]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/doc/c-i386.texi
ba2006743851df93654755fb29a04a419a4fbb53
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2019 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
79
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions. The
84 @samp{--divide} option turns @samp{/} into a normal character. This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
87
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor. The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor. The following
94 processor names are recognized:
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k1om},
114 @code{iamcu},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{bdver4},
125 @code{znver1},
126 @code{znver2},
127 @code{btver1},
128 @code{btver2},
129 @code{generic32} and
130 @code{generic64}.
131
132 In addition to the basic instruction set, the assembler can be told to
133 accept various extension mnemonics. For example,
134 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135 @var{vmx}. The following extensions are currently supported:
136 @code{8087},
137 @code{287},
138 @code{387},
139 @code{687},
140 @code{no87},
141 @code{no287},
142 @code{no387},
143 @code{no687},
144 @code{cmov},
145 @code{nocmov},
146 @code{fxsr},
147 @code{nofxsr},
148 @code{mmx},
149 @code{nommx},
150 @code{sse},
151 @code{sse2},
152 @code{sse3},
153 @code{ssse3},
154 @code{sse4.1},
155 @code{sse4.2},
156 @code{sse4},
157 @code{nosse},
158 @code{nosse2},
159 @code{nosse3},
160 @code{nossse3},
161 @code{nosse4.1},
162 @code{nosse4.2},
163 @code{nosse4},
164 @code{avx},
165 @code{avx2},
166 @code{noavx},
167 @code{noavx2},
168 @code{adx},
169 @code{rdseed},
170 @code{prfchw},
171 @code{smap},
172 @code{mpx},
173 @code{sha},
174 @code{rdpid},
175 @code{ptwrite},
176 @code{cet},
177 @code{gfni},
178 @code{vaes},
179 @code{vpclmulqdq},
180 @code{prefetchwt1},
181 @code{clflushopt},
182 @code{se1},
183 @code{clwb},
184 @code{movdiri},
185 @code{movdir64b},
186 @code{enqcmd},
187 @code{avx512f},
188 @code{avx512cd},
189 @code{avx512er},
190 @code{avx512pf},
191 @code{avx512vl},
192 @code{avx512bw},
193 @code{avx512dq},
194 @code{avx512ifma},
195 @code{avx512vbmi},
196 @code{avx512_4fmaps},
197 @code{avx512_4vnniw},
198 @code{avx512_vpopcntdq},
199 @code{avx512_vbmi2},
200 @code{avx512_vnni},
201 @code{avx512_bitalg},
202 @code{avx512_bf16},
203 @code{noavx512f},
204 @code{noavx512cd},
205 @code{noavx512er},
206 @code{noavx512pf},
207 @code{noavx512vl},
208 @code{noavx512bw},
209 @code{noavx512dq},
210 @code{noavx512ifma},
211 @code{noavx512vbmi},
212 @code{noavx512_4fmaps},
213 @code{noavx512_4vnniw},
214 @code{noavx512_vpopcntdq},
215 @code{noavx512_vbmi2},
216 @code{noavx512_vnni},
217 @code{noavx512_bitalg},
218 @code{noavx512_vp2intersect},
219 @code{noavx512_bf16},
220 @code{noenqcmd},
221 @code{vmx},
222 @code{vmfunc},
223 @code{smx},
224 @code{xsave},
225 @code{xsaveopt},
226 @code{xsavec},
227 @code{xsaves},
228 @code{aes},
229 @code{pclmul},
230 @code{fsgsbase},
231 @code{rdrnd},
232 @code{f16c},
233 @code{bmi2},
234 @code{fma},
235 @code{movbe},
236 @code{ept},
237 @code{lzcnt},
238 @code{hle},
239 @code{rtm},
240 @code{invpcid},
241 @code{clflush},
242 @code{mwaitx},
243 @code{clzero},
244 @code{wbnoinvd},
245 @code{pconfig},
246 @code{waitpkg},
247 @code{cldemote},
248 @code{lwp},
249 @code{fma4},
250 @code{xop},
251 @code{cx16},
252 @code{syscall},
253 @code{rdtscp},
254 @code{3dnow},
255 @code{3dnowa},
256 @code{sse4a},
257 @code{sse5},
258 @code{svme},
259 @code{abm} and
260 @code{padlock}.
261 Note that rather than extending a basic instruction set, the extension
262 mnemonics starting with @code{no} revoke the respective functionality.
263
264 When the @code{.arch} directive is used with @option{-march}, the
265 @code{.arch} directive will take precedent.
266
267 @cindex @samp{-mtune=} option, i386
268 @cindex @samp{-mtune=} option, x86-64
269 @item -mtune=@var{CPU}
270 This option specifies a processor to optimize for. When used in
271 conjunction with the @option{-march} option, only instructions
272 of the processor specified by the @option{-march} option will be
273 generated.
274
275 Valid @var{CPU} values are identical to the processor list of
276 @option{-march=@var{CPU}}.
277
278 @cindex @samp{-msse2avx} option, i386
279 @cindex @samp{-msse2avx} option, x86-64
280 @item -msse2avx
281 This option specifies that the assembler should encode SSE instructions
282 with VEX prefix.
283
284 @cindex @samp{-msse-check=} option, i386
285 @cindex @samp{-msse-check=} option, x86-64
286 @item -msse-check=@var{none}
287 @itemx -msse-check=@var{warning}
288 @itemx -msse-check=@var{error}
289 These options control if the assembler should check SSE instructions.
290 @option{-msse-check=@var{none}} will make the assembler not to check SSE
291 instructions, which is the default. @option{-msse-check=@var{warning}}
292 will make the assembler issue a warning for any SSE instruction.
293 @option{-msse-check=@var{error}} will make the assembler issue an error
294 for any SSE instruction.
295
296 @cindex @samp{-mavxscalar=} option, i386
297 @cindex @samp{-mavxscalar=} option, x86-64
298 @item -mavxscalar=@var{128}
299 @itemx -mavxscalar=@var{256}
300 These options control how the assembler should encode scalar AVX
301 instructions. @option{-mavxscalar=@var{128}} will encode scalar
302 AVX instructions with 128bit vector length, which is the default.
303 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
304 with 256bit vector length.
305
306 WARNING: Don't use this for production code - due to CPU errata the
307 resulting code may not work on certain models.
308
309 @cindex @samp{-mvexwig=} option, i386
310 @cindex @samp{-mvexwig=} option, x86-64
311 @item -mvexwig=@var{0}
312 @itemx -mvexwig=@var{1}
313 These options control how the assembler should encode VEX.W-ignored (WIG)
314 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
315 instructions with vex.w = 0, which is the default.
316 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
317 vex.w = 1.
318
319 WARNING: Don't use this for production code - due to CPU errata the
320 resulting code may not work on certain models.
321
322 @cindex @samp{-mevexlig=} option, i386
323 @cindex @samp{-mevexlig=} option, x86-64
324 @item -mevexlig=@var{128}
325 @itemx -mevexlig=@var{256}
326 @itemx -mevexlig=@var{512}
327 These options control how the assembler should encode length-ignored
328 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
329 EVEX instructions with 128bit vector length, which is the default.
330 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
331 encode LIG EVEX instructions with 256bit and 512bit vector length,
332 respectively.
333
334 @cindex @samp{-mevexwig=} option, i386
335 @cindex @samp{-mevexwig=} option, x86-64
336 @item -mevexwig=@var{0}
337 @itemx -mevexwig=@var{1}
338 These options control how the assembler should encode w-ignored (WIG)
339 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
340 EVEX instructions with evex.w = 0, which is the default.
341 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
342 evex.w = 1.
343
344 @cindex @samp{-mmnemonic=} option, i386
345 @cindex @samp{-mmnemonic=} option, x86-64
346 @item -mmnemonic=@var{att}
347 @itemx -mmnemonic=@var{intel}
348 This option specifies instruction mnemonic for matching instructions.
349 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
350 take precedent.
351
352 @cindex @samp{-msyntax=} option, i386
353 @cindex @samp{-msyntax=} option, x86-64
354 @item -msyntax=@var{att}
355 @itemx -msyntax=@var{intel}
356 This option specifies instruction syntax when processing instructions.
357 The @code{.att_syntax} and @code{.intel_syntax} directives will
358 take precedent.
359
360 @cindex @samp{-mnaked-reg} option, i386
361 @cindex @samp{-mnaked-reg} option, x86-64
362 @item -mnaked-reg
363 This option specifies that registers don't require a @samp{%} prefix.
364 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
365
366 @cindex @samp{-madd-bnd-prefix} option, i386
367 @cindex @samp{-madd-bnd-prefix} option, x86-64
368 @item -madd-bnd-prefix
369 This option forces the assembler to add BND prefix to all branches, even
370 if such prefix was not explicitly specified in the source code.
371
372 @cindex @samp{-mshared} option, i386
373 @cindex @samp{-mshared} option, x86-64
374 @item -mno-shared
375 On ELF target, the assembler normally optimizes out non-PLT relocations
376 against defined non-weak global branch targets with default visibility.
377 The @samp{-mshared} option tells the assembler to generate code which
378 may go into a shared library where all non-weak global branch targets
379 with default visibility can be preempted. The resulting code is
380 slightly bigger. This option only affects the handling of branch
381 instructions.
382
383 @cindex @samp{-mbig-obj} option, x86-64
384 @item -mbig-obj
385 On x86-64 PE/COFF target this option forces the use of big object file
386 format, which allows more than 32768 sections.
387
388 @cindex @samp{-momit-lock-prefix=} option, i386
389 @cindex @samp{-momit-lock-prefix=} option, x86-64
390 @item -momit-lock-prefix=@var{no}
391 @itemx -momit-lock-prefix=@var{yes}
392 These options control how the assembler should encode lock prefix.
393 This option is intended as a workaround for processors, that fail on
394 lock prefix. This option can only be safely used with single-core,
395 single-thread computers
396 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
397 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
398 which is the default.
399
400 @cindex @samp{-mfence-as-lock-add=} option, i386
401 @cindex @samp{-mfence-as-lock-add=} option, x86-64
402 @item -mfence-as-lock-add=@var{no}
403 @itemx -mfence-as-lock-add=@var{yes}
404 These options control how the assembler should encode lfence, mfence and
405 sfence.
406 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
407 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
408 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
409 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
410 sfence as usual, which is the default.
411
412 @cindex @samp{-mrelax-relocations=} option, i386
413 @cindex @samp{-mrelax-relocations=} option, x86-64
414 @item -mrelax-relocations=@var{no}
415 @itemx -mrelax-relocations=@var{yes}
416 These options control whether the assembler should generate relax
417 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
418 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
419 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
420 @option{-mrelax-relocations=@var{no}} will not generate relax
421 relocations. The default can be controlled by a configure option
422 @option{--enable-x86-relax-relocations}.
423
424 @cindex @samp{-mx86-used-note=} option, i386
425 @cindex @samp{-mx86-used-note=} option, x86-64
426 @item -mx86-used-note=@var{no}
427 @itemx -mx86-used-note=@var{yes}
428 These options control whether the assembler should generate
429 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
430 GNU property notes. The default can be controlled by the
431 @option{--enable-x86-used-note} configure option.
432
433 @cindex @samp{-mevexrcig=} option, i386
434 @cindex @samp{-mevexrcig=} option, x86-64
435 @item -mevexrcig=@var{rne}
436 @itemx -mevexrcig=@var{rd}
437 @itemx -mevexrcig=@var{ru}
438 @itemx -mevexrcig=@var{rz}
439 These options control how the assembler should encode SAE-only
440 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
441 of EVEX instruction with 00, which is the default.
442 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
443 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
444 with 01, 10 and 11 RC bits, respectively.
445
446 @cindex @samp{-mamd64} option, x86-64
447 @cindex @samp{-mintel64} option, x86-64
448 @item -mamd64
449 @itemx -mintel64
450 This option specifies that the assembler should accept only AMD64 or
451 Intel64 ISA in 64-bit mode. The default is to accept both.
452
453 @cindex @samp{-O0} option, i386
454 @cindex @samp{-O0} option, x86-64
455 @cindex @samp{-O} option, i386
456 @cindex @samp{-O} option, x86-64
457 @cindex @samp{-O1} option, i386
458 @cindex @samp{-O1} option, x86-64
459 @cindex @samp{-O2} option, i386
460 @cindex @samp{-O2} option, x86-64
461 @cindex @samp{-Os} option, i386
462 @cindex @samp{-Os} option, x86-64
463 @item -O0 | -O | -O1 | -O2 | -Os
464 Optimize instruction encoding with smaller instruction size. @samp{-O}
465 and @samp{-O1} encode 64-bit register load instructions with 64-bit
466 immediate as 32-bit register load instructions with 31-bit or 32-bits
467 immediates, encode 64-bit register clearing instructions with 32-bit
468 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
469 register clearing instructions with 128-bit VEX vector register
470 clearing instructions, encode 128-bit/256-bit EVEX vector
471 register load/store instructions with VEX vector register load/store
472 instructions, and encode 128-bit/256-bit EVEX packed integer logical
473 instructions with 128-bit/256-bit VEX packed integer logical.
474
475 @samp{-O2} includes @samp{-O1} optimization plus encodes
476 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
477 EVEX vector register clearing instructions.
478
479 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
480 and 64-bit register tests with immediate as 8-bit register test with
481 immediate. @samp{-O0} turns off this optimization.
482
483 @end table
484 @c man end
485
486 @node i386-Directives
487 @section x86 specific Directives
488
489 @cindex machine directives, x86
490 @cindex x86 machine directives
491 @table @code
492
493 @cindex @code{lcomm} directive, COFF
494 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
495 Reserve @var{length} (an absolute expression) bytes for a local common
496 denoted by @var{symbol}. The section and value of @var{symbol} are
497 those of the new local common. The addresses are allocated in the bss
498 section, so that at run-time the bytes start off zeroed. Since
499 @var{symbol} is not declared global, it is normally not visible to
500 @code{@value{LD}}. The optional third parameter, @var{alignment},
501 specifies the desired alignment of the symbol in the bss section.
502
503 This directive is only available for COFF based x86 targets.
504
505 @cindex @code{largecomm} directive, ELF
506 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
507 This directive behaves in the same way as the @code{comm} directive
508 except that the data is placed into the @var{.lbss} section instead of
509 the @var{.bss} section @ref{Comm}.
510
511 The directive is intended to be used for data which requires a large
512 amount of space, and it is only available for ELF based x86_64
513 targets.
514
515 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
516
517 @end table
518
519 @node i386-Syntax
520 @section i386 Syntactical Considerations
521 @menu
522 * i386-Variations:: AT&T Syntax versus Intel Syntax
523 * i386-Chars:: Special Characters
524 @end menu
525
526 @node i386-Variations
527 @subsection AT&T Syntax versus Intel Syntax
528
529 @cindex i386 intel_syntax pseudo op
530 @cindex intel_syntax pseudo op, i386
531 @cindex i386 att_syntax pseudo op
532 @cindex att_syntax pseudo op, i386
533 @cindex i386 syntax compatibility
534 @cindex syntax compatibility, i386
535 @cindex x86-64 intel_syntax pseudo op
536 @cindex intel_syntax pseudo op, x86-64
537 @cindex x86-64 att_syntax pseudo op
538 @cindex att_syntax pseudo op, x86-64
539 @cindex x86-64 syntax compatibility
540 @cindex syntax compatibility, x86-64
541
542 @code{@value{AS}} now supports assembly using Intel assembler syntax.
543 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
544 back to the usual AT&T mode for compatibility with the output of
545 @code{@value{GCC}}. Either of these directives may have an optional
546 argument, @code{prefix}, or @code{noprefix} specifying whether registers
547 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
548 different from Intel syntax. We mention these differences because
549 almost all 80386 documents use Intel syntax. Notable differences
550 between the two syntaxes are:
551
552 @cindex immediate operands, i386
553 @cindex i386 immediate operands
554 @cindex register operands, i386
555 @cindex i386 register operands
556 @cindex jump/call operands, i386
557 @cindex i386 jump/call operands
558 @cindex operand delimiters, i386
559
560 @cindex immediate operands, x86-64
561 @cindex x86-64 immediate operands
562 @cindex register operands, x86-64
563 @cindex x86-64 register operands
564 @cindex jump/call operands, x86-64
565 @cindex x86-64 jump/call operands
566 @cindex operand delimiters, x86-64
567 @itemize @bullet
568 @item
569 AT&T immediate operands are preceded by @samp{$}; Intel immediate
570 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
571 AT&T register operands are preceded by @samp{%}; Intel register operands
572 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
573 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
574
575 @cindex i386 source, destination operands
576 @cindex source, destination operands; i386
577 @cindex x86-64 source, destination operands
578 @cindex source, destination operands; x86-64
579 @item
580 AT&T and Intel syntax use the opposite order for source and destination
581 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
582 @samp{source, dest} convention is maintained for compatibility with
583 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
584 instructions with 2 immediate operands, such as the @samp{enter}
585 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
586
587 @cindex mnemonic suffixes, i386
588 @cindex sizes operands, i386
589 @cindex i386 size suffixes
590 @cindex mnemonic suffixes, x86-64
591 @cindex sizes operands, x86-64
592 @cindex x86-64 size suffixes
593 @item
594 In AT&T syntax the size of memory operands is determined from the last
595 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
596 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
597 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
598 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
599 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
600 no other way to disambiguate an instruction. Intel syntax accomplishes this by
601 prefixing memory operands (@emph{not} the instruction mnemonics) with
602 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
603 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
604 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
605 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
606 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
607
608 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
609 instruction with the 64-bit displacement or immediate operand.
610
611 @cindex return instructions, i386
612 @cindex i386 jump, call, return
613 @cindex return instructions, x86-64
614 @cindex x86-64 jump, call, return
615 @item
616 Immediate form long jumps and calls are
617 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
618 Intel syntax is
619 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
620 instruction
621 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
622 @samp{ret far @var{stack-adjust}}.
623
624 @cindex sections, i386
625 @cindex i386 sections
626 @cindex sections, x86-64
627 @cindex x86-64 sections
628 @item
629 The AT&T assembler does not provide support for multiple section
630 programs. Unix style systems expect all programs to be single sections.
631 @end itemize
632
633 @node i386-Chars
634 @subsection Special Characters
635
636 @cindex line comment character, i386
637 @cindex i386 line comment character
638 The presence of a @samp{#} appearing anywhere on a line indicates the
639 start of a comment that extends to the end of that line.
640
641 If a @samp{#} appears as the first character of a line then the whole
642 line is treated as a comment, but in this case the line can also be a
643 logical line number directive (@pxref{Comments}) or a preprocessor
644 control command (@pxref{Preprocessing}).
645
646 If the @option{--divide} command-line option has not been specified
647 then the @samp{/} character appearing anywhere on a line also
648 introduces a line comment.
649
650 @cindex line separator, i386
651 @cindex statement separator, i386
652 @cindex i386 line separator
653 The @samp{;} character can be used to separate statements on the same
654 line.
655
656 @node i386-Mnemonics
657 @section i386-Mnemonics
658 @subsection Instruction Naming
659
660 @cindex i386 instruction naming
661 @cindex instruction naming, i386
662 @cindex x86-64 instruction naming
663 @cindex instruction naming, x86-64
664
665 Instruction mnemonics are suffixed with one character modifiers which
666 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
667 and @samp{q} specify byte, word, long and quadruple word operands. If
668 no suffix is specified by an instruction then @code{@value{AS}} tries to
669 fill in the missing suffix based on the destination register operand
670 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
671 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
672 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
673 assembler which assumes that a missing mnemonic suffix implies long
674 operand size. (This incompatibility does not affect compiler output
675 since compilers always explicitly specify the mnemonic suffix.)
676
677 Almost all instructions have the same names in AT&T and Intel format.
678 There are a few exceptions. The sign extend and zero extend
679 instructions need two sizes to specify them. They need a size to
680 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
681 is accomplished by using two instruction mnemonic suffixes in AT&T
682 syntax. Base names for sign extend and zero extend are
683 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
684 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
685 are tacked on to this base name, the @emph{from} suffix before the
686 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
687 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
688 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
689 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
690 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
691 quadruple word).
692
693 @cindex encoding options, i386
694 @cindex encoding options, x86-64
695
696 Different encoding options can be specified via pseudo prefixes:
697
698 @itemize @bullet
699 @item
700 @samp{@{disp8@}} -- prefer 8-bit displacement.
701
702 @item
703 @samp{@{disp32@}} -- prefer 32-bit displacement.
704
705 @item
706 @samp{@{load@}} -- prefer load-form instruction.
707
708 @item
709 @samp{@{store@}} -- prefer store-form instruction.
710
711 @item
712 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
713
714 @item
715 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
716
717 @item
718 @samp{@{evex@}} -- encode with EVEX prefix.
719
720 @item
721 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
722 instructions (x86-64 only). Note that this differs from the @samp{rex}
723 prefix which generates REX prefix unconditionally.
724
725 @item
726 @samp{@{nooptimize@}} -- disable instruction size optimization.
727 @end itemize
728
729 @cindex conversion instructions, i386
730 @cindex i386 conversion instructions
731 @cindex conversion instructions, x86-64
732 @cindex x86-64 conversion instructions
733 The Intel-syntax conversion instructions
734
735 @itemize @bullet
736 @item
737 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
738
739 @item
740 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
741
742 @item
743 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
744
745 @item
746 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
747
748 @item
749 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
750 (x86-64 only),
751
752 @item
753 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
754 @samp{%rdx:%rax} (x86-64 only),
755 @end itemize
756
757 @noindent
758 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
759 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
760 instructions.
761
762 @cindex jump instructions, i386
763 @cindex call instructions, i386
764 @cindex jump instructions, x86-64
765 @cindex call instructions, x86-64
766 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
767 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
768 convention.
769
770 @subsection AT&T Mnemonic versus Intel Mnemonic
771
772 @cindex i386 mnemonic compatibility
773 @cindex mnemonic compatibility, i386
774
775 @code{@value{AS}} supports assembly using Intel mnemonic.
776 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
777 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
778 syntax for compatibility with the output of @code{@value{GCC}}.
779 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
780 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
781 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
782 assembler with different mnemonics from those in Intel IA32 specification.
783 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
784
785 @node i386-Regs
786 @section Register Naming
787
788 @cindex i386 registers
789 @cindex registers, i386
790 @cindex x86-64 registers
791 @cindex registers, x86-64
792 Register operands are always prefixed with @samp{%}. The 80386 registers
793 consist of
794
795 @itemize @bullet
796 @item
797 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
798 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
799 frame pointer), and @samp{%esp} (the stack pointer).
800
801 @item
802 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
803 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
804
805 @item
806 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
807 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
808 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
809 @samp{%cx}, and @samp{%dx})
810
811 @item
812 the 6 section registers @samp{%cs} (code section), @samp{%ds}
813 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
814 and @samp{%gs}.
815
816 @item
817 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
818 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
819
820 @item
821 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
822 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
823
824 @item
825 the 2 test registers @samp{%tr6} and @samp{%tr7}.
826
827 @item
828 the 8 floating point register stack @samp{%st} or equivalently
829 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
830 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
831 These registers are overloaded by 8 MMX registers @samp{%mm0},
832 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
833 @samp{%mm6} and @samp{%mm7}.
834
835 @item
836 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
837 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
838 @end itemize
839
840 The AMD x86-64 architecture extends the register set by:
841
842 @itemize @bullet
843 @item
844 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
845 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
846 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
847 pointer)
848
849 @item
850 the 8 extended registers @samp{%r8}--@samp{%r15}.
851
852 @item
853 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
854
855 @item
856 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
857
858 @item
859 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
860
861 @item
862 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
863
864 @item
865 the 8 debug registers: @samp{%db8}--@samp{%db15}.
866
867 @item
868 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
869 @end itemize
870
871 With the AVX extensions more registers were made available:
872
873 @itemize @bullet
874
875 @item
876 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
877 available in 32-bit mode). The bottom 128 bits are overlaid with the
878 @samp{xmm0}--@samp{xmm15} registers.
879
880 @end itemize
881
882 The AVX2 extensions made in 64-bit mode more registers available:
883
884 @itemize @bullet
885
886 @item
887 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
888 registers @samp{%ymm16}--@samp{%ymm31}.
889
890 @end itemize
891
892 The AVX512 extensions added the following registers:
893
894 @itemize @bullet
895
896 @item
897 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
898 available in 32-bit mode). The bottom 128 bits are overlaid with the
899 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
900 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
901
902 @item
903 the 8 mask registers @samp{%k0}--@samp{%k7}.
904
905 @end itemize
906
907 @node i386-Prefixes
908 @section Instruction Prefixes
909
910 @cindex i386 instruction prefixes
911 @cindex instruction prefixes, i386
912 @cindex prefixes, i386
913 Instruction prefixes are used to modify the following instruction. They
914 are used to repeat string instructions, to provide section overrides, to
915 perform bus lock operations, and to change operand and address sizes.
916 (Most instructions that normally operate on 32-bit operands will use
917 16-bit operands if the instruction has an ``operand size'' prefix.)
918 Instruction prefixes are best written on the same line as the instruction
919 they act upon. For example, the @samp{scas} (scan string) instruction is
920 repeated with:
921
922 @smallexample
923 repne scas %es:(%edi),%al
924 @end smallexample
925
926 You may also place prefixes on the lines immediately preceding the
927 instruction, but this circumvents checks that @code{@value{AS}} does
928 with prefixes, and will not work with all prefixes.
929
930 Here is a list of instruction prefixes:
931
932 @cindex section override prefixes, i386
933 @itemize @bullet
934 @item
935 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
936 @samp{fs}, @samp{gs}. These are automatically added by specifying
937 using the @var{section}:@var{memory-operand} form for memory references.
938
939 @cindex size prefixes, i386
940 @item
941 Operand/Address size prefixes @samp{data16} and @samp{addr16}
942 change 32-bit operands/addresses into 16-bit operands/addresses,
943 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
944 @code{.code16} section) into 32-bit operands/addresses. These prefixes
945 @emph{must} appear on the same line of code as the instruction they
946 modify. For example, in a 16-bit @code{.code16} section, you might
947 write:
948
949 @smallexample
950 addr32 jmpl *(%ebx)
951 @end smallexample
952
953 @cindex bus lock prefixes, i386
954 @cindex inhibiting interrupts, i386
955 @item
956 The bus lock prefix @samp{lock} inhibits interrupts during execution of
957 the instruction it precedes. (This is only valid with certain
958 instructions; see a 80386 manual for details).
959
960 @cindex coprocessor wait, i386
961 @item
962 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
963 complete the current instruction. This should never be needed for the
964 80386/80387 combination.
965
966 @cindex repeat prefixes, i386
967 @item
968 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
969 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
970 times if the current address size is 16-bits).
971 @cindex REX prefixes, i386
972 @item
973 The @samp{rex} family of prefixes is used by x86-64 to encode
974 extensions to i386 instruction set. The @samp{rex} prefix has four
975 bits --- an operand size overwrite (@code{64}) used to change operand size
976 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
977 register set.
978
979 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
980 instruction emits @samp{rex} prefix with all the bits set. By omitting
981 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
982 prefixes as well. Normally, there is no need to write the prefixes
983 explicitly, since gas will automatically generate them based on the
984 instruction operands.
985 @end itemize
986
987 @node i386-Memory
988 @section Memory References
989
990 @cindex i386 memory references
991 @cindex memory references, i386
992 @cindex x86-64 memory references
993 @cindex memory references, x86-64
994 An Intel syntax indirect memory reference of the form
995
996 @smallexample
997 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
998 @end smallexample
999
1000 @noindent
1001 is translated into the AT&T syntax
1002
1003 @smallexample
1004 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1005 @end smallexample
1006
1007 @noindent
1008 where @var{base} and @var{index} are the optional 32-bit base and
1009 index registers, @var{disp} is the optional displacement, and
1010 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1011 to calculate the address of the operand. If no @var{scale} is
1012 specified, @var{scale} is taken to be 1. @var{section} specifies the
1013 optional section register for the memory operand, and may override the
1014 default section register (see a 80386 manual for section register
1015 defaults). Note that section overrides in AT&T syntax @emph{must}
1016 be preceded by a @samp{%}. If you specify a section override which
1017 coincides with the default section register, @code{@value{AS}} does @emph{not}
1018 output any section register override prefixes to assemble the given
1019 instruction. Thus, section overrides can be specified to emphasize which
1020 section register is used for a given memory operand.
1021
1022 Here are some examples of Intel and AT&T style memory references:
1023
1024 @table @asis
1025 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1026 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1027 missing, and the default section is used (@samp{%ss} for addressing with
1028 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1029
1030 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1031 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1032 @samp{foo}. All other fields are missing. The section register here
1033 defaults to @samp{%ds}.
1034
1035 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1036 This uses the value pointed to by @samp{foo} as a memory operand.
1037 Note that @var{base} and @var{index} are both missing, but there is only
1038 @emph{one} @samp{,}. This is a syntactic exception.
1039
1040 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1041 This selects the contents of the variable @samp{foo} with section
1042 register @var{section} being @samp{%gs}.
1043 @end table
1044
1045 Absolute (as opposed to PC relative) call and jump operands must be
1046 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1047 always chooses PC relative addressing for jump/call labels.
1048
1049 Any instruction that has a memory operand, but no register operand,
1050 @emph{must} specify its size (byte, word, long, or quadruple) with an
1051 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1052 respectively).
1053
1054 The x86-64 architecture adds an RIP (instruction pointer relative)
1055 addressing. This addressing mode is specified by using @samp{rip} as a
1056 base register. Only constant offsets are valid. For example:
1057
1058 @table @asis
1059 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1060 Points to the address 1234 bytes past the end of the current
1061 instruction.
1062
1063 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1064 Points to the @code{symbol} in RIP relative way, this is shorter than
1065 the default absolute addressing.
1066 @end table
1067
1068 Other addressing modes remain unchanged in x86-64 architecture, except
1069 registers used are 64-bit instead of 32-bit.
1070
1071 @node i386-Jumps
1072 @section Handling of Jump Instructions
1073
1074 @cindex jump optimization, i386
1075 @cindex i386 jump optimization
1076 @cindex jump optimization, x86-64
1077 @cindex x86-64 jump optimization
1078 Jump instructions are always optimized to use the smallest possible
1079 displacements. This is accomplished by using byte (8-bit) displacement
1080 jumps whenever the target is sufficiently close. If a byte displacement
1081 is insufficient a long displacement is used. We do not support
1082 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1083 instruction with the @samp{data16} instruction prefix), since the 80386
1084 insists upon masking @samp{%eip} to 16 bits after the word displacement
1085 is added. (See also @pxref{i386-Arch})
1086
1087 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1088 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1089 displacements, so that if you use these instructions (@code{@value{GCC}} does
1090 not use them) you may get an error message (and incorrect code). The AT&T
1091 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1092 to
1093
1094 @smallexample
1095 jcxz cx_zero
1096 jmp cx_nonzero
1097 cx_zero: jmp foo
1098 cx_nonzero:
1099 @end smallexample
1100
1101 @node i386-Float
1102 @section Floating Point
1103
1104 @cindex i386 floating point
1105 @cindex floating point, i386
1106 @cindex x86-64 floating point
1107 @cindex floating point, x86-64
1108 All 80387 floating point types except packed BCD are supported.
1109 (BCD support may be added without much difficulty). These data
1110 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1111 double (64-bit), and extended (80-bit) precision floating point.
1112 Each supported type has an instruction mnemonic suffix and a constructor
1113 associated with it. Instruction mnemonic suffixes specify the operand's
1114 data type. Constructors build these data types into memory.
1115
1116 @cindex @code{float} directive, i386
1117 @cindex @code{single} directive, i386
1118 @cindex @code{double} directive, i386
1119 @cindex @code{tfloat} directive, i386
1120 @cindex @code{float} directive, x86-64
1121 @cindex @code{single} directive, x86-64
1122 @cindex @code{double} directive, x86-64
1123 @cindex @code{tfloat} directive, x86-64
1124 @itemize @bullet
1125 @item
1126 Floating point constructors are @samp{.float} or @samp{.single},
1127 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1128 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1129 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1130 only supports this format via the @samp{fldt} (load 80-bit real to stack
1131 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1132
1133 @cindex @code{word} directive, i386
1134 @cindex @code{long} directive, i386
1135 @cindex @code{int} directive, i386
1136 @cindex @code{quad} directive, i386
1137 @cindex @code{word} directive, x86-64
1138 @cindex @code{long} directive, x86-64
1139 @cindex @code{int} directive, x86-64
1140 @cindex @code{quad} directive, x86-64
1141 @item
1142 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1143 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1144 corresponding instruction mnemonic suffixes are @samp{s} (single),
1145 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1146 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1147 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1148 stack) instructions.
1149 @end itemize
1150
1151 Register to register operations should not use instruction mnemonic suffixes.
1152 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1153 wrote @samp{fst %st, %st(1)}, since all register to register operations
1154 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1155 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1156 then stores the result in the 4 byte location @samp{mem})
1157
1158 @node i386-SIMD
1159 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1160
1161 @cindex MMX, i386
1162 @cindex 3DNow!, i386
1163 @cindex SIMD, i386
1164 @cindex MMX, x86-64
1165 @cindex 3DNow!, x86-64
1166 @cindex SIMD, x86-64
1167
1168 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1169 instructions for integer data), available on Intel's Pentium MMX
1170 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1171 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1172 instruction set (SIMD instructions for 32-bit floating point data)
1173 available on AMD's K6-2 processor and possibly others in the future.
1174
1175 Currently, @code{@value{AS}} does not support Intel's floating point
1176 SIMD, Katmai (KNI).
1177
1178 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1179 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1180 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1181 floating point values. The MMX registers cannot be used at the same time
1182 as the floating point stack.
1183
1184 See Intel and AMD documentation, keeping in mind that the operand order in
1185 instructions is reversed from the Intel syntax.
1186
1187 @node i386-LWP
1188 @section AMD's Lightweight Profiling Instructions
1189
1190 @cindex LWP, i386
1191 @cindex LWP, x86-64
1192
1193 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1194 instruction set, available on AMD's Family 15h (Orochi) processors.
1195
1196 LWP enables applications to collect and manage performance data, and
1197 react to performance events. The collection of performance data
1198 requires no context switches. LWP runs in the context of a thread and
1199 so several counters can be used independently across multiple threads.
1200 LWP can be used in both 64-bit and legacy 32-bit modes.
1201
1202 For detailed information on the LWP instruction set, see the
1203 @cite{AMD Lightweight Profiling Specification} available at
1204 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1205
1206 @node i386-BMI
1207 @section Bit Manipulation Instructions
1208
1209 @cindex BMI, i386
1210 @cindex BMI, x86-64
1211
1212 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1213
1214 BMI instructions provide several instructions implementing individual
1215 bit manipulation operations such as isolation, masking, setting, or
1216 resetting.
1217
1218 @c Need to add a specification citation here when available.
1219
1220 @node i386-TBM
1221 @section AMD's Trailing Bit Manipulation Instructions
1222
1223 @cindex TBM, i386
1224 @cindex TBM, x86-64
1225
1226 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1227 instruction set, available on AMD's BDVER2 processors (Trinity and
1228 Viperfish).
1229
1230 TBM instructions provide instructions implementing individual bit
1231 manipulation operations such as isolating, masking, setting, resetting,
1232 complementing, and operations on trailing zeros and ones.
1233
1234 @c Need to add a specification citation here when available.
1235
1236 @node i386-16bit
1237 @section Writing 16-bit Code
1238
1239 @cindex i386 16-bit code
1240 @cindex 16-bit code, i386
1241 @cindex real-mode code, i386
1242 @cindex @code{code16gcc} directive, i386
1243 @cindex @code{code16} directive, i386
1244 @cindex @code{code32} directive, i386
1245 @cindex @code{code64} directive, i386
1246 @cindex @code{code64} directive, x86-64
1247 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1248 or 64-bit x86-64 code depending on the default configuration,
1249 it also supports writing code to run in real mode or in 16-bit protected
1250 mode code segments. To do this, put a @samp{.code16} or
1251 @samp{.code16gcc} directive before the assembly language instructions to
1252 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1253 32-bit code with the @samp{.code32} directive or 64-bit code with the
1254 @samp{.code64} directive.
1255
1256 @samp{.code16gcc} provides experimental support for generating 16-bit
1257 code from gcc, and differs from @samp{.code16} in that @samp{call},
1258 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1259 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1260 default to 32-bit size. This is so that the stack pointer is
1261 manipulated in the same way over function calls, allowing access to
1262 function parameters at the same stack offsets as in 32-bit mode.
1263 @samp{.code16gcc} also automatically adds address size prefixes where
1264 necessary to use the 32-bit addressing modes that gcc generates.
1265
1266 The code which @code{@value{AS}} generates in 16-bit mode will not
1267 necessarily run on a 16-bit pre-80386 processor. To write code that
1268 runs on such a processor, you must refrain from using @emph{any} 32-bit
1269 constructs which require @code{@value{AS}} to output address or operand
1270 size prefixes.
1271
1272 Note that writing 16-bit code instructions by explicitly specifying a
1273 prefix or an instruction mnemonic suffix within a 32-bit code section
1274 generates different machine instructions than those generated for a
1275 16-bit code segment. In a 32-bit code section, the following code
1276 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1277 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1278
1279 @smallexample
1280 pushw $4
1281 @end smallexample
1282
1283 The same code in a 16-bit code section would generate the machine
1284 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1285 is correct since the processor default operand size is assumed to be 16
1286 bits in a 16-bit code section.
1287
1288 @node i386-Arch
1289 @section Specifying CPU Architecture
1290
1291 @cindex arch directive, i386
1292 @cindex i386 arch directive
1293 @cindex arch directive, x86-64
1294 @cindex x86-64 arch directive
1295
1296 @code{@value{AS}} may be told to assemble for a particular CPU
1297 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1298 directive enables a warning when gas detects an instruction that is not
1299 supported on the CPU specified. The choices for @var{cpu_type} are:
1300
1301 @multitable @columnfractions .20 .20 .20 .20
1302 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1303 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1304 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1305 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1306 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1307 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1308 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1309 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1310 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1311 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1312 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1313 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1314 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1315 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1316 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1317 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1318 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1319 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1320 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1321 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1322 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1323 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1324 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1325 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1326 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1327 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1328 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1329 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1330 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1331 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1332 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1333 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1334 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1335 @end multitable
1336
1337 Apart from the warning, there are only two other effects on
1338 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1339 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1340 will automatically use a two byte opcode sequence. The larger three
1341 byte opcode sequence is used on the 486 (and when no architecture is
1342 specified) because it executes faster on the 486. Note that you can
1343 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1344 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1345 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1346 conditional jumps will be promoted when necessary to a two instruction
1347 sequence consisting of a conditional jump of the opposite sense around
1348 an unconditional jump to the target.
1349
1350 Following the CPU architecture (but not a sub-architecture, which are those
1351 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1352 control automatic promotion of conditional jumps. @samp{jumps} is the
1353 default, and enables jump promotion; All external jumps will be of the long
1354 variety, and file-local jumps will be promoted as necessary.
1355 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1356 byte offset jumps, and warns about file-local conditional jumps that
1357 @code{@value{AS}} promotes.
1358 Unconditional jumps are treated as for @samp{jumps}.
1359
1360 For example
1361
1362 @smallexample
1363 .arch i8086,nojumps
1364 @end smallexample
1365
1366 @node i386-Bugs
1367 @section AT&T Syntax bugs
1368
1369 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1370 assemblers, generate floating point instructions with reversed source
1371 and destination registers in certain cases. Unfortunately, gcc and
1372 possibly many other programs use this reversed syntax, so we're stuck
1373 with it.
1374
1375 For example
1376
1377 @smallexample
1378 fsub %st,%st(3)
1379 @end smallexample
1380 @noindent
1381 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1382 than the expected @samp{%st(3) - %st}. This happens with all the
1383 non-commutative arithmetic floating point operations with two register
1384 operands where the source register is @samp{%st} and the destination
1385 register is @samp{%st(i)}.
1386
1387 @node i386-Notes
1388 @section Notes
1389
1390 @cindex i386 @code{mul}, @code{imul} instructions
1391 @cindex @code{mul} instruction, i386
1392 @cindex @code{imul} instruction, i386
1393 @cindex @code{mul} instruction, x86-64
1394 @cindex @code{imul} instruction, x86-64
1395 There is some trickery concerning the @samp{mul} and @samp{imul}
1396 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1397 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1398 for @samp{imul}) can be output only in the one operand form. Thus,
1399 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1400 the expanding multiply would clobber the @samp{%edx} register, and this
1401 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1402 64-bit product in @samp{%edx:%eax}.
1403
1404 We have added a two operand form of @samp{imul} when the first operand
1405 is an immediate mode expression and the second operand is a register.
1406 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1407 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1408 $69, %eax, %eax}.
1409