else if (i.suffix == WORD_MNEM_SUFFIX)
7426 temp.bitfield.imm16 = overlap.bitfield.imm16;
7427 else if (i.suffix == QWORD_MNEM_SUFFIX)
7428 {
7429 temp.bitfield.imm64 = overlap.bitfield.imm64;
7430 temp.bitfield.imm32s = overlap.bitfield.imm32s;
7431 }
7432 else
7433 temp.bitfield.imm32 = overlap.bitfield.imm32;
7434 overlap = temp;
7435 }
7436 else if (operand_type_equal (&overlap, &imm16_32_32s)
7437 || operand_type_equal (&overlap, &imm16_32)
7438 || operand_type_equal (&overlap, &imm16_32s))
7439 {
7440 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
7441 overlap = imm16;
7442 else
7443 overlap = imm32s;
7444 }
7445 else if (i.prefix[REX_PREFIX] & REX_W)
7446 overlap = operand_type_and (overlap, imm32s);
7447 else if (i.prefix[DATA_PREFIX])
7448 overlap = operand_type_and (overlap,
7449 flag_code != CODE_16BIT ? imm16 : imm32);
7450 if (!operand_type_equal (&overlap, &imm8)
7451 && !operand_type_equal (&overlap, &imm8s)
7452 && !operand_type_equal (&overlap, &imm16)
7453 && !operand_type_equal (&overlap, &imm32)
7454 && !operand_type_equal (&overlap, &imm32s)
7455 && !operand_type_equal (&overlap, &imm64))
7456 {
7457 as_bad (_("no instruction mnemonic suffix given; "
7458 "can't determine immediate size"));
7459 return 0;
7460 }
7461 }
7462 i.types[j] = overlap;
7463
7464 return 1;
7465 }
7466
7467 static int
7468 finalize_imm (void)
7469 {
7470 unsigned int j, n;
7471
7472 /* Update the first 2 immediate operands. */
7473 n = i.operands > 2 ? 2 : i.operands;
7474 if (n)
7475 {
7476 for (j = 0; j < n; j++)
7477 if (update_imm (j) == 0)
7478 return 0;
7479
7480 /* The 3rd operand can't be immediate operand. */
7481 gas_assert (operand_type_check (i.types[2], imm) == 0);
7482 }
7483
7484 return 1;
7485 }
7486
7487 static int
7488 process_operands (void)
7489 {
7490 /* Default segment register this instruction will use for memory
7491 accesses. 0 means unknown. This is only for optimizing out
7492 unnecessary segment overrides. */
7493 const seg_entry *default_seg = 0;
7494
7495 if (i.tm.opcode_modifier.sse2avx)
7496 {
7497 /* Legacy encoded insns allow explicit REX prefixes, so these prefixes
7498 need converting. */
7499 i.rex |= i.prefix[REX_PREFIX] & (REX_W | REX_R | REX_X | REX_B);
7500 i.prefix[REX_PREFIX] = 0;
7501 i.rex_encoding = 0;
7502 }
7503 /* ImmExt should be processed after SSE2AVX. */
7504 else if (i.tm.opcode_modifier.immext)
7505 process_immext ();
7506
7507 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
7508 {
7509 unsigned int dupl = i.operands;
7510 unsigned int dest = dupl - 1;
7511 unsigned int j;
7512
7513 /* The destination must be an xmm register. */
7514 gas_assert (i.reg_operands
7515 && MAX_OPERANDS > dupl
7516 && operand_type_equal (&i.types[dest], &regxmm));
7517
7518 if (i.tm.operand_types[0].bitfield.instance == Accum
7519 && i.tm.operand_types[0].bitfield.xmmword)
7520 {
7521 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
7522 {
7523 /* Keep xmm0 for instructions with VEX prefix and 3
7524 sources. */
7525 i.tm.operand_types[0].bitfield.instance = InstanceNone;
7526 i.tm.operand_types[0].bitfield.class = RegSIMD;
7527 goto duplicate;
7528 }
7529 else
7530 {
7531 /* We remove the first xmm0 and keep the number of
7532 operands unchanged, which in fact duplicates the
7533 destination. */
7534 for (j = 1; j < i.operands; j++)
7535 {
7536 i.op[j - 1] = i.op[j];
7537 i.types[j - 1] = i.types[j];
7538 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
7539 i.flags[j - 1] = i.flags[j];
7540 }
7541 }
7542 }
7543 else if (i.tm.opcode_modifier.implicit1stxmm0)
7544 {
7545 gas_assert ((MAX_OPERANDS - 1) > dupl
7546 && (i.tm.opcode_modifier.vexsources
7547 == VEX3SOURCES));
7548
7549 /* Add the implicit xmm0 for instructions with VEX prefix
7550 and 3 sources. */
7551 for (j = i.operands; j > 0; j--)
7552 {
7553 i.op[j] = i.op[j - 1];
7554 i.types[j] = i.types[j - 1];
7555 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7556 i.flags[j] = i.flags[j - 1];
7557 }
7558 i.op[0].regs
7559 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7560 i.types[0] = regxmm;
7561 i.tm.operand_types[0] = regxmm;
7562
7563 i.operands += 2;
7564 i.reg_operands += 2;
7565 i.tm.operands += 2;
7566
7567 dupl++;
7568 dest++;
7569 i.op[dupl] = i.op[dest];
7570 i.types[dupl] = i.types[dest];
7571 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7572 i.flags[dupl] = i.flags[dest];
7573 }
7574 else
7575 {
7576 duplicate:
7577 i.operands++;
7578 i.reg_operands++;
7579 i.tm.operands++;
7580
7581 i.op[dupl] = i.op[dest];
7582 i.types[dupl] = i.types[dest];
7583 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7584 i.flags[dupl] = i.flags[dest];
7585 }
7586
7587 if (i.tm.opcode_modifier.immext)
7588 process_immext ();
7589 }
7590 else if (i.tm.operand_types[0].bitfield.instance == Accum
7591 && i.tm.operand_types[0].bitfield.xmmword)
7592 {
7593 unsigned int j;
7594
7595 for (j = 1; j < i.operands; j++)
7596 {
7597 i.op[j - 1] = i.op[j];
7598 i.types[j - 1] = i.types[j];
7599
7600 /* We need to adjust fields in i.tm since they are used by
7601 build_modrm_byte. */
7602 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7603
7604 i.flags[j - 1] = i.flags[j];
7605 }
7606
7607 i.operands--;
7608 i.reg_operands--;
7609 i.tm.operands--;
7610 }
7611 else if (i.tm.opcode_modifier.implicitquadgroup)
7612 {
7613 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7614
7615 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7616 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7617 regnum = register_number (i.op[1].regs);
7618 first_reg_in_group = regnum & ~3;
7619 last_reg_in_group = first_reg_in_group + 3;
7620 if (regnum != first_reg_in_group)
7621 as_warn (_("source register `%s%s' implicitly denotes"
7622 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7623 register_prefix, i.op[1].regs->reg_name,
7624 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7625 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7626 i.tm.name);
7627 }
7628 else if (i.tm.opcode_modifier.regkludge)
7629 {
7630 /* The imul $imm, %reg instruction is converted into
7631 imul $imm, %reg, %reg, and the clr %reg instruction
7632 is converted into xor %reg, %reg. */
7633
7634 unsigned int first_reg_op;
7635
7636 if (operand_type_check (i.types[0], reg))
7637 first_reg_op = 0;
7638 else
7639 first_reg_op = 1;
7640 /* Pretend we saw the extra register operand. */
7641 gas_assert (i.reg_operands == 1
7642 && i.op[first_reg_op + 1].regs == 0);
7643 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7644 i.types[first_reg_op + 1] = i.types[first_reg_op];
7645 i.operands++;
7646 i.reg_operands++;
7647 }
7648
7649 if (i.tm.opcode_modifier.modrm)
7650 {
7651 /* The opcode is completed (modulo i.tm.extension_opcode which
7652 must be put into the modrm byte). Now, we make the modrm and
7653 index base bytes based on all the info we've collected. */
7654
7655 default_seg = build_modrm_byte ();
7656 }
7657 else if (i.types[0].bitfield.class == SReg)
7658 {
7659 if (flag_code != CODE_64BIT
7660 ? i.tm.base_opcode == POP_SEG_SHORT
7661 && i.op[0].regs->reg_num == 1
7662 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7663 && i.op[0].regs->reg_num < 4)
7664 {
7665 as_bad (_("you can't `%s %s%s'"),
7666 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7667 return 0;
7668 }
7669 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7670 {
7671 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7672 i.tm.opcode_length = 2;
7673 }
7674 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7675 }
7676 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7677 {
7678 default_seg = &ds;
7679 }
7680 else if (i.tm.opcode_modifier.isstring)
7681 {
7682 /* For the string instructions that allow a segment override
7683 on one of their operands, the default segment is ds. */
7684 default_seg = &ds;
7685 }
7686 else if (i.short_form)
7687 {
7688 /* The register or float register operand is in operand
7689 0 or 1. */
7690 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7691
7692 /* Register goes in low 3 bits of opcode. */
7693 i.tm.base_opcode |= i.op[op].regs->reg_num;
7694 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7695 i.rex |= REX_B;
7696 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7697 {
7698 /* Warn about some common errors, but press on regardless.
7699 The first case can be generated by gcc (<= 2.8.1). */
7700 if (i.operands == 2)
7701 {
7702 /* Reversed arguments on faddp, fsubp, etc. */
7703 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7704 register_prefix, i.op[!intel_syntax].regs->reg_name,
7705 register_prefix, i.op[intel_syntax].regs->reg_name);
7706 }
7707 else
7708 {
7709 /* Extraneous `l' suffix on fp insn. */
7710 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7711 register_prefix, i.op[0].regs->reg_name);
7712 }
7713 }
7714 }
7715
7716 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7717 && i.tm.base_opcode == 0x8d /* lea */
7718 && !is_any_vex_encoding(&i.tm))
7719 {
7720 if (!quiet_warnings)
7721 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7722 if (optimize)
7723 {
7724 i.seg[0] = NULL;
7725 i.prefix[SEG_PREFIX] = 0;
7726 }
7727 }
7728
7729 /* If a segment was explicitly specified, and the specified segment
7730 is neither the default nor the one already recorded from a prefix,
7731 use an opcode prefix to select it. If we never figured out what
7732 the default segment is, then default_seg will be zero at this
7733 point, and the specified segment prefix will always be used. */
7734 if (i.seg[0]
7735 && i.seg[0] != default_seg
7736 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
7737 {
7738 if (!add_prefix (i.seg[0]->seg_prefix))
7739 return 0;
7740 }
7741 return 1;
7742 }
7743
7744 static INLINE void set_rex_vrex (const reg_entry *r, unsigned int rex_bit,
7745 bfd_boolean do_sse2avx)
7746 {
7747 if (r->reg_flags & RegRex)
7748 {
7749 if (i.rex & rex_bit)
7750 as_bad (_("same type of prefix used twice"));
7751 i.rex |= rex_bit;
7752 }
7753 else if (do_sse2avx && (i.rex & rex_bit) && i.vex.register_specifier)
7754 {
7755 gas_assert (i.vex.register_specifier == r);
7756 i.vex.register_specifier += 8;
7757 }
7758
7759 if (r->reg_flags & RegVRex)
7760 i.vrex |= rex_bit;
7761 }
7762
7763 static const seg_entry *
7764 build_modrm_byte (void)
7765 {
7766 const seg_entry *default_seg = 0;
7767 unsigned int source, dest;
7768 int vex_3_sources;
7769
7770 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7771 if (vex_3_sources)
7772 {
7773 unsigned int nds, reg_slot;
7774 expressionS *exp;
7775
7776 dest = i.operands - 1;
7777 nds = dest - 1;
7778
7779 /* There are 2 kinds of instructions:
7780 1. 5 operands: 4 register operands or 3 register operands
7781 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7782 VexW0 or VexW1. The destination must be either XMM, YMM or
7783 ZMM register.
7784 2. 4 operands: 4 register operands or 3 register operands
7785 plus 1 memory operand, with VexXDS. */
7786 gas_assert ((i.reg_operands == 4
7787 || (i.reg_operands == 3 && i.mem_operands == 1))
7788 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7789 && i.tm.opcode_modifier.vexw
7790 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7791
7792 /* If VexW1 is set, the first non-immediate operand is the source and
7793 the second non-immediate one is encoded in the immediate operand. */
7794 if (i.tm.opcode_modifier.vexw == VEXW1)
7795 {
7796 source = i.imm_operands;
7797 reg_slot = i.imm_operands + 1;
7798 }
7799 else
7800 {
7801 source = i.imm_operands + 1;
7802 reg_slot = i.imm_operands;
7803 }
7804
7805 if (i.imm_operands == 0)
7806 {
7807 /* When there is no immediate operand, generate an 8bit
7808 immediate operand to encode the first operand. */
7809 exp = &im_expressions[i.imm_operands++];
7810 i.op[i.operands].imms = exp;
7811 i.types[i.operands] = imm8;
7812 i.operands++;
7813
7814 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7815 exp->X_op = O_constant;
7816 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7817 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7818 }
7819 else
7820 {
7821 gas_assert (i.imm_operands == 1);
7822 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7823 gas_assert (!i.tm.opcode_modifier.immext);
7824
7825 /* Turn on Imm8 again so that output_imm will generate it. */
7826 i.types[0].bitfield.imm8 = 1;
7827
7828 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7829 i.op[0].imms->X_add_number
7830 |= register_number (i.op[reg_slot].regs) << 4;
7831 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7832 }
7833
7834 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7835 i.vex.register_specifier = i.op[nds].regs;
7836 }
7837 else
7838 source = dest = 0;
7839
7840 /* i.reg_operands MUST be the number of real register operands;
7841 implicit registers do not count. If there are 3 register
7842 operands, it must be a instruction with VexNDS. For a
7843 instruction with VexNDD, the destination register is encoded
7844 in VEX prefix. If there are 4 register operands, it must be
7845 a instruction with VEX prefix and 3 sources. */
7846 if (i.mem_operands == 0
7847 && ((i.reg_operands == 2
7848 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7849 || (i.reg_operands == 3
7850 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7851 || (i.reg_operands == 4 && vex_3_sources)))
7852 {
7853 switch (i.operands)
7854 {
7855 case 2:
7856 source = 0;
7857 break;
7858 case 3:
7859 /* When there are 3 operands, one of them may be immediate,
7860 which may be the first or the last operand. Otherwise,
7861 the first operand must be shift count register (cl) or it
7862 is an instruction with VexNDS. */
7863 gas_assert (i.imm_operands == 1
7864 || (i.imm_operands == 0
7865 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7866 || (i.types[0].bitfield.instance == RegC
7867 && i.types[0].bitfield.byte))));
7868 if (operand_type_check (i.types[0], imm)
7869 || (i.types[0].bitfield.instance == RegC
7870 && i.types[0].bitfield.byte))
7871 source = 1;
7872 else
7873 source = 0;
7874 break;
7875 case 4:
7876 /* When there are 4 operands, the first two must be 8bit
7877 immediate operands. The source operand will be the 3rd
7878 one.
7879
7880 For instructions with VexNDS, if the first operand
7881 an imm8, the source operand is the 2nd one. If the last
7882 operand is imm8, the source operand is the first one. */
7883 gas_assert ((i.imm_operands == 2
7884 && i.types[0].bitfield.imm8
7885 && i.types[1].bitfield.imm8)
7886 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7887 && i.imm_operands == 1
7888 && (i.types[0].bitfield.imm8
7889 || i.types[i.operands - 1].bitfield.imm8
7890 || i.rounding)));
7891 if (i.imm_operands == 2)
7892 source = 2;
7893 else
7894 {
7895 if (i.types[0].bitfield.imm8)
7896 source = 1;
7897 else
7898 source = 0;
7899 }
7900 break;
7901 case 5:
7902 if (is_evex_encoding (&i.tm))
7903 {
7904 /* For EVEX instructions, when there are 5 operands, the
7905 first one must be immediate operand. If the second one
7906 is immediate operand, the source operand is the 3th
7907 one. If the last one is immediate operand, the source
7908 operand is the 2nd one. */
7909 gas_assert (i.imm_operands == 2
7910 && i.tm.opcode_modifier.sae
7911 && operand_type_check (i.types[0], imm));
7912 if (operand_type_check (i.types[1], imm))
7913 source = 2;
7914 else if (operand_type_check (i.types[4], imm))
7915 source = 1;
7916 else
7917 abort ();
7918 }
7919 break;
7920 default:
7921 abort ();
7922 }
7923
7924 if (!vex_3_sources)
7925 {
7926 dest = source + 1;
7927
7928 /* RC/SAE operand could be between DEST and SRC. That happens
7929 when one operand is GPR and the other one is XMM/YMM/ZMM
7930 register. */
7931 if (i.rounding && i.rounding->operand == (int) dest)
7932 dest++;
7933
7934 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7935 {
7936 /* For instructions with VexNDS, the register-only source
7937 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7938 register. It is encoded in VEX prefix. */
7939
7940 i386_operand_type op;
7941 unsigned int vvvv;
7942
7943 /* Swap two source operands if needed. */
7944 if (i.tm.opcode_modifier.swapsources)
7945 {
7946 vvvv = source;
7947 source = dest;
7948 }
7949 else
7950 vvvv = dest;
7951
7952 op = i.tm.operand_types[vvvv];
7953 if ((dest + 1) >= i.operands
7954 || ((op.bitfield.class != Reg
7955 || (!op.bitfield.dword && !op.bitfield.qword))
7956 && op.bitfield.class != RegSIMD
7957 && !operand_type_equal (&op, &regmask)))
7958 abort ();
7959 i.vex.register_specifier = i.op[vvvv].regs;
7960 dest++;
7961 }
7962 }
7963
7964 i.rm.mode = 3;
7965 /* One of the register operands will be encoded in the i.rm.reg
7966 field, the other in the combined i.rm.mode and i.rm.regmem
7967 fields. If no form of this instruction supports a memory
7968 destination operand, then we assume the source operand may
7969 sometimes be a memory operand and so we need to store the
7970 destination in the i.rm.reg field. */
7971 if (!i.tm.opcode_modifier.regmem
7972 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7973 {
7974 i.rm.reg = i.op[dest].regs->reg_num;
7975 i.rm.regmem = i.op[source].regs->reg_num;
7976 set_rex_vrex (i.op[dest].regs, REX_R, i.tm.opcode_modifier.sse2avx);
7977 set_rex_vrex (i.op[source].regs, REX_B, FALSE);
7978 }
7979 else
7980 {
7981 i.rm.reg = i.op[source].regs->reg_num;
7982 i.rm.regmem = i.op[dest].regs->reg_num;
7983 set_rex_vrex (i.op[dest].regs, REX_B, i.tm.opcode_modifier.sse2avx);
7984 set_rex_vrex (i.op[source].regs, REX_R, FALSE);
7985 }
7986 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7987 {
7988 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7989 abort ();
7990 i.rex &= ~REX_R;
7991 add_prefix (LOCK_PREFIX_OPCODE);
7992 }
7993 }
7994 else
7995 { /* If it's not 2 reg operands... */
7996 unsigned int mem;
7997
7998 if (i.mem_operands)
7999 {
8000 unsigned int fake_zero_displacement = 0;
8001 unsigned int op;
8002
8003 for (op = 0; op < i.operands; op++)
8004 if (i.flags[op] & Operand_Mem)
8005 break;
8006 gas_assert (op < i.operands);
8007
8008 if (i.tm.opcode_modifier.sib)
8009 {
8010 /* The index register of VSIB shouldn't be RegIZ. */
8011 if (i.tm.opcode_modifier.sib != SIBMEM
8012 && i.index_reg->reg_num == RegIZ)
8013 abort ();
8014
8015 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8016 if (!i.base_reg)
8017 {
8018 i.sib.base = NO_BASE_REGISTER;
8019 i.sib.scale = i.log2_scale_factor;
8020 i.types[op].bitfield.disp8 = 0;
8021 i.types[op].bitfield.disp16 = 0;
8022 i.types[op].bitfield.disp64 = 0;
8023 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
8024 {
8025 /* Must be 32 bit */
8026 i.types[op].bitfield.disp32 = 1;
8027 i.types[op].bitfield.disp32s = 0;
8028 }
8029 else
8030 {
8031 i.types[op].bitfield.disp32 = 0;
8032 i.types[op].bitfield.disp32s = 1;
8033 }
8034 }
8035
8036 /* Since the mandatory SIB always has index register, so
8037 the code logic remains unchanged. The non-mandatory SIB
8038 without index register is allowed and will be handled
8039 later. */
8040 if (i.index_reg)
8041 {
8042 if (i.index_reg->reg_num == RegIZ)
8043 i.sib.index = NO_INDEX_REGISTER;
8044 else
8045 i.sib.index = i.index_reg->reg_num;
8046 set_rex_vrex (i.index_reg, REX_X, FALSE);
8047 }
8048 }
8049
8050 default_seg = &ds;
8051
8052 if (i.base_reg == 0)
8053 {
8054 i.rm.mode = 0;
8055 if (!i.disp_operands)
8056 fake_zero_displacement = 1;
8057 if (i.index_reg == 0)
8058 {
8059 i386_operand_type newdisp;
8060
8061 /* Both check for VSIB and mandatory non-vector SIB. */
8062 gas_assert (!i.tm.opcode_modifier.sib
8063 || i.tm.opcode_modifier.sib == SIBMEM);
8064 /* Operand is just <disp> */
8065 if (flag_code == CODE_64BIT)
8066 {
8067 /* 64bit mode overwrites the 32bit absolute
8068 addressing by RIP relative addressing and
8069 absolute addressing is encoded by one of the
8070 redundant SIB forms. */
8071 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8072 i.sib.base = NO_BASE_REGISTER;
8073 i.sib.index = NO_INDEX_REGISTER;
8074 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
8075 }
8076 else if ((flag_code == CODE_16BIT)
8077 ^ (i.prefix[ADDR_PREFIX] != 0))
8078 {
8079 i.rm.regmem = NO_BASE_REGISTER_16;
8080 newdisp = disp16;
8081 }
8082 else
8083 {
8084 i.rm.regmem = NO_BASE_REGISTER;
8085 newdisp = disp32;
8086 }
8087 i.types[op] = operand_type_and_not (i.types[op], anydisp);
8088 i.types[op] = operand_type_or (i.types[op], newdisp);
8089 }
8090 else if (!i.tm.opcode_modifier.sib)
8091 {
8092 /* !i.base_reg && i.index_reg */
8093 if (i.index_reg->reg_num == RegIZ)
8094 i.sib.index = NO_INDEX_REGISTER;
8095 else
8096 i.sib.index = i.index_reg->reg_num;
8097 i.sib.base = NO_BASE_REGISTER;
8098 i.sib.scale = i.log2_scale_factor;
8099 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8100 i.types[op].bitfield.disp8 = 0;
8101 i.types[op].bitfield.disp16 = 0;
8102 i.types[op].bitfield.disp64 = 0;
8103 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
8104 {
8105 /* Must be 32 bit */
8106 i.types[op].bitfield.disp32 = 1;
8107 i.types[op].bitfield.disp32s = 0;
8108 }
8109 else
8110 {
8111 i.types[op].bitfield.disp32 = 0;
8112 i.types[op].bitfield.disp32s = 1;
8113 }
8114 if ((i.index_reg->reg_flags & RegRex) != 0)
8115 i.rex |= REX_X;
8116 }
8117 }
8118 /* RIP addressing for 64bit mode. */
8119 else if (i.base_reg->reg_num == RegIP)
8120 {
8121 gas_assert (!i.tm.opcode_modifier.sib);
8122 i.rm.regmem = NO_BASE_REGISTER;
8123 i.types[op].bitfield.disp8 = 0;
8124 i.types[op].bitfield.disp16 = 0;
8125 i.types[op].bitfield.disp32 = 0;
8126 i.types[op].bitfield.disp32s = 1;
8127 i.types[op].bitfield.disp64 = 0;
8128 i.flags[op] |= Operand_PCrel;
8129 if (! i.disp_operands)
8130 fake_zero_displacement = 1;
8131 }
8132 else if (i.base_reg->reg_type.bitfield.word)
8133 {
8134 gas_assert (!i.tm.opcode_modifier.sib);
8135 switch (i.base_reg->reg_num)
8136 {
8137 case 3: /* (%bx) */
8138 if (i.index_reg == 0)
8139 i.rm.regmem = 7;
8140 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
8141 i.rm.regmem = i.index_reg->reg_num - 6;
8142 break;
8143 case 5: /* (%bp) */
8144 default_seg = &ss;
8145 if (i.index_reg == 0)
8146 {
8147 i.rm.regmem = 6;
8148 if (operand_type_check (i.types[op], disp) == 0)
8149 {
8150 /* fake (%bp) into 0(%bp) */
8151 i.types[op].bitfield.disp8 = 1;
8152 fake_zero_displacement = 1;
8153 }
8154 }
8155 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
8156 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
8157 break;
8158 default: /* (%si) -> 4 or (%di) -> 5 */
8159 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
8160 }
8161 i.rm.mode = mode_from_disp_size (i.types[op]);
8162 }
8163 else /* i.base_reg and 32/64 bit mode */
8164 {
8165 if (flag_code == CODE_64BIT
8166 && operand_type_check (i.types[op], disp))
8167 {
8168 i.types[op].bitfield.disp16 = 0;
8169 i.types[op].bitfield.disp64 = 0;
8170 if (i.prefix[ADDR_PREFIX] == 0)
8171 {
8172 i.types[op].bitfield.disp32 = 0;
8173 i.types[op].bitfield.disp32s = 1;
8174 }
8175 else
8176 {
8177 i.types[op].bitfield.disp32 = 1;
8178 i.types[op].bitfield.disp32s = 0;
8179 }
8180 }
8181
8182 if (!i.tm.opcode_modifier.sib)
8183 i.rm.regmem = i.base_reg->reg_num;
8184 if ((i.base_reg->reg_flags & RegRex) != 0)
8185 i.rex |= REX_B;
8186 i.sib.base = i.base_reg->reg_num;
8187 /* x86-64 ignores REX prefix bit here to avoid decoder
8188 complications. */
8189 if (!(i.base_reg->reg_flags & RegRex)
8190 && (i.base_reg->reg_num == EBP_REG_NUM
8191 || i.base_reg->reg_num == ESP_REG_NUM))
8192 default_seg = &ss;
8193 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
8194 {
8195 fake_zero_displacement = 1;
8196 i.types[op].bitfield.disp8 = 1;
8197 }
8198 i.sib.scale = i.log2_scale_factor;
8199 if (i.index_reg == 0)
8200 {
8201 /* Only check for VSIB. */
8202 gas_assert (i.tm.opcode_modifier.sib != VECSIB128
8203 && i.tm.opcode_modifier.sib != VECSIB256
8204 && i.tm.opcode_modifier.sib != VECSIB512);
8205
8206 /* <disp>(%esp) becomes two byte modrm with no index
8207 register. We've already stored the code for esp
8208 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
8209 Any base register besides %esp will not use the
8210 extra modrm byte. */
8211 i.sib.index = NO_INDEX_REGISTER;
8212 }
8213 else if (!i.tm.opcode_modifier.sib)
8214 {
8215 if (i.index_reg->reg_num == RegIZ)
8216 i.sib.index = NO_INDEX_REGISTER;
8217 else
8218 i.sib.index = i.index_reg->reg_num;
8219 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8220 if ((i.index_reg->reg_flags & RegRex) != 0)
8221 i.rex |= REX_X;
8222 }
8223
8224 if (i.disp_operands
8225 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
8226 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
8227 i.rm.mode = 0;
8228 else
8229 {
8230 if (!fake_zero_displacement
8231 && !i.disp_operands
8232 && i.disp_encoding)
8233 {
8234 fake_zero_displacement = 1;
8235 if (i.disp_encoding == disp_encoding_8bit)
8236 i.types[op].bitfield.disp8 = 1;
8237 else
8238 i.types[op].bitfield.disp32 = 1;
8239 }
8240 i.rm.mode = mode_from_disp_size (i.types[op]);
8241 }
8242 }
8243
8244 if (fake_zero_displacement)
8245 {
8246 /* Fakes a zero displacement assuming that i.types[op]
8247 holds the correct displacement size. */
8248 expressionS *exp;
8249
8250 gas_assert (i.op[op].disps == 0);
8251 exp = &disp_expressions[i.disp_operands++];
8252 i.op[op].disps = exp;
8253 exp->X_op = O_constant;
8254 exp->X_add_number = 0;
8255 exp->X_add_symbol = (symbolS *) 0;
8256 exp->X_op_symbol = (symbolS *) 0;
8257 }
8258
8259 mem = op;
8260 }
8261 else
8262 mem = ~0;
8263
8264 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
8265 {
8266 if (operand_type_check (i.types[0], imm))
8267 i.vex.register_specifier = NULL;
8268 else
8269 {
8270 /* VEX.vvvv encodes one of the sources when the first
8271 operand is not an immediate. */
8272 if (i.tm.opcode_modifier.vexw == VEXW0)
8273 i.vex.register_specifier = i.op[0].regs;
8274 else
8275 i.vex.register_specifier = i.op[1].regs;
8276 }
8277
8278 /* Destination is a XMM register encoded in the ModRM.reg
8279 and VEX.R bit. */
8280 i.rm.reg = i.op[2].regs->reg_num;
8281 if ((i.op[2].regs->reg_flags & RegRex) != 0)
8282 i.rex |= REX_R;
8283
8284 /* ModRM.rm and VEX.B encodes the other source. */
8285 if (!i.mem_operands)
8286 {
8287 i.rm.mode = 3;
8288
8289 if (i.tm.opcode_modifier.vexw == VEXW0)
8290 i.rm.regmem = i.op[1].regs->reg_num;
8291 else
8292 i.rm.regmem = i.op[0].regs->reg_num;
8293
8294 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8295 i.rex |= REX_B;
8296 }
8297 }
8298 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
8299 {
8300 i.vex.register_specifier = i.op[2].regs;
8301 if (!i.mem_operands)
8302 {
8303 i.rm.mode = 3;
8304 i.rm.regmem = i.op[1].regs->reg_num;
8305 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8306 i.rex |= REX_B;
8307 }
8308 }
8309 /* Fill in i.rm.reg or i.rm.regmem field with register operand
8310 (if any) based on i.tm.extension_opcode. Again, we must be
8311 careful to make sure that segment/control/debug/test/MMX
8312 registers are coded into the i.rm.reg field. */
8313 else if (i.reg_operands)
8314 {
8315 unsigned int op;
8316 unsigned int vex_reg = ~0;
8317
8318 for (op = 0; op < i.operands; op++)
8319 if (i.types[op].bitfield.class == Reg
8320 || i.types[op].bitfield.class == RegBND
8321 || i.types[op].bitfield.class == RegMask
8322 || i.types[op].bitfield.class == SReg
8323 || i.types[op].bitfield.class == RegCR
8324 || i.types[op].bitfield.class == RegDR
8325 || i.types[op].bitfield.class == RegTR
8326 || i.types[op].bitfield.class == RegSIMD
8327 || i.types[op].bitfield.class == RegMMX)
8328 break;
8329
8330 if (vex_3_sources)
8331 op = dest;
8332 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
8333 {
8334 /* For instructions with VexNDS, the register-only
8335 source operand is encoded in VEX prefix. */
8336 gas_assert (mem != (unsigned int) ~0);
8337
8338 if (op > mem)
8339 {
8340 vex_reg = op++;
8341 gas_assert (op < i.operands);
8342 }
8343 else
8344 {
8345 /* Check register-only source operand when two source
8346 operands are swapped. */
8347 if (!i.tm.operand_types[op].bitfield.baseindex
8348 && i.tm.operand_types[op + 1].bitfield.baseindex)
8349 {
8350 vex_reg = op;
8351 op += 2;
8352 gas_assert (mem == (vex_reg + 1)
8353 && op < i.operands);
8354 }
8355 else
8356 {
8357 vex_reg = op + 1;
8358 gas_assert (vex_reg < i.operands);
8359 }
8360 }
8361 }
8362 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
8363 {
8364 /* For instructions with VexNDD, the register destination
8365 is encoded in VEX prefix. */
8366 if (i.mem_operands == 0)
8367 {
8368 /* There is no memory operand. */
8369 gas_assert ((op + 2) == i.operands);
8370 vex_reg = op + 1;
8371 }
8372 else
8373 {
8374 /* There are only 2 non-immediate operands. */
8375 gas_assert (op < i.imm_operands + 2
8376 && i.operands == i.imm_operands + 2);
8377 vex_reg = i.imm_operands + 1;
8378 }
8379 }
8380 else
8381 gas_assert (op < i.operands);
8382
8383 if (vex_reg != (unsigned int) ~0)
8384 {
8385 i386_operand_type *type = &i.tm.operand_types[vex_reg];
8386
8387 if ((type->bitfield.class != Reg
8388 || (!type->bitfield.dword && !type->bitfield.qword))
8389 && type->bitfield.class != RegSIMD
8390 && !operand_type_equal (type, &regmask))
8391 abort ();
8392
8393 i.vex.register_specifier = i.op[vex_reg].regs;
8394 }
8395
8396 /* Don't set OP operand twice. */
8397 if (vex_reg != op)
8398 {
8399 /* If there is an extension opcode to put here, the
8400 register number must be put into the regmem field. */
8401 if (i.tm.extension_opcode != None)
8402 {
8403 i.rm.regmem = i.op[op].regs->reg_num;
8404 set_rex_vrex (i.op[op].regs, REX_B,
8405 i.tm.opcode_modifier.sse2avx);
8406 }
8407 else
8408 {
8409 i.rm.reg = i.op[op].regs->reg_num;
8410 set_rex_vrex (i.op[op].regs, REX_R,
8411 i.tm.opcode_modifier.sse2avx);
8412 }
8413 }
8414
8415 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
8416 must set it to 3 to indicate this is a register operand
8417 in the regmem field. */
8418 if (!i.mem_operands)
8419 i.rm.mode = 3;
8420 }
8421
8422 /* Fill in i.rm.reg field with extension opcode (if any). */
8423 if (i.tm.extension_opcode != None)
8424 i.rm.reg = i.tm.extension_opcode;
8425 }
8426 return default_seg;
8427 }
8428
8429 static unsigned int
8430 flip_code16 (unsigned int code16)
8431 {
8432 gas_assert (i.tm.operands == 1);
8433
8434 return !(i.prefix[REX_PREFIX] & REX_W)
8435 && (code16 ? i.tm.operand_types[0].bitfield.disp32
8436 || i.tm.operand_types[0].bitfield.disp32s
8437 : i.tm.operand_types[0].bitfield.disp16)
8438 ? CODE16 : 0;
8439 }
8440
8441 static void
8442 output_branch (void)
8443 {
8444 char *p;
8445 int size;
8446 int code16;
8447 int prefix;
8448 relax_substateT subtype;
8449 symbolS *sym;
8450 offsetT off;
8451
8452 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
8453 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
8454
8455 prefix = 0;
8456 if (i.prefix[DATA_PREFIX] != 0)
8457 {
8458 prefix = 1;
8459 i.prefixes -= 1;
8460 code16 ^= flip_code16(code16);
8461 }
8462 /* Pentium4 branch hints. */
8463 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8464 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8465 {
8466 prefix++;
8467 i.prefixes--;
8468 }
8469 if (i.prefix[REX_PREFIX] != 0)
8470 {
8471 prefix++;
8472 i.prefixes--;
8473 }
8474
8475 /* BND prefixed jump. */
8476 if (i.prefix[BND_PREFIX] != 0)
8477 {
8478 prefix++;
8479 i.prefixes--;
8480 }
8481
8482 if (i.prefixes != 0)
8483 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8484
8485 /* It's always a symbol; End frag & setup for relax.
8486 Make sure there is enough room in this frag for the largest
8487 instruction we may generate in md_convert_frag. This is 2
8488 bytes for the opcode and room for the prefix and largest
8489 displacement. */
8490 frag_grow (prefix + 2 + 4);
8491 /* Prefix and 1 opcode byte go in fr_fix. */
8492 p = frag_more (prefix + 1);
8493 if (i.prefix[DATA_PREFIX] != 0)
8494 *p++ = DATA_PREFIX_OPCODE;
8495 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8496 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8497 *p++ = i.prefix[SEG_PREFIX];
8498 if (i.prefix[BND_PREFIX] != 0)
8499 *p++ = BND_PREFIX_OPCODE;
8500 if (i.prefix[REX_PREFIX] != 0)
8501 *p++ = i.prefix[REX_PREFIX];
8502 *p = i.tm.base_opcode;
8503
8504 if ((unsigned char) *p == JUMP_PC_RELATIVE)
8505 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
8506 else if (cpu_arch_flags.bitfield.cpui386)
8507 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
8508 else
8509 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
8510 subtype |= code16;
8511
8512 sym = i.op[0].disps->X_add_symbol;
8513 off = i.op[0].disps->X_add_number;
8514
8515 if (i.op[0].disps->X_op != O_constant
8516 && i.op[0].disps->X_op != O_symbol)
8517 {
8518 /* Handle complex expressions. */
8519 sym = make_expr_symbol (i.op[0].disps);
8520 off = 0;
8521 }
8522
8523 /* 1 possible extra opcode + 4 byte displacement go in var part.
8524 Pass reloc in fr_var. */
8525 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
8526 }
8527
8528 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8529 /* Return TRUE iff PLT32 relocation should be used for branching to
8530 symbol S. */
8531
8532 static bfd_boolean
8533 need_plt32_p (symbolS *s)
8534 {
8535 /* PLT32 relocation is ELF only. */
8536 if (!IS_ELF)
8537 return FALSE;
8538
8539 #ifdef TE_SOLARIS
8540 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8541 krtld support it. */
8542 return FALSE;
8543 #endif
8544
8545 /* Since there is no need to prepare for PLT branch on x86-64, we
8546 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8547 be used as a marker for 32-bit PC-relative branches. */
8548 if (!object_64bit)
8549 return FALSE;
8550
8551 /* Weak or undefined symbol need PLT32 relocation. */
8552 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8553 return TRUE;
8554
8555 /* Non-global symbol doesn't need PLT32 relocation. */
8556 if (! S_IS_EXTERNAL (s))
8557 return FALSE;
8558
8559 /* Other global symbols need PLT32 relocation. NB: Symbol with
8560 non-default visibilities are treated as normal global symbol
8561 so that PLT32 relocation can be used as a marker for 32-bit
8562 PC-relative branches. It is useful for linker relaxation. */
8563 return TRUE;
8564 }
8565 #endif
8566
8567 static void
8568 output_jump (void)
8569 {
8570 char *p;
8571 int size;
8572 fixS *fixP;
8573 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8574
8575 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8576 {
8577 /* This is a loop or jecxz type instruction. */
8578 size = 1;
8579 if (i.prefix[ADDR_PREFIX] != 0)
8580 {
8581 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8582 i.prefixes -= 1;
8583 }
8584 /* Pentium4 branch hints. */
8585 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8586 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8587 {
8588 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8589 i.prefixes--;
8590 }
8591 }
8592 else
8593 {
8594 int code16;
8595
8596 code16 = 0;
8597 if (flag_code == CODE_16BIT)
8598 code16 = CODE16;
8599
8600 if (i.prefix[DATA_PREFIX] != 0)
8601 {
8602 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8603 i.prefixes -= 1;
8604 code16 ^= flip_code16(code16);
8605 }
8606
8607 size = 4;
8608 if (code16)
8609 size = 2;
8610 }
8611
8612 /* BND prefixed jump. */
8613 if (i.prefix[BND_PREFIX] != 0)
8614 {
8615 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8616 i.prefixes -= 1;
8617 }
8618
8619 if (i.prefix[REX_PREFIX] != 0)
8620 {
8621 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8622 i.prefixes -= 1;
8623 }
8624
8625 if (i.prefixes != 0)
8626 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8627
8628 p = frag_more (i.tm.opcode_length + size);
8629 switch (i.tm.opcode_length)
8630 {
8631 case 2:
8632 *p++ = i.tm.base_opcode >> 8;
8633 /* Fall through. */
8634 case 1:
8635 *p++ = i.tm.base_opcode;
8636 break;
8637 default:
8638 abort ();
8639 }
8640
8641 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8642 if (size == 4
8643 && jump_reloc == NO_RELOC
8644 && need_plt32_p (i.op[0].disps->X_add_symbol))
8645 jump_reloc = BFD_RELOC_X86_64_PLT32;
8646 #endif
8647
8648 jump_reloc = reloc (size, 1, 1, jump_reloc);
8649
8650 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8651 i.op[0].disps, 1, jump_reloc);
8652
8653 /* All jumps handled here are signed, but don't use a signed limit
8654 check for 32 and 16 bit jumps as we want to allow wrap around at
8655 4G and 64k respectively. */
8656 if (size == 1)
8657 fixP->fx_signed = 1;
8658 }
8659
8660 static void
8661 output_interseg_jump (void)
8662 {
8663 char *p;
8664 int size;
8665 int prefix;
8666 int code16;
8667
8668 code16 = 0;
8669 if (flag_code == CODE_16BIT)
8670 code16 = CODE16;
8671
8672 prefix = 0;
8673 if (i.prefix[DATA_PREFIX] != 0)
8674 {
8675 prefix = 1;
8676 i.prefixes -= 1;
8677 code16 ^= CODE16;
8678 }
8679
8680 gas_assert (!i.prefix[REX_PREFIX]);
8681
8682 size = 4;
8683 if (code16)
8684 size = 2;
8685
8686 if (i.prefixes != 0)
8687 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8688
8689 /* 1 opcode; 2 segment; offset */
8690 p = frag_more (prefix + 1 + 2 + size);
8691
8692 if (i.prefix[DATA_PREFIX] != 0)
8693 *p++ = DATA_PREFIX_OPCODE;
8694
8695 if (i.prefix[REX_PREFIX] != 0)
8696 *p++ = i.prefix[REX_PREFIX];
8697
8698 *p++ = i.tm.base_opcode;
8699 if (i.op[1].imms->X_op == O_constant)
8700 {
8701 offsetT n = i.op[1].imms->X_add_number;
8702
8703 if (size == 2
8704 && !fits_in_unsigned_word (n)
8705 && !fits_in_signed_word (n))
8706 {
8707 as_bad (_("16-bit jump out of range"));
8708 return;
8709 }
8710 md_number_to_chars (p, n, size);
8711 }
8712 else
8713 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8714 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8715 if (i.op[0].imms->X_op != O_constant)
8716 as_bad (_("can't handle non absolute segment in `%s'"),
8717 i.tm.name);
8718 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8719 }
8720
8721 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8722 void
8723 x86_cleanup (void)
8724 {
8725 char *p;
8726 asection *seg = now_seg;
8727 subsegT subseg = now_subseg;
8728 asection *sec;
8729 unsigned int alignment, align_size_1;
8730 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8731 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8732 unsigned int padding;
8733
8734 if (!IS_ELF || !x86_used_note)
8735 return;
8736
8737 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8738
8739 /* The .note.gnu.property section layout:
8740
8741 Field Length Contents
8742 ---- ---- ----
8743 n_namsz 4 4
8744 n_descsz 4 The note descriptor size
8745 n_type 4 NT_GNU_PROPERTY_TYPE_0
8746 n_name 4 "GNU"
8747 n_desc n_descsz The program property array
8748 .... .... ....
8749 */
8750
8751 /* Create the .note.gnu.property section. */
8752 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8753 bfd_set_section_flags (sec,
8754 (SEC_ALLOC
8755 | SEC_LOAD
8756 | SEC_DATA
8757 | SEC_HAS_CONTENTS
8758 | SEC_READONLY));
8759
8760 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8761 {
8762 align_size_1 = 7;
8763 alignment = 3;
8764 }
8765 else
8766 {
8767 align_size_1 = 3;
8768 alignment = 2;
8769 }
8770
8771 bfd_set_section_alignment (sec, alignment);
8772 elf_section_type (sec) = SHT_NOTE;
8773
8774 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8775 + 4-byte data */
8776 isa_1_descsz_raw = 4 + 4 + 4;
8777 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8778 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8779
8780 feature_2_descsz_raw = isa_1_descsz;
8781 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8782 + 4-byte data */
8783 feature_2_descsz_raw += 4 + 4 + 4;
8784 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8785 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8786 & ~align_size_1);
8787
8788 descsz = feature_2_descsz;
8789 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8790 p = frag_more (4 + 4 + 4 + 4 + descsz);
8791
8792 /* Write n_namsz. */
8793 md_number_to_chars (p, (valueT) 4, 4);
8794
8795 /* Write n_descsz. */
8796 md_number_to_chars (p + 4, (valueT) descsz, 4);
8797
8798 /* Write n_type. */
8799 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8800
8801 /* Write n_name. */
8802 memcpy (p + 4 * 3, "GNU", 4);
8803
8804 /* Write 4-byte type. */
8805 md_number_to_chars (p + 4 * 4,
8806 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8807
8808 /* Write 4-byte data size. */
8809 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8810
8811 /* Write 4-byte data. */
8812 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8813
8814 /* Zero out paddings. */
8815 padding = isa_1_descsz - isa_1_descsz_raw;
8816 if (padding)
8817 memset (p + 4 * 7, 0, padding);
8818
8819 /* Write 4-byte type. */
8820 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8821 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8822
8823 /* Write 4-byte data size. */
8824 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8825
8826 /* Write 4-byte data. */
8827 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8828 (valueT) x86_feature_2_used, 4);
8829
8830 /* Zero out paddings. */
8831 padding = feature_2_descsz - feature_2_descsz_raw;
8832 if (padding)
8833 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8834
8835 /* We probably can't restore the current segment, for there likely
8836 isn't one yet... */
8837 if (seg && subseg)
8838 subseg_set (seg, subseg);
8839 }
8840 #endif
8841
8842 static unsigned int
8843 encoding_length (const fragS *start_frag, offsetT start_off,
8844 const char *frag_now_ptr)
8845 {
8846 unsigned int len = 0;
8847
8848 if (start_frag != frag_now)
8849 {
8850 const fragS *fr = start_frag;
8851
8852 do {
8853 len += fr->fr_fix;
8854 fr = fr->fr_next;
8855 } while (fr && fr != frag_now);
8856 }
8857
8858 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8859 }
8860
8861 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8862 be macro-fused with conditional jumps.
8863 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
8864 or is one of the following format:
8865
8866 cmp m, imm
8867 add m, imm
8868 sub m, imm
8869 test m, imm
8870 and m, imm
8871 inc m
8872 dec m
8873
8874 it is unfusible. */
8875
8876 static int
8877 maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
8878 {
8879 /* No RIP address. */
8880 if (i.base_reg && i.base_reg->reg_num == RegIP)
8881 return 0;
8882
8883 /* No VEX/EVEX encoding. */
8884 if (is_any_vex_encoding (&i.tm))
8885 return 0;
8886
8887 /* add, sub without add/sub m, imm. */
8888 if (i.tm.base_opcode <= 5
8889 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8890 || ((i.tm.base_opcode | 3) == 0x83
8891 && (i.tm.extension_opcode == 0x5
8892 || i.tm.extension_opcode == 0x0)))
8893 {
8894 *mf_cmp_p = mf_cmp_alu_cmp;
8895 return !(i.mem_operands && i.imm_operands);
8896 }
8897
8898 /* and without and m, imm. */
8899 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8900 || ((i.tm.base_opcode | 3) == 0x83
8901 && i.tm.extension_opcode == 0x4))
8902 {
8903 *mf_cmp_p = mf_cmp_test_and;
8904 return !(i.mem_operands && i.imm_operands);
8905 }
8906
8907 /* test without test m imm. */
8908 if ((i.tm.base_opcode | 1) == 0x85
8909 || (i.tm.base_opcode | 1) == 0xa9
8910 || ((i.tm.base_opcode | 1) == 0xf7
8911 && i.tm.extension_opcode == 0))
8912 {
8913 *mf_cmp_p = mf_cmp_test_and;
8914 return !(i.mem_operands && i.imm_operands);
8915 }
8916
8917 /* cmp without cmp m, imm. */
8918 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8919 || ((i.tm.base_opcode | 3) == 0x83
8920 && (i.tm.extension_opcode == 0x7)))
8921 {
8922 *mf_cmp_p = mf_cmp_alu_cmp;
8923 return !(i.mem_operands && i.imm_operands);
8924 }
8925
8926 /* inc, dec without inc/dec m. */
8927 if ((i.tm.cpu_flags.bitfield.cpuno64
8928 && (i.tm.base_opcode | 0xf) == 0x4f)
8929 || ((i.tm.base_opcode | 1) == 0xff
8930 && i.tm.extension_opcode <= 0x1))
8931 {
8932 *mf_cmp_p = mf_cmp_incdec;
8933 return !i.mem_operands;
8934 }
8935
8936 return 0;
8937 }
8938
8939 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8940
8941 static int
8942 add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
8943 {
8944 /* NB: Don't work with COND_JUMP86 without i386. */
8945 if (!align_branch_power
8946 || now_seg == absolute_section
8947 || !cpu_arch_flags.bitfield.cpui386
8948 || !(align_branch & align_branch_fused_bit))
8949 return 0;
8950
8951 if (maybe_fused_with_jcc_p (mf_cmp_p))
8952 {
8953 if (last_insn.kind == last_insn_other
8954 || last_insn.seg != now_seg)
8955 return 1;
8956 if (flag_debug)
8957 as_warn_where (last_insn.file, last_insn.line,
8958 _("`%s` skips -malign-branch-boundary on `%s`"),
8959 last_insn.name, i.tm.name);
8960 }
8961
8962 return 0;
8963 }
8964
8965 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8966
8967 static int
8968 add_branch_prefix_frag_p (void)
8969 {
8970 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8971 to PadLock instructions since they include prefixes in opcode. */
8972 if (!align_branch_power
8973 || !align_branch_prefix_size
8974 || now_seg == absolute_section
8975 || i.tm.cpu_flags.bitfield.cpupadlock
8976 || !cpu_arch_flags.bitfield.cpui386)
8977 return 0;
8978
8979 /* Don't add prefix if it is a prefix or there is no operand in case
8980 that segment prefix is special. */
8981 if (!i.operands || i.tm.opcode_modifier.isprefix)
8982 return 0;
8983
8984 if (last_insn.kind == last_insn_other
8985 || last_insn.seg != now_seg)
8986 return 1;
8987
8988 if (flag_debug)
8989 as_warn_where (last_insn.file, last_insn.line,
8990 _("`%s` skips -malign-branch-boundary on `%s`"),
8991 last_insn.name, i.tm.name);
8992
8993 return 0;
8994 }
8995
8996 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8997
8998 static int
8999 add_branch_padding_frag_p (enum align_branch_kind *branch_p,
9000 enum mf_jcc_kind *mf_jcc_p)
9001 {
9002 int add_padding;
9003
9004 /* NB: Don't work with COND_JUMP86 without i386. */
9005 if (!align_branch_power
9006 || now_seg == absolute_section
9007 || !cpu_arch_flags.bitfield.cpui386)
9008 return 0;
9009
9010 add_padding = 0;
9011
9012 /* Check for jcc and direct jmp. */
9013 if (i.tm.opcode_modifier.jump == JUMP)
9014 {
9015 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
9016 {
9017 *branch_p = align_branch_jmp;
9018 add_padding = align_branch & align_branch_jmp_bit;
9019 }
9020 else
9021 {
9022 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
9023 igore the lowest bit. */
9024 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
9025 *branch_p = align_branch_jcc;
9026 if ((align_branch & align_branch_jcc_bit))
9027 add_padding = 1;
9028 }
9029 }
9030 else if (is_any_vex_encoding (&i.tm))
9031 return 0;
9032 else if ((i.tm.base_opcode | 1) == 0xc3)
9033 {
9034 /* Near ret. */
9035 *branch_p = align_branch_ret;
9036 if ((align_branch & align_branch_ret_bit))
9037 add_padding = 1;
9038 }
9039 else
9040 {
9041 /* Check for indirect jmp, direct and indirect calls. */
9042 if (i.tm.base_opcode == 0xe8)
9043 {
9044 /* Direct call. */
9045 *branch_p = align_branch_call;
9046 if ((align_branch & align_branch_call_bit))
9047 add_padding = 1;
9048 }
9049 else if (i.tm.base_opcode == 0xff
9050 && (i.tm.extension_opcode == 2
9051 || i.tm.extension_opcode == 4))
9052 {
9053 /* Indirect call and jmp. */
9054 *branch_p = align_branch_indirect;
9055 if ((align_branch & align_branch_indirect_bit))
9056 add_padding = 1;
9057 }
9058
9059 if (add_padding
9060 && i.disp_operands
9061 && tls_get_addr
9062 && (i.op[0].disps->X_op == O_symbol
9063 || (i.op[0].disps->X_op == O_subtract
9064 && i.op[0].disps->X_op_symbol == GOT_symbol)))
9065 {
9066 symbolS *s = i.op[0].disps->X_add_symbol;
9067 /* No padding to call to global or undefined tls_get_addr. */
9068 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
9069 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
9070 return 0;
9071 }
9072 }
9073
9074 if (add_padding
9075 && last_insn.kind != last_insn_other
9076 && last_insn.seg == now_seg)
9077 {
9078 if (flag_debug)
9079 as_warn_where (last_insn.file, last_insn.line,
9080 _("`%s` skips -malign-branch-boundary on `%s`"),
9081 last_insn.name, i.tm.name);
9082 return 0;
9083 }
9084
9085 return add_padding;
9086 }
9087
9088 static void
9089 output_insn (void)
9090 {
9091 fragS *insn_start_frag;
9092 offsetT insn_start_off;
9093 fragS *fragP = NULL;
9094 enum align_branch_kind branch = align_branch_none;
9095 /* The initializer is arbitrary just to avoid uninitialized error.
9096 it's actually either assigned in add_branch_padding_frag_p
9097 or never be used. */
9098 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
9099
9100 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9101 if (IS_ELF && x86_used_note)
9102 {
9103 if (i.tm.cpu_flags.bitfield.cpucmov)
9104 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
9105 if (i.tm.cpu_flags.bitfield.cpusse)
9106 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
9107 if (i.tm.cpu_flags.bitfield.cpusse2)
9108 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
9109 if (i.tm.cpu_flags.bitfield.cpusse3)
9110 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
9111 if (i.tm.cpu_flags.bitfield.cpussse3)
9112 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
9113 if (i.tm.cpu_flags.bitfield.cpusse4_1)
9114 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
9115 if (i.tm.cpu_flags.bitfield.cpusse4_2)
9116 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
9117 if (i.tm.cpu_flags.bitfield.cpuavx)
9118 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
9119 if (i.tm.cpu_flags.bitfield.cpuavx2)
9120 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
9121 if (i.tm.cpu_flags.bitfield.cpufma)
9122 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
9123 if (i.tm.cpu_flags.bitfield.cpuavx512f)
9124 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
9125 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
9126 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
9127 if (i.tm.cpu_flags.bitfield.cpuavx512er)
9128 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
9129 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
9130 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
9131 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
9132 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
9133 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
9134 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
9135 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
9136 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
9137 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
9138 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
9139 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
9140 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
9141 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
9142 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
9143 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
9144 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
9145 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
9146 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
9147 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
9148 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
9149 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
9150 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
9151 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
9152 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
9153
9154 if (i.tm.cpu_flags.bitfield.cpu8087
9155 || i.tm.cpu_flags.bitfield.cpu287
9156 || i.tm.cpu_flags.bitfield.cpu387
9157 || i.tm.cpu_flags.bitfield.cpu687
9158 || i.tm.cpu_flags.bitfield.cpufisttp)
9159 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
9160 if ((i.xstate & xstate_mmx)
9161 || i.tm.base_opcode == 0xf77 /* emms */
9162 || i.tm.base_opcode == 0xf0e /* femms */)
9163 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
9164 if ((i.xstate & xstate_xmm))
9165 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
9166 if ((i.xstate & xstate_ymm) == xstate_ymm)
9167 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
9168 if ((i.xstate & xstate_zmm) == xstate_zmm)
9169 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
9170 if (i.tm.cpu_flags.bitfield.cpufxsr)
9171 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
9172 if (i.tm.cpu_flags.bitfield.cpuxsave)
9173 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
9174 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
9175 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
9176 if (i.tm.cpu_flags.bitfield.cpuxsavec)
9177 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
9178
9179 if ((i.xstate & xstate_tmm) == xstate_tmm
9180 || i.tm.cpu_flags.bitfield.cpuamx_tile)
9181 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_TMM;
9182 }
9183 #endif
9184
9185 /* Tie dwarf2 debug info to the address at the start of the insn.
9186 We can't do this after the insn has been output as the current
9187 frag may have been closed off. eg. by frag_var. */
9188 dwarf2_emit_insn (0);
9189
9190 insn_start_frag = frag_now;
9191 insn_start_off = frag_now_fix ();
9192
9193 if (add_branch_padding_frag_p (&branch, &mf_jcc))
9194 {
9195 char *p;
9196 /* Branch can be 8 bytes. Leave some room for prefixes. */
9197 unsigned int max_branch_padding_size = 14;
9198
9199 /* Align section to boundary. */
9200 record_alignment (now_seg, align_branch_power);
9201
9202 /* Make room for padding. */
9203 frag_grow (max_branch_padding_size);
9204
9205 /* Start of the padding. */
9206 p = frag_more (0);
9207
9208 fragP = frag_now;
9209
9210 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
9211 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
9212 NULL, 0, p);
9213
9214 fragP->tc_frag_data.mf_type = mf_jcc;
9215 fragP->tc_frag_data.branch_type = branch;
9216 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
9217 }
9218
9219 /* Output jumps. */
9220 if (i.tm.opcode_modifier.jump == JUMP)
9221 output_branch ();
9222 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
9223 || i.tm.opcode_modifier.jump == JUMP_DWORD)
9224 output_jump ();
9225 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
9226 output_interseg_jump ();
9227 else
9228 {
9229 /* Output normal instructions here. */
9230 char *p;
9231 unsigned char *q;
9232 unsigned int j;
9233 unsigned int prefix;
9234 enum mf_cmp_kind mf_cmp;
9235
9236 if (avoid_fence
9237 && (i.tm.base_opcode == 0xfaee8
9238 || i.tm.base_opcode == 0xfaef0
9239 || i.tm.base_opcode == 0xfaef8))
9240 {
9241 /* Encode lfence, mfence, and sfence as
9242 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
9243 offsetT val = 0x240483f0ULL;
9244 p = frag_more (5);
9245 md_number_to_chars (p, val, 5);
9246 return;
9247 }
9248
9249 /* Some processors fail on LOCK prefix. This options makes
9250 assembler ignore LOCK prefix and serves as a workaround. */
9251 if (omit_lock_prefix)
9252 {
9253 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
9254 return;
9255 i.prefix[LOCK_PREFIX] = 0;
9256 }
9257
9258 if (branch)
9259 /* Skip if this is a branch. */
9260 ;
9261 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
9262 {
9263 /* Make room for padding. */
9264 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
9265 p = frag_more (0);
9266
9267 fragP = frag_now;
9268
9269 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
9270 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
9271 NULL, 0, p);
9272
9273 fragP->tc_frag_data.mf_type = mf_cmp;
9274 fragP->tc_frag_data.branch_type = align_branch_fused;
9275 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
9276 }
9277 else if (add_branch_prefix_frag_p ())
9278 {
9279 unsigned int max_prefix_size = align_branch_prefix_size;
9280
9281 /* Make room for padding. */
9282 frag_grow (max_prefix_size);
9283 p = frag_more (0);
9284
9285 fragP = frag_now;
9286
9287 frag_var (rs_machine_dependent, max_prefix_size, 0,
9288 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
9289 NULL, 0, p);
9290
9291 fragP->tc_frag_data.max_bytes = max_prefix_size;
9292 }
9293
9294 /* Since the VEX/EVEX prefix contains the implicit prefix, we
9295 don't need the explicit prefix. */
9296 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
9297 {
9298 switch (i.tm.opcode_length)
9299 {
9300 case 3:
9301 if (i.tm.base_opcode & 0xff000000)
9302 {
9303 prefix = (i.tm.base_opcode >> 24) & 0xff;
9304 if (!i.tm.cpu_flags.bitfield.cpupadlock
9305 || prefix != REPE_PREFIX_OPCODE
9306 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
9307 add_prefix (prefix);
9308 }
9309 break;
9310 case 2:
9311 if ((i.tm.base_opcode & 0xff0000) != 0)
9312 {
9313 prefix = (i.tm.base_opcode >> 16) & 0xff;
9314 add_prefix (prefix);
9315 }
9316 break;
9317 case 1:
9318 break;
9319 case 0:
9320 /* Check for pseudo prefixes. */
9321 as_bad_where (insn_start_frag->fr_file,
9322 insn_start_frag->fr_line,
9323 _("pseudo prefix without instruction"));
9324 return;
9325 default:
9326 abort ();
9327 }
9328
9329 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
9330 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
9331 R_X86_64_GOTTPOFF relocation so that linker can safely
9332 perform IE->LE optimization. A dummy REX_OPCODE prefix
9333 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
9334 relocation for GDesc -> IE/LE optimization. */
9335 if (x86_elf_abi == X86_64_X32_ABI
9336 && i.operands == 2
9337 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
9338 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
9339 && i.prefix[REX_PREFIX] == 0)
9340 add_prefix (REX_OPCODE);
9341 #endif
9342
9343 /* The prefix bytes. */
9344 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
9345 if (*q)
9346 FRAG_APPEND_1_CHAR (*q);
9347 }
9348 else
9349 {
9350 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
9351 if (*q)
9352 switch (j)
9353 {
9354 case SEG_PREFIX:
9355 case ADDR_PREFIX:
9356 FRAG_APPEND_1_CHAR (*q);
9357 break;
9358 default:
9359 /* There should be no other prefixes for instructions
9360 with VEX prefix. */
9361 abort ();
9362 }
9363
9364 /* For EVEX instructions i.vrex should become 0 after
9365 build_evex_prefix. For VEX instructions upper 16 registers
9366 aren't available, so VREX should be 0. */
9367 if (i.vrex)
9368 abort ();
9369 /* Now the VEX prefix. */
9370 p = frag_more (i.vex.length);
9371 for (j = 0; j < i.vex.length; j++)
9372 p[j] = i.vex.bytes[j];
9373 }
9374
9375 /* Now the opcode; be careful about word order here! */
9376 if (i.tm.opcode_length == 1)
9377 {
9378 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
9379 }
9380 else
9381 {
9382 switch (i.tm.opcode_length)
9383 {
9384 case 4:
9385 p = frag_more (4);
9386 *p++ = (i.tm.base_opcode >> 24) & 0xff;
9387 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9388 break;
9389 case 3:
9390 p = frag_more (3);
9391 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9392 break;
9393 case 2:
9394 p = frag_more (2);
9395 break;
9396 default:
9397 abort ();
9398 break;
9399 }
9400
9401 /* Put out high byte first: can't use md_number_to_chars! */
9402 *p++ = (i.tm.base_opcode >> 8) & 0xff;
9403 *p = i.tm.base_opcode & 0xff;
9404 }
9405
9406 /* Now the modrm byte and sib byte (if present). */
9407 if (i.tm.opcode_modifier.modrm)
9408 {
9409 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
9410 | i.rm.reg << 3
9411 | i.rm.mode << 6));
9412 /* If i.rm.regmem == ESP (4)
9413 && i.rm.mode != (Register mode)
9414 && not 16 bit
9415 ==> need second modrm byte. */
9416 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
9417 && i.rm.mode != 3
9418 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
9419 FRAG_APPEND_1_CHAR ((i.sib.base << 0
9420 | i.sib.index << 3
9421 | i.sib.scale << 6));
9422 }
9423
9424 if (i.disp_operands)
9425 output_disp (insn_start_frag, insn_start_off);
9426
9427 if (i.imm_operands)
9428 output_imm (insn_start_frag, insn_start_off);
9429
9430 /*
9431 * frag_now_fix () returning plain abs_section_offset when we're in the
9432 * absolute section, and abs_section_offset not getting updated as data
9433 * gets added to the frag breaks the logic below.
9434 */
9435 if (now_seg != absolute_section)
9436 {
9437 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
9438 if (j > 15)
9439 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
9440 j);
9441 else if (fragP)
9442 {
9443 /* NB: Don't add prefix with GOTPC relocation since
9444 output_disp() above depends on the fixed encoding
9445 length. Can't add prefix with TLS relocation since
9446 it breaks TLS linker optimization. */
9447 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
9448 /* Prefix count on the current instruction. */
9449 unsigned int count = i.vex.length;
9450 unsigned int k;
9451 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
9452 /* REX byte is encoded in VEX/EVEX prefix. */
9453 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
9454 count++;
9455
9456 /* Count prefixes for extended opcode maps. */
9457 if (!i.vex.length)
9458 switch (i.tm.opcode_length)
9459 {
9460 case 3:
9461 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
9462 {
9463 count++;
9464 switch ((i.tm.base_opcode >> 8) & 0xff)
9465 {
9466 case 0x38:
9467 case 0x3a:
9468 count++;
9469 break;
9470 default:
9471 break;
9472 }
9473 }
9474 break;
9475 case 2:
9476 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
9477 count++;
9478 break;
9479 case 1:
9480 break;
9481 default:
9482 abort ();
9483 }
9484
9485 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9486 == BRANCH_PREFIX)
9487 {
9488 /* Set the maximum prefix size in BRANCH_PREFIX
9489 frag. */
9490 if (fragP->tc_frag_data.max_bytes > max)
9491 fragP->tc_frag_data.max_bytes = max;
9492 if (fragP->tc_frag_data.max_bytes > count)
9493 fragP->tc_frag_data.max_bytes -= count;
9494 else
9495 fragP->tc_frag_data.max_bytes = 0;
9496 }
9497 else
9498 {
9499 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9500 frag. */
9501 unsigned int max_prefix_size;
9502 if (align_branch_prefix_size > max)
9503 max_prefix_size = max;
9504 else
9505 max_prefix_size = align_branch_prefix_size;
9506 if (max_prefix_size > count)
9507 fragP->tc_frag_data.max_prefix_length
9508 = max_prefix_size - count;
9509 }
9510
9511 /* Use existing segment prefix if possible. Use CS
9512 segment prefix in 64-bit mode. In 32-bit mode, use SS
9513 segment prefix with ESP/EBP base register and use DS
9514 segment prefix without ESP/EBP base register. */
9515 if (i.prefix[SEG_PREFIX])
9516 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9517 else if (flag_code == CODE_64BIT)
9518 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9519 else if (i.base_reg
9520 && (i.base_reg->reg_num == 4
9521 || i.base_reg->reg_num == 5))
9522 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9523 else
9524 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9525 }
9526 }
9527 }
9528
9529 /* NB: Don't work with COND_JUMP86 without i386. */
9530 if (align_branch_power
9531 && now_seg != absolute_section
9532 && cpu_arch_flags.bitfield.cpui386)
9533 {
9534 /* Terminate each frag so that we can add prefix and check for
9535 fused jcc. */
9536 frag_wane (frag_now);
9537 frag_new (0);
9538 }
9539
9540 #ifdef DEBUG386
9541 if (flag_debug)
9542 {
9543 pi ("" /*line*/, &i);
9544 }
9545 #endif /* DEBUG386 */
9546 }
9547
9548 /* Return the size of the displacement operand N. */
9549
9550 static int
9551 disp_size (unsigned int n)
9552 {
9553 int size = 4;
9554
9555 if (i.types[n].bitfield.disp64)
9556 size = 8;
9557 else if (i.types[n].bitfield.disp8)
9558 size = 1;
9559 else if (i.types[n].bitfield.disp16)
9560 size = 2;
9561 return size;
9562 }
9563
9564 /* Return the size of the immediate operand N. */
9565
9566 static int
9567 imm_size (unsigned int n)
9568 {
9569 int size = 4;
9570 if (i.types[n].bitfield.imm64)
9571 size = 8;
9572 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9573 size = 1;
9574 else if (i.types[n].bitfield.imm16)
9575 size = 2;
9576 return size;
9577 }
9578
9579 static void
9580 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
9581 {
9582 char *p;
9583 unsigned int n;
9584
9585 for (n = 0; n < i.operands; n++)
9586 {
9587 if (operand_type_check (i.types[n], disp))
9588 {
9589 if (i.op[n].disps->X_op == O_constant)
9590 {
9591 int size = disp_size (n);
9592 offsetT val = i.op[n].disps->X_add_number;
9593
9594 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9595 size);
9596 p = frag_more (size);
9597 md_number_to_chars (p, val, size);
9598 }
9599 else
9600 {
9601 enum bfd_reloc_code_real reloc_type;
9602 int size = disp_size (n);
9603 int sign = i.types[n].bitfield.disp32s;
9604 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9605 fixS *fixP;
9606
9607 /* We can't have 8 bit displacement here. */
9608 gas_assert (!i.types[n].bitfield.disp8);
9609
9610 /* The PC relative address is computed relative
9611 to the instruction boundary, so in case immediate
9612 fields follows, we need to adjust the value. */
9613 if (pcrel && i.imm_operands)
9614 {
9615 unsigned int n1;
9616 int sz = 0;
9617
9618 for (n1 = 0; n1 < i.operands; n1++)
9619 if (operand_type_check (i.types[n1], imm))
9620 {
9621 /* Only one immediate is allowed for PC
9622 relative address. */
9623 gas_assert (sz == 0);
9624 sz = imm_size (n1);
9625 i.op[n].disps->X_add_number -= sz;
9626 }
9627 /* We should find the immediate. */
9628 gas_assert (sz != 0);
9629 }
9630
9631 p = frag_more (size);
9632 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9633 if (GOT_symbol
9634 && GOT_symbol == i.op[n].disps->X_add_symbol
9635 && (((reloc_type == BFD_RELOC_32
9636 || reloc_type == BFD_RELOC_X86_64_32S
9637 || (reloc_type == BFD_RELOC_64
9638 && object_64bit))
9639 && (i.op[n].disps->X_op == O_symbol
9640 || (i.op[n].disps->X_op == O_add
9641 && ((symbol_get_value_expression
9642 (i.op[n].disps->X_op_symbol)->X_op)
9643 == O_subtract))))
9644 || reloc_type == BFD_RELOC_32_PCREL))
9645 {
9646 if (!object_64bit)
9647 {
9648 reloc_type = BFD_RELOC_386_GOTPC;
9649 i.has_gotpc_tls_reloc = TRUE;
9650 i.op[n].imms->X_add_number +=
9651 encoding_length (insn_start_frag, insn_start_off, p);
9652 }
9653 else if (reloc_type == BFD_RELOC_64)
9654 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9655 else
9656 /* Don't do the adjustment for x86-64, as there
9657 the pcrel addressing is relative to the _next_
9658 insn, and that is taken care of in other code. */
9659 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9660 }
9661 else if (align_branch_power)
9662 {
9663 switch (reloc_type)
9664 {
9665 case BFD_RELOC_386_TLS_GD:
9666 case BFD_RELOC_386_TLS_LDM:
9667 case BFD_RELOC_386_TLS_IE:
9668 case BFD_RELOC_386_TLS_IE_32:
9669 case BFD_RELOC_386_TLS_GOTIE:
9670 case BFD_RELOC_386_TLS_GOTDESC:
9671 case BFD_RELOC_386_TLS_DESC_CALL:
9672 case BFD_RELOC_X86_64_TLSGD:
9673 case BFD_RELOC_X86_64_TLSLD:
9674 case BFD_RELOC_X86_64_GOTTPOFF:
9675 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9676 case BFD_RELOC_X86_64_TLSDESC_CALL:
9677 i.has_gotpc_tls_reloc = TRUE;
9678 default:
9679 break;
9680 }
9681 }
9682 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9683 size, i.op[n].disps, pcrel,
9684 reloc_type);
9685 /* Check for "call/jmp *mem", "mov mem, %reg",
9686 "test %reg, mem" and "binop mem, %reg" where binop
9687 is one of adc, add, and, cmp, or, sbb, sub, xor
9688 instructions without data prefix. Always generate
9689 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9690 if (i.prefix[DATA_PREFIX] == 0
9691 && (generate_relax_relocations
9692 || (!object_64bit
9693 && i.rm.mode == 0
9694 && i.rm.regmem == 5))
9695 && (i.rm.mode == 2
9696 || (i.rm.mode == 0 && i.rm.regmem == 5))
9697 && !is_any_vex_encoding(&i.tm)
9698 && ((i.operands == 1
9699 && i.tm.base_opcode == 0xff
9700 && (i.rm.reg == 2 || i.rm.reg == 4))
9701 || (i.operands == 2
9702 && (i.tm.base_opcode == 0x8b
9703 || i.tm.base_opcode == 0x85
9704 || (i.tm.base_opcode & ~0x38) == 0x03))))
9705 {
9706 if (object_64bit)
9707 {
9708 fixP->fx_tcbit = i.rex != 0;
9709 if (i.base_reg
9710 && (i.base_reg->reg_num == RegIP))
9711 fixP->fx_tcbit2 = 1;
9712 }
9713 else
9714 fixP->fx_tcbit2 = 1;
9715 }
9716 }
9717 }
9718 }
9719 }
9720
9721 static void
9722 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9723 {
9724 char *p;
9725 unsigned int n;
9726
9727 for (n = 0; n < i.operands; n++)
9728 {
9729 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9730 if (i.rounding && (int) n == i.rounding->operand)
9731 continue;
9732
9733 if (operand_type_check (i.types[n], imm))
9734 {
9735 if (i.op[n].imms->X_op == O_constant)
9736 {
9737 int size = imm_size (n);
9738 offsetT val;
9739
9740 val = offset_in_range (i.op[n].imms->X_add_number,
9741 size);
9742 p = frag_more (size);
9743 md_number_to_chars (p, val, size);
9744 }
9745 else
9746 {
9747 /* Not absolute_section.
9748 Need a 32-bit fixup (don't support 8bit
9749 non-absolute imms). Try to support other
9750 sizes ... */
9751 enum bfd_reloc_code_real reloc_type;
9752 int size = imm_size (n);
9753 int sign;
9754
9755 if (i.types[n].bitfield.imm32s
9756 && (i.suffix == QWORD_MNEM_SUFFIX
9757 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9758 sign = 1;
9759 else
9760 sign = 0;
9761
9762 p = frag_more (size);
9763 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9764
9765 /* This is tough to explain. We end up with this one if we
9766 * have operands that look like
9767 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9768 * obtain the absolute address of the GOT, and it is strongly
9769 * preferable from a performance point of view to avoid using
9770 * a runtime relocation for this. The actual sequence of
9771 * instructions often look something like:
9772 *
9773 * call .L66
9774 * .L66:
9775 * popl %ebx
9776 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9777 *
9778 * The call and pop essentially return the absolute address
9779 * of the label .L66 and store it in %ebx. The linker itself
9780 * will ultimately change the first operand of the addl so
9781 * that %ebx points to the GOT, but to keep things simple, the
9782 * .o file must have this operand set so that it generates not
9783 * the absolute address of .L66, but the absolute address of
9784 * itself. This allows the linker itself simply treat a GOTPC
9785 * relocation as asking for a pcrel offset to the GOT to be
9786 * added in, and the addend of the relocation is stored in the
9787 * operand field for the instruction itself.
9788 *
9789 * Our job here is to fix the operand so that it would add
9790 * the correct offset so that %ebx would point to itself. The
9791 * thing that is tricky is that .-.L66 will point to the
9792 * beginning of the instruction, so we need to further modify
9793 * the operand so that it will point to itself. There are
9794 * other cases where you have something like:
9795 *
9796 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9797 *
9798 * and here no correction would be required. Internally in
9799 * the assembler we treat operands of this form as not being
9800 * pcrel since the '.' is explicitly mentioned, and I wonder
9801 * whether it would simplify matters to do it this way. Who
9802 * knows. In earlier versions of the PIC patches, the
9803 * pcrel_adjust field was used to store the correction, but
9804 * since the expression is not pcrel, I felt it would be
9805 * confusing to do it this way. */
9806
9807 if ((reloc_type == BFD_RELOC_32
9808 || reloc_type == BFD_RELOC_X86_64_32S
9809 || reloc_type == BFD_RELOC_64)
9810 && GOT_symbol
9811 && GOT_symbol == i.op[n].imms->X_add_symbol
9812 && (i.op[n].imms->X_op == O_symbol
9813 || (i.op[n].imms->X_op == O_add
9814 && ((symbol_get_value_expression
9815 (i.op[n].imms->X_op_symbol)->X_op)
9816 == O_subtract))))
9817 {
9818 if (!object_64bit)
9819 reloc_type = BFD_RELOC_386_GOTPC;
9820 else if (size == 4)
9821 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9822 else if (size == 8)
9823 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9824 i.has_gotpc_tls_reloc = TRUE;
9825 i.op[n].imms->X_add_number +=
9826 encoding_length (insn_start_frag, insn_start_off, p);
9827 }
9828 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9829 i.op[n].imms, 0, reloc_type);
9830 }
9831 }
9832 }
9833 }
9834 \f
9835 /* x86_cons_fix_new is called via the expression parsing code when a
9836 reloc is needed. We use this hook to get the correct .got reloc. */
9837 static int cons_sign = -1;
9838
9839 void
9840 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9841 expressionS *exp, bfd_reloc_code_real_type r)
9842 {
9843 r = reloc (len, 0, cons_sign, r);
9844
9845 #ifdef TE_PE
9846 if (exp->X_op == O_secrel)
9847 {
9848 exp->X_op = O_symbol;
9849 r = BFD_RELOC_32_SECREL;
9850 }
9851 #endif
9852
9853 fix_new_exp (frag, off, len, exp, 0, r);
9854 }
9855
9856 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9857 purpose of the `.dc.a' internal pseudo-op. */
9858
9859 int
9860 x86_address_bytes (void)
9861 {
9862 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9863 return 4;
9864 return stdoutput->arch_info->bits_per_address / 8;
9865 }
9866
9867 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9868 || defined (LEX_AT)
9869 # define lex_got(reloc, adjust, types) NULL
9870 #else
9871 /* Parse operands of the form
9872 <symbol>@GOTOFF+<nnn>
9873 and similar .plt or .got references.
9874
9875 If we find one, set up the correct relocation in RELOC and copy the
9876 input string, minus the `@GOTOFF' into a malloc'd buffer for
9877 parsing by the calling routine. Return this buffer, and if ADJUST
9878 is non-null set it to the length of the string we removed from the
9879 input line. Otherwise return NULL. */
9880 static char *
9881 lex_got (enum bfd_reloc_code_real *rel,
9882 int *adjust,
9883 i386_operand_type *types)
9884 {
9885 /* Some of the relocations depend on the size of what field is to
9886 be relocated. But in our callers i386_immediate and i386_displacement
9887 we don't yet know the operand size (this will be set by insn
9888 matching). Hence we record the word32 relocation here,
9889 and adjust the reloc according to the real size in reloc(). */
9890 static const struct {
9891 const char *str;
9892 int len;
9893 const enum bfd_reloc_code_real rel[2];
9894 const i386_operand_type types64;
9895 } gotrel[] = {
9896 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9897 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9898 BFD_RELOC_SIZE32 },
9899 OPERAND_TYPE_IMM32_64 },
9900 #endif
9901 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9902 BFD_RELOC_X86_64_PLTOFF64 },
9903 OPERAND_TYPE_IMM64 },
9904 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9905 BFD_RELOC_X86_64_PLT32 },
9906 OPERAND_TYPE_IMM32_32S_DISP32 },
9907 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9908 BFD_RELOC_X86_64_GOTPLT64 },
9909 OPERAND_TYPE_IMM64_DISP64 },
9910 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9911 BFD_RELOC_X86_64_GOTOFF64 },
9912 OPERAND_TYPE_IMM64_DISP64 },
9913 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9914 BFD_RELOC_X86_64_GOTPCREL },
9915 OPERAND_TYPE_IMM32_32S_DISP32 },
9916 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9917 BFD_RELOC_X86_64_TLSGD },
9918 OPERAND_TYPE_IMM32_32S_DISP32 },
9919 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9920 _dummy_first_bfd_reloc_code_real },
9921 OPERAND_TYPE_NONE },
9922 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9923 BFD_RELOC_X86_64_TLSLD },
9924 OPERAND_TYPE_IMM32_32S_DISP32 },
9925 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9926 BFD_RELOC_X86_64_GOTTPOFF },
9927 OPERAND_TYPE_IMM32_32S_DISP32 },
9928 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9929 BFD_RELOC_X86_64_TPOFF32 },
9930 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9931 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9932 _dummy_first_bfd_reloc_code_real },
9933 OPERAND_TYPE_NONE },
9934 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9935 BFD_RELOC_X86_64_DTPOFF32 },
9936 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9937 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9938 _dummy_first_bfd_reloc_code_real },
9939 OPERAND_TYPE_NONE },
9940 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9941 _dummy_first_bfd_reloc_code_real },
9942 OPERAND_TYPE_NONE },
9943 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9944 BFD_RELOC_X86_64_GOT32 },
9945 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9946 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9947 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9948 OPERAND_TYPE_IMM32_32S_DISP32 },
9949 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9950 BFD_RELOC_X86_64_TLSDESC_CALL },
9951 OPERAND_TYPE_IMM32_32S_DISP32 },
9952 };
9953 char *cp;
9954 unsigned int j;
9955
9956 #if defined (OBJ_MAYBE_ELF)
9957 if (!IS_ELF)
9958 return NULL;
9959 #endif
9960
9961 for (cp = input_line_pointer; *cp != '@'; cp++)
9962 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9963 return NULL;
9964
9965 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9966 {
9967 int len = gotrel[j].len;
9968 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9969 {
9970 if (gotrel[j].rel[object_64bit] != 0)
9971 {
9972 int first, second;
9973 char *tmpbuf, *past_reloc;
9974
9975 *rel = gotrel[j].rel[object_64bit];
9976
9977 if (types)
9978 {
9979 if (flag_code != CODE_64BIT)
9980 {
9981 types->bitfield.imm32 = 1;
9982 types->bitfield.disp32 = 1;
9983 }
9984 else
9985 *types = gotrel[j].types64;
9986 }
9987
9988 if (j != 0 && GOT_symbol == NULL)
9989 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9990
9991 /* The length of the first part of our input line. */
9992 first = cp - input_line_pointer;
9993
9994 /* The second part goes from after the reloc token until
9995 (and including) an end_of_line char or comma. */
9996 past_reloc = cp + 1 + len;
9997 cp = past_reloc;
9998 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9999 ++cp;
10000 second = cp + 1 - past_reloc;
10001
10002 /* Allocate and copy string. The trailing NUL shouldn't
10003 be necessary, but be safe. */
10004 tmpbuf = XNEWVEC (char, first + second + 2);
10005 memcpy (tmpbuf, input_line_pointer, first);
10006 if (second != 0 && *past_reloc != ' ')
10007 /* Replace the relocation token with ' ', so that
10008 errors like foo@GOTOFF1 will be detected. */
10009 tmpbuf[first++] = ' ';
10010 else
10011 /* Increment length by 1 if the relocation token is
10012 removed. */
10013 len++;
10014 if (adjust)
10015 *adjust = len;
10016 memcpy (tmpbuf + first, past_reloc, second);
10017 tmpbuf[first + second] = '\0';
10018 return tmpbuf;
10019 }
10020
10021 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10022 gotrel[j].str, 1 << (5 + object_64bit));
10023 return NULL;
10024 }
10025 }
10026
10027 /* Might be a symbol version string. Don't as_bad here. */
10028 return NULL;
10029 }
10030 #endif
10031
10032 #ifdef TE_PE
10033 #ifdef lex_got
10034 #undef lex_got
10035 #endif
10036 /* Parse operands of the form
10037 <symbol>@SECREL32+<nnn>
10038
10039 If we find one, set up the correct relocation in RELOC and copy the
10040 input string, minus the `@SECREL32' into a malloc'd buffer for
10041 parsing by the calling routine. Return this buffer, and if ADJUST
10042 is non-null set it to the length of the string we removed from the
10043 input line. Otherwise return NULL.
10044
10045 This function is copied from the ELF version above adjusted for PE targets. */
10046
10047 static char *
10048 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
10049 int *adjust ATTRIBUTE_UNUSED,
10050 i386_operand_type *types)
10051 {
10052 static const struct
10053 {
10054 const char *str;
10055 int len;
10056 const enum bfd_reloc_code_real rel[2];
10057 const i386_operand_type types64;
10058 }
10059 gotrel[] =
10060 {
10061 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
10062 BFD_RELOC_32_SECREL },
10063 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
10064 };
10065
10066 char *cp;
10067 unsigned j;
10068
10069 for (cp = input_line_pointer; *cp != '@'; cp++)
10070 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
10071 return NULL;
10072
10073 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
10074 {
10075 int len = gotrel[j].len;
10076
10077 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
10078 {
10079 if (gotrel[j].rel[object_64bit] != 0)
10080 {
10081 int first, second;
10082 char *tmpbuf, *past_reloc;
10083
10084 *rel = gotrel[j].rel[object_64bit];
10085 if (adjust)
10086 *adjust = len;
10087
10088 if (types)
10089 {
10090 if (flag_code != CODE_64BIT)
10091 {
10092 types->bitfield.imm32 = 1;
10093 types->bitfield.disp32 = 1;
10094 }
10095 else
10096 *types = gotrel[j].types64;
10097 }
10098
10099 /* The length of the first part of our input line. */
10100 first = cp - input_line_pointer;
10101
10102 /* The second part goes from after the reloc token until
10103 (and including) an end_of_line char or comma. */
10104 past_reloc = cp + 1 + len;
10105 cp = past_reloc;
10106 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10107 ++cp;
10108 second = cp + 1 - past_reloc;
10109
10110 /* Allocate and copy string. The trailing NUL shouldn't
10111 be necessary, but be safe. */
10112 tmpbuf = XNEWVEC (char, first + second + 2);
10113 memcpy (tmpbuf, input_line_pointer, first);
10114 if (second != 0 && *past_reloc != ' ')
10115 /* Replace the relocation token with ' ', so that
10116 errors like foo@SECLREL321 will be detected. */
10117 tmpbuf[first++] = ' ';
10118 memcpy (tmpbuf + first, past_reloc, second);
10119 tmpbuf[first + second] = '\0';
10120 return tmpbuf;
10121 }
10122
10123 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10124 gotrel[j].str, 1 << (5 + object_64bit));
10125 return NULL;
10126 }
10127 }
10128
10129 /* Might be a symbol version string. Don't as_bad here. */
10130 return NULL;
10131 }
10132
10133 #endif /* TE_PE */
10134
10135 bfd_reloc_code_real_type
10136 x86_cons (expressionS *exp, int size)
10137 {
10138 bfd_reloc_code_real_type got_reloc = NO_RELOC;
10139
10140 intel_syntax = -intel_syntax;
10141
10142 exp->X_md = 0;
10143 if (size == 4 || (object_64bit && size == 8))
10144 {
10145 /* Handle @GOTOFF and the like in an expression. */
10146 char *save;
10147 char *gotfree_input_line;
10148 int adjust = 0;
10149
10150 save = input_line_pointer;
10151 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
10152 if (gotfree_input_line)
10153 input_line_pointer = gotfree_input_line;
10154
10155 expression (exp);
10156
10157 if (gotfree_input_line)
10158 {
10159 /* expression () has merrily parsed up to the end of line,
10160 or a comma - in the wrong buffer. Transfer how far
10161 input_line_pointer has moved to the right buffer. */
10162 input_line_pointer = (save
10163 + (input_line_pointer - gotfree_input_line)
10164 + adjust);
10165 free (gotfree_input_line);
10166 if (exp->X_op == O_constant
10167 || exp->X_op == O_absent
10168 || exp->X_op == O_illegal
10169 || exp->X_op == O_register
10170 || exp->X_op == O_big)
10171 {
10172 char c = *input_line_pointer;
10173 *input_line_pointer = 0;
10174 as_bad (_("missing or invalid expression `%s'"), save);
10175 *input_line_pointer = c;
10176 }
10177 else if ((got_reloc == BFD_RELOC_386_PLT32
10178 || got_reloc == BFD_RELOC_X86_64_PLT32)
10179 && exp->X_op != O_symbol)
10180 {
10181 char c = *input_line_pointer;
10182 *input_line_pointer = 0;
10183 as_bad (_("invalid PLT expression `%s'"), save);
10184 *input_line_pointer = c;
10185 }
10186 }
10187 }
10188 else
10189 expression (exp);
10190
10191 intel_syntax = -intel_syntax;
10192
10193 if (intel_syntax)
10194 i386_intel_simplify (exp);
10195
10196 return got_reloc;
10197 }
10198
10199 static void
10200 signed_cons (int size)
10201 {
10202 if (flag_code == CODE_64BIT)
10203 cons_sign = 1;
10204 cons (size);
10205 cons_sign = -1;
10206 }
10207
10208 #ifdef TE_PE
10209 static void
10210 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
10211 {
10212 expressionS exp;
10213
10214 do
10215 {
10216 expression (&exp);
10217 if (exp.X_op == O_symbol)
10218 exp.X_op = O_secrel;
10219
10220 emit_expr (&exp, 4);
10221 }
10222 while (*input_line_pointer++ == ',');
10223
10224 input_line_pointer--;
10225 demand_empty_rest_of_line ();
10226 }
10227 #endif
10228
10229 /* Handle Vector operations. */
10230
10231 static char *
10232 check_VecOperations (char *op_string, char *op_end)
10233 {
10234 const reg_entry *mask;
10235 const char *saved;
10236 char *end_op;
10237
10238 while (*op_string
10239 && (op_end == NULL || op_string < op_end))
10240 {
10241 saved = op_string;
10242 if (*op_string == '{')
10243 {
10244 op_string++;
10245
10246 /* Check broadcasts. */
10247 if (strncmp (op_string, "1to", 3) == 0)
10248 {
10249 int bcst_type;
10250
10251 if (i.broadcast)
10252 goto duplicated_vec_op;
10253
10254 op_string += 3;
10255 if (*op_string == '8')
10256 bcst_type = 8;
10257 else if (*op_string == '4')
10258 bcst_type = 4;
10259 else if (*op_string == '2')
10260 bcst_type = 2;
10261 else if (*op_string == '1'
10262 && *(op_string+1) == '6')
10263 {
10264 bcst_type = 16;
10265 op_string++;
10266 }
10267 else
10268 {
10269 as_bad (_("Unsupported broadcast: `%s'"), saved);
10270 return NULL;
10271 }
10272 op_string++;
10273
10274 broadcast_op.type = bcst_type;
10275 broadcast_op.operand = this_operand;
10276 broadcast_op.bytes = 0;
10277 i.broadcast = &broadcast_op;
10278 }
10279 /* Check masking operation. */
10280 else if ((mask = parse_register (op_string, &end_op)) != NULL)
10281 {
10282 if (mask == &bad_reg)
10283 return NULL;
10284
10285 /* k0 can't be used for write mask. */
10286 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
10287 {
10288 as_bad (_("`%s%s' can't be used for write mask"),
10289 register_prefix, mask->reg_name);
10290 return NULL;
10291 }
10292
10293 if (!i.mask)
10294 {
10295 mask_op.mask = mask;
10296 mask_op.zeroing = 0;
10297 mask_op.operand = this_operand;
10298 i.mask = &mask_op;
10299 }
10300 else
10301 {
10302 if (i.mask->mask)
10303 goto duplicated_vec_op;
10304
10305 i.mask->mask = mask;
10306
10307 /* Only "{z}" is allowed here. No need to check
10308 zeroing mask explicitly. */
10309 if (i.mask->operand != this_operand)
10310 {
10311 as_bad (_("invalid write mask `%s'"), saved);
10312 return NULL;
10313 }
10314 }
10315
10316 op_string = end_op;
10317 }
10318 /* Check zeroing-flag for masking operation. */
10319 else if (*op_string == 'z')
10320 {
10321 if (!i.mask)
10322 {
10323 mask_op.mask = NULL;
10324 mask_op.zeroing = 1;
10325 mask_op.operand = this_operand;
10326 i.mask = &mask_op;
10327 }
10328 else
10329 {
10330 if (i.mask->zeroing)
10331 {
10332 duplicated_vec_op:
10333 as_bad (_("duplicated `%s'"), saved);
10334 return NULL;
10335 }
10336
10337 i.mask->zeroing = 1;
10338
10339 /* Only "{%k}" is allowed here. No need to check mask
10340 register explicitly. */
10341 if (i.mask->operand != this_operand)
10342 {
10343 as_bad (_("invalid zeroing-masking `%s'"),
10344 saved);
10345 return NULL;
10346 }
10347 }
10348
10349 op_string++;
10350 }
10351 else
10352 goto unknown_vec_op;
10353
10354 if (*op_string != '}')
10355 {
10356 as_bad (_("missing `}' in `%s'"), saved);
10357 return NULL;
10358 }
10359 op_string++;
10360
10361 /* Strip whitespace since the addition of pseudo prefixes
10362 changed how the scrubber treats '{'. */
10363 if (is_space_char (*op_string))
10364 ++op_string;
10365
10366 continue;
10367 }
10368 unknown_vec_op:
10369 /* We don't know this one. */
10370 as_bad (_("unknown vector operation: `%s'"), saved);
10371 return NULL;
10372 }
10373
10374 if (i.mask && i.mask->zeroing && !i.mask->mask)
10375 {
10376 as_bad (_("zeroing-masking only allowed with write mask"));
10377 return NULL;
10378 }
10379
10380 return op_string;
10381 }
10382
10383 static int
10384 i386_immediate (char *imm_start)
10385 {
10386 char *save_input_line_pointer;
10387 char *gotfree_input_line;
10388 segT exp_seg = 0;
10389 expressionS *exp;
10390 i386_operand_type types;
10391
10392 operand_type_set (&types, ~0);
10393
10394 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
10395 {
10396 as_bad (_("at most %d immediate operands are allowed"),
10397 MAX_IMMEDIATE_OPERANDS);
10398 return 0;
10399 }
10400
10401 exp = &im_expressions[i.imm_operands++];
10402 i.op[this_operand].imms = exp;
10403
10404 if (is_space_char (*imm_start))
10405 ++imm_start;
10406
10407 save_input_line_pointer = input_line_pointer;
10408 input_line_pointer = imm_start;
10409
10410 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10411 if (gotfree_input_line)
10412 input_line_pointer = gotfree_input_line;
10413
10414 exp_seg = expression (exp);
10415
10416 SKIP_WHITESPACE ();
10417
10418 /* Handle vector operations. */
10419 if (*input_line_pointer == '{')
10420 {
10421 input_line_pointer = check_VecOperations (input_line_pointer,
10422 NULL);
10423 if (input_line_pointer == NULL)
10424 return 0;
10425 }
10426
10427 if (*input_line_pointer)
10428 as_bad (_("junk `%s' after expression"), input_line_pointer);
10429
10430 input_line_pointer = save_input_line_pointer;
10431 if (gotfree_input_line)
10432 {
10433 free (gotfree_input_line);
10434
10435 if (exp->X_op == O_constant || exp->X_op == O_register)
10436 exp->X_op = O_illegal;
10437 }
10438
10439 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
10440 }
10441
10442 static int
10443 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10444 i386_operand_type types, const char *imm_start)
10445 {
10446 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
10447 {
10448 if (imm_start)
10449 as_bad (_("missing or invalid immediate expression `%s'"),
10450 imm_start);
10451 return 0;
10452 }
10453 else if (exp->X_op == O_constant)
10454 {
10455 /* Size it properly later. */
10456 i.types[this_operand].bitfield.imm64 = 1;
10457 /* If not 64bit, sign extend val. */
10458 if (flag_code != CODE_64BIT
10459 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
10460 exp->X_add_number
10461 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
10462 }
10463 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10464 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
10465 && exp_seg != absolute_section
10466 && exp_seg != text_section
10467 && exp_seg != data_section
10468 && exp_seg != bss_section
10469 && exp_seg != undefined_section
10470 && !bfd_is_com_section (exp_seg))
10471 {
10472 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10473 return 0;
10474 }
10475 #endif
10476 else if (!intel_syntax && exp_seg == reg_section)
10477 {
10478 if (imm_start)
10479 as_bad (_("illegal immediate register operand %s"), imm_start);
10480 return 0;
10481 }
10482 else
10483 {
10484 /* This is an address. The size of the address will be
10485 determined later, depending on destination register,
10486 suffix, or the default for the section. */
10487 i.types[this_operand].bitfield.imm8 = 1;
10488 i.types[this_operand].bitfield.imm16 = 1;
10489 i.types[this_operand].bitfield.imm32 = 1;
10490 i.types[this_operand].bitfield.imm32s = 1;
10491 i.types[this_operand].bitfield.imm64 = 1;
10492 i.types[this_operand] = operand_type_and (i.types[this_operand],
10493 types);
10494 }
10495
10496 return 1;
10497 }
10498
10499 static char *
10500 i386_scale (char *scale)
10501 {
10502 offsetT val;
10503 char *save = input_line_pointer;
10504
10505 input_line_pointer = scale;
10506 val = get_absolute_expression ();
10507
10508 switch (val)
10509 {
10510 case 1:
10511 i.log2_scale_factor = 0;
10512 break;
10513 case 2:
10514 i.log2_scale_factor = 1;
10515 break;
10516 case 4:
10517 i.log2_scale_factor = 2;
10518 break;
10519 case 8:
10520 i.log2_scale_factor = 3;
10521 break;
10522 default:
10523 {
10524 char sep = *input_line_pointer;
10525
10526 *input_line_pointer = '\0';
10527 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10528 scale);
10529 *input_line_pointer = sep;
10530 input_line_pointer = save;
10531 return NULL;
10532 }
10533 }
10534 if (i.log2_scale_factor != 0 && i.index_reg == 0)
10535 {
10536 as_warn (_("scale factor of %d without an index register"),
10537 1 << i.log2_scale_factor);
10538 i.log2_scale_factor = 0;
10539 }
10540 scale = input_line_pointer;
10541 input_line_pointer = save;
10542 return scale;
10543 }
10544
10545 static int
10546 i386_displacement (char *disp_start, char *disp_end)
10547 {
10548 expressionS *exp;
10549 segT exp_seg = 0;
10550 char *save_input_line_pointer;
10551 char *gotfree_input_line;
10552 int override;
10553 i386_operand_type bigdisp, types = anydisp;
10554 int ret;
10555
10556 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10557 {
10558 as_bad (_("at most %d displacement operands are allowed"),
10559 MAX_MEMORY_OPERANDS);
10560 return 0;
10561 }
10562
10563 operand_type_set (&bigdisp, 0);
10564 if (i.jumpabsolute
10565 || i.types[this_operand].bitfield.baseindex
10566 || (current_templates->start->opcode_modifier.jump != JUMP
10567 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
10568 {
10569 i386_addressing_mode ();
10570 override = (i.prefix[ADDR_PREFIX] != 0);
10571 if (flag_code == CODE_64BIT)
10572 {
10573 if (!override)
10574 {
10575 bigdisp.bitfield.disp32s = 1;
10576 bigdisp.bitfield.disp64 = 1;
10577 }
10578 else
10579 bigdisp.bitfield.disp32 = 1;
10580 }
10581 else if ((flag_code == CODE_16BIT) ^ override)
10582 bigdisp.bitfield.disp16 = 1;
10583 else
10584 bigdisp.bitfield.disp32 = 1;
10585 }
10586 else
10587 {
10588 /* For PC-relative branches, the width of the displacement may be
10589 dependent upon data size, but is never dependent upon address size.
10590 Also make sure to not unintentionally match against a non-PC-relative
10591 branch template. */
10592 static templates aux_templates;
10593 const insn_template *t = current_templates->start;
10594 bfd_boolean has_intel64 = FALSE;
10595
10596 aux_templates.start = t;
10597 while (++t < current_templates->end)
10598 {
10599 if (t->opcode_modifier.jump
10600 != current_templates->start->opcode_modifier.jump)
10601 break;
10602 if ((t->opcode_modifier.isa64 >= INTEL64))
10603 has_intel64 = TRUE;
10604 }
10605 if (t < current_templates->end)
10606 {
10607 aux_templates.end = t;
10608 current_templates = &aux_templates;
10609 }
10610
10611 override = (i.prefix[DATA_PREFIX] != 0);
10612 if (flag_code == CODE_64BIT)
10613 {
10614 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10615 && (!intel64 || !has_intel64))
10616 bigdisp.bitfield.disp16 = 1;
10617 else
10618 bigdisp.bitfield.disp32s = 1;
10619 }
10620 else
10621 {
10622 if (!override)
10623 override = (i.suffix == (flag_code != CODE_16BIT
10624 ? WORD_MNEM_SUFFIX
10625 : LONG_MNEM_SUFFIX));
10626 bigdisp.bitfield.disp32 = 1;
10627 if ((flag_code == CODE_16BIT) ^ override)
10628 {
10629 bigdisp.bitfield.disp32 = 0;
10630 bigdisp.bitfield.disp16 = 1;
10631 }
10632 }
10633 }
10634 i.types[this_operand] = operand_type_or (i.types[this_operand],
10635 bigdisp);
10636
10637 exp = &disp_expressions[i.disp_operands];
10638 i.op[this_operand].disps = exp;
10639 i.disp_operands++;
10640 save_input_line_pointer = input_line_pointer;
10641 input_line_pointer = disp_start;
10642 END_STRING_AND_SAVE (disp_end);
10643
10644 #ifndef GCC_ASM_O_HACK
10645 #define GCC_ASM_O_HACK 0
10646 #endif
10647 #if GCC_ASM_O_HACK
10648 END_STRING_AND_SAVE (disp_end + 1);
10649 if (i.types[this_operand].bitfield.baseIndex
10650 && displacement_string_end[-1] == '+')
10651 {
10652 /* This hack is to avoid a warning when using the "o"
10653 constraint within gcc asm statements.
10654 For instance:
10655
10656 #define _set_tssldt_desc(n,addr,limit,type) \
10657 __asm__ __volatile__ ( \
10658 "movw %w2,%0\n\t" \
10659 "movw %w1,2+%0\n\t" \
10660 "rorl $16,%1\n\t" \
10661 "movb %b1,4+%0\n\t" \
10662 "movb %4,5+%0\n\t" \
10663 "movb $0,6+%0\n\t" \
10664 "movb %h1,7+%0\n\t" \
10665 "rorl $16,%1" \
10666 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10667
10668 This works great except that the output assembler ends
10669 up looking a bit weird if it turns out that there is
10670 no offset. You end up producing code that looks like:
10671
10672 #APP
10673 movw $235,(%eax)
10674 movw %dx,2+(%eax)
10675 rorl $16,%edx
10676 movb %dl,4+(%eax)
10677 movb $137,5+(%eax)
10678 movb $0,6+(%eax)
10679 movb %dh,7+(%eax)
10680 rorl $16,%edx
10681 #NO_APP
10682
10683 So here we provide the missing zero. */
10684
10685 *displacement_string_end = '0';
10686 }
10687 #endif
10688 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10689 if (gotfree_input_line)
10690 input_line_pointer = gotfree_input_line;
10691
10692 exp_seg = expression (exp);
10693
10694 SKIP_WHITESPACE ();
10695 if (*input_line_pointer)
10696 as_bad (_("junk `%s' after expression"), input_line_pointer);
10697 #if GCC_ASM_O_HACK
10698 RESTORE_END_STRING (disp_end + 1);
10699 #endif
10700 input_line_pointer = save_input_line_pointer;
10701 if (gotfree_input_line)
10702 {
10703 free (gotfree_input_line);
10704
10705 if (exp->X_op == O_constant || exp->X_op == O_register)
10706 exp->X_op = O_illegal;
10707 }
10708
10709 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10710
10711 RESTORE_END_STRING (disp_end);
10712
10713 return ret;
10714 }
10715
10716 static int
10717 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10718 i386_operand_type types, const char *disp_start)
10719 {
10720 i386_operand_type bigdisp;
10721 int ret = 1;
10722
10723 /* We do this to make sure that the section symbol is in
10724 the symbol table. We will ultimately change the relocation
10725 to be relative to the beginning of the section. */
10726 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10727 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10728 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10729 {
10730 if (exp->X_op != O_symbol)
10731 goto inv_disp;
10732
10733 if (S_IS_LOCAL (exp->X_add_symbol)
10734 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10735 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10736 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10737 exp->X_op = O_subtract;
10738 exp->X_op_symbol = GOT_symbol;
10739 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10740 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10741 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10742 i.reloc[this_operand] = BFD_RELOC_64;
10743 else
10744 i.reloc[this_operand] = BFD_RELOC_32;
10745 }
10746
10747 else if (exp->X_op == O_absent
10748 || exp->X_op == O_illegal
10749 || exp->X_op == O_big)
10750 {
10751 inv_disp:
10752 as_bad (_("missing or invalid displacement expression `%s'"),
10753 disp_start);
10754 ret = 0;
10755 }
10756
10757 else if (flag_code == CODE_64BIT
10758 && !i.prefix[ADDR_PREFIX]
10759 && exp->X_op == O_constant)
10760 {
10761 /* Since displacement is signed extended to 64bit, don't allow
10762 disp32 and turn off disp32s if they are out of range. */
10763 i.types[this_operand].bitfield.disp32 = 0;
10764 if (!fits_in_signed_long (exp->X_add_number))
10765 {
10766 i.types[this_operand].bitfield.disp32s = 0;
10767 if (i.types[this_operand].bitfield.baseindex)
10768 {
10769 as_bad (_("0x%lx out range of signed 32bit displacement"),
10770 (long) exp->X_add_number);
10771 ret = 0;
10772 }
10773 }
10774 }
10775
10776 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10777 else if (exp->X_op != O_constant
10778 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10779 && exp_seg != absolute_section
10780 && exp_seg != text_section
10781 && exp_seg != data_section
10782 && exp_seg != bss_section
10783 && exp_seg != undefined_section
10784 && !bfd_is_com_section (exp_seg))
10785 {
10786 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10787 ret = 0;
10788 }
10789 #endif
10790
10791 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10792 /* Constants get taken care of by optimize_disp(). */
10793 && exp->X_op != O_constant)
10794 i.types[this_operand].bitfield.disp8 = 1;
10795
10796 /* Check if this is a displacement only operand. */
10797 bigdisp = i.types[this_operand];
10798 bigdisp.bitfield.disp8 = 0;
10799 bigdisp.bitfield.disp16 = 0;
10800 bigdisp.bitfield.disp32 = 0;
10801 bigdisp.bitfield.disp32s = 0;
10802 bigdisp.bitfield.disp64 = 0;
10803 if (operand_type_all_zero (&bigdisp))
10804 i.types[this_operand] = operand_type_and (i.types[this_operand],
10805 types);
10806
10807 return ret;
10808 }
10809
10810 /* Return the active addressing mode, taking address override and
10811 registers forming the address into consideration. Update the
10812 address override prefix if necessary. */
10813
10814 static enum flag_code
10815 i386_addressing_mode (void)
10816 {
10817 enum flag_code addr_mode;
10818
10819 if (i.prefix[ADDR_PREFIX])
10820 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10821 else if (flag_code == CODE_16BIT
10822 && current_templates->start->cpu_flags.bitfield.cpumpx
10823 /* Avoid replacing the "16-bit addressing not allowed" diagnostic
10824 from md_assemble() by "is not a valid base/index expression"
10825 when there is a base and/or index. */
10826 && !i.types[this_operand].bitfield.baseindex)
10827 {
10828 /* MPX insn memory operands with neither base nor index must be forced
10829 to use 32-bit addressing in 16-bit mode. */
10830 addr_mode = CODE_32BIT;
10831 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10832 ++i.prefixes;
10833 gas_assert (!i.types[this_operand].bitfield.disp16);
10834 gas_assert (!i.types[this_operand].bitfield.disp32);
10835 }
10836 else
10837 {
10838 addr_mode = flag_code;
10839
10840 #if INFER_ADDR_PREFIX
10841 if (i.mem_operands == 0)
10842 {
10843 /* Infer address prefix from the first memory operand. */
10844 const reg_entry *addr_reg = i.base_reg;
10845
10846 if (addr_reg == NULL)
10847 addr_reg = i.index_reg;
10848
10849 if (addr_reg)
10850 {
10851 if (addr_reg->reg_type.bitfield.dword)
10852 addr_mode = CODE_32BIT;
10853 else if (flag_code != CODE_64BIT
10854 && addr_reg->reg_type.bitfield.word)
10855 addr_mode = CODE_16BIT;
10856
10857 if (addr_mode != flag_code)
10858 {
10859 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10860 i.prefixes += 1;
10861 /* Change the size of any displacement too. At most one
10862 of Disp16 or Disp32 is set.
10863 FIXME. There doesn't seem to be any real need for
10864 separate Disp16 and Disp32 flags. The same goes for
10865 Imm16 and Imm32. Removing them would probably clean
10866 up the code quite a lot. */
10867 if (flag_code != CODE_64BIT
10868 && (i.types[this_operand].bitfield.disp16
10869 || i.types[this_operand].bitfield.disp32))
10870 i.types[this_operand]
10871 = operand_type_xor (i.types[this_operand], disp16_32);
10872 }
10873 }
10874 }
10875 #endif
10876 }
10877
10878 return addr_mode;
10879 }
10880
10881 /* Make sure the memory operand we've been dealt is valid.
10882 Return 1 on success, 0 on a failure. */
10883
10884 static int
10885 i386_index_check (const char *operand_string)
10886 {
10887 const char *kind = "base/index";
10888 enum flag_code addr_mode = i386_addressing_mode ();
10889
10890 if (current_templates->start->opcode_modifier.isstring
10891 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10892 && (current_templates->end[-1].opcode_modifier.isstring
10893 || i.mem_operands))
10894 {
10895 /* Memory operands of string insns are special in that they only allow
10896 a single register (rDI, rSI, or rBX) as their memory address. */
10897 const reg_entry *expected_reg;
10898 static const char *di_si[][2] =
10899 {
10900 { "esi", "edi" },
10901 { "si", "di" },
10902 { "rsi", "rdi" }
10903 };
10904 static const char *bx[] = { "ebx", "bx", "rbx" };
10905
10906 kind = "string address";
10907
10908 if (current_templates->start->opcode_modifier.repprefixok)
10909 {
10910 int es_op = current_templates->end[-1].opcode_modifier.isstring
10911 - IS_STRING_ES_OP0;
10912 int op = 0;
10913
10914 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10915 || ((!i.mem_operands != !intel_syntax)
10916 && current_templates->end[-1].operand_types[1]
10917 .bitfield.baseindex))
10918 op = 1;
10919 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10920 }
10921 else
10922 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10923
10924 if (i.base_reg != expected_reg
10925 || i.index_reg
10926 || operand_type_check (i.types[this_operand], disp))
10927 {
10928 /* The second memory operand must have the same size as
10929 the first one. */
10930 if (i.mem_operands
10931 && i.base_reg
10932 && !((addr_mode == CODE_64BIT
10933 && i.base_reg->reg_type.bitfield.qword)
10934 || (addr_mode == CODE_32BIT
10935 ? i.base_reg->reg_type.bitfield.dword
10936 : i.base_reg->reg_type.bitfield.word)))
10937 goto bad_address;
10938
10939 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10940 operand_string,
10941 intel_syntax ? '[' : '(',
10942 register_prefix,
10943 expected_reg->reg_name,
10944 intel_syntax ? ']' : ')');
10945 return 1;
10946 }
10947 else
10948 return 1;
10949
10950 bad_address:
10951 as_bad (_("`%s' is not a valid %s expression"),
10952 operand_string, kind);
10953 return 0;
10954 }
10955 else
10956 {
10957 if (addr_mode != CODE_16BIT)
10958 {
10959 /* 32-bit/64-bit checks. */
10960 if ((i.base_reg
10961 && ((addr_mode == CODE_64BIT
10962 ? !i.base_reg->reg_type.bitfield.qword
10963 : !i.base_reg->reg_type.bitfield.dword)
10964 || (i.index_reg && i.base_reg->reg_num == RegIP)
10965 || i.base_reg->reg_num == RegIZ))
10966 || (i.index_reg
10967 && !i.index_reg->reg_type.bitfield.xmmword
10968 && !i.index_reg->reg_type.bitfield.ymmword
10969 && !i.index_reg->reg_type.bitfield.zmmword
10970 && ((addr_mode == CODE_64BIT
10971 ? !i.index_reg->reg_type.bitfield.qword
10972 : !i.index_reg->reg_type.bitfield.dword)
10973 || !i.index_reg->reg_type.bitfield.baseindex)))
10974 goto bad_address;
10975
10976 /* bndmk, bndldx, bndstx and mandatory non-vector SIB have special restrictions. */
10977 if (current_templates->start->base_opcode == 0xf30f1b
10978 || (current_templates->start->base_opcode & ~1) == 0x0f1a
10979 || current_templates->start->opcode_modifier.sib == SIBMEM)
10980 {
10981 /* They cannot use RIP-relative addressing. */
10982 if (i.base_reg && i.base_reg->reg_num == RegIP)
10983 {
10984 as_bad (_("`%s' cannot be used here"), operand_string);
10985 return 0;
10986 }
10987
10988 /* bndldx and bndstx ignore their scale factor. */
10989 if ((current_templates->start->base_opcode & ~1) == 0x0f1a
10990 && i.log2_scale_factor)
10991 as_warn (_("register scaling is being ignored here"));
10992 }
10993 }
10994 else
10995 {
10996 /* 16-bit checks. */
10997 if ((i.base_reg
10998 && (!i.base_reg->reg_type.bitfield.word
10999 || !i.base_reg->reg_type.bitfield.baseindex))
11000 || (i.index_reg
11001 && (!i.index_reg->reg_type.bitfield.word
11002 || !i.index_reg->reg_type.bitfield.baseindex
11003 || !(i.base_reg
11004 && i.base_reg->reg_num < 6
11005 && i.index_reg->reg_num >= 6
11006 && i.log2_scale_factor == 0))))
11007 goto bad_address;
11008 }
11009 }
11010 return 1;
11011 }
11012
11013 /* Handle vector immediates. */
11014
11015 static int
11016 RC_SAE_immediate (const char *imm_start)
11017 {
11018 unsigned int match_found, j;
11019 const char *pstr = imm_start;
11020 expressionS *exp;
11021
11022 if (*pstr != '{')
11023 return 0;
11024
11025 pstr++;
11026 match_found = 0;
11027 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
11028 {
11029 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
11030 {
11031 if (!i.rounding)
11032 {
11033 rc_op.type = RC_NamesTable[j].type;
11034 rc_op.operand = this_operand;
11035 i.rounding = &rc_op;
11036 }
11037 else
11038 {
11039 as_bad (_("duplicated `%s'"), imm_start);
11040 return 0;
11041 }
11042 pstr += RC_NamesTable[j].len;
11043 match_found = 1;
11044 break;
11045 }
11046 }
11047 if (!match_found)
11048 return 0;
11049
11050 if (*pstr++ != '}')
11051 {
11052 as_bad (_("Missing '}': '%s'"), imm_start);
11053 return 0;
11054 }
11055 /* RC/SAE immediate string should contain nothing more. */;
11056 if (*pstr != 0)
11057 {
11058 as_bad (_("Junk after '}': '%s'"), imm_start);
11059 return 0;
11060 }
11061
11062 exp = &im_expressions[i.imm_operands++];
11063 i.op[this_operand].imms = exp;
11064
11065 exp->X_op = O_constant;
11066 exp->X_add_number = 0;
11067 exp->X_add_symbol = (symbolS *) 0;
11068 exp->X_op_symbol = (symbolS *) 0;
11069
11070 i.types[this_operand].bitfield.imm8 = 1;
11071 return 1;
11072 }
11073
11074 /* Only string instructions can have a second memory operand, so
11075 reduce current_templates to just those if it contains any. */
11076 static int
11077 maybe_adjust_templates (void)
11078 {
11079 const insn_template *t;
11080
11081 gas_assert (i.mem_operands == 1);
11082
11083 for (t = current_templates->start; t < current_templates->end; ++t)
11084 if (t->opcode_modifier.isstring)
11085 break;
11086
11087 if (t < current_templates->end)
11088 {
11089 static templates aux_templates;
11090 bfd_boolean recheck;
11091
11092 aux_templates.start = t;
11093 for (; t < current_templates->end; ++t)
11094 if (!t->opcode_modifier.isstring)
11095 break;
11096 aux_templates.end = t;
11097
11098 /* Determine whether to re-check the first memory operand. */
11099 recheck = (aux_templates.start != current_templates->start
11100 || t != current_templates->end);
11101
11102 current_templates = &aux_templates;
11103
11104 if (recheck)
11105 {
11106 i.mem_operands = 0;
11107 if (i.memop1_string != NULL
11108 && i386_index_check (i.memop1_string) == 0)
11109 return 0;
11110 i.mem_operands = 1;
11111 }
11112 }
11113
11114 return 1;
11115 }
11116
11117 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
11118 on error. */
11119
11120 static int
11121 i386_att_operand (char *operand_string)
11122 {
11123 const reg_entry *r;
11124 char *end_op;
11125 char *op_string = operand_string;
11126
11127 if (is_space_char (*op_string))
11128 ++op_string;
11129
11130 /* We check for an absolute prefix (differentiating,
11131 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
11132 if (*op_string == ABSOLUTE_PREFIX)
11133 {
11134 ++op_string;
11135 if (is_space_char (*op_string))
11136 ++op_string;
11137 i.jumpabsolute = TRUE;
11138 }
11139
11140 /* Check if operand is a register. */
11141 if ((r = parse_register (op_string, &end_op)) != NULL)
11142 {
11143 i386_operand_type temp;
11144
11145 if (r == &bad_reg)
11146 return 0;
11147
11148 /* Check for a segment override by searching for ':' after a
11149 segment register. */
11150 op_string = end_op;
11151 if (is_space_char (*op_string))
11152 ++op_string;
11153 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
11154 {
11155 switch (r->reg_num)
11156 {
11157 case 0:
11158 i.seg[i.mem_operands] = &es;
11159 break;
11160 case 1:
11161 i.seg[i.mem_operands] = &cs;
11162 break;
11163 case 2:
11164 i.seg[i.mem_operands] = &ss;
11165 break;
11166 case 3:
11167 i.seg[i.mem_operands] = &ds;
11168 break;
11169 case 4:
11170 i.seg[i.mem_operands] = &fs;
11171 break;
11172 case 5:
11173 i.seg[i.mem_operands] = &gs;
11174 break;
11175 }
11176
11177 /* Skip the ':' and whitespace. */
11178 ++op_string;
11179 if (is_space_char (*op_string))
11180 ++op_string;
11181
11182 if (!is_digit_char (*op_string)
11183 && !is_identifier_char (*op_string)
11184 && *op_string != '('
11185 && *op_string != ABSOLUTE_PREFIX)
11186 {
11187 as_bad (_("bad memory operand `%s'"), op_string);
11188 return 0;
11189 }
11190 /* Handle case of %es:*foo. */
11191 if (*op_string == ABSOLUTE_PREFIX)
11192 {
11193 ++op_string;
11194 if (is_space_char (*op_string))
11195 ++op_string;
11196 i.jumpabsolute = TRUE;
11197 }
11198 goto do_memory_reference;
11199 }
11200
11201 /* Handle vector operations. */
11202 if (*op_string == '{')
11203 {
11204 op_string = check_VecOperations (op_string, NULL);
11205 if (op_string == NULL)
11206 return 0;
11207 }
11208
11209 if (*op_string)
11210 {
11211 as_bad (_("junk `%s' after register"), op_string);
11212 return 0;
11213 }
11214 temp = r->reg_type;
11215 temp.bitfield.baseindex = 0;
11216 i.types[this_operand] = operand_type_or (i.types[this_operand],
11217 temp);
11218 i.types[this_operand].bitfield.unspecified = 0;
11219 i.op[this_operand].regs = r;
11220 i.reg_operands++;
11221 }
11222 else if (*op_string == REGISTER_PREFIX)
11223 {
11224 as_bad (_("bad register name `%s'"), op_string);
11225 return 0;
11226 }
11227 else if (*op_string == IMMEDIATE_PREFIX)
11228 {
11229 ++op_string;
11230 if (i.jumpabsolute)
11231 {
11232 as_bad (_("immediate operand illegal with absolute jump"));
11233 return 0;
11234 }
11235 if (!i386_immediate (op_string))
11236 return 0;
11237 }
11238 else if (RC_SAE_immediate (operand_string))
11239 {
11240 /* If it is a RC or SAE immediate, do nothing. */
11241 ;
11242 }
11243 else if (is_digit_char (*op_string)
11244 || is_identifier_char (*op_string)
11245 || *op_string == '"'
11246 || *op_string == '(')
11247 {
11248 /* This is a memory reference of some sort. */
11249 char *base_string;
11250
11251 /* Start and end of displacement string expression (if found). */
11252 char *displacement_string_start;
11253 char *displacement_string_end;
11254 char *vop_start;
11255
11256 do_memory_reference:
11257 if (i.mem_operands == 1 && !maybe_adjust_templates ())
11258 return 0;
11259 if ((i.mem_operands == 1
11260 && !current_templates->start->opcode_modifier.isstring)
11261 || i.mem_operands == 2)
11262 {
11263 as_bad (_("too many memory references for `%s'"),
11264 current_templates->start->name);
11265 return 0;
11266 }
11267
11268 /* Check for base index form. We detect the base index form by
11269 looking for an ')' at the end of the operand, searching
11270 for the '(' matching it, and finding a REGISTER_PREFIX or ','
11271 after the '('. */
11272 base_string = op_string + strlen (op_string);
11273
11274 /* Handle vector operations. */
11275 vop_start = strchr (op_string, '{');
11276 if (vop_start && vop_start < base_string)
11277 {
11278 if (check_VecOperations (vop_start, base_string) == NULL)
11279 return 0;
11280 base_string = vop_start;
11281 }
11282
11283 --base_string;
11284 if (is_space_char (*base_string))
11285 --base_string;
11286
11287 /* If we only have a displacement, set-up for it to be parsed later. */
11288 displacement_string_start = op_string;
11289 displacement_string_end = base_string + 1;
11290
11291 if (*base_string == ')')
11292 {
11293 char *temp_string;
11294 unsigned int parens_balanced = 1;
11295 /* We've already checked that the number of left & right ()'s are
11296 equal, so this loop will not be infinite. */
11297 do
11298 {
11299 base_string--;
11300 if (*base_string == ')')
11301 parens_balanced++;
11302 if (*base_string == '(')
11303 parens_balanced--;
11304 }
11305 while (parens_balanced);
11306
11307 temp_string = base_string;
11308
11309 /* Skip past '(' and whitespace. */
11310 ++base_string;
11311 if (is_space_char (*base_string))
11312 ++base_string;
11313
11314 if (*base_string == ','
11315 || ((i.base_reg = parse_register (base_string, &end_op))
11316 != NULL))
11317 {
11318 displacement_string_end = temp_string;
11319
11320 i.types[this_operand].bitfield.baseindex = 1;
11321
11322 if (i.base_reg)
11323 {
11324 if (i.base_reg == &bad_reg)
11325 return 0;
11326 base_string = end_op;
11327 if (is_space_char (*base_string))
11328 ++base_string;
11329 }
11330
11331 /* There may be an index reg or scale factor here. */
11332 if (*base_string == ',')
11333 {
11334 ++base_string;
11335 if (is_space_char (*base_string))
11336 ++base_string;
11337
11338 if ((i.index_reg = parse_register (base_string, &end_op))
11339 != NULL)
11340 {
11341 if (i.index_reg == &bad_reg)
11342 return 0;
11343 base_string = end_op;
11344 if (is_space_char (*base_string))
11345 ++base_string;
11346 if (*base_string == ',')
11347 {
11348 ++base_string;
11349 if (is_space_char (*base_string))
11350 ++base_string;
11351 }
11352 else if (*base_string != ')')
11353 {
11354 as_bad (_("expecting `,' or `)' "
11355 "after index register in `%s'"),
11356 operand_string);
11357 return 0;
11358 }
11359 }
11360 else if (*base_string == REGISTER_PREFIX)
11361 {
11362 end_op = strchr (base_string, ',');
11363 if (end_op)
11364 *end_op = '\0';
11365 as_bad (_("bad register name `%s'"), base_string);
11366 return 0;
11367 }
11368
11369 /* Check for scale factor. */
11370 if (*base_string != ')')
11371 {
11372 char *end_scale = i386_scale (base_string);
11373
11374 if (!end_scale)
11375 return 0;
11376
11377 base_string = end_scale;
11378 if (is_space_char (*base_string))
11379 ++base_string;
11380 if (*base_string != ')')
11381 {
11382 as_bad (_("expecting `)' "
11383 "after scale factor in `%s'"),
11384 operand_string);
11385 return 0;
11386 }
11387 }
11388 else if (!i.index_reg)
11389 {
11390 as_bad (_("expecting index register or scale factor "
11391 "after `,'; got '%c'"),
11392 *base_string);
11393 return 0;
11394 }
11395 }
11396 else if (*base_string != ')')
11397 {
11398 as_bad (_("expecting `,' or `)' "
11399 "after base register in `%s'"),
11400 operand_string);
11401 return 0;
11402 }
11403 }
11404 else if (*base_string == REGISTER_PREFIX)
11405 {
11406 end_op = strchr (base_string, ',');
11407 if (end_op)
11408 *end_op = '\0';
11409 as_bad (_("bad register name `%s'"), base_string);
11410 return 0;
11411 }
11412 }
11413
11414 /* If there's an expression beginning the operand, parse it,
11415 assuming displacement_string_start and
11416 displacement_string_end are meaningful. */
11417 if (displacement_string_start != displacement_string_end)
11418 {
11419 if (!i386_displacement (displacement_string_start,
11420 displacement_string_end))
11421 return 0;
11422 }
11423
11424 /* Special case for (%dx) while doing input/output op. */
11425 if (i.base_reg
11426 && i.base_reg->reg_type.bitfield.instance == RegD
11427 && i.base_reg->reg_type.bitfield.word
11428 && i.index_reg == 0
11429 && i.log2_scale_factor == 0
11430 && i.seg[i.mem_operands] == 0
11431 && !operand_type_check (i.types[this_operand], disp))
11432 {
11433 i.types[this_operand] = i.base_reg->reg_type;
11434 return 1;
11435 }
11436
11437 if (i386_index_check (operand_string) == 0)
11438 return 0;
11439 i.flags[this_operand] |= Operand_Mem;
11440 if (i.mem_operands == 0)
11441 i.memop1_string = xstrdup (operand_string);
11442 i.mem_operands++;
11443 }
11444 else
11445 {
11446 /* It's not a memory operand; argh! */
11447 as_bad (_("invalid char %s beginning operand %d `%s'"),
11448 output_invalid (*op_string),
11449 this_operand + 1,
11450 op_string);
11451 return 0;
11452 }
11453 return 1; /* Normal return. */
11454 }
11455 \f
11456 /* Calculate the maximum variable size (i.e., excluding fr_fix)
11457 that an rs_machine_dependent frag may reach. */
11458
11459 unsigned int
11460 i386_frag_max_var (fragS *frag)
11461 {
11462 /* The only relaxable frags are for jumps.
11463 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
11464 gas_assert (frag->fr_type == rs_machine_dependent);
11465 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
11466 }
11467
11468 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11469 static int
11470 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
11471 {
11472 /* STT_GNU_IFUNC symbol must go through PLT. */
11473 if ((symbol_get_bfdsym (fr_symbol)->flags
11474 & BSF_GNU_INDIRECT_FUNCTION) != 0)
11475 return 0;
11476
11477 if (!S_IS_EXTERNAL (fr_symbol))
11478 /* Symbol may be weak or local. */
11479 return !S_IS_WEAK (fr_symbol);
11480
11481 /* Global symbols with non-default visibility can't be preempted. */
11482 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
11483 return 1;
11484
11485 if (fr_var != NO_RELOC)
11486 switch ((enum bfd_reloc_code_real) fr_var)
11487 {
11488 case BFD_RELOC_386_PLT32:
11489 case BFD_RELOC_X86_64_PLT32:
11490 /* Symbol with PLT relocation may be preempted. */
11491 return 0;
11492 default:
11493 abort ();
11494 }
11495
11496 /* Global symbols with default visibility in a shared library may be
11497 preempted by another definition. */
11498 return !shared;
11499 }
11500 #endif
11501
11502 /* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11503 Note also work for Skylake and Cascadelake.
11504 ---------------------------------------------------------------------
11505 | JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11506 | ------ | ----------- | ------- | -------- |
11507 | Jo | N | N | Y |
11508 | Jno | N | N | Y |
11509 | Jc/Jb | Y | N | Y |
11510 | Jae/Jnb | Y | N | Y |
11511 | Je/Jz | Y | Y | Y |
11512 | Jne/Jnz | Y | Y | Y |
11513 | Jna/Jbe | Y | N | Y |
11514 | Ja/Jnbe | Y | N | Y |
11515 | Js | N | N | Y |
11516 | Jns | N | N | Y |
11517 | Jp/Jpe | N | N | Y |
11518 | Jnp/Jpo | N | N | Y |
11519 | Jl/Jnge | Y | Y | Y |
11520 | Jge/Jnl | Y | Y | Y |
11521 | Jle/Jng | Y | Y | Y |
11522 | Jg/Jnle | Y | Y | Y |
11523 --------------------------------------------------------------------- */
11524 static int
11525 i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11526 {
11527 if (mf_cmp == mf_cmp_alu_cmp)
11528 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11529 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11530 if (mf_cmp == mf_cmp_incdec)
11531 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11532 || mf_jcc == mf_jcc_jle);
11533 if (mf_cmp == mf_cmp_test_and)
11534 return 1;
11535 return 0;
11536 }
11537
11538 /* Return the next non-empty frag. */
11539
11540 static fragS *
11541 i386_next_non_empty_frag (fragS *fragP)
11542 {
11543 /* There may be a frag with a ".fill 0" when there is no room in
11544 the current frag for frag_grow in output_insn. */
11545 for (fragP = fragP->fr_next;
11546 (fragP != NULL
11547 && fragP->fr_type == rs_fill
11548 && fragP->fr_fix == 0);
11549 fragP = fragP->fr_next)
11550 ;
11551 return fragP;
11552 }
11553
11554 /* Return the next jcc frag after BRANCH_PADDING. */
11555
11556 static fragS *
11557 i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
11558 {
11559 fragS *branch_fragP;
11560 if (!pad_fragP)
11561 return NULL;
11562
11563 if (pad_fragP->fr_type == rs_machine_dependent
11564 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
11565 == BRANCH_PADDING))
11566 {
11567 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11568 if (branch_fragP->fr_type != rs_machine_dependent)
11569 return NULL;
11570 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11571 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11572 pad_fragP->tc_frag_data.mf_type))
11573 return branch_fragP;
11574 }
11575
11576 return NULL;
11577 }
11578
11579 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11580
11581 static void
11582 i386_classify_machine_dependent_frag (fragS *fragP)
11583 {
11584 fragS *cmp_fragP;
11585 fragS *pad_fragP;
11586 fragS *branch_fragP;
11587 fragS *next_fragP;
11588 unsigned int max_prefix_length;
11589
11590 if (fragP->tc_frag_data.classified)
11591 return;
11592
11593 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11594 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11595 for (next_fragP = fragP;
11596 next_fragP != NULL;
11597 next_fragP = next_fragP->fr_next)
11598 {
11599 next_fragP->tc_frag_data.classified = 1;
11600 if (next_fragP->fr_type == rs_machine_dependent)
11601 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11602 {
11603 case BRANCH_PADDING:
11604 /* The BRANCH_PADDING frag must be followed by a branch
11605 frag. */
11606 branch_fragP = i386_next_non_empty_frag (next_fragP);
11607 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11608 break;
11609 case FUSED_JCC_PADDING:
11610 /* Check if this is a fused jcc:
11611 FUSED_JCC_PADDING
11612 CMP like instruction
11613 BRANCH_PADDING
11614 COND_JUMP
11615 */
11616 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11617 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
11618 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
11619 if (branch_fragP)
11620 {
11621 /* The BRANCH_PADDING frag is merged with the
11622 FUSED_JCC_PADDING frag. */
11623 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11624 /* CMP like instruction size. */
11625 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11626 frag_wane (pad_fragP);
11627 /* Skip to branch_fragP. */
11628 next_fragP = branch_fragP;
11629 }
11630 else if (next_fragP->tc_frag_data.max_prefix_length)
11631 {
11632 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11633 a fused jcc. */
11634 next_fragP->fr_subtype
11635 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11636 next_fragP->tc_frag_data.max_bytes
11637 = next_fragP->tc_frag_data.max_prefix_length;
11638 /* This will be updated in the BRANCH_PREFIX scan. */
11639 next_fragP->tc_frag_data.max_prefix_length = 0;
11640 }
11641 else
11642 frag_wane (next_fragP);
11643 break;
11644 }
11645 }
11646
11647 /* Stop if there is no BRANCH_PREFIX. */
11648 if (!align_branch_prefix_size)
11649 return;
11650
11651 /* Scan for BRANCH_PREFIX. */
11652 for (; fragP != NULL; fragP = fragP->fr_next)
11653 {
11654 if (fragP->fr_type != rs_machine_dependent
11655 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11656 != BRANCH_PREFIX))
11657 continue;
11658
11659 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11660 COND_JUMP_PREFIX. */
11661 max_prefix_length = 0;
11662 for (next_fragP = fragP;
11663 next_fragP != NULL;
11664 next_fragP = next_fragP->fr_next)
11665 {
11666 if (next_fragP->fr_type == rs_fill)
11667 /* Skip rs_fill frags. */
11668 continue;
11669 else if (next_fragP->fr_type != rs_machine_dependent)
11670 /* Stop for all other frags. */
11671 break;
11672
11673 /* rs_machine_dependent frags. */
11674 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11675 == BRANCH_PREFIX)
11676 {
11677 /* Count BRANCH_PREFIX frags. */
11678 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11679 {
11680 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11681 frag_wane (next_fragP);
11682 }
11683 else
11684 max_prefix_length
11685 += next_fragP->tc_frag_data.max_bytes;
11686 }
11687 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11688 == BRANCH_PADDING)
11689 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11690 == FUSED_JCC_PADDING))
11691 {
11692 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11693 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11694 break;
11695 }
11696 else
11697 /* Stop for other rs_machine_dependent frags. */
11698 break;
11699 }
11700
11701 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11702
11703 /* Skip to the next frag. */
11704 fragP = next_fragP;
11705 }
11706 }
11707
11708 /* Compute padding size for
11709
11710 FUSED_JCC_PADDING
11711 CMP like instruction
11712 BRANCH_PADDING
11713 COND_JUMP/UNCOND_JUMP
11714
11715 or
11716
11717 BRANCH_PADDING
11718 COND_JUMP/UNCOND_JUMP
11719 */
11720
11721 static int
11722 i386_branch_padding_size (fragS *fragP, offsetT address)
11723 {
11724 unsigned int offset, size, padding_size;
11725 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11726
11727 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11728 if (!address)
11729 address = fragP->fr_address;
11730 address += fragP->fr_fix;
11731
11732 /* CMP like instrunction size. */
11733 size = fragP->tc_frag_data.cmp_size;
11734
11735 /* The base size of the branch frag. */
11736 size += branch_fragP->fr_fix;
11737
11738 /* Add opcode and displacement bytes for the rs_machine_dependent
11739 branch frag. */
11740 if (branch_fragP->fr_type == rs_machine_dependent)
11741 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11742
11743 /* Check if branch is within boundary and doesn't end at the last
11744 byte. */
11745 offset = address & ((1U << align_branch_power) - 1);
11746 if ((offset + size) >= (1U << align_branch_power))
11747 /* Padding needed to avoid crossing boundary. */
11748 padding_size = (1U << align_branch_power) - offset;
11749 else
11750 /* No padding needed. */
11751 padding_size = 0;
11752
11753 /* The return value may be saved in tc_frag_data.length which is
11754 unsigned byte. */
11755 if (!fits_in_unsigned_byte (padding_size))
11756 abort ();
11757
11758 return padding_size;
11759 }
11760
11761 /* i386_generic_table_relax_frag()
11762
11763 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11764 grow/shrink padding to align branch frags. Hand others to
11765 relax_frag(). */
11766
11767 long
11768 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11769 {
11770 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11771 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11772 {
11773 long padding_size = i386_branch_padding_size (fragP, 0);
11774 long grow = padding_size - fragP->tc_frag_data.length;
11775
11776 /* When the BRANCH_PREFIX frag is used, the computed address
11777 must match the actual address and there should be no padding. */
11778 if (fragP->tc_frag_data.padding_address
11779 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11780 || padding_size))
11781 abort ();
11782
11783 /* Update the padding size. */
11784 if (grow)
11785 fragP->tc_frag_data.length = padding_size;
11786
11787 return grow;
11788 }
11789 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11790 {
11791 fragS *padding_fragP, *next_fragP;
11792 long padding_size, left_size, last_size;
11793
11794 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11795 if (!padding_fragP)
11796 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11797 return (fragP->tc_frag_data.length
11798 - fragP->tc_frag_data.last_length);
11799
11800 /* Compute the relative address of the padding frag in the very
11801 first time where the BRANCH_PREFIX frag sizes are zero. */
11802 if (!fragP->tc_frag_data.padding_address)
11803 fragP->tc_frag_data.padding_address
11804 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11805
11806 /* First update the last length from the previous interation. */
11807 left_size = fragP->tc_frag_data.prefix_length;
11808 for (next_fragP = fragP;
11809 next_fragP != padding_fragP;
11810 next_fragP = next_fragP->fr_next)
11811 if (next_fragP->fr_type == rs_machine_dependent
11812 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11813 == BRANCH_PREFIX))
11814 {
11815 if (left_size)
11816 {
11817 int max = next_fragP->tc_frag_data.max_bytes;
11818 if (max)
11819 {
11820 int size;
11821 if (max > left_size)
11822 size = left_size;
11823 else
11824 size = max;
11825 left_size -= size;
11826 next_fragP->tc_frag_data.last_length = size;
11827 }
11828 }
11829 else
11830 next_fragP->tc_frag_data.last_length = 0;
11831 }
11832
11833 /* Check the padding size for the padding frag. */
11834 padding_size = i386_branch_padding_size
11835 (padding_fragP, (fragP->fr_address
11836 + fragP->tc_frag_data.padding_address));
11837
11838 last_size = fragP->tc_frag_data.prefix_length;
11839 /* Check if there is change from the last interation. */
11840 if (padding_size == last_size)
11841 {
11842 /* Update the expected address of the padding frag. */
11843 padding_fragP->tc_frag_data.padding_address
11844 = (fragP->fr_address + padding_size
11845 + fragP->tc_frag_data.padding_address);
11846 return 0;
11847 }
11848
11849 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11850 {
11851 /* No padding if there is no sufficient room. Clear the
11852 expected address of the padding frag. */
11853 padding_fragP->tc_frag_data.padding_address = 0;
11854 padding_size = 0;
11855 }
11856 else
11857 /* Store the expected address of the padding frag. */
11858 padding_fragP->tc_frag_data.padding_address
11859 = (fragP->fr_address + padding_size
11860 + fragP->tc_frag_data.padding_address);
11861
11862 fragP->tc_frag_data.prefix_length = padding_size;
11863
11864 /* Update the length for the current interation. */
11865 left_size = padding_size;
11866 for (next_fragP = fragP;
11867 next_fragP != padding_fragP;
11868 next_fragP = next_fragP->fr_next)
11869 if (next_fragP->fr_type == rs_machine_dependent
11870 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11871 == BRANCH_PREFIX))
11872 {
11873 if (left_size)
11874 {
11875 int max = next_fragP->tc_frag_data.max_bytes;
11876 if (max)
11877 {
11878 int size;
11879 if (max > left_size)
11880 size = left_size;
11881 else
11882 size = max;
11883 left_size -= size;
11884 next_fragP->tc_frag_data.length = size;
11885 }
11886 }
11887 else
11888 next_fragP->tc_frag_data.length = 0;
11889 }
11890
11891 return (fragP->tc_frag_data.length
11892 - fragP->tc_frag_data.last_length);
11893 }
11894 return relax_frag (segment, fragP, stretch);
11895 }
11896
11897 /* md_estimate_size_before_relax()
11898
11899 Called just before relax() for rs_machine_dependent frags. The x86
11900 assembler uses these frags to handle variable size jump
11901 instructions.
11902
11903 Any symbol that is now undefined will not become defined.
11904 Return the correct fr_subtype in the frag.
11905 Return the initial "guess for variable size of frag" to caller.
11906 The guess is actually the growth beyond the fixed part. Whatever
11907 we do to grow the fixed or variable part contributes to our
11908 returned value. */
11909
11910 int
11911 md_estimate_size_before_relax (fragS *fragP, segT segment)
11912 {
11913 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11914 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11915 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11916 {
11917 i386_classify_machine_dependent_frag (fragP);
11918 return fragP->tc_frag_data.length;
11919 }
11920
11921 /* We've already got fragP->fr_subtype right; all we have to do is
11922 check for un-relaxable symbols. On an ELF system, we can't relax
11923 an externally visible symbol, because it may be overridden by a
11924 shared library. */
11925 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11926 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11927 || (IS_ELF
11928 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11929 fragP->fr_var))
11930 #endif
11931 #if defined (OBJ_COFF) && defined (TE_PE)
11932 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11933 && S_IS_WEAK (fragP->fr_symbol))
11934 #endif
11935 )
11936 {
11937 /* Symbol is undefined in this segment, or we need to keep a
11938 reloc so that weak symbols can be overridden. */
11939 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11940 enum bfd_reloc_code_real reloc_type;
11941 unsigned char *opcode;
11942 int old_fr_fix;
11943
11944 if (fragP->fr_var != NO_RELOC)
11945 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11946 else if (size == 2)
11947 reloc_type = BFD_RELOC_16_PCREL;
11948 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11949 else if (need_plt32_p (fragP->fr_symbol))
11950 reloc_type = BFD_RELOC_X86_64_PLT32;
11951 #endif
11952 else
11953 reloc_type = BFD_RELOC_32_PCREL;
11954
11955 old_fr_fix = fragP->fr_fix;
11956 opcode = (unsigned char *) fragP->fr_opcode;
11957
11958 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11959 {
11960 case UNCOND_JUMP:
11961 /* Make jmp (0xeb) a (d)word displacement jump. */
11962 opcode[0] = 0xe9;
11963 fragP->fr_fix += size;
11964 fix_new (fragP, old_fr_fix, size,
11965 fragP->fr_symbol,
11966 fragP->fr_offset, 1,
11967 reloc_type);
11968 break;
11969
11970 case COND_JUMP86:
11971 if (size == 2
11972 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11973 {
11974 /* Negate the condition, and branch past an
11975 unconditional jump. */
11976 opcode[0] ^= 1;
11977 opcode[1] = 3;
11978 /* Insert an unconditional jump. */
11979 opcode[2] = 0xe9;
11980 /* We added two extra opcode bytes, and have a two byte
11981 offset. */
11982 fragP->fr_fix += 2 + 2;
11983 fix_new (fragP, old_fr_fix + 2, 2,
11984 fragP->fr_symbol,
11985 fragP->fr_offset, 1,
11986 reloc_type);
11987 break;
11988 }
11989 /* Fall through. */
11990
11991 case COND_JUMP:
11992 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11993 {
11994 fixS *fixP;
11995
11996 fragP->fr_fix += 1;
11997 fixP = fix_new (fragP, old_fr_fix, 1,
11998 fragP->fr_symbol,
11999 fragP->fr_offset, 1,
12000 BFD_RELOC_8_PCREL);
12001 fixP->fx_signed = 1;
12002 break;
12003 }
12004
12005 /* This changes the byte-displacement jump 0x7N
12006 to the (d)word-displacement jump 0x0f,0x8N. */
12007 opcode[1] = opcode[0] + 0x10;
12008 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12009 /* We've added an opcode byte. */
12010 fragP->fr_fix += 1 + size;
12011 fix_new (fragP, old_fr_fix + 1, size,
12012 fragP->fr_symbol,
12013 fragP->fr_offset, 1,
12014 reloc_type);
12015 break;
12016
12017 default:
12018 BAD_CASE (fragP->fr_subtype);
12019 break;
12020 }
12021 frag_wane (fragP);
12022 return fragP->fr_fix - old_fr_fix;
12023 }
12024
12025 /* Guess size depending on current relax state. Initially the relax
12026 state will correspond to a short jump and we return 1, because
12027 the variable part of the frag (the branch offset) is one byte
12028 long. However, we can relax a section more than once and in that
12029 case we must either set fr_subtype back to the unrelaxed state,
12030 or return the value for the appropriate branch. */
12031 return md_relax_table[fragP->fr_subtype].rlx_length;
12032 }
12033
12034 /* Called after relax() is finished.
12035
12036 In: Address of frag.
12037 fr_type == rs_machine_dependent.
12038 fr_subtype is what the address relaxed to.
12039
12040 Out: Any fixSs and constants are set up.
12041 Caller will turn frag into a ".space 0". */
12042
12043 void
12044 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
12045 fragS *fragP)
12046 {
12047 unsigned char *opcode;
12048 unsigned char *where_to_put_displacement = NULL;
12049 offsetT target_address;
12050 offsetT opcode_address;
12051 unsigned int extension = 0;
12052 offsetT displacement_from_opcode_start;
12053
12054 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12055 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
12056 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12057 {
12058 /* Generate nop padding. */
12059 unsigned int size = fragP->tc_frag_data.length;
12060 if (size)
12061 {
12062 if (size > fragP->tc_frag_data.max_bytes)
12063 abort ();
12064
12065 if (flag_debug)
12066 {
12067 const char *msg;
12068 const char *branch = "branch";
12069 const char *prefix = "";
12070 fragS *padding_fragP;
12071 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
12072 == BRANCH_PREFIX)
12073 {
12074 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
12075 switch (fragP->tc_frag_data.default_prefix)
12076 {
12077 default:
12078 abort ();
12079 break;
12080 case CS_PREFIX_OPCODE:
12081 prefix = " cs";
12082 break;
12083 case DS_PREFIX_OPCODE:
12084 prefix = " ds";
12085 break;
12086 case ES_PREFIX_OPCODE:
12087 prefix = " es";
12088 break;
12089 case FS_PREFIX_OPCODE:
12090 prefix = " fs";
12091 break;
12092 case GS_PREFIX_OPCODE:
12093 prefix = " gs";
12094 break;
12095 case SS_PREFIX_OPCODE:
12096 prefix = " ss";
12097 break;
12098 }
12099 if (padding_fragP)
12100 msg = _("%s:%u: add %d%s at 0x%llx to align "
12101 "%s within %d-byte boundary\n");
12102 else
12103 msg = _("%s:%u: add additional %d%s at 0x%llx to "
12104 "align %s within %d-byte boundary\n");
12105 }
12106 else
12107 {
12108 padding_fragP = fragP;
12109 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
12110 "%s within %d-byte boundary\n");
12111 }
12112
12113 if (padding_fragP)
12114 switch (padding_fragP->tc_frag_data.branch_type)
12115 {
12116 case align_branch_jcc:
12117 branch = "jcc";
12118 break;
12119 case align_branch_fused:
12120 branch = "fused jcc";
12121 break;
12122 case align_branch_jmp:
12123 branch = "jmp";
12124 break;
12125 case align_branch_call:
12126 branch = "call";
12127 break;
12128 case align_branch_indirect:
12129 branch = "indiret branch";
12130 break;
12131 case align_branch_ret:
12132 branch = "ret";
12133 break;
12134 default:
12135 break;
12136 }
12137
12138 fprintf (stdout, msg,
12139 fragP->fr_file, fragP->fr_line, size, prefix,
12140 (long long) fragP->fr_address, branch,
12141 1 << align_branch_power);
12142 }
12143 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12144 memset (fragP->fr_opcode,
12145 fragP->tc_frag_data.default_prefix, size);
12146 else
12147 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
12148 size, 0);
12149 fragP->fr_fix += size;
12150 }
12151 return;
12152 }
12153
12154 opcode = (unsigned char *) fragP->fr_opcode;
12155
12156 /* Address we want to reach in file space. */
12157 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
12158
12159 /* Address opcode resides at in file space. */
12160 opcode_address = fragP->fr_address + fragP->fr_fix;
12161
12162 /* Displacement from opcode start to fill into instruction. */
12163 displacement_from_opcode_start = target_address - opcode_address;
12164
12165 if ((fragP->fr_subtype & BIG) == 0)
12166 {
12167 /* Don't have to change opcode. */
12168 extension = 1; /* 1 opcode + 1 displacement */
12169 where_to_put_displacement = &opcode[1];
12170 }
12171 else
12172 {
12173 if (no_cond_jump_promotion
12174 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
12175 as_warn_where (fragP->fr_file, fragP->fr_line,
12176 _("long jump required"));
12177
12178 switch (fragP->fr_subtype)
12179 {
12180 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
12181 extension = 4; /* 1 opcode + 4 displacement */
12182 opcode[0] = 0xe9;
12183 where_to_put_displacement = &opcode[1];
12184 break;
12185
12186 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
12187 extension = 2; /* 1 opcode + 2 displacement */
12188 opcode[0] = 0xe9;
12189 where_to_put_displacement = &opcode[1];
12190 break;
12191
12192 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
12193 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
12194 extension = 5; /* 2 opcode + 4 displacement */
12195 opcode[1] = opcode[0] + 0x10;
12196 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12197 where_to_put_displacement = &opcode[2];
12198 break;
12199
12200 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
12201 extension = 3; /* 2 opcode + 2 displacement */
12202 opcode[1] = opcode[0] + 0x10;
12203 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12204 where_to_put_displacement = &opcode[2];
12205 break;
12206
12207 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
12208 extension = 4;
12209 opcode[0] ^= 1;
12210 opcode[1] = 3;
12211 opcode[2] = 0xe9;
12212 where_to_put_displacement = &opcode[3];
12213 break;
12214
12215 default:
12216 BAD_CASE (fragP->fr_subtype);
12217 break;
12218 }
12219 }
12220
12221 /* If size if less then four we are sure that the operand fits,
12222 but if it's 4, then it could be that the displacement is larger
12223 then -/+ 2GB. */
12224 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
12225 && object_64bit
12226 && ((addressT) (displacement_from_opcode_start - extension
12227 + ((addressT) 1 << 31))
12228 > (((addressT) 2 << 31) - 1)))
12229 {
12230 as_bad_where (fragP->fr_file, fragP->fr_line,
12231 _("jump target out of range"));
12232 /* Make us emit 0. */
12233 displacement_from_opcode_start = extension;
12234 }
12235 /* Now put displacement after opcode. */
12236 md_number_to_chars ((char *) where_to_put_displacement,
12237 (valueT) (displacement_from_opcode_start - extension),
12238 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
12239 fragP->fr_fix += extension;
12240 }
12241 \f
12242 /* Apply a fixup (fixP) to segment data, once it has been determined
12243 by our caller that we have all the info we need to fix it up.
12244
12245 Parameter valP is the pointer to the value of the bits.
12246
12247 On the 386, immediates, displacements, and data pointers are all in
12248 the same (little-endian) format, so we don't need to care about which
12249 we are handling. */
12250
12251 void
12252 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12253 {
12254 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
12255 valueT value = *valP;
12256
12257 #if !defined (TE_Mach)
12258 if (fixP->fx_pcrel)
12259 {
12260 switch (fixP->fx_r_type)
12261 {
12262 default:
12263 break;
12264
12265 case BFD_RELOC_64:
12266 fixP->fx_r_type = BFD_RELOC_64_PCREL;
12267 break;
12268 case BFD_RELOC_32:
12269 case BFD_RELOC_X86_64_32S:
12270 fixP->fx_r_type = BFD_RELOC_32_PCREL;
12271 break;
12272 case BFD_RELOC_16:
12273 fixP->fx_r_type = BFD_RELOC_16_PCREL;
12274 break;
12275 case BFD_RELOC_8:
12276 fixP->fx_r_type = BFD_RELOC_8_PCREL;
12277 break;
12278 }
12279 }
12280
12281 if (fixP->fx_addsy != NULL
12282 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
12283 || fixP->fx_r_type == BFD_RELOC_64_PCREL
12284 || fixP->fx_r_type == BFD_RELOC_16_PCREL
12285 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
12286 && !use_rela_relocations)
12287 {
12288 /* This is a hack. There should be a better way to handle this.
12289 This covers for the fact that bfd_install_relocation will
12290 subtract the current location (for partial_inplace, PC relative
12291 relocations); see more below. */
12292 #ifndef OBJ_AOUT
12293 if (IS_ELF
12294 #ifdef TE_PE
12295 || OUTPUT_FLAVOR == bfd_target_coff_flavour
12296 #endif
12297 )
12298 value += fixP->fx_where + fixP->fx_frag->fr_address;
12299 #endif
12300 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12301 if (IS_ELF)
12302 {
12303 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
12304
12305 if ((sym_seg == seg
12306 || (symbol_section_p (fixP->fx_addsy)
12307 && sym_seg != absolute_section))
12308 && !generic_force_reloc (fixP))
12309 {
12310 /* Yes, we add the values in twice. This is because
12311 bfd_install_relocation subtracts them out again. I think
12312 bfd_install_relocation is broken, but I don't dare change
12313 it. FIXME. */
12314 value += fixP->fx_where + fixP->fx_frag->fr_address;
12315 }
12316 }
12317 #endif
12318 #if defined (OBJ_COFF) && defined (TE_PE)
12319 /* For some reason, the PE format does not store a
12320 section address offset for a PC relative symbol. */
12321 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
12322 || S_IS_WEAK (fixP->fx_addsy))
12323 value += md_pcrel_from (fixP);
12324 #endif
12325 }
12326 #if defined (OBJ_COFF) && defined (TE_PE)
12327 if (fixP->fx_addsy != NULL
12328 && S_IS_WEAK (fixP->fx_addsy)
12329 /* PR 16858: Do not modify weak function references. */
12330 && ! fixP->fx_pcrel)
12331 {
12332 #if !defined (TE_PEP)
12333 /* For x86 PE weak function symbols are neither PC-relative
12334 nor do they set S_IS_FUNCTION. So the only reliable way
12335 to detect them is to check the flags of their containing
12336 section. */
12337 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
12338 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
12339 ;
12340 else
12341 #endif
12342 value -= S_GET_VALUE (fixP->fx_addsy);
12343 }
12344 #endif
12345
12346 /* Fix a few things - the dynamic linker expects certain values here,
12347 and we must not disappoint it. */
12348 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12349 if (IS_ELF && fixP->fx_addsy)
12350 switch (fixP->fx_r_type)
12351 {
12352 case BFD_RELOC_386_PLT32:
12353 case BFD_RELOC_X86_64_PLT32:
12354 /* Make the jump instruction point to the address of the operand.
12355 At runtime we merely add the offset to the actual PLT entry.
12356 NB: Subtract the offset size only for jump instructions. */
12357 if (fixP->fx_pcrel)
12358 value = -4;
12359 break;
12360
12361 case BFD_RELOC_386_TLS_GD:
12362 case BFD_RELOC_386_TLS_LDM:
12363 case BFD_RELOC_386_TLS_IE_32:
12364 case BFD_RELOC_386_TLS_IE:
12365 case BFD_RELOC_386_TLS_GOTIE:
12366 case BFD_RELOC_386_TLS_GOTDESC:
12367 case BFD_RELOC_X86_64_TLSGD:
12368 case BFD_RELOC_X86_64_TLSLD:
12369 case BFD_RELOC_X86_64_GOTTPOFF:
12370 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12371 value = 0; /* Fully resolved at runtime. No addend. */
12372 /* Fallthrough */
12373 case BFD_RELOC_386_TLS_LE:
12374 case BFD_RELOC_386_TLS_LDO_32:
12375 case BFD_RELOC_386_TLS_LE_32:
12376 case BFD_RELOC_X86_64_DTPOFF32:
12377 case BFD_RELOC_X86_64_DTPOFF64:
12378 case BFD_RELOC_X86_64_TPOFF32:
12379 case BFD_RELOC_X86_64_TPOFF64:
12380 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12381 break;
12382
12383 case BFD_RELOC_386_TLS_DESC_CALL:
12384 case BFD_RELOC_X86_64_TLSDESC_CALL:
12385 value = 0; /* Fully resolved at runtime. No addend. */
12386 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12387 fixP->fx_done = 0;
12388 return;
12389
12390 case BFD_RELOC_VTABLE_INHERIT:
12391 case BFD_RELOC_VTABLE_ENTRY:
12392 fixP->fx_done = 0;
12393 return;
12394
12395 default:
12396 break;
12397 }
12398 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
12399 *valP = value;
12400 #endif /* !defined (TE_Mach) */
12401
12402 /* Are we finished with this relocation now? */
12403 if (fixP->fx_addsy == NULL)
12404 fixP->fx_done = 1;
12405 #if defined (OBJ_COFF) && defined (TE_PE)
12406 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
12407 {
12408 fixP->fx_done = 0;
12409 /* Remember value for tc_gen_reloc. */
12410 fixP->fx_addnumber = value;
12411 /* Clear out the frag for now. */
12412 value = 0;
12413 }
12414 #endif
12415 else if (use_rela_relocations)
12416 {
12417 fixP->fx_no_overflow = 1;
12418 /* Remember value for tc_gen_reloc. */
12419 fixP->fx_addnumber = value;
12420 value = 0;
12421 }
12422
12423 md_number_to_chars (p, value, fixP->fx_size);
12424 }
12425 \f
12426 const char *
12427 md_atof (int type, char *litP, int *sizeP)
12428 {
12429 /* This outputs the LITTLENUMs in REVERSE order;
12430 in accord with the bigendian 386. */
12431 return ieee_md_atof (type, litP, sizeP, FALSE);
12432 }
12433 \f
12434 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
12435
12436 static char *
12437 output_invalid (int c)
12438 {
12439 if (ISPRINT (c))
12440 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12441 "'%c'", c);
12442 else
12443 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12444 "(0x%x)", (unsigned char) c);
12445 return output_invalid_buf;
12446 }
12447
12448 /* Verify that @r can be used in the current context. */
12449
12450 static bfd_boolean check_register (const reg_entry *r)
12451 {
12452 if (allow_pseudo_reg)
12453 return TRUE;
12454
12455 if (operand_type_all_zero (&r->reg_type))
12456 return FALSE;
12457
12458 if ((r->reg_type.bitfield.dword
12459 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
12460 || r->reg_type.bitfield.class == RegCR
12461 || r->reg_type.bitfield.class == RegDR)
12462 && !cpu_arch_flags.bitfield.cpui386)
12463 return FALSE;
12464
12465 if (r->reg_type.bitfield.class == RegTR
12466 && (flag_code == CODE_64BIT
12467 || !cpu_arch_flags.bitfield.cpui386
12468 || cpu_arch_isa_flags.bitfield.cpui586
12469 || cpu_arch_isa_flags.bitfield.cpui686))
12470 return FALSE;
12471
12472 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
12473 return FALSE;
12474
12475 if (!cpu_arch_flags.bitfield.cpuavx512f)
12476 {
12477 if (r->reg_type.bitfield.zmmword
12478 || r->reg_type.bitfield.class == RegMask)
12479 return FALSE;
12480
12481 if (!cpu_arch_flags.bitfield.cpuavx)
12482 {
12483 if (r->reg_type.bitfield.ymmword)
12484 return FALSE;
12485
12486 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12487 return FALSE;
12488 }
12489 }
12490
12491 if (r->reg_type.bitfield.tmmword
12492 && (!cpu_arch_flags.bitfield.cpuamx_tile
12493 || flag_code != CODE_64BIT))
12494 return FALSE;
12495
12496 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
12497 return FALSE;
12498
12499 /* Don't allow fake index register unless allow_index_reg isn't 0. */
12500 if (!allow_index_reg && r->reg_num == RegIZ)
12501 return FALSE;
12502
12503 /* Upper 16 vector registers are only available with VREX in 64bit
12504 mode, and require EVEX encoding. */
12505 if (r->reg_flags & RegVRex)
12506 {
12507 if (!cpu_arch_flags.bitfield.cpuavx512f
12508 || flag_code != CODE_64BIT)
12509 return FALSE;
12510
12511 if (i.vec_encoding == vex_encoding_default)
12512 i.vec_encoding = vex_encoding_evex;
12513 else if (i.vec_encoding != vex_encoding_evex)
12514 i.vec_encoding = vex_encoding_error;
12515 }
12516
12517 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
12518 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
12519 && flag_code != CODE_64BIT)
12520 return FALSE;
12521
12522 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12523 && !intel_syntax)
12524 return FALSE;
12525
12526 return TRUE;
12527 }
12528
12529 /* REG_STRING starts *before* REGISTER_PREFIX. */
12530
12531 static const reg_entry *
12532 parse_real_register (char *reg_string, char **end_op)
12533 {
12534 char *s = reg_string;
12535 char *p;
12536 char reg_name_given[MAX_REG_NAME_SIZE + 1];
12537 const reg_entry *r;
12538
12539 /* Skip possible REGISTER_PREFIX and possible whitespace. */
12540 if (*s == REGISTER_PREFIX)
12541 ++s;
12542
12543 if (is_space_char (*s))
12544 ++s;
12545
12546 p = reg_name_given;
12547 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
12548 {
12549 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
12550 return (const reg_entry *) NULL;
12551 s++;
12552 }
12553
12554 /* For naked regs, make sure that we are not dealing with an identifier.
12555 This prevents confusing an identifier like `eax_var' with register
12556 `eax'. */
12557 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
12558 return (const reg_entry *) NULL;
12559
12560 *end_op = s;
12561
12562 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
12563
12564 /* Handle floating point regs, allowing spaces in the (i) part. */
12565 if (r == i386_regtab /* %st is first entry of table */)
12566 {
12567 if (!cpu_arch_flags.bitfield.cpu8087
12568 && !cpu_arch_flags.bitfield.cpu287
12569 && !cpu_arch_flags.bitfield.cpu387
12570 && !allow_pseudo_reg)
12571 return (const reg_entry *) NULL;
12572
12573 if (is_space_char (*s))
12574 ++s;
12575 if (*s == '(')
12576 {
12577 ++s;
12578 if (is_space_char (*s))
12579 ++s;
12580 if (*s >= '0' && *s <= '7')
12581 {
12582 int fpr = *s - '0';
12583 ++s;
12584 if (is_space_char (*s))
12585 ++s;
12586 if (*s == ')')
12587 {
12588 *end_op = s + 1;
12589 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
12590 know (r);
12591 return r + fpr;
12592 }
12593 }
12594 /* We have "%st(" then garbage. */
12595 return (const reg_entry *) NULL;
12596 }
12597 }
12598
12599 return r && check_register (r) ? r : NULL;
12600 }
12601
12602 /* REG_STRING starts *before* REGISTER_PREFIX. */
12603
12604 static const reg_entry *
12605 parse_register (char *reg_string, char **end_op)
12606 {
12607 const reg_entry *r;
12608
12609 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12610 r = parse_real_register (reg_string, end_op);
12611 else
12612 r = NULL;
12613 if (!r)
12614 {
12615 char *save = input_line_pointer;
12616 char c;
12617 symbolS *symbolP;
12618
12619 input_line_pointer = reg_string;
12620 c = get_symbol_name (&reg_string);
12621 symbolP = symbol_find (reg_string);
12622 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12623 {
12624 const expressionS *e = symbol_get_value_expression (symbolP);
12625
12626 know (e->X_op == O_register);
12627 know (e->X_add_number >= 0
12628 && (valueT) e->X_add_number < i386_regtab_size);
12629 r = i386_regtab + e->X_add_number;
12630 if (!check_register (r))
12631 {
12632 as_bad (_("register '%s%s' cannot be used here"),
12633 register_prefix, r->reg_name);
12634 r = &bad_reg;
12635 }
12636 *end_op = input_line_pointer;
12637 }
12638 *input_line_pointer = c;
12639 input_line_pointer = save;
12640 }
12641 return r;
12642 }
12643
12644 int
12645 i386_parse_name (char *name, expressionS *e, char *nextcharP)
12646 {
12647 const reg_entry *r;
12648 char *end = input_line_pointer;
12649
12650 *end = *nextcharP;
12651 r = parse_register (name, &input_line_pointer);
12652 if (r && end <= input_line_pointer)
12653 {
12654 *nextcharP = *input_line_pointer;
12655 *input_line_pointer = 0;
12656 if (r != &bad_reg)
12657 {
12658 e->X_op = O_register;
12659 e->X_add_number = r - i386_regtab;
12660 }
12661 else
12662 e->X_op = O_illegal;
12663 return 1;
12664 }
12665 input_line_pointer = end;
12666 *end = 0;
12667 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
12668 }
12669
12670 void
12671 md_operand (expressionS *e)
12672 {
12673 char *end;
12674 const reg_entry *r;
12675
12676 switch (*input_line_pointer)
12677 {
12678 case REGISTER_PREFIX:
12679 r = parse_real_register (input_line_pointer, &end);
12680 if (r)
12681 {
12682 e->X_op = O_register;
12683 e->X_add_number = r - i386_regtab;
12684 input_line_pointer = end;
12685 }
12686 break;
12687
12688 case '[':
12689 gas_assert (intel_syntax);
12690 end = input_line_pointer++;
12691 expression (e);
12692 if (*input_line_pointer == ']')
12693 {
12694 ++input_line_pointer;
12695 e->X_op_symbol = make_expr_symbol (e);
12696 e->X_add_symbol = NULL;
12697 e->X_add_number = 0;
12698 e->X_op = O_index;
12699 }
12700 else
12701 {
12702 e->X_op = O_absent;
12703 input_line_pointer = end;
12704 }
12705 break;
12706 }
12707 }
12708
12709 \f
12710 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12711 const char *md_shortopts = "kVQ:sqnO::";
12712 #else
12713 const char *md_shortopts = "qnO::";
12714 #endif
12715
12716 #define OPTION_32 (OPTION_MD_BASE + 0)
12717 #define OPTION_64 (OPTION_MD_BASE + 1)
12718 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12719 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12720 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12721 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12722 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12723 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12724 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12725 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12726 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12727 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12728 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12729 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12730 #define OPTION_X32 (OPTION_MD_BASE + 14)
12731 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12732 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12733 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12734 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12735 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12736 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12737 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12738 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12739 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12740 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12741 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12742 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12743 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12744 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12745 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12746 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12747 #define OPTION_MLFENCE_AFTER_LOAD (OPTION_MD_BASE + 31)
12748 #define OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH (OPTION_MD_BASE + 32)
12749 #define OPTION_MLFENCE_BEFORE_RET (OPTION_MD_BASE + 33)
12750
12751 struct option md_longopts[] =
12752 {
12753 {"32", no_argument, NULL, OPTION_32},
12754 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12755 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12756 {"64", no_argument, NULL, OPTION_64},
12757 #endif
12758 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12759 {"x32", no_argument, NULL, OPTION_X32},
12760 {"mshared", no_argument, NULL, OPTION_MSHARED},
12761 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12762 #endif
12763 {"divide", no_argument, NULL, OPTION_DIVIDE},
12764 {"march", required_argument, NULL, OPTION_MARCH},
12765 {"mtune", required_argument, NULL, OPTION_MTUNE},
12766 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12767 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12768 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12769 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12770 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12771 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12772 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12773 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12774 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12775 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12776 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12777 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12778 # if defined (TE_PE) || defined (TE_PEP)
12779 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12780 #endif
12781 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12782 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12783 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12784 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12785 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12786 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12787 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12788 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12789 {"mlfence-after-load", required_argument, NULL, OPTION_MLFENCE_AFTER_LOAD},
12790 {"mlfence-before-indirect-branch", required_argument, NULL,
12791 OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH},
12792 {"mlfence-before-ret", required_argument, NULL, OPTION_MLFENCE_BEFORE_RET},
12793 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12794 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12795 {NULL, no_argument, NULL, 0}
12796 };
12797 size_t md_longopts_size = sizeof (md_longopts);
12798
12799 int
12800 md_parse_option (int c, const char *arg)
12801 {
12802 unsigned int j;
12803 char *arch, *next, *saved, *type;
12804
12805 switch (c)
12806 {
12807 case 'n':
12808 optimize_align_code = 0;
12809 break;
12810
12811 case 'q':
12812 quiet_warnings = 1;
12813 break;
12814
12815 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12816 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12817 should be emitted or not. FIXME: Not implemented. */
12818 case 'Q':
12819 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12820 return 0;
12821 break;
12822
12823 /* -V: SVR4 argument to print version ID. */
12824 case 'V':
12825 print_version_id ();
12826 break;
12827
12828 /* -k: Ignore for FreeBSD compatibility. */
12829 case 'k':
12830 break;
12831
12832 case 's':
12833 /* -s: On i386 Solaris, this tells the native assembler to use
12834 .stab instead of .stab.excl. We always use .stab anyhow. */
12835 break;
12836
12837 case OPTION_MSHARED:
12838 shared = 1;
12839 break;
12840
12841 case OPTION_X86_USED_NOTE:
12842 if (strcasecmp (arg, "yes") == 0)
12843 x86_used_note = 1;
12844 else if (strcasecmp (arg, "no") == 0)
12845 x86_used_note = 0;
12846 else
12847 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12848 break;
12849
12850
12851 #endif
12852 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12853 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12854 case OPTION_64:
12855 {
12856 const char **list, **l;
12857
12858 list = bfd_target_list ();
12859 for (l = list; *l != NULL; l++)
12860 if (CONST_STRNEQ (*l, "elf64-x86-64")
12861 || strcmp (*l, "coff-x86-64") == 0
12862 || strcmp (*l, "pe-x86-64") == 0
12863 || strcmp (*l, "pei-x86-64") == 0
12864 || strcmp (*l, "mach-o-x86-64") == 0)
12865 {
12866 default_arch = "x86_64";
12867 break;
12868 }
12869 if (*l == NULL)
12870 as_fatal (_("no compiled in support for x86_64"));
12871 free (list);
12872 }
12873 break;
12874 #endif
12875
12876 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12877 case OPTION_X32:
12878 if (IS_ELF)
12879 {
12880 const char **list, **l;
12881
12882 list = bfd_target_list ();
12883 for (l = list; *l != NULL; l++)
12884 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12885 {
12886 default_arch = "x86_64:32";
12887 break;
12888 }
12889 if (*l == NULL)
12890 as_fatal (_("no compiled in support for 32bit x86_64"));
12891 free (list);
12892 }
12893 else
12894 as_fatal (_("32bit x86_64 is only supported for ELF"));
12895 break;
12896 #endif
12897
12898 case OPTION_32:
12899 default_arch = "i386";
12900 break;
12901
12902 case OPTION_DIVIDE:
12903 #ifdef SVR4_COMMENT_CHARS
12904 {
12905 char *n, *t;
12906 const char *s;
12907
12908 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12909 t = n;
12910 for (s = i386_comment_chars; *s != '\0'; s++)
12911 if (*s != '/')
12912 *t++ = *s;
12913 *t = '\0';
12914 i386_comment_chars = n;
12915 }
12916 #endif
12917 break;
12918
12919 case OPTION_MARCH:
12920 saved = xstrdup (arg);
12921 arch = saved;
12922 /* Allow -march=+nosse. */
12923 if (*arch == '+')
12924 arch++;
12925 do
12926 {
12927 if (*arch == '.')
12928 as_fatal (_("invalid -march= option: `%s'"), arg);
12929 next = strchr (arch, '+');
12930 if (next)
12931 *next++ = '\0';
12932 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12933 {
12934 if (strcmp (arch, cpu_arch [j].name) == 0)
12935 {
12936 /* Processor. */
12937 if (! cpu_arch[j].flags.bitfield.cpui386)
12938 continue;
12939
12940 cpu_arch_name = cpu_arch[j].name;
12941 cpu_sub_arch_name = NULL;
12942 cpu_arch_flags = cpu_arch[j].flags;
12943 cpu_arch_isa = cpu_arch[j].type;
12944 cpu_arch_isa_flags = cpu_arch[j].flags;
12945 if (!cpu_arch_tune_set)
12946 {
12947 cpu_arch_tune = cpu_arch_isa;
12948 cpu_arch_tune_flags = cpu_arch_isa_flags;
12949 }
12950 break;
12951 }
12952 else if (*cpu_arch [j].name == '.'
12953 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12954 {
12955 /* ISA extension. */
12956 i386_cpu_flags flags;
12957
12958 flags = cpu_flags_or (cpu_arch_flags,
12959 cpu_arch[j].flags);
12960
12961 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12962 {
12963 if (cpu_sub_arch_name)
12964 {
12965 char *name = cpu_sub_arch_name;
12966 cpu_sub_arch_name = concat (name,
12967 cpu_arch[j].name,
12968 (const char *) NULL);
12969 free (name);
12970 }
12971 else
12972 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12973 cpu_arch_flags = flags;
12974 cpu_arch_isa_flags = flags;
12975 }
12976 else
12977 cpu_arch_isa_flags
12978 = cpu_flags_or (cpu_arch_isa_flags,
12979 cpu_arch[j].flags);
12980 break;
12981 }
12982 }
12983
12984 if (j >= ARRAY_SIZE (cpu_arch))
12985 {
12986 /* Disable an ISA extension. */
12987 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12988 if (strcmp (arch, cpu_noarch [j].name) == 0)
12989 {
12990 i386_cpu_flags flags;
12991
12992 flags = cpu_flags_and_not (cpu_arch_flags,
12993 cpu_noarch[j].flags);
12994 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12995 {
12996 if (cpu_sub_arch_name)
12997 {
12998 char *name = cpu_sub_arch_name;
12999 cpu_sub_arch_name = concat (arch,
13000 (const char *) NULL);
13001 free (name);
13002 }
13003 else
13004 cpu_sub_arch_name = xstrdup (arch);
13005 cpu_arch_flags = flags;
13006 cpu_arch_isa_flags = flags;
13007 }
13008 break;
13009 }
13010
13011 if (j >= ARRAY_SIZE (cpu_noarch))
13012 j = ARRAY_SIZE (cpu_arch);
13013 }
13014
13015 if (j >= ARRAY_SIZE (cpu_arch))
13016 as_fatal (_("invalid -march= option: `%s'"), arg);
13017
13018 arch = next;
13019 }
13020 while (next != NULL);
13021 free (saved);
13022 break;
13023
13024 case OPTION_MTUNE:
13025 if (*arg == '.')
13026 as_fatal (_("invalid -mtune= option: `%s'"), arg);
13027 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13028 {
13029 if (strcmp (arg, cpu_arch [j].name) == 0)
13030 {
13031 cpu_arch_tune_set = 1;
13032 cpu_arch_tune = cpu_arch [j].type;
13033 cpu_arch_tune_flags = cpu_arch[j].flags;
13034 break;
13035 }
13036 }
13037 if (j >= ARRAY_SIZE (cpu_arch))
13038 as_fatal (_("invalid -mtune= option: `%s'"), arg);
13039 break;
13040
13041 case OPTION_MMNEMONIC:
13042 if (strcasecmp (arg, "att") == 0)
13043 intel_mnemonic = 0;
13044 else if (strcasecmp (arg, "intel") == 0)
13045 intel_mnemonic = 1;
13046 else
13047 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
13048 break;
13049
13050 case OPTION_MSYNTAX:
13051 if (strcasecmp (arg, "att") == 0)
13052 intel_syntax = 0;
13053 else if (strcasecmp (arg, "intel") == 0)
13054 intel_syntax = 1;
13055 else
13056 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
13057 break;
13058
13059 case OPTION_MINDEX_REG:
13060 allow_index_reg = 1;
13061 break;
13062
13063 case OPTION_MNAKED_REG:
13064 allow_naked_reg = 1;
13065 break;
13066
13067 case OPTION_MSSE2AVX:
13068 sse2avx = 1;
13069 break;
13070
13071 case OPTION_MSSE_CHECK:
13072 if (strcasecmp (arg, "error") == 0)
13073 sse_check = check_error;
13074 else if (strcasecmp (arg, "warning") == 0)
13075 sse_check = check_warning;
13076 else if (strcasecmp (arg, "none") == 0)
13077 sse_check = check_none;
13078 else
13079 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
13080 break;
13081
13082 case OPTION_MOPERAND_CHECK:
13083 if (strcasecmp (arg, "error") == 0)
13084 operand_check = check_error;
13085 else if (strcasecmp (arg, "warning") == 0)
13086 operand_check = check_warning;
13087 else if (strcasecmp (arg, "none") == 0)
13088 operand_check = check_none;
13089 else
13090 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
13091 break;
13092
13093 case OPTION_MAVXSCALAR:
13094 if (strcasecmp (arg, "128") == 0)
13095 avxscalar = vex128;
13096 else if (strcasecmp (arg, "256") == 0)
13097 avxscalar = vex256;
13098 else
13099 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
13100 break;
13101
13102 case OPTION_MVEXWIG:
13103 if (strcmp (arg, "0") == 0)
13104 vexwig = vexw0;
13105 else if (strcmp (arg, "1") == 0)
13106 vexwig = vexw1;
13107 else
13108 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
13109 break;
13110
13111 case OPTION_MADD_BND_PREFIX:
13112 add_bnd_prefix = 1;
13113 break;
13114
13115 case OPTION_MEVEXLIG:
13116 if (strcmp (arg, "128") == 0)
13117 evexlig = evexl128;
13118 else if (strcmp (arg, "256") == 0)
13119 evexlig = evexl256;
13120 else if (strcmp (arg, "512") == 0)
13121 evexlig = evexl512;
13122 else
13123 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
13124 break;
13125
13126 case OPTION_MEVEXRCIG:
13127 if (strcmp (arg, "rne") == 0)
13128 evexrcig = rne;
13129 else if (strcmp (arg, "rd") == 0)
13130 evexrcig = rd;
13131 else if (strcmp (arg, "ru") == 0)
13132 evexrcig = ru;
13133 else if (strcmp (arg, "rz") == 0)
13134 evexrcig = rz;
13135 else
13136 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
13137 break;
13138
13139 case OPTION_MEVEXWIG:
13140 if (strcmp (arg, "0") == 0)
13141 evexwig = evexw0;
13142 else if (strcmp (arg, "1") == 0)
13143 evexwig = evexw1;
13144 else
13145 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
13146 break;
13147
13148 # if defined (TE_PE) || defined (TE_PEP)
13149 case OPTION_MBIG_OBJ:
13150 use_big_obj = 1;
13151 break;
13152 #endif
13153
13154 case OPTION_MOMIT_LOCK_PREFIX:
13155 if (strcasecmp (arg, "yes") == 0)
13156 omit_lock_prefix = 1;
13157 else if (strcasecmp (arg, "no") == 0)
13158 omit_lock_prefix = 0;
13159 else
13160 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
13161 break;
13162
13163 case OPTION_MFENCE_AS_LOCK_ADD:
13164 if (strcasecmp (arg, "yes") == 0)
13165 avoid_fence = 1;
13166 else if (strcasecmp (arg, "no") == 0)
13167 avoid_fence = 0;
13168 else
13169 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
13170 break;
13171
13172 case OPTION_MLFENCE_AFTER_LOAD:
13173 if (strcasecmp (arg, "yes") == 0)
13174 lfence_after_load = 1;
13175 else if (strcasecmp (arg, "no") == 0)
13176 lfence_after_load = 0;
13177 else
13178 as_fatal (_("invalid -mlfence-after-load= option: `%s'"), arg);
13179 break;
13180
13181 case OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH:
13182 if (strcasecmp (arg, "all") == 0)
13183 {
13184 lfence_before_indirect_branch = lfence_branch_all;
13185 if (lfence_before_ret == lfence_before_ret_none)
13186 lfence_before_ret = lfence_before_ret_shl;
13187 }
13188 else if (strcasecmp (arg, "memory") == 0)
13189 lfence_before_indirect_branch = lfence_branch_memory;
13190 else if (strcasecmp (arg, "register") == 0)
13191 lfence_before_indirect_branch = lfence_branch_register;
13192 else if (strcasecmp (arg, "none") == 0)
13193 lfence_before_indirect_branch = lfence_branch_none;
13194 else
13195 as_fatal (_("invalid -mlfence-before-indirect-branch= option: `%s'"),
13196 arg);
13197 break;
13198
13199 case OPTION_MLFENCE_BEFORE_RET:
13200 if (strcasecmp (arg, "or") == 0)
13201 lfence_before_ret = lfence_before_ret_or;
13202 else if (strcasecmp (arg, "not") == 0)
13203 lfence_before_ret = lfence_before_ret_not;
13204 else if (strcasecmp (arg, "shl") == 0 || strcasecmp (arg, "yes") == 0)
13205 lfence_before_ret = lfence_before_ret_shl;
13206 else if (strcasecmp (arg, "none") == 0)
13207 lfence_before_ret = lfence_before_ret_none;
13208 else
13209 as_fatal (_("invalid -mlfence-before-ret= option: `%s'"),
13210 arg);
13211 break;
13212
13213 case OPTION_MRELAX_RELOCATIONS:
13214 if (strcasecmp (arg, "yes") == 0)
13215 generate_relax_relocations = 1;
13216 else if (strcasecmp (arg, "no") == 0)
13217 generate_relax_relocations = 0;
13218 else
13219 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
13220 break;
13221
13222 case OPTION_MALIGN_BRANCH_BOUNDARY:
13223 {
13224 char *end;
13225 long int align = strtoul (arg, &end, 0);
13226 if (*end == '\0')
13227 {
13228 if (align == 0)
13229 {
13230 align_branch_power = 0;
13231 break;
13232 }
13233 else if (align >= 16)
13234 {
13235 int align_power;
13236 for (align_power = 0;
13237 (align & 1) == 0;
13238 align >>= 1, align_power++)
13239 continue;
13240 /* Limit alignment power to 31. */
13241 if (align == 1 && align_power < 32)
13242 {
13243 align_branch_power = align_power;
13244 break;
13245 }
13246 }
13247 }
13248 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
13249 }
13250 break;
13251
13252 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
13253 {
13254 char *end;
13255 int align = strtoul (arg, &end, 0);
13256 /* Some processors only support 5 prefixes. */
13257 if (*end == '\0' && align >= 0 && align < 6)
13258 {
13259 align_branch_prefix_size = align;
13260 break;
13261 }
13262 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
13263 arg);
13264 }
13265 break;
13266
13267 case OPTION_MALIGN_BRANCH:
13268 align_branch = 0;
13269 saved = xstrdup (arg);
13270 type = saved;
13271 do
13272 {
13273 next = strchr (type, '+');
13274 if (next)
13275 *next++ = '\0';
13276 if (strcasecmp (type, "jcc") == 0)
13277 align_branch |= align_branch_jcc_bit;
13278 else if (strcasecmp (type, "fused") == 0)
13279 align_branch |= align_branch_fused_bit;
13280 else if (strcasecmp (type, "jmp") == 0)
13281 align_branch |= align_branch_jmp_bit;
13282 else if (strcasecmp (type, "call") == 0)
13283 align_branch |= align_branch_call_bit;
13284 else if (strcasecmp (type, "ret") == 0)
13285 align_branch |= align_branch_ret_bit;
13286 else if (strcasecmp (type, "indirect") == 0)
13287 align_branch |= align_branch_indirect_bit;
13288 else
13289 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
13290 type = next;
13291 }
13292 while (next != NULL);
13293 free (saved);
13294 break;
13295
13296 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
13297 align_branch_power = 5;
13298 align_branch_prefix_size = 5;
13299 align_branch = (align_branch_jcc_bit
13300 | align_branch_fused_bit
13301 | align_branch_jmp_bit);
13302 break;
13303
13304 case OPTION_MAMD64:
13305 isa64 = amd64;
13306 break;
13307
13308 case OPTION_MINTEL64:
13309 isa64 = intel64;
13310 break;
13311
13312 case 'O':
13313 if (arg == NULL)
13314 {
13315 optimize = 1;
13316 /* Turn off -Os. */
13317 optimize_for_space = 0;
13318 }
13319 else if (*arg == 's')
13320 {
13321 optimize_for_space = 1;
13322 /* Turn on all encoding optimizations. */
13323 optimize = INT_MAX;
13324 }
13325 else
13326 {
13327 optimize = atoi (arg);
13328 /* Turn off -Os. */
13329 optimize_for_space = 0;
13330 }
13331 break;
13332
13333 default:
13334 return 0;
13335 }
13336 return 1;
13337 }
13338
13339 #define MESSAGE_TEMPLATE \
13340 " "
13341
13342 static char *
13343 output_message (FILE *stream, char *p, char *message, char *start,
13344 int *left_p, const char *name, int len)
13345 {
13346 int size = sizeof (MESSAGE_TEMPLATE);
13347 int left = *left_p;
13348
13349 /* Reserve 2 spaces for ", " or ",\0" */
13350 left -= len + 2;
13351
13352 /* Check if there is any room. */
13353 if (left >= 0)
13354 {
13355 if (p != start)
13356 {
13357 *p++ = ',';
13358 *p++ = ' ';
13359 }
13360 p = mempcpy (p, name, len);
13361 }
13362 else
13363 {
13364 /* Output the current message now and start a new one. */
13365 *p++ = ',';
13366 *p = '\0';
13367 fprintf (stream, "%s\n", message);
13368 p = start;
13369 left = size - (start - message) - len - 2;
13370
13371 gas_assert (left >= 0);
13372
13373 p = mempcpy (p, name, len);
13374 }
13375
13376 *left_p = left;
13377 return p;
13378 }
13379
13380 static void
13381 show_arch (FILE *stream, int ext, int check)
13382 {
13383 static char message[] = MESSAGE_TEMPLATE;
13384 char *start = message + 27;
13385 char *p;
13386 int size = sizeof (MESSAGE_TEMPLATE);
13387 int left;
13388 const char *name;
13389 int len;
13390 unsigned int j;
13391
13392 p = start;
13393 left = size - (start - message);
13394 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13395 {
13396 /* Should it be skipped? */
13397 if (cpu_arch [j].skip)
13398 continue;
13399
13400 name = cpu_arch [j].name;
13401 len = cpu_arch [j].len;
13402 if (*name == '.')
13403 {
13404 /* It is an extension. Skip if we aren't asked to show it. */
13405 if (ext)
13406 {
13407 name++;
13408 len--;
13409 }
13410 else
13411 continue;
13412 }
13413 else if (ext)
13414 {
13415 /* It is an processor. Skip if we show only extension. */
13416 continue;
13417 }
13418 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
13419 {
13420 /* It is an impossible processor - skip. */
13421 continue;
13422 }
13423
13424 p = output_message (stream, p, message, start, &left, name, len);
13425 }
13426
13427 /* Display disabled extensions. */
13428 if (ext)
13429 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13430 {
13431 name = cpu_noarch [j].name;
13432 len = cpu_noarch [j].len;
13433 p = output_message (stream, p, message, start, &left, name,
13434 len);
13435 }
13436
13437 *p = '\0';
13438 fprintf (stream, "%s\n", message);
13439 }
13440
13441 void
13442 md_show_usage (FILE *stream)
13443 {
13444 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13445 fprintf (stream, _("\
13446 -Qy, -Qn ignored\n\
13447 -V print assembler version number\n\
13448 -k ignored\n"));
13449 #endif
13450 fprintf (stream, _("\
13451 -n Do not optimize code alignment\n\
13452 -q quieten some warnings\n"));
13453 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13454 fprintf (stream, _("\
13455 -s ignored\n"));
13456 #endif
13457 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13458 || defined (TE_PE) || defined (TE_PEP))
13459 fprintf (stream, _("\
13460 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
13461 #endif
13462 #ifdef SVR4_COMMENT_CHARS
13463 fprintf (stream, _("\
13464 --divide do not treat `/' as a comment character\n"));
13465 #else
13466 fprintf (stream, _("\
13467 --divide ignored\n"));
13468 #endif
13469 fprintf (stream, _("\
13470 -march=CPU[,+EXTENSION...]\n\
13471 generate code for CPU and EXTENSION, CPU is one of:\n"));
13472 show_arch (stream, 0, 1);
13473 fprintf (stream, _("\
13474 EXTENSION is combination of:\n"));
13475 show_arch (stream, 1, 0);
13476 fprintf (stream, _("\
13477 -mtune=CPU optimize for CPU, CPU is one of:\n"));
13478 show_arch (stream, 0, 0);
13479 fprintf (stream, _("\
13480 -msse2avx encode SSE instructions with VEX prefix\n"));
13481 fprintf (stream, _("\
13482 -msse-check=[none|error|warning] (default: warning)\n\
13483 check SSE instructions\n"));
13484 fprintf (stream, _("\
13485 -moperand-check=[none|error|warning] (default: warning)\n\
13486 check operand combinations for validity\n"));
13487 fprintf (stream, _("\
13488 -mavxscalar=[128|256] (default: 128)\n\
13489 encode scalar AVX instructions with specific vector\n\
13490 length\n"));
13491 fprintf (stream, _("\
13492 -mvexwig=[0|1] (default: 0)\n\
13493 encode VEX instructions with specific VEX.W value\n\
13494 for VEX.W bit ignored instructions\n"));
13495 fprintf (stream, _("\
13496 -mevexlig=[128|256|512] (default: 128)\n\
13497 encode scalar EVEX instructions with specific vector\n\
13498 length\n"));
13499 fprintf (stream, _("\
13500 -mevexwig=[0|1] (default: 0)\n\
13501 encode EVEX instructions with specific EVEX.W value\n\
13502 for EVEX.W bit ignored instructions\n"));
13503 fprintf (stream, _("\
13504 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
13505 encode EVEX instructions with specific EVEX.RC value\n\
13506 for SAE-only ignored instructions\n"));
13507 fprintf (stream, _("\
13508 -mmnemonic=[att|intel] "));
13509 if (SYSV386_COMPAT)
13510 fprintf (stream, _("(default: att)\n"));
13511 else
13512 fprintf (stream, _("(default: intel)\n"));
13513 fprintf (stream, _("\
13514 use AT&T/Intel mnemonic\n"));
13515 fprintf (stream, _("\
13516 -msyntax=[att|intel] (default: att)\n\
13517 use AT&T/Intel syntax\n"));
13518 fprintf (stream, _("\
13519 -mindex-reg support pseudo index registers\n"));
13520 fprintf (stream, _("\
13521 -mnaked-reg don't require `%%' prefix for registers\n"));
13522 fprintf (stream, _("\
13523 -madd-bnd-prefix add BND prefix for all valid branches\n"));
13524 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13525 fprintf (stream, _("\
13526 -mshared disable branch optimization for shared code\n"));
13527 fprintf (stream, _("\
13528 -mx86-used-note=[no|yes] "));
13529 if (DEFAULT_X86_USED_NOTE)
13530 fprintf (stream, _("(default: yes)\n"));
13531 else
13532 fprintf (stream, _("(default: no)\n"));
13533 fprintf (stream, _("\
13534 generate x86 used ISA and feature properties\n"));
13535 #endif
13536 #if defined (TE_PE) || defined (TE_PEP)
13537 fprintf (stream, _("\
13538 -mbig-obj generate big object files\n"));
13539 #endif
13540 fprintf (stream, _("\
13541 -momit-lock-prefix=[no|yes] (default: no)\n\
13542 strip all lock prefixes\n"));
13543 fprintf (stream, _("\
13544 -mfence-as-lock-add=[no|yes] (default: no)\n\
13545 encode lfence, mfence and sfence as\n\
13546 lock addl $0x0, (%%{re}sp)\n"));
13547 fprintf (stream, _("\
13548 -mrelax-relocations=[no|yes] "));
13549 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
13550 fprintf (stream, _("(default: yes)\n"));
13551 else
13552 fprintf (stream, _("(default: no)\n"));
13553 fprintf (stream, _("\
13554 generate relax relocations\n"));
13555 fprintf (stream, _("\
13556 -malign-branch-boundary=NUM (default: 0)\n\
13557 align branches within NUM byte boundary\n"));
13558 fprintf (stream, _("\
13559 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
13560 TYPE is combination of jcc, fused, jmp, call, ret,\n\
13561 indirect\n\
13562 specify types of branches to align\n"));
13563 fprintf (stream, _("\
13564 -malign-branch-prefix-size=NUM (default: 5)\n\
13565 align branches with NUM prefixes per instruction\n"));
13566 fprintf (stream, _("\
13567 -mbranches-within-32B-boundaries\n\
13568 align branches within 32 byte boundary\n"));
13569 fprintf (stream, _("\
13570 -mlfence-after-load=[no|yes] (default: no)\n\
13571 generate lfence after load\n"));
13572 fprintf (stream, _("\
13573 -mlfence-before-indirect-branch=[none|all|register|memory] (default: none)\n\
13574 generate lfence before indirect near branch\n"));
13575 fprintf (stream, _("\
13576 -mlfence-before-ret=[none|or|not|shl|yes] (default: none)\n\
13577 generate lfence before ret\n"));
13578 fprintf (stream, _("\
13579 -mamd64 accept only AMD64 ISA [default]\n"));
13580 fprintf (stream, _("\
13581 -mintel64 accept only Intel64 ISA\n"));
13582 }
13583
13584 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
13585 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13586 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
13587
13588 /* Pick the target format to use. */
13589
13590 const char *
13591 i386_target_format (void)
13592 {
13593 if (!strncmp (default_arch, "x86_64", 6))
13594 {
13595 update_code_flag (CODE_64BIT, 1);
13596 if (default_arch[6] == '\0')
13597 x86_elf_abi = X86_64_ABI;
13598 else
13599 x86_elf_abi = X86_64_X32_ABI;
13600 }
13601 else if (!strcmp (default_arch, "i386"))
13602 update_code_flag (CODE_32BIT, 1);
13603 else if (!strcmp (default_arch, "iamcu"))
13604 {
13605 update_code_flag (CODE_32BIT, 1);
13606 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13607 {
13608 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13609 cpu_arch_name = "iamcu";
13610 cpu_sub_arch_name = NULL;
13611 cpu_arch_flags = iamcu_flags;
13612 cpu_arch_isa = PROCESSOR_IAMCU;
13613 cpu_arch_isa_flags = iamcu_flags;
13614 if (!cpu_arch_tune_set)
13615 {
13616 cpu_arch_tune = cpu_arch_isa;
13617 cpu_arch_tune_flags = cpu_arch_isa_flags;
13618 }
13619 }
13620 else if (cpu_arch_isa != PROCESSOR_IAMCU)
13621 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13622 cpu_arch_name);
13623 }
13624 else
13625 as_fatal (_("unknown architecture"));
13626
13627 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13628 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13629 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13630 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13631
13632 switch (OUTPUT_FLAVOR)
13633 {
13634 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
13635 case bfd_target_aout_flavour:
13636 return AOUT_TARGET_FORMAT;
13637 #endif
13638 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13639 # if defined (TE_PE) || defined (TE_PEP)
13640 case bfd_target_coff_flavour:
13641 if (flag_code == CODE_64BIT)
13642 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13643 else
13644 return use_big_obj ? "pe-bigobj-i386" : "pe-i386";
13645 # elif defined (TE_GO32)
13646 case bfd_target_coff_flavour:
13647 return "coff-go32";
13648 # else
13649 case bfd_target_coff_flavour:
13650 return "coff-i386";
13651 # endif
13652 #endif
13653 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13654 case bfd_target_elf_flavour:
13655 {
13656 const char *format;
13657
13658 switch (x86_elf_abi)
13659 {
13660 default:
13661 format = ELF_TARGET_FORMAT;
13662 #ifndef TE_SOLARIS
13663 tls_get_addr = "___tls_get_addr";
13664 #endif
13665 break;
13666 case X86_64_ABI:
13667 use_rela_relocations = 1;
13668 object_64bit = 1;
13669 #ifndef TE_SOLARIS
13670 tls_get_addr = "__tls_get_addr";
13671 #endif
13672 format = ELF_TARGET_FORMAT64;
13673 break;
13674 case X86_64_X32_ABI:
13675 use_rela_relocations = 1;
13676 object_64bit = 1;
13677 #ifndef TE_SOLARIS
13678 tls_get_addr = "__tls_get_addr";
13679 #endif
13680 disallow_64bit_reloc = 1;
13681 format = ELF_TARGET_FORMAT32;
13682 break;
13683 }
13684 if (cpu_arch_isa == PROCESSOR_L1OM)
13685 {
13686 if (x86_elf_abi != X86_64_ABI)
13687 as_fatal (_("Intel L1OM is 64bit only"));
13688 return ELF_TARGET_L1OM_FORMAT;
13689 }
13690 else if (cpu_arch_isa == PROCESSOR_K1OM)
13691 {
13692 if (x86_elf_abi != X86_64_ABI)
13693 as_fatal (_("Intel K1OM is 64bit only"));
13694 return ELF_TARGET_K1OM_FORMAT;
13695 }
13696 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13697 {
13698 if (x86_elf_abi != I386_ABI)
13699 as_fatal (_("Intel MCU is 32bit only"));
13700 return ELF_TARGET_IAMCU_FORMAT;
13701 }
13702 else
13703 return format;
13704 }
13705 #endif
13706 #if defined (OBJ_MACH_O)
13707 case bfd_target_mach_o_flavour:
13708 if (flag_code == CODE_64BIT)
13709 {
13710 use_rela_relocations = 1;
13711 object_64bit = 1;
13712 return "mach-o-x86-64";
13713 }
13714 else
13715 return "mach-o-i386";
13716 #endif
13717 default:
13718 abort ();
13719 return NULL;
13720 }
13721 }
13722
13723 #endif /* OBJ_MAYBE_ more than one */
13724 \f
13725 symbolS *
13726 md_undefined_symbol (char *name)
13727 {
13728 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13729 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13730 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13731 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
13732 {
13733 if (!GOT_symbol)
13734 {
13735 if (symbol_find (name))
13736 as_bad (_("GOT already in symbol table"));
13737 GOT_symbol = symbol_new (name, undefined_section,
13738 (valueT) 0, &zero_address_frag);
13739 };
13740 return GOT_symbol;
13741 }
13742 return 0;
13743 }
13744
13745 /* Round up a section size to the appropriate boundary. */
13746
13747 valueT
13748 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
13749 {
13750 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13751 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13752 {
13753 /* For a.out, force the section size to be aligned. If we don't do
13754 this, BFD will align it for us, but it will not write out the
13755 final bytes of the section. This may be a bug in BFD, but it is
13756 easier to fix it here since that is how the other a.out targets
13757 work. */
13758 int align;
13759
13760 align = bfd_section_alignment (segment);
13761 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
13762 }
13763 #endif
13764
13765 return size;
13766 }
13767
13768 /* On the i386, PC-relative offsets are relative to the start of the
13769 next instruction. That is, the address of the offset, plus its
13770 size, since the offset is always the last part of the insn. */
13771
13772 long
13773 md_pcrel_from (fixS *fixP)
13774 {
13775 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13776 }
13777
13778 #ifndef I386COFF
13779
13780 static void
13781 s_bss (int ignore ATTRIBUTE_UNUSED)
13782 {
13783 int temp;
13784
13785 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13786 if (IS_ELF)
13787 obj_elf_section_change_hook ();
13788 #endif
13789 temp = get_absolute_expression ();
13790 subseg_set (bss_section, (subsegT) temp);
13791 demand_empty_rest_of_line ();
13792 }
13793
13794 #endif
13795
13796 /* Remember constant directive. */
13797
13798 void
13799 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13800 {
13801 if (last_insn.kind != last_insn_directive
13802 && (bfd_section_flags (now_seg) & SEC_CODE))
13803 {
13804 last_insn.seg = now_seg;
13805 last_insn.kind = last_insn_directive;
13806 last_insn.name = "constant directive";
13807 last_insn.file = as_where (&last_insn.line);
13808 if (lfence_before_ret != lfence_before_ret_none)
13809 {
13810 if (lfence_before_indirect_branch != lfence_branch_none)
13811 as_warn (_("constant directive skips -mlfence-before-ret "
13812 "and -mlfence-before-indirect-branch"));
13813 else
13814 as_warn (_("constant directive skips -mlfence-before-ret"));
13815 }
13816 else if (lfence_before_indirect_branch != lfence_branch_none)
13817 as_warn (_("constant directive skips -mlfence-before-indirect-branch"));
13818 }
13819 }
13820
13821 void
13822 i386_validate_fix (fixS *fixp)
13823 {
13824 if (fixp->fx_subsy)
13825 {
13826 if (fixp->fx_subsy == GOT_symbol)
13827 {
13828 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13829 {
13830 if (!object_64bit)
13831 abort ();
13832 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13833 if (fixp->fx_tcbit2)
13834 fixp->fx_r_type = (fixp->fx_tcbit
13835 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13836 : BFD_RELOC_X86_64_GOTPCRELX);
13837 else
13838 #endif
13839 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13840 }
13841 else
13842 {
13843 if (!object_64bit)
13844 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13845 else
13846 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13847 }
13848 fixp->fx_subsy = 0;
13849 }
13850 }
13851 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13852 else if (!object_64bit)
13853 {
13854 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13855 && fixp->fx_tcbit2)
13856 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13857 }
13858 #endif
13859 }
13860
13861 arelent *
13862 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13863 {
13864 arelent *rel;
13865 bfd_reloc_code_real_type code;
13866
13867 switch (fixp->fx_r_type)
13868 {
13869 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13870 case BFD_RELOC_SIZE32:
13871 case BFD_RELOC_SIZE64:
13872 if (S_IS_DEFINED (fixp->fx_addsy)
13873 && !S_IS_EXTERNAL (fixp->fx_addsy))
13874 {
13875 /* Resolve size relocation against local symbol to size of
13876 the symbol plus addend. */
13877 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13878 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13879 && !fits_in_unsigned_long (value))
13880 as_bad_where (fixp->fx_file, fixp->fx_line,
13881 _("symbol size computation overflow"));
13882 fixp->fx_addsy = NULL;
13883 fixp->fx_subsy = NULL;
13884 md_apply_fix (fixp, (valueT *) &value, NULL);
13885 return NULL;
13886 }
13887 #endif
13888 /* Fall through. */
13889
13890 case BFD_RELOC_X86_64_PLT32:
13891 case BFD_RELOC_X86_64_GOT32:
13892 case BFD_RELOC_X86_64_GOTPCREL:
13893 case BFD_RELOC_X86_64_GOTPCRELX:
13894 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13895 case BFD_RELOC_386_PLT32:
13896 case BFD_RELOC_386_GOT32:
13897 case BFD_RELOC_386_GOT32X:
13898 case BFD_RELOC_386_GOTOFF:
13899 case BFD_RELOC_386_GOTPC:
13900 case BFD_RELOC_386_TLS_GD:
13901 case BFD_RELOC_386_TLS_LDM:
13902 case BFD_RELOC_386_TLS_LDO_32:
13903 case BFD_RELOC_386_TLS_IE_32:
13904 case BFD_RELOC_386_TLS_IE:
13905 case BFD_RELOC_386_TLS_GOTIE:
13906 case BFD_RELOC_386_TLS_LE_32:
13907 case BFD_RELOC_386_TLS_LE:
13908 case BFD_RELOC_386_TLS_GOTDESC:
13909 case BFD_RELOC_386_TLS_DESC_CALL:
13910 case BFD_RELOC_X86_64_TLSGD:
13911 case BFD_RELOC_X86_64_TLSLD:
13912 case BFD_RELOC_X86_64_DTPOFF32:
13913 case BFD_RELOC_X86_64_DTPOFF64:
13914 case BFD_RELOC_X86_64_GOTTPOFF:
13915 case BFD_RELOC_X86_64_TPOFF32:
13916 case BFD_RELOC_X86_64_TPOFF64:
13917 case BFD_RELOC_X86_64_GOTOFF64:
13918 case BFD_RELOC_X86_64_GOTPC32:
13919 case BFD_RELOC_X86_64_GOT64:
13920 case BFD_RELOC_X86_64_GOTPCREL64:
13921 case BFD_RELOC_X86_64_GOTPC64:
13922 case BFD_RELOC_X86_64_GOTPLT64:
13923 case BFD_RELOC_X86_64_PLTOFF64:
13924 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13925 case BFD_RELOC_X86_64_TLSDESC_CALL:
13926 case BFD_RELOC_RVA:
13927 case BFD_RELOC_VTABLE_ENTRY:
13928 case BFD_RELOC_VTABLE_INHERIT:
13929 #ifdef TE_PE
13930 case BFD_RELOC_32_SECREL:
13931 #endif
13932 code = fixp->fx_r_type;
13933 break;
13934 case BFD_RELOC_X86_64_32S:
13935 if (!fixp->fx_pcrel)
13936 {
13937 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13938 code = fixp->fx_r_type;
13939 break;
13940 }
13941 /* Fall through. */
13942 default:
13943 if (fixp->fx_pcrel)
13944 {
13945 switch (fixp->fx_size)
13946 {
13947 default:
13948 as_bad_where (fixp->fx_file, fixp->fx_line,
13949 _("can not do %d byte pc-relative relocation"),
13950 fixp->fx_size);
13951 code = BFD_RELOC_32_PCREL;
13952 break;
13953 case 1: code = BFD_RELOC_8_PCREL; break;
13954 case 2: code = BFD_RELOC_16_PCREL; break;
13955 case 4: code = BFD_RELOC_32_PCREL; break;
13956 #ifdef BFD64
13957 case 8: code = BFD_RELOC_64_PCREL; break;
13958 #endif
13959 }
13960 }
13961 else
13962 {
13963 switch (fixp->fx_size)
13964 {
13965 default:
13966 as_bad_where (fixp->fx_file, fixp->fx_line,
13967 _("can not do %d byte relocation"),
13968 fixp->fx_size);
13969 code = BFD_RELOC_32;
13970 break;
13971 case 1: code = BFD_RELOC_8; break;
13972 case 2: code = BFD_RELOC_16; break;
13973 case 4: code = BFD_RELOC_32; break;
13974 #ifdef BFD64
13975 case 8: code = BFD_RELOC_64; break;
13976 #endif
13977 }
13978 }
13979 break;
13980 }
13981
13982 if ((code == BFD_RELOC_32
13983 || code == BFD_RELOC_32_PCREL
13984 || code == BFD_RELOC_X86_64_32S)
13985 && GOT_symbol
13986 && fixp->fx_addsy == GOT_symbol)
13987 {
13988 if (!object_64bit)
13989 code = BFD_RELOC_386_GOTPC;
13990 else
13991 code = BFD_RELOC_X86_64_GOTPC32;
13992 }
13993 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13994 && GOT_symbol
13995 && fixp->fx_addsy == GOT_symbol)
13996 {
13997 code = BFD_RELOC_X86_64_GOTPC64;
13998 }
13999
14000 rel = XNEW (arelent);
14001 rel->sym_ptr_ptr = XNEW (asymbol *);
14002 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14003
14004 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
14005
14006 if (!use_rela_relocations)
14007 {
14008 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
14009 vtable entry to be used in the relocation's section offset. */
14010 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14011 rel->address = fixp->fx_offset;
14012 #if defined (OBJ_COFF) && defined (TE_PE)
14013 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
14014 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
14015 else
14016 #endif
14017 rel->addend = 0;
14018 }
14019 /* Use the rela in 64bit mode. */
14020 else
14021 {
14022 if (disallow_64bit_reloc)
14023 switch (code)
14024 {
14025 case BFD_RELOC_X86_64_DTPOFF64:
14026 case BFD_RELOC_X86_64_TPOFF64:
14027 case BFD_RELOC_64_PCREL:
14028 case BFD_RELOC_X86_64_GOTOFF64:
14029 case BFD_RELOC_X86_64_GOT64:
14030 case BFD_RELOC_X86_64_GOTPCREL64:
14031 case BFD_RELOC_X86_64_GOTPC64:
14032 case BFD_RELOC_X86_64_GOTPLT64:
14033 case BFD_RELOC_X86_64_PLTOFF64:
14034 as_bad_where (fixp->fx_file, fixp->fx_line,
14035 _("cannot represent relocation type %s in x32 mode"),
14036 bfd_get_reloc_code_name (code));
14037 break;
14038 default:
14039 break;
14040 }
14041
14042 if (!fixp->fx_pcrel)
14043 rel->addend = fixp->fx_offset;
14044 else
14045 switch (code)
14046 {
14047 case BFD_RELOC_X86_64_PLT32:
14048 case BFD_RELOC_X86_64_GOT32:
14049 case BFD_RELOC_X86_64_GOTPCREL:
14050 case BFD_RELOC_X86_64_GOTPCRELX:
14051 case BFD_RELOC_X86_64_REX_GOTPCRELX:
14052 case BFD_RELOC_X86_64_TLSGD:
14053 case BFD_RELOC_X86_64_TLSLD:
14054 case BFD_RELOC_X86_64_GOTTPOFF:
14055 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
14056 case BFD_RELOC_X86_64_TLSDESC_CALL:
14057 rel->addend = fixp->fx_offset - fixp->fx_size;
14058 break;
14059 default:
14060 rel->addend = (section->vma
14061 - fixp->fx_size
14062 + fixp->fx_addnumber
14063 + md_pcrel_from (fixp));
14064 break;
14065 }
14066 }
14067
14068 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
14069 if (rel->howto == NULL)
14070 {
14071 as_bad_where (fixp->fx_file, fixp->fx_line,
14072 _("cannot represent relocation type %s"),
14073 bfd_get_reloc_code_name (code));
14074 /* Set howto to a garbage value so that we can keep going. */
14075 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
14076 gas_assert (rel->howto != NULL);
14077 }
14078
14079 return rel;
14080 }
14081
14082 #include "tc-i386-intel.c"
14083
14084 void
14085 tc_x86_parse_to_dw2regnum (expressionS *exp)
14086 {
14087 int saved_naked_reg;
14088 char saved_register_dot;
14089
14090 saved_naked_reg = allow_naked_reg;
14091 allow_naked_reg = 1;
14092 saved_register_dot = register_chars['.'];
14093 register_chars['.'] = '.';
14094 allow_pseudo_reg = 1;
14095 expression_and_evaluate (exp);
14096 allow_pseudo_reg = 0;
14097 register_chars['.'] = saved_register_dot;
14098 allow_naked_reg = saved_naked_reg;
14099
14100 if (exp->X_op == O_register && exp->X_add_number >= 0)
14101 {
14102 if ((addressT) exp->X_add_number < i386_regtab_size)
14103 {
14104 exp->X_op = O_constant;
14105 exp->X_add_number = i386_regtab[exp->X_add_number]
14106 .dw2_regnum[flag_code >> 1];
14107 }
14108 else
14109 exp->X_op = O_illegal;
14110 }
14111 }
14112
14113 void
14114 tc_x86_frame_initial_instructions (void)
14115 {
14116 static unsigned int sp_regno[2];
14117
14118 if (!sp_regno[flag_code >> 1])
14119 {
14120 char *saved_input = input_line_pointer;
14121 char sp[][4] = {"esp", "rsp"};
14122 expressionS exp;
14123
14124 input_line_pointer = sp[flag_code >> 1];
14125 tc_x86_parse_to_dw2regnum (&exp);
14126 gas_assert (exp.X_op == O_constant);
14127 sp_regno[flag_code >> 1] = exp.X_add_number;
14128 input_line_pointer = saved_input;
14129 }
14130
14131 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
14132 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
14133 }
14134
14135 int
14136 x86_dwarf2_addr_size (void)
14137 {
14138 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
14139 if (x86_elf_abi == X86_64_X32_ABI)
14140 return 4;
14141 #endif
14142 return bfd_arch_bits_per_address (stdoutput) / 8;
14143 }
14144
14145 int
14146 i386_elf_section_type (const char *str, size_t len)
14147 {
14148 if (flag_code == CODE_64BIT
14149 && len == sizeof ("unwind") - 1
14150 && strncmp (str, "unwind", 6) == 0)
14151 return SHT_X86_64_UNWIND;
14152
14153 return -1;
14154 }
14155
14156 #ifdef TE_SOLARIS
14157 void
14158 i386_solaris_fix_up_eh_frame (segT sec)
14159 {
14160 if (flag_code == CODE_64BIT)
14161 elf_section_type (sec) = SHT_X86_64_UNWIND;
14162 }
14163 #endif
14164
14165 #ifdef TE_PE
14166 void
14167 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
14168 {
14169 expressionS exp;
14170
14171 exp.X_op = O_secrel;
14172 exp.X_add_symbol = symbol;
14173 exp.X_add_number = 0;
14174 emit_expr (&exp, size);
14175 }
14176 #endif
14177
14178 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14179 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
14180
14181 bfd_vma
14182 x86_64_section_letter (int letter, const char **ptr_msg)
14183 {
14184 if (flag_code == CODE_64BIT)
14185 {
14186 if (letter == 'l')
14187 return SHF_X86_64_LARGE;
14188
14189 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
14190 }
14191 else
14192 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
14193 return -1;
14194 }
14195
14196 bfd_vma
14197 x86_64_section_word (char *str, size_t len)
14198 {
14199 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
14200 return SHF_X86_64_LARGE;
14201
14202 return -1;
14203 }
14204
14205 static void
14206 handle_large_common (int small ATTRIBUTE_UNUSED)
14207 {
14208 if (flag_code != CODE_64BIT)
14209 {
14210 s_comm_internal (0, elf_common_parse);
14211 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
14212 }
14213 else
14214 {
14215 static segT lbss_section;
14216 asection *saved_com_section_ptr = elf_com_section_ptr;
14217 asection *saved_bss_section = bss_section;
14218
14219 if (lbss_section == NULL)
14220 {
14221 flagword applicable;
14222 segT seg = now_seg;
14223 subsegT subseg = now_subseg;
14224
14225 /* The .lbss section is for local .largecomm symbols. */
14226 lbss_section = subseg_new (".lbss", 0);
14227 applicable = bfd_applicable_section_flags (stdoutput);
14228 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
14229 seg_info (lbss_section)->bss = 1;
14230
14231 subseg_set (seg, subseg);
14232 }
14233
14234 elf_com_section_ptr = &_bfd_elf_large_com_section;
14235 bss_section = lbss_section;
14236
14237 s_comm_internal (0, elf_common_parse);
14238
14239 elf_com_section_ptr = saved_com_section_ptr;
14240 bss_section = saved_bss_section;
14241 }
14242 }
14243 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */