1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2025, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
27 with Aspects; use Aspects;
28 with Atree; use Atree;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Einfo.Entities; use Einfo.Entities;
32 with Einfo.Utils; use Einfo.Utils;
33 with Elists; use Elists;
34 with Errout; use Errout;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Util; use Exp_Util;
38 with Fname; use Fname;
39 with Fname.UF; use Fname.UF;
41 with Namet; use Namet;
42 with Nmake; use Nmake;
43 with Nlists; use Nlists;
44 with Output; use Output;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Ch8; use Sem_Ch8;
47 with Sem_Ch10; use Sem_Ch10;
48 with Sem_Ch12; use Sem_Ch12;
49 with Sem_Prag; use Sem_Prag;
50 with Sem_Res; use Sem_Res;
51 with Sem_Util; use Sem_Util;
52 with Sinfo; use Sinfo;
53 with Sinfo.Nodes; use Sinfo.Nodes;
54 with Sinfo.Utils; use Sinfo.Utils;
55 with Sinput; use Sinput;
56 with Snames; use Snames;
57 with Stand; use Stand;
59 with Tbuild; use Tbuild;
60 with Uintp; use Uintp;
61 with Uname; use Uname;
65 package body Inline is
67 Check_Inlining_Restrictions : constant Boolean := True;
68 -- In the following cases the frontend rejects inlining because they
69 -- are not handled well by the backend. This variable facilitates
70 -- disabling these restrictions to evaluate future versions of the
71 -- GCC backend in which some of the restrictions may be supported.
73 -- - subprograms that have:
74 -- - nested subprograms
76 -- - package declarations
77 -- - task or protected object declarations
78 -- - some of the following statements:
80 -- - asynchronous-select
81 -- - conditional-entry-call
87 Inlined_Calls : Elist_Id;
88 -- List of frontend inlined calls
90 Backend_Calls : Elist_Id;
91 -- List of inline calls passed to the backend
93 Backend_Instances : Elist_Id;
94 -- List of instances inlined for the backend
96 Backend_Inlined_Subps : Elist_Id;
97 -- List of subprograms inlined by the backend
99 Backend_Not_Inlined_Subps : Elist_Id;
100 -- List of subprograms that cannot be inlined by the backend
102 -----------------------------
103 -- Pending_Instantiations --
104 -----------------------------
106 -- We make entries in this table for the pending instantiations of generic
107 -- bodies that are created during semantic analysis. After the analysis is
108 -- complete, calling Instantiate_Bodies performs the actual instantiations.
110 package Pending_Instantiations is new Table.Table (
111 Table_Component_Type => Pending_Body_Info,
112 Table_Index_Type => Int,
113 Table_Low_Bound => 0,
114 Table_Initial => Alloc.Pending_Instantiations_Initial,
115 Table_Increment => Alloc.Pending_Instantiations_Increment,
116 Table_Name => "Pending_Instantiations");
118 -------------------------------------
119 -- Called_Pending_Instantiations --
120 -------------------------------------
122 -- With back-end inlining, the pending instantiations that are not in the
123 -- main unit or subunit are performed only after a call to the subprogram
124 -- instance, or to a subprogram within the package instance, is inlined.
125 -- Since such a call can be within a subsequent pending instantiation,
126 -- we make entries in this table that stores the index of these "called"
127 -- pending instantiations and perform them when the table is populated.
129 package Called_Pending_Instantiations is new Table.Table (
130 Table_Component_Type => Int,
131 Table_Index_Type => Int,
132 Table_Low_Bound => 0,
133 Table_Initial => Alloc.Pending_Instantiations_Initial,
134 Table_Increment => Alloc.Pending_Instantiations_Increment,
135 Table_Name => "Called_Pending_Instantiations");
137 ---------------------------------
138 -- To_Pending_Instantiations --
139 ---------------------------------
141 -- With back-end inlining, we also need to have a map from the pending
142 -- instantiations to their index in the Pending_Instantiations table.
144 Node_Table_Size : constant := 257;
145 -- Number of headers in hash table
147 subtype Node_Header_Num is Integer range 0 .. Node_Table_Size - 1;
148 -- Range of headers in hash table
150 function Node_Hash (Id : Node_Id) return Node_Header_Num;
151 -- Simple hash function for Node_Ids
153 package To_Pending_Instantiations is new GNAT.HTable.Simple_HTable
154 (Header_Num => Node_Header_Num,
165 function Node_Hash (Id : Node_Id) return Node_Header_Num is
167 return Node_Header_Num (Id mod Node_Table_Size);
174 -- Inlined functions are actually placed in line by the backend if the
175 -- corresponding bodies are available (i.e. compiled). Whenever we find
176 -- a call to an inlined subprogram, we add the name of the enclosing
177 -- compilation unit to a worklist. After all compilation, and after
178 -- expansion of generic bodies, we traverse the list of pending bodies
179 -- and compile them as well.
181 package Inlined_Bodies is new Table.Table (
182 Table_Component_Type => Entity_Id,
183 Table_Index_Type => Int,
184 Table_Low_Bound => 0,
185 Table_Initial => Alloc.Inlined_Bodies_Initial,
186 Table_Increment => Alloc.Inlined_Bodies_Increment,
187 Table_Name => "Inlined_Bodies");
189 -----------------------
190 -- Inline Processing --
191 -----------------------
193 -- For each call to an inlined subprogram, we make entries in a table
194 -- that stores caller and callee, and indicates the call direction from
195 -- one to the other. We also record the compilation unit that contains
196 -- the callee. After analyzing the bodies of all such compilation units,
197 -- we compute the transitive closure of inlined subprograms called from
198 -- the main compilation unit and make it available to the code generator
199 -- in no particular order, thus allowing cycles in the call graph.
201 Last_Inlined : Entity_Id := Empty;
203 -- For each entry in the table we keep a list of successors in topological
204 -- order, i.e. callers of the current subprogram.
206 type Subp_Index is new Nat;
207 No_Subp : constant Subp_Index := 0;
209 -- The subprogram entities are hashed into the Inlined table
211 Num_Hash_Headers : constant := 512;
213 Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
216 type Succ_Index is new Nat;
217 No_Succ : constant Succ_Index := 0;
219 type Succ_Info is record
224 -- The following table stores list elements for the successor lists. These
225 -- lists cannot be chained directly through entries in the Inlined table,
226 -- because a given subprogram can appear in several such lists.
228 package Successors is new Table.Table (
229 Table_Component_Type => Succ_Info,
230 Table_Index_Type => Succ_Index,
231 Table_Low_Bound => 1,
232 Table_Initial => Alloc.Successors_Initial,
233 Table_Increment => Alloc.Successors_Increment,
234 Table_Name => "Successors");
236 type Subp_Info is record
237 Name : Entity_Id := Empty;
238 Next : Subp_Index := No_Subp;
239 First_Succ : Succ_Index := No_Succ;
240 Main_Call : Boolean := False;
241 Processed : Boolean := False;
244 package Inlined is new Table.Table (
245 Table_Component_Type => Subp_Info,
246 Table_Index_Type => Subp_Index,
247 Table_Low_Bound => 1,
248 Table_Initial => Alloc.Inlined_Initial,
249 Table_Increment => Alloc.Inlined_Increment,
250 Table_Name => "Inlined");
252 -----------------------
253 -- Local Subprograms --
254 -----------------------
256 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
257 -- Make two entries in Inlined table, for an inlined subprogram being
258 -- called, and for the inlined subprogram that contains the call. If
259 -- the call is in the main compilation unit, Caller is Empty.
261 procedure Add_Inlined_Instance (E : Entity_Id);
262 -- Add instance E to the list of inlined instances for the unit
264 procedure Add_Inlined_Subprogram (E : Entity_Id);
265 -- Add subprogram E to the list of inlined subprograms for the unit
267 function Add_Subp (E : Entity_Id) return Subp_Index;
268 -- Make entry in Inlined table for subprogram E, or return table index
269 -- that already holds E.
271 procedure Establish_Actual_Mapping_For_Inlined_Call
275 Body_Or_Expr_To_Check : Node_Id);
276 -- Establish a mapping from formals to actuals in the call N for the target
277 -- subprogram Subp, and create temporaries or renamings when needed for the
278 -- actuals that are expressions (except for actuals given by simple entity
279 -- names or literals) or that are scalars that require copying to preserve
280 -- semantics. Any temporary objects that are created are inserted in Decls.
281 -- Body_Or_Expr_To_Check indicates the target body (or possibly expression
282 -- of an expression function), which may be traversed to count formal uses.
284 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id;
285 pragma Inline (Get_Code_Unit_Entity);
286 -- Return the entity node for the unit containing E. Always return the spec
289 function Has_Single_Return (N : Node_Id) return Boolean;
290 -- In general we cannot inline functions that return unconstrained type.
291 -- However, we can handle such functions if all return statements return
292 -- a local variable that is the first declaration in the body of the
293 -- function. In that case the call can be replaced by that local
294 -- variable as is done for other inlined calls.
296 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean;
297 -- Return True if E is in the main unit or its spec or in a subunit
299 function Is_Nested (E : Entity_Id) return Boolean;
300 -- If the function is nested inside some other function, it will always
301 -- be compiled if that function is, so don't add it to the inline list.
302 -- We cannot compile a nested function outside the scope of the containing
303 -- function anyway. This is also the case if the function is defined in a
304 -- task body or within an entry (for example, an initialization procedure).
306 procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id);
307 -- Remove all aspects and/or pragmas that have no meaning in inlined body
308 -- Body_Decl. The analysis of these items is performed on the non-inlined
309 -- body. The items currently removed are:
322 -- Subprogram_Variant
327 procedure Reset_Actual_Mapping_For_Inlined_Call (Subp : Entity_Id);
328 -- Reset the Renamed_Object field to Empty on all formals of Subp, which
329 -- can be set by a call to Establish_Actual_Mapping_For_Inlined_Call.
331 ------------------------------
332 -- Deferred Cleanup Actions --
333 ------------------------------
335 -- The cleanup actions for scopes that contain package instantiations with
336 -- a body are delayed until after the package body is instantiated. because
337 -- the body may contain finalizable objects or other constructs that affect
338 -- the cleanup code. A scope that contains such instantiations only needs
339 -- to be finalized once, even though it may contain more than one instance.
340 -- We keep a list of scopes that must still be finalized and Cleanup_Scopes
341 -- will be invoked after all the body instantiations have been completed.
345 procedure Add_Scope_To_Clean (Scop : Entity_Id);
346 -- Build set of scopes on which cleanup actions must be performed
348 procedure Cleanup_Scopes;
349 -- Complete cleanup actions on scopes that need it
355 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
356 P1 : constant Subp_Index := Add_Subp (Called);
361 if Present (Caller) then
362 P2 := Add_Subp (Caller);
364 -- Add P1 to the list of successors of P2, if not already there.
365 -- Note that P2 may contain more than one call to P1, and only
366 -- one needs to be recorded.
368 J := Inlined.Table (P2).First_Succ;
369 while J /= No_Succ loop
370 if Successors.Table (J).Subp = P1 then
374 J := Successors.Table (J).Next;
377 -- On exit, make a successor entry for P1
379 Successors.Increment_Last;
380 Successors.Table (Successors.Last).Subp := P1;
381 Successors.Table (Successors.Last).Next :=
382 Inlined.Table (P2).First_Succ;
383 Inlined.Table (P2).First_Succ := Successors.Last;
385 Inlined.Table (P1).Main_Call := True;
389 ----------------------
390 -- Add_Inlined_Body --
391 ----------------------
393 procedure Add_Inlined_Body (E : Entity_Id; N : Node_Id) is
395 type Inline_Level_Type is (Dont_Inline, Inline_Call, Inline_Package);
396 -- Level of inlining for the call: Dont_Inline means no inlining,
397 -- Inline_Call means that only the call is considered for inlining,
398 -- Inline_Package means that the call is considered for inlining and
399 -- its package compiled and scanned for more inlining opportunities.
401 function Is_Non_Loading_Expression_Function
402 (Id : Entity_Id) return Boolean;
403 -- Determine whether arbitrary entity Id denotes a subprogram which is
406 -- * An expression function
408 -- * A function completed by an expression function where both the
409 -- spec and body are in the same context.
411 function Must_Inline return Inline_Level_Type;
412 -- Inlining is only done if the call statement N is in the main unit,
413 -- or within the body of another inlined subprogram.
415 ----------------------------------------
416 -- Is_Non_Loading_Expression_Function --
417 ----------------------------------------
419 function Is_Non_Loading_Expression_Function
420 (Id : Entity_Id) return Boolean
427 -- A stand-alone expression function is transformed into a spec-body
428 -- pair in-place. Since both the spec and body are in the same list,
429 -- the inlining of such an expression function does not need to load
432 if Is_Expression_Function (Id) then
435 -- A function may be completed by an expression function
437 elsif Ekind (Id) = E_Function then
438 Spec_Decl := Unit_Declaration_Node (Id);
440 if Nkind (Spec_Decl) = N_Subprogram_Declaration then
441 Body_Id := Corresponding_Body (Spec_Decl);
443 if Present (Body_Id) then
444 Body_Decl := Unit_Declaration_Node (Body_Id);
446 -- The inlining of a completing expression function does
447 -- not need to load anything extra when both the spec and
448 -- body are in the same context.
451 Was_Expression_Function (Body_Decl)
452 and then Parent (Spec_Decl) = Parent (Body_Decl);
458 end Is_Non_Loading_Expression_Function;
464 function Must_Inline return Inline_Level_Type is
469 -- Check if call is in main unit
471 Scop := Current_Scope;
473 -- Do not try to inline if scope is standard. This could happen, for
474 -- example, for a call to Add_Global_Declaration, and it causes
475 -- trouble to try to inline at this level.
477 if Scop = Standard_Standard then
481 -- Otherwise lookup scope stack to outer scope
483 while Scope (Scop) /= Standard_Standard
484 and then not Is_Child_Unit (Scop)
486 Scop := Scope (Scop);
489 Comp := Parent (Scop);
490 while Nkind (Comp) /= N_Compilation_Unit loop
491 Comp := Parent (Comp);
494 -- If the call is in the main unit, inline the call and compile the
495 -- package of the subprogram to find more calls to be inlined.
497 if Comp = Cunit (Main_Unit)
498 or else Comp = Other_Comp_Unit (Cunit (Main_Unit))
501 return Inline_Package;
504 -- The call is not in the main unit. See if it is in some subprogram
505 -- that can be inlined outside its unit. If so, inline the call and,
506 -- if the inlining level is set to 1, stop there; otherwise also
507 -- compile the package as above.
509 Scop := Current_Scope;
510 while Scope (Scop) /= Standard_Standard
511 and then not Is_Child_Unit (Scop)
513 if Is_Overloadable (Scop)
514 and then Is_Inlined (Scop)
515 and then not Is_Nested (Scop)
519 if Inline_Level = 1 then
522 return Inline_Package;
526 Scop := Scope (Scop);
534 Level : Inline_Level_Type;
536 -- Start of processing for Add_Inlined_Body
539 Append_New_Elmt (N, To => Backend_Calls);
541 -- Skip subprograms that cannot or need not be inlined outside their
542 -- unit or parent subprogram.
544 if Is_Abstract_Subprogram (E)
545 or else Convention (E) = Convention_Protected
546 or else In_Main_Unit_Or_Subunit (E)
547 or else Is_Nested (E)
552 -- Find out whether the call must be inlined. Unless the result is
553 -- Dont_Inline, Must_Inline also creates an edge for the call in the
554 -- callgraph; however, it will not be activated until after Is_Called
555 -- is set on the subprogram.
557 Level := Must_Inline;
559 if Level = Dont_Inline then
563 -- If a previous call to the subprogram has been inlined, nothing to do
565 if Is_Called (E) then
569 -- If the subprogram is an instance, then inline the instance
571 if Is_Generic_Instance (E) then
572 Add_Inlined_Instance (E);
575 -- Mark the subprogram as called
579 -- If the call was generated by the compiler and is to a subprogram in
580 -- a run-time unit, we need to suppress debugging information for it,
581 -- so that the code that is eventually inlined will not affect the
582 -- debugging of the program. We do not do it if the call comes from
583 -- source because, even if the call is inlined, the user may expect it
584 -- to be present in the debugging information.
586 if not Comes_From_Source (N)
587 and then In_Extended_Main_Source_Unit (N)
588 and then Is_Predefined_Unit (Get_Source_Unit (E))
590 Set_Needs_Debug_Info (E, False);
593 -- If the subprogram is an expression function, or is completed by one
594 -- where both the spec and body are in the same context, then there is
595 -- no need to load any package body since the body of the function is
598 if Is_Non_Loading_Expression_Function (E) then
602 -- Find unit containing E, and add to list of inlined bodies if needed.
603 -- Library-level functions must be handled specially, because there is
604 -- no enclosing package to retrieve. In this case, it is the body of
605 -- the function that will have to be loaded.
608 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
612 Inlined_Bodies.Increment_Last;
613 Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
616 pragma Assert (Ekind (Pack) = E_Package);
618 -- If the subprogram is within an instance, inline the instance
620 if Comes_From_Source (E) then
623 while Present (Inst) and then Inst /= Standard_Standard loop
624 exit when Is_Generic_Instance (Inst);
625 Inst := Scope (Inst);
629 and then Is_Generic_Instance (Inst)
630 and then not Is_Called (Inst)
632 Inst_Decl := Unit_Declaration_Node (Inst);
634 -- Do not inline the instance if the body already exists,
635 -- or the instance node is simply missing.
637 if Present (Corresponding_Body (Inst_Decl))
638 or else (Nkind (Parent (Inst_Decl)) /= N_Compilation_Unit
639 and then No (Next (Inst_Decl)))
641 Set_Is_Called (Inst);
643 Add_Inlined_Instance (Inst);
648 -- If the unit containing E is an instance, nothing more to do
650 if Is_Generic_Instance (Pack) then
653 -- Do not inline the package if the subprogram is an init proc
654 -- or other internally generated subprogram, because in that
655 -- case the subprogram body appears in the same unit that
656 -- declares the type, and that body is visible to the back end.
657 -- Do not inline it either if it is in the main unit.
658 -- Extend the -gnatn2 processing to -gnatn1 for Inline_Always
659 -- calls if the back end takes care of inlining the call.
660 -- Note that Level is in Inline_Call | Inline_Package here.
662 elsif ((Level = Inline_Call
663 and then Has_Pragma_Inline_Always (E)
664 and then Back_End_Inlining)
665 or else Level = Inline_Package)
666 and then not Is_Inlined (Pack)
667 and then not Is_Internal (E)
668 and then not In_Main_Unit_Or_Subunit (Pack)
670 Set_Is_Inlined (Pack);
671 Inlined_Bodies.Increment_Last;
672 Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
676 -- Ensure that Analyze_Inlined_Bodies will be invoked after
677 -- completing the analysis of the current unit.
679 Inline_Processing_Required := True;
681 end Add_Inlined_Body;
683 --------------------------
684 -- Add_Inlined_Instance --
685 --------------------------
687 procedure Add_Inlined_Instance (E : Entity_Id) is
688 Decl_Node : constant Node_Id := Unit_Declaration_Node (E);
692 -- This machinery is only used with back-end inlining
694 if not Back_End_Inlining then
698 -- Register the instance in the list
700 Append_New_Elmt (Decl_Node, To => Backend_Instances);
702 -- Retrieve the index of its corresponding pending instantiation
703 -- and mark this corresponding pending instantiation as needed.
705 Index := To_Pending_Instantiations.Get (Decl_Node);
707 Called_Pending_Instantiations.Append (Index);
709 pragma Assert (False);
714 end Add_Inlined_Instance;
716 ----------------------------
717 -- Add_Inlined_Subprogram --
718 ----------------------------
720 procedure Add_Inlined_Subprogram (E : Entity_Id) is
721 Decl : constant Node_Id := Parent (Declaration_Node (E));
722 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
724 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id);
725 -- Append Subp to the list of subprograms inlined by the backend
727 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id);
728 -- Append Subp to the list of subprograms that cannot be inlined by
731 -----------------------------------------
732 -- Register_Backend_Inlined_Subprogram --
733 -----------------------------------------
735 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id) is
737 Append_New_Elmt (Subp, To => Backend_Inlined_Subps);
738 end Register_Backend_Inlined_Subprogram;
740 ---------------------------------------------
741 -- Register_Backend_Not_Inlined_Subprogram --
742 ---------------------------------------------
744 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id) is
746 Append_New_Elmt (Subp, To => Backend_Not_Inlined_Subps);
747 end Register_Backend_Not_Inlined_Subprogram;
749 -- Start of processing for Add_Inlined_Subprogram
752 -- We can inline the subprogram if its unit is known to be inlined or is
753 -- an instance whose body will be analyzed anyway or the subprogram was
754 -- generated as a body by the compiler (for example an initialization
755 -- procedure) or its declaration was provided along with the body (for
756 -- example an expression function). Note that we need to test again the
757 -- Is_Inlined flag because Analyze_Subprogram_Body_Helper may have reset
758 -- it if the body contains excluded declarations or statements.
760 if (Is_Inlined (Pack)
761 or else Is_Generic_Instance (Pack)
762 or else Nkind (Decl) = N_Subprogram_Body
763 or else Present (Corresponding_Body (Decl)))
764 and then Is_Inlined (E)
766 Register_Backend_Inlined_Subprogram (E);
768 if No (Last_Inlined) then
769 Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
771 Set_Next_Inlined_Subprogram (Last_Inlined, E);
777 Register_Backend_Not_Inlined_Subprogram (E);
779 end Add_Inlined_Subprogram;
781 --------------------------------
782 -- Add_Pending_Instantiation --
783 --------------------------------
785 procedure Add_Pending_Instantiation
788 Fin_Scop : Node_Id := Empty)
790 Act_Decl_Id : Entity_Id;
794 -- Here is a defense against a ludicrous number of instantiations
795 -- caused by a circular set of instantiation attempts.
797 if Pending_Instantiations.Last + 1 >= Maximum_Instantiations then
798 Error_Msg_Uint_1 := UI_From_Int (Maximum_Instantiations);
799 Error_Msg_N ("too many instantiations, exceeds max of^", Inst);
800 Error_Msg_N ("\limit can be changed using -gnateinn switch", Inst);
801 raise Unrecoverable_Error;
804 -- Capture the body of the generic instantiation along with its context
805 -- for later processing by Instantiate_Bodies.
807 Pending_Instantiations.Append
809 Act_Decl => Act_Decl,
810 Fin_Scop => Fin_Scop,
811 Config_Switches => Save_Config_Switches,
812 Current_Sem_Unit => Current_Sem_Unit,
813 Expander_Status => Expander_Active,
814 Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
815 Scope_Suppress => Scope_Suppress,
816 Warnings => Save_Warnings));
818 -- With back-end inlining, also associate the index to the instantiation
820 if Back_End_Inlining then
821 Act_Decl_Id := Defining_Entity (Act_Decl);
822 Index := Pending_Instantiations.Last;
824 To_Pending_Instantiations.Set (Act_Decl, Index);
826 -- If an instantiation is in the main unit or subunit, or is a nested
827 -- subprogram, then its body is needed as per the analysis done in
828 -- Analyze_Package_Instantiation & Analyze_Subprogram_Instantiation.
830 if In_Main_Unit_Or_Subunit (Act_Decl_Id)
831 or else (Is_Subprogram (Act_Decl_Id)
832 and then Is_Nested (Act_Decl_Id))
834 Called_Pending_Instantiations.Append (Index);
836 Set_Is_Called (Act_Decl_Id);
839 end Add_Pending_Instantiation;
841 ------------------------
842 -- Add_Scope_To_Clean --
843 ------------------------
845 procedure Add_Scope_To_Clean (Scop : Entity_Id) is
847 Append_Unique_Elmt (Scop, To_Clean);
848 end Add_Scope_To_Clean;
854 function Add_Subp (E : Entity_Id) return Subp_Index is
855 Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
859 -- Initialize entry in Inlined table
861 procedure New_Entry is
863 Inlined.Increment_Last;
864 Inlined.Table (Inlined.Last).Name := E;
865 Inlined.Table (Inlined.Last).Next := No_Subp;
866 Inlined.Table (Inlined.Last).First_Succ := No_Succ;
867 Inlined.Table (Inlined.Last).Main_Call := False;
868 Inlined.Table (Inlined.Last).Processed := False;
871 -- Start of processing for Add_Subp
874 if Hash_Headers (Index) = No_Subp then
876 Hash_Headers (Index) := Inlined.Last;
880 J := Hash_Headers (Index);
881 while J /= No_Subp loop
882 if Inlined.Table (J).Name = E then
886 J := Inlined.Table (J).Next;
890 -- On exit, subprogram was not found. Enter in table. Index is
891 -- the current last entry on the hash chain.
894 Inlined.Table (Index).Next := Inlined.Last;
899 ----------------------------
900 -- Analyze_Inlined_Bodies --
901 ----------------------------
903 procedure Analyze_Inlined_Bodies is
910 type Pending_Index is new Nat;
912 package Pending_Inlined is new Table.Table (
913 Table_Component_Type => Subp_Index,
914 Table_Index_Type => Pending_Index,
915 Table_Low_Bound => 1,
916 Table_Initial => Alloc.Inlined_Initial,
917 Table_Increment => Alloc.Inlined_Increment,
918 Table_Name => "Pending_Inlined");
919 -- The workpile used to compute the transitive closure
921 -- Start of processing for Analyze_Inlined_Bodies
924 if Serious_Errors_Detected = 0 then
925 Push_Scope (Standard_Standard);
928 while J <= Inlined_Bodies.Last
929 and then Serious_Errors_Detected = 0
931 Pack := Inlined_Bodies.Table (J);
933 and then Scope (Pack) /= Standard_Standard
934 and then not Is_Child_Unit (Pack)
936 Pack := Scope (Pack);
939 Comp_Unit := Parent (Pack);
940 while Present (Comp_Unit)
941 and then Nkind (Comp_Unit) /= N_Compilation_Unit
943 Comp_Unit := Parent (Comp_Unit);
946 -- Load the body if it exists and contains inlineable entities,
947 -- unless it is the main unit, or is an instance whose body has
948 -- already been analyzed.
950 if Present (Comp_Unit)
951 and then Comp_Unit /= Cunit (Main_Unit)
952 and then Body_Required (Comp_Unit)
954 (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
956 (No (Corresponding_Body (Unit (Comp_Unit)))
957 and then Body_Needed_For_Inlining
958 (Defining_Entity (Unit (Comp_Unit)))))
961 Bname : constant Unit_Name_Type :=
962 Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
967 if not Is_Loaded (Bname) then
968 Style_Check := False;
969 Load_Needed_Body (Comp_Unit, OK);
973 -- Warn that a body was not available for inlining
976 Error_Msg_Unit_1 := Bname;
978 ("one or more inlined subprograms accessed in $!??",
981 Get_File_Name (Bname, Subunit => False);
982 Error_Msg_N ("\but file{ was not found!??", Comp_Unit);
990 if J > Inlined_Bodies.Last then
992 -- The analysis of required bodies may have produced additional
993 -- generic instantiations. To obtain further inlining, we need
994 -- to perform another round of generic body instantiations.
998 -- Symmetrically, the instantiation of required generic bodies
999 -- may have caused additional bodies to be inlined. To obtain
1000 -- further inlining, we keep looping over the inlined bodies.
1004 -- The list of inlined subprograms is an overestimate, because it
1005 -- includes inlined subprograms called from subprograms that are
1006 -- declared in an inlined package, but are not themselves called.
1007 -- An accurate computation of just those subprograms that are needed
1008 -- requires that we perform a transitive closure over the call graph,
1009 -- starting from calls in the main compilation unit.
1011 for Index in Inlined.First .. Inlined.Last loop
1012 if not Is_Called (Inlined.Table (Index).Name) then
1014 -- This means that Add_Inlined_Body added the subprogram to the
1015 -- table but wasn't able to handle its code unit. Do nothing.
1017 Inlined.Table (Index).Processed := True;
1019 elsif Inlined.Table (Index).Main_Call then
1020 Pending_Inlined.Increment_Last;
1021 Pending_Inlined.Table (Pending_Inlined.Last) := Index;
1022 Inlined.Table (Index).Processed := True;
1025 Set_Is_Called (Inlined.Table (Index).Name, False);
1029 -- Iterate over the workpile until it is emptied, propagating the
1030 -- Is_Called flag to the successors of the processed subprogram.
1032 while Pending_Inlined.Last >= Pending_Inlined.First loop
1033 Subp := Pending_Inlined.Table (Pending_Inlined.Last);
1034 Pending_Inlined.Decrement_Last;
1036 S := Inlined.Table (Subp).First_Succ;
1038 while S /= No_Succ loop
1039 Subp := Successors.Table (S).Subp;
1041 if not Inlined.Table (Subp).Processed then
1042 Set_Is_Called (Inlined.Table (Subp).Name);
1043 Pending_Inlined.Increment_Last;
1044 Pending_Inlined.Table (Pending_Inlined.Last) := Subp;
1045 Inlined.Table (Subp).Processed := True;
1048 S := Successors.Table (S).Next;
1052 -- Finally add the called subprograms to the list of inlined
1053 -- subprograms for the unit.
1055 for Index in Inlined.First .. Inlined.Last loop
1057 E : constant Subprogram_Kind_Id := Inlined.Table (Index).Name;
1061 and then not Is_Ignored_Ghost_Entity_In_Codegen (E)
1063 Add_Inlined_Subprogram (E);
1070 end Analyze_Inlined_Bodies;
1072 --------------------------
1073 -- Build_Body_To_Inline --
1074 --------------------------
1076 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
1077 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
1078 Original_Body : Node_Id;
1079 Body_To_Analyze : Node_Id;
1080 Max_Size : constant := 10;
1082 function Has_Extended_Return return Boolean;
1083 -- This function returns True if the subprogram has an extended return
1086 function Has_Pending_Instantiation return Boolean;
1087 -- If some enclosing body contains instantiations that appear before
1088 -- the corresponding generic body, the enclosing body has a freeze node
1089 -- so that it can be elaborated after the generic itself. This might
1090 -- conflict with subsequent inlinings, so that it is unsafe to try to
1091 -- inline in such a case.
1093 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
1094 -- If the body of the subprogram includes a call that returns an
1095 -- unconstrained type, the secondary stack is involved, and it is
1096 -- not worth inlining.
1097 -------------------------
1098 -- Has_Extended_Return --
1099 -------------------------
1101 function Has_Extended_Return return Boolean is
1102 Body_To_Inline : constant Node_Id := N;
1104 function Check_Return (N : Node_Id) return Traverse_Result;
1105 -- Returns OK on node N if this is not an extended return statement
1111 function Check_Return (N : Node_Id) return Traverse_Result is
1114 when N_Extended_Return_Statement =>
1117 -- Skip locally declared subprogram bodies inside the body to
1118 -- inline, as the return statements inside those do not count.
1120 when N_Subprogram_Body =>
1121 if N = Body_To_Inline then
1132 function Check_All_Returns is new Traverse_Func (Check_Return);
1134 -- Start of processing for Has_Extended_Return
1137 return Check_All_Returns (N) /= OK;
1138 end Has_Extended_Return;
1140 -------------------------------
1141 -- Has_Pending_Instantiation --
1142 -------------------------------
1144 function Has_Pending_Instantiation return Boolean is
1149 while Present (S) loop
1150 if Is_Compilation_Unit (S)
1151 or else Is_Child_Unit (S)
1155 elsif Ekind (S) = E_Package
1156 and then Has_Forward_Instantiation (S)
1165 end Has_Pending_Instantiation;
1167 --------------------------
1168 -- Uses_Secondary_Stack --
1169 --------------------------
1171 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
1172 function Check_Call (N : Node_Id) return Traverse_Result;
1173 -- Look for function calls that return an unconstrained type
1179 function Check_Call (N : Node_Id) return Traverse_Result is
1181 if Nkind (N) = N_Function_Call
1182 and then Is_Entity_Name (Name (N))
1183 and then Is_Composite_Type (Etype (Entity (Name (N))))
1184 and then not Is_Constrained (Etype (Entity (Name (N))))
1187 ("cannot inline & (call returns unconstrained type)?",
1195 function Check_Calls is new Traverse_Func (Check_Call);
1198 return Check_Calls (Bod) = Abandon;
1199 end Uses_Secondary_Stack;
1201 -- Start of processing for Build_Body_To_Inline
1204 -- Return immediately if done already
1206 if Nkind (Decl) = N_Subprogram_Declaration
1207 and then Present (Body_To_Inline (Decl))
1211 -- Functions that return controlled types cannot currently be inlined
1212 -- because they require secondary stack handling; controlled actions
1213 -- may also interfere in complex ways with inlining.
1215 elsif Ekind (Spec_Id) = E_Function
1216 and then Needs_Finalization (Etype (Spec_Id))
1219 ("cannot inline & (controlled return type)?", N, Spec_Id);
1223 if Has_Excluded_Declaration (Spec_Id, Declarations (N)) then
1227 if Present (Handled_Statement_Sequence (N)) then
1228 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
1230 ("cannot inline& (exception handler)?",
1231 First (Exception_Handlers (Handled_Statement_Sequence (N))),
1235 elsif Has_Excluded_Statement
1236 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
1242 -- We do not inline a subprogram that is too large, unless it is marked
1243 -- Inline_Always or we are in GNATprove mode. This pragma does not
1244 -- suppress the other checks on inlining (forbidden declarations,
1247 if not (Has_Pragma_Inline_Always (Spec_Id) or else GNATprove_Mode)
1248 and then List_Length
1249 (Statements (Handled_Statement_Sequence (N))) > Max_Size
1251 Cannot_Inline ("cannot inline& (body too large)?", N, Spec_Id);
1255 if Has_Pending_Instantiation then
1257 ("cannot inline& (forward instance within enclosing body)?",
1262 -- Within an instance, the body to inline must be treated as a nested
1263 -- generic, so that the proper global references are preserved.
1265 -- Note that we do not do this at the library level, because it is not
1266 -- needed, and furthermore this causes trouble if front-end inlining
1267 -- is activated (-gnatN).
1269 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1270 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1271 Original_Body := Copy_Generic_Node (N, Empty, Instantiating => True);
1273 Original_Body := Copy_Separate_Tree (N);
1276 -- We need to capture references to the formals in order to substitute
1277 -- the actuals at the point of inlining, i.e. instantiation. To treat
1278 -- the formals as globals to the body to inline, we nest it within a
1279 -- dummy parameterless subprogram, declared within the real one. To
1280 -- avoid generating an internal name (which is never public, and which
1281 -- affects serial numbers of other generated names), we use an internal
1282 -- symbol that cannot conflict with user declarations.
1284 Set_Parameter_Specifications (Specification (Original_Body), No_List);
1285 Set_Defining_Unit_Name
1286 (Specification (Original_Body),
1287 Make_Defining_Identifier (Sloc (N), Name_uParent));
1288 Set_Corresponding_Spec (Original_Body, Empty);
1290 -- Remove all aspects/pragmas that have no meaning in an inlined body
1292 Remove_Aspects_And_Pragmas (Original_Body);
1295 Copy_Generic_Node (Original_Body, Empty, Instantiating => False);
1297 -- Set return type of function, which is also global and does not need
1300 if Ekind (Spec_Id) = E_Function then
1301 Set_Result_Definition
1302 (Specification (Body_To_Analyze),
1303 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1306 if No (Declarations (N)) then
1307 Set_Declarations (N, New_List (Body_To_Analyze));
1309 Append (Body_To_Analyze, Declarations (N));
1314 Analyze (Body_To_Analyze);
1315 Push_Scope (Defining_Entity (Body_To_Analyze));
1316 Save_Global_References (Original_Body);
1318 Remove (Body_To_Analyze);
1322 -- Restore environment if previously saved
1324 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1328 -- Functions that return unconstrained composite types require
1329 -- secondary stack handling, and cannot currently be inlined, unless
1330 -- all return statements return a local variable that is the first
1331 -- local declaration in the body. We had to delay this check until
1332 -- the body of the function is analyzed since Has_Single_Return()
1333 -- requires a minimum decoration.
1335 if Ekind (Spec_Id) = E_Function
1336 and then not Is_Scalar_Type (Etype (Spec_Id))
1337 and then not Is_Access_Type (Etype (Spec_Id))
1338 and then not Is_Constrained (Etype (Spec_Id))
1340 if not Has_Single_Return (Body_To_Analyze)
1342 -- Skip inlining if the function returns an unconstrained type
1343 -- using an extended return statement, since this part of the
1344 -- new inlining model is not yet supported by the current
1347 or else (Returns_Unconstrained_Type (Spec_Id)
1348 and then Has_Extended_Return)
1351 ("cannot inline & (unconstrained return type)?", N, Spec_Id);
1355 -- If secondary stack is used, there is no point in inlining. We have
1356 -- already issued the warning in this case, so nothing to do.
1358 elsif Uses_Secondary_Stack (Body_To_Analyze) then
1362 Set_Body_To_Inline (Decl, Original_Body);
1363 Mutate_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1364 Set_Is_Inlined (Spec_Id);
1365 end Build_Body_To_Inline;
1367 -------------------------------------------
1368 -- Call_Can_Be_Inlined_In_GNATprove_Mode --
1369 -------------------------------------------
1371 function Call_Can_Be_Inlined_In_GNATprove_Mode
1373 Subp : Entity_Id) return Boolean
1375 function Has_Dereference (N : Node_Id) return Boolean;
1376 -- Return whether N contains an explicit dereference
1378 ---------------------
1379 -- Has_Dereference --
1380 ---------------------
1382 function Has_Dereference (N : Node_Id) return Boolean is
1384 function Process (N : Node_Id) return Traverse_Result;
1385 -- Process one node in search for dereference
1391 function Process (N : Node_Id) return Traverse_Result is
1393 if Nkind (N) = N_Explicit_Dereference then
1400 function Traverse is new Traverse_Func (Process);
1401 -- Traverse tree to look for dereference
1404 return Traverse (N) = Abandon;
1405 end Has_Dereference;
1413 -- Check if inlining may lead to missing a check on type conversion of
1414 -- input parameters otherwise.
1416 F := First_Formal (Subp);
1417 A := First_Actual (N);
1418 while Present (F) loop
1419 if Ekind (F) /= E_Out_Parameter
1420 and then not Same_Type (Etype (F), Etype (A))
1422 (Is_By_Reference_Type (Etype (A))
1423 or else Is_Limited_Type (Etype (A)))
1432 -- Check if inlining may lead to introducing temporaries of access type,
1433 -- which can lead to missing checks for memory leaks. This can only
1434 -- come from an (IN-)OUT parameter transformed into a renaming by SPARK
1435 -- expansion, whose side-effects are removed, and a dereference in the
1436 -- corresponding actual. If the formal itself is of a deep type (it has
1437 -- access subcomponents), the subprogram already cannot be inlined in
1440 F := First_Formal (Subp);
1441 A := First_Actual (N);
1442 while Present (F) loop
1443 if Ekind (F) /= E_In_Parameter
1444 and then Has_Dereference (A)
1454 end Call_Can_Be_Inlined_In_GNATprove_Mode;
1456 --------------------------------------
1457 -- Can_Be_Inlined_In_GNATprove_Mode --
1458 --------------------------------------
1460 function Can_Be_Inlined_In_GNATprove_Mode
1461 (Spec_Id : Entity_Id;
1462 Body_Id : Entity_Id) return Boolean
1464 function Has_Constant_With_Address_Clause
1465 (Body_Node : Node_Id)
1467 -- Returns true if the subprogram contains a declaration of a constant
1468 -- with an address clause, which could become illegal in SPARK after
1469 -- inlining, if the address clause mentions a constant view of a mutable
1470 -- object at call site.
1472 function Has_Formal_Or_Result_Of_Deep_Type
1473 (Id : Entity_Id) return Boolean;
1474 -- Returns true if the subprogram has at least one formal parameter or
1475 -- a return type of a deep type: either an access type or a composite
1476 -- type containing an access type.
1478 function Has_Formal_With_Per_Object_Constrained_Component
1479 (Id : Entity_Id) return Boolean;
1480 -- Returns true if the subprogram has at least one formal parameter of
1481 -- an unconstrained record type with per-object constraints on component
1484 function Has_Hide_Unhide_Annotation
1485 (Spec_Id, Body_Id : Entity_Id)
1487 -- Returns whether the subprogram has an annotation Hide_Info or
1488 -- Unhide_Info on its spec or body.
1490 function Has_Skip_Proof_Annotation (Id : Entity_Id) return Boolean;
1491 -- Returns True if subprogram Id has an annotation Skip_Proof or
1492 -- Skip_Flow_And_Proof.
1494 function Has_Some_Contract (Id : Entity_Id) return Boolean;
1495 -- Return True if subprogram Id has any contract. The presence of
1496 -- Extensions_Visible or Volatile_Function is also considered as a
1499 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean;
1500 -- Return True if subprogram Id defines a compilation unit
1502 function In_Package_Spec (Id : Entity_Id) return Boolean;
1503 -- Return True if subprogram Id is defined in the package specification,
1504 -- either its visible or private part.
1506 function Maybe_Traversal_Function (Id : Entity_Id) return Boolean;
1507 -- Return True if subprogram Id could be a traversal function, as
1508 -- defined in SPARK RM 3.10. This is only a safe approximation, as the
1509 -- knowledge of the SPARK boundary is needed to determine exactly
1510 -- traversal functions.
1512 --------------------------------------
1513 -- Has_Constant_With_Address_Clause --
1514 --------------------------------------
1516 function Has_Constant_With_Address_Clause
1517 (Body_Node : Node_Id)
1520 function Check_Constant_With_Addresss_Clause
1522 return Traverse_Result;
1523 -- Returns Abandon on node N if this is a declaration of a constant
1524 -- object with an address clause.
1526 -----------------------------------------
1527 -- Check_Constant_With_Addresss_Clause --
1528 -----------------------------------------
1530 function Check_Constant_With_Addresss_Clause
1532 return Traverse_Result
1536 when N_Object_Declaration =>
1538 Obj : constant Entity_Id := Defining_Entity (N);
1540 if Constant_Present (N)
1542 (Present (Address_Clause (Obj))
1543 or else Has_Aspect (Obj, Aspect_Address))
1551 -- Skip locally declared subprogram bodies inside the body to
1552 -- inline, as the declarations inside those do not count.
1554 when N_Subprogram_Body =>
1555 if N = Body_Node then
1564 end Check_Constant_With_Addresss_Clause;
1566 function Check_All_Constants_With_Address_Clause is new
1567 Traverse_Func (Check_Constant_With_Addresss_Clause);
1569 -- Start of processing for Has_Constant_With_Address_Clause
1572 return Check_All_Constants_With_Address_Clause
1573 (Body_Node) = Abandon;
1574 end Has_Constant_With_Address_Clause;
1576 ---------------------------------------
1577 -- Has_Formal_Or_Result_Of_Deep_Type --
1578 ---------------------------------------
1580 function Has_Formal_Or_Result_Of_Deep_Type
1581 (Id : Entity_Id) return Boolean
1583 function Is_Deep (Typ : Entity_Id) return Boolean;
1584 -- Return True if Typ is deep: either an access type or a composite
1585 -- type containing an access type.
1591 function Is_Deep (Typ : Entity_Id) return Boolean is
1593 case Type_Kind'(Ekind (Typ)) is
1600 return Is_Deep (Component_Type (Typ));
1604 Comp : Entity_Id := First_Component_Or_Discriminant (Typ);
1606 while Present (Comp) loop
1607 if Is_Deep (Etype (Comp)) then
1610 Next_Component_Or_Discriminant (Comp);
1616 | E_String_Literal_Subtype
1626 | E_Limited_Private_Type
1627 | E_Limited_Private_Subtype
1629 -- Conservatively consider that the type might be deep if
1630 -- its completion has not been seen yet.
1632 if No (Underlying_Type (Typ)) then
1635 -- Do not peek under a private type if its completion has
1636 -- SPARK_Mode Off. In such a case, a deep type is considered
1637 -- by GNATprove to be not deep.
1639 elsif Present (Full_View (Typ))
1640 and then Present (SPARK_Pragma (Full_View (Typ)))
1641 and then Get_SPARK_Mode_From_Annotation
1642 (SPARK_Pragma (Full_View (Typ))) = Off
1646 -- Otherwise peek under the private type.
1649 return Is_Deep (Underlying_Type (Typ));
1656 Subp_Id : constant Entity_Id := Ultimate_Alias (Id);
1658 Formal_Typ : Entity_Id;
1660 -- Start of processing for Has_Formal_Or_Result_Of_Deep_Type
1663 -- Inspect all parameters of the subprogram looking for a formal
1666 Formal := First_Formal (Subp_Id);
1667 while Present (Formal) loop
1668 Formal_Typ := Etype (Formal);
1670 if Is_Deep (Formal_Typ) then
1674 Next_Formal (Formal);
1677 -- Check whether this is a function whose return type is deep
1679 if Ekind (Subp_Id) = E_Function
1680 and then Is_Deep (Etype (Subp_Id))
1686 end Has_Formal_Or_Result_Of_Deep_Type;
1688 ------------------------------------------------------
1689 -- Has_Formal_With_Per_Object_Constrained_Component --
1690 ------------------------------------------------------
1692 function Has_Formal_With_Per_Object_Constrained_Component
1693 (Id : Entity_Id) return Boolean
1695 function Has_Per_Object_Constrained_Component
1696 (Typ : Entity_Id) return Boolean;
1697 -- Determine whether unconstrained record type Typ has at least one
1698 -- component that depends on a discriminant.
1700 ------------------------------------------
1701 -- Has_Per_Object_Constrained_Component --
1702 ------------------------------------------
1704 function Has_Per_Object_Constrained_Component
1705 (Typ : Entity_Id) return Boolean
1710 -- Inspect all components of the record type looking for one that
1711 -- depends on a discriminant.
1713 Comp := First_Component (Typ);
1714 while Present (Comp) loop
1715 if Has_Per_Object_Constraint (Comp) then
1719 Next_Component (Comp);
1723 end Has_Per_Object_Constrained_Component;
1727 Subp_Id : constant Entity_Id := Ultimate_Alias (Id);
1729 Formal_Typ : Entity_Id;
1731 -- Start of processing for
1732 -- Has_Formal_With_Per_Object_Constrained_Component
1735 -- Inspect all parameters of the subprogram looking for a formal
1736 -- of an unconstrained record type with at least one discriminant
1737 -- dependent component.
1739 Formal := First_Formal (Subp_Id);
1740 while Present (Formal) loop
1741 Formal_Typ := Etype (Formal);
1743 if Is_Record_Type (Formal_Typ)
1744 and then not Is_Constrained (Formal_Typ)
1745 and then Has_Per_Object_Constrained_Component (Formal_Typ)
1750 Next_Formal (Formal);
1754 end Has_Formal_With_Per_Object_Constrained_Component;
1756 --------------------------------
1757 -- Has_Hide_Unhide_Annotation --
1758 --------------------------------
1760 function Has_Hide_Unhide_Annotation
1761 (Spec_Id, Body_Id : Entity_Id)
1764 function Has_Hide_Unhide_Pragma (Prag : Node_Id) return Boolean;
1765 -- Return whether a pragma Hide/Unhide is present in the list of
1766 -- pragmas starting with Prag.
1768 ----------------------------
1769 -- Has_Hide_Unhide_Pragma --
1770 ----------------------------
1772 function Has_Hide_Unhide_Pragma (Prag : Node_Id) return Boolean is
1773 Decl : Node_Id := Prag;
1775 while Present (Decl)
1776 and then Nkind (Decl) = N_Pragma
1778 if Get_Pragma_Id (Decl) = Pragma_Annotate
1779 and then List_Length (Pragma_Argument_Associations (Decl)) = 4
1782 Arg1 : constant Node_Id :=
1783 First (Pragma_Argument_Associations (Decl));
1784 Arg2 : constant Node_Id := Next (Arg1);
1785 Arg1_Name : constant Name_Id :=
1786 Chars (Get_Pragma_Arg (Arg1));
1787 Arg2_Name : constant String :=
1788 Get_Name_String (Chars (Get_Pragma_Arg (Arg2)));
1790 if Arg1_Name = Name_Gnatprove
1791 and then Arg2_Name in "hide_info" | "unhide_info"
1802 end Has_Hide_Unhide_Pragma;
1805 if Present (Spec_Id)
1806 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
1807 and then Has_Hide_Unhide_Pragma
1808 (Next (Unit_Declaration_Node (Spec_Id)))
1812 elsif Present (Body_Id) then
1814 Subp_Body : constant N_Subprogram_Body_Id :=
1815 Unit_Declaration_Node (Body_Id);
1818 (Is_List_Member (Subp_Body)
1819 and then Has_Hide_Unhide_Pragma (Next (Subp_Body)))
1821 Has_Hide_Unhide_Pragma (First (Declarations (Subp_Body)));
1827 end Has_Hide_Unhide_Annotation;
1829 -------------------------------
1830 -- Has_Skip_Proof_Annotation --
1831 -------------------------------
1833 function Has_Skip_Proof_Annotation (Id : Entity_Id) return Boolean is
1834 Decl : Node_Id := Unit_Declaration_Node (Id);
1839 while Present (Decl)
1840 and then Nkind (Decl) = N_Pragma
1842 if Get_Pragma_Id (Decl) = Pragma_Annotate
1843 and then List_Length (Pragma_Argument_Associations (Decl)) = 3
1846 Arg1 : constant Node_Id :=
1847 First (Pragma_Argument_Associations (Decl));
1848 Arg2 : constant Node_Id := Next (Arg1);
1849 Arg1_Name : constant Name_Id :=
1850 Chars (Get_Pragma_Arg (Arg1));
1851 Arg2_Name : constant String :=
1852 Get_Name_String (Chars (Get_Pragma_Arg (Arg2)));
1854 if Arg1_Name = Name_Gnatprove
1855 and then Arg2_Name in "skip_proof" | "skip_flow_and_proof"
1866 end Has_Skip_Proof_Annotation;
1868 -----------------------
1869 -- Has_Some_Contract --
1870 -----------------------
1872 function Has_Some_Contract (Id : Entity_Id) return Boolean is
1876 -- A call to an expression function may precede the actual body which
1877 -- is inserted at the end of the enclosing declarations. Ensure that
1878 -- the related entity is decorated before inspecting the contract.
1880 if Is_Subprogram_Or_Generic_Subprogram (Id) then
1881 Items := Contract (Id);
1883 -- Note that Classifications is not Empty when Extensions_Visible
1884 -- or Volatile_Function is present, which causes such subprograms
1885 -- to be considered to have a contract here. This is fine as we
1886 -- want to avoid inlining these too.
1888 return Present (Items)
1889 and then (Present (Pre_Post_Conditions (Items)) or else
1890 Present (Contract_Test_Cases (Items)) or else
1891 Present (Classifications (Items)));
1895 end Has_Some_Contract;
1897 ---------------------
1898 -- In_Package_Spec --
1899 ---------------------
1901 function In_Package_Spec (Id : Entity_Id) return Boolean is
1902 P : constant Node_Id := Parent (Subprogram_Spec (Id));
1903 -- Parent of the subprogram's declaration
1906 return Nkind (Enclosing_Declaration (P)) = N_Package_Declaration;
1907 end In_Package_Spec;
1909 ------------------------
1910 -- Is_Unit_Subprogram --
1911 ------------------------
1913 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean is
1914 Decl : Node_Id := Parent (Parent (Id));
1916 if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1917 Decl := Parent (Decl);
1920 return Nkind (Parent (Decl)) = N_Compilation_Unit;
1921 end Is_Unit_Subprogram;
1923 ------------------------------
1924 -- Maybe_Traversal_Function --
1925 ------------------------------
1927 function Maybe_Traversal_Function (Id : Entity_Id) return Boolean is
1929 return Ekind (Id) = E_Function
1931 -- Only traversal functions return an anonymous access-to-object
1934 and then Is_Anonymous_Access_Type (Etype (Id));
1935 end Maybe_Traversal_Function;
1937 -- Local declarations
1940 -- Procedure or function entity for the subprogram
1942 -- Start of processing for Can_Be_Inlined_In_GNATprove_Mode
1945 pragma Assert (Present (Spec_Id) or else Present (Body_Id));
1947 if Present (Spec_Id) then
1953 -- Only local subprograms without contracts are inlined in GNATprove
1954 -- mode, as these are the subprograms which a user is not interested in
1955 -- analyzing in isolation, but rather in the context of their call. This
1956 -- is a convenient convention, that could be changed for an explicit
1957 -- pragma/aspect one day.
1959 -- In a number of special cases, inlining is not desirable or not
1960 -- possible, see below.
1962 -- Do not inline unit-level subprograms
1964 if Is_Unit_Subprogram (Id) then
1967 -- Do not inline subprograms declared in package specs, because they are
1968 -- not local, i.e. can be called either from anywhere (if declared in
1969 -- visible part) or from the child units (if declared in private part).
1971 elsif In_Package_Spec (Id) then
1974 -- Do not inline subprograms declared in other units. This is important
1975 -- in particular for subprograms defined in the private part of a
1976 -- package spec, when analyzing one of its child packages, as otherwise
1977 -- we issue spurious messages about the impossibility to inline such
1980 elsif not In_Extended_Main_Code_Unit (Id) then
1983 -- Do not inline dispatching operations, as only their static calls
1984 -- can be analyzed in context, and not their dispatching calls.
1986 elsif Is_Dispatching_Operation (Id) then
1989 -- Do not inline subprograms marked No_Return, possibly used for
1990 -- signaling errors, which GNATprove handles specially.
1992 elsif No_Return (Id) then
1995 -- Do not inline subprograms that have a contract on the spec or the
1996 -- body. Use the contract(s) instead in GNATprove. This also prevents
1997 -- inlining of subprograms with Extensions_Visible or Volatile_Function.
1999 elsif (Present (Spec_Id) and then Has_Some_Contract (Spec_Id))
2001 (Present (Body_Id) and then Has_Some_Contract (Body_Id))
2005 -- Do not inline expression functions, which are directly inlined at the
2008 elsif (Present (Spec_Id) and then Is_Expression_Function (Spec_Id))
2010 (Present (Body_Id) and then Is_Expression_Function (Body_Id))
2014 -- Do not inline generic subprogram instances. The visibility rules of
2015 -- generic instances plays badly with inlining.
2017 elsif Is_Generic_Instance (Spec_Id) then
2020 -- Only inline subprograms whose spec is marked SPARK_Mode On. For
2021 -- the subprogram body, a similar check is performed after the body
2022 -- is analyzed, as this is where a pragma SPARK_Mode might be inserted.
2024 elsif Present (Spec_Id)
2026 (No (SPARK_Pragma (Spec_Id))
2028 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) /= On)
2032 -- Do not inline subprograms and entries defined inside protected types,
2033 -- which typically are not helper subprograms, which also avoids getting
2034 -- spurious messages on calls that cannot be inlined.
2036 elsif Within_Protected_Type (Id) then
2039 -- Do not inline predicate functions (treated specially by GNATprove)
2041 elsif Is_Predicate_Function (Id) then
2044 -- Do not inline subprograms with a parameter of an unconstrained
2045 -- record type if it has discrimiant dependent fields. Indeed, with
2046 -- such parameters, the frontend cannot always ensure type compliance
2047 -- in record component accesses (in particular with records containing
2050 elsif Has_Formal_With_Per_Object_Constrained_Component (Id) then
2053 -- Do not inline subprograms with a formal parameter or return type of
2054 -- a deep type, as in that case inlining might generate code that
2055 -- violates borrow-checking rules of SPARK 3.10 even if the original
2058 elsif Has_Formal_Or_Result_Of_Deep_Type (Id) then
2061 -- Do not inline subprograms which may be traversal functions. Such
2062 -- inlining introduces temporary variables of named access type for
2063 -- which assignments are move instead of borrow/observe, possibly
2064 -- leading to spurious errors when checking SPARK rules related to
2067 elsif Maybe_Traversal_Function (Id) then
2070 -- Do not inline subprograms with the Skip_Proof or Skip_Flow_And_Proof
2071 -- annotation, which should be handled separately.
2073 elsif Has_Skip_Proof_Annotation (Id) then
2076 -- Do not inline subprograms with the Hide_Info or Unhide_Info
2077 -- annotation, since their scope has special visibility on the
2078 -- precise definition of some entities.
2080 elsif Has_Hide_Unhide_Annotation (Spec_Id, Body_Id) then
2083 -- Do not inline subprograms containing constant declarations with an
2084 -- address clause, as inlining could lead to a spurious violation of
2087 elsif Present (Body_Id)
2089 Has_Constant_With_Address_Clause (Unit_Declaration_Node (Body_Id))
2093 -- Otherwise, this is a subprogram declared inside the private part of a
2094 -- package, or inside a package body, or locally in a subprogram, and it
2095 -- does not have any contract. Inline it.
2100 end Can_Be_Inlined_In_GNATprove_Mode;
2106 procedure Cannot_Inline
2110 Is_Serious : Boolean := False;
2111 Suppress_Info : Boolean := False)
2113 Inline_Prefix : constant String := "cannot inline";
2115 function Starts_With (S, Prefix : String) return Boolean is
2116 (S (S'First .. S'First + Prefix'Length - 1) = Prefix);
2119 -- In GNATprove mode, inlining is the technical means by which the
2120 -- higher-level goal of contextual analysis is reached, so issue
2121 -- messages about failure to apply contextual analysis to a
2122 -- subprogram, rather than failure to inline it.
2125 and then Starts_With (Msg, Inline_Prefix)
2128 Msg_Txt : constant String :=
2129 Msg (Msg'First + Inline_Prefix'Length .. Msg'Last);
2131 New_Msg : constant String :=
2132 "info: no contextual analysis of" & Msg_Txt;
2134 Cannot_Inline (New_Msg, N, Subp, Is_Serious, Suppress_Info);
2139 -- Legacy front-end inlining model
2141 if not Back_End_Inlining then
2143 -- Do not emit warning if this is a predefined unit which is not
2144 -- the main unit. With validity checks enabled, some predefined
2145 -- subprograms may contain nested subprograms and become ineligible
2148 if Is_Predefined_Unit (Get_Source_Unit (Subp))
2149 and then not In_Extended_Main_Source_Unit (Subp)
2153 -- In GNATprove mode, issue an info message when -gnatd_f is set and
2154 -- Suppress_Info is False, and indicate that the subprogram is not
2155 -- always inlined by setting flag Is_Inlined_Always to False.
2157 elsif GNATprove_Mode then
2158 Set_Is_Inlined_Always (Subp, False);
2160 if Debug_Flag_Underscore_F and not Suppress_Info then
2161 Error_Msg_NE (Msg, N, Subp);
2164 elsif Has_Pragma_Inline_Always (Subp) then
2166 -- Remove last character (question mark) to make this into an
2167 -- error, because the Inline_Always pragma cannot be obeyed.
2169 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
2171 elsif Ineffective_Inline_Warnings then
2172 Error_Msg_NE (Msg & "p?", N, Subp);
2175 -- New semantics relying on back-end inlining
2177 elsif Is_Serious then
2179 -- Remove last character (question mark) to make this into an error.
2181 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
2185 -- Do not emit warning if this is a predefined unit which is not
2186 -- the main unit. This behavior is currently provided for backward
2187 -- compatibility but it will be removed when we enforce the
2188 -- strictness of the new rules.
2190 if Is_Predefined_Unit (Get_Source_Unit (Subp))
2191 and then not In_Extended_Main_Source_Unit (Subp)
2195 elsif Has_Pragma_Inline_Always (Subp) then
2197 -- Emit a warning if this is a call to a runtime subprogram
2198 -- which is located inside a generic. Previously this call
2199 -- was silently skipped.
2201 if Is_Generic_Instance (Subp) then
2203 Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
2205 if Is_Predefined_Unit (Get_Source_Unit (Gen_P)) then
2206 Set_Is_Inlined (Subp, False);
2207 Error_Msg_NE (Msg & "p?", N, Subp);
2213 -- Remove last character (question mark) to make this into an
2214 -- error, because the Inline_Always pragma cannot be obeyed.
2216 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
2219 Set_Is_Inlined (Subp, False);
2221 if Ineffective_Inline_Warnings then
2222 Error_Msg_NE (Msg & "p?", N, Subp);
2228 --------------------------------------------
2229 -- Check_And_Split_Unconstrained_Function --
2230 --------------------------------------------
2232 procedure Check_And_Split_Unconstrained_Function
2234 Spec_Id : Entity_Id;
2235 Body_Id : Entity_Id)
2237 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
2238 -- Use generic machinery to build an unexpanded body for the subprogram.
2239 -- This body is subsequently used for inline expansions at call sites.
2241 procedure Build_Return_Object_Formal
2245 -- Create a formal parameter for return object declaration Obj_Decl of
2246 -- an extended return statement and add it to list Formals.
2248 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
2249 -- Return true if we generate code for the function body N, the function
2250 -- body N has no local declarations and its unique statement is a single
2251 -- extended return statement with a handled statements sequence.
2253 procedure Copy_Formals
2255 Subp_Id : Entity_Id;
2257 -- Create new formal parameters from the formal parameters of subprogram
2258 -- Subp_Id and add them to list Formals.
2260 function Copy_Return_Object (Obj_Decl : Node_Id) return Node_Id;
2261 -- Create a copy of return object declaration Obj_Decl of an extended
2262 -- return statement.
2264 procedure Split_Unconstrained_Function
2266 Spec_Id : Entity_Id);
2267 -- N is an inlined function body that returns an unconstrained type and
2268 -- has a single extended return statement. Split N in two subprograms:
2269 -- a procedure P' and a function F'. The formals of P' duplicate the
2270 -- formals of N plus an extra formal which is used to return a value;
2271 -- its body is composed by the declarations and list of statements
2272 -- of the extended return statement of N.
2274 --------------------------
2275 -- Build_Body_To_Inline --
2276 --------------------------
2278 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
2279 procedure Generate_Subprogram_Body
2281 Body_To_Inline : out Node_Id);
2282 -- Generate a parameterless duplicate of subprogram body N. Note that
2283 -- occurrences of pragmas referencing the formals are removed since
2284 -- they have no meaning when the body is inlined and the formals are
2285 -- rewritten (the analysis of the non-inlined body will handle these
2286 -- pragmas). A new internal name is associated with Body_To_Inline.
2288 ------------------------------
2289 -- Generate_Subprogram_Body --
2290 ------------------------------
2292 procedure Generate_Subprogram_Body
2294 Body_To_Inline : out Node_Id)
2297 -- Within an instance, the body to inline must be treated as a
2298 -- nested generic so that proper global references are preserved.
2300 -- Note that we do not do this at the library level, because it
2301 -- is not needed, and furthermore this causes trouble if front
2302 -- end inlining is activated (-gnatN).
2305 and then Scope (Current_Scope) /= Standard_Standard
2308 Copy_Generic_Node (N, Empty, Instantiating => True);
2310 Body_To_Inline := New_Copy_Tree (N);
2313 -- Remove aspects/pragmas that have no meaning in an inlined body
2315 Remove_Aspects_And_Pragmas (Body_To_Inline);
2317 -- We need to capture references to the formals in order
2318 -- to substitute the actuals at the point of inlining, i.e.
2319 -- instantiation. To treat the formals as globals to the body to
2320 -- inline, we nest it within a dummy parameterless subprogram,
2321 -- declared within the real one.
2323 Set_Parameter_Specifications
2324 (Specification (Body_To_Inline), No_List);
2326 -- A new internal name is associated with Body_To_Inline to avoid
2327 -- conflicts when the non-inlined body N is analyzed.
2329 Set_Defining_Unit_Name (Specification (Body_To_Inline),
2330 Make_Temporary (Sloc (N), 'P'));
2331 Set_Corresponding_Spec (Body_To_Inline, Empty);
2332 end Generate_Subprogram_Body;
2336 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
2337 Original_Body : Node_Id;
2338 Body_To_Analyze : Node_Id;
2340 -- Start of processing for Build_Body_To_Inline
2343 pragma Assert (Current_Scope = Spec_Id);
2345 -- Within an instance, the body to inline must be treated as a nested
2346 -- generic, so that the proper global references are preserved. We
2347 -- do not do this at the library level, because it is not needed, and
2348 -- furthermore this causes trouble if front-end inlining is activated
2352 and then Scope (Current_Scope) /= Standard_Standard
2354 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
2357 -- Capture references to formals in order to substitute the actuals
2358 -- at the point of inlining or instantiation. To treat the formals
2359 -- as globals to the body to inline, nest the body within a dummy
2360 -- parameterless subprogram, declared within the real one.
2362 Generate_Subprogram_Body (N, Original_Body);
2364 Copy_Generic_Node (Original_Body, Empty, Instantiating => False);
2366 -- Set return type of function, which is also global and does not
2367 -- need to be resolved.
2369 if Ekind (Spec_Id) = E_Function then
2370 Set_Result_Definition (Specification (Body_To_Analyze),
2371 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
2374 if No (Declarations (N)) then
2375 Set_Declarations (N, New_List (Body_To_Analyze));
2377 Append_To (Declarations (N), Body_To_Analyze);
2380 Preanalyze (Body_To_Analyze);
2382 Push_Scope (Defining_Entity (Body_To_Analyze));
2383 Save_Global_References (Original_Body);
2385 Remove (Body_To_Analyze);
2387 -- Restore environment if previously saved
2390 and then Scope (Current_Scope) /= Standard_Standard
2395 pragma Assert (No (Body_To_Inline (Decl)));
2396 Set_Body_To_Inline (Decl, Original_Body);
2397 Mutate_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
2398 end Build_Body_To_Inline;
2400 --------------------------------
2401 -- Build_Return_Object_Formal --
2402 --------------------------------
2404 procedure Build_Return_Object_Formal
2409 Obj_Def : constant Node_Id := Object_Definition (Obj_Decl);
2410 Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
2414 -- Build the type definition of the formal parameter. The use of
2415 -- New_Copy_Tree ensures that global references preserved in the
2416 -- case of generics.
2418 if Is_Entity_Name (Obj_Def) then
2419 Typ_Def := New_Copy_Tree (Obj_Def);
2421 Typ_Def := New_Copy_Tree (Subtype_Mark (Obj_Def));
2426 -- Obj_Id : [out] Typ_Def
2428 -- Mode OUT should not be used when the return object is declared as
2429 -- a constant. Check the definition of the object declaration because
2430 -- the object has not been analyzed yet.
2433 Make_Parameter_Specification (Loc,
2434 Defining_Identifier =>
2435 Make_Defining_Identifier (Loc, Chars (Obj_Id)),
2436 In_Present => False,
2437 Out_Present => not Constant_Present (Obj_Decl),
2438 Parameter_Type => Typ_Def));
2439 end Build_Return_Object_Formal;
2441 --------------------------------------
2442 -- Can_Split_Unconstrained_Function --
2443 --------------------------------------
2445 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean is
2446 Stmt : constant Node_Id :=
2447 First (Statements (Handled_Statement_Sequence (N)));
2451 -- No user defined declarations allowed in the function except inside
2452 -- the unique return statement; implicit labels are the only allowed
2455 Decl := First (Declarations (N));
2456 while Present (Decl) loop
2457 if Nkind (Decl) /= N_Implicit_Label_Declaration then
2464 -- We only split the inlined function when we are generating the code
2465 -- of its body; otherwise we leave duplicated split subprograms in
2466 -- the tree which (if referenced) generate wrong references at link
2469 return In_Extended_Main_Code_Unit (N)
2470 and then Present (Stmt)
2471 and then Nkind (Stmt) = N_Extended_Return_Statement
2472 and then No (Next (Stmt))
2473 and then Present (Handled_Statement_Sequence (Stmt));
2474 end Can_Split_Unconstrained_Function;
2480 procedure Copy_Formals
2482 Subp_Id : Entity_Id;
2489 Formal := First_Formal (Subp_Id);
2490 while Present (Formal) loop
2491 Spec := Parent (Formal);
2493 -- Create an exact copy of the formal parameter. The use of
2494 -- New_Copy_Tree ensures that global references are preserved
2495 -- in case of generics.
2498 Make_Parameter_Specification (Loc,
2499 Defining_Identifier =>
2500 Make_Defining_Identifier (Sloc (Formal), Chars (Formal)),
2501 In_Present => In_Present (Spec),
2502 Out_Present => Out_Present (Spec),
2503 Null_Exclusion_Present => Null_Exclusion_Present (Spec),
2505 New_Copy_Tree (Parameter_Type (Spec)),
2506 Expression => New_Copy_Tree (Expression (Spec))));
2508 Next_Formal (Formal);
2512 ------------------------
2513 -- Copy_Return_Object --
2514 ------------------------
2516 function Copy_Return_Object (Obj_Decl : Node_Id) return Node_Id is
2517 Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
2520 -- The use of New_Copy_Tree ensures that global references are
2521 -- preserved in case of generics.
2524 Make_Object_Declaration (Sloc (Obj_Decl),
2525 Defining_Identifier =>
2526 Make_Defining_Identifier (Sloc (Obj_Id), Chars (Obj_Id)),
2527 Aliased_Present => Aliased_Present (Obj_Decl),
2528 Constant_Present => Constant_Present (Obj_Decl),
2529 Null_Exclusion_Present => Null_Exclusion_Present (Obj_Decl),
2530 Object_Definition =>
2531 New_Copy_Tree (Object_Definition (Obj_Decl)),
2532 Expression => New_Copy_Tree (Expression (Obj_Decl)));
2533 end Copy_Return_Object;
2535 ----------------------------------
2536 -- Split_Unconstrained_Function --
2537 ----------------------------------
2539 procedure Split_Unconstrained_Function
2541 Spec_Id : Entity_Id)
2543 Loc : constant Source_Ptr := Sloc (N);
2544 Ret_Stmt : constant Node_Id :=
2545 First (Statements (Handled_Statement_Sequence (N)));
2546 Ret_Obj : constant Node_Id :=
2547 First (Return_Object_Declarations (Ret_Stmt));
2549 procedure Build_Procedure
2550 (Proc_Id : out Entity_Id;
2551 Decl_List : out List_Id);
2552 -- Build a procedure containing the statements found in the extended
2553 -- return statement of the unconstrained function body N.
2555 ---------------------
2556 -- Build_Procedure --
2557 ---------------------
2559 procedure Build_Procedure
2560 (Proc_Id : out Entity_Id;
2561 Decl_List : out List_Id)
2563 Formals : constant List_Id := New_List;
2564 Subp_Name : constant Name_Id := New_Internal_Name ('F');
2566 Body_Decls : List_Id := No_List;
2568 Proc_Body : Node_Id;
2569 Proc_Spec : Node_Id;
2572 -- Create formal parameters for the return object and all formals
2573 -- of the unconstrained function in order to pass their values to
2576 Build_Return_Object_Formal
2578 Obj_Decl => Ret_Obj,
2579 Formals => Formals);
2584 Formals => Formals);
2586 Proc_Id := Make_Defining_Identifier (Loc, Chars => Subp_Name);
2589 Make_Procedure_Specification (Loc,
2590 Defining_Unit_Name => Proc_Id,
2591 Parameter_Specifications => Formals);
2593 Decl_List := New_List;
2595 Append_To (Decl_List,
2596 Make_Subprogram_Declaration (Loc, Proc_Spec));
2598 -- Can_Convert_Unconstrained_Function checked that the function
2599 -- has no local declarations except implicit label declarations.
2600 -- Copy these declarations to the built procedure.
2602 if Present (Declarations (N)) then
2603 Body_Decls := New_List;
2605 Decl := First (Declarations (N));
2606 while Present (Decl) loop
2607 pragma Assert (Nkind (Decl) = N_Implicit_Label_Declaration);
2609 Append_To (Body_Decls,
2610 Make_Implicit_Label_Declaration (Loc,
2611 Make_Defining_Identifier (Loc,
2612 Chars => Chars (Defining_Identifier (Decl))),
2613 Label_Construct => Empty));
2619 pragma Assert (Present (Handled_Statement_Sequence (Ret_Stmt)));
2622 Make_Subprogram_Body (Loc,
2623 Specification => Copy_Subprogram_Spec (Proc_Spec),
2624 Declarations => Body_Decls,
2625 Handled_Statement_Sequence =>
2626 New_Copy_Tree (Handled_Statement_Sequence (Ret_Stmt)));
2628 Set_Defining_Unit_Name (Specification (Proc_Body),
2629 Make_Defining_Identifier (Loc, Subp_Name));
2631 Append_To (Decl_List, Proc_Body);
2632 end Build_Procedure;
2636 New_Obj : constant Node_Id := Copy_Return_Object (Ret_Obj);
2638 Proc_Call : Node_Id;
2639 Proc_Id : Entity_Id;
2641 -- Start of processing for Split_Unconstrained_Function
2644 -- Build the associated procedure, analyze it and insert it before
2645 -- the function body N.
2648 Scope : constant Entity_Id := Current_Scope;
2649 Decl_List : List_Id;
2652 Build_Procedure (Proc_Id, Decl_List);
2653 Insert_Actions (N, Decl_List);
2654 Set_Is_Inlined (Proc_Id);
2658 -- Build the call to the generated procedure
2661 Actual_List : constant List_Id := New_List;
2665 Append_To (Actual_List,
2666 New_Occurrence_Of (Defining_Identifier (New_Obj), Loc));
2668 Formal := First_Formal (Spec_Id);
2669 while Present (Formal) loop
2670 Append_To (Actual_List, New_Occurrence_Of (Formal, Loc));
2672 -- Avoid spurious warning on unreferenced formals
2674 Set_Referenced (Formal);
2675 Next_Formal (Formal);
2679 Make_Procedure_Call_Statement (Loc,
2680 Name => New_Occurrence_Of (Proc_Id, Loc),
2681 Parameter_Associations => Actual_List);
2689 -- Proc (New_Obj, ...);
2694 Make_Block_Statement (Loc,
2695 Declarations => New_List (New_Obj),
2696 Handled_Statement_Sequence =>
2697 Make_Handled_Sequence_Of_Statements (Loc,
2698 Statements => New_List (
2702 Make_Simple_Return_Statement (Loc,
2705 (Defining_Identifier (New_Obj), Loc)))));
2707 Rewrite (Ret_Stmt, Blk_Stmt);
2708 end Split_Unconstrained_Function;
2712 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
2714 -- Start of processing for Check_And_Split_Unconstrained_Function
2717 pragma Assert (Back_End_Inlining
2718 and then Ekind (Spec_Id) = E_Function
2719 and then Returns_Unconstrained_Type (Spec_Id)
2720 and then Comes_From_Source (Body_Id)
2721 and then (Has_Pragma_Inline_Always (Spec_Id)
2722 or else Optimization_Level > 0));
2724 -- This routine must not be used in GNATprove mode since GNATprove
2725 -- relies on frontend inlining
2727 pragma Assert (not GNATprove_Mode);
2729 -- No need to split the function if we cannot generate the code
2731 if Serious_Errors_Detected /= 0 then
2735 -- No action needed in stubs since the attribute Body_To_Inline
2738 if Nkind (Decl) = N_Subprogram_Body_Stub then
2741 -- Cannot build the body to inline if the attribute is already set.
2742 -- This attribute may have been set if this is a subprogram renaming
2743 -- declarations (see Freeze.Build_Renamed_Body).
2745 elsif Present (Body_To_Inline (Decl)) then
2748 -- Do not generate a body to inline for protected functions, because the
2749 -- transformation generates a call to a protected procedure, causing
2750 -- spurious errors. We don't inline protected operations anyway, so
2751 -- this is no loss. We might as well ignore intrinsics and foreign
2752 -- conventions as well -- just allow Ada conventions.
2754 elsif not (Convention (Spec_Id) = Convention_Ada
2755 or else Convention (Spec_Id) = Convention_Ada_Pass_By_Copy
2756 or else Convention (Spec_Id) = Convention_Ada_Pass_By_Reference)
2760 -- Check excluded declarations
2762 elsif Has_Excluded_Declaration (Spec_Id, Declarations (N)) then
2765 -- Check excluded statements. There is no need to protect us against
2766 -- exception handlers since they are supported by the GCC backend.
2768 elsif Present (Handled_Statement_Sequence (N))
2769 and then Has_Excluded_Statement
2770 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
2775 -- Build the body to inline only if really needed
2777 if Can_Split_Unconstrained_Function (N) then
2778 Split_Unconstrained_Function (N, Spec_Id);
2779 Build_Body_To_Inline (N, Spec_Id);
2780 Set_Is_Inlined (Spec_Id);
2782 end Check_And_Split_Unconstrained_Function;
2784 ---------------------------------------------
2785 -- Check_Object_Renaming_In_GNATprove_Mode --
2786 ---------------------------------------------
2788 procedure Check_Object_Renaming_In_GNATprove_Mode (Spec_Id : Entity_Id) is
2789 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
2790 Body_Decl : constant Node_Id :=
2791 Unit_Declaration_Node (Corresponding_Body (Decl));
2793 function Check_Object_Renaming (N : Node_Id) return Traverse_Result;
2794 -- Returns Abandon on node N if this is a reference to an object
2795 -- renaming, which will be expanded into the renamed object in
2798 ---------------------------
2799 -- Check_Object_Renaming --
2800 ---------------------------
2802 function Check_Object_Renaming (N : Node_Id) return Traverse_Result is
2804 case Nkind (Original_Node (N)) is
2805 when N_Expanded_Name
2809 Obj_Id : constant Entity_Id := Entity (Original_Node (N));
2811 -- Recognize the case when SPARK expansion rewrites a
2812 -- reference to an object renaming.
2815 and then Is_Object (Obj_Id)
2816 and then Present (Renamed_Object (Obj_Id))
2817 and then Nkind (Renamed_Object (Obj_Id)) not in N_Entity
2819 -- Copy_Generic_Node called for inlining expects the
2820 -- references to global entities to have the same kind
2821 -- in the "generic" code and its "instantiation".
2823 and then Nkind (Original_Node (N)) /=
2824 Nkind (Renamed_Object (Obj_Id))
2835 end Check_Object_Renaming;
2837 function Check_All_Object_Renamings is new
2838 Traverse_Func (Check_Object_Renaming);
2840 -- Start of processing for Check_Object_Renaming_In_GNATprove_Mode
2843 -- Subprograms with object renamings replaced by the special SPARK
2844 -- expansion cannot be inlined.
2846 if Check_All_Object_Renamings (Body_Decl) /= OK then
2847 Cannot_Inline ("cannot inline & (object renaming)?",
2848 Body_Decl, Spec_Id);
2849 Set_Body_To_Inline (Decl, Empty);
2851 end Check_Object_Renaming_In_GNATprove_Mode;
2853 -------------------------------------
2854 -- Check_Package_Body_For_Inlining --
2855 -------------------------------------
2857 procedure Check_Package_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
2858 Bname : Unit_Name_Type;
2863 -- Legacy implementation (relying on frontend inlining)
2865 if not Back_End_Inlining
2866 and then Is_Compilation_Unit (P)
2867 and then not Is_Generic_Instance (P)
2869 Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
2871 E := First_Entity (P);
2872 while Present (E) loop
2873 if Has_Pragma_Inline_Always (E)
2874 or else (Has_Pragma_Inline (E) and Front_End_Inlining)
2876 if not Is_Loaded (Bname) then
2877 Load_Needed_Body (N, OK);
2881 -- Check we are not trying to inline a parent whose body
2882 -- depends on a child, when we are compiling the body of
2883 -- the child. Otherwise we have a potential elaboration
2884 -- circularity with inlined subprograms and with
2885 -- Taft-Amendment types.
2888 Comp : Node_Id; -- Body just compiled
2889 Child_Spec : Entity_Id; -- Spec of main unit
2890 Ent : Entity_Id; -- For iteration
2891 With_Clause : Node_Id; -- Context of body.
2894 if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
2895 and then Present (Body_Entity (P))
2899 ((Unit (Spec_Lib_Unit (Cunit (Main_Unit)))));
2902 Parent (Unit_Declaration_Node (Body_Entity (P)));
2904 -- Check whether the context of the body just
2905 -- compiled includes a child of itself, and that
2906 -- child is the spec of the main compilation.
2908 With_Clause := First (Context_Items (Comp));
2909 while Present (With_Clause) loop
2910 if Nkind (With_Clause) = N_With_Clause
2912 Scope (Entity (Name (With_Clause))) = P
2914 Entity (Name (With_Clause)) = Child_Spec
2916 Error_Msg_Node_2 := Child_Spec;
2918 ("body of & depends on child unit&??",
2921 ("\subprograms in body cannot be inlined??",
2924 -- Disable further inlining from this unit,
2925 -- and keep Taft-amendment types incomplete.
2927 Ent := First_Entity (P);
2928 while Present (Ent) loop
2930 and then Has_Completion_In_Body (Ent)
2932 Set_Full_View (Ent, Empty);
2934 elsif Is_Subprogram (Ent) then
2935 Set_Is_Inlined (Ent, False);
2949 elsif Ineffective_Inline_Warnings then
2950 Error_Msg_Unit_1 := Bname;
2952 ("unable to inline subprograms defined in $?p?", P);
2953 Error_Msg_N ("\body not found?p?", P);
2964 end Check_Package_Body_For_Inlining;
2966 --------------------
2967 -- Cleanup_Scopes --
2968 --------------------
2970 procedure Cleanup_Scopes is
2978 Elmt := First_Elmt (To_Clean);
2979 while Present (Elmt) loop
2980 Scop := Node (Elmt);
2981 Kind := Ekind (Scop);
2983 if Kind = E_Block then
2984 Decl := Parent (Block_Node (Scop));
2987 Decl := Unit_Declaration_Node (Scop);
2989 if Nkind (Decl) in N_Subprogram_Declaration
2990 | N_Task_Type_Declaration
2991 | N_Subprogram_Body_Stub
2993 Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
2997 -- Finalizers are built only for package specs and bodies that are
2998 -- compilation units, so check that we do not have anything else.
2999 -- Moreover, they must be built at most once for each entity during
3000 -- the compilation of the main unit. However, if other units are
3001 -- later compiled for inlining purposes, they may also contain body
3002 -- instances and, therefore, appear again here, so we need to make
3003 -- sure that we do not build two finalizers for them (note that the
3004 -- contents of the finalizer for these units is irrelevant since it
3005 -- is not output in the generated code).
3007 if Kind in E_Package | E_Package_Body then
3009 Unit_Entity : constant Entity_Id :=
3010 (if Kind = E_Package then Scop else Spec_Entity (Scop));
3013 pragma Assert (Is_Compilation_Unit (Unit_Entity)
3014 and then (No (Finalizer (Scop))
3015 or else Unit_Entity /= Main_Unit_Entity));
3017 if No (Finalizer (Scop)) then
3020 Clean_Stmts => No_List,
3022 Defer_Abort => False,
3025 if Present (Fin) then
3026 Set_Finalizer (Scop, Fin);
3033 Expand_Cleanup_Actions (Decl);
3041 -----------------------------------------------
3042 -- Establish_Actual_Mapping_For_Inlined_Call --
3043 -----------------------------------------------
3045 procedure Establish_Actual_Mapping_For_Inlined_Call
3049 Body_Or_Expr_To_Check : Node_Id)
3052 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
3053 -- Determine whether a formal parameter is used only once in
3054 -- Body_Or_Expr_To_Check.
3056 -------------------------
3057 -- Formal_Is_Used_Once --
3058 -------------------------
3060 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
3061 Use_Counter : Nat := 0;
3063 function Count_Uses (N : Node_Id) return Traverse_Result;
3064 -- Traverse the tree and count the uses of the formal parameter.
3065 -- In this case, for optimization purposes, we do not need to
3066 -- continue the traversal once more than one use is encountered.
3072 function Count_Uses (N : Node_Id) return Traverse_Result is
3074 -- The original node is an identifier
3076 if Nkind (N) = N_Identifier
3077 and then Present (Entity (N))
3079 -- Original node's entity points to the one in the copied body
3081 and then Nkind (Entity (N)) = N_Identifier
3082 and then Present (Entity (Entity (N)))
3084 -- The entity of the copied node is the formal parameter
3086 and then Entity (Entity (N)) = Formal
3088 Use_Counter := Use_Counter + 1;
3090 -- If this is a second use then abandon the traversal
3092 if Use_Counter > 1 then
3100 procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
3102 -- Start of processing for Formal_Is_Used_Once
3105 Count_Formal_Uses (Body_Or_Expr_To_Check);
3106 return Use_Counter = 1;
3107 end Formal_Is_Used_Once;
3114 Loc : constant Source_Ptr := Sloc (N);
3117 Temp_Typ : Entity_Id;
3119 -- Start of processing for Establish_Actual_Mapping_For_Inlined_Call
3122 F := First_Formal (Subp);
3123 A := First_Actual (N);
3124 while Present (F) loop
3125 -- Reset Last_Assignment for any parameters of mode out or in out, to
3126 -- prevent spurious warnings about overwriting for assignments to the
3127 -- formal in the inlined code.
3129 if Is_Entity_Name (A) and then Ekind (F) /= E_In_Parameter then
3131 -- In GNATprove mode a protected component acting as an actual
3132 -- subprogram parameter will appear as inlined-for-proof. However,
3133 -- its E_Component entity is not an assignable object, so the
3134 -- assertion in Set_Last_Assignment will fail. We just omit the
3135 -- call to Set_Last_Assignment, because GNATprove flags useless
3136 -- assignments with its own flow analysis.
3138 -- In GNAT mode such a problem does not occur, because protected
3139 -- components are inlined via object renamings whose entity kind
3140 -- E_Variable is assignable.
3142 if Is_Assignable (Entity (A)) then
3143 Set_Last_Assignment (Entity (A), Empty);
3146 (GNATprove_Mode and then Is_Protected_Component (Entity (A)));
3150 -- If the argument may be a controlling argument in a call within
3151 -- the inlined body, we must preserve its class-wide nature to ensure
3152 -- that dynamic dispatching will take place subsequently. If the
3153 -- formal has a constraint, then it must be preserved to retain the
3154 -- semantics of the body.
3156 if Is_Class_Wide_Type (Etype (F))
3157 or else (Is_Access_Type (Etype (F))
3158 and then Is_Class_Wide_Type (Designated_Type (Etype (F))))
3160 Temp_Typ := Etype (F);
3162 elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
3163 and then Etype (F) /= Base_Type (Etype (F))
3164 and then (Is_Constrained (Etype (F))
3166 Is_Fixed_Lower_Bound_Array_Subtype (Etype (F)))
3168 Temp_Typ := Etype (F);
3171 Temp_Typ := Etype (A);
3174 -- If the actual is a simple name or a literal, no need to create a
3175 -- temporary, object can be used directly. Skip this optimization in
3176 -- GNATprove mode, to make sure any check on a type conversion will
3179 if (Is_Entity_Name (A)
3181 (not Is_Scalar_Type (Etype (A))
3182 or else Ekind (Entity (A)) = E_Enumeration_Literal)
3183 and then not GNATprove_Mode)
3185 -- When the actual is an identifier and the corresponding formal is
3186 -- used only once in the original body, the formal can be substituted
3187 -- directly with the actual parameter. Skip this optimization in
3188 -- GNATprove mode, to make sure any check on a type conversion
3192 (Nkind (A) = N_Identifier
3193 and then Formal_Is_Used_Once (F)
3194 and then not GNATprove_Mode)
3196 -- If the actual is a literal and the formal has its address taken,
3197 -- we cannot pass the literal itself as an argument, so its value
3198 -- must be captured in a temporary.
3202 N_Real_Literal | N_Integer_Literal | N_Character_Literal
3203 and then not Address_Taken (F))
3205 if Etype (F) /= Etype (A) then
3207 (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
3209 Set_Renamed_Object (F, A);
3213 Temp := Make_Temporary (Loc, 'C');
3215 -- If the actual for an in/in-out parameter is a view conversion,
3216 -- make it into an unchecked conversion, given that an untagged
3217 -- type conversion is not a proper object for a renaming.
3219 -- In-out conversions that involve real conversions have already
3220 -- been transformed in Expand_Actuals.
3222 if Nkind (A) = N_Type_Conversion
3223 and then Ekind (F) /= E_In_Parameter
3225 New_A := Unchecked_Convert_To (Etype (F), Expression (A));
3227 -- In GNATprove mode, keep the most precise type of the actual for
3228 -- the temporary variable, when the formal type is unconstrained.
3229 -- Otherwise, the AST may contain unexpected assignment statements
3230 -- to a temporary variable of unconstrained type renaming a local
3231 -- variable of constrained type, which is not expected by
3234 elsif Etype (F) /= Etype (A)
3237 or else (Is_Constrained (Etype (F))
3239 Is_Fixed_Lower_Bound_Array_Subtype (Etype (F))))
3241 New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
3242 Temp_Typ := Etype (F);
3245 New_A := Relocate_Node (A);
3248 Set_Sloc (New_A, Sloc (N));
3250 -- If the actual has a by-reference type, it cannot be copied,
3251 -- so its value is captured in a renaming declaration. Otherwise
3252 -- declare a local constant initialized with the actual.
3254 -- We also use a renaming declaration for expressions of an array
3255 -- type that is not bit-packed, both for efficiency reasons and to
3256 -- respect the semantics of the call: in most cases the original
3257 -- call will pass the parameter by reference, and thus the inlined
3258 -- code will have the same semantics.
3260 -- Finally, we need a renaming declaration in the case of limited
3261 -- types for which initialization cannot be by copy either.
3263 if Ekind (F) = E_In_Parameter
3264 and then not Is_By_Reference_Type (Etype (A))
3265 and then not Is_Limited_Type (Etype (A))
3267 (not Is_Array_Type (Etype (A))
3268 or else not Is_Object_Reference (A)
3269 or else Is_Bit_Packed_Array (Etype (A)))
3272 Make_Object_Declaration (Loc,
3273 Defining_Identifier => Temp,
3274 Constant_Present => True,
3275 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3276 Expression => New_A);
3279 -- In GNATprove mode, make an explicit copy of input
3280 -- parameters when formal and actual types differ, to make
3281 -- sure any check on the type conversion will be issued.
3282 -- The legality of the copy is ensured by calling first
3283 -- Call_Can_Be_Inlined_In_GNATprove_Mode.
3286 and then Ekind (F) /= E_Out_Parameter
3287 and then not Same_Type (Etype (F), Etype (A))
3289 pragma Assert (not Is_By_Reference_Type (Etype (A)));
3290 pragma Assert (not Is_Limited_Type (Etype (A)));
3293 Make_Object_Declaration (Loc,
3294 Defining_Identifier => Make_Temporary (Loc, 'C'),
3295 Constant_Present => True,
3296 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3297 Expression => New_Copy_Tree (New_A)));
3301 Make_Object_Renaming_Declaration (Loc,
3302 Defining_Identifier => Temp,
3303 Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
3307 Append (Decl, Decls);
3308 Set_Renamed_Object (F, Temp);
3314 end Establish_Actual_Mapping_For_Inlined_Call;
3316 -------------------------
3317 -- Expand_Inlined_Call --
3318 -------------------------
3320 procedure Expand_Inlined_Call
3323 Orig_Subp : Entity_Id)
3325 Decls : constant List_Id := New_List;
3326 Is_Predef : constant Boolean :=
3327 Is_Predefined_Unit (Get_Source_Unit (Subp));
3328 Loc : constant Source_Ptr := Sloc (N);
3329 Orig_Bod : constant Node_Id :=
3330 Body_To_Inline (Unit_Declaration_Node (Subp));
3332 Uses_Back_End : constant Boolean :=
3333 Back_End_Inlining and then Optimization_Level > 0;
3334 -- The back-end expansion is used if the target supports back-end
3335 -- inlining and some level of optimixation is required; otherwise
3336 -- the inlining takes place fully as a tree expansion.
3340 Exit_Lab : Entity_Id := Empty;
3341 Lab_Decl : Node_Id := Empty;
3344 Ret_Type : Entity_Id;
3348 Is_Unc_Decl : Boolean;
3349 -- If the type returned by the function is unconstrained and the call
3350 -- can be inlined, special processing is required.
3352 Return_Object : Entity_Id := Empty;
3353 -- Entity in declaration in an extended_return_statement
3355 Targ : Node_Id := Empty;
3356 -- The target of the call. If context is an assignment statement then
3357 -- this is the left-hand side of the assignment, else it is a temporary
3358 -- to which the return value is assigned prior to rewriting the call.
3360 Targ1 : Node_Id := Empty;
3361 -- A separate target used when the return type is unconstrained
3363 procedure Make_Exit_Label;
3364 -- Build declaration for exit label to be used in Return statements,
3365 -- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
3366 -- declaration). Does nothing if Exit_Lab already set.
3368 function Process_Formals (N : Node_Id) return Traverse_Result;
3369 -- Replace occurrence of a formal with the corresponding actual, or the
3370 -- thunk generated for it. Replace a return statement with an assignment
3371 -- to the target of the call, with appropriate conversions if needed.
3373 function Process_Formals_In_Aspects (N : Node_Id) return Traverse_Result;
3374 -- Because aspects are linked indirectly to the rest of the tree,
3375 -- replacement of formals appearing in aspect specifications must
3376 -- be performed in a separate pass, using an instantiation of the
3377 -- previous subprogram over aspect specifications reachable from N.
3379 procedure Reset_Dispatching_Calls (N : Node_Id);
3380 -- In subtree N search for occurrences of dispatching calls that use the
3381 -- Ada 2005 Object.Operation notation and the object is a formal of the
3382 -- inlined subprogram. Reset the entity associated with Operation in all
3383 -- the found occurrences.
3385 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
3386 -- If the function body is a single expression, replace call with
3387 -- expression, else insert block appropriately.
3389 ---------------------
3390 -- Make_Exit_Label --
3391 ---------------------
3393 procedure Make_Exit_Label is
3394 Lab_Ent : Entity_Id;
3396 if No (Exit_Lab) then
3397 Lab_Ent := Make_Temporary (Loc, 'L');
3398 Lab_Id := New_Occurrence_Of (Lab_Ent, Loc);
3399 Exit_Lab := Make_Label (Loc, Lab_Id);
3401 Make_Implicit_Label_Declaration (Loc,
3402 Defining_Identifier => Lab_Ent,
3403 Label_Construct => Exit_Lab);
3405 end Make_Exit_Label;
3407 ---------------------
3408 -- Process_Formals --
3409 ---------------------
3411 function Process_Formals (N : Node_Id) return Traverse_Result is
3412 Loc : constant Source_Ptr := Sloc (N);
3417 Had_Private_View : Boolean;
3420 if Is_Entity_Name (N) and then Present (Entity (N)) then
3423 if Is_Formal (E) and then Scope (E) = Subp then
3424 A := Renamed_Object (E);
3426 -- Rewrite the occurrence of the formal into an occurrence of
3427 -- the actual. Also establish visibility on the proper view of
3428 -- the actual's subtype for the body's context (if the actual's
3429 -- subtype is private at the call point but its full view is
3430 -- visible to the body, then the inlined tree here must be
3431 -- analyzed with the full view).
3433 -- The Has_Private_View flag is cleared by rewriting, so it
3434 -- must be explicitly saved and restored, just like when
3435 -- instantiating the body to inline.
3437 if Is_Entity_Name (A) then
3438 Had_Private_View := Has_Private_View (N);
3439 Rewrite (N, New_Occurrence_Of (Entity (A), Loc));
3440 Set_Has_Private_View (N, Had_Private_View);
3441 Check_Private_View (N);
3443 elsif Nkind (A) = N_Defining_Identifier then
3444 Had_Private_View := Has_Private_View (N);
3445 Rewrite (N, New_Occurrence_Of (A, Loc));
3446 Set_Has_Private_View (N, Had_Private_View);
3447 Check_Private_View (N);
3452 Rewrite (N, New_Copy (A));
3458 elsif Is_Entity_Name (N)
3459 and then Present (Return_Object)
3460 and then Chars (N) = Chars (Return_Object)
3462 -- Occurrence within an extended return statement. The return
3463 -- object is local to the body been inlined, and thus the generic
3464 -- copy is not analyzed yet, so we match by name, and replace it
3465 -- with target of call.
3467 if Nkind (Targ) = N_Defining_Identifier then
3468 Rewrite (N, New_Occurrence_Of (Targ, Loc));
3470 Rewrite (N, New_Copy_Tree (Targ));
3475 elsif Nkind (N) = N_Simple_Return_Statement then
3476 if No (Expression (N)) then
3477 Num_Ret := Num_Ret + 1;
3480 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
3483 if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
3484 and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
3486 -- Function body is a single expression. No need for
3492 Num_Ret := Num_Ret + 1;
3496 -- Because of the presence of private types, the views of the
3497 -- expression and the context may be different, so place
3498 -- a type conversion to the context type to avoid spurious
3499 -- errors, e.g. when the expression is a numeric literal and
3500 -- the context is private. If the expression is an aggregate,
3501 -- use a qualified expression, because an aggregate is not a
3502 -- legal argument of a conversion. Ditto for numeric, character
3503 -- and string literals, and attributes that yield a universal
3504 -- type, because those must be resolved to a specific type.
3506 if Nkind (Expression (N)) in N_Aggregate
3507 | N_Character_Literal
3510 or else Yields_Universal_Type (Expression (N))
3513 Make_Qualified_Expression (Loc,
3514 Subtype_Mark => New_Occurrence_Of (Ret_Type, Loc),
3515 Expression => Relocate_Node (Expression (N)));
3517 -- Use an unchecked type conversion between access types, for
3518 -- which a type conversion would not always be valid, as no
3519 -- check may result from the conversion.
3521 elsif Is_Access_Type (Ret_Type) then
3523 Unchecked_Convert_To
3524 (Ret_Type, Relocate_Node (Expression (N)));
3526 -- Otherwise use a type conversion, which may trigger a check
3530 Make_Type_Conversion (Loc,
3531 Subtype_Mark => New_Occurrence_Of (Ret_Type, Loc),
3532 Expression => Relocate_Node (Expression (N)));
3535 if Nkind (Targ) = N_Defining_Identifier then
3537 Make_Assignment_Statement (Loc,
3538 Name => New_Occurrence_Of (Targ, Loc),
3539 Expression => Ret));
3542 Make_Assignment_Statement (Loc,
3543 Name => New_Copy (Targ),
3544 Expression => Ret));
3547 Set_Assignment_OK (Name (N));
3549 if Present (Exit_Lab) then
3551 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
3557 -- An extended return becomes a block whose first statement is the
3558 -- assignment of the initial expression of the return object to the
3559 -- target of the call itself.
3561 elsif Nkind (N) = N_Extended_Return_Statement then
3563 Return_Decl : constant Entity_Id :=
3564 First (Return_Object_Declarations (N));
3568 Return_Object := Defining_Identifier (Return_Decl);
3570 if Present (Expression (Return_Decl)) then
3571 if Nkind (Targ) = N_Defining_Identifier then
3573 Make_Assignment_Statement (Loc,
3574 Name => New_Occurrence_Of (Targ, Loc),
3575 Expression => Expression (Return_Decl));
3578 Make_Assignment_Statement (Loc,
3579 Name => New_Copy (Targ),
3580 Expression => Expression (Return_Decl));
3583 Set_Assignment_OK (Name (Assign));
3585 if No (Handled_Statement_Sequence (N)) then
3586 Set_Handled_Statement_Sequence (N,
3587 Make_Handled_Sequence_Of_Statements (Loc,
3588 Statements => New_List));
3592 Statements (Handled_Statement_Sequence (N)));
3596 Make_Block_Statement (Loc,
3597 Handled_Statement_Sequence =>
3598 Handled_Statement_Sequence (N)));
3603 -- Remove pragma Unreferenced since it may refer to formals that
3604 -- are not visible in the inlined body, and in any case we will
3605 -- not be posting warnings on the inlined body so it is unneeded.
3607 elsif Nkind (N) = N_Pragma
3608 and then Pragma_Name (N) = Name_Unreferenced
3610 Rewrite (N, Make_Null_Statement (Loc));
3616 end Process_Formals;
3618 procedure Replace_Formals is new Traverse_Proc (Process_Formals);
3620 --------------------------------
3621 -- Process_Formals_In_Aspects --
3622 --------------------------------
3624 function Process_Formals_In_Aspects
3625 (N : Node_Id) return Traverse_Result
3628 if Nkind (N) = N_Aspect_Specification then
3629 Replace_Formals (Expression (N));
3632 end Process_Formals_In_Aspects;
3634 procedure Replace_Formals_In_Aspects is
3635 new Traverse_Proc (Process_Formals_In_Aspects);
3637 ------------------------------
3638 -- Reset_Dispatching_Calls --
3639 ------------------------------
3641 procedure Reset_Dispatching_Calls (N : Node_Id) is
3643 function Do_Reset (N : Node_Id) return Traverse_Result;
3649 function Do_Reset (N : Node_Id) return Traverse_Result is
3651 if Nkind (N) = N_Procedure_Call_Statement
3652 and then Nkind (Name (N)) = N_Selected_Component
3653 and then Nkind (Prefix (Name (N))) = N_Identifier
3654 and then Is_Formal (Entity (Prefix (Name (N))))
3655 and then Is_Dispatching_Operation
3656 (Entity (Selector_Name (Name (N))))
3658 Set_Entity (Selector_Name (Name (N)), Empty);
3664 procedure Do_Reset_Calls is new Traverse_Proc (Do_Reset);
3668 end Reset_Dispatching_Calls;
3670 ---------------------------
3671 -- Rewrite_Function_Call --
3672 ---------------------------
3674 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
3675 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
3676 Fst : constant Node_Id := First (Statements (HSS));
3679 -- Optimize simple case: function body is a single return statement,
3680 -- which has been expanded into an assignment.
3682 if Is_Empty_List (Declarations (Blk))
3683 and then Nkind (Fst) = N_Assignment_Statement
3684 and then No (Next (Fst))
3686 -- The function call may have been rewritten as the temporary
3687 -- that holds the result of the call, in which case remove the
3688 -- now useless declaration.
3690 if Nkind (N) = N_Identifier
3691 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3693 Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
3696 Rewrite (N, Expression (Fst));
3698 elsif Nkind (N) = N_Identifier
3699 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3701 -- The block assigns the result of the call to the temporary
3703 Insert_After (Parent (Entity (N)), Blk);
3705 -- If the context is an assignment, and the left-hand side is free of
3706 -- side effects, the replacement is also safe.
3708 elsif Nkind (Parent (N)) = N_Assignment_Statement
3710 (Is_Entity_Name (Name (Parent (N)))
3712 (Nkind (Name (Parent (N))) = N_Explicit_Dereference
3713 and then Is_Entity_Name (Prefix (Name (Parent (N)))))
3716 (Nkind (Name (Parent (N))) = N_Selected_Component
3717 and then Is_Entity_Name (Prefix (Name (Parent (N))))))
3719 -- Replace assignment with the block
3722 Original_Assignment : constant Node_Id := Parent (N);
3725 -- Preserve the original assignment node to keep the complete
3726 -- assignment subtree consistent enough for Analyze_Assignment
3727 -- to proceed (specifically, the original Lhs node must still
3728 -- have an assignment statement as its parent).
3730 -- We cannot rely on Original_Node to go back from the block
3731 -- node to the assignment node, because the assignment might
3732 -- already be a rewrite substitution.
3734 Discard_Node (Relocate_Node (Original_Assignment));
3735 Rewrite (Original_Assignment, Blk);
3738 elsif Nkind (Parent (N)) = N_Object_Declaration then
3740 -- A call to a function which returns an unconstrained type
3741 -- found in the expression initializing an object-declaration is
3742 -- expanded into a procedure call which must be added after the
3743 -- object declaration.
3745 if Is_Unc_Decl and Back_End_Inlining then
3746 Insert_Action_After (Parent (N), Blk);
3748 Set_Expression (Parent (N), Empty);
3749 Insert_After (Parent (N), Blk);
3752 elsif Is_Unc and then not Back_End_Inlining then
3753 Insert_Before (Parent (N), Blk);
3755 end Rewrite_Function_Call;
3757 -- Start of processing for Expand_Inlined_Call
3760 -- Initializations for old/new semantics
3762 if not Uses_Back_End then
3763 Is_Unc := Is_Array_Type (Etype (Subp))
3764 and then not Is_Constrained (Etype (Subp));
3765 Is_Unc_Decl := False;
3767 Is_Unc := Returns_Unconstrained_Type (Subp)
3768 and then Optimization_Level > 0;
3769 Is_Unc_Decl := Nkind (Parent (N)) = N_Object_Declaration
3773 -- Inlining function calls returning an object of unconstrained type as
3774 -- function actuals or in a return statement is not supported: a
3775 -- temporary variable will be declared of unconstrained type without
3776 -- initializing expression.
3780 or else Nkind (Parent (N)) not in
3781 N_Function_Call | N_Simple_Return_Statement
3782 or else not Is_Unc);
3784 -- Check for an illegal attempt to inline a recursive procedure. If the
3785 -- subprogram has parameters this is detected when trying to supply a
3786 -- binding for parameters that already have one. For parameterless
3787 -- subprograms this must be done explicitly.
3789 if In_Open_Scopes (Subp) then
3791 ("cannot inline call to recursive subprogram?", N, Subp);
3792 Set_Is_Inlined (Subp, False);
3795 -- Skip inlining if this is not a true inlining since the attribute
3796 -- Body_To_Inline is also set for renamings (see sinfo.ads). For a
3797 -- true inlining, Orig_Bod has code rather than being an entity.
3799 elsif Nkind (Orig_Bod) in N_Entity then
3803 if Nkind (Orig_Bod) in N_Defining_Identifier
3804 | N_Defining_Operator_Symbol
3806 -- Subprogram is renaming_as_body. Calls occurring after the renaming
3807 -- can be replaced with calls to the renamed entity directly, because
3808 -- the subprograms are subtype conformant. If the renamed subprogram
3809 -- is an inherited operation, we must redo the expansion because
3810 -- implicit conversions may be needed. Similarly, if the renamed
3811 -- entity is inlined, expand the call for further optimizations.
3813 Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
3815 if Present (Alias (Orig_Bod)) or else Is_Inlined (Orig_Bod) then
3822 -- Register the call in the list of inlined calls
3824 Append_New_Elmt (N, To => Inlined_Calls);
3826 -- Use generic machinery to copy body of inlined subprogram, as if it
3827 -- were an instantiation, resetting source locations appropriately, so
3828 -- that nested inlined calls appear in the main unit.
3830 Save_Env (Subp, Empty);
3831 Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
3835 if not Uses_Back_End then
3840 Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
3842 Make_Block_Statement (Loc,
3843 Declarations => Declarations (Bod),
3844 Handled_Statement_Sequence =>
3845 Handled_Statement_Sequence (Bod));
3847 if No (Declarations (Bod)) then
3848 Set_Declarations (Blk, New_List);
3851 -- For the unconstrained case, capture the name of the local
3852 -- variable that holds the result. This must be the first
3853 -- declaration in the block, because its bounds cannot depend
3854 -- on local variables. Otherwise there is no way to declare the
3855 -- result outside of the block. Needless to say, in general the
3856 -- bounds will depend on the actuals in the call.
3858 -- If the context is an assignment statement, as is the case
3859 -- for the expansion of an extended return, the left-hand side
3860 -- provides bounds even if the return type is unconstrained.
3864 First_Decl : Node_Id;
3867 First_Decl := First (Declarations (Blk));
3869 -- If the body is a single extended return statement,the
3870 -- resulting block is a nested block.
3872 if No (First_Decl) then
3874 First (Statements (Handled_Statement_Sequence (Blk)));
3876 if Nkind (First_Decl) = N_Block_Statement then
3877 First_Decl := First (Declarations (First_Decl));
3881 -- No front-end inlining possible
3883 if Nkind (First_Decl) /= N_Object_Declaration then
3887 if Nkind (Parent (N)) /= N_Assignment_Statement then
3888 Targ1 := Defining_Identifier (First_Decl);
3890 Targ1 := Name (Parent (N));
3907 Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
3909 Make_Block_Statement (Loc,
3910 Declarations => Declarations (Bod),
3911 Handled_Statement_Sequence =>
3912 Handled_Statement_Sequence (Bod));
3914 -- Inline a call to a function that returns an unconstrained type.
3915 -- The semantic analyzer checked that frontend-inlined functions
3916 -- returning unconstrained types have no declarations and have
3917 -- a single extended return statement. As part of its processing
3918 -- the function was split into two subprograms: a procedure P' and
3919 -- a function F' that has a block with a call to procedure P' (see
3920 -- Split_Unconstrained_Function).
3926 (Statements (Handled_Statement_Sequence (Orig_Bod)))) =
3930 Blk_Stmt : constant Node_Id :=
3931 First (Statements (Handled_Statement_Sequence (Orig_Bod)));
3932 First_Stmt : constant Node_Id :=
3933 First (Statements (Handled_Statement_Sequence (Blk_Stmt)));
3934 Second_Stmt : constant Node_Id := Next (First_Stmt);
3938 (Nkind (First_Stmt) = N_Procedure_Call_Statement
3939 and then Nkind (Second_Stmt) = N_Simple_Return_Statement
3940 and then No (Next (Second_Stmt)));
3945 (Statements (Handled_Statement_Sequence (Orig_Bod))),
3946 Empty, Instantiating => True);
3949 -- Capture the name of the local variable that holds the
3950 -- result. This must be the first declaration in the block,
3951 -- because its bounds cannot depend on local variables.
3952 -- Otherwise there is no way to declare the result outside
3953 -- of the block. Needless to say, in general the bounds will
3954 -- depend on the actuals in the call.
3956 if Nkind (Parent (N)) /= N_Assignment_Statement then
3957 Targ1 := Defining_Identifier (First (Declarations (Blk)));
3959 -- If the context is an assignment statement, as is the case
3960 -- for the expansion of an extended return, the left-hand
3961 -- side provides bounds even if the return type is
3965 Targ1 := Name (Parent (N));
3970 if No (Declarations (Bod)) then
3971 Set_Declarations (Blk, New_List);
3976 -- If this is a derived function, establish the proper return type
3978 if Present (Orig_Subp) and then Orig_Subp /= Subp then
3979 Ret_Type := Etype (Orig_Subp);
3981 Ret_Type := Etype (Subp);
3984 -- Create temporaries for the actuals that are expressions, or that are
3985 -- scalars and require copying to preserve semantics.
3987 Establish_Actual_Mapping_For_Inlined_Call (N, Subp, Decls, Orig_Bod);
3989 -- Establish target of function call. If context is not assignment or
3990 -- declaration, create a temporary as a target. The declaration for the
3991 -- temporary may be subsequently optimized away if the body is a single
3992 -- expression, or if the left-hand side of the assignment is simple
3993 -- enough, i.e. an entity or an explicit dereference of one.
3995 if Ekind (Subp) = E_Function then
3996 if Nkind (Parent (N)) = N_Assignment_Statement
3997 and then Is_Entity_Name (Name (Parent (N)))
3999 Targ := Name (Parent (N));
4001 elsif Nkind (Parent (N)) = N_Assignment_Statement
4002 and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
4003 and then Is_Entity_Name (Prefix (Name (Parent (N))))
4005 Targ := Name (Parent (N));
4007 elsif Nkind (Parent (N)) = N_Assignment_Statement
4008 and then Nkind (Name (Parent (N))) = N_Selected_Component
4009 and then Is_Entity_Name (Prefix (Name (Parent (N))))
4011 Targ := New_Copy_Tree (Name (Parent (N)));
4013 elsif Nkind (Parent (N)) = N_Object_Declaration
4014 and then Is_Limited_Type (Etype (Subp))
4016 Targ := Defining_Identifier (Parent (N));
4018 -- New semantics: In an object declaration avoid an extra copy
4019 -- of the result of a call to an inlined function that returns
4020 -- an unconstrained type
4023 and then Nkind (Parent (N)) = N_Object_Declaration
4026 Targ := Defining_Identifier (Parent (N));
4029 -- Replace call with temporary and create its declaration
4031 Temp := Make_Temporary (Loc, 'C');
4032 Mutate_Ekind (Temp, E_Constant);
4033 Set_Is_Internal (Temp);
4035 -- For the unconstrained case, the generated temporary has the
4036 -- same constrained declaration as the result variable. It may
4037 -- eventually be possible to remove that temporary and use the
4038 -- result variable directly.
4040 if Is_Unc and then Nkind (Parent (N)) /= N_Assignment_Statement
4043 Make_Object_Declaration (Loc,
4044 Defining_Identifier => Temp,
4045 Object_Definition =>
4046 New_Copy_Tree (Object_Definition (Parent (Targ1))));
4048 Replace_Formals (Decl);
4052 Make_Object_Declaration (Loc,
4053 Defining_Identifier => Temp,
4054 Object_Definition => New_Occurrence_Of (Ret_Type, Loc));
4056 Set_Etype (Temp, Ret_Type);
4059 Set_No_Initialization (Decl);
4060 Append (Decl, Decls);
4061 Rewrite (N, New_Occurrence_Of (Temp, Loc));
4066 Insert_Actions (N, Decls);
4070 -- Special management for inlining a call to a function that returns
4071 -- an unconstrained type and initializes an object declaration: we
4072 -- avoid generating undesired extra calls and goto statements.
4075 -- function Func (...) return String is
4078 -- Result : String (1 .. 4);
4080 -- Proc (Result, ...);
4085 -- Result : String := Func (...);
4087 -- Replace this object declaration by:
4089 -- Result : String (1 .. 4);
4090 -- Proc (Result, ...);
4092 Remove_Homonym (Targ);
4095 Make_Object_Declaration
4097 Defining_Identifier => Targ,
4098 Object_Definition =>
4099 New_Copy_Tree (Object_Definition (Parent (Targ1))));
4100 Replace_Formals (Decl);
4101 Set_No_Initialization (Decl);
4102 Rewrite (Parent (N), Decl);
4103 Analyze (Parent (N));
4105 -- Avoid spurious warnings since we know that this declaration is
4106 -- referenced by the procedure call.
4108 Set_Never_Set_In_Source (Targ, False);
4110 -- Remove the local declaration of the extended return stmt from the
4113 Remove (Parent (Targ1));
4115 -- Update the reference to the result (since we have rewriten the
4116 -- object declaration)
4119 Blk_Call_Stmt : Node_Id;
4122 -- Capture the call to the procedure
4125 First (Statements (Handled_Statement_Sequence (Blk)));
4127 (Nkind (Blk_Call_Stmt) = N_Procedure_Call_Statement);
4129 Remove (First (Parameter_Associations (Blk_Call_Stmt)));
4130 Prepend_To (Parameter_Associations (Blk_Call_Stmt),
4131 New_Occurrence_Of (Targ, Loc));
4134 -- Remove the return statement
4137 (Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
4138 N_Simple_Return_Statement);
4140 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
4143 -- Traverse the tree and replace formals with actuals or their thunks.
4144 -- Attach block to tree before analysis and rewriting.
4146 Replace_Formals (Blk);
4147 Replace_Formals_In_Aspects (Blk);
4148 Set_Parent (Blk, N);
4152 -- No action needed since return statement has been already removed
4156 elsif Present (Exit_Lab) then
4158 -- If there's a single return statement at the end of the subprogram,
4159 -- the corresponding goto statement and the corresponding label are
4164 Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
4167 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
4169 Append (Lab_Decl, (Declarations (Blk)));
4170 Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
4174 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
4175 -- on conflicting private views that Gigi would ignore. If this is a
4176 -- predefined unit, analyze with checks off, as is done in the non-
4177 -- inlined run-time units.
4180 I_Flag : constant Boolean := In_Inlined_Body;
4183 In_Inlined_Body := True;
4187 Style : constant Boolean := Style_Check;
4190 Style_Check := False;
4192 -- Search for dispatching calls that use the Object.Operation
4193 -- notation using an Object that is a parameter of the inlined
4194 -- function. We reset the decoration of Operation to force
4195 -- the reanalysis of the inlined dispatching call because
4196 -- the actual object has been inlined.
4198 Reset_Dispatching_Calls (Blk);
4200 -- In GNATprove mode, always consider checks on, even for
4201 -- predefined units.
4203 if GNATprove_Mode then
4206 Analyze (Blk, Suppress => All_Checks);
4209 Style_Check := Style;
4216 In_Inlined_Body := I_Flag;
4219 if Ekind (Subp) = E_Procedure then
4223 Rewrite_Function_Call (N, Blk);
4228 -- For the unconstrained case, the replacement of the call has been
4229 -- made prior to the complete analysis of the generated declarations.
4230 -- Propagate the proper type now.
4233 if Nkind (N) = N_Identifier then
4234 Set_Etype (N, Etype (Entity (N)));
4236 Set_Etype (N, Etype (Targ1));
4243 -- Cleanup mapping between formals and actuals for other expansions
4245 Reset_Actual_Mapping_For_Inlined_Call (Subp);
4246 end Expand_Inlined_Call;
4248 --------------------------
4249 -- Get_Code_Unit_Entity --
4250 --------------------------
4252 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id is
4253 Unit : Entity_Id := Cunit_Entity (Get_Code_Unit (E));
4256 if Ekind (Unit) = E_Package_Body then
4257 Unit := Spec_Entity (Unit);
4261 end Get_Code_Unit_Entity;
4263 ------------------------------
4264 -- Has_Excluded_Declaration --
4265 ------------------------------
4267 function Has_Excluded_Declaration
4269 Decls : List_Id) return Boolean
4271 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
4272 -- Nested subprograms make a given body ineligible for inlining, but
4273 -- we make an exception for instantiations of unchecked conversion.
4274 -- The body has not been analyzed yet, so check the name, and verify
4275 -- that the visible entity with that name is the predefined unit.
4277 -----------------------------
4278 -- Is_Unchecked_Conversion --
4279 -----------------------------
4281 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
4282 Id : constant Node_Id := Name (D);
4286 if Nkind (Id) = N_Identifier
4287 and then Chars (Id) = Name_Unchecked_Conversion
4289 Conv := Current_Entity (Id);
4291 elsif Nkind (Id) in N_Selected_Component | N_Expanded_Name
4292 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
4294 Conv := Current_Entity (Selector_Name (Id));
4299 return Present (Conv)
4300 and then Is_Predefined_Unit (Get_Source_Unit (Conv))
4301 and then Is_Intrinsic_Subprogram (Conv);
4302 end Is_Unchecked_Conversion;
4308 -- Start of processing for Has_Excluded_Declaration
4311 -- No action needed if the check is not needed
4313 if not Check_Inlining_Restrictions then
4317 Decl := First (Decls);
4318 while Present (Decl) loop
4320 -- First declarations universally excluded
4322 if Nkind (Decl) = N_Package_Declaration then
4324 ("cannot inline & (nested package declaration)?", Decl, Subp);
4327 elsif Nkind (Decl) = N_Package_Instantiation then
4329 ("cannot inline & (nested package instantiation)?", Decl, Subp);
4333 -- Then declarations excluded only for front-end inlining
4335 if Back_End_Inlining then
4338 elsif Nkind (Decl) = N_Task_Type_Declaration
4339 or else Nkind (Decl) = N_Single_Task_Declaration
4342 ("cannot inline & (nested task type declaration)?", Decl, Subp);
4345 elsif Nkind (Decl) in N_Protected_Type_Declaration
4346 | N_Single_Protected_Declaration
4349 ("cannot inline & (nested protected type declaration)?",
4353 elsif Nkind (Decl) = N_Subprogram_Body then
4355 ("cannot inline & (nested subprogram)?", Decl, Subp);
4358 elsif Nkind (Decl) = N_Function_Instantiation
4359 and then not Is_Unchecked_Conversion (Decl)
4362 ("cannot inline & (nested function instantiation)?", Decl, Subp);
4365 elsif Nkind (Decl) = N_Procedure_Instantiation then
4367 ("cannot inline & (nested procedure instantiation)?",
4371 -- Subtype declarations with predicates will generate predicate
4372 -- functions, i.e. nested subprogram bodies, so inlining is not
4375 elsif Nkind (Decl) = N_Subtype_Declaration then
4381 A := First (Aspect_Specifications (Decl));
4382 while Present (A) loop
4383 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
4385 if A_Id = Aspect_Predicate
4386 or else A_Id = Aspect_Static_Predicate
4387 or else A_Id = Aspect_Dynamic_Predicate
4390 ("cannot inline & (subtype declaration with "
4391 & "predicate)?", Decl, Subp);
4404 end Has_Excluded_Declaration;
4406 ----------------------------
4407 -- Has_Excluded_Statement --
4408 ----------------------------
4410 function Has_Excluded_Statement
4412 Stats : List_Id) return Boolean
4418 -- No action needed if the check is not needed
4420 if not Check_Inlining_Restrictions then
4425 while Present (S) loop
4426 if Nkind (S) in N_Abort_Statement
4427 | N_Asynchronous_Select
4428 | N_Conditional_Entry_Call
4429 | N_Delay_Relative_Statement
4430 | N_Delay_Until_Statement
4431 | N_Selective_Accept
4432 | N_Timed_Entry_Call
4435 ("cannot inline & (non-allowed statement)?", S, Subp);
4438 elsif Nkind (S) = N_Block_Statement then
4439 if Has_Excluded_Declaration (Subp, Declarations (S)) then
4442 elsif Present (Handled_Statement_Sequence (S)) then
4443 if not Back_End_Inlining
4446 (Exception_Handlers (Handled_Statement_Sequence (S)))
4449 ("cannot inline& (exception handler)?",
4450 First (Exception_Handlers
4451 (Handled_Statement_Sequence (S))),
4455 elsif Has_Excluded_Statement
4456 (Subp, Statements (Handled_Statement_Sequence (S)))
4462 elsif Nkind (S) = N_Case_Statement then
4463 E := First (Alternatives (S));
4464 while Present (E) loop
4465 if Has_Excluded_Statement (Subp, Statements (E)) then
4472 elsif Nkind (S) = N_If_Statement then
4473 if Has_Excluded_Statement (Subp, Then_Statements (S)) then
4477 if Present (Elsif_Parts (S)) then
4478 E := First (Elsif_Parts (S));
4479 while Present (E) loop
4480 if Has_Excluded_Statement (Subp, Then_Statements (E)) then
4488 if Present (Else_Statements (S))
4489 and then Has_Excluded_Statement (Subp, Else_Statements (S))
4494 elsif Nkind (S) = N_Loop_Statement
4495 and then Has_Excluded_Statement (Subp, Statements (S))
4499 elsif Nkind (S) = N_Extended_Return_Statement then
4500 if Present (Handled_Statement_Sequence (S))
4502 Has_Excluded_Statement
4503 (Subp, Statements (Handled_Statement_Sequence (S)))
4507 elsif not Back_End_Inlining
4508 and then Present (Handled_Statement_Sequence (S))
4510 Present (Exception_Handlers
4511 (Handled_Statement_Sequence (S)))
4514 ("cannot inline& (exception handler)?",
4515 First (Exception_Handlers (Handled_Statement_Sequence (S))),
4525 end Has_Excluded_Statement;
4527 -----------------------
4528 -- Has_Single_Return --
4529 -----------------------
4531 function Has_Single_Return (N : Node_Id) return Boolean is
4532 Return_Statement : Node_Id := Empty;
4534 function Check_Return (N : Node_Id) return Traverse_Result;
4540 function Check_Return (N : Node_Id) return Traverse_Result is
4542 if Nkind (N) = N_Simple_Return_Statement then
4543 if Present (Expression (N))
4544 and then Is_Entity_Name (Expression (N))
4546 pragma Assert (Present (Entity (Expression (N))));
4548 if No (Return_Statement) then
4549 Return_Statement := N;
4554 (Present (Entity (Expression (Return_Statement))));
4556 if Entity (Expression (N)) =
4557 Entity (Expression (Return_Statement))
4565 -- A return statement within an extended return is a noop after
4568 elsif No (Expression (N))
4569 and then Nkind (Parent (Parent (N))) =
4570 N_Extended_Return_Statement
4575 -- Expression has wrong form
4580 -- We can only inline a build-in-place function if it has a single
4583 elsif Nkind (N) = N_Extended_Return_Statement then
4584 if No (Return_Statement) then
4585 Return_Statement := N;
4597 function Check_All_Returns is new Traverse_Func (Check_Return);
4599 -- Start of processing for Has_Single_Return
4602 if Check_All_Returns (N) /= OK then
4605 elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
4610 Present (First (Declarations (N)))
4611 and then Nkind (First (Declarations (N))) = N_Object_Declaration
4612 and then Entity (Expression (Return_Statement)) =
4613 Defining_Identifier (First (Declarations (N)));
4615 end Has_Single_Return;
4617 -----------------------------
4618 -- In_Main_Unit_Or_Subunit --
4619 -----------------------------
4621 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean is
4622 Comp : Node_Id := Cunit (Get_Code_Unit (E));
4625 -- Check whether the subprogram or package to inline is within the main
4626 -- unit or its spec or within a subunit. In either case there are no
4627 -- additional bodies to process. If the subprogram appears in a parent
4628 -- of the current unit, the check on whether inlining is possible is
4629 -- done in Analyze_Inlined_Bodies.
4631 while Nkind (Unit (Comp)) = N_Subunit loop
4632 Comp := Subunit_Parent (Comp);
4635 return Comp = Cunit (Main_Unit)
4636 or else Comp = Other_Comp_Unit (Cunit (Main_Unit));
4637 end In_Main_Unit_Or_Subunit;
4643 procedure Initialize is
4645 Pending_Instantiations.Init;
4646 Called_Pending_Instantiations.Init;
4647 Inlined_Bodies.Init;
4651 for J in Hash_Headers'Range loop
4652 Hash_Headers (J) := No_Subp;
4655 Inlined_Calls := No_Elist;
4656 Backend_Calls := No_Elist;
4657 Backend_Instances := No_Elist;
4658 Backend_Inlined_Subps := No_Elist;
4659 Backend_Not_Inlined_Subps := No_Elist;
4662 ---------------------------------
4663 -- Inline_Static_Function_Call --
4664 ---------------------------------
4666 procedure Inline_Static_Function_Call (N : Node_Id; Subp : Entity_Id) is
4668 function Replace_Formal (N : Node_Id) return Traverse_Result;
4669 -- Replace each occurrence of a formal with the
4670 -- corresponding actual, using the mapping created
4671 -- by Establish_Actual_Mapping_For_Inlined_Call.
4673 function Reset_Sloc (Nod : Node_Id) return Traverse_Result;
4674 -- Reset the Sloc of a node to that of the call itself, so that errors
4675 -- will be flagged on the call to the static expression function itself
4676 -- rather than on the expression of the function's declaration.
4678 --------------------
4679 -- Replace_Formal --
4680 --------------------
4682 function Replace_Formal (N : Node_Id) return Traverse_Result is
4687 if Is_Entity_Name (N) and then Present (Entity (N)) then
4690 if Is_Formal (E) and then Scope (E) = Subp then
4691 A := Renamed_Object (E);
4693 if Nkind (A) = N_Defining_Identifier then
4694 Rewrite (N, New_Occurrence_Of (A, Sloc (N)));
4699 Rewrite (N, New_Copy (A));
4710 procedure Replace_Formals is new Traverse_Proc (Replace_Formal);
4716 function Reset_Sloc (Nod : Node_Id) return Traverse_Result is
4718 Set_Sloc (Nod, Sloc (N));
4719 Set_Comes_From_Source (Nod, False);
4724 procedure Reset_Slocs is new Traverse_Proc (Reset_Sloc);
4726 -- Start of processing for Inline_Static_Function_Call
4729 pragma Assert (Is_Static_Function_Call (N));
4732 Decls : constant List_Id := New_List;
4733 Func_Expr : constant Node_Id :=
4734 Expression_Of_Expression_Function (Subp);
4735 Expr_Copy : constant Node_Id := New_Copy_Tree (Func_Expr);
4738 -- Create a mapping from formals to actuals, also creating temps in
4739 -- Decls, when needed, to hold the actuals.
4741 Establish_Actual_Mapping_For_Inlined_Call (N, Subp, Decls, Func_Expr);
4743 -- Ensure that the copy has the same parent as the call (this seems
4744 -- to matter when GNATprove_Mode is set and there are nested static
4745 -- calls; prevents blowups in Insert_Actions, though it's not clear
4746 -- exactly why this is needed???).
4748 Set_Parent (Expr_Copy, Parent (N));
4750 Insert_Actions (N, Decls);
4752 -- Now substitute actuals for their corresponding formal references
4753 -- within the expression.
4755 Replace_Formals (Expr_Copy);
4757 Reset_Slocs (Expr_Copy);
4759 -- Apply a qualified expression with the function's result subtype,
4760 -- to ensure that we check the expression against any constraint
4761 -- or predicate, which will cause the call to be illegal if the
4762 -- folded expression doesn't satisfy them. (The predicate case
4763 -- might not get checked if the subtype hasn't been frozen yet,
4764 -- which can happen if this static expression happens to be what
4765 -- causes the freezing, because Has_Static_Predicate doesn't get
4766 -- set on the subtype until it's frozen and Build_Predicates is
4767 -- called. It's not clear how to address this case. ???)
4770 Make_Qualified_Expression (Sloc (Expr_Copy),
4772 New_Occurrence_Of (Etype (N), Sloc (Expr_Copy)),
4774 Relocate_Node (Expr_Copy)));
4776 Set_Etype (Expr_Copy, Etype (N));
4778 Analyze_And_Resolve (Expr_Copy, Etype (N));
4780 -- Finally rewrite the function call as the folded static result
4782 Rewrite (N, Expr_Copy);
4784 -- Cleanup mapping between formals and actuals for other expansions
4786 Reset_Actual_Mapping_For_Inlined_Call (Subp);
4788 end Inline_Static_Function_Call;
4790 ------------------------
4791 -- Instantiate_Bodies --
4792 ------------------------
4794 -- Generic bodies contain all the non-local references, so an
4795 -- instantiation does not need any more context than Standard
4796 -- itself, even if the instantiation appears in an inner scope.
4797 -- Generic associations have verified that the contract model is
4798 -- satisfied, so that any error that may occur in the analysis of
4799 -- the body is an internal error.
4801 procedure Instantiate_Bodies is
4803 procedure Instantiate_Body (Info : Pending_Body_Info);
4804 -- Instantiate a pending body
4806 ------------------------
4807 -- Instantiate_Body --
4808 ------------------------
4810 procedure Instantiate_Body (Info : Pending_Body_Info) is
4814 -- If the instantiation node is absent, it has been removed as part
4815 -- of unreachable code.
4817 if No (Info.Inst_Node) then
4820 -- If the instantiation node is a package body, this means that the
4821 -- instance is a compilation unit and the instantiation has already
4822 -- been performed by Build_Instance_Compilation_Unit_Nodes.
4824 elsif Nkind (Info.Inst_Node) = N_Package_Body then
4827 -- For other package instances, instantiate the body and register the
4828 -- finalization scope, if any, for subsequent generation of cleanups.
4830 elsif Nkind (Info.Inst_Node) = N_Package_Instantiation then
4832 -- If the enclosing finalization scope is a package body, set the
4833 -- In_Package_Body flag on its spec. This is required, in the case
4834 -- where the body contains other package instantiations that have
4835 -- a body, for Analyze_Package_Instantiation to compute a correct
4836 -- finalization scope.
4838 if Present (Info.Fin_Scop)
4839 and then Ekind (Info.Fin_Scop) = E_Package_Body
4841 Set_In_Package_Body (Spec_Entity (Info.Fin_Scop), True);
4842 Instantiate_Package_Body (Info);
4843 Set_In_Package_Body (Spec_Entity (Info.Fin_Scop), False);
4845 Instantiate_Package_Body (Info);
4848 -- No need to generate cleanups if the main unit is generic
4850 if Present (Info.Fin_Scop)
4851 and then not Is_Generic_Unit (Main_Unit_Entity)
4853 Scop := Info.Fin_Scop;
4855 -- If the enclosing finalization scope is dynamic, the instance
4856 -- may have been relocated, for example if it was declared in a
4857 -- protected entry, protected subprogram, or task body.
4859 if Is_Dynamic_Scope (Scop) then
4861 Enclosing_Dynamic_Scope (Defining_Entity (Info.Act_Decl));
4864 Add_Scope_To_Clean (Scop);
4867 -- For subprogram instances, always instantiate the body
4870 Instantiate_Subprogram_Body (Info);
4872 end Instantiate_Body;
4875 Info : Pending_Body_Info;
4877 -- Start of processing for Instantiate_Bodies
4880 if Serious_Errors_Detected = 0 then
4881 Expander_Active := (Operating_Mode = Opt.Generate_Code);
4882 Push_Scope (Standard_Standard);
4883 To_Clean := New_Elmt_List;
4885 -- A body instantiation may generate additional instantiations, so
4886 -- the following loop must scan to the end of a possibly expanding
4887 -- set (that's why we cannot simply use a FOR loop here). We must
4888 -- also capture the element lest the set be entirely reallocated.
4891 if Back_End_Inlining then
4892 while J <= Called_Pending_Instantiations.Last
4893 and then Serious_Errors_Detected = 0
4895 K := Called_Pending_Instantiations.Table (J);
4896 Info := Pending_Instantiations.Table (K);
4897 Instantiate_Body (Info);
4903 while J <= Pending_Instantiations.Last
4904 and then Serious_Errors_Detected = 0
4906 Info := Pending_Instantiations.Table (J);
4907 Instantiate_Body (Info);
4913 -- Reset the table of instantiations. Additional instantiations
4914 -- may be added through inlining, when additional bodies are
4917 if Back_End_Inlining then
4918 Called_Pending_Instantiations.Init;
4920 Pending_Instantiations.Init;
4923 -- Expand the cleanup actions of scopes that contain instantiations
4925 if Expander_Active then
4931 end Instantiate_Bodies;
4937 function Is_Nested (E : Entity_Id) return Boolean is
4942 while Scop /= Standard_Standard loop
4943 if Is_Subprogram (Scop) then
4946 elsif Ekind (Scop) = E_Task_Type
4947 or else Ekind (Scop) = E_Entry
4948 or else Ekind (Scop) = E_Entry_Family
4953 Scop := Scope (Scop);
4959 ------------------------
4960 -- List_Inlining_Info --
4961 ------------------------
4963 procedure List_Inlining_Info is
4969 if not Debug_Flag_Dot_J then
4973 -- Generate listing of calls inlined by the frontend
4975 if Present (Inlined_Calls) then
4977 Elmt := First_Elmt (Inlined_Calls);
4978 while Present (Elmt) loop
4981 if not In_Internal_Unit (Nod) then
4985 Write_Str ("List of calls inlined by the frontend");
4992 Write_Location (Sloc (Nod));
5001 -- Generate listing of calls passed to the backend
5003 if Present (Backend_Calls) then
5006 Elmt := First_Elmt (Backend_Calls);
5007 while Present (Elmt) loop
5010 if not In_Internal_Unit (Nod) then
5014 Write_Str ("List of inlined calls passed to the backend");
5021 Write_Location (Sloc (Nod));
5029 -- Generate listing of instances inlined for the backend
5031 if Present (Backend_Instances) then
5034 Elmt := First_Elmt (Backend_Instances);
5035 while Present (Elmt) loop
5038 if not In_Internal_Unit (Nod) then
5042 Write_Str ("List of instances inlined for the backend");
5049 Write_Location (Sloc (Nod));
5057 -- Generate listing of subprograms passed to the backend
5059 if Present (Backend_Inlined_Subps) and then Back_End_Inlining then
5062 Elmt := First_Elmt (Backend_Inlined_Subps);
5063 while Present (Elmt) loop
5066 if not In_Internal_Unit (Nod) then
5071 ("List of inlined subprograms passed to the backend");
5078 Write_Name (Chars (Nod));
5080 Write_Location (Sloc (Nod));
5089 -- Generate listing of subprograms that cannot be inlined by the backend
5091 if Present (Backend_Not_Inlined_Subps) and then Back_End_Inlining then
5094 Elmt := First_Elmt (Backend_Not_Inlined_Subps);
5095 while Present (Elmt) loop
5098 if not In_Internal_Unit (Nod) then
5103 ("List of subprograms that cannot be inlined by backend");
5110 Write_Name (Chars (Nod));
5112 Write_Location (Sloc (Nod));
5120 end List_Inlining_Info;
5128 Pending_Instantiations.Release;
5129 Pending_Instantiations.Locked := True;
5130 Called_Pending_Instantiations.Release;
5131 Called_Pending_Instantiations.Locked := True;
5132 Inlined_Bodies.Release;
5133 Inlined_Bodies.Locked := True;
5135 Successors.Locked := True;
5137 Inlined.Locked := True;
5140 --------------------------------
5141 -- Remove_Aspects_And_Pragmas --
5142 --------------------------------
5144 procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id) is
5145 procedure Remove_Items (List : List_Id);
5146 -- Remove all useless aspects/pragmas from a particular list
5152 procedure Remove_Items (List : List_Id) is
5155 Next_Item : Node_Id;
5158 -- Traverse the list looking for an aspect specification or a pragma
5160 Item := First (List);
5161 while Present (Item) loop
5162 Next_Item := Next (Item);
5164 if Nkind (Item) = N_Aspect_Specification then
5165 Item_Id := Identifier (Item);
5166 elsif Nkind (Item) = N_Pragma then
5167 Item_Id := Pragma_Identifier (Item);
5172 if Present (Item_Id)
5173 and then Chars (Item_Id) in Name_Always_Terminates
5174 | Name_Contract_Cases
5177 | Name_Exceptional_Cases
5179 | Name_Postcondition
5182 | Name_Refined_Global
5183 | Name_Refined_Depends
5185 | Name_Subprogram_Variant
5198 -- Start of processing for Remove_Aspects_And_Pragmas
5201 Remove_Items (Aspect_Specifications (Body_Decl));
5202 Remove_Items (Declarations (Body_Decl));
5204 -- Pragmas Unmodified, Unreferenced, and Unused may additionally appear
5205 -- in the body of the subprogram.
5207 Remove_Items (Statements (Handled_Statement_Sequence (Body_Decl)));
5208 end Remove_Aspects_And_Pragmas;
5210 --------------------------
5211 -- Remove_Dead_Instance --
5212 --------------------------
5214 procedure Remove_Dead_Instance (N : Node_Id) is
5216 for J in 0 .. Pending_Instantiations.Last loop
5217 if Pending_Instantiations.Table (J).Inst_Node = N then
5218 Pending_Instantiations.Table (J).Inst_Node := Empty;
5222 end Remove_Dead_Instance;
5224 -------------------------------------------
5225 -- Reset_Actual_Mapping_For_Inlined_Call --
5226 -------------------------------------------
5228 procedure Reset_Actual_Mapping_For_Inlined_Call (Subp : Entity_Id) is
5229 F : Entity_Id := First_Formal (Subp);
5232 while Present (F) loop
5233 Set_Renamed_Object (F, Empty);
5236 end Reset_Actual_Mapping_For_Inlined_Call;