1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2025, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
27 with Aspects; use Aspects;
28 with Atree; use Atree;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Einfo.Entities; use Einfo.Entities;
32 with Einfo.Utils; use Einfo.Utils;
33 with Elists; use Elists;
34 with Errout; use Errout;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Tss; use Exp_Tss;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Fname.UF; use Fname.UF;
42 with Namet; use Namet;
43 with Nmake; use Nmake;
44 with Nlists; use Nlists;
45 with Output; use Output;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Ch10; use Sem_Ch10;
49 with Sem_Ch12; use Sem_Ch12;
50 with Sem_Prag; use Sem_Prag;
51 with Sem_Res; use Sem_Res;
52 with Sem_Util; use Sem_Util;
53 with Sinfo; use Sinfo;
54 with Sinfo.Nodes; use Sinfo.Nodes;
55 with Sinfo.Utils; use Sinfo.Utils;
56 with Sinput; use Sinput;
57 with Snames; use Snames;
58 with Stand; use Stand;
60 with Tbuild; use Tbuild;
61 with Uintp; use Uintp;
62 with Uname; use Uname;
66 package body Inline is
68 Check_Inlining_Restrictions : constant Boolean := True;
69 -- In the following cases the frontend rejects inlining because they
70 -- are not handled well by the backend. This variable facilitates
71 -- disabling these restrictions to evaluate future versions of the
72 -- GCC backend in which some of the restrictions may be supported.
74 -- - subprograms that have:
75 -- - nested subprograms
77 -- - package declarations
78 -- - task or protected object declarations
79 -- - some of the following statements:
81 -- - asynchronous-select
82 -- - conditional-entry-call
88 Inlined_Calls : Elist_Id;
89 -- List of frontend inlined calls
91 Backend_Calls : Elist_Id;
92 -- List of inline calls passed to the backend
94 Backend_Instances : Elist_Id;
95 -- List of instances inlined for the backend
97 Backend_Inlined_Subps : Elist_Id;
98 -- List of subprograms inlined by the backend
100 Backend_Not_Inlined_Subps : Elist_Id;
101 -- List of subprograms that cannot be inlined by the backend
103 -----------------------------
104 -- Pending_Instantiations --
105 -----------------------------
107 -- We make entries in this table for the pending instantiations of generic
108 -- bodies that are created during semantic analysis. After the analysis is
109 -- complete, calling Instantiate_Bodies performs the actual instantiations.
111 package Pending_Instantiations is new Table.Table (
112 Table_Component_Type => Pending_Body_Info,
113 Table_Index_Type => Int,
114 Table_Low_Bound => 0,
115 Table_Initial => Alloc.Pending_Instantiations_Initial,
116 Table_Increment => Alloc.Pending_Instantiations_Increment,
117 Table_Name => "Pending_Instantiations");
119 -------------------------------------
120 -- Called_Pending_Instantiations --
121 -------------------------------------
123 -- With back-end inlining, the pending instantiations that are not in the
124 -- main unit or subunit are performed only after a call to the subprogram
125 -- instance, or to a subprogram within the package instance, is inlined.
126 -- Since such a call can be within a subsequent pending instantiation,
127 -- we make entries in this table that stores the index of these "called"
128 -- pending instantiations and perform them when the table is populated.
130 package Called_Pending_Instantiations is new Table.Table (
131 Table_Component_Type => Int,
132 Table_Index_Type => Int,
133 Table_Low_Bound => 0,
134 Table_Initial => Alloc.Pending_Instantiations_Initial,
135 Table_Increment => Alloc.Pending_Instantiations_Increment,
136 Table_Name => "Called_Pending_Instantiations");
138 ---------------------------------
139 -- To_Pending_Instantiations --
140 ---------------------------------
142 -- With back-end inlining, we also need to have a map from the pending
143 -- instantiations to their index in the Pending_Instantiations table.
145 Node_Table_Size : constant := 257;
146 -- Number of headers in hash table
148 subtype Node_Header_Num is Integer range 0 .. Node_Table_Size - 1;
149 -- Range of headers in hash table
151 function Node_Hash (Id : Node_Id) return Node_Header_Num;
152 -- Simple hash function for Node_Ids
154 package To_Pending_Instantiations is new GNAT.Htable.Simple_HTable
155 (Header_Num => Node_Header_Num,
166 function Node_Hash (Id : Node_Id) return Node_Header_Num is
168 return Node_Header_Num (Id mod Node_Table_Size);
175 -- Inlined functions are actually placed in line by the backend if the
176 -- corresponding bodies are available (i.e. compiled). Whenever we find
177 -- a call to an inlined subprogram, we add the name of the enclosing
178 -- compilation unit to a worklist. After all compilation, and after
179 -- expansion of generic bodies, we traverse the list of pending bodies
180 -- and compile them as well.
182 package Inlined_Bodies is new Table.Table (
183 Table_Component_Type => Entity_Id,
184 Table_Index_Type => Int,
185 Table_Low_Bound => 0,
186 Table_Initial => Alloc.Inlined_Bodies_Initial,
187 Table_Increment => Alloc.Inlined_Bodies_Increment,
188 Table_Name => "Inlined_Bodies");
190 -----------------------
191 -- Inline Processing --
192 -----------------------
194 -- For each call to an inlined subprogram, we make entries in a table
195 -- that stores caller and callee, and indicates the call direction from
196 -- one to the other. We also record the compilation unit that contains
197 -- the callee. After analyzing the bodies of all such compilation units,
198 -- we compute the transitive closure of inlined subprograms called from
199 -- the main compilation unit and make it available to the code generator
200 -- in no particular order, thus allowing cycles in the call graph.
202 Last_Inlined : Entity_Id := Empty;
204 -- For each entry in the table we keep a list of successors in topological
205 -- order, i.e. callers of the current subprogram.
207 type Subp_Index is new Nat;
208 No_Subp : constant Subp_Index := 0;
210 -- The subprogram entities are hashed into the Inlined table
212 Num_Hash_Headers : constant := 512;
214 Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
217 type Succ_Index is new Nat;
218 No_Succ : constant Succ_Index := 0;
220 type Succ_Info is record
225 -- The following table stores list elements for the successor lists. These
226 -- lists cannot be chained directly through entries in the Inlined table,
227 -- because a given subprogram can appear in several such lists.
229 package Successors is new Table.Table (
230 Table_Component_Type => Succ_Info,
231 Table_Index_Type => Succ_Index,
232 Table_Low_Bound => 1,
233 Table_Initial => Alloc.Successors_Initial,
234 Table_Increment => Alloc.Successors_Increment,
235 Table_Name => "Successors");
237 type Subp_Info is record
238 Name : Entity_Id := Empty;
239 Next : Subp_Index := No_Subp;
240 First_Succ : Succ_Index := No_Succ;
241 Main_Call : Boolean := False;
242 Processed : Boolean := False;
245 package Inlined is new Table.Table (
246 Table_Component_Type => Subp_Info,
247 Table_Index_Type => Subp_Index,
248 Table_Low_Bound => 1,
249 Table_Initial => Alloc.Inlined_Initial,
250 Table_Increment => Alloc.Inlined_Increment,
251 Table_Name => "Inlined");
253 -----------------------
254 -- Local Subprograms --
255 -----------------------
257 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
258 -- Make two entries in Inlined table, for an inlined subprogram being
259 -- called, and for the inlined subprogram that contains the call. If
260 -- the call is in the main compilation unit, Caller is Empty.
262 procedure Add_Inlined_Instance (E : Entity_Id);
263 -- Add instance E to the list of inlined instances for the unit
265 procedure Add_Inlined_Subprogram (E : Entity_Id);
266 -- Add subprogram E to the list of inlined subprograms for the unit
268 function Add_Subp (E : Entity_Id) return Subp_Index;
269 -- Make entry in Inlined table for subprogram E, or return table index
270 -- that already holds E.
272 procedure Establish_Actual_Mapping_For_Inlined_Call
276 Body_Or_Expr_To_Check : Node_Id);
277 -- Establish a mapping from formals to actuals in the call N for the target
278 -- subprogram Subp, and create temporaries or renamings when needed for the
279 -- actuals that are expressions (except for actuals given by simple entity
280 -- names or literals) or that are scalars that require copying to preserve
281 -- semantics. Any temporary objects that are created are inserted in Decls.
282 -- Body_Or_Expr_To_Check indicates the target body (or possibly expression
283 -- of an expression function), which may be traversed to count formal uses.
285 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id;
286 pragma Inline (Get_Code_Unit_Entity);
287 -- Return the entity node for the unit containing E. Always return the spec
290 function Has_Initialized_Type (E : Entity_Id) return Boolean;
291 -- If a candidate for inlining contains type declarations for types with
292 -- nontrivial initialization procedures, they are not worth inlining.
294 function Has_Single_Return (N : Node_Id) return Boolean;
295 -- In general we cannot inline functions that return unconstrained type.
296 -- However, we can handle such functions if all return statements return
297 -- a local variable that is the first declaration in the body of the
298 -- function. In that case the call can be replaced by that local
299 -- variable as is done for other inlined calls.
301 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean;
302 -- Return True if E is in the main unit or its spec or in a subunit
304 function Is_Nested (E : Entity_Id) return Boolean;
305 -- If the function is nested inside some other function, it will always
306 -- be compiled if that function is, so don't add it to the inline list.
307 -- We cannot compile a nested function outside the scope of the containing
308 -- function anyway. This is also the case if the function is defined in a
309 -- task body or within an entry (for example, an initialization procedure).
311 procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id);
312 -- Remove all aspects and/or pragmas that have no meaning in inlined body
313 -- Body_Decl. The analysis of these items is performed on the non-inlined
314 -- body. The items currently removed are:
327 -- Subprogram_Variant
332 procedure Reset_Actual_Mapping_For_Inlined_Call (Subp : Entity_Id);
333 -- Reset the Renamed_Object field to Empty on all formals of Subp, which
334 -- can be set by a call to Establish_Actual_Mapping_For_Inlined_Call.
336 ------------------------------
337 -- Deferred Cleanup Actions --
338 ------------------------------
340 -- The cleanup actions for scopes that contain package instantiations with
341 -- a body are delayed until after the package body is instantiated. because
342 -- the body may contain finalizable objects or other constructs that affect
343 -- the cleanup code. A scope that contains such instantiations only needs
344 -- to be finalized once, even though it may contain more than one instance.
345 -- We keep a list of scopes that must still be finalized and Cleanup_Scopes
346 -- will be invoked after all the body instantiations have been completed.
350 procedure Add_Scope_To_Clean (Scop : Entity_Id);
351 -- Build set of scopes on which cleanup actions must be performed
353 procedure Cleanup_Scopes;
354 -- Complete cleanup actions on scopes that need it
360 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
361 P1 : constant Subp_Index := Add_Subp (Called);
366 if Present (Caller) then
367 P2 := Add_Subp (Caller);
369 -- Add P1 to the list of successors of P2, if not already there.
370 -- Note that P2 may contain more than one call to P1, and only
371 -- one needs to be recorded.
373 J := Inlined.Table (P2).First_Succ;
374 while J /= No_Succ loop
375 if Successors.Table (J).Subp = P1 then
379 J := Successors.Table (J).Next;
382 -- On exit, make a successor entry for P1
384 Successors.Increment_Last;
385 Successors.Table (Successors.Last).Subp := P1;
386 Successors.Table (Successors.Last).Next :=
387 Inlined.Table (P2).First_Succ;
388 Inlined.Table (P2).First_Succ := Successors.Last;
390 Inlined.Table (P1).Main_Call := True;
394 ----------------------
395 -- Add_Inlined_Body --
396 ----------------------
398 procedure Add_Inlined_Body (E : Entity_Id; N : Node_Id) is
400 type Inline_Level_Type is (Dont_Inline, Inline_Call, Inline_Package);
401 -- Level of inlining for the call: Dont_Inline means no inlining,
402 -- Inline_Call means that only the call is considered for inlining,
403 -- Inline_Package means that the call is considered for inlining and
404 -- its package compiled and scanned for more inlining opportunities.
406 function Is_Non_Loading_Expression_Function
407 (Id : Entity_Id) return Boolean;
408 -- Determine whether arbitrary entity Id denotes a subprogram which is
411 -- * An expression function
413 -- * A function completed by an expression function where both the
414 -- spec and body are in the same context.
416 function Must_Inline return Inline_Level_Type;
417 -- Inlining is only done if the call statement N is in the main unit,
418 -- or within the body of another inlined subprogram.
420 ----------------------------------------
421 -- Is_Non_Loading_Expression_Function --
422 ----------------------------------------
424 function Is_Non_Loading_Expression_Function
425 (Id : Entity_Id) return Boolean
432 -- A stand-alone expression function is transformed into a spec-body
433 -- pair in-place. Since both the spec and body are in the same list,
434 -- the inlining of such an expression function does not need to load
437 if Is_Expression_Function (Id) then
440 -- A function may be completed by an expression function
442 elsif Ekind (Id) = E_Function then
443 Spec_Decl := Unit_Declaration_Node (Id);
445 if Nkind (Spec_Decl) = N_Subprogram_Declaration then
446 Body_Id := Corresponding_Body (Spec_Decl);
448 if Present (Body_Id) then
449 Body_Decl := Unit_Declaration_Node (Body_Id);
451 -- The inlining of a completing expression function does
452 -- not need to load anything extra when both the spec and
453 -- body are in the same context.
456 Was_Expression_Function (Body_Decl)
457 and then Parent (Spec_Decl) = Parent (Body_Decl);
463 end Is_Non_Loading_Expression_Function;
469 function Must_Inline return Inline_Level_Type is
474 -- Check if call is in main unit
476 Scop := Current_Scope;
478 -- Do not try to inline if scope is standard. This could happen, for
479 -- example, for a call to Add_Global_Declaration, and it causes
480 -- trouble to try to inline at this level.
482 if Scop = Standard_Standard then
486 -- Otherwise lookup scope stack to outer scope
488 while Scope (Scop) /= Standard_Standard
489 and then not Is_Child_Unit (Scop)
491 Scop := Scope (Scop);
494 Comp := Parent (Scop);
495 while Nkind (Comp) /= N_Compilation_Unit loop
496 Comp := Parent (Comp);
499 -- If the call is in the main unit, inline the call and compile the
500 -- package of the subprogram to find more calls to be inlined.
502 if Comp = Cunit (Main_Unit)
503 or else Comp = Other_Comp_Unit (Cunit (Main_Unit))
506 return Inline_Package;
509 -- The call is not in the main unit. See if it is in some subprogram
510 -- that can be inlined outside its unit. If so, inline the call and,
511 -- if the inlining level is set to 1, stop there; otherwise also
512 -- compile the package as above.
514 Scop := Current_Scope;
515 while Scope (Scop) /= Standard_Standard
516 and then not Is_Child_Unit (Scop)
518 if Is_Overloadable (Scop)
519 and then Is_Inlined (Scop)
520 and then not Is_Nested (Scop)
524 if Inline_Level = 1 then
527 return Inline_Package;
531 Scop := Scope (Scop);
539 Level : Inline_Level_Type;
541 -- Start of processing for Add_Inlined_Body
544 Append_New_Elmt (N, To => Backend_Calls);
546 -- Skip subprograms that cannot or need not be inlined outside their
547 -- unit or parent subprogram.
549 if Is_Abstract_Subprogram (E)
550 or else Convention (E) = Convention_Protected
551 or else In_Main_Unit_Or_Subunit (E)
552 or else Is_Nested (E)
557 -- Find out whether the call must be inlined. Unless the result is
558 -- Dont_Inline, Must_Inline also creates an edge for the call in the
559 -- callgraph; however, it will not be activated until after Is_Called
560 -- is set on the subprogram.
562 Level := Must_Inline;
564 if Level = Dont_Inline then
568 -- If a previous call to the subprogram has been inlined, nothing to do
570 if Is_Called (E) then
574 -- If the subprogram is an instance, then inline the instance
576 if Is_Generic_Instance (E) then
577 Add_Inlined_Instance (E);
580 -- Mark the subprogram as called
584 -- If the call was generated by the compiler and is to a subprogram in
585 -- a run-time unit, we need to suppress debugging information for it,
586 -- so that the code that is eventually inlined will not affect the
587 -- debugging of the program. We do not do it if the call comes from
588 -- source because, even if the call is inlined, the user may expect it
589 -- to be present in the debugging information.
591 if not Comes_From_Source (N)
592 and then In_Extended_Main_Source_Unit (N)
593 and then Is_Predefined_Unit (Get_Source_Unit (E))
595 Set_Needs_Debug_Info (E, False);
598 -- If the subprogram is an expression function, or is completed by one
599 -- where both the spec and body are in the same context, then there is
600 -- no need to load any package body since the body of the function is
603 if Is_Non_Loading_Expression_Function (E) then
607 -- Find unit containing E, and add to list of inlined bodies if needed.
608 -- Library-level functions must be handled specially, because there is
609 -- no enclosing package to retrieve. In this case, it is the body of
610 -- the function that will have to be loaded.
613 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
617 Inlined_Bodies.Increment_Last;
618 Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
621 pragma Assert (Ekind (Pack) = E_Package);
623 -- If the subprogram is within an instance, inline the instance
625 if Comes_From_Source (E) then
628 while Present (Inst) and then Inst /= Standard_Standard loop
629 exit when Is_Generic_Instance (Inst);
630 Inst := Scope (Inst);
634 and then Is_Generic_Instance (Inst)
635 and then not Is_Called (Inst)
637 Inst_Decl := Unit_Declaration_Node (Inst);
639 -- Do not inline the instance if the body already exists,
640 -- or the instance node is simply missing.
642 if Present (Corresponding_Body (Inst_Decl))
643 or else (Nkind (Parent (Inst_Decl)) /= N_Compilation_Unit
644 and then No (Next (Inst_Decl)))
646 Set_Is_Called (Inst);
648 Add_Inlined_Instance (Inst);
653 -- If the unit containing E is an instance, nothing more to do
655 if Is_Generic_Instance (Pack) then
658 -- Do not inline the package if the subprogram is an init proc
659 -- or other internally generated subprogram, because in that
660 -- case the subprogram body appears in the same unit that
661 -- declares the type, and that body is visible to the back end.
662 -- Do not inline it either if it is in the main unit.
663 -- Extend the -gnatn2 processing to -gnatn1 for Inline_Always
664 -- calls if the back end takes care of inlining the call.
665 -- Note that Level is in Inline_Call | Inline_Package here.
667 elsif ((Level = Inline_Call
668 and then Has_Pragma_Inline_Always (E)
669 and then Back_End_Inlining)
670 or else Level = Inline_Package)
671 and then not Is_Inlined (Pack)
672 and then not Is_Internal (E)
673 and then not In_Main_Unit_Or_Subunit (Pack)
675 Set_Is_Inlined (Pack);
676 Inlined_Bodies.Increment_Last;
677 Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
681 -- Ensure that Analyze_Inlined_Bodies will be invoked after
682 -- completing the analysis of the current unit.
684 Inline_Processing_Required := True;
686 end Add_Inlined_Body;
688 --------------------------
689 -- Add_Inlined_Instance --
690 --------------------------
692 procedure Add_Inlined_Instance (E : Entity_Id) is
693 Decl_Node : constant Node_Id := Unit_Declaration_Node (E);
697 -- This machinery is only used with back-end inlining
699 if not Back_End_Inlining then
703 -- Register the instance in the list
705 Append_New_Elmt (Decl_Node, To => Backend_Instances);
707 -- Retrieve the index of its corresponding pending instantiation
708 -- and mark this corresponding pending instantiation as needed.
710 Index := To_Pending_Instantiations.Get (Decl_Node);
712 Called_Pending_Instantiations.Append (Index);
714 pragma Assert (False);
719 end Add_Inlined_Instance;
721 ----------------------------
722 -- Add_Inlined_Subprogram --
723 ----------------------------
725 procedure Add_Inlined_Subprogram (E : Entity_Id) is
726 Decl : constant Node_Id := Parent (Declaration_Node (E));
727 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
729 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id);
730 -- Append Subp to the list of subprograms inlined by the backend
732 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id);
733 -- Append Subp to the list of subprograms that cannot be inlined by
736 -----------------------------------------
737 -- Register_Backend_Inlined_Subprogram --
738 -----------------------------------------
740 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id) is
742 Append_New_Elmt (Subp, To => Backend_Inlined_Subps);
743 end Register_Backend_Inlined_Subprogram;
745 ---------------------------------------------
746 -- Register_Backend_Not_Inlined_Subprogram --
747 ---------------------------------------------
749 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id) is
751 Append_New_Elmt (Subp, To => Backend_Not_Inlined_Subps);
752 end Register_Backend_Not_Inlined_Subprogram;
754 -- Start of processing for Add_Inlined_Subprogram
757 -- We can inline the subprogram if its unit is known to be inlined or is
758 -- an instance whose body will be analyzed anyway or the subprogram was
759 -- generated as a body by the compiler (for example an initialization
760 -- procedure) or its declaration was provided along with the body (for
761 -- example an expression function) and it does not declare types with
762 -- nontrivial initialization procedures.
764 if (Is_Inlined (Pack)
765 or else Is_Generic_Instance (Pack)
766 or else Nkind (Decl) = N_Subprogram_Body
767 or else Present (Corresponding_Body (Decl)))
768 and then not Has_Initialized_Type (E)
770 Register_Backend_Inlined_Subprogram (E);
772 if No (Last_Inlined) then
773 Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
775 Set_Next_Inlined_Subprogram (Last_Inlined, E);
781 Register_Backend_Not_Inlined_Subprogram (E);
783 end Add_Inlined_Subprogram;
785 --------------------------------
786 -- Add_Pending_Instantiation --
787 --------------------------------
789 procedure Add_Pending_Instantiation
792 Fin_Scop : Node_Id := Empty)
794 Act_Decl_Id : Entity_Id;
798 -- Here is a defense against a ludicrous number of instantiations
799 -- caused by a circular set of instantiation attempts.
801 if Pending_Instantiations.Last + 1 >= Maximum_Instantiations then
802 Error_Msg_Uint_1 := UI_From_Int (Maximum_Instantiations);
803 Error_Msg_N ("too many instantiations, exceeds max of^", Inst);
804 Error_Msg_N ("\limit can be changed using -gnateinn switch", Inst);
805 raise Unrecoverable_Error;
808 -- Capture the body of the generic instantiation along with its context
809 -- for later processing by Instantiate_Bodies.
811 Pending_Instantiations.Append
813 Act_Decl => Act_Decl,
814 Fin_Scop => Fin_Scop,
815 Config_Switches => Save_Config_Switches,
816 Current_Sem_Unit => Current_Sem_Unit,
817 Expander_Status => Expander_Active,
818 Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
819 Scope_Suppress => Scope_Suppress,
820 Warnings => Save_Warnings));
822 -- With back-end inlining, also associate the index to the instantiation
824 if Back_End_Inlining then
825 Act_Decl_Id := Defining_Entity (Act_Decl);
826 Index := Pending_Instantiations.Last;
828 To_Pending_Instantiations.Set (Act_Decl, Index);
830 -- If an instantiation is in the main unit or subunit, or is a nested
831 -- subprogram, then its body is needed as per the analysis done in
832 -- Analyze_Package_Instantiation & Analyze_Subprogram_Instantiation.
834 if In_Main_Unit_Or_Subunit (Act_Decl_Id)
835 or else (Is_Subprogram (Act_Decl_Id)
836 and then Is_Nested (Act_Decl_Id))
838 Called_Pending_Instantiations.Append (Index);
840 Set_Is_Called (Act_Decl_Id);
843 end Add_Pending_Instantiation;
845 ------------------------
846 -- Add_Scope_To_Clean --
847 ------------------------
849 procedure Add_Scope_To_Clean (Scop : Entity_Id) is
851 Append_Unique_Elmt (Scop, To_Clean);
852 end Add_Scope_To_Clean;
858 function Add_Subp (E : Entity_Id) return Subp_Index is
859 Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
863 -- Initialize entry in Inlined table
865 procedure New_Entry is
867 Inlined.Increment_Last;
868 Inlined.Table (Inlined.Last).Name := E;
869 Inlined.Table (Inlined.Last).Next := No_Subp;
870 Inlined.Table (Inlined.Last).First_Succ := No_Succ;
871 Inlined.Table (Inlined.Last).Main_Call := False;
872 Inlined.Table (Inlined.Last).Processed := False;
875 -- Start of processing for Add_Subp
878 if Hash_Headers (Index) = No_Subp then
880 Hash_Headers (Index) := Inlined.Last;
884 J := Hash_Headers (Index);
885 while J /= No_Subp loop
886 if Inlined.Table (J).Name = E then
890 J := Inlined.Table (J).Next;
894 -- On exit, subprogram was not found. Enter in table. Index is
895 -- the current last entry on the hash chain.
898 Inlined.Table (Index).Next := Inlined.Last;
903 ----------------------------
904 -- Analyze_Inlined_Bodies --
905 ----------------------------
907 procedure Analyze_Inlined_Bodies is
914 type Pending_Index is new Nat;
916 package Pending_Inlined is new Table.Table (
917 Table_Component_Type => Subp_Index,
918 Table_Index_Type => Pending_Index,
919 Table_Low_Bound => 1,
920 Table_Initial => Alloc.Inlined_Initial,
921 Table_Increment => Alloc.Inlined_Increment,
922 Table_Name => "Pending_Inlined");
923 -- The workpile used to compute the transitive closure
925 -- Start of processing for Analyze_Inlined_Bodies
928 if Serious_Errors_Detected = 0 then
929 Push_Scope (Standard_Standard);
932 while J <= Inlined_Bodies.Last
933 and then Serious_Errors_Detected = 0
935 Pack := Inlined_Bodies.Table (J);
937 and then Scope (Pack) /= Standard_Standard
938 and then not Is_Child_Unit (Pack)
940 Pack := Scope (Pack);
943 Comp_Unit := Parent (Pack);
944 while Present (Comp_Unit)
945 and then Nkind (Comp_Unit) /= N_Compilation_Unit
947 Comp_Unit := Parent (Comp_Unit);
950 -- Load the body if it exists and contains inlineable entities,
951 -- unless it is the main unit, or is an instance whose body has
952 -- already been analyzed.
954 if Present (Comp_Unit)
955 and then Comp_Unit /= Cunit (Main_Unit)
956 and then Body_Required (Comp_Unit)
958 (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
960 (No (Corresponding_Body (Unit (Comp_Unit)))
961 and then Body_Needed_For_Inlining
962 (Defining_Entity (Unit (Comp_Unit)))))
965 Bname : constant Unit_Name_Type :=
966 Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
971 if not Is_Loaded (Bname) then
972 Style_Check := False;
973 Load_Needed_Body (Comp_Unit, OK);
977 -- Warn that a body was not available for inlining
980 Error_Msg_Unit_1 := Bname;
982 ("one or more inlined subprograms accessed in $!??",
985 Get_File_Name (Bname, Subunit => False);
986 Error_Msg_N ("\but file{ was not found!??", Comp_Unit);
994 if J > Inlined_Bodies.Last then
996 -- The analysis of required bodies may have produced additional
997 -- generic instantiations. To obtain further inlining, we need
998 -- to perform another round of generic body instantiations.
1002 -- Symmetrically, the instantiation of required generic bodies
1003 -- may have caused additional bodies to be inlined. To obtain
1004 -- further inlining, we keep looping over the inlined bodies.
1008 -- The list of inlined subprograms is an overestimate, because it
1009 -- includes inlined subprograms called from subprograms that are
1010 -- declared in an inlined package, but are not themselves called.
1011 -- An accurate computation of just those subprograms that are needed
1012 -- requires that we perform a transitive closure over the call graph,
1013 -- starting from calls in the main compilation unit.
1015 for Index in Inlined.First .. Inlined.Last loop
1016 if not Is_Called (Inlined.Table (Index).Name) then
1018 -- This means that Add_Inlined_Body added the subprogram to the
1019 -- table but wasn't able to handle its code unit. Do nothing.
1021 Inlined.Table (Index).Processed := True;
1023 elsif Inlined.Table (Index).Main_Call then
1024 Pending_Inlined.Increment_Last;
1025 Pending_Inlined.Table (Pending_Inlined.Last) := Index;
1026 Inlined.Table (Index).Processed := True;
1029 Set_Is_Called (Inlined.Table (Index).Name, False);
1033 -- Iterate over the workpile until it is emptied, propagating the
1034 -- Is_Called flag to the successors of the processed subprogram.
1036 while Pending_Inlined.Last >= Pending_Inlined.First loop
1037 Subp := Pending_Inlined.Table (Pending_Inlined.Last);
1038 Pending_Inlined.Decrement_Last;
1040 S := Inlined.Table (Subp).First_Succ;
1042 while S /= No_Succ loop
1043 Subp := Successors.Table (S).Subp;
1045 if not Inlined.Table (Subp).Processed then
1046 Set_Is_Called (Inlined.Table (Subp).Name);
1047 Pending_Inlined.Increment_Last;
1048 Pending_Inlined.Table (Pending_Inlined.Last) := Subp;
1049 Inlined.Table (Subp).Processed := True;
1052 S := Successors.Table (S).Next;
1056 -- Finally add the called subprograms to the list of inlined
1057 -- subprograms for the unit.
1059 for Index in Inlined.First .. Inlined.Last loop
1061 E : constant Subprogram_Kind_Id := Inlined.Table (Index).Name;
1064 if Is_Called (E) and then not Is_Ignored_Ghost_Entity (E) then
1065 Add_Inlined_Subprogram (E);
1072 end Analyze_Inlined_Bodies;
1074 --------------------------
1075 -- Build_Body_To_Inline --
1076 --------------------------
1078 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
1079 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
1080 Original_Body : Node_Id;
1081 Body_To_Analyze : Node_Id;
1082 Max_Size : constant := 10;
1084 function Has_Extended_Return return Boolean;
1085 -- This function returns True if the subprogram has an extended return
1088 function Has_Pending_Instantiation return Boolean;
1089 -- If some enclosing body contains instantiations that appear before
1090 -- the corresponding generic body, the enclosing body has a freeze node
1091 -- so that it can be elaborated after the generic itself. This might
1092 -- conflict with subsequent inlinings, so that it is unsafe to try to
1093 -- inline in such a case.
1095 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
1096 -- If the body of the subprogram includes a call that returns an
1097 -- unconstrained type, the secondary stack is involved, and it is
1098 -- not worth inlining.
1099 -------------------------
1100 -- Has_Extended_Return --
1101 -------------------------
1103 function Has_Extended_Return return Boolean is
1104 Body_To_Inline : constant Node_Id := N;
1106 function Check_Return (N : Node_Id) return Traverse_Result;
1107 -- Returns OK on node N if this is not an extended return statement
1113 function Check_Return (N : Node_Id) return Traverse_Result is
1116 when N_Extended_Return_Statement =>
1119 -- Skip locally declared subprogram bodies inside the body to
1120 -- inline, as the return statements inside those do not count.
1122 when N_Subprogram_Body =>
1123 if N = Body_To_Inline then
1134 function Check_All_Returns is new Traverse_Func (Check_Return);
1136 -- Start of processing for Has_Extended_Return
1139 return Check_All_Returns (N) /= OK;
1140 end Has_Extended_Return;
1142 -------------------------------
1143 -- Has_Pending_Instantiation --
1144 -------------------------------
1146 function Has_Pending_Instantiation return Boolean is
1151 while Present (S) loop
1152 if Is_Compilation_Unit (S)
1153 or else Is_Child_Unit (S)
1157 elsif Ekind (S) = E_Package
1158 and then Has_Forward_Instantiation (S)
1167 end Has_Pending_Instantiation;
1169 --------------------------
1170 -- Uses_Secondary_Stack --
1171 --------------------------
1173 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
1174 function Check_Call (N : Node_Id) return Traverse_Result;
1175 -- Look for function calls that return an unconstrained type
1181 function Check_Call (N : Node_Id) return Traverse_Result is
1183 if Nkind (N) = N_Function_Call
1184 and then Is_Entity_Name (Name (N))
1185 and then Is_Composite_Type (Etype (Entity (Name (N))))
1186 and then not Is_Constrained (Etype (Entity (Name (N))))
1189 ("cannot inline & (call returns unconstrained type)?",
1197 function Check_Calls is new Traverse_Func (Check_Call);
1200 return Check_Calls (Bod) = Abandon;
1201 end Uses_Secondary_Stack;
1203 -- Start of processing for Build_Body_To_Inline
1206 -- Return immediately if done already
1208 if Nkind (Decl) = N_Subprogram_Declaration
1209 and then Present (Body_To_Inline (Decl))
1213 -- Functions that return controlled types cannot currently be inlined
1214 -- because they require secondary stack handling; controlled actions
1215 -- may also interfere in complex ways with inlining.
1217 elsif Ekind (Spec_Id) = E_Function
1218 and then Needs_Finalization (Etype (Spec_Id))
1221 ("cannot inline & (controlled return type)?", N, Spec_Id);
1225 if Has_Excluded_Declaration (Spec_Id, Declarations (N)) then
1229 if Present (Handled_Statement_Sequence (N)) then
1230 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
1232 ("cannot inline& (exception handler)?",
1233 First (Exception_Handlers (Handled_Statement_Sequence (N))),
1237 elsif Has_Excluded_Statement
1238 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
1244 -- We do not inline a subprogram that is too large, unless it is marked
1245 -- Inline_Always or we are in GNATprove mode. This pragma does not
1246 -- suppress the other checks on inlining (forbidden declarations,
1249 if not (Has_Pragma_Inline_Always (Spec_Id) or else GNATprove_Mode)
1250 and then List_Length
1251 (Statements (Handled_Statement_Sequence (N))) > Max_Size
1253 Cannot_Inline ("cannot inline& (body too large)?", N, Spec_Id);
1257 if Has_Pending_Instantiation then
1259 ("cannot inline& (forward instance within enclosing body)?",
1264 -- Within an instance, the body to inline must be treated as a nested
1265 -- generic, so that the proper global references are preserved.
1267 -- Note that we do not do this at the library level, because it is not
1268 -- needed, and furthermore this causes trouble if front-end inlining
1269 -- is activated (-gnatN).
1271 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1272 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1273 Original_Body := Copy_Generic_Node (N, Empty, Instantiating => True);
1275 Original_Body := Copy_Separate_Tree (N);
1278 -- We need to capture references to the formals in order to substitute
1279 -- the actuals at the point of inlining, i.e. instantiation. To treat
1280 -- the formals as globals to the body to inline, we nest it within a
1281 -- dummy parameterless subprogram, declared within the real one. To
1282 -- avoid generating an internal name (which is never public, and which
1283 -- affects serial numbers of other generated names), we use an internal
1284 -- symbol that cannot conflict with user declarations.
1286 Set_Parameter_Specifications (Specification (Original_Body), No_List);
1287 Set_Defining_Unit_Name
1288 (Specification (Original_Body),
1289 Make_Defining_Identifier (Sloc (N), Name_uParent));
1290 Set_Corresponding_Spec (Original_Body, Empty);
1292 -- Remove all aspects/pragmas that have no meaning in an inlined body
1294 Remove_Aspects_And_Pragmas (Original_Body);
1297 Copy_Generic_Node (Original_Body, Empty, Instantiating => False);
1299 -- Set return type of function, which is also global and does not need
1302 if Ekind (Spec_Id) = E_Function then
1303 Set_Result_Definition
1304 (Specification (Body_To_Analyze),
1305 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1308 if No (Declarations (N)) then
1309 Set_Declarations (N, New_List (Body_To_Analyze));
1311 Append (Body_To_Analyze, Declarations (N));
1316 Analyze (Body_To_Analyze);
1317 Push_Scope (Defining_Entity (Body_To_Analyze));
1318 Save_Global_References (Original_Body);
1320 Remove (Body_To_Analyze);
1324 -- Restore environment if previously saved
1326 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1330 -- Functions that return unconstrained composite types require
1331 -- secondary stack handling, and cannot currently be inlined, unless
1332 -- all return statements return a local variable that is the first
1333 -- local declaration in the body. We had to delay this check until
1334 -- the body of the function is analyzed since Has_Single_Return()
1335 -- requires a minimum decoration.
1337 if Ekind (Spec_Id) = E_Function
1338 and then not Is_Scalar_Type (Etype (Spec_Id))
1339 and then not Is_Access_Type (Etype (Spec_Id))
1340 and then not Is_Constrained (Etype (Spec_Id))
1342 if not Has_Single_Return (Body_To_Analyze)
1344 -- Skip inlining if the function returns an unconstrained type
1345 -- using an extended return statement, since this part of the
1346 -- new inlining model is not yet supported by the current
1349 or else (Returns_Unconstrained_Type (Spec_Id)
1350 and then Has_Extended_Return)
1353 ("cannot inline & (unconstrained return type)?", N, Spec_Id);
1357 -- If secondary stack is used, there is no point in inlining. We have
1358 -- already issued the warning in this case, so nothing to do.
1360 elsif Uses_Secondary_Stack (Body_To_Analyze) then
1364 Set_Body_To_Inline (Decl, Original_Body);
1365 Mutate_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1366 Set_Is_Inlined (Spec_Id);
1367 end Build_Body_To_Inline;
1369 -------------------------------------------
1370 -- Call_Can_Be_Inlined_In_GNATprove_Mode --
1371 -------------------------------------------
1373 function Call_Can_Be_Inlined_In_GNATprove_Mode
1375 Subp : Entity_Id) return Boolean
1377 function Has_Dereference (N : Node_Id) return Boolean;
1378 -- Return whether N contains an explicit dereference
1380 ---------------------
1381 -- Has_Dereference --
1382 ---------------------
1384 function Has_Dereference (N : Node_Id) return Boolean is
1386 function Process (N : Node_Id) return Traverse_Result;
1387 -- Process one node in search for dereference
1393 function Process (N : Node_Id) return Traverse_Result is
1395 if Nkind (N) = N_Explicit_Dereference then
1402 function Traverse is new Traverse_Func (Process);
1403 -- Traverse tree to look for dereference
1406 return Traverse (N) = Abandon;
1407 end Has_Dereference;
1415 -- Check if inlining may lead to missing a check on type conversion of
1416 -- input parameters otherwise.
1418 F := First_Formal (Subp);
1419 A := First_Actual (N);
1420 while Present (F) loop
1421 if Ekind (F) /= E_Out_Parameter
1422 and then not Same_Type (Etype (F), Etype (A))
1424 (Is_By_Reference_Type (Etype (A))
1425 or else Is_Limited_Type (Etype (A)))
1434 -- Check if inlining may lead to introducing temporaries of access type,
1435 -- which can lead to missing checks for memory leaks. This can only
1436 -- come from an (IN-)OUT parameter transformed into a renaming by SPARK
1437 -- expansion, whose side-effects are removed, and a dereference in the
1438 -- corresponding actual. If the formal itself is of a deep type (it has
1439 -- access subcomponents), the subprogram already cannot be inlined in
1442 F := First_Formal (Subp);
1443 A := First_Actual (N);
1444 while Present (F) loop
1445 if Ekind (F) /= E_In_Parameter
1446 and then Has_Dereference (A)
1456 end Call_Can_Be_Inlined_In_GNATprove_Mode;
1458 --------------------------------------
1459 -- Can_Be_Inlined_In_GNATprove_Mode --
1460 --------------------------------------
1462 function Can_Be_Inlined_In_GNATprove_Mode
1463 (Spec_Id : Entity_Id;
1464 Body_Id : Entity_Id) return Boolean
1466 function Has_Constant_With_Address_Clause
1467 (Body_Node : Node_Id)
1469 -- Returns true if the subprogram contains a declaration of a constant
1470 -- with an address clause, which could become illegal in SPARK after
1471 -- inlining, if the address clause mentions a constant view of a mutable
1472 -- object at call site.
1474 function Has_Formal_Or_Result_Of_Deep_Type
1475 (Id : Entity_Id) return Boolean;
1476 -- Returns true if the subprogram has at least one formal parameter or
1477 -- a return type of a deep type: either an access type or a composite
1478 -- type containing an access type.
1480 function Has_Formal_With_Per_Object_Constrained_Component
1481 (Id : Entity_Id) return Boolean;
1482 -- Returns true if the subprogram has at least one formal parameter of
1483 -- an unconstrained record type with per-object constraints on component
1486 function Has_Hide_Unhide_Annotation
1487 (Spec_Id, Body_Id : Entity_Id)
1489 -- Returns whether the subprogram has an annotation Hide_Info or
1490 -- Unhide_Info on its spec or body.
1492 function Has_Skip_Proof_Annotation (Id : Entity_Id) return Boolean;
1493 -- Returns True if subprogram Id has an annotation Skip_Proof or
1494 -- Skip_Flow_And_Proof.
1496 function Has_Some_Contract (Id : Entity_Id) return Boolean;
1497 -- Return True if subprogram Id has any contract. The presence of
1498 -- Extensions_Visible or Volatile_Function is also considered as a
1501 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean;
1502 -- Return True if subprogram Id defines a compilation unit
1504 function In_Package_Spec (Id : Entity_Id) return Boolean;
1505 -- Return True if subprogram Id is defined in the package specification,
1506 -- either its visible or private part.
1508 function Maybe_Traversal_Function (Id : Entity_Id) return Boolean;
1509 -- Return True if subprogram Id could be a traversal function, as
1510 -- defined in SPARK RM 3.10. This is only a safe approximation, as the
1511 -- knowledge of the SPARK boundary is needed to determine exactly
1512 -- traversal functions.
1514 --------------------------------------
1515 -- Has_Constant_With_Address_Clause --
1516 --------------------------------------
1518 function Has_Constant_With_Address_Clause
1519 (Body_Node : Node_Id)
1522 function Check_Constant_With_Addresss_Clause
1524 return Traverse_Result;
1525 -- Returns Abandon on node N if this is a declaration of a constant
1526 -- object with an address clause.
1528 -----------------------------------------
1529 -- Check_Constant_With_Addresss_Clause --
1530 -----------------------------------------
1532 function Check_Constant_With_Addresss_Clause
1534 return Traverse_Result
1538 when N_Object_Declaration =>
1540 Obj : constant Entity_Id := Defining_Entity (N);
1542 if Constant_Present (N)
1544 (Present (Address_Clause (Obj))
1545 or else Has_Aspect (Obj, Aspect_Address))
1553 -- Skip locally declared subprogram bodies inside the body to
1554 -- inline, as the declarations inside those do not count.
1556 when N_Subprogram_Body =>
1557 if N = Body_Node then
1566 end Check_Constant_With_Addresss_Clause;
1568 function Check_All_Constants_With_Address_Clause is new
1569 Traverse_Func (Check_Constant_With_Addresss_Clause);
1571 -- Start of processing for Has_Constant_With_Address_Clause
1574 return Check_All_Constants_With_Address_Clause
1575 (Body_Node) = Abandon;
1576 end Has_Constant_With_Address_Clause;
1578 ---------------------------------------
1579 -- Has_Formal_Or_Result_Of_Deep_Type --
1580 ---------------------------------------
1582 function Has_Formal_Or_Result_Of_Deep_Type
1583 (Id : Entity_Id) return Boolean
1585 function Is_Deep (Typ : Entity_Id) return Boolean;
1586 -- Return True if Typ is deep: either an access type or a composite
1587 -- type containing an access type.
1593 function Is_Deep (Typ : Entity_Id) return Boolean is
1595 case Type_Kind'(Ekind (Typ)) is
1602 return Is_Deep (Component_Type (Typ));
1606 Comp : Entity_Id := First_Component_Or_Discriminant (Typ);
1608 while Present (Comp) loop
1609 if Is_Deep (Etype (Comp)) then
1612 Next_Component_Or_Discriminant (Comp);
1618 | E_String_Literal_Subtype
1628 | E_Limited_Private_Type
1629 | E_Limited_Private_Subtype
1631 -- Conservatively consider that the type might be deep if
1632 -- its completion has not been seen yet.
1634 if No (Underlying_Type (Typ)) then
1637 -- Do not peek under a private type if its completion has
1638 -- SPARK_Mode Off. In such a case, a deep type is considered
1639 -- by GNATprove to be not deep.
1641 elsif Present (Full_View (Typ))
1642 and then Present (SPARK_Pragma (Full_View (Typ)))
1643 and then Get_SPARK_Mode_From_Annotation
1644 (SPARK_Pragma (Full_View (Typ))) = Off
1648 -- Otherwise peek under the private type.
1651 return Is_Deep (Underlying_Type (Typ));
1658 Subp_Id : constant Entity_Id := Ultimate_Alias (Id);
1660 Formal_Typ : Entity_Id;
1662 -- Start of processing for Has_Formal_Or_Result_Of_Deep_Type
1665 -- Inspect all parameters of the subprogram looking for a formal
1668 Formal := First_Formal (Subp_Id);
1669 while Present (Formal) loop
1670 Formal_Typ := Etype (Formal);
1672 if Is_Deep (Formal_Typ) then
1676 Next_Formal (Formal);
1679 -- Check whether this is a function whose return type is deep
1681 if Ekind (Subp_Id) = E_Function
1682 and then Is_Deep (Etype (Subp_Id))
1688 end Has_Formal_Or_Result_Of_Deep_Type;
1690 ------------------------------------------------------
1691 -- Has_Formal_With_Per_Object_Constrained_Component --
1692 ------------------------------------------------------
1694 function Has_Formal_With_Per_Object_Constrained_Component
1695 (Id : Entity_Id) return Boolean
1697 function Has_Per_Object_Constrained_Component
1698 (Typ : Entity_Id) return Boolean;
1699 -- Determine whether unconstrained record type Typ has at least one
1700 -- component that depends on a discriminant.
1702 ------------------------------------------
1703 -- Has_Per_Object_Constrained_Component --
1704 ------------------------------------------
1706 function Has_Per_Object_Constrained_Component
1707 (Typ : Entity_Id) return Boolean
1712 -- Inspect all components of the record type looking for one that
1713 -- depends on a discriminant.
1715 Comp := First_Component (Typ);
1716 while Present (Comp) loop
1717 if Has_Per_Object_Constraint (Comp) then
1721 Next_Component (Comp);
1725 end Has_Per_Object_Constrained_Component;
1729 Subp_Id : constant Entity_Id := Ultimate_Alias (Id);
1731 Formal_Typ : Entity_Id;
1733 -- Start of processing for
1734 -- Has_Formal_With_Per_Object_Constrained_Component
1737 -- Inspect all parameters of the subprogram looking for a formal
1738 -- of an unconstrained record type with at least one discriminant
1739 -- dependent component.
1741 Formal := First_Formal (Subp_Id);
1742 while Present (Formal) loop
1743 Formal_Typ := Etype (Formal);
1745 if Is_Record_Type (Formal_Typ)
1746 and then not Is_Constrained (Formal_Typ)
1747 and then Has_Per_Object_Constrained_Component (Formal_Typ)
1752 Next_Formal (Formal);
1756 end Has_Formal_With_Per_Object_Constrained_Component;
1758 --------------------------------
1759 -- Has_Hide_Unhide_Annotation --
1760 --------------------------------
1762 function Has_Hide_Unhide_Annotation
1763 (Spec_Id, Body_Id : Entity_Id)
1766 function Has_Hide_Unhide_Pragma (Prag : Node_Id) return Boolean;
1767 -- Return whether a pragma Hide/Unhide is present in the list of
1768 -- pragmas starting with Prag.
1770 ----------------------------
1771 -- Has_Hide_Unhide_Pragma --
1772 ----------------------------
1774 function Has_Hide_Unhide_Pragma (Prag : Node_Id) return Boolean is
1775 Decl : Node_Id := Prag;
1777 while Present (Decl)
1778 and then Nkind (Decl) = N_Pragma
1780 if Get_Pragma_Id (Decl) = Pragma_Annotate
1781 and then List_Length (Pragma_Argument_Associations (Decl)) = 4
1784 Arg1 : constant Node_Id :=
1785 First (Pragma_Argument_Associations (Decl));
1786 Arg2 : constant Node_Id := Next (Arg1);
1787 Arg1_Name : constant Name_Id :=
1788 Chars (Get_Pragma_Arg (Arg1));
1789 Arg2_Name : constant String :=
1790 Get_Name_String (Chars (Get_Pragma_Arg (Arg2)));
1792 if Arg1_Name = Name_Gnatprove
1793 and then Arg2_Name in "hide_info" | "unhide_info"
1804 end Has_Hide_Unhide_Pragma;
1807 if Present (Spec_Id)
1808 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
1809 and then Has_Hide_Unhide_Pragma
1810 (Next (Unit_Declaration_Node (Spec_Id)))
1814 elsif Present (Body_Id) then
1816 Subp_Body : constant N_Subprogram_Body_Id :=
1817 Unit_Declaration_Node (Body_Id);
1820 (Is_List_Member (Subp_Body)
1821 and then Has_Hide_Unhide_Pragma (Next (Subp_Body)))
1823 Has_Hide_Unhide_Pragma (First (Declarations (Subp_Body)));
1829 end Has_Hide_Unhide_Annotation;
1831 -------------------------------
1832 -- Has_Skip_Proof_Annotation --
1833 -------------------------------
1835 function Has_Skip_Proof_Annotation (Id : Entity_Id) return Boolean is
1836 Decl : Node_Id := Unit_Declaration_Node (Id);
1841 while Present (Decl)
1842 and then Nkind (Decl) = N_Pragma
1844 if Get_Pragma_Id (Decl) = Pragma_Annotate
1845 and then List_Length (Pragma_Argument_Associations (Decl)) = 3
1848 Arg1 : constant Node_Id :=
1849 First (Pragma_Argument_Associations (Decl));
1850 Arg2 : constant Node_Id := Next (Arg1);
1851 Arg1_Name : constant Name_Id :=
1852 Chars (Get_Pragma_Arg (Arg1));
1853 Arg2_Name : constant String :=
1854 Get_Name_String (Chars (Get_Pragma_Arg (Arg2)));
1856 if Arg1_Name = Name_Gnatprove
1857 and then Arg2_Name in "skip_proof" | "skip_flow_and_proof"
1868 end Has_Skip_Proof_Annotation;
1870 -----------------------
1871 -- Has_Some_Contract --
1872 -----------------------
1874 function Has_Some_Contract (Id : Entity_Id) return Boolean is
1878 -- A call to an expression function may precede the actual body which
1879 -- is inserted at the end of the enclosing declarations. Ensure that
1880 -- the related entity is decorated before inspecting the contract.
1882 if Is_Subprogram_Or_Generic_Subprogram (Id) then
1883 Items := Contract (Id);
1885 -- Note that Classifications is not Empty when Extensions_Visible
1886 -- or Volatile_Function is present, which causes such subprograms
1887 -- to be considered to have a contract here. This is fine as we
1888 -- want to avoid inlining these too.
1890 return Present (Items)
1891 and then (Present (Pre_Post_Conditions (Items)) or else
1892 Present (Contract_Test_Cases (Items)) or else
1893 Present (Classifications (Items)));
1897 end Has_Some_Contract;
1899 ---------------------
1900 -- In_Package_Spec --
1901 ---------------------
1903 function In_Package_Spec (Id : Entity_Id) return Boolean is
1904 P : constant Node_Id := Parent (Subprogram_Spec (Id));
1905 -- Parent of the subprogram's declaration
1908 return Nkind (Enclosing_Declaration (P)) = N_Package_Declaration;
1909 end In_Package_Spec;
1911 ------------------------
1912 -- Is_Unit_Subprogram --
1913 ------------------------
1915 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean is
1916 Decl : Node_Id := Parent (Parent (Id));
1918 if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1919 Decl := Parent (Decl);
1922 return Nkind (Parent (Decl)) = N_Compilation_Unit;
1923 end Is_Unit_Subprogram;
1925 ------------------------------
1926 -- Maybe_Traversal_Function --
1927 ------------------------------
1929 function Maybe_Traversal_Function (Id : Entity_Id) return Boolean is
1931 return Ekind (Id) = E_Function
1933 -- Only traversal functions return an anonymous access-to-object
1936 and then Is_Anonymous_Access_Type (Etype (Id));
1937 end Maybe_Traversal_Function;
1939 -- Local declarations
1942 -- Procedure or function entity for the subprogram
1944 -- Start of processing for Can_Be_Inlined_In_GNATprove_Mode
1947 pragma Assert (Present (Spec_Id) or else Present (Body_Id));
1949 if Present (Spec_Id) then
1955 -- Only local subprograms without contracts are inlined in GNATprove
1956 -- mode, as these are the subprograms which a user is not interested in
1957 -- analyzing in isolation, but rather in the context of their call. This
1958 -- is a convenient convention, that could be changed for an explicit
1959 -- pragma/aspect one day.
1961 -- In a number of special cases, inlining is not desirable or not
1962 -- possible, see below.
1964 -- Do not inline unit-level subprograms
1966 if Is_Unit_Subprogram (Id) then
1969 -- Do not inline subprograms declared in package specs, because they are
1970 -- not local, i.e. can be called either from anywhere (if declared in
1971 -- visible part) or from the child units (if declared in private part).
1973 elsif In_Package_Spec (Id) then
1976 -- Do not inline subprograms declared in other units. This is important
1977 -- in particular for subprograms defined in the private part of a
1978 -- package spec, when analyzing one of its child packages, as otherwise
1979 -- we issue spurious messages about the impossibility to inline such
1982 elsif not In_Extended_Main_Code_Unit (Id) then
1985 -- Do not inline dispatching operations, as only their static calls
1986 -- can be analyzed in context, and not their dispatching calls.
1988 elsif Is_Dispatching_Operation (Id) then
1991 -- Do not inline subprograms marked No_Return, possibly used for
1992 -- signaling errors, which GNATprove handles specially.
1994 elsif No_Return (Id) then
1997 -- Do not inline subprograms that have a contract on the spec or the
1998 -- body. Use the contract(s) instead in GNATprove. This also prevents
1999 -- inlining of subprograms with Extensions_Visible or Volatile_Function.
2001 elsif (Present (Spec_Id) and then Has_Some_Contract (Spec_Id))
2003 (Present (Body_Id) and then Has_Some_Contract (Body_Id))
2007 -- Do not inline expression functions, which are directly inlined at the
2010 elsif (Present (Spec_Id) and then Is_Expression_Function (Spec_Id))
2012 (Present (Body_Id) and then Is_Expression_Function (Body_Id))
2016 -- Do not inline generic subprogram instances. The visibility rules of
2017 -- generic instances plays badly with inlining.
2019 elsif Is_Generic_Instance (Spec_Id) then
2022 -- Only inline subprograms whose spec is marked SPARK_Mode On. For
2023 -- the subprogram body, a similar check is performed after the body
2024 -- is analyzed, as this is where a pragma SPARK_Mode might be inserted.
2026 elsif Present (Spec_Id)
2028 (No (SPARK_Pragma (Spec_Id))
2030 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) /= On)
2034 -- Do not inline subprograms and entries defined inside protected types,
2035 -- which typically are not helper subprograms, which also avoids getting
2036 -- spurious messages on calls that cannot be inlined.
2038 elsif Within_Protected_Type (Id) then
2041 -- Do not inline predicate functions (treated specially by GNATprove)
2043 elsif Is_Predicate_Function (Id) then
2046 -- Do not inline subprograms with a parameter of an unconstrained
2047 -- record type if it has discrimiant dependent fields. Indeed, with
2048 -- such parameters, the frontend cannot always ensure type compliance
2049 -- in record component accesses (in particular with records containing
2052 elsif Has_Formal_With_Per_Object_Constrained_Component (Id) then
2055 -- Do not inline subprograms with a formal parameter or return type of
2056 -- a deep type, as in that case inlining might generate code that
2057 -- violates borrow-checking rules of SPARK 3.10 even if the original
2060 elsif Has_Formal_Or_Result_Of_Deep_Type (Id) then
2063 -- Do not inline subprograms which may be traversal functions. Such
2064 -- inlining introduces temporary variables of named access type for
2065 -- which assignments are move instead of borrow/observe, possibly
2066 -- leading to spurious errors when checking SPARK rules related to
2069 elsif Maybe_Traversal_Function (Id) then
2072 -- Do not inline subprograms with the Skip_Proof or Skip_Flow_And_Proof
2073 -- annotation, which should be handled separately.
2075 elsif Has_Skip_Proof_Annotation (Id) then
2078 -- Do not inline subprograms with the Hide_Info or Unhide_Info
2079 -- annotation, since their scope has special visibility on the
2080 -- precise definition of some entities.
2082 elsif Has_Hide_Unhide_Annotation (Spec_Id, Body_Id) then
2085 -- Do not inline subprograms containing constant declarations with an
2086 -- address clause, as inlining could lead to a spurious violation of
2089 elsif Present (Body_Id)
2091 Has_Constant_With_Address_Clause (Unit_Declaration_Node (Body_Id))
2095 -- Otherwise, this is a subprogram declared inside the private part of a
2096 -- package, or inside a package body, or locally in a subprogram, and it
2097 -- does not have any contract. Inline it.
2102 end Can_Be_Inlined_In_GNATprove_Mode;
2108 procedure Cannot_Inline
2112 Is_Serious : Boolean := False;
2113 Suppress_Info : Boolean := False)
2115 Inline_Prefix : constant String := "cannot inline";
2117 function Starts_With (S, Prefix : String) return Boolean is
2118 (S (S'First .. S'First + Prefix'Length - 1) = Prefix);
2121 -- In GNATprove mode, inlining is the technical means by which the
2122 -- higher-level goal of contextual analysis is reached, so issue
2123 -- messages about failure to apply contextual analysis to a
2124 -- subprogram, rather than failure to inline it.
2127 and then Starts_With (Msg, Inline_Prefix)
2130 Msg_Txt : constant String :=
2131 Msg (Msg'First + Inline_Prefix'Length .. Msg'Last);
2133 New_Msg : constant String :=
2134 "info: no contextual analysis of" & Msg_Txt;
2136 Cannot_Inline (New_Msg, N, Subp, Is_Serious, Suppress_Info);
2141 -- Legacy front-end inlining model
2143 if not Back_End_Inlining then
2145 -- Do not emit warning if this is a predefined unit which is not
2146 -- the main unit. With validity checks enabled, some predefined
2147 -- subprograms may contain nested subprograms and become ineligible
2150 if Is_Predefined_Unit (Get_Source_Unit (Subp))
2151 and then not In_Extended_Main_Source_Unit (Subp)
2155 -- In GNATprove mode, issue an info message when -gnatd_f is set and
2156 -- Suppress_Info is False, and indicate that the subprogram is not
2157 -- always inlined by setting flag Is_Inlined_Always to False.
2159 elsif GNATprove_Mode then
2160 Set_Is_Inlined_Always (Subp, False);
2162 if Debug_Flag_Underscore_F and not Suppress_Info then
2163 Error_Msg_NE (Msg, N, Subp);
2166 elsif Has_Pragma_Inline_Always (Subp) then
2168 -- Remove last character (question mark) to make this into an
2169 -- error, because the Inline_Always pragma cannot be obeyed.
2171 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
2173 elsif Ineffective_Inline_Warnings then
2174 Error_Msg_NE (Msg & "p?", N, Subp);
2177 -- New semantics relying on back-end inlining
2179 elsif Is_Serious then
2181 -- Remove last character (question mark) to make this into an error.
2183 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
2187 -- Do not emit warning if this is a predefined unit which is not
2188 -- the main unit. This behavior is currently provided for backward
2189 -- compatibility but it will be removed when we enforce the
2190 -- strictness of the new rules.
2192 if Is_Predefined_Unit (Get_Source_Unit (Subp))
2193 and then not In_Extended_Main_Source_Unit (Subp)
2197 elsif Has_Pragma_Inline_Always (Subp) then
2199 -- Emit a warning if this is a call to a runtime subprogram
2200 -- which is located inside a generic. Previously this call
2201 -- was silently skipped.
2203 if Is_Generic_Instance (Subp) then
2205 Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
2207 if Is_Predefined_Unit (Get_Source_Unit (Gen_P)) then
2208 Set_Is_Inlined (Subp, False);
2209 Error_Msg_NE (Msg & "p?", N, Subp);
2215 -- Remove last character (question mark) to make this into an
2216 -- error, because the Inline_Always pragma cannot be obeyed.
2218 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
2221 Set_Is_Inlined (Subp, False);
2223 if Ineffective_Inline_Warnings then
2224 Error_Msg_NE (Msg & "p?", N, Subp);
2230 --------------------------------------------
2231 -- Check_And_Split_Unconstrained_Function --
2232 --------------------------------------------
2234 procedure Check_And_Split_Unconstrained_Function
2236 Spec_Id : Entity_Id;
2237 Body_Id : Entity_Id)
2239 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
2240 -- Use generic machinery to build an unexpanded body for the subprogram.
2241 -- This body is subsequently used for inline expansions at call sites.
2243 procedure Build_Return_Object_Formal
2247 -- Create a formal parameter for return object declaration Obj_Decl of
2248 -- an extended return statement and add it to list Formals.
2250 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
2251 -- Return true if we generate code for the function body N, the function
2252 -- body N has no local declarations and its unique statement is a single
2253 -- extended return statement with a handled statements sequence.
2255 procedure Copy_Formals
2257 Subp_Id : Entity_Id;
2259 -- Create new formal parameters from the formal parameters of subprogram
2260 -- Subp_Id and add them to list Formals.
2262 function Copy_Return_Object (Obj_Decl : Node_Id) return Node_Id;
2263 -- Create a copy of return object declaration Obj_Decl of an extended
2264 -- return statement.
2266 procedure Split_Unconstrained_Function
2268 Spec_Id : Entity_Id);
2269 -- N is an inlined function body that returns an unconstrained type and
2270 -- has a single extended return statement. Split N in two subprograms:
2271 -- a procedure P' and a function F'. The formals of P' duplicate the
2272 -- formals of N plus an extra formal which is used to return a value;
2273 -- its body is composed by the declarations and list of statements
2274 -- of the extended return statement of N.
2276 --------------------------
2277 -- Build_Body_To_Inline --
2278 --------------------------
2280 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
2281 procedure Generate_Subprogram_Body
2283 Body_To_Inline : out Node_Id);
2284 -- Generate a parameterless duplicate of subprogram body N. Note that
2285 -- occurrences of pragmas referencing the formals are removed since
2286 -- they have no meaning when the body is inlined and the formals are
2287 -- rewritten (the analysis of the non-inlined body will handle these
2288 -- pragmas). A new internal name is associated with Body_To_Inline.
2290 ------------------------------
2291 -- Generate_Subprogram_Body --
2292 ------------------------------
2294 procedure Generate_Subprogram_Body
2296 Body_To_Inline : out Node_Id)
2299 -- Within an instance, the body to inline must be treated as a
2300 -- nested generic so that proper global references are preserved.
2302 -- Note that we do not do this at the library level, because it
2303 -- is not needed, and furthermore this causes trouble if front
2304 -- end inlining is activated (-gnatN).
2307 and then Scope (Current_Scope) /= Standard_Standard
2310 Copy_Generic_Node (N, Empty, Instantiating => True);
2312 Body_To_Inline := New_Copy_Tree (N);
2315 -- Remove aspects/pragmas that have no meaning in an inlined body
2317 Remove_Aspects_And_Pragmas (Body_To_Inline);
2319 -- We need to capture references to the formals in order
2320 -- to substitute the actuals at the point of inlining, i.e.
2321 -- instantiation. To treat the formals as globals to the body to
2322 -- inline, we nest it within a dummy parameterless subprogram,
2323 -- declared within the real one.
2325 Set_Parameter_Specifications
2326 (Specification (Body_To_Inline), No_List);
2328 -- A new internal name is associated with Body_To_Inline to avoid
2329 -- conflicts when the non-inlined body N is analyzed.
2331 Set_Defining_Unit_Name (Specification (Body_To_Inline),
2332 Make_Temporary (Sloc (N), 'P'));
2333 Set_Corresponding_Spec (Body_To_Inline, Empty);
2334 end Generate_Subprogram_Body;
2338 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
2339 Original_Body : Node_Id;
2340 Body_To_Analyze : Node_Id;
2342 -- Start of processing for Build_Body_To_Inline
2345 pragma Assert (Current_Scope = Spec_Id);
2347 -- Within an instance, the body to inline must be treated as a nested
2348 -- generic, so that the proper global references are preserved. We
2349 -- do not do this at the library level, because it is not needed, and
2350 -- furthermore this causes trouble if front-end inlining is activated
2354 and then Scope (Current_Scope) /= Standard_Standard
2356 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
2359 -- Capture references to formals in order to substitute the actuals
2360 -- at the point of inlining or instantiation. To treat the formals
2361 -- as globals to the body to inline, nest the body within a dummy
2362 -- parameterless subprogram, declared within the real one.
2364 Generate_Subprogram_Body (N, Original_Body);
2366 Copy_Generic_Node (Original_Body, Empty, Instantiating => False);
2368 -- Set return type of function, which is also global and does not
2369 -- need to be resolved.
2371 if Ekind (Spec_Id) = E_Function then
2372 Set_Result_Definition (Specification (Body_To_Analyze),
2373 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
2376 if No (Declarations (N)) then
2377 Set_Declarations (N, New_List (Body_To_Analyze));
2379 Append_To (Declarations (N), Body_To_Analyze);
2382 Preanalyze (Body_To_Analyze);
2384 Push_Scope (Defining_Entity (Body_To_Analyze));
2385 Save_Global_References (Original_Body);
2387 Remove (Body_To_Analyze);
2389 -- Restore environment if previously saved
2392 and then Scope (Current_Scope) /= Standard_Standard
2397 pragma Assert (No (Body_To_Inline (Decl)));
2398 Set_Body_To_Inline (Decl, Original_Body);
2399 Mutate_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
2400 end Build_Body_To_Inline;
2402 --------------------------------
2403 -- Build_Return_Object_Formal --
2404 --------------------------------
2406 procedure Build_Return_Object_Formal
2411 Obj_Def : constant Node_Id := Object_Definition (Obj_Decl);
2412 Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
2416 -- Build the type definition of the formal parameter. The use of
2417 -- New_Copy_Tree ensures that global references preserved in the
2418 -- case of generics.
2420 if Is_Entity_Name (Obj_Def) then
2421 Typ_Def := New_Copy_Tree (Obj_Def);
2423 Typ_Def := New_Copy_Tree (Subtype_Mark (Obj_Def));
2428 -- Obj_Id : [out] Typ_Def
2430 -- Mode OUT should not be used when the return object is declared as
2431 -- a constant. Check the definition of the object declaration because
2432 -- the object has not been analyzed yet.
2435 Make_Parameter_Specification (Loc,
2436 Defining_Identifier =>
2437 Make_Defining_Identifier (Loc, Chars (Obj_Id)),
2438 In_Present => False,
2439 Out_Present => not Constant_Present (Obj_Decl),
2440 Parameter_Type => Typ_Def));
2441 end Build_Return_Object_Formal;
2443 --------------------------------------
2444 -- Can_Split_Unconstrained_Function --
2445 --------------------------------------
2447 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean is
2448 Stmt : constant Node_Id :=
2449 First (Statements (Handled_Statement_Sequence (N)));
2453 -- No user defined declarations allowed in the function except inside
2454 -- the unique return statement; implicit labels are the only allowed
2457 Decl := First (Declarations (N));
2458 while Present (Decl) loop
2459 if Nkind (Decl) /= N_Implicit_Label_Declaration then
2466 -- We only split the inlined function when we are generating the code
2467 -- of its body; otherwise we leave duplicated split subprograms in
2468 -- the tree which (if referenced) generate wrong references at link
2471 return In_Extended_Main_Code_Unit (N)
2472 and then Present (Stmt)
2473 and then Nkind (Stmt) = N_Extended_Return_Statement
2474 and then No (Next (Stmt))
2475 and then Present (Handled_Statement_Sequence (Stmt));
2476 end Can_Split_Unconstrained_Function;
2482 procedure Copy_Formals
2484 Subp_Id : Entity_Id;
2491 Formal := First_Formal (Subp_Id);
2492 while Present (Formal) loop
2493 Spec := Parent (Formal);
2495 -- Create an exact copy of the formal parameter. The use of
2496 -- New_Copy_Tree ensures that global references are preserved
2497 -- in case of generics.
2500 Make_Parameter_Specification (Loc,
2501 Defining_Identifier =>
2502 Make_Defining_Identifier (Sloc (Formal), Chars (Formal)),
2503 In_Present => In_Present (Spec),
2504 Out_Present => Out_Present (Spec),
2505 Null_Exclusion_Present => Null_Exclusion_Present (Spec),
2507 New_Copy_Tree (Parameter_Type (Spec)),
2508 Expression => New_Copy_Tree (Expression (Spec))));
2510 Next_Formal (Formal);
2514 ------------------------
2515 -- Copy_Return_Object --
2516 ------------------------
2518 function Copy_Return_Object (Obj_Decl : Node_Id) return Node_Id is
2519 Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
2522 -- The use of New_Copy_Tree ensures that global references are
2523 -- preserved in case of generics.
2526 Make_Object_Declaration (Sloc (Obj_Decl),
2527 Defining_Identifier =>
2528 Make_Defining_Identifier (Sloc (Obj_Id), Chars (Obj_Id)),
2529 Aliased_Present => Aliased_Present (Obj_Decl),
2530 Constant_Present => Constant_Present (Obj_Decl),
2531 Null_Exclusion_Present => Null_Exclusion_Present (Obj_Decl),
2532 Object_Definition =>
2533 New_Copy_Tree (Object_Definition (Obj_Decl)),
2534 Expression => New_Copy_Tree (Expression (Obj_Decl)));
2535 end Copy_Return_Object;
2537 ----------------------------------
2538 -- Split_Unconstrained_Function --
2539 ----------------------------------
2541 procedure Split_Unconstrained_Function
2543 Spec_Id : Entity_Id)
2545 Loc : constant Source_Ptr := Sloc (N);
2546 Ret_Stmt : constant Node_Id :=
2547 First (Statements (Handled_Statement_Sequence (N)));
2548 Ret_Obj : constant Node_Id :=
2549 First (Return_Object_Declarations (Ret_Stmt));
2551 procedure Build_Procedure
2552 (Proc_Id : out Entity_Id;
2553 Decl_List : out List_Id);
2554 -- Build a procedure containing the statements found in the extended
2555 -- return statement of the unconstrained function body N.
2557 ---------------------
2558 -- Build_Procedure --
2559 ---------------------
2561 procedure Build_Procedure
2562 (Proc_Id : out Entity_Id;
2563 Decl_List : out List_Id)
2565 Formals : constant List_Id := New_List;
2566 Subp_Name : constant Name_Id := New_Internal_Name ('F');
2568 Body_Decls : List_Id := No_List;
2570 Proc_Body : Node_Id;
2571 Proc_Spec : Node_Id;
2574 -- Create formal parameters for the return object and all formals
2575 -- of the unconstrained function in order to pass their values to
2578 Build_Return_Object_Formal
2580 Obj_Decl => Ret_Obj,
2581 Formals => Formals);
2586 Formals => Formals);
2588 Proc_Id := Make_Defining_Identifier (Loc, Chars => Subp_Name);
2591 Make_Procedure_Specification (Loc,
2592 Defining_Unit_Name => Proc_Id,
2593 Parameter_Specifications => Formals);
2595 Decl_List := New_List;
2597 Append_To (Decl_List,
2598 Make_Subprogram_Declaration (Loc, Proc_Spec));
2600 -- Can_Convert_Unconstrained_Function checked that the function
2601 -- has no local declarations except implicit label declarations.
2602 -- Copy these declarations to the built procedure.
2604 if Present (Declarations (N)) then
2605 Body_Decls := New_List;
2607 Decl := First (Declarations (N));
2608 while Present (Decl) loop
2609 pragma Assert (Nkind (Decl) = N_Implicit_Label_Declaration);
2611 Append_To (Body_Decls,
2612 Make_Implicit_Label_Declaration (Loc,
2613 Make_Defining_Identifier (Loc,
2614 Chars => Chars (Defining_Identifier (Decl))),
2615 Label_Construct => Empty));
2621 pragma Assert (Present (Handled_Statement_Sequence (Ret_Stmt)));
2624 Make_Subprogram_Body (Loc,
2625 Specification => Copy_Subprogram_Spec (Proc_Spec),
2626 Declarations => Body_Decls,
2627 Handled_Statement_Sequence =>
2628 New_Copy_Tree (Handled_Statement_Sequence (Ret_Stmt)));
2630 Set_Defining_Unit_Name (Specification (Proc_Body),
2631 Make_Defining_Identifier (Loc, Subp_Name));
2633 Append_To (Decl_List, Proc_Body);
2634 end Build_Procedure;
2638 New_Obj : constant Node_Id := Copy_Return_Object (Ret_Obj);
2640 Proc_Call : Node_Id;
2641 Proc_Id : Entity_Id;
2643 -- Start of processing for Split_Unconstrained_Function
2646 -- Build the associated procedure, analyze it and insert it before
2647 -- the function body N.
2650 Scope : constant Entity_Id := Current_Scope;
2651 Decl_List : List_Id;
2654 Build_Procedure (Proc_Id, Decl_List);
2655 Insert_Actions (N, Decl_List);
2656 Set_Is_Inlined (Proc_Id);
2660 -- Build the call to the generated procedure
2663 Actual_List : constant List_Id := New_List;
2667 Append_To (Actual_List,
2668 New_Occurrence_Of (Defining_Identifier (New_Obj), Loc));
2670 Formal := First_Formal (Spec_Id);
2671 while Present (Formal) loop
2672 Append_To (Actual_List, New_Occurrence_Of (Formal, Loc));
2674 -- Avoid spurious warning on unreferenced formals
2676 Set_Referenced (Formal);
2677 Next_Formal (Formal);
2681 Make_Procedure_Call_Statement (Loc,
2682 Name => New_Occurrence_Of (Proc_Id, Loc),
2683 Parameter_Associations => Actual_List);
2691 -- Proc (New_Obj, ...);
2696 Make_Block_Statement (Loc,
2697 Declarations => New_List (New_Obj),
2698 Handled_Statement_Sequence =>
2699 Make_Handled_Sequence_Of_Statements (Loc,
2700 Statements => New_List (
2704 Make_Simple_Return_Statement (Loc,
2707 (Defining_Identifier (New_Obj), Loc)))));
2709 Rewrite (Ret_Stmt, Blk_Stmt);
2710 end Split_Unconstrained_Function;
2714 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
2716 -- Start of processing for Check_And_Split_Unconstrained_Function
2719 pragma Assert (Back_End_Inlining
2720 and then Ekind (Spec_Id) = E_Function
2721 and then Returns_Unconstrained_Type (Spec_Id)
2722 and then Comes_From_Source (Body_Id)
2723 and then (Has_Pragma_Inline_Always (Spec_Id)
2724 or else Optimization_Level > 0));
2726 -- This routine must not be used in GNATprove mode since GNATprove
2727 -- relies on frontend inlining
2729 pragma Assert (not GNATprove_Mode);
2731 -- No need to split the function if we cannot generate the code
2733 if Serious_Errors_Detected /= 0 then
2737 -- No action needed in stubs since the attribute Body_To_Inline
2740 if Nkind (Decl) = N_Subprogram_Body_Stub then
2743 -- Cannot build the body to inline if the attribute is already set.
2744 -- This attribute may have been set if this is a subprogram renaming
2745 -- declarations (see Freeze.Build_Renamed_Body).
2747 elsif Present (Body_To_Inline (Decl)) then
2750 -- Do not generate a body to inline for protected functions, because the
2751 -- transformation generates a call to a protected procedure, causing
2752 -- spurious errors. We don't inline protected operations anyway, so
2753 -- this is no loss. We might as well ignore intrinsics and foreign
2754 -- conventions as well -- just allow Ada conventions.
2756 elsif not (Convention (Spec_Id) = Convention_Ada
2757 or else Convention (Spec_Id) = Convention_Ada_Pass_By_Copy
2758 or else Convention (Spec_Id) = Convention_Ada_Pass_By_Reference)
2762 -- Check excluded declarations
2764 elsif Has_Excluded_Declaration (Spec_Id, Declarations (N)) then
2767 -- Check excluded statements. There is no need to protect us against
2768 -- exception handlers since they are supported by the GCC backend.
2770 elsif Present (Handled_Statement_Sequence (N))
2771 and then Has_Excluded_Statement
2772 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
2777 -- Build the body to inline only if really needed
2779 if Can_Split_Unconstrained_Function (N) then
2780 Split_Unconstrained_Function (N, Spec_Id);
2781 Build_Body_To_Inline (N, Spec_Id);
2782 Set_Is_Inlined (Spec_Id);
2784 end Check_And_Split_Unconstrained_Function;
2786 ---------------------------------------------
2787 -- Check_Object_Renaming_In_GNATprove_Mode --
2788 ---------------------------------------------
2790 procedure Check_Object_Renaming_In_GNATprove_Mode (Spec_Id : Entity_Id) is
2791 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
2792 Body_Decl : constant Node_Id :=
2793 Unit_Declaration_Node (Corresponding_Body (Decl));
2795 function Check_Object_Renaming (N : Node_Id) return Traverse_Result;
2796 -- Returns Abandon on node N if this is a reference to an object
2797 -- renaming, which will be expanded into the renamed object in
2800 ---------------------------
2801 -- Check_Object_Renaming --
2802 ---------------------------
2804 function Check_Object_Renaming (N : Node_Id) return Traverse_Result is
2806 case Nkind (Original_Node (N)) is
2807 when N_Expanded_Name
2811 Obj_Id : constant Entity_Id := Entity (Original_Node (N));
2813 -- Recognize the case when SPARK expansion rewrites a
2814 -- reference to an object renaming.
2817 and then Is_Object (Obj_Id)
2818 and then Present (Renamed_Object (Obj_Id))
2819 and then Nkind (Renamed_Object (Obj_Id)) not in N_Entity
2821 -- Copy_Generic_Node called for inlining expects the
2822 -- references to global entities to have the same kind
2823 -- in the "generic" code and its "instantiation".
2825 and then Nkind (Original_Node (N)) /=
2826 Nkind (Renamed_Object (Obj_Id))
2837 end Check_Object_Renaming;
2839 function Check_All_Object_Renamings is new
2840 Traverse_Func (Check_Object_Renaming);
2842 -- Start of processing for Check_Object_Renaming_In_GNATprove_Mode
2845 -- Subprograms with object renamings replaced by the special SPARK
2846 -- expansion cannot be inlined.
2848 if Check_All_Object_Renamings (Body_Decl) /= OK then
2849 Cannot_Inline ("cannot inline & (object renaming)?",
2850 Body_Decl, Spec_Id);
2851 Set_Body_To_Inline (Decl, Empty);
2853 end Check_Object_Renaming_In_GNATprove_Mode;
2855 -------------------------------------
2856 -- Check_Package_Body_For_Inlining --
2857 -------------------------------------
2859 procedure Check_Package_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
2860 Bname : Unit_Name_Type;
2865 -- Legacy implementation (relying on frontend inlining)
2867 if not Back_End_Inlining
2868 and then Is_Compilation_Unit (P)
2869 and then not Is_Generic_Instance (P)
2871 Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
2873 E := First_Entity (P);
2874 while Present (E) loop
2875 if Has_Pragma_Inline_Always (E)
2876 or else (Has_Pragma_Inline (E) and Front_End_Inlining)
2878 if not Is_Loaded (Bname) then
2879 Load_Needed_Body (N, OK);
2883 -- Check we are not trying to inline a parent whose body
2884 -- depends on a child, when we are compiling the body of
2885 -- the child. Otherwise we have a potential elaboration
2886 -- circularity with inlined subprograms and with
2887 -- Taft-Amendment types.
2890 Comp : Node_Id; -- Body just compiled
2891 Child_Spec : Entity_Id; -- Spec of main unit
2892 Ent : Entity_Id; -- For iteration
2893 With_Clause : Node_Id; -- Context of body.
2896 if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
2897 and then Present (Body_Entity (P))
2901 ((Unit (Spec_Lib_Unit (Cunit (Main_Unit)))));
2904 Parent (Unit_Declaration_Node (Body_Entity (P)));
2906 -- Check whether the context of the body just
2907 -- compiled includes a child of itself, and that
2908 -- child is the spec of the main compilation.
2910 With_Clause := First (Context_Items (Comp));
2911 while Present (With_Clause) loop
2912 if Nkind (With_Clause) = N_With_Clause
2914 Scope (Entity (Name (With_Clause))) = P
2916 Entity (Name (With_Clause)) = Child_Spec
2918 Error_Msg_Node_2 := Child_Spec;
2920 ("body of & depends on child unit&??",
2923 ("\subprograms in body cannot be inlined??",
2926 -- Disable further inlining from this unit,
2927 -- and keep Taft-amendment types incomplete.
2929 Ent := First_Entity (P);
2930 while Present (Ent) loop
2932 and then Has_Completion_In_Body (Ent)
2934 Set_Full_View (Ent, Empty);
2936 elsif Is_Subprogram (Ent) then
2937 Set_Is_Inlined (Ent, False);
2951 elsif Ineffective_Inline_Warnings then
2952 Error_Msg_Unit_1 := Bname;
2954 ("unable to inline subprograms defined in $?p?", P);
2955 Error_Msg_N ("\body not found?p?", P);
2966 end Check_Package_Body_For_Inlining;
2968 --------------------
2969 -- Cleanup_Scopes --
2970 --------------------
2972 procedure Cleanup_Scopes is
2980 Elmt := First_Elmt (To_Clean);
2981 while Present (Elmt) loop
2982 Scop := Node (Elmt);
2983 Kind := Ekind (Scop);
2985 if Kind = E_Block then
2986 Decl := Parent (Block_Node (Scop));
2989 Decl := Unit_Declaration_Node (Scop);
2991 if Nkind (Decl) in N_Subprogram_Declaration
2992 | N_Task_Type_Declaration
2993 | N_Subprogram_Body_Stub
2995 Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
2999 -- Finalizers are built only for package specs and bodies that are
3000 -- compilation units, so check that we do not have anything else.
3001 -- Moreover, they must be built at most once for each entity during
3002 -- the compilation of the main unit. However, if other units are
3003 -- later compiled for inlining purposes, they may also contain body
3004 -- instances and, therefore, appear again here, so we need to make
3005 -- sure that we do not build two finalizers for them (note that the
3006 -- contents of the finalizer for these units is irrelevant since it
3007 -- is not output in the generated code).
3009 if Kind in E_Package | E_Package_Body then
3011 Unit_Entity : constant Entity_Id :=
3012 (if Kind = E_Package then Scop else Spec_Entity (Scop));
3015 pragma Assert (Is_Compilation_Unit (Unit_Entity)
3016 and then (No (Finalizer (Scop))
3017 or else Unit_Entity /= Main_Unit_Entity));
3019 if No (Finalizer (Scop)) then
3022 Clean_Stmts => No_List,
3024 Defer_Abort => False,
3027 if Present (Fin) then
3028 Set_Finalizer (Scop, Fin);
3035 Expand_Cleanup_Actions (Decl);
3043 -----------------------------------------------
3044 -- Establish_Actual_Mapping_For_Inlined_Call --
3045 -----------------------------------------------
3047 procedure Establish_Actual_Mapping_For_Inlined_Call
3051 Body_Or_Expr_To_Check : Node_Id)
3054 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
3055 -- Determine whether a formal parameter is used only once in
3056 -- Body_Or_Expr_To_Check.
3058 -------------------------
3059 -- Formal_Is_Used_Once --
3060 -------------------------
3062 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
3063 Use_Counter : Nat := 0;
3065 function Count_Uses (N : Node_Id) return Traverse_Result;
3066 -- Traverse the tree and count the uses of the formal parameter.
3067 -- In this case, for optimization purposes, we do not need to
3068 -- continue the traversal once more than one use is encountered.
3074 function Count_Uses (N : Node_Id) return Traverse_Result is
3076 -- The original node is an identifier
3078 if Nkind (N) = N_Identifier
3079 and then Present (Entity (N))
3081 -- Original node's entity points to the one in the copied body
3083 and then Nkind (Entity (N)) = N_Identifier
3084 and then Present (Entity (Entity (N)))
3086 -- The entity of the copied node is the formal parameter
3088 and then Entity (Entity (N)) = Formal
3090 Use_Counter := Use_Counter + 1;
3092 -- If this is a second use then abandon the traversal
3094 if Use_Counter > 1 then
3102 procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
3104 -- Start of processing for Formal_Is_Used_Once
3107 Count_Formal_Uses (Body_Or_Expr_To_Check);
3108 return Use_Counter = 1;
3109 end Formal_Is_Used_Once;
3116 Loc : constant Source_Ptr := Sloc (N);
3119 Temp_Typ : Entity_Id;
3121 -- Start of processing for Establish_Actual_Mapping_For_Inlined_Call
3124 F := First_Formal (Subp);
3125 A := First_Actual (N);
3126 while Present (F) loop
3127 -- Reset Last_Assignment for any parameters of mode out or in out, to
3128 -- prevent spurious warnings about overwriting for assignments to the
3129 -- formal in the inlined code.
3131 if Is_Entity_Name (A) and then Ekind (F) /= E_In_Parameter then
3133 -- In GNATprove mode a protected component acting as an actual
3134 -- subprogram parameter will appear as inlined-for-proof. However,
3135 -- its E_Component entity is not an assignable object, so the
3136 -- assertion in Set_Last_Assignment will fail. We just omit the
3137 -- call to Set_Last_Assignment, because GNATprove flags useless
3138 -- assignments with its own flow analysis.
3140 -- In GNAT mode such a problem does not occur, because protected
3141 -- components are inlined via object renamings whose entity kind
3142 -- E_Variable is assignable.
3144 if Is_Assignable (Entity (A)) then
3145 Set_Last_Assignment (Entity (A), Empty);
3148 (GNATprove_Mode and then Is_Protected_Component (Entity (A)));
3152 -- If the argument may be a controlling argument in a call within
3153 -- the inlined body, we must preserve its class-wide nature to ensure
3154 -- that dynamic dispatching will take place subsequently. If the
3155 -- formal has a constraint, then it must be preserved to retain the
3156 -- semantics of the body.
3158 if Is_Class_Wide_Type (Etype (F))
3159 or else (Is_Access_Type (Etype (F))
3160 and then Is_Class_Wide_Type (Designated_Type (Etype (F))))
3162 Temp_Typ := Etype (F);
3164 elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
3165 and then Etype (F) /= Base_Type (Etype (F))
3166 and then (Is_Constrained (Etype (F))
3168 Is_Fixed_Lower_Bound_Array_Subtype (Etype (F)))
3170 Temp_Typ := Etype (F);
3173 Temp_Typ := Etype (A);
3176 -- If the actual is a simple name or a literal, no need to create a
3177 -- temporary, object can be used directly. Skip this optimization in
3178 -- GNATprove mode, to make sure any check on a type conversion will
3181 if (Is_Entity_Name (A)
3183 (not Is_Scalar_Type (Etype (A))
3184 or else Ekind (Entity (A)) = E_Enumeration_Literal)
3185 and then not GNATprove_Mode)
3187 -- When the actual is an identifier and the corresponding formal is
3188 -- used only once in the original body, the formal can be substituted
3189 -- directly with the actual parameter. Skip this optimization in
3190 -- GNATprove mode, to make sure any check on a type conversion
3194 (Nkind (A) = N_Identifier
3195 and then Formal_Is_Used_Once (F)
3196 and then not GNATprove_Mode)
3198 -- If the actual is a literal and the formal has its address taken,
3199 -- we cannot pass the literal itself as an argument, so its value
3200 -- must be captured in a temporary.
3204 N_Real_Literal | N_Integer_Literal | N_Character_Literal
3205 and then not Address_Taken (F))
3207 if Etype (F) /= Etype (A) then
3209 (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
3211 Set_Renamed_Object (F, A);
3215 Temp := Make_Temporary (Loc, 'C');
3217 -- If the actual for an in/in-out parameter is a view conversion,
3218 -- make it into an unchecked conversion, given that an untagged
3219 -- type conversion is not a proper object for a renaming.
3221 -- In-out conversions that involve real conversions have already
3222 -- been transformed in Expand_Actuals.
3224 if Nkind (A) = N_Type_Conversion
3225 and then Ekind (F) /= E_In_Parameter
3227 New_A := Unchecked_Convert_To (Etype (F), Expression (A));
3229 -- In GNATprove mode, keep the most precise type of the actual for
3230 -- the temporary variable, when the formal type is unconstrained.
3231 -- Otherwise, the AST may contain unexpected assignment statements
3232 -- to a temporary variable of unconstrained type renaming a local
3233 -- variable of constrained type, which is not expected by
3236 elsif Etype (F) /= Etype (A)
3239 or else (Is_Constrained (Etype (F))
3241 Is_Fixed_Lower_Bound_Array_Subtype (Etype (F))))
3243 New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
3244 Temp_Typ := Etype (F);
3247 New_A := Relocate_Node (A);
3250 Set_Sloc (New_A, Sloc (N));
3252 -- If the actual has a by-reference type, it cannot be copied,
3253 -- so its value is captured in a renaming declaration. Otherwise
3254 -- declare a local constant initialized with the actual.
3256 -- We also use a renaming declaration for expressions of an array
3257 -- type that is not bit-packed, both for efficiency reasons and to
3258 -- respect the semantics of the call: in most cases the original
3259 -- call will pass the parameter by reference, and thus the inlined
3260 -- code will have the same semantics.
3262 -- Finally, we need a renaming declaration in the case of limited
3263 -- types for which initialization cannot be by copy either.
3265 if Ekind (F) = E_In_Parameter
3266 and then not Is_By_Reference_Type (Etype (A))
3267 and then not Is_Limited_Type (Etype (A))
3269 (not Is_Array_Type (Etype (A))
3270 or else not Is_Object_Reference (A)
3271 or else Is_Bit_Packed_Array (Etype (A)))
3274 Make_Object_Declaration (Loc,
3275 Defining_Identifier => Temp,
3276 Constant_Present => True,
3277 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3278 Expression => New_A);
3281 -- In GNATprove mode, make an explicit copy of input
3282 -- parameters when formal and actual types differ, to make
3283 -- sure any check on the type conversion will be issued.
3284 -- The legality of the copy is ensured by calling first
3285 -- Call_Can_Be_Inlined_In_GNATprove_Mode.
3288 and then Ekind (F) /= E_Out_Parameter
3289 and then not Same_Type (Etype (F), Etype (A))
3291 pragma Assert (not Is_By_Reference_Type (Etype (A)));
3292 pragma Assert (not Is_Limited_Type (Etype (A)));
3295 Make_Object_Declaration (Loc,
3296 Defining_Identifier => Make_Temporary (Loc, 'C'),
3297 Constant_Present => True,
3298 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3299 Expression => New_Copy_Tree (New_A)));
3303 Make_Object_Renaming_Declaration (Loc,
3304 Defining_Identifier => Temp,
3305 Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
3309 Append (Decl, Decls);
3310 Set_Renamed_Object (F, Temp);
3316 end Establish_Actual_Mapping_For_Inlined_Call;
3318 -------------------------
3319 -- Expand_Inlined_Call --
3320 -------------------------
3322 procedure Expand_Inlined_Call
3325 Orig_Subp : Entity_Id)
3327 Decls : constant List_Id := New_List;
3328 Is_Predef : constant Boolean :=
3329 Is_Predefined_Unit (Get_Source_Unit (Subp));
3330 Loc : constant Source_Ptr := Sloc (N);
3331 Orig_Bod : constant Node_Id :=
3332 Body_To_Inline (Unit_Declaration_Node (Subp));
3334 Uses_Back_End : constant Boolean :=
3335 Back_End_Inlining and then Optimization_Level > 0;
3336 -- The back-end expansion is used if the target supports back-end
3337 -- inlining and some level of optimixation is required; otherwise
3338 -- the inlining takes place fully as a tree expansion.
3342 Exit_Lab : Entity_Id := Empty;
3343 Lab_Decl : Node_Id := Empty;
3346 Ret_Type : Entity_Id;
3350 Is_Unc_Decl : Boolean;
3351 -- If the type returned by the function is unconstrained and the call
3352 -- can be inlined, special processing is required.
3354 Return_Object : Entity_Id := Empty;
3355 -- Entity in declaration in an extended_return_statement
3357 Targ : Node_Id := Empty;
3358 -- The target of the call. If context is an assignment statement then
3359 -- this is the left-hand side of the assignment, else it is a temporary
3360 -- to which the return value is assigned prior to rewriting the call.
3362 Targ1 : Node_Id := Empty;
3363 -- A separate target used when the return type is unconstrained
3365 procedure Make_Exit_Label;
3366 -- Build declaration for exit label to be used in Return statements,
3367 -- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
3368 -- declaration). Does nothing if Exit_Lab already set.
3370 function Process_Formals (N : Node_Id) return Traverse_Result;
3371 -- Replace occurrence of a formal with the corresponding actual, or the
3372 -- thunk generated for it. Replace a return statement with an assignment
3373 -- to the target of the call, with appropriate conversions if needed.
3375 function Process_Formals_In_Aspects (N : Node_Id) return Traverse_Result;
3376 -- Because aspects are linked indirectly to the rest of the tree,
3377 -- replacement of formals appearing in aspect specifications must
3378 -- be performed in a separate pass, using an instantiation of the
3379 -- previous subprogram over aspect specifications reachable from N.
3381 function Process_Sloc (Nod : Node_Id) return Traverse_Result;
3382 -- If the call being expanded is that of an internal subprogram, set the
3383 -- sloc of the generated block to that of the call itself, so that the
3384 -- expansion is skipped by the "next" command in gdb. Same processing
3385 -- for a subprogram in a predefined file, e.g. Ada.Tags. If
3386 -- Debug_Generated_Code is true, suppress this change to simplify our
3387 -- own development. Same in GNATprove mode, to ensure that warnings and
3388 -- diagnostics point to the proper location.
3390 procedure Reset_Dispatching_Calls (N : Node_Id);
3391 -- In subtree N search for occurrences of dispatching calls that use the
3392 -- Ada 2005 Object.Operation notation and the object is a formal of the
3393 -- inlined subprogram. Reset the entity associated with Operation in all
3394 -- the found occurrences.
3396 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
3397 -- If the function body is a single expression, replace call with
3398 -- expression, else insert block appropriately.
3400 ---------------------
3401 -- Make_Exit_Label --
3402 ---------------------
3404 procedure Make_Exit_Label is
3405 Lab_Ent : Entity_Id;
3407 if No (Exit_Lab) then
3408 Lab_Ent := Make_Temporary (Loc, 'L');
3409 Lab_Id := New_Occurrence_Of (Lab_Ent, Loc);
3410 Exit_Lab := Make_Label (Loc, Lab_Id);
3412 Make_Implicit_Label_Declaration (Loc,
3413 Defining_Identifier => Lab_Ent,
3414 Label_Construct => Exit_Lab);
3416 end Make_Exit_Label;
3418 ---------------------
3419 -- Process_Formals --
3420 ---------------------
3422 function Process_Formals (N : Node_Id) return Traverse_Result is
3423 Loc : constant Source_Ptr := Sloc (N);
3428 Had_Private_View : Boolean;
3431 if Is_Entity_Name (N) and then Present (Entity (N)) then
3434 if Is_Formal (E) and then Scope (E) = Subp then
3435 A := Renamed_Object (E);
3437 -- Rewrite the occurrence of the formal into an occurrence of
3438 -- the actual. Also establish visibility on the proper view of
3439 -- the actual's subtype for the body's context (if the actual's
3440 -- subtype is private at the call point but its full view is
3441 -- visible to the body, then the inlined tree here must be
3442 -- analyzed with the full view).
3444 -- The Has_Private_View flag is cleared by rewriting, so it
3445 -- must be explicitly saved and restored, just like when
3446 -- instantiating the body to inline.
3448 if Is_Entity_Name (A) then
3449 Had_Private_View := Has_Private_View (N);
3450 Rewrite (N, New_Occurrence_Of (Entity (A), Loc));
3451 Set_Has_Private_View (N, Had_Private_View);
3452 Check_Private_View (N);
3454 elsif Nkind (A) = N_Defining_Identifier then
3455 Had_Private_View := Has_Private_View (N);
3456 Rewrite (N, New_Occurrence_Of (A, Loc));
3457 Set_Has_Private_View (N, Had_Private_View);
3458 Check_Private_View (N);
3463 Rewrite (N, New_Copy (A));
3469 elsif Is_Entity_Name (N)
3470 and then Present (Return_Object)
3471 and then Chars (N) = Chars (Return_Object)
3473 -- Occurrence within an extended return statement. The return
3474 -- object is local to the body been inlined, and thus the generic
3475 -- copy is not analyzed yet, so we match by name, and replace it
3476 -- with target of call.
3478 if Nkind (Targ) = N_Defining_Identifier then
3479 Rewrite (N, New_Occurrence_Of (Targ, Loc));
3481 Rewrite (N, New_Copy_Tree (Targ));
3486 elsif Nkind (N) = N_Simple_Return_Statement then
3487 if No (Expression (N)) then
3488 Num_Ret := Num_Ret + 1;
3491 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
3494 if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
3495 and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
3497 -- Function body is a single expression. No need for
3503 Num_Ret := Num_Ret + 1;
3507 -- Because of the presence of private types, the views of the
3508 -- expression and the context may be different, so place
3509 -- a type conversion to the context type to avoid spurious
3510 -- errors, e.g. when the expression is a numeric literal and
3511 -- the context is private. If the expression is an aggregate,
3512 -- use a qualified expression, because an aggregate is not a
3513 -- legal argument of a conversion. Ditto for numeric, character
3514 -- and string literals, and attributes that yield a universal
3515 -- type, because those must be resolved to a specific type.
3517 if Nkind (Expression (N)) in N_Aggregate
3518 | N_Character_Literal
3521 or else Yields_Universal_Type (Expression (N))
3524 Make_Qualified_Expression (Loc,
3525 Subtype_Mark => New_Occurrence_Of (Ret_Type, Loc),
3526 Expression => Relocate_Node (Expression (N)));
3528 -- Use an unchecked type conversion between access types, for
3529 -- which a type conversion would not always be valid, as no
3530 -- check may result from the conversion.
3532 elsif Is_Access_Type (Ret_Type) then
3534 Unchecked_Convert_To
3535 (Ret_Type, Relocate_Node (Expression (N)));
3537 -- Otherwise use a type conversion, which may trigger a check
3541 Make_Type_Conversion (Loc,
3542 Subtype_Mark => New_Occurrence_Of (Ret_Type, Loc),
3543 Expression => Relocate_Node (Expression (N)));
3546 if Nkind (Targ) = N_Defining_Identifier then
3548 Make_Assignment_Statement (Loc,
3549 Name => New_Occurrence_Of (Targ, Loc),
3550 Expression => Ret));
3553 Make_Assignment_Statement (Loc,
3554 Name => New_Copy (Targ),
3555 Expression => Ret));
3558 Set_Assignment_OK (Name (N));
3560 if Present (Exit_Lab) then
3562 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
3568 -- An extended return becomes a block whose first statement is the
3569 -- assignment of the initial expression of the return object to the
3570 -- target of the call itself.
3572 elsif Nkind (N) = N_Extended_Return_Statement then
3574 Return_Decl : constant Entity_Id :=
3575 First (Return_Object_Declarations (N));
3579 Return_Object := Defining_Identifier (Return_Decl);
3581 if Present (Expression (Return_Decl)) then
3582 if Nkind (Targ) = N_Defining_Identifier then
3584 Make_Assignment_Statement (Loc,
3585 Name => New_Occurrence_Of (Targ, Loc),
3586 Expression => Expression (Return_Decl));
3589 Make_Assignment_Statement (Loc,
3590 Name => New_Copy (Targ),
3591 Expression => Expression (Return_Decl));
3594 Set_Assignment_OK (Name (Assign));
3596 if No (Handled_Statement_Sequence (N)) then
3597 Set_Handled_Statement_Sequence (N,
3598 Make_Handled_Sequence_Of_Statements (Loc,
3599 Statements => New_List));
3603 Statements (Handled_Statement_Sequence (N)));
3607 Make_Block_Statement (Loc,
3608 Handled_Statement_Sequence =>
3609 Handled_Statement_Sequence (N)));
3614 -- Remove pragma Unreferenced since it may refer to formals that
3615 -- are not visible in the inlined body, and in any case we will
3616 -- not be posting warnings on the inlined body so it is unneeded.
3618 elsif Nkind (N) = N_Pragma
3619 and then Pragma_Name (N) = Name_Unreferenced
3621 Rewrite (N, Make_Null_Statement (Loc));
3627 end Process_Formals;
3629 procedure Replace_Formals is new Traverse_Proc (Process_Formals);
3631 --------------------------------
3632 -- Process_Formals_In_Aspects --
3633 --------------------------------
3635 function Process_Formals_In_Aspects
3636 (N : Node_Id) return Traverse_Result
3639 if Nkind (N) = N_Aspect_Specification then
3640 Replace_Formals (Expression (N));
3643 end Process_Formals_In_Aspects;
3645 procedure Replace_Formals_In_Aspects is
3646 new Traverse_Proc (Process_Formals_In_Aspects);
3652 function Process_Sloc (Nod : Node_Id) return Traverse_Result is
3654 if not Debug_Generated_Code then
3655 Set_Sloc (Nod, Sloc (N));
3656 Set_Comes_From_Source (Nod, False);
3662 procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
3664 ------------------------------
3665 -- Reset_Dispatching_Calls --
3666 ------------------------------
3668 procedure Reset_Dispatching_Calls (N : Node_Id) is
3670 function Do_Reset (N : Node_Id) return Traverse_Result;
3676 function Do_Reset (N : Node_Id) return Traverse_Result is
3678 if Nkind (N) = N_Procedure_Call_Statement
3679 and then Nkind (Name (N)) = N_Selected_Component
3680 and then Nkind (Prefix (Name (N))) = N_Identifier
3681 and then Is_Formal (Entity (Prefix (Name (N))))
3682 and then Is_Dispatching_Operation
3683 (Entity (Selector_Name (Name (N))))
3685 Set_Entity (Selector_Name (Name (N)), Empty);
3691 procedure Do_Reset_Calls is new Traverse_Proc (Do_Reset);
3695 end Reset_Dispatching_Calls;
3697 ---------------------------
3698 -- Rewrite_Function_Call --
3699 ---------------------------
3701 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
3702 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
3703 Fst : constant Node_Id := First (Statements (HSS));
3706 -- Optimize simple case: function body is a single return statement,
3707 -- which has been expanded into an assignment.
3709 if Is_Empty_List (Declarations (Blk))
3710 and then Nkind (Fst) = N_Assignment_Statement
3711 and then No (Next (Fst))
3713 -- The function call may have been rewritten as the temporary
3714 -- that holds the result of the call, in which case remove the
3715 -- now useless declaration.
3717 if Nkind (N) = N_Identifier
3718 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3720 Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
3723 Rewrite (N, Expression (Fst));
3725 elsif Nkind (N) = N_Identifier
3726 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3728 -- The block assigns the result of the call to the temporary
3730 Insert_After (Parent (Entity (N)), Blk);
3732 -- If the context is an assignment, and the left-hand side is free of
3733 -- side effects, the replacement is also safe.
3735 elsif Nkind (Parent (N)) = N_Assignment_Statement
3737 (Is_Entity_Name (Name (Parent (N)))
3739 (Nkind (Name (Parent (N))) = N_Explicit_Dereference
3740 and then Is_Entity_Name (Prefix (Name (Parent (N)))))
3743 (Nkind (Name (Parent (N))) = N_Selected_Component
3744 and then Is_Entity_Name (Prefix (Name (Parent (N))))))
3746 -- Replace assignment with the block
3749 Original_Assignment : constant Node_Id := Parent (N);
3752 -- Preserve the original assignment node to keep the complete
3753 -- assignment subtree consistent enough for Analyze_Assignment
3754 -- to proceed (specifically, the original Lhs node must still
3755 -- have an assignment statement as its parent).
3757 -- We cannot rely on Original_Node to go back from the block
3758 -- node to the assignment node, because the assignment might
3759 -- already be a rewrite substitution.
3761 Discard_Node (Relocate_Node (Original_Assignment));
3762 Rewrite (Original_Assignment, Blk);
3765 elsif Nkind (Parent (N)) = N_Object_Declaration then
3767 -- A call to a function which returns an unconstrained type
3768 -- found in the expression initializing an object-declaration is
3769 -- expanded into a procedure call which must be added after the
3770 -- object declaration.
3772 if Is_Unc_Decl and Back_End_Inlining then
3773 Insert_Action_After (Parent (N), Blk);
3775 Set_Expression (Parent (N), Empty);
3776 Insert_After (Parent (N), Blk);
3779 elsif Is_Unc and then not Back_End_Inlining then
3780 Insert_Before (Parent (N), Blk);
3782 end Rewrite_Function_Call;
3784 -- Start of processing for Expand_Inlined_Call
3787 -- Initializations for old/new semantics
3789 if not Uses_Back_End then
3790 Is_Unc := Is_Array_Type (Etype (Subp))
3791 and then not Is_Constrained (Etype (Subp));
3792 Is_Unc_Decl := False;
3794 Is_Unc := Returns_Unconstrained_Type (Subp)
3795 and then Optimization_Level > 0;
3796 Is_Unc_Decl := Nkind (Parent (N)) = N_Object_Declaration
3800 -- Check for an illegal attempt to inline a recursive procedure. If the
3801 -- subprogram has parameters this is detected when trying to supply a
3802 -- binding for parameters that already have one. For parameterless
3803 -- subprograms this must be done explicitly.
3805 if In_Open_Scopes (Subp) then
3807 ("cannot inline call to recursive subprogram?", N, Subp);
3808 Set_Is_Inlined (Subp, False);
3811 -- Skip inlining if this is not a true inlining since the attribute
3812 -- Body_To_Inline is also set for renamings (see sinfo.ads). For a
3813 -- true inlining, Orig_Bod has code rather than being an entity.
3815 elsif Nkind (Orig_Bod) in N_Entity then
3819 if Nkind (Orig_Bod) in N_Defining_Identifier
3820 | N_Defining_Operator_Symbol
3822 -- Subprogram is renaming_as_body. Calls occurring after the renaming
3823 -- can be replaced with calls to the renamed entity directly, because
3824 -- the subprograms are subtype conformant. If the renamed subprogram
3825 -- is an inherited operation, we must redo the expansion because
3826 -- implicit conversions may be needed. Similarly, if the renamed
3827 -- entity is inlined, expand the call for further optimizations.
3829 Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
3831 if Present (Alias (Orig_Bod)) or else Is_Inlined (Orig_Bod) then
3838 -- Register the call in the list of inlined calls
3840 Append_New_Elmt (N, To => Inlined_Calls);
3842 -- Use generic machinery to copy body of inlined subprogram, as if it
3843 -- were an instantiation, resetting source locations appropriately, so
3844 -- that nested inlined calls appear in the main unit.
3846 Save_Env (Subp, Empty);
3847 Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
3851 if not Uses_Back_End then
3856 Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
3858 Make_Block_Statement (Loc,
3859 Declarations => Declarations (Bod),
3860 Handled_Statement_Sequence =>
3861 Handled_Statement_Sequence (Bod));
3863 if No (Declarations (Bod)) then
3864 Set_Declarations (Blk, New_List);
3867 -- For the unconstrained case, capture the name of the local
3868 -- variable that holds the result. This must be the first
3869 -- declaration in the block, because its bounds cannot depend
3870 -- on local variables. Otherwise there is no way to declare the
3871 -- result outside of the block. Needless to say, in general the
3872 -- bounds will depend on the actuals in the call.
3874 -- If the context is an assignment statement, as is the case
3875 -- for the expansion of an extended return, the left-hand side
3876 -- provides bounds even if the return type is unconstrained.
3880 First_Decl : Node_Id;
3883 First_Decl := First (Declarations (Blk));
3885 -- If the body is a single extended return statement,the
3886 -- resulting block is a nested block.
3888 if No (First_Decl) then
3890 First (Statements (Handled_Statement_Sequence (Blk)));
3892 if Nkind (First_Decl) = N_Block_Statement then
3893 First_Decl := First (Declarations (First_Decl));
3897 -- No front-end inlining possible
3899 if Nkind (First_Decl) /= N_Object_Declaration then
3903 if Nkind (Parent (N)) /= N_Assignment_Statement then
3904 Targ1 := Defining_Identifier (First_Decl);
3906 Targ1 := Name (Parent (N));
3923 Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
3925 Make_Block_Statement (Loc,
3926 Declarations => Declarations (Bod),
3927 Handled_Statement_Sequence =>
3928 Handled_Statement_Sequence (Bod));
3930 -- Inline a call to a function that returns an unconstrained type.
3931 -- The semantic analyzer checked that frontend-inlined functions
3932 -- returning unconstrained types have no declarations and have
3933 -- a single extended return statement. As part of its processing
3934 -- the function was split into two subprograms: a procedure P' and
3935 -- a function F' that has a block with a call to procedure P' (see
3936 -- Split_Unconstrained_Function).
3942 (Statements (Handled_Statement_Sequence (Orig_Bod)))) =
3946 Blk_Stmt : constant Node_Id :=
3947 First (Statements (Handled_Statement_Sequence (Orig_Bod)));
3948 First_Stmt : constant Node_Id :=
3949 First (Statements (Handled_Statement_Sequence (Blk_Stmt)));
3950 Second_Stmt : constant Node_Id := Next (First_Stmt);
3954 (Nkind (First_Stmt) = N_Procedure_Call_Statement
3955 and then Nkind (Second_Stmt) = N_Simple_Return_Statement
3956 and then No (Next (Second_Stmt)));
3961 (Statements (Handled_Statement_Sequence (Orig_Bod))),
3962 Empty, Instantiating => True);
3965 -- Capture the name of the local variable that holds the
3966 -- result. This must be the first declaration in the block,
3967 -- because its bounds cannot depend on local variables.
3968 -- Otherwise there is no way to declare the result outside
3969 -- of the block. Needless to say, in general the bounds will
3970 -- depend on the actuals in the call.
3972 if Nkind (Parent (N)) /= N_Assignment_Statement then
3973 Targ1 := Defining_Identifier (First (Declarations (Blk)));
3975 -- If the context is an assignment statement, as is the case
3976 -- for the expansion of an extended return, the left-hand
3977 -- side provides bounds even if the return type is
3981 Targ1 := Name (Parent (N));
3986 if No (Declarations (Bod)) then
3987 Set_Declarations (Blk, New_List);
3992 -- If this is a derived function, establish the proper return type
3994 if Present (Orig_Subp) and then Orig_Subp /= Subp then
3995 Ret_Type := Etype (Orig_Subp);
3997 Ret_Type := Etype (Subp);
4000 -- Create temporaries for the actuals that are expressions, or that are
4001 -- scalars and require copying to preserve semantics.
4003 Establish_Actual_Mapping_For_Inlined_Call (N, Subp, Decls, Orig_Bod);
4005 -- Establish target of function call. If context is not assignment or
4006 -- declaration, create a temporary as a target. The declaration for the
4007 -- temporary may be subsequently optimized away if the body is a single
4008 -- expression, or if the left-hand side of the assignment is simple
4009 -- enough, i.e. an entity or an explicit dereference of one.
4011 if Ekind (Subp) = E_Function then
4012 if Nkind (Parent (N)) = N_Assignment_Statement
4013 and then Is_Entity_Name (Name (Parent (N)))
4015 Targ := Name (Parent (N));
4017 elsif Nkind (Parent (N)) = N_Assignment_Statement
4018 and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
4019 and then Is_Entity_Name (Prefix (Name (Parent (N))))
4021 Targ := Name (Parent (N));
4023 elsif Nkind (Parent (N)) = N_Assignment_Statement
4024 and then Nkind (Name (Parent (N))) = N_Selected_Component
4025 and then Is_Entity_Name (Prefix (Name (Parent (N))))
4027 Targ := New_Copy_Tree (Name (Parent (N)));
4029 elsif Nkind (Parent (N)) = N_Object_Declaration
4030 and then Is_Limited_Type (Etype (Subp))
4032 Targ := Defining_Identifier (Parent (N));
4034 -- New semantics: In an object declaration avoid an extra copy
4035 -- of the result of a call to an inlined function that returns
4036 -- an unconstrained type
4039 and then Nkind (Parent (N)) = N_Object_Declaration
4042 Targ := Defining_Identifier (Parent (N));
4045 -- Replace call with temporary and create its declaration
4047 Temp := Make_Temporary (Loc, 'C');
4048 Mutate_Ekind (Temp, E_Constant);
4049 Set_Is_Internal (Temp);
4051 -- For the unconstrained case, the generated temporary has the
4052 -- same constrained declaration as the result variable. It may
4053 -- eventually be possible to remove that temporary and use the
4054 -- result variable directly.
4056 if Is_Unc and then Nkind (Parent (N)) /= N_Assignment_Statement
4059 Make_Object_Declaration (Loc,
4060 Defining_Identifier => Temp,
4061 Object_Definition =>
4062 New_Copy_Tree (Object_Definition (Parent (Targ1))));
4064 Replace_Formals (Decl);
4068 Make_Object_Declaration (Loc,
4069 Defining_Identifier => Temp,
4070 Object_Definition => New_Occurrence_Of (Ret_Type, Loc));
4072 Set_Etype (Temp, Ret_Type);
4075 Set_No_Initialization (Decl);
4076 Append (Decl, Decls);
4077 Rewrite (N, New_Occurrence_Of (Temp, Loc));
4082 Insert_Actions (N, Decls);
4086 -- Special management for inlining a call to a function that returns
4087 -- an unconstrained type and initializes an object declaration: we
4088 -- avoid generating undesired extra calls and goto statements.
4091 -- function Func (...) return String is
4094 -- Result : String (1 .. 4);
4096 -- Proc (Result, ...);
4101 -- Result : String := Func (...);
4103 -- Replace this object declaration by:
4105 -- Result : String (1 .. 4);
4106 -- Proc (Result, ...);
4108 Remove_Homonym (Targ);
4111 Make_Object_Declaration
4113 Defining_Identifier => Targ,
4114 Object_Definition =>
4115 New_Copy_Tree (Object_Definition (Parent (Targ1))));
4116 Replace_Formals (Decl);
4117 Set_No_Initialization (Decl);
4118 Rewrite (Parent (N), Decl);
4119 Analyze (Parent (N));
4121 -- Avoid spurious warnings since we know that this declaration is
4122 -- referenced by the procedure call.
4124 Set_Never_Set_In_Source (Targ, False);
4126 -- Remove the local declaration of the extended return stmt from the
4129 Remove (Parent (Targ1));
4131 -- Update the reference to the result (since we have rewriten the
4132 -- object declaration)
4135 Blk_Call_Stmt : Node_Id;
4138 -- Capture the call to the procedure
4141 First (Statements (Handled_Statement_Sequence (Blk)));
4143 (Nkind (Blk_Call_Stmt) = N_Procedure_Call_Statement);
4145 Remove (First (Parameter_Associations (Blk_Call_Stmt)));
4146 Prepend_To (Parameter_Associations (Blk_Call_Stmt),
4147 New_Occurrence_Of (Targ, Loc));
4150 -- Remove the return statement
4153 (Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
4154 N_Simple_Return_Statement);
4156 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
4159 -- Traverse the tree and replace formals with actuals or their thunks.
4160 -- Attach block to tree before analysis and rewriting.
4162 Replace_Formals (Blk);
4163 Replace_Formals_In_Aspects (Blk);
4164 Set_Parent (Blk, N);
4166 if GNATprove_Mode then
4169 elsif not Comes_From_Source (Subp) or else Is_Predef then
4175 -- No action needed since return statement has been already removed
4179 elsif Present (Exit_Lab) then
4181 -- If there's a single return statement at the end of the subprogram,
4182 -- the corresponding goto statement and the corresponding label are
4187 Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
4190 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
4192 Append (Lab_Decl, (Declarations (Blk)));
4193 Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
4197 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
4198 -- on conflicting private views that Gigi would ignore. If this is a
4199 -- predefined unit, analyze with checks off, as is done in the non-
4200 -- inlined run-time units.
4203 I_Flag : constant Boolean := In_Inlined_Body;
4206 In_Inlined_Body := True;
4210 Style : constant Boolean := Style_Check;
4213 Style_Check := False;
4215 -- Search for dispatching calls that use the Object.Operation
4216 -- notation using an Object that is a parameter of the inlined
4217 -- function. We reset the decoration of Operation to force
4218 -- the reanalysis of the inlined dispatching call because
4219 -- the actual object has been inlined.
4221 Reset_Dispatching_Calls (Blk);
4223 -- In GNATprove mode, always consider checks on, even for
4224 -- predefined units.
4226 if GNATprove_Mode then
4229 Analyze (Blk, Suppress => All_Checks);
4232 Style_Check := Style;
4239 In_Inlined_Body := I_Flag;
4242 if Ekind (Subp) = E_Procedure then
4246 Rewrite_Function_Call (N, Blk);
4251 -- For the unconstrained case, the replacement of the call has been
4252 -- made prior to the complete analysis of the generated declarations.
4253 -- Propagate the proper type now.
4256 if Nkind (N) = N_Identifier then
4257 Set_Etype (N, Etype (Entity (N)));
4259 Set_Etype (N, Etype (Targ1));
4266 -- Cleanup mapping between formals and actuals for other expansions
4268 Reset_Actual_Mapping_For_Inlined_Call (Subp);
4269 end Expand_Inlined_Call;
4271 --------------------------
4272 -- Get_Code_Unit_Entity --
4273 --------------------------
4275 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id is
4276 Unit : Entity_Id := Cunit_Entity (Get_Code_Unit (E));
4279 if Ekind (Unit) = E_Package_Body then
4280 Unit := Spec_Entity (Unit);
4284 end Get_Code_Unit_Entity;
4286 ------------------------------
4287 -- Has_Excluded_Declaration --
4288 ------------------------------
4290 function Has_Excluded_Declaration
4292 Decls : List_Id) return Boolean
4294 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
4295 -- Nested subprograms make a given body ineligible for inlining, but
4296 -- we make an exception for instantiations of unchecked conversion.
4297 -- The body has not been analyzed yet, so check the name, and verify
4298 -- that the visible entity with that name is the predefined unit.
4300 -----------------------------
4301 -- Is_Unchecked_Conversion --
4302 -----------------------------
4304 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
4305 Id : constant Node_Id := Name (D);
4309 if Nkind (Id) = N_Identifier
4310 and then Chars (Id) = Name_Unchecked_Conversion
4312 Conv := Current_Entity (Id);
4314 elsif Nkind (Id) in N_Selected_Component | N_Expanded_Name
4315 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
4317 Conv := Current_Entity (Selector_Name (Id));
4322 return Present (Conv)
4323 and then Is_Predefined_Unit (Get_Source_Unit (Conv))
4324 and then Is_Intrinsic_Subprogram (Conv);
4325 end Is_Unchecked_Conversion;
4331 -- Start of processing for Has_Excluded_Declaration
4334 -- No action needed if the check is not needed
4336 if not Check_Inlining_Restrictions then
4340 Decl := First (Decls);
4341 while Present (Decl) loop
4343 -- First declarations universally excluded
4345 if Nkind (Decl) = N_Package_Declaration then
4347 ("cannot inline & (nested package declaration)?", Decl, Subp);
4350 elsif Nkind (Decl) = N_Package_Instantiation then
4352 ("cannot inline & (nested package instantiation)?", Decl, Subp);
4356 -- Then declarations excluded only for front-end inlining
4358 if Back_End_Inlining then
4361 elsif Nkind (Decl) = N_Task_Type_Declaration
4362 or else Nkind (Decl) = N_Single_Task_Declaration
4365 ("cannot inline & (nested task type declaration)?", Decl, Subp);
4368 elsif Nkind (Decl) in N_Protected_Type_Declaration
4369 | N_Single_Protected_Declaration
4372 ("cannot inline & (nested protected type declaration)?",
4376 elsif Nkind (Decl) = N_Subprogram_Body then
4378 ("cannot inline & (nested subprogram)?", Decl, Subp);
4381 elsif Nkind (Decl) = N_Function_Instantiation
4382 and then not Is_Unchecked_Conversion (Decl)
4385 ("cannot inline & (nested function instantiation)?", Decl, Subp);
4388 elsif Nkind (Decl) = N_Procedure_Instantiation then
4390 ("cannot inline & (nested procedure instantiation)?",
4394 -- Subtype declarations with predicates will generate predicate
4395 -- functions, i.e. nested subprogram bodies, so inlining is not
4398 elsif Nkind (Decl) = N_Subtype_Declaration then
4404 A := First (Aspect_Specifications (Decl));
4405 while Present (A) loop
4406 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
4408 if A_Id = Aspect_Predicate
4409 or else A_Id = Aspect_Static_Predicate
4410 or else A_Id = Aspect_Dynamic_Predicate
4413 ("cannot inline & (subtype declaration with "
4414 & "predicate)?", Decl, Subp);
4427 end Has_Excluded_Declaration;
4429 ----------------------------
4430 -- Has_Excluded_Statement --
4431 ----------------------------
4433 function Has_Excluded_Statement
4435 Stats : List_Id) return Boolean
4441 -- No action needed if the check is not needed
4443 if not Check_Inlining_Restrictions then
4448 while Present (S) loop
4449 if Nkind (S) in N_Abort_Statement
4450 | N_Asynchronous_Select
4451 | N_Conditional_Entry_Call
4452 | N_Delay_Relative_Statement
4453 | N_Delay_Until_Statement
4454 | N_Selective_Accept
4455 | N_Timed_Entry_Call
4458 ("cannot inline & (non-allowed statement)?", S, Subp);
4461 elsif Nkind (S) = N_Block_Statement then
4462 if Has_Excluded_Declaration (Subp, Declarations (S)) then
4465 elsif Present (Handled_Statement_Sequence (S)) then
4466 if not Back_End_Inlining
4469 (Exception_Handlers (Handled_Statement_Sequence (S)))
4472 ("cannot inline& (exception handler)?",
4473 First (Exception_Handlers
4474 (Handled_Statement_Sequence (S))),
4478 elsif Has_Excluded_Statement
4479 (Subp, Statements (Handled_Statement_Sequence (S)))
4485 elsif Nkind (S) = N_Case_Statement then
4486 E := First (Alternatives (S));
4487 while Present (E) loop
4488 if Has_Excluded_Statement (Subp, Statements (E)) then
4495 elsif Nkind (S) = N_If_Statement then
4496 if Has_Excluded_Statement (Subp, Then_Statements (S)) then
4500 if Present (Elsif_Parts (S)) then
4501 E := First (Elsif_Parts (S));
4502 while Present (E) loop
4503 if Has_Excluded_Statement (Subp, Then_Statements (E)) then
4511 if Present (Else_Statements (S))
4512 and then Has_Excluded_Statement (Subp, Else_Statements (S))
4517 elsif Nkind (S) = N_Loop_Statement
4518 and then Has_Excluded_Statement (Subp, Statements (S))
4522 elsif Nkind (S) = N_Extended_Return_Statement then
4523 if Present (Handled_Statement_Sequence (S))
4525 Has_Excluded_Statement
4526 (Subp, Statements (Handled_Statement_Sequence (S)))
4530 elsif not Back_End_Inlining
4531 and then Present (Handled_Statement_Sequence (S))
4533 Present (Exception_Handlers
4534 (Handled_Statement_Sequence (S)))
4537 ("cannot inline& (exception handler)?",
4538 First (Exception_Handlers (Handled_Statement_Sequence (S))),
4548 end Has_Excluded_Statement;
4550 --------------------------
4551 -- Has_Initialized_Type --
4552 --------------------------
4554 function Has_Initialized_Type (E : Entity_Id) return Boolean is
4555 E_Body : constant Node_Id := Subprogram_Body (E);
4559 if No (E_Body) then -- imported subprogram
4563 Decl := First (Declarations (E_Body));
4564 while Present (Decl) loop
4565 if Nkind (Decl) = N_Full_Type_Declaration
4566 and then Comes_From_Source (Decl)
4567 and then Present (Init_Proc (Defining_Identifier (Decl)))
4577 end Has_Initialized_Type;
4579 -----------------------
4580 -- Has_Single_Return --
4581 -----------------------
4583 function Has_Single_Return (N : Node_Id) return Boolean is
4584 Return_Statement : Node_Id := Empty;
4586 function Check_Return (N : Node_Id) return Traverse_Result;
4592 function Check_Return (N : Node_Id) return Traverse_Result is
4594 if Nkind (N) = N_Simple_Return_Statement then
4595 if Present (Expression (N))
4596 and then Is_Entity_Name (Expression (N))
4598 pragma Assert (Present (Entity (Expression (N))));
4600 if No (Return_Statement) then
4601 Return_Statement := N;
4606 (Present (Entity (Expression (Return_Statement))));
4608 if Entity (Expression (N)) =
4609 Entity (Expression (Return_Statement))
4617 -- A return statement within an extended return is a noop after
4620 elsif No (Expression (N))
4621 and then Nkind (Parent (Parent (N))) =
4622 N_Extended_Return_Statement
4627 -- Expression has wrong form
4632 -- We can only inline a build-in-place function if it has a single
4635 elsif Nkind (N) = N_Extended_Return_Statement then
4636 if No (Return_Statement) then
4637 Return_Statement := N;
4649 function Check_All_Returns is new Traverse_Func (Check_Return);
4651 -- Start of processing for Has_Single_Return
4654 if Check_All_Returns (N) /= OK then
4657 elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
4662 Present (First (Declarations (N)))
4663 and then Nkind (First (Declarations (N))) = N_Object_Declaration
4664 and then Entity (Expression (Return_Statement)) =
4665 Defining_Identifier (First (Declarations (N)));
4667 end Has_Single_Return;
4669 -----------------------------
4670 -- In_Main_Unit_Or_Subunit --
4671 -----------------------------
4673 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean is
4674 Comp : Node_Id := Cunit (Get_Code_Unit (E));
4677 -- Check whether the subprogram or package to inline is within the main
4678 -- unit or its spec or within a subunit. In either case there are no
4679 -- additional bodies to process. If the subprogram appears in a parent
4680 -- of the current unit, the check on whether inlining is possible is
4681 -- done in Analyze_Inlined_Bodies.
4683 while Nkind (Unit (Comp)) = N_Subunit loop
4684 Comp := Subunit_Parent (Comp);
4687 return Comp = Cunit (Main_Unit)
4688 or else Comp = Other_Comp_Unit (Cunit (Main_Unit));
4689 end In_Main_Unit_Or_Subunit;
4695 procedure Initialize is
4697 Pending_Instantiations.Init;
4698 Called_Pending_Instantiations.Init;
4699 Inlined_Bodies.Init;
4703 for J in Hash_Headers'Range loop
4704 Hash_Headers (J) := No_Subp;
4707 Inlined_Calls := No_Elist;
4708 Backend_Calls := No_Elist;
4709 Backend_Instances := No_Elist;
4710 Backend_Inlined_Subps := No_Elist;
4711 Backend_Not_Inlined_Subps := No_Elist;
4714 ---------------------------------
4715 -- Inline_Static_Function_Call --
4716 ---------------------------------
4718 procedure Inline_Static_Function_Call (N : Node_Id; Subp : Entity_Id) is
4720 function Replace_Formal (N : Node_Id) return Traverse_Result;
4721 -- Replace each occurrence of a formal with the
4722 -- corresponding actual, using the mapping created
4723 -- by Establish_Actual_Mapping_For_Inlined_Call.
4725 function Reset_Sloc (Nod : Node_Id) return Traverse_Result;
4726 -- Reset the Sloc of a node to that of the call itself, so that errors
4727 -- will be flagged on the call to the static expression function itself
4728 -- rather than on the expression of the function's declaration.
4730 --------------------
4731 -- Replace_Formal --
4732 --------------------
4734 function Replace_Formal (N : Node_Id) return Traverse_Result is
4739 if Is_Entity_Name (N) and then Present (Entity (N)) then
4742 if Is_Formal (E) and then Scope (E) = Subp then
4743 A := Renamed_Object (E);
4745 if Nkind (A) = N_Defining_Identifier then
4746 Rewrite (N, New_Occurrence_Of (A, Sloc (N)));
4751 Rewrite (N, New_Copy (A));
4762 procedure Replace_Formals is new Traverse_Proc (Replace_Formal);
4768 function Reset_Sloc (Nod : Node_Id) return Traverse_Result is
4770 Set_Sloc (Nod, Sloc (N));
4771 Set_Comes_From_Source (Nod, False);
4776 procedure Reset_Slocs is new Traverse_Proc (Reset_Sloc);
4778 -- Start of processing for Inline_Static_Function_Call
4781 pragma Assert (Is_Static_Function_Call (N));
4784 Decls : constant List_Id := New_List;
4785 Func_Expr : constant Node_Id :=
4786 Expression_Of_Expression_Function (Subp);
4787 Expr_Copy : constant Node_Id := New_Copy_Tree (Func_Expr);
4790 -- Create a mapping from formals to actuals, also creating temps in
4791 -- Decls, when needed, to hold the actuals.
4793 Establish_Actual_Mapping_For_Inlined_Call (N, Subp, Decls, Func_Expr);
4795 -- Ensure that the copy has the same parent as the call (this seems
4796 -- to matter when GNATprove_Mode is set and there are nested static
4797 -- calls; prevents blowups in Insert_Actions, though it's not clear
4798 -- exactly why this is needed???).
4800 Set_Parent (Expr_Copy, Parent (N));
4802 Insert_Actions (N, Decls);
4804 -- Now substitute actuals for their corresponding formal references
4805 -- within the expression.
4807 Replace_Formals (Expr_Copy);
4809 Reset_Slocs (Expr_Copy);
4811 -- Apply a qualified expression with the function's result subtype,
4812 -- to ensure that we check the expression against any constraint
4813 -- or predicate, which will cause the call to be illegal if the
4814 -- folded expression doesn't satisfy them. (The predicate case
4815 -- might not get checked if the subtype hasn't been frozen yet,
4816 -- which can happen if this static expression happens to be what
4817 -- causes the freezing, because Has_Static_Predicate doesn't get
4818 -- set on the subtype until it's frozen and Build_Predicates is
4819 -- called. It's not clear how to address this case. ???)
4822 Make_Qualified_Expression (Sloc (Expr_Copy),
4824 New_Occurrence_Of (Etype (N), Sloc (Expr_Copy)),
4826 Relocate_Node (Expr_Copy)));
4828 Set_Etype (Expr_Copy, Etype (N));
4830 Analyze_And_Resolve (Expr_Copy, Etype (N));
4832 -- Finally rewrite the function call as the folded static result
4834 Rewrite (N, Expr_Copy);
4836 -- Cleanup mapping between formals and actuals for other expansions
4838 Reset_Actual_Mapping_For_Inlined_Call (Subp);
4840 end Inline_Static_Function_Call;
4842 ------------------------
4843 -- Instantiate_Bodies --
4844 ------------------------
4846 -- Generic bodies contain all the non-local references, so an
4847 -- instantiation does not need any more context than Standard
4848 -- itself, even if the instantiation appears in an inner scope.
4849 -- Generic associations have verified that the contract model is
4850 -- satisfied, so that any error that may occur in the analysis of
4851 -- the body is an internal error.
4853 procedure Instantiate_Bodies is
4855 procedure Instantiate_Body (Info : Pending_Body_Info);
4856 -- Instantiate a pending body
4858 ------------------------
4859 -- Instantiate_Body --
4860 ------------------------
4862 procedure Instantiate_Body (Info : Pending_Body_Info) is
4866 -- If the instantiation node is absent, it has been removed as part
4867 -- of unreachable code.
4869 if No (Info.Inst_Node) then
4872 -- If the instantiation node is a package body, this means that the
4873 -- instance is a compilation unit and the instantiation has already
4874 -- been performed by Build_Instance_Compilation_Unit_Nodes.
4876 elsif Nkind (Info.Inst_Node) = N_Package_Body then
4879 -- For other package instances, instantiate the body and register the
4880 -- finalization scope, if any, for subsequent generation of cleanups.
4882 elsif Nkind (Info.Inst_Node) = N_Package_Instantiation then
4884 -- If the enclosing finalization scope is a package body, set the
4885 -- In_Package_Body flag on its spec. This is required, in the case
4886 -- where the body contains other package instantiations that have
4887 -- a body, for Analyze_Package_Instantiation to compute a correct
4888 -- finalization scope.
4890 if Present (Info.Fin_Scop)
4891 and then Ekind (Info.Fin_Scop) = E_Package_Body
4893 Set_In_Package_Body (Spec_Entity (Info.Fin_Scop), True);
4894 Instantiate_Package_Body (Info);
4895 Set_In_Package_Body (Spec_Entity (Info.Fin_Scop), False);
4897 Instantiate_Package_Body (Info);
4900 -- No need to generate cleanups if the main unit is generic
4902 if Present (Info.Fin_Scop)
4903 and then not Is_Generic_Unit (Main_Unit_Entity)
4905 Scop := Info.Fin_Scop;
4907 -- If the enclosing finalization scope is dynamic, the instance
4908 -- may have been relocated, for example if it was declared in a
4909 -- protected entry, protected subprogram, or task body.
4911 if Is_Dynamic_Scope (Scop) then
4913 Enclosing_Dynamic_Scope (Defining_Entity (Info.Act_Decl));
4916 Add_Scope_To_Clean (Scop);
4919 -- For subprogram instances, always instantiate the body
4922 Instantiate_Subprogram_Body (Info);
4924 end Instantiate_Body;
4927 Info : Pending_Body_Info;
4929 -- Start of processing for Instantiate_Bodies
4932 if Serious_Errors_Detected = 0 then
4933 Expander_Active := (Operating_Mode = Opt.Generate_Code);
4934 Push_Scope (Standard_Standard);
4935 To_Clean := New_Elmt_List;
4937 -- A body instantiation may generate additional instantiations, so
4938 -- the following loop must scan to the end of a possibly expanding
4939 -- set (that's why we cannot simply use a FOR loop here). We must
4940 -- also capture the element lest the set be entirely reallocated.
4943 if Back_End_Inlining then
4944 while J <= Called_Pending_Instantiations.Last
4945 and then Serious_Errors_Detected = 0
4947 K := Called_Pending_Instantiations.Table (J);
4948 Info := Pending_Instantiations.Table (K);
4949 Instantiate_Body (Info);
4955 while J <= Pending_Instantiations.Last
4956 and then Serious_Errors_Detected = 0
4958 Info := Pending_Instantiations.Table (J);
4959 Instantiate_Body (Info);
4965 -- Reset the table of instantiations. Additional instantiations
4966 -- may be added through inlining, when additional bodies are
4969 if Back_End_Inlining then
4970 Called_Pending_Instantiations.Init;
4972 Pending_Instantiations.Init;
4975 -- Expand the cleanup actions of scopes that contain instantiations
4977 if Expander_Active then
4983 end Instantiate_Bodies;
4989 function Is_Nested (E : Entity_Id) return Boolean is
4994 while Scop /= Standard_Standard loop
4995 if Is_Subprogram (Scop) then
4998 elsif Ekind (Scop) = E_Task_Type
4999 or else Ekind (Scop) = E_Entry
5000 or else Ekind (Scop) = E_Entry_Family
5005 Scop := Scope (Scop);
5011 ------------------------
5012 -- List_Inlining_Info --
5013 ------------------------
5015 procedure List_Inlining_Info is
5021 if not Debug_Flag_Dot_J then
5025 -- Generate listing of calls inlined by the frontend
5027 if Present (Inlined_Calls) then
5029 Elmt := First_Elmt (Inlined_Calls);
5030 while Present (Elmt) loop
5033 if not In_Internal_Unit (Nod) then
5037 Write_Str ("List of calls inlined by the frontend");
5044 Write_Location (Sloc (Nod));
5053 -- Generate listing of calls passed to the backend
5055 if Present (Backend_Calls) then
5058 Elmt := First_Elmt (Backend_Calls);
5059 while Present (Elmt) loop
5062 if not In_Internal_Unit (Nod) then
5066 Write_Str ("List of inlined calls passed to the backend");
5073 Write_Location (Sloc (Nod));
5081 -- Generate listing of instances inlined for the backend
5083 if Present (Backend_Instances) then
5086 Elmt := First_Elmt (Backend_Instances);
5087 while Present (Elmt) loop
5090 if not In_Internal_Unit (Nod) then
5094 Write_Str ("List of instances inlined for the backend");
5101 Write_Location (Sloc (Nod));
5109 -- Generate listing of subprograms passed to the backend
5111 if Present (Backend_Inlined_Subps) and then Back_End_Inlining then
5114 Elmt := First_Elmt (Backend_Inlined_Subps);
5115 while Present (Elmt) loop
5118 if not In_Internal_Unit (Nod) then
5123 ("List of inlined subprograms passed to the backend");
5130 Write_Name (Chars (Nod));
5132 Write_Location (Sloc (Nod));
5141 -- Generate listing of subprograms that cannot be inlined by the backend
5143 if Present (Backend_Not_Inlined_Subps) and then Back_End_Inlining then
5146 Elmt := First_Elmt (Backend_Not_Inlined_Subps);
5147 while Present (Elmt) loop
5150 if not In_Internal_Unit (Nod) then
5155 ("List of subprograms that cannot be inlined by backend");
5162 Write_Name (Chars (Nod));
5164 Write_Location (Sloc (Nod));
5172 end List_Inlining_Info;
5180 Pending_Instantiations.Release;
5181 Pending_Instantiations.Locked := True;
5182 Called_Pending_Instantiations.Release;
5183 Called_Pending_Instantiations.Locked := True;
5184 Inlined_Bodies.Release;
5185 Inlined_Bodies.Locked := True;
5187 Successors.Locked := True;
5189 Inlined.Locked := True;
5192 --------------------------------
5193 -- Remove_Aspects_And_Pragmas --
5194 --------------------------------
5196 procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id) is
5197 procedure Remove_Items (List : List_Id);
5198 -- Remove all useless aspects/pragmas from a particular list
5204 procedure Remove_Items (List : List_Id) is
5207 Next_Item : Node_Id;
5210 -- Traverse the list looking for an aspect specification or a pragma
5212 Item := First (List);
5213 while Present (Item) loop
5214 Next_Item := Next (Item);
5216 if Nkind (Item) = N_Aspect_Specification then
5217 Item_Id := Identifier (Item);
5218 elsif Nkind (Item) = N_Pragma then
5219 Item_Id := Pragma_Identifier (Item);
5224 if Present (Item_Id)
5225 and then Chars (Item_Id) in Name_Always_Terminates
5226 | Name_Contract_Cases
5229 | Name_Exceptional_Cases
5231 | Name_Postcondition
5234 | Name_Refined_Global
5235 | Name_Refined_Depends
5237 | Name_Subprogram_Variant
5250 -- Start of processing for Remove_Aspects_And_Pragmas
5253 Remove_Items (Aspect_Specifications (Body_Decl));
5254 Remove_Items (Declarations (Body_Decl));
5256 -- Pragmas Unmodified, Unreferenced, and Unused may additionally appear
5257 -- in the body of the subprogram.
5259 Remove_Items (Statements (Handled_Statement_Sequence (Body_Decl)));
5260 end Remove_Aspects_And_Pragmas;
5262 --------------------------
5263 -- Remove_Dead_Instance --
5264 --------------------------
5266 procedure Remove_Dead_Instance (N : Node_Id) is
5268 for J in 0 .. Pending_Instantiations.Last loop
5269 if Pending_Instantiations.Table (J).Inst_Node = N then
5270 Pending_Instantiations.Table (J).Inst_Node := Empty;
5274 end Remove_Dead_Instance;
5276 -------------------------------------------
5277 -- Reset_Actual_Mapping_For_Inlined_Call --
5278 -------------------------------------------
5280 procedure Reset_Actual_Mapping_For_Inlined_Call (Subp : Entity_Id) is
5281 F : Entity_Id := First_Formal (Subp);
5284 while Present (F) loop
5285 Set_Renamed_Object (F, Empty);
5288 end Reset_Actual_Mapping_For_Inlined_Call;