]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ada/sem_aggr.adb
a3eb1da7eeab6d1b2d84660ac7a23c67d8281209
[thirdparty/gcc.git] / gcc / ada / sem_aggr.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A G G R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Tss; use Exp_Tss;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Itypes; use Itypes;
36 with Lib; use Lib;
37 with Lib.Xref; use Lib.Xref;
38 with Namet; use Namet;
39 with Namet.Sp; use Namet.Sp;
40 with Nmake; use Nmake;
41 with Nlists; use Nlists;
42 with Opt; use Opt;
43 with Sem; use Sem;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Cat; use Sem_Cat;
46 with Sem_Ch3; use Sem_Ch3;
47 with Sem_Ch13; use Sem_Ch13;
48 with Sem_Eval; use Sem_Eval;
49 with Sem_Res; use Sem_Res;
50 with Sem_Util; use Sem_Util;
51 with Sem_Type; use Sem_Type;
52 with Sem_Warn; use Sem_Warn;
53 with Sinfo; use Sinfo;
54 with Snames; use Snames;
55 with Stringt; use Stringt;
56 with Stand; use Stand;
57 with Style; use Style;
58 with Targparm; use Targparm;
59 with Tbuild; use Tbuild;
60 with Uintp; use Uintp;
61
62 package body Sem_Aggr is
63
64 type Case_Bounds is record
65 Choice_Lo : Node_Id;
66 Choice_Hi : Node_Id;
67 Choice_Node : Node_Id;
68 end record;
69
70 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
71 -- Table type used by Check_Case_Choices procedure
72
73 -----------------------
74 -- Local Subprograms --
75 -----------------------
76
77 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
78 -- Sort the Case Table using the Lower Bound of each Choice as the key.
79 -- A simple insertion sort is used since the number of choices in a case
80 -- statement of variant part will usually be small and probably in near
81 -- sorted order.
82
83 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
84 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
85 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
86 -- the array case (the component type of the array will be used) or an
87 -- E_Component/E_Discriminant entity in the record case, in which case the
88 -- type of the component will be used for the test. If Typ is any other
89 -- kind of entity, the call is ignored. Expr is the component node in the
90 -- aggregate which is known to have a null value. A warning message will be
91 -- issued if the component is null excluding.
92 --
93 -- It would be better to pass the proper type for Typ ???
94
95 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
96 -- Check that Expr is either not limited or else is one of the cases of
97 -- expressions allowed for a limited component association (namely, an
98 -- aggregate, function call, or <> notation). Report error for violations.
99
100 ------------------------------------------------------
101 -- Subprograms used for RECORD AGGREGATE Processing --
102 ------------------------------------------------------
103
104 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
105 -- This procedure performs all the semantic checks required for record
106 -- aggregates. Note that for aggregates analysis and resolution go
107 -- hand in hand. Aggregate analysis has been delayed up to here and
108 -- it is done while resolving the aggregate.
109 --
110 -- N is the N_Aggregate node.
111 -- Typ is the record type for the aggregate resolution
112 --
113 -- While performing the semantic checks, this procedure builds a new
114 -- Component_Association_List where each record field appears alone in a
115 -- Component_Choice_List along with its corresponding expression. The
116 -- record fields in the Component_Association_List appear in the same order
117 -- in which they appear in the record type Typ.
118 --
119 -- Once this new Component_Association_List is built and all the semantic
120 -- checks performed, the original aggregate subtree is replaced with the
121 -- new named record aggregate just built. Note that subtree substitution is
122 -- performed with Rewrite so as to be able to retrieve the original
123 -- aggregate.
124 --
125 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
126 -- yields the aggregate format expected by Gigi. Typically, this kind of
127 -- tree manipulations are done in the expander. However, because the
128 -- semantic checks that need to be performed on record aggregates really go
129 -- hand in hand with the record aggregate normalization, the aggregate
130 -- subtree transformation is performed during resolution rather than
131 -- expansion. Had we decided otherwise we would have had to duplicate most
132 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
133 -- however, that all the expansion concerning aggregates for tagged records
134 -- is done in Expand_Record_Aggregate.
135 --
136 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
137 --
138 -- 1. Make sure that the record type against which the record aggregate
139 -- has to be resolved is not abstract. Furthermore if the type is a
140 -- null aggregate make sure the input aggregate N is also null.
141 --
142 -- 2. Verify that the structure of the aggregate is that of a record
143 -- aggregate. Specifically, look for component associations and ensure
144 -- that each choice list only has identifiers or the N_Others_Choice
145 -- node. Also make sure that if present, the N_Others_Choice occurs
146 -- last and by itself.
147 --
148 -- 3. If Typ contains discriminants, the values for each discriminant is
149 -- looked for. If the record type Typ has variants, we check that the
150 -- expressions corresponding to each discriminant ruling the (possibly
151 -- nested) variant parts of Typ, are static. This allows us to determine
152 -- the variant parts to which the rest of the aggregate must conform.
153 -- The names of discriminants with their values are saved in a new
154 -- association list, New_Assoc_List which is later augmented with the
155 -- names and values of the remaining components in the record type.
156 --
157 -- During this phase we also make sure that every discriminant is
158 -- assigned exactly one value. Note that when several values for a given
159 -- discriminant are found, semantic processing continues looking for
160 -- further errors. In this case it's the first discriminant value found
161 -- which we will be recorded.
162 --
163 -- IMPORTANT NOTE: For derived tagged types this procedure expects
164 -- First_Discriminant and Next_Discriminant to give the correct list
165 -- of discriminants, in the correct order.
166 --
167 -- 4. After all the discriminant values have been gathered, we can set the
168 -- Etype of the record aggregate. If Typ contains no discriminants this
169 -- is straightforward: the Etype of N is just Typ, otherwise a new
170 -- implicit constrained subtype of Typ is built to be the Etype of N.
171 --
172 -- 5. Gather the remaining record components according to the discriminant
173 -- values. This involves recursively traversing the record type
174 -- structure to see what variants are selected by the given discriminant
175 -- values. This processing is a little more convoluted if Typ is a
176 -- derived tagged types since we need to retrieve the record structure
177 -- of all the ancestors of Typ.
178 --
179 -- 6. After gathering the record components we look for their values in the
180 -- record aggregate and emit appropriate error messages should we not
181 -- find such values or should they be duplicated.
182 --
183 -- 7. We then make sure no illegal component names appear in the record
184 -- aggregate and make sure that the type of the record components
185 -- appearing in a same choice list is the same. Finally we ensure that
186 -- the others choice, if present, is used to provide the value of at
187 -- least a record component.
188 --
189 -- 8. The original aggregate node is replaced with the new named aggregate
190 -- built in steps 3 through 6, as explained earlier.
191 --
192 -- Given the complexity of record aggregate resolution, the primary goal of
193 -- this routine is clarity and simplicity rather than execution and storage
194 -- efficiency. If there are only positional components in the aggregate the
195 -- running time is linear. If there are associations the running time is
196 -- still linear as long as the order of the associations is not too far off
197 -- the order of the components in the record type. If this is not the case
198 -- the running time is at worst quadratic in the size of the association
199 -- list.
200
201 procedure Check_Misspelled_Component
202 (Elements : Elist_Id;
203 Component : Node_Id);
204 -- Give possible misspelling diagnostic if Component is likely to be a
205 -- misspelling of one of the components of the Assoc_List. This is called
206 -- by Resolve_Aggr_Expr after producing an invalid component error message.
207
208 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
209 -- An optimization: determine whether a discriminated subtype has a static
210 -- constraint, and contains array components whose length is also static,
211 -- either because they are constrained by the discriminant, or because the
212 -- original component bounds are static.
213
214 -----------------------------------------------------
215 -- Subprograms used for ARRAY AGGREGATE Processing --
216 -----------------------------------------------------
217
218 function Resolve_Array_Aggregate
219 (N : Node_Id;
220 Index : Node_Id;
221 Index_Constr : Node_Id;
222 Component_Typ : Entity_Id;
223 Others_Allowed : Boolean) return Boolean;
224 -- This procedure performs the semantic checks for an array aggregate.
225 -- True is returned if the aggregate resolution succeeds.
226 --
227 -- The procedure works by recursively checking each nested aggregate.
228 -- Specifically, after checking a sub-aggregate nested at the i-th level
229 -- we recursively check all the subaggregates at the i+1-st level (if any).
230 -- Note that for aggregates analysis and resolution go hand in hand.
231 -- Aggregate analysis has been delayed up to here and it is done while
232 -- resolving the aggregate.
233 --
234 -- N is the current N_Aggregate node to be checked.
235 --
236 -- Index is the index node corresponding to the array sub-aggregate that
237 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
238 -- corresponding index type (or subtype).
239 --
240 -- Index_Constr is the node giving the applicable index constraint if
241 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
242 -- contexts [...] that can be used to determine the bounds of the array
243 -- value specified by the aggregate". If Others_Allowed below is False
244 -- there is no applicable index constraint and this node is set to Index.
245 --
246 -- Component_Typ is the array component type.
247 --
248 -- Others_Allowed indicates whether an others choice is allowed
249 -- in the context where the top-level aggregate appeared.
250 --
251 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
252 --
253 -- 1. Make sure that the others choice, if present, is by itself and
254 -- appears last in the sub-aggregate. Check that we do not have
255 -- positional and named components in the array sub-aggregate (unless
256 -- the named association is an others choice). Finally if an others
257 -- choice is present, make sure it is allowed in the aggregate context.
258 --
259 -- 2. If the array sub-aggregate contains discrete_choices:
260 --
261 -- (A) Verify their validity. Specifically verify that:
262 --
263 -- (a) If a null range is present it must be the only possible
264 -- choice in the array aggregate.
265 --
266 -- (b) Ditto for a non static range.
267 --
268 -- (c) Ditto for a non static expression.
269 --
270 -- In addition this step analyzes and resolves each discrete_choice,
271 -- making sure that its type is the type of the corresponding Index.
272 -- If we are not at the lowest array aggregate level (in the case of
273 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
274 -- recursively on each component expression. Otherwise, resolve the
275 -- bottom level component expressions against the expected component
276 -- type ONLY IF the component corresponds to a single discrete choice
277 -- which is not an others choice (to see why read the DELAYED
278 -- COMPONENT RESOLUTION below).
279 --
280 -- (B) Determine the bounds of the sub-aggregate and lowest and
281 -- highest choice values.
282 --
283 -- 3. For positional aggregates:
284 --
285 -- (A) Loop over the component expressions either recursively invoking
286 -- Resolve_Array_Aggregate on each of these for multi-dimensional
287 -- array aggregates or resolving the bottom level component
288 -- expressions against the expected component type.
289 --
290 -- (B) Determine the bounds of the positional sub-aggregates.
291 --
292 -- 4. Try to determine statically whether the evaluation of the array
293 -- sub-aggregate raises Constraint_Error. If yes emit proper
294 -- warnings. The precise checks are the following:
295 --
296 -- (A) Check that the index range defined by aggregate bounds is
297 -- compatible with corresponding index subtype.
298 -- We also check against the base type. In fact it could be that
299 -- Low/High bounds of the base type are static whereas those of
300 -- the index subtype are not. Thus if we can statically catch
301 -- a problem with respect to the base type we are guaranteed
302 -- that the same problem will arise with the index subtype
303 --
304 -- (B) If we are dealing with a named aggregate containing an others
305 -- choice and at least one discrete choice then make sure the range
306 -- specified by the discrete choices does not overflow the
307 -- aggregate bounds. We also check against the index type and base
308 -- type bounds for the same reasons given in (A).
309 --
310 -- (C) If we are dealing with a positional aggregate with an others
311 -- choice make sure the number of positional elements specified
312 -- does not overflow the aggregate bounds. We also check against
313 -- the index type and base type bounds as mentioned in (A).
314 --
315 -- Finally construct an N_Range node giving the sub-aggregate bounds.
316 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
317 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
318 -- to build the appropriate aggregate subtype. Aggregate_Bounds
319 -- information is needed during expansion.
320 --
321 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
322 -- expressions in an array aggregate may call Duplicate_Subexpr or some
323 -- other routine that inserts code just outside the outermost aggregate.
324 -- If the array aggregate contains discrete choices or an others choice,
325 -- this may be wrong. Consider for instance the following example.
326 --
327 -- type Rec is record
328 -- V : Integer := 0;
329 -- end record;
330 --
331 -- type Acc_Rec is access Rec;
332 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
333 --
334 -- Then the transformation of "new Rec" that occurs during resolution
335 -- entails the following code modifications
336 --
337 -- P7b : constant Acc_Rec := new Rec;
338 -- RecIP (P7b.all);
339 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
340 --
341 -- This code transformation is clearly wrong, since we need to call
342 -- "new Rec" for each of the 3 array elements. To avoid this problem we
343 -- delay resolution of the components of non positional array aggregates
344 -- to the expansion phase. As an optimization, if the discrete choice
345 -- specifies a single value we do not delay resolution.
346
347 function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
348 -- This routine returns the type or subtype of an array aggregate.
349 --
350 -- N is the array aggregate node whose type we return.
351 --
352 -- Typ is the context type in which N occurs.
353 --
354 -- This routine creates an implicit array subtype whose bounds are
355 -- those defined by the aggregate. When this routine is invoked
356 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
357 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
358 -- sub-aggregate bounds. When building the aggregate itype, this function
359 -- traverses the array aggregate N collecting such Aggregate_Bounds and
360 -- constructs the proper array aggregate itype.
361 --
362 -- Note that in the case of multidimensional aggregates each inner
363 -- sub-aggregate corresponding to a given array dimension, may provide a
364 -- different bounds. If it is possible to determine statically that
365 -- some sub-aggregates corresponding to the same index do not have the
366 -- same bounds, then a warning is emitted. If such check is not possible
367 -- statically (because some sub-aggregate bounds are dynamic expressions)
368 -- then this job is left to the expander. In all cases the particular
369 -- bounds that this function will chose for a given dimension is the first
370 -- N_Range node for a sub-aggregate corresponding to that dimension.
371 --
372 -- Note that the Raises_Constraint_Error flag of an array aggregate
373 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
374 -- is set in Resolve_Array_Aggregate but the aggregate is not
375 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
376 -- first construct the proper itype for the aggregate (Gigi needs
377 -- this). After constructing the proper itype we will eventually replace
378 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
379 -- Of course in cases such as:
380 --
381 -- type Arr is array (integer range <>) of Integer;
382 -- A : Arr := (positive range -1 .. 2 => 0);
383 --
384 -- The bounds of the aggregate itype are cooked up to look reasonable
385 -- (in this particular case the bounds will be 1 .. 2).
386
387 procedure Aggregate_Constraint_Checks
388 (Exp : Node_Id;
389 Check_Typ : Entity_Id);
390 -- Checks expression Exp against subtype Check_Typ. If Exp is an
391 -- aggregate and Check_Typ a constrained record type with discriminants,
392 -- we generate the appropriate discriminant checks. If Exp is an array
393 -- aggregate then emit the appropriate length checks. If Exp is a scalar
394 -- type, or a string literal, Exp is changed into Check_Typ'(Exp) to
395 -- ensure that range checks are performed at run time.
396
397 procedure Make_String_Into_Aggregate (N : Node_Id);
398 -- A string literal can appear in a context in which a one dimensional
399 -- array of characters is expected. This procedure simply rewrites the
400 -- string as an aggregate, prior to resolution.
401
402 ---------------------------------
403 -- Aggregate_Constraint_Checks --
404 ---------------------------------
405
406 procedure Aggregate_Constraint_Checks
407 (Exp : Node_Id;
408 Check_Typ : Entity_Id)
409 is
410 Exp_Typ : constant Entity_Id := Etype (Exp);
411
412 begin
413 if Raises_Constraint_Error (Exp) then
414 return;
415 end if;
416
417 -- Ada 2005 (AI-230): Generate a conversion to an anonymous access
418 -- component's type to force the appropriate accessibility checks.
419
420 -- Ada 2005 (AI-231): Generate conversion to the null-excluding
421 -- type to force the corresponding run-time check
422
423 if Is_Access_Type (Check_Typ)
424 and then ((Is_Local_Anonymous_Access (Check_Typ))
425 or else (Can_Never_Be_Null (Check_Typ)
426 and then not Can_Never_Be_Null (Exp_Typ)))
427 then
428 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
429 Analyze_And_Resolve (Exp, Check_Typ);
430 Check_Unset_Reference (Exp);
431 end if;
432
433 -- This is really expansion activity, so make sure that expansion
434 -- is on and is allowed.
435
436 if not Expander_Active or else In_Spec_Expression then
437 return;
438 end if;
439
440 -- First check if we have to insert discriminant checks
441
442 if Has_Discriminants (Exp_Typ) then
443 Apply_Discriminant_Check (Exp, Check_Typ);
444
445 -- Next emit length checks for array aggregates
446
447 elsif Is_Array_Type (Exp_Typ) then
448 Apply_Length_Check (Exp, Check_Typ);
449
450 -- Finally emit scalar and string checks. If we are dealing with a
451 -- scalar literal we need to check by hand because the Etype of
452 -- literals is not necessarily correct.
453
454 elsif Is_Scalar_Type (Exp_Typ)
455 and then Compile_Time_Known_Value (Exp)
456 then
457 if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
458 Apply_Compile_Time_Constraint_Error
459 (Exp, "value not in range of}?", CE_Range_Check_Failed,
460 Ent => Base_Type (Check_Typ),
461 Typ => Base_Type (Check_Typ));
462
463 elsif Is_Out_Of_Range (Exp, Check_Typ) then
464 Apply_Compile_Time_Constraint_Error
465 (Exp, "value not in range of}?", CE_Range_Check_Failed,
466 Ent => Check_Typ,
467 Typ => Check_Typ);
468
469 elsif not Range_Checks_Suppressed (Check_Typ) then
470 Apply_Scalar_Range_Check (Exp, Check_Typ);
471 end if;
472
473 -- Verify that target type is also scalar, to prevent view anomalies
474 -- in instantiations.
475
476 elsif (Is_Scalar_Type (Exp_Typ)
477 or else Nkind (Exp) = N_String_Literal)
478 and then Is_Scalar_Type (Check_Typ)
479 and then Exp_Typ /= Check_Typ
480 then
481 if Is_Entity_Name (Exp)
482 and then Ekind (Entity (Exp)) = E_Constant
483 then
484 -- If expression is a constant, it is worthwhile checking whether
485 -- it is a bound of the type.
486
487 if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
488 and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
489 or else (Is_Entity_Name (Type_High_Bound (Check_Typ))
490 and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
491 then
492 return;
493
494 else
495 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
496 Analyze_And_Resolve (Exp, Check_Typ);
497 Check_Unset_Reference (Exp);
498 end if;
499 else
500 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
501 Analyze_And_Resolve (Exp, Check_Typ);
502 Check_Unset_Reference (Exp);
503 end if;
504
505 end if;
506 end Aggregate_Constraint_Checks;
507
508 ------------------------
509 -- Array_Aggr_Subtype --
510 ------------------------
511
512 function Array_Aggr_Subtype
513 (N : Node_Id;
514 Typ : Entity_Id) return Entity_Id
515 is
516 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
517 -- Number of aggregate index dimensions
518
519 Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
520 -- Constrained N_Range of each index dimension in our aggregate itype
521
522 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
523 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
524 -- Low and High bounds for each index dimension in our aggregate itype
525
526 Is_Fully_Positional : Boolean := True;
527
528 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
529 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
530 -- to (sub-)aggregate N. This procedure collects and removes the side
531 -- effects of the constrained N_Range nodes corresponding to each index
532 -- dimension of our aggregate itype. These N_Range nodes are collected
533 -- in Aggr_Range above.
534 --
535 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
536 -- bounds of each index dimension. If, when collecting, two bounds
537 -- corresponding to the same dimension are static and found to differ,
538 -- then emit a warning, and mark N as raising Constraint_Error.
539
540 -------------------------
541 -- Collect_Aggr_Bounds --
542 -------------------------
543
544 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
545 This_Range : constant Node_Id := Aggregate_Bounds (N);
546 -- The aggregate range node of this specific sub-aggregate
547
548 This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
549 This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
550 -- The aggregate bounds of this specific sub-aggregate
551
552 Assoc : Node_Id;
553 Expr : Node_Id;
554
555 begin
556 Remove_Side_Effects (This_Low, Variable_Ref => True);
557 Remove_Side_Effects (This_High, Variable_Ref => True);
558
559 -- Collect the first N_Range for a given dimension that you find.
560 -- For a given dimension they must be all equal anyway.
561
562 if No (Aggr_Range (Dim)) then
563 Aggr_Low (Dim) := This_Low;
564 Aggr_High (Dim) := This_High;
565 Aggr_Range (Dim) := This_Range;
566
567 else
568 if Compile_Time_Known_Value (This_Low) then
569 if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
570 Aggr_Low (Dim) := This_Low;
571
572 elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
573 Set_Raises_Constraint_Error (N);
574 Error_Msg_N ("sub-aggregate low bound mismatch?", N);
575 Error_Msg_N
576 ("\Constraint_Error will be raised at run time?", N);
577 end if;
578 end if;
579
580 if Compile_Time_Known_Value (This_High) then
581 if not Compile_Time_Known_Value (Aggr_High (Dim)) then
582 Aggr_High (Dim) := This_High;
583
584 elsif
585 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
586 then
587 Set_Raises_Constraint_Error (N);
588 Error_Msg_N ("sub-aggregate high bound mismatch?", N);
589 Error_Msg_N
590 ("\Constraint_Error will be raised at run time?", N);
591 end if;
592 end if;
593 end if;
594
595 if Dim < Aggr_Dimension then
596
597 -- Process positional components
598
599 if Present (Expressions (N)) then
600 Expr := First (Expressions (N));
601 while Present (Expr) loop
602 Collect_Aggr_Bounds (Expr, Dim + 1);
603 Next (Expr);
604 end loop;
605 end if;
606
607 -- Process component associations
608
609 if Present (Component_Associations (N)) then
610 Is_Fully_Positional := False;
611
612 Assoc := First (Component_Associations (N));
613 while Present (Assoc) loop
614 Expr := Expression (Assoc);
615 Collect_Aggr_Bounds (Expr, Dim + 1);
616 Next (Assoc);
617 end loop;
618 end if;
619 end if;
620 end Collect_Aggr_Bounds;
621
622 -- Array_Aggr_Subtype variables
623
624 Itype : Entity_Id;
625 -- The final itype of the overall aggregate
626
627 Index_Constraints : constant List_Id := New_List;
628 -- The list of index constraints of the aggregate itype
629
630 -- Start of processing for Array_Aggr_Subtype
631
632 begin
633 -- Make sure that the list of index constraints is properly attached to
634 -- the tree, and then collect the aggregate bounds.
635
636 Set_Parent (Index_Constraints, N);
637 Collect_Aggr_Bounds (N, 1);
638
639 -- Build the list of constrained indices of our aggregate itype
640
641 for J in 1 .. Aggr_Dimension loop
642 Create_Index : declare
643 Index_Base : constant Entity_Id :=
644 Base_Type (Etype (Aggr_Range (J)));
645 Index_Typ : Entity_Id;
646
647 begin
648 -- Construct the Index subtype, and associate it with the range
649 -- construct that generates it.
650
651 Index_Typ :=
652 Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
653
654 Set_Etype (Index_Typ, Index_Base);
655
656 if Is_Character_Type (Index_Base) then
657 Set_Is_Character_Type (Index_Typ);
658 end if;
659
660 Set_Size_Info (Index_Typ, (Index_Base));
661 Set_RM_Size (Index_Typ, RM_Size (Index_Base));
662 Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
663 Set_Scalar_Range (Index_Typ, Aggr_Range (J));
664
665 if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
666 Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
667 end if;
668
669 Set_Etype (Aggr_Range (J), Index_Typ);
670
671 Append (Aggr_Range (J), To => Index_Constraints);
672 end Create_Index;
673 end loop;
674
675 -- Now build the Itype
676
677 Itype := Create_Itype (E_Array_Subtype, N);
678
679 Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
680 Set_Convention (Itype, Convention (Typ));
681 Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
682 Set_Etype (Itype, Base_Type (Typ));
683 Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
684 Set_Is_Aliased (Itype, Is_Aliased (Typ));
685 Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
686
687 Copy_Suppress_Status (Index_Check, Typ, Itype);
688 Copy_Suppress_Status (Length_Check, Typ, Itype);
689
690 Set_First_Index (Itype, First (Index_Constraints));
691 Set_Is_Constrained (Itype, True);
692 Set_Is_Internal (Itype, True);
693
694 -- A simple optimization: purely positional aggregates of static
695 -- components should be passed to gigi unexpanded whenever possible, and
696 -- regardless of the staticness of the bounds themselves. Subsequent
697 -- checks in exp_aggr verify that type is not packed, etc.
698
699 Set_Size_Known_At_Compile_Time (Itype,
700 Is_Fully_Positional
701 and then Comes_From_Source (N)
702 and then Size_Known_At_Compile_Time (Component_Type (Typ)));
703
704 -- We always need a freeze node for a packed array subtype, so that we
705 -- can build the Packed_Array_Type corresponding to the subtype. If
706 -- expansion is disabled, the packed array subtype is not built, and we
707 -- must not generate a freeze node for the type, or else it will appear
708 -- incomplete to gigi.
709
710 if Is_Packed (Itype)
711 and then not In_Spec_Expression
712 and then Expander_Active
713 then
714 Freeze_Itype (Itype, N);
715 end if;
716
717 return Itype;
718 end Array_Aggr_Subtype;
719
720 --------------------------------
721 -- Check_Misspelled_Component --
722 --------------------------------
723
724 procedure Check_Misspelled_Component
725 (Elements : Elist_Id;
726 Component : Node_Id)
727 is
728 Max_Suggestions : constant := 2;
729
730 Nr_Of_Suggestions : Natural := 0;
731 Suggestion_1 : Entity_Id := Empty;
732 Suggestion_2 : Entity_Id := Empty;
733 Component_Elmt : Elmt_Id;
734
735 begin
736 -- All the components of List are matched against Component and a count
737 -- is maintained of possible misspellings. When at the end of the
738 -- the analysis there are one or two (not more!) possible misspellings,
739 -- these misspellings will be suggested as possible correction.
740
741 Component_Elmt := First_Elmt (Elements);
742 while Nr_Of_Suggestions <= Max_Suggestions
743 and then Present (Component_Elmt)
744 loop
745 if Is_Bad_Spelling_Of
746 (Chars (Node (Component_Elmt)),
747 Chars (Component))
748 then
749 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
750
751 case Nr_Of_Suggestions is
752 when 1 => Suggestion_1 := Node (Component_Elmt);
753 when 2 => Suggestion_2 := Node (Component_Elmt);
754 when others => exit;
755 end case;
756 end if;
757
758 Next_Elmt (Component_Elmt);
759 end loop;
760
761 -- Report at most two suggestions
762
763 if Nr_Of_Suggestions = 1 then
764 Error_Msg_NE -- CODEFIX
765 ("\possible misspelling of&", Component, Suggestion_1);
766
767 elsif Nr_Of_Suggestions = 2 then
768 Error_Msg_Node_2 := Suggestion_2;
769 Error_Msg_NE -- CODEFIX
770 ("\possible misspelling of& or&", Component, Suggestion_1);
771 end if;
772 end Check_Misspelled_Component;
773
774 ----------------------------------------
775 -- Check_Expr_OK_In_Limited_Aggregate --
776 ----------------------------------------
777
778 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
779 begin
780 if Is_Limited_Type (Etype (Expr))
781 and then Comes_From_Source (Expr)
782 and then not In_Instance_Body
783 then
784 if not OK_For_Limited_Init (Etype (Expr), Expr) then
785 Error_Msg_N ("initialization not allowed for limited types", Expr);
786 Explain_Limited_Type (Etype (Expr), Expr);
787 end if;
788 end if;
789 end Check_Expr_OK_In_Limited_Aggregate;
790
791 ----------------------------------------
792 -- Check_Static_Discriminated_Subtype --
793 ----------------------------------------
794
795 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
796 Disc : constant Entity_Id := First_Discriminant (T);
797 Comp : Entity_Id;
798 Ind : Entity_Id;
799
800 begin
801 if Has_Record_Rep_Clause (T) then
802 return;
803
804 elsif Present (Next_Discriminant (Disc)) then
805 return;
806
807 elsif Nkind (V) /= N_Integer_Literal then
808 return;
809 end if;
810
811 Comp := First_Component (T);
812 while Present (Comp) loop
813 if Is_Scalar_Type (Etype (Comp)) then
814 null;
815
816 elsif Is_Private_Type (Etype (Comp))
817 and then Present (Full_View (Etype (Comp)))
818 and then Is_Scalar_Type (Full_View (Etype (Comp)))
819 then
820 null;
821
822 elsif Is_Array_Type (Etype (Comp)) then
823 if Is_Bit_Packed_Array (Etype (Comp)) then
824 return;
825 end if;
826
827 Ind := First_Index (Etype (Comp));
828 while Present (Ind) loop
829 if Nkind (Ind) /= N_Range
830 or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal
831 or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
832 then
833 return;
834 end if;
835
836 Next_Index (Ind);
837 end loop;
838
839 else
840 return;
841 end if;
842
843 Next_Component (Comp);
844 end loop;
845
846 -- On exit, all components have statically known sizes
847
848 Set_Size_Known_At_Compile_Time (T);
849 end Check_Static_Discriminated_Subtype;
850
851 --------------------------------
852 -- Make_String_Into_Aggregate --
853 --------------------------------
854
855 procedure Make_String_Into_Aggregate (N : Node_Id) is
856 Exprs : constant List_Id := New_List;
857 Loc : constant Source_Ptr := Sloc (N);
858 Str : constant String_Id := Strval (N);
859 Strlen : constant Nat := String_Length (Str);
860 C : Char_Code;
861 C_Node : Node_Id;
862 New_N : Node_Id;
863 P : Source_Ptr;
864
865 begin
866 P := Loc + 1;
867 for J in 1 .. Strlen loop
868 C := Get_String_Char (Str, J);
869 Set_Character_Literal_Name (C);
870
871 C_Node :=
872 Make_Character_Literal (P,
873 Chars => Name_Find,
874 Char_Literal_Value => UI_From_CC (C));
875 Set_Etype (C_Node, Any_Character);
876 Append_To (Exprs, C_Node);
877
878 P := P + 1;
879 -- Something special for wide strings???
880 end loop;
881
882 New_N := Make_Aggregate (Loc, Expressions => Exprs);
883 Set_Analyzed (New_N);
884 Set_Etype (New_N, Any_Composite);
885
886 Rewrite (N, New_N);
887 end Make_String_Into_Aggregate;
888
889 -----------------------
890 -- Resolve_Aggregate --
891 -----------------------
892
893 procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
894 Pkind : constant Node_Kind := Nkind (Parent (N));
895
896 Aggr_Subtyp : Entity_Id;
897 -- The actual aggregate subtype. This is not necessarily the same as Typ
898 -- which is the subtype of the context in which the aggregate was found.
899
900 begin
901 -- Ignore junk empty aggregate resulting from parser error
902
903 if No (Expressions (N))
904 and then No (Component_Associations (N))
905 and then not Null_Record_Present (N)
906 then
907 return;
908 end if;
909
910 -- Check for aggregates not allowed in configurable run-time mode.
911 -- We allow all cases of aggregates that do not come from source, since
912 -- these are all assumed to be small (e.g. bounds of a string literal).
913 -- We also allow aggregates of types we know to be small.
914
915 if not Support_Aggregates_On_Target
916 and then Comes_From_Source (N)
917 and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
918 then
919 Error_Msg_CRT ("aggregate", N);
920 end if;
921
922 -- Ada 2005 (AI-287): Limited aggregates allowed
923
924 if Is_Limited_Type (Typ) and then Ada_Version < Ada_05 then
925 Error_Msg_N ("aggregate type cannot be limited", N);
926 Explain_Limited_Type (Typ, N);
927
928 elsif Is_Class_Wide_Type (Typ) then
929 Error_Msg_N ("type of aggregate cannot be class-wide", N);
930
931 elsif Typ = Any_String
932 or else Typ = Any_Composite
933 then
934 Error_Msg_N ("no unique type for aggregate", N);
935 Set_Etype (N, Any_Composite);
936
937 elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
938 Error_Msg_N ("null record forbidden in array aggregate", N);
939
940 elsif Is_Record_Type (Typ) then
941 Resolve_Record_Aggregate (N, Typ);
942
943 elsif Is_Array_Type (Typ) then
944
945 -- First a special test, for the case of a positional aggregate
946 -- of characters which can be replaced by a string literal.
947
948 -- Do not perform this transformation if this was a string literal to
949 -- start with, whose components needed constraint checks, or if the
950 -- component type is non-static, because it will require those checks
951 -- and be transformed back into an aggregate.
952
953 if Number_Dimensions (Typ) = 1
954 and then Is_Standard_Character_Type (Component_Type (Typ))
955 and then No (Component_Associations (N))
956 and then not Is_Limited_Composite (Typ)
957 and then not Is_Private_Composite (Typ)
958 and then not Is_Bit_Packed_Array (Typ)
959 and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
960 and then Is_Static_Subtype (Component_Type (Typ))
961 then
962 declare
963 Expr : Node_Id;
964
965 begin
966 Expr := First (Expressions (N));
967 while Present (Expr) loop
968 exit when Nkind (Expr) /= N_Character_Literal;
969 Next (Expr);
970 end loop;
971
972 if No (Expr) then
973 Start_String;
974
975 Expr := First (Expressions (N));
976 while Present (Expr) loop
977 Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
978 Next (Expr);
979 end loop;
980
981 Rewrite (N,
982 Make_String_Literal (Sloc (N), End_String));
983
984 Analyze_And_Resolve (N, Typ);
985 return;
986 end if;
987 end;
988 end if;
989
990 -- Here if we have a real aggregate to deal with
991
992 Array_Aggregate : declare
993 Aggr_Resolved : Boolean;
994
995 Aggr_Typ : constant Entity_Id := Etype (Typ);
996 -- This is the unconstrained array type, which is the type against
997 -- which the aggregate is to be resolved. Typ itself is the array
998 -- type of the context which may not be the same subtype as the
999 -- subtype for the final aggregate.
1000
1001 begin
1002 -- In the following we determine whether an others choice is
1003 -- allowed inside the array aggregate. The test checks the context
1004 -- in which the array aggregate occurs. If the context does not
1005 -- permit it, or the aggregate type is unconstrained, an others
1006 -- choice is not allowed.
1007
1008 -- If expansion is disabled (generic context, or semantics-only
1009 -- mode) actual subtypes cannot be constructed, and the type of an
1010 -- object may be its unconstrained nominal type. However, if the
1011 -- context is an assignment, we assume that "others" is allowed,
1012 -- because the target of the assignment will have a constrained
1013 -- subtype when fully compiled.
1014
1015 -- Note that there is no node for Explicit_Actual_Parameter.
1016 -- To test for this context we therefore have to test for node
1017 -- N_Parameter_Association which itself appears only if there is a
1018 -- formal parameter. Consequently we also need to test for
1019 -- N_Procedure_Call_Statement or N_Function_Call.
1020
1021 Set_Etype (N, Aggr_Typ); -- May be overridden later on
1022
1023 if Is_Constrained (Typ) and then
1024 (Pkind = N_Assignment_Statement or else
1025 Pkind = N_Parameter_Association or else
1026 Pkind = N_Function_Call or else
1027 Pkind = N_Procedure_Call_Statement or else
1028 Pkind = N_Generic_Association or else
1029 Pkind = N_Formal_Object_Declaration or else
1030 Pkind = N_Simple_Return_Statement or else
1031 Pkind = N_Object_Declaration or else
1032 Pkind = N_Component_Declaration or else
1033 Pkind = N_Parameter_Specification or else
1034 Pkind = N_Qualified_Expression or else
1035 Pkind = N_Aggregate or else
1036 Pkind = N_Extension_Aggregate or else
1037 Pkind = N_Component_Association)
1038 then
1039 Aggr_Resolved :=
1040 Resolve_Array_Aggregate
1041 (N,
1042 Index => First_Index (Aggr_Typ),
1043 Index_Constr => First_Index (Typ),
1044 Component_Typ => Component_Type (Typ),
1045 Others_Allowed => True);
1046
1047 elsif not Expander_Active
1048 and then Pkind = N_Assignment_Statement
1049 then
1050 Aggr_Resolved :=
1051 Resolve_Array_Aggregate
1052 (N,
1053 Index => First_Index (Aggr_Typ),
1054 Index_Constr => First_Index (Typ),
1055 Component_Typ => Component_Type (Typ),
1056 Others_Allowed => True);
1057 else
1058 Aggr_Resolved :=
1059 Resolve_Array_Aggregate
1060 (N,
1061 Index => First_Index (Aggr_Typ),
1062 Index_Constr => First_Index (Aggr_Typ),
1063 Component_Typ => Component_Type (Typ),
1064 Others_Allowed => False);
1065 end if;
1066
1067 if not Aggr_Resolved then
1068 Aggr_Subtyp := Any_Composite;
1069 else
1070 Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1071 end if;
1072
1073 Set_Etype (N, Aggr_Subtyp);
1074 end Array_Aggregate;
1075
1076 elsif Is_Private_Type (Typ)
1077 and then Present (Full_View (Typ))
1078 and then In_Inlined_Body
1079 and then Is_Composite_Type (Full_View (Typ))
1080 then
1081 Resolve (N, Full_View (Typ));
1082
1083 else
1084 Error_Msg_N ("illegal context for aggregate", N);
1085 end if;
1086
1087 -- If we can determine statically that the evaluation of the aggregate
1088 -- raises Constraint_Error, then replace the aggregate with an
1089 -- N_Raise_Constraint_Error node, but set the Etype to the right
1090 -- aggregate subtype. Gigi needs this.
1091
1092 if Raises_Constraint_Error (N) then
1093 Aggr_Subtyp := Etype (N);
1094 Rewrite (N,
1095 Make_Raise_Constraint_Error (Sloc (N),
1096 Reason => CE_Range_Check_Failed));
1097 Set_Raises_Constraint_Error (N);
1098 Set_Etype (N, Aggr_Subtyp);
1099 Set_Analyzed (N);
1100 end if;
1101 end Resolve_Aggregate;
1102
1103 -----------------------------
1104 -- Resolve_Array_Aggregate --
1105 -----------------------------
1106
1107 function Resolve_Array_Aggregate
1108 (N : Node_Id;
1109 Index : Node_Id;
1110 Index_Constr : Node_Id;
1111 Component_Typ : Entity_Id;
1112 Others_Allowed : Boolean) return Boolean
1113 is
1114 Loc : constant Source_Ptr := Sloc (N);
1115
1116 Failure : constant Boolean := False;
1117 Success : constant Boolean := True;
1118
1119 Index_Typ : constant Entity_Id := Etype (Index);
1120 Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
1121 Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
1122 -- The type of the index corresponding to the array sub-aggregate along
1123 -- with its low and upper bounds.
1124
1125 Index_Base : constant Entity_Id := Base_Type (Index_Typ);
1126 Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
1127 Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
1128 -- Ditto for the base type
1129
1130 function Add (Val : Uint; To : Node_Id) return Node_Id;
1131 -- Creates a new expression node where Val is added to expression To.
1132 -- Tries to constant fold whenever possible. To must be an already
1133 -- analyzed expression.
1134
1135 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1136 -- Checks that AH (the upper bound of an array aggregate) is <= BH
1137 -- (the upper bound of the index base type). If the check fails a
1138 -- warning is emitted, the Raises_Constraint_Error flag of N is set,
1139 -- and AH is replaced with a duplicate of BH.
1140
1141 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1142 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1143 -- warning if not and sets the Raises_Constraint_Error flag in N.
1144
1145 procedure Check_Length (L, H : Node_Id; Len : Uint);
1146 -- Checks that range L .. H contains at least Len elements. Emits a
1147 -- warning if not and sets the Raises_Constraint_Error flag in N.
1148
1149 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1150 -- Returns True if range L .. H is dynamic or null
1151
1152 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1153 -- Given expression node From, this routine sets OK to False if it
1154 -- cannot statically evaluate From. Otherwise it stores this static
1155 -- value into Value.
1156
1157 function Resolve_Aggr_Expr
1158 (Expr : Node_Id;
1159 Single_Elmt : Boolean) return Boolean;
1160 -- Resolves aggregate expression Expr. Returns False if resolution
1161 -- fails. If Single_Elmt is set to False, the expression Expr may be
1162 -- used to initialize several array aggregate elements (this can happen
1163 -- for discrete choices such as "L .. H => Expr" or the others choice).
1164 -- In this event we do not resolve Expr unless expansion is disabled.
1165 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
1166
1167 ---------
1168 -- Add --
1169 ---------
1170
1171 function Add (Val : Uint; To : Node_Id) return Node_Id is
1172 Expr_Pos : Node_Id;
1173 Expr : Node_Id;
1174 To_Pos : Node_Id;
1175
1176 begin
1177 if Raises_Constraint_Error (To) then
1178 return To;
1179 end if;
1180
1181 -- First test if we can do constant folding
1182
1183 if Compile_Time_Known_Value (To)
1184 or else Nkind (To) = N_Integer_Literal
1185 then
1186 Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1187 Set_Is_Static_Expression (Expr_Pos);
1188 Set_Etype (Expr_Pos, Etype (To));
1189 Set_Analyzed (Expr_Pos, Analyzed (To));
1190
1191 if not Is_Enumeration_Type (Index_Typ) then
1192 Expr := Expr_Pos;
1193
1194 -- If we are dealing with enumeration return
1195 -- Index_Typ'Val (Expr_Pos)
1196
1197 else
1198 Expr :=
1199 Make_Attribute_Reference
1200 (Loc,
1201 Prefix => New_Reference_To (Index_Typ, Loc),
1202 Attribute_Name => Name_Val,
1203 Expressions => New_List (Expr_Pos));
1204 end if;
1205
1206 return Expr;
1207 end if;
1208
1209 -- If we are here no constant folding possible
1210
1211 if not Is_Enumeration_Type (Index_Base) then
1212 Expr :=
1213 Make_Op_Add (Loc,
1214 Left_Opnd => Duplicate_Subexpr (To),
1215 Right_Opnd => Make_Integer_Literal (Loc, Val));
1216
1217 -- If we are dealing with enumeration return
1218 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1219
1220 else
1221 To_Pos :=
1222 Make_Attribute_Reference
1223 (Loc,
1224 Prefix => New_Reference_To (Index_Typ, Loc),
1225 Attribute_Name => Name_Pos,
1226 Expressions => New_List (Duplicate_Subexpr (To)));
1227
1228 Expr_Pos :=
1229 Make_Op_Add (Loc,
1230 Left_Opnd => To_Pos,
1231 Right_Opnd => Make_Integer_Literal (Loc, Val));
1232
1233 Expr :=
1234 Make_Attribute_Reference
1235 (Loc,
1236 Prefix => New_Reference_To (Index_Typ, Loc),
1237 Attribute_Name => Name_Val,
1238 Expressions => New_List (Expr_Pos));
1239 end if;
1240
1241 return Expr;
1242 end Add;
1243
1244 -----------------
1245 -- Check_Bound --
1246 -----------------
1247
1248 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1249 Val_BH : Uint;
1250 Val_AH : Uint;
1251
1252 OK_BH : Boolean;
1253 OK_AH : Boolean;
1254
1255 begin
1256 Get (Value => Val_BH, From => BH, OK => OK_BH);
1257 Get (Value => Val_AH, From => AH, OK => OK_AH);
1258
1259 if OK_BH and then OK_AH and then Val_BH < Val_AH then
1260 Set_Raises_Constraint_Error (N);
1261 Error_Msg_N ("upper bound out of range?", AH);
1262 Error_Msg_N ("\Constraint_Error will be raised at run time?", AH);
1263
1264 -- You need to set AH to BH or else in the case of enumerations
1265 -- indices we will not be able to resolve the aggregate bounds.
1266
1267 AH := Duplicate_Subexpr (BH);
1268 end if;
1269 end Check_Bound;
1270
1271 ------------------
1272 -- Check_Bounds --
1273 ------------------
1274
1275 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1276 Val_L : Uint;
1277 Val_H : Uint;
1278 Val_AL : Uint;
1279 Val_AH : Uint;
1280
1281 OK_L : Boolean;
1282 OK_H : Boolean;
1283
1284 OK_AL : Boolean;
1285 OK_AH : Boolean;
1286 pragma Warnings (Off, OK_AL);
1287 pragma Warnings (Off, OK_AH);
1288
1289 begin
1290 if Raises_Constraint_Error (N)
1291 or else Dynamic_Or_Null_Range (AL, AH)
1292 then
1293 return;
1294 end if;
1295
1296 Get (Value => Val_L, From => L, OK => OK_L);
1297 Get (Value => Val_H, From => H, OK => OK_H);
1298
1299 Get (Value => Val_AL, From => AL, OK => OK_AL);
1300 Get (Value => Val_AH, From => AH, OK => OK_AH);
1301
1302 if OK_L and then Val_L > Val_AL then
1303 Set_Raises_Constraint_Error (N);
1304 Error_Msg_N ("lower bound of aggregate out of range?", N);
1305 Error_Msg_N ("\Constraint_Error will be raised at run time?", N);
1306 end if;
1307
1308 if OK_H and then Val_H < Val_AH then
1309 Set_Raises_Constraint_Error (N);
1310 Error_Msg_N ("upper bound of aggregate out of range?", N);
1311 Error_Msg_N ("\Constraint_Error will be raised at run time?", N);
1312 end if;
1313 end Check_Bounds;
1314
1315 ------------------
1316 -- Check_Length --
1317 ------------------
1318
1319 procedure Check_Length (L, H : Node_Id; Len : Uint) is
1320 Val_L : Uint;
1321 Val_H : Uint;
1322
1323 OK_L : Boolean;
1324 OK_H : Boolean;
1325
1326 Range_Len : Uint;
1327
1328 begin
1329 if Raises_Constraint_Error (N) then
1330 return;
1331 end if;
1332
1333 Get (Value => Val_L, From => L, OK => OK_L);
1334 Get (Value => Val_H, From => H, OK => OK_H);
1335
1336 if not OK_L or else not OK_H then
1337 return;
1338 end if;
1339
1340 -- If null range length is zero
1341
1342 if Val_L > Val_H then
1343 Range_Len := Uint_0;
1344 else
1345 Range_Len := Val_H - Val_L + 1;
1346 end if;
1347
1348 if Range_Len < Len then
1349 Set_Raises_Constraint_Error (N);
1350 Error_Msg_N ("too many elements?", N);
1351 Error_Msg_N ("\Constraint_Error will be raised at run time?", N);
1352 end if;
1353 end Check_Length;
1354
1355 ---------------------------
1356 -- Dynamic_Or_Null_Range --
1357 ---------------------------
1358
1359 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1360 Val_L : Uint;
1361 Val_H : Uint;
1362
1363 OK_L : Boolean;
1364 OK_H : Boolean;
1365
1366 begin
1367 Get (Value => Val_L, From => L, OK => OK_L);
1368 Get (Value => Val_H, From => H, OK => OK_H);
1369
1370 return not OK_L or else not OK_H
1371 or else not Is_OK_Static_Expression (L)
1372 or else not Is_OK_Static_Expression (H)
1373 or else Val_L > Val_H;
1374 end Dynamic_Or_Null_Range;
1375
1376 ---------
1377 -- Get --
1378 ---------
1379
1380 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1381 begin
1382 OK := True;
1383
1384 if Compile_Time_Known_Value (From) then
1385 Value := Expr_Value (From);
1386
1387 -- If expression From is something like Some_Type'Val (10) then
1388 -- Value = 10
1389
1390 elsif Nkind (From) = N_Attribute_Reference
1391 and then Attribute_Name (From) = Name_Val
1392 and then Compile_Time_Known_Value (First (Expressions (From)))
1393 then
1394 Value := Expr_Value (First (Expressions (From)));
1395
1396 else
1397 Value := Uint_0;
1398 OK := False;
1399 end if;
1400 end Get;
1401
1402 -----------------------
1403 -- Resolve_Aggr_Expr --
1404 -----------------------
1405
1406 function Resolve_Aggr_Expr
1407 (Expr : Node_Id;
1408 Single_Elmt : Boolean) return Boolean
1409 is
1410 Nxt_Ind : constant Node_Id := Next_Index (Index);
1411 Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1412 -- Index is the current index corresponding to the expression
1413
1414 Resolution_OK : Boolean := True;
1415 -- Set to False if resolution of the expression failed
1416
1417 begin
1418 -- Defend against previous errors
1419
1420 if Nkind (Expr) = N_Error
1421 or else Error_Posted (Expr)
1422 then
1423 return True;
1424 end if;
1425
1426 -- If the array type against which we are resolving the aggregate
1427 -- has several dimensions, the expressions nested inside the
1428 -- aggregate must be further aggregates (or strings).
1429
1430 if Present (Nxt_Ind) then
1431 if Nkind (Expr) /= N_Aggregate then
1432
1433 -- A string literal can appear where a one-dimensional array
1434 -- of characters is expected. If the literal looks like an
1435 -- operator, it is still an operator symbol, which will be
1436 -- transformed into a string when analyzed.
1437
1438 if Is_Character_Type (Component_Typ)
1439 and then No (Next_Index (Nxt_Ind))
1440 and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
1441 then
1442 -- A string literal used in a multidimensional array
1443 -- aggregate in place of the final one-dimensional
1444 -- aggregate must not be enclosed in parentheses.
1445
1446 if Paren_Count (Expr) /= 0 then
1447 Error_Msg_N ("no parenthesis allowed here", Expr);
1448 end if;
1449
1450 Make_String_Into_Aggregate (Expr);
1451
1452 else
1453 Error_Msg_N ("nested array aggregate expected", Expr);
1454
1455 -- If the expression is parenthesized, this may be
1456 -- a missing component association for a 1-aggregate.
1457
1458 if Paren_Count (Expr) > 0 then
1459 Error_Msg_N
1460 ("\if single-component aggregate is intended,"
1461 & " write e.g. (1 ='> ...)", Expr);
1462 end if;
1463 return Failure;
1464 end if;
1465 end if;
1466
1467 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1468 -- Required to check the null-exclusion attribute (if present).
1469 -- This value may be overridden later on.
1470
1471 Set_Etype (Expr, Etype (N));
1472
1473 Resolution_OK := Resolve_Array_Aggregate
1474 (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1475
1476 -- Do not resolve the expressions of discrete or others choices
1477 -- unless the expression covers a single component, or the expander
1478 -- is inactive.
1479
1480 elsif Single_Elmt
1481 or else not Expander_Active
1482 or else In_Spec_Expression
1483 then
1484 Analyze_And_Resolve (Expr, Component_Typ);
1485 Check_Expr_OK_In_Limited_Aggregate (Expr);
1486 Check_Non_Static_Context (Expr);
1487 Aggregate_Constraint_Checks (Expr, Component_Typ);
1488 Check_Unset_Reference (Expr);
1489 end if;
1490
1491 if Raises_Constraint_Error (Expr)
1492 and then Nkind (Parent (Expr)) /= N_Component_Association
1493 then
1494 Set_Raises_Constraint_Error (N);
1495 end if;
1496
1497 -- If the expression has been marked as requiring a range check,
1498 -- then generate it here.
1499
1500 if Do_Range_Check (Expr) then
1501 Set_Do_Range_Check (Expr, False);
1502 Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1503 end if;
1504
1505 return Resolution_OK;
1506 end Resolve_Aggr_Expr;
1507
1508 -- Variables local to Resolve_Array_Aggregate
1509
1510 Assoc : Node_Id;
1511 Choice : Node_Id;
1512 Expr : Node_Id;
1513
1514 Discard : Node_Id;
1515 pragma Warnings (Off, Discard);
1516
1517 Aggr_Low : Node_Id := Empty;
1518 Aggr_High : Node_Id := Empty;
1519 -- The actual low and high bounds of this sub-aggregate
1520
1521 Choices_Low : Node_Id := Empty;
1522 Choices_High : Node_Id := Empty;
1523 -- The lowest and highest discrete choices values for a named aggregate
1524
1525 Nb_Elements : Uint := Uint_0;
1526 -- The number of elements in a positional aggregate
1527
1528 Others_Present : Boolean := False;
1529
1530 Nb_Choices : Nat := 0;
1531 -- Contains the overall number of named choices in this sub-aggregate
1532
1533 Nb_Discrete_Choices : Nat := 0;
1534 -- The overall number of discrete choices (not counting others choice)
1535
1536 Case_Table_Size : Nat;
1537 -- Contains the size of the case table needed to sort aggregate choices
1538
1539 -- Start of processing for Resolve_Array_Aggregate
1540
1541 begin
1542 -- Ignore junk empty aggregate resulting from parser error
1543
1544 if No (Expressions (N))
1545 and then No (Component_Associations (N))
1546 and then not Null_Record_Present (N)
1547 then
1548 return False;
1549 end if;
1550
1551 -- STEP 1: make sure the aggregate is correctly formatted
1552
1553 if Present (Component_Associations (N)) then
1554 Assoc := First (Component_Associations (N));
1555 while Present (Assoc) loop
1556 Choice := First (Choices (Assoc));
1557 while Present (Choice) loop
1558 if Nkind (Choice) = N_Others_Choice then
1559 Others_Present := True;
1560
1561 if Choice /= First (Choices (Assoc))
1562 or else Present (Next (Choice))
1563 then
1564 Error_Msg_N
1565 ("OTHERS must appear alone in a choice list", Choice);
1566 return Failure;
1567 end if;
1568
1569 if Present (Next (Assoc)) then
1570 Error_Msg_N
1571 ("OTHERS must appear last in an aggregate", Choice);
1572 return Failure;
1573 end if;
1574
1575 if Ada_Version = Ada_83
1576 and then Assoc /= First (Component_Associations (N))
1577 and then Nkind_In (Parent (N), N_Assignment_Statement,
1578 N_Object_Declaration)
1579 then
1580 Error_Msg_N
1581 ("(Ada 83) illegal context for OTHERS choice", N);
1582 end if;
1583 end if;
1584
1585 Nb_Choices := Nb_Choices + 1;
1586 Next (Choice);
1587 end loop;
1588
1589 Next (Assoc);
1590 end loop;
1591 end if;
1592
1593 -- At this point we know that the others choice, if present, is by
1594 -- itself and appears last in the aggregate. Check if we have mixed
1595 -- positional and discrete associations (other than the others choice).
1596
1597 if Present (Expressions (N))
1598 and then (Nb_Choices > 1
1599 or else (Nb_Choices = 1 and then not Others_Present))
1600 then
1601 Error_Msg_N
1602 ("named association cannot follow positional association",
1603 First (Choices (First (Component_Associations (N)))));
1604 return Failure;
1605 end if;
1606
1607 -- Test for the validity of an others choice if present
1608
1609 if Others_Present and then not Others_Allowed then
1610 Error_Msg_N
1611 ("OTHERS choice not allowed here",
1612 First (Choices (First (Component_Associations (N)))));
1613 return Failure;
1614 end if;
1615
1616 -- Protect against cascaded errors
1617
1618 if Etype (Index_Typ) = Any_Type then
1619 return Failure;
1620 end if;
1621
1622 -- STEP 2: Process named components
1623
1624 if No (Expressions (N)) then
1625 if Others_Present then
1626 Case_Table_Size := Nb_Choices - 1;
1627 else
1628 Case_Table_Size := Nb_Choices;
1629 end if;
1630
1631 Step_2 : declare
1632 Low : Node_Id;
1633 High : Node_Id;
1634 -- Denote the lowest and highest values in an aggregate choice
1635
1636 Hi_Val : Uint;
1637 Lo_Val : Uint;
1638 -- High end of one range and Low end of the next. Should be
1639 -- contiguous if there is no hole in the list of values.
1640
1641 Missing_Values : Boolean;
1642 -- Set True if missing index values
1643
1644 S_Low : Node_Id := Empty;
1645 S_High : Node_Id := Empty;
1646 -- if a choice in an aggregate is a subtype indication these
1647 -- denote the lowest and highest values of the subtype
1648
1649 Table : Case_Table_Type (1 .. Case_Table_Size);
1650 -- Used to sort all the different choice values
1651
1652 Single_Choice : Boolean;
1653 -- Set to true every time there is a single discrete choice in a
1654 -- discrete association
1655
1656 Prev_Nb_Discrete_Choices : Nat;
1657 -- Used to keep track of the number of discrete choices in the
1658 -- current association.
1659
1660 begin
1661 -- STEP 2 (A): Check discrete choices validity
1662
1663 Assoc := First (Component_Associations (N));
1664 while Present (Assoc) loop
1665 Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1666 Choice := First (Choices (Assoc));
1667 loop
1668 Analyze (Choice);
1669
1670 if Nkind (Choice) = N_Others_Choice then
1671 Single_Choice := False;
1672 exit;
1673
1674 -- Test for subtype mark without constraint
1675
1676 elsif Is_Entity_Name (Choice) and then
1677 Is_Type (Entity (Choice))
1678 then
1679 if Base_Type (Entity (Choice)) /= Index_Base then
1680 Error_Msg_N
1681 ("invalid subtype mark in aggregate choice",
1682 Choice);
1683 return Failure;
1684 end if;
1685
1686 -- Case of subtype indication
1687
1688 elsif Nkind (Choice) = N_Subtype_Indication then
1689 Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1690
1691 -- Does the subtype indication evaluation raise CE ?
1692
1693 Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1694 Get_Index_Bounds (Choice, Low, High);
1695 Check_Bounds (S_Low, S_High, Low, High);
1696
1697 -- Case of range or expression
1698
1699 else
1700 Resolve (Choice, Index_Base);
1701 Check_Unset_Reference (Choice);
1702 Check_Non_Static_Context (Choice);
1703
1704 -- Do not range check a choice. This check is redundant
1705 -- since this test is already done when we check that the
1706 -- bounds of the array aggregate are within range.
1707
1708 Set_Do_Range_Check (Choice, False);
1709 end if;
1710
1711 -- If we could not resolve the discrete choice stop here
1712
1713 if Etype (Choice) = Any_Type then
1714 return Failure;
1715
1716 -- If the discrete choice raises CE get its original bounds
1717
1718 elsif Nkind (Choice) = N_Raise_Constraint_Error then
1719 Set_Raises_Constraint_Error (N);
1720 Get_Index_Bounds (Original_Node (Choice), Low, High);
1721
1722 -- Otherwise get its bounds as usual
1723
1724 else
1725 Get_Index_Bounds (Choice, Low, High);
1726 end if;
1727
1728 if (Dynamic_Or_Null_Range (Low, High)
1729 or else (Nkind (Choice) = N_Subtype_Indication
1730 and then
1731 Dynamic_Or_Null_Range (S_Low, S_High)))
1732 and then Nb_Choices /= 1
1733 then
1734 Error_Msg_N
1735 ("dynamic or empty choice in aggregate " &
1736 "must be the only choice", Choice);
1737 return Failure;
1738 end if;
1739
1740 Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
1741 Table (Nb_Discrete_Choices).Choice_Lo := Low;
1742 Table (Nb_Discrete_Choices).Choice_Hi := High;
1743
1744 Next (Choice);
1745
1746 if No (Choice) then
1747
1748 -- Check if we have a single discrete choice and whether
1749 -- this discrete choice specifies a single value.
1750
1751 Single_Choice :=
1752 (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
1753 and then (Low = High);
1754
1755 exit;
1756 end if;
1757 end loop;
1758
1759 -- Ada 2005 (AI-231)
1760
1761 if Ada_Version >= Ada_05
1762 and then Known_Null (Expression (Assoc))
1763 then
1764 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
1765 end if;
1766
1767 -- Ada 2005 (AI-287): In case of default initialized component
1768 -- we delay the resolution to the expansion phase.
1769
1770 if Box_Present (Assoc) then
1771
1772 -- Ada 2005 (AI-287): In case of default initialization of a
1773 -- component the expander will generate calls to the
1774 -- corresponding initialization subprogram.
1775
1776 null;
1777
1778 elsif not Resolve_Aggr_Expr (Expression (Assoc),
1779 Single_Elmt => Single_Choice)
1780 then
1781 return Failure;
1782
1783 -- Check incorrect use of dynamically tagged expression
1784
1785 -- We differentiate here two cases because the expression may
1786 -- not be decorated. For example, the analysis and resolution
1787 -- of the expression associated with the others choice will be
1788 -- done later with the full aggregate. In such case we
1789 -- duplicate the expression tree to analyze the copy and
1790 -- perform the required check.
1791
1792 elsif not Present (Etype (Expression (Assoc))) then
1793 declare
1794 Save_Analysis : constant Boolean := Full_Analysis;
1795 Expr : constant Node_Id :=
1796 New_Copy_Tree (Expression (Assoc));
1797
1798 begin
1799 Expander_Mode_Save_And_Set (False);
1800 Full_Analysis := False;
1801 Analyze (Expr);
1802
1803 -- If the expression is a literal, propagate this info
1804 -- to the expression in the association, to enable some
1805 -- optimizations downstream.
1806
1807 if Is_Entity_Name (Expr)
1808 and then Present (Entity (Expr))
1809 and then Ekind (Entity (Expr)) = E_Enumeration_Literal
1810 then
1811 Analyze_And_Resolve
1812 (Expression (Assoc), Component_Typ);
1813 end if;
1814
1815 Full_Analysis := Save_Analysis;
1816 Expander_Mode_Restore;
1817
1818 if Is_Tagged_Type (Etype (Expr)) then
1819 Check_Dynamically_Tagged_Expression
1820 (Expr => Expr,
1821 Typ => Component_Type (Etype (N)),
1822 Related_Nod => N);
1823 end if;
1824 end;
1825
1826 elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
1827 Check_Dynamically_Tagged_Expression
1828 (Expr => Expression (Assoc),
1829 Typ => Component_Type (Etype (N)),
1830 Related_Nod => N);
1831 end if;
1832
1833 Next (Assoc);
1834 end loop;
1835
1836 -- If aggregate contains more than one choice then these must be
1837 -- static. Sort them and check that they are contiguous.
1838
1839 if Nb_Discrete_Choices > 1 then
1840 Sort_Case_Table (Table);
1841 Missing_Values := False;
1842
1843 Outer : for J in 1 .. Nb_Discrete_Choices - 1 loop
1844 if Expr_Value (Table (J).Choice_Hi) >=
1845 Expr_Value (Table (J + 1).Choice_Lo)
1846 then
1847 Error_Msg_N
1848 ("duplicate choice values in array aggregate",
1849 Table (J).Choice_Hi);
1850 return Failure;
1851
1852 elsif not Others_Present then
1853 Hi_Val := Expr_Value (Table (J).Choice_Hi);
1854 Lo_Val := Expr_Value (Table (J + 1).Choice_Lo);
1855
1856 -- If missing values, output error messages
1857
1858 if Lo_Val - Hi_Val > 1 then
1859
1860 -- Header message if not first missing value
1861
1862 if not Missing_Values then
1863 Error_Msg_N
1864 ("missing index value(s) in array aggregate", N);
1865 Missing_Values := True;
1866 end if;
1867
1868 -- Output values of missing indexes
1869
1870 Lo_Val := Lo_Val - 1;
1871 Hi_Val := Hi_Val + 1;
1872
1873 -- Enumeration type case
1874
1875 if Is_Enumeration_Type (Index_Typ) then
1876 Error_Msg_Name_1 :=
1877 Chars
1878 (Get_Enum_Lit_From_Pos
1879 (Index_Typ, Hi_Val, Loc));
1880
1881 if Lo_Val = Hi_Val then
1882 Error_Msg_N ("\ %", N);
1883 else
1884 Error_Msg_Name_2 :=
1885 Chars
1886 (Get_Enum_Lit_From_Pos
1887 (Index_Typ, Lo_Val, Loc));
1888 Error_Msg_N ("\ % .. %", N);
1889 end if;
1890
1891 -- Integer types case
1892
1893 else
1894 Error_Msg_Uint_1 := Hi_Val;
1895
1896 if Lo_Val = Hi_Val then
1897 Error_Msg_N ("\ ^", N);
1898 else
1899 Error_Msg_Uint_2 := Lo_Val;
1900 Error_Msg_N ("\ ^ .. ^", N);
1901 end if;
1902 end if;
1903 end if;
1904 end if;
1905 end loop Outer;
1906
1907 if Missing_Values then
1908 Set_Etype (N, Any_Composite);
1909 return Failure;
1910 end if;
1911 end if;
1912
1913 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
1914
1915 if Nb_Discrete_Choices > 0 then
1916 Choices_Low := Table (1).Choice_Lo;
1917 Choices_High := Table (Nb_Discrete_Choices).Choice_Hi;
1918 end if;
1919
1920 -- If Others is present, then bounds of aggregate come from the
1921 -- index constraint (not the choices in the aggregate itself).
1922
1923 if Others_Present then
1924 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
1925
1926 -- No others clause present
1927
1928 else
1929 -- Special processing if others allowed and not present. This
1930 -- means that the bounds of the aggregate come from the index
1931 -- constraint (and the length must match).
1932
1933 if Others_Allowed then
1934 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
1935
1936 -- If others allowed, and no others present, then the array
1937 -- should cover all index values. If it does not, we will
1938 -- get a length check warning, but there is two cases where
1939 -- an additional warning is useful:
1940
1941 -- If we have no positional components, and the length is
1942 -- wrong (which we can tell by others being allowed with
1943 -- missing components), and the index type is an enumeration
1944 -- type, then issue appropriate warnings about these missing
1945 -- components. They are only warnings, since the aggregate
1946 -- is fine, it's just the wrong length. We skip this check
1947 -- for standard character types (since there are no literals
1948 -- and it is too much trouble to concoct them), and also if
1949 -- any of the bounds have not-known-at-compile-time values.
1950
1951 -- Another case warranting a warning is when the length is
1952 -- right, but as above we have an index type that is an
1953 -- enumeration, and the bounds do not match. This is a
1954 -- case where dubious sliding is allowed and we generate
1955 -- a warning that the bounds do not match.
1956
1957 if No (Expressions (N))
1958 and then Nkind (Index) = N_Range
1959 and then Is_Enumeration_Type (Etype (Index))
1960 and then not Is_Standard_Character_Type (Etype (Index))
1961 and then Compile_Time_Known_Value (Aggr_Low)
1962 and then Compile_Time_Known_Value (Aggr_High)
1963 and then Compile_Time_Known_Value (Choices_Low)
1964 and then Compile_Time_Known_Value (Choices_High)
1965 then
1966 -- If the bounds have semantic errors, do not attempt
1967 -- further resolution to prevent cascaded errors.
1968
1969 if Error_Posted (Choices_Low)
1970 or else Error_Posted (Choices_High)
1971 then
1972 return False;
1973 end if;
1974
1975 declare
1976 ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
1977 AHi : constant Node_Id := Expr_Value_E (Aggr_High);
1978 CLo : constant Node_Id := Expr_Value_E (Choices_Low);
1979 CHi : constant Node_Id := Expr_Value_E (Choices_High);
1980
1981 Ent : Entity_Id;
1982
1983 begin
1984 -- Warning case 1, missing values at start/end. Only
1985 -- do the check if the number of entries is too small.
1986
1987 if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
1988 <
1989 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
1990 then
1991 Error_Msg_N
1992 ("missing index value(s) in array aggregate?", N);
1993
1994 -- Output missing value(s) at start
1995
1996 if Chars (ALo) /= Chars (CLo) then
1997 Ent := Prev (CLo);
1998
1999 if Chars (ALo) = Chars (Ent) then
2000 Error_Msg_Name_1 := Chars (ALo);
2001 Error_Msg_N ("\ %?", N);
2002 else
2003 Error_Msg_Name_1 := Chars (ALo);
2004 Error_Msg_Name_2 := Chars (Ent);
2005 Error_Msg_N ("\ % .. %?", N);
2006 end if;
2007 end if;
2008
2009 -- Output missing value(s) at end
2010
2011 if Chars (AHi) /= Chars (CHi) then
2012 Ent := Next (CHi);
2013
2014 if Chars (AHi) = Chars (Ent) then
2015 Error_Msg_Name_1 := Chars (Ent);
2016 Error_Msg_N ("\ %?", N);
2017 else
2018 Error_Msg_Name_1 := Chars (Ent);
2019 Error_Msg_Name_2 := Chars (AHi);
2020 Error_Msg_N ("\ % .. %?", N);
2021 end if;
2022 end if;
2023
2024 -- Warning case 2, dubious sliding. The First_Subtype
2025 -- test distinguishes between a constrained type where
2026 -- sliding is not allowed (so we will get a warning
2027 -- later that Constraint_Error will be raised), and
2028 -- the unconstrained case where sliding is permitted.
2029
2030 elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2031 =
2032 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2033 and then Chars (ALo) /= Chars (CLo)
2034 and then
2035 not Is_Constrained (First_Subtype (Etype (N)))
2036 then
2037 Error_Msg_N
2038 ("bounds of aggregate do not match target?", N);
2039 end if;
2040 end;
2041 end if;
2042 end if;
2043
2044 -- If no others, aggregate bounds come from aggregate
2045
2046 Aggr_Low := Choices_Low;
2047 Aggr_High := Choices_High;
2048 end if;
2049 end Step_2;
2050
2051 -- STEP 3: Process positional components
2052
2053 else
2054 -- STEP 3 (A): Process positional elements
2055
2056 Expr := First (Expressions (N));
2057 Nb_Elements := Uint_0;
2058 while Present (Expr) loop
2059 Nb_Elements := Nb_Elements + 1;
2060
2061 -- Ada 2005 (AI-231)
2062
2063 if Ada_Version >= Ada_05
2064 and then Known_Null (Expr)
2065 then
2066 Check_Can_Never_Be_Null (Etype (N), Expr);
2067 end if;
2068
2069 if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2070 return Failure;
2071 end if;
2072
2073 -- Check incorrect use of dynamically tagged expression
2074
2075 if Is_Tagged_Type (Etype (Expr)) then
2076 Check_Dynamically_Tagged_Expression
2077 (Expr => Expr,
2078 Typ => Component_Type (Etype (N)),
2079 Related_Nod => N);
2080 end if;
2081
2082 Next (Expr);
2083 end loop;
2084
2085 if Others_Present then
2086 Assoc := Last (Component_Associations (N));
2087
2088 -- Ada 2005 (AI-231)
2089
2090 if Ada_Version >= Ada_05
2091 and then Known_Null (Assoc)
2092 then
2093 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2094 end if;
2095
2096 -- Ada 2005 (AI-287): In case of default initialized component,
2097 -- we delay the resolution to the expansion phase.
2098
2099 if Box_Present (Assoc) then
2100
2101 -- Ada 2005 (AI-287): In case of default initialization of a
2102 -- component the expander will generate calls to the
2103 -- corresponding initialization subprogram.
2104
2105 null;
2106
2107 elsif not Resolve_Aggr_Expr (Expression (Assoc),
2108 Single_Elmt => False)
2109 then
2110 return Failure;
2111
2112 -- Check incorrect use of dynamically tagged expression. The
2113 -- expression of the others choice has not been resolved yet.
2114 -- In order to diagnose the semantic error we create a duplicate
2115 -- tree to analyze it and perform the check.
2116
2117 else
2118 declare
2119 Save_Analysis : constant Boolean := Full_Analysis;
2120 Expr : constant Node_Id :=
2121 New_Copy_Tree (Expression (Assoc));
2122
2123 begin
2124 Expander_Mode_Save_And_Set (False);
2125 Full_Analysis := False;
2126 Analyze (Expr);
2127 Full_Analysis := Save_Analysis;
2128 Expander_Mode_Restore;
2129
2130 if Is_Tagged_Type (Etype (Expr)) then
2131 Check_Dynamically_Tagged_Expression
2132 (Expr => Expr,
2133 Typ => Component_Type (Etype (N)),
2134 Related_Nod => N);
2135 end if;
2136 end;
2137 end if;
2138 end if;
2139
2140 -- STEP 3 (B): Compute the aggregate bounds
2141
2142 if Others_Present then
2143 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2144
2145 else
2146 if Others_Allowed then
2147 Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2148 else
2149 Aggr_Low := Index_Typ_Low;
2150 end if;
2151
2152 Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2153 Check_Bound (Index_Base_High, Aggr_High);
2154 end if;
2155 end if;
2156
2157 -- STEP 4: Perform static aggregate checks and save the bounds
2158
2159 -- Check (A)
2160
2161 Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2162 Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2163
2164 -- Check (B)
2165
2166 if Others_Present and then Nb_Discrete_Choices > 0 then
2167 Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2168 Check_Bounds (Index_Typ_Low, Index_Typ_High,
2169 Choices_Low, Choices_High);
2170 Check_Bounds (Index_Base_Low, Index_Base_High,
2171 Choices_Low, Choices_High);
2172
2173 -- Check (C)
2174
2175 elsif Others_Present and then Nb_Elements > 0 then
2176 Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2177 Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2178 Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2179 end if;
2180
2181 if Raises_Constraint_Error (Aggr_Low)
2182 or else Raises_Constraint_Error (Aggr_High)
2183 then
2184 Set_Raises_Constraint_Error (N);
2185 end if;
2186
2187 Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2188
2189 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2190 -- since the addition node returned by Add is not yet analyzed. Attach
2191 -- to tree and analyze first. Reset analyzed flag to ensure it will get
2192 -- analyzed when it is a literal bound whose type must be properly set.
2193
2194 if Others_Present or else Nb_Discrete_Choices > 0 then
2195 Aggr_High := Duplicate_Subexpr (Aggr_High);
2196
2197 if Etype (Aggr_High) = Universal_Integer then
2198 Set_Analyzed (Aggr_High, False);
2199 end if;
2200 end if;
2201
2202 -- If the aggregate already has bounds attached to it, it means this is
2203 -- a positional aggregate created as an optimization by
2204 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2205 -- bounds.
2206
2207 if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2208 Aggr_Low := Low_Bound (Aggregate_Bounds (N));
2209 Aggr_High := High_Bound (Aggregate_Bounds (N));
2210 end if;
2211
2212 Set_Aggregate_Bounds
2213 (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2214
2215 -- The bounds may contain expressions that must be inserted upwards.
2216 -- Attach them fully to the tree. After analysis, remove side effects
2217 -- from upper bound, if still needed.
2218
2219 Set_Parent (Aggregate_Bounds (N), N);
2220 Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2221 Check_Unset_Reference (Aggregate_Bounds (N));
2222
2223 if not Others_Present and then Nb_Discrete_Choices = 0 then
2224 Set_High_Bound (Aggregate_Bounds (N),
2225 Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2226 end if;
2227
2228 return Success;
2229 end Resolve_Array_Aggregate;
2230
2231 ---------------------------------
2232 -- Resolve_Extension_Aggregate --
2233 ---------------------------------
2234
2235 -- There are two cases to consider:
2236
2237 -- a) If the ancestor part is a type mark, the components needed are the
2238 -- difference between the components of the expected type and the
2239 -- components of the given type mark.
2240
2241 -- b) If the ancestor part is an expression, it must be unambiguous, and
2242 -- once we have its type we can also compute the needed components as in
2243 -- the previous case. In both cases, if the ancestor type is not the
2244 -- immediate ancestor, we have to build this ancestor recursively.
2245
2246 -- In both cases discriminants of the ancestor type do not play a role in
2247 -- the resolution of the needed components, because inherited discriminants
2248 -- cannot be used in a type extension. As a result we can compute
2249 -- independently the list of components of the ancestor type and of the
2250 -- expected type.
2251
2252 procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
2253 A : constant Node_Id := Ancestor_Part (N);
2254 A_Type : Entity_Id;
2255 I : Interp_Index;
2256 It : Interp;
2257
2258 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
2259 -- If the type is limited, verify that the ancestor part is a legal
2260 -- expression (aggregate or function call, including 'Input)) that does
2261 -- not require a copy, as specified in 7.5(2).
2262
2263 function Valid_Ancestor_Type return Boolean;
2264 -- Verify that the type of the ancestor part is a non-private ancestor
2265 -- of the expected type, which must be a type extension.
2266
2267 ----------------------------
2268 -- Valid_Limited_Ancestor --
2269 ----------------------------
2270
2271 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
2272 begin
2273 if Is_Entity_Name (Anc)
2274 and then Is_Type (Entity (Anc))
2275 then
2276 return True;
2277
2278 elsif Nkind_In (Anc, N_Aggregate, N_Function_Call) then
2279 return True;
2280
2281 elsif Nkind (Anc) = N_Attribute_Reference
2282 and then Attribute_Name (Anc) = Name_Input
2283 then
2284 return True;
2285
2286 elsif Nkind (Anc) = N_Qualified_Expression then
2287 return Valid_Limited_Ancestor (Expression (Anc));
2288
2289 else
2290 return False;
2291 end if;
2292 end Valid_Limited_Ancestor;
2293
2294 -------------------------
2295 -- Valid_Ancestor_Type --
2296 -------------------------
2297
2298 function Valid_Ancestor_Type return Boolean is
2299 Imm_Type : Entity_Id;
2300
2301 begin
2302 Imm_Type := Base_Type (Typ);
2303 while Is_Derived_Type (Imm_Type) loop
2304 if Etype (Imm_Type) = Base_Type (A_Type) then
2305 return True;
2306
2307 -- The base type of the parent type may appear as a private
2308 -- extension if it is declared as such in a parent unit of the
2309 -- current one. For consistency of the subsequent analysis use
2310 -- the partial view for the ancestor part.
2311
2312 elsif Is_Private_Type (Etype (Imm_Type))
2313 and then Present (Full_View (Etype (Imm_Type)))
2314 and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
2315 then
2316 A_Type := Etype (Imm_Type);
2317 return True;
2318
2319 -- The parent type may be a private extension. The aggregate is
2320 -- legal if the type of the aggregate is an extension of it that
2321 -- is not a private extension.
2322
2323 elsif Is_Private_Type (A_Type)
2324 and then not Is_Private_Type (Imm_Type)
2325 and then Present (Full_View (A_Type))
2326 and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
2327 then
2328 return True;
2329
2330 else
2331 Imm_Type := Etype (Base_Type (Imm_Type));
2332 end if;
2333 end loop;
2334
2335 -- If previous loop did not find a proper ancestor, report error
2336
2337 Error_Msg_NE ("expect ancestor type of &", A, Typ);
2338 return False;
2339 end Valid_Ancestor_Type;
2340
2341 -- Start of processing for Resolve_Extension_Aggregate
2342
2343 begin
2344 -- Analyze the ancestor part and account for the case where it is a
2345 -- parameterless function call.
2346
2347 Analyze (A);
2348 Check_Parameterless_Call (A);
2349
2350 if not Is_Tagged_Type (Typ) then
2351 Error_Msg_N ("type of extension aggregate must be tagged", N);
2352 return;
2353
2354 elsif Is_Limited_Type (Typ) then
2355
2356 -- Ada 2005 (AI-287): Limited aggregates are allowed
2357
2358 if Ada_Version < Ada_05 then
2359 Error_Msg_N ("aggregate type cannot be limited", N);
2360 Explain_Limited_Type (Typ, N);
2361 return;
2362
2363 elsif Valid_Limited_Ancestor (A) then
2364 null;
2365
2366 else
2367 Error_Msg_N
2368 ("limited ancestor part must be aggregate or function call", A);
2369 end if;
2370
2371 elsif Is_Class_Wide_Type (Typ) then
2372 Error_Msg_N ("aggregate cannot be of a class-wide type", N);
2373 return;
2374 end if;
2375
2376 if Is_Entity_Name (A)
2377 and then Is_Type (Entity (A))
2378 then
2379 A_Type := Get_Full_View (Entity (A));
2380
2381 if Valid_Ancestor_Type then
2382 Set_Entity (A, A_Type);
2383 Set_Etype (A, A_Type);
2384
2385 Validate_Ancestor_Part (N);
2386 Resolve_Record_Aggregate (N, Typ);
2387 end if;
2388
2389 elsif Nkind (A) /= N_Aggregate then
2390 if Is_Overloaded (A) then
2391 A_Type := Any_Type;
2392
2393 Get_First_Interp (A, I, It);
2394 while Present (It.Typ) loop
2395 -- Only consider limited interpretations in the Ada 2005 case
2396
2397 if Is_Tagged_Type (It.Typ)
2398 and then (Ada_Version >= Ada_05
2399 or else not Is_Limited_Type (It.Typ))
2400 then
2401 if A_Type /= Any_Type then
2402 Error_Msg_N ("cannot resolve expression", A);
2403 return;
2404 else
2405 A_Type := It.Typ;
2406 end if;
2407 end if;
2408
2409 Get_Next_Interp (I, It);
2410 end loop;
2411
2412 if A_Type = Any_Type then
2413 if Ada_Version >= Ada_05 then
2414 Error_Msg_N ("ancestor part must be of a tagged type", A);
2415 else
2416 Error_Msg_N
2417 ("ancestor part must be of a nonlimited tagged type", A);
2418 end if;
2419
2420 return;
2421 end if;
2422
2423 else
2424 A_Type := Etype (A);
2425 end if;
2426
2427 if Valid_Ancestor_Type then
2428 Resolve (A, A_Type);
2429 Check_Unset_Reference (A);
2430 Check_Non_Static_Context (A);
2431
2432 -- The aggregate is illegal if the ancestor expression is a call
2433 -- to a function with a limited unconstrained result, unless the
2434 -- type of the aggregate is a null extension. This restriction
2435 -- was added in AI05-67 to simplify implementation.
2436
2437 if Nkind (A) = N_Function_Call
2438 and then Is_Limited_Type (A_Type)
2439 and then not Is_Null_Extension (Typ)
2440 and then not Is_Constrained (A_Type)
2441 then
2442 Error_Msg_N
2443 ("type of limited ancestor part must be constrained", A);
2444
2445 -- Reject the use of CPP constructors that leave objects partially
2446 -- initialized. For example:
2447
2448 -- type CPP_Root is tagged limited record ...
2449 -- pragma Import (CPP, CPP_Root);
2450
2451 -- type CPP_DT is new CPP_Root and Iface ...
2452 -- pragma Import (CPP, CPP_DT);
2453
2454 -- type Ada_DT is new CPP_DT with ...
2455
2456 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
2457
2458 -- Using the constructor of CPP_Root the slots of the dispatch
2459 -- table of CPP_DT cannot be set, and the secondary tag of
2460 -- CPP_DT is unknown.
2461
2462 elsif Nkind (A) = N_Function_Call
2463 and then Is_CPP_Constructor_Call (A)
2464 and then Enclosing_CPP_Parent (Typ) /= A_Type
2465 then
2466 Error_Msg_NE
2467 ("?must use 'C'P'P constructor for type &", A,
2468 Enclosing_CPP_Parent (Typ));
2469
2470 -- The following call is not needed if the previous warning
2471 -- is promoted to an error.
2472
2473 Resolve_Record_Aggregate (N, Typ);
2474
2475 elsif Is_Class_Wide_Type (Etype (A))
2476 and then Nkind (Original_Node (A)) = N_Function_Call
2477 then
2478 -- If the ancestor part is a dispatching call, it appears
2479 -- statically to be a legal ancestor, but it yields any member
2480 -- of the class, and it is not possible to determine whether
2481 -- it is an ancestor of the extension aggregate (much less
2482 -- which ancestor). It is not possible to determine the
2483 -- components of the extension part.
2484
2485 -- This check implements AI-306, which in fact was motivated by
2486 -- an AdaCore query to the ARG after this test was added.
2487
2488 Error_Msg_N ("ancestor part must be statically tagged", A);
2489 else
2490 Resolve_Record_Aggregate (N, Typ);
2491 end if;
2492 end if;
2493
2494 else
2495 Error_Msg_N ("no unique type for this aggregate", A);
2496 end if;
2497 end Resolve_Extension_Aggregate;
2498
2499 ------------------------------
2500 -- Resolve_Record_Aggregate --
2501 ------------------------------
2502
2503 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
2504 Assoc : Node_Id;
2505 -- N_Component_Association node belonging to the input aggregate N
2506
2507 Expr : Node_Id;
2508 Positional_Expr : Node_Id;
2509 Component : Entity_Id;
2510 Component_Elmt : Elmt_Id;
2511
2512 Components : constant Elist_Id := New_Elmt_List;
2513 -- Components is the list of the record components whose value must be
2514 -- provided in the aggregate. This list does include discriminants.
2515
2516 New_Assoc_List : constant List_Id := New_List;
2517 New_Assoc : Node_Id;
2518 -- New_Assoc_List is the newly built list of N_Component_Association
2519 -- nodes. New_Assoc is one such N_Component_Association node in it.
2520 -- Note that while Assoc and New_Assoc contain the same kind of nodes,
2521 -- they are used to iterate over two different N_Component_Association
2522 -- lists.
2523
2524 Others_Etype : Entity_Id := Empty;
2525 -- This variable is used to save the Etype of the last record component
2526 -- that takes its value from the others choice. Its purpose is:
2527 --
2528 -- (a) make sure the others choice is useful
2529 --
2530 -- (b) make sure the type of all the components whose value is
2531 -- subsumed by the others choice are the same.
2532 --
2533 -- This variable is updated as a side effect of function Get_Value.
2534
2535 Is_Box_Present : Boolean := False;
2536 Others_Box : Boolean := False;
2537 -- Ada 2005 (AI-287): Variables used in case of default initialization
2538 -- to provide a functionality similar to Others_Etype. Box_Present
2539 -- indicates that the component takes its default initialization;
2540 -- Others_Box indicates that at least one component takes its default
2541 -- initialization. Similar to Others_Etype, they are also updated as a
2542 -- side effect of function Get_Value.
2543
2544 procedure Add_Association
2545 (Component : Entity_Id;
2546 Expr : Node_Id;
2547 Assoc_List : List_Id;
2548 Is_Box_Present : Boolean := False);
2549 -- Builds a new N_Component_Association node which associates Component
2550 -- to expression Expr and adds it to the association list being built,
2551 -- either New_Assoc_List, or the association being built for an inner
2552 -- aggregate.
2553
2554 function Discr_Present (Discr : Entity_Id) return Boolean;
2555 -- If aggregate N is a regular aggregate this routine will return True.
2556 -- Otherwise, if N is an extension aggregate, Discr is a discriminant
2557 -- whose value may already have been specified by N's ancestor part.
2558 -- This routine checks whether this is indeed the case and if so returns
2559 -- False, signaling that no value for Discr should appear in N's
2560 -- aggregate part. Also, in this case, the routine appends to
2561 -- New_Assoc_List the discriminant value specified in the ancestor part.
2562 --
2563 -- If the aggregate is in a context with expansion delayed, it will be
2564 -- reanalyzed. The inherited discriminant values must not be reinserted
2565 -- in the component list to prevent spurious errors, but they must be
2566 -- present on first analysis to build the proper subtype indications.
2567 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
2568
2569 function Get_Value
2570 (Compon : Node_Id;
2571 From : List_Id;
2572 Consider_Others_Choice : Boolean := False)
2573 return Node_Id;
2574 -- Given a record component stored in parameter Compon, this function
2575 -- returns its value as it appears in the list From, which is a list
2576 -- of N_Component_Association nodes.
2577 --
2578 -- If no component association has a choice for the searched component,
2579 -- the value provided by the others choice is returned, if there is one,
2580 -- and Consider_Others_Choice is set to true. Otherwise Empty is
2581 -- returned. If there is more than one component association giving a
2582 -- value for the searched record component, an error message is emitted
2583 -- and the first found value is returned.
2584 --
2585 -- If Consider_Others_Choice is set and the returned expression comes
2586 -- from the others choice, then Others_Etype is set as a side effect.
2587 -- An error message is emitted if the components taking their value from
2588 -- the others choice do not have same type.
2589
2590 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id);
2591 -- Analyzes and resolves expression Expr against the Etype of the
2592 -- Component. This routine also applies all appropriate checks to Expr.
2593 -- It finally saves a Expr in the newly created association list that
2594 -- will be attached to the final record aggregate. Note that if the
2595 -- Parent pointer of Expr is not set then Expr was produced with a
2596 -- New_Copy_Tree or some such.
2597
2598 ---------------------
2599 -- Add_Association --
2600 ---------------------
2601
2602 procedure Add_Association
2603 (Component : Entity_Id;
2604 Expr : Node_Id;
2605 Assoc_List : List_Id;
2606 Is_Box_Present : Boolean := False)
2607 is
2608 Choice_List : constant List_Id := New_List;
2609 New_Assoc : Node_Id;
2610
2611 begin
2612 Append (New_Occurrence_Of (Component, Sloc (Expr)), Choice_List);
2613 New_Assoc :=
2614 Make_Component_Association (Sloc (Expr),
2615 Choices => Choice_List,
2616 Expression => Expr,
2617 Box_Present => Is_Box_Present);
2618 Append (New_Assoc, Assoc_List);
2619 end Add_Association;
2620
2621 -------------------
2622 -- Discr_Present --
2623 -------------------
2624
2625 function Discr_Present (Discr : Entity_Id) return Boolean is
2626 Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
2627
2628 Loc : Source_Ptr;
2629
2630 Ancestor : Node_Id;
2631 Comp_Assoc : Node_Id;
2632 Discr_Expr : Node_Id;
2633
2634 Ancestor_Typ : Entity_Id;
2635 Orig_Discr : Entity_Id;
2636 D : Entity_Id;
2637 D_Val : Elmt_Id := No_Elmt; -- stop junk warning
2638
2639 Ancestor_Is_Subtyp : Boolean;
2640
2641 begin
2642 if Regular_Aggr then
2643 return True;
2644 end if;
2645
2646 -- Check whether inherited discriminant values have already been
2647 -- inserted in the aggregate. This will be the case if we are
2648 -- re-analyzing an aggregate whose expansion was delayed.
2649
2650 if Present (Component_Associations (N)) then
2651 Comp_Assoc := First (Component_Associations (N));
2652 while Present (Comp_Assoc) loop
2653 if Inherited_Discriminant (Comp_Assoc) then
2654 return True;
2655 end if;
2656
2657 Next (Comp_Assoc);
2658 end loop;
2659 end if;
2660
2661 Ancestor := Ancestor_Part (N);
2662 Ancestor_Typ := Etype (Ancestor);
2663 Loc := Sloc (Ancestor);
2664
2665 -- For a private type with unknown discriminants, use the underlying
2666 -- record view if it is available.
2667
2668 if Has_Unknown_Discriminants (Ancestor_Typ)
2669 and then Present (Full_View (Ancestor_Typ))
2670 and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
2671 then
2672 Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
2673 end if;
2674
2675 Ancestor_Is_Subtyp :=
2676 Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
2677
2678 -- If the ancestor part has no discriminants clearly N's aggregate
2679 -- part must provide a value for Discr.
2680
2681 if not Has_Discriminants (Ancestor_Typ) then
2682 return True;
2683
2684 -- If the ancestor part is an unconstrained subtype mark then the
2685 -- Discr must be present in N's aggregate part.
2686
2687 elsif Ancestor_Is_Subtyp
2688 and then not Is_Constrained (Entity (Ancestor))
2689 then
2690 return True;
2691 end if;
2692
2693 -- Now look to see if Discr was specified in the ancestor part
2694
2695 if Ancestor_Is_Subtyp then
2696 D_Val := First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
2697 end if;
2698
2699 Orig_Discr := Original_Record_Component (Discr);
2700
2701 D := First_Discriminant (Ancestor_Typ);
2702 while Present (D) loop
2703
2704 -- If Ancestor has already specified Disc value then insert its
2705 -- value in the final aggregate.
2706
2707 if Original_Record_Component (D) = Orig_Discr then
2708 if Ancestor_Is_Subtyp then
2709 Discr_Expr := New_Copy_Tree (Node (D_Val));
2710 else
2711 Discr_Expr :=
2712 Make_Selected_Component (Loc,
2713 Prefix => Duplicate_Subexpr (Ancestor),
2714 Selector_Name => New_Occurrence_Of (Discr, Loc));
2715 end if;
2716
2717 Resolve_Aggr_Expr (Discr_Expr, Discr);
2718 Set_Inherited_Discriminant (Last (New_Assoc_List));
2719 return False;
2720 end if;
2721
2722 Next_Discriminant (D);
2723
2724 if Ancestor_Is_Subtyp then
2725 Next_Elmt (D_Val);
2726 end if;
2727 end loop;
2728
2729 return True;
2730 end Discr_Present;
2731
2732 ---------------
2733 -- Get_Value --
2734 ---------------
2735
2736 function Get_Value
2737 (Compon : Node_Id;
2738 From : List_Id;
2739 Consider_Others_Choice : Boolean := False)
2740 return Node_Id
2741 is
2742 Assoc : Node_Id;
2743 Expr : Node_Id := Empty;
2744 Selector_Name : Node_Id;
2745
2746 begin
2747 Is_Box_Present := False;
2748
2749 if Present (From) then
2750 Assoc := First (From);
2751 else
2752 return Empty;
2753 end if;
2754
2755 while Present (Assoc) loop
2756 Selector_Name := First (Choices (Assoc));
2757 while Present (Selector_Name) loop
2758 if Nkind (Selector_Name) = N_Others_Choice then
2759 if Consider_Others_Choice and then No (Expr) then
2760
2761 -- We need to duplicate the expression for each
2762 -- successive component covered by the others choice.
2763 -- This is redundant if the others_choice covers only
2764 -- one component (small optimization possible???), but
2765 -- indispensable otherwise, because each one must be
2766 -- expanded individually to preserve side-effects.
2767
2768 -- Ada 2005 (AI-287): In case of default initialization
2769 -- of components, we duplicate the corresponding default
2770 -- expression (from the record type declaration). The
2771 -- copy must carry the sloc of the association (not the
2772 -- original expression) to prevent spurious elaboration
2773 -- checks when the default includes function calls.
2774
2775 if Box_Present (Assoc) then
2776 Others_Box := True;
2777 Is_Box_Present := True;
2778
2779 if Expander_Active then
2780 return
2781 New_Copy_Tree
2782 (Expression (Parent (Compon)),
2783 New_Sloc => Sloc (Assoc));
2784 else
2785 return Expression (Parent (Compon));
2786 end if;
2787
2788 else
2789 if Present (Others_Etype) and then
2790 Base_Type (Others_Etype) /= Base_Type (Etype
2791 (Compon))
2792 then
2793 Error_Msg_N ("components in OTHERS choice must " &
2794 "have same type", Selector_Name);
2795 end if;
2796
2797 Others_Etype := Etype (Compon);
2798
2799 if Expander_Active then
2800 return New_Copy_Tree (Expression (Assoc));
2801 else
2802 return Expression (Assoc);
2803 end if;
2804 end if;
2805 end if;
2806
2807 elsif Chars (Compon) = Chars (Selector_Name) then
2808 if No (Expr) then
2809
2810 -- Ada 2005 (AI-231)
2811
2812 if Ada_Version >= Ada_05
2813 and then Known_Null (Expression (Assoc))
2814 then
2815 Check_Can_Never_Be_Null (Compon, Expression (Assoc));
2816 end if;
2817
2818 -- We need to duplicate the expression when several
2819 -- components are grouped together with a "|" choice.
2820 -- For instance "filed1 | filed2 => Expr"
2821
2822 -- Ada 2005 (AI-287)
2823
2824 if Box_Present (Assoc) then
2825 Is_Box_Present := True;
2826
2827 -- Duplicate the default expression of the component
2828 -- from the record type declaration, so a new copy
2829 -- can be attached to the association.
2830
2831 -- Note that we always copy the default expression,
2832 -- even when the association has a single choice, in
2833 -- order to create a proper association for the
2834 -- expanded aggregate.
2835
2836 Expr := New_Copy_Tree (Expression (Parent (Compon)));
2837
2838 else
2839 if Present (Next (Selector_Name)) then
2840 Expr := New_Copy_Tree (Expression (Assoc));
2841 else
2842 Expr := Expression (Assoc);
2843 end if;
2844 end if;
2845
2846 Generate_Reference (Compon, Selector_Name, 'm');
2847
2848 else
2849 Error_Msg_NE
2850 ("more than one value supplied for &",
2851 Selector_Name, Compon);
2852
2853 end if;
2854 end if;
2855
2856 Next (Selector_Name);
2857 end loop;
2858
2859 Next (Assoc);
2860 end loop;
2861
2862 return Expr;
2863 end Get_Value;
2864
2865 -----------------------
2866 -- Resolve_Aggr_Expr --
2867 -----------------------
2868
2869 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id) is
2870 New_C : Entity_Id := Component;
2871 Expr_Type : Entity_Id := Empty;
2872
2873 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
2874 -- If the expression is an aggregate (possibly qualified) then its
2875 -- expansion is delayed until the enclosing aggregate is expanded
2876 -- into assignments. In that case, do not generate checks on the
2877 -- expression, because they will be generated later, and will other-
2878 -- wise force a copy (to remove side-effects) that would leave a
2879 -- dynamic-sized aggregate in the code, something that gigi cannot
2880 -- handle.
2881
2882 Relocate : Boolean;
2883 -- Set to True if the resolved Expr node needs to be relocated
2884 -- when attached to the newly created association list. This node
2885 -- need not be relocated if its parent pointer is not set.
2886 -- In fact in this case Expr is the output of a New_Copy_Tree call.
2887 -- if Relocate is True then we have analyzed the expression node
2888 -- in the original aggregate and hence it needs to be relocated
2889 -- when moved over the new association list.
2890
2891 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
2892 Kind : constant Node_Kind := Nkind (Expr);
2893 begin
2894 return (Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate)
2895 and then Present (Etype (Expr))
2896 and then Is_Record_Type (Etype (Expr))
2897 and then Expansion_Delayed (Expr))
2898 or else (Kind = N_Qualified_Expression
2899 and then Has_Expansion_Delayed (Expression (Expr)));
2900 end Has_Expansion_Delayed;
2901
2902 -- Start of processing for Resolve_Aggr_Expr
2903
2904 begin
2905 -- If the type of the component is elementary or the type of the
2906 -- aggregate does not contain discriminants, use the type of the
2907 -- component to resolve Expr.
2908
2909 if Is_Elementary_Type (Etype (Component))
2910 or else not Has_Discriminants (Etype (N))
2911 then
2912 Expr_Type := Etype (Component);
2913
2914 -- Otherwise we have to pick up the new type of the component from
2915 -- the new constrained subtype of the aggregate. In fact components
2916 -- which are of a composite type might be constrained by a
2917 -- discriminant, and we want to resolve Expr against the subtype were
2918 -- all discriminant occurrences are replaced with their actual value.
2919
2920 else
2921 New_C := First_Component (Etype (N));
2922 while Present (New_C) loop
2923 if Chars (New_C) = Chars (Component) then
2924 Expr_Type := Etype (New_C);
2925 exit;
2926 end if;
2927
2928 Next_Component (New_C);
2929 end loop;
2930
2931 pragma Assert (Present (Expr_Type));
2932
2933 -- For each range in an array type where a discriminant has been
2934 -- replaced with the constraint, check that this range is within
2935 -- the range of the base type. This checks is done in the init
2936 -- proc for regular objects, but has to be done here for
2937 -- aggregates since no init proc is called for them.
2938
2939 if Is_Array_Type (Expr_Type) then
2940 declare
2941 Index : Node_Id;
2942 -- Range of the current constrained index in the array
2943
2944 Orig_Index : Node_Id := First_Index (Etype (Component));
2945 -- Range corresponding to the range Index above in the
2946 -- original unconstrained record type. The bounds of this
2947 -- range may be governed by discriminants.
2948
2949 Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
2950 -- Range corresponding to the range Index above for the
2951 -- unconstrained array type. This range is needed to apply
2952 -- range checks.
2953
2954 begin
2955 Index := First_Index (Expr_Type);
2956 while Present (Index) loop
2957 if Depends_On_Discriminant (Orig_Index) then
2958 Apply_Range_Check (Index, Etype (Unconstr_Index));
2959 end if;
2960
2961 Next_Index (Index);
2962 Next_Index (Orig_Index);
2963 Next_Index (Unconstr_Index);
2964 end loop;
2965 end;
2966 end if;
2967 end if;
2968
2969 -- If the Parent pointer of Expr is not set, Expr is an expression
2970 -- duplicated by New_Tree_Copy (this happens for record aggregates
2971 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
2972 -- Such a duplicated expression must be attached to the tree
2973 -- before analysis and resolution to enforce the rule that a tree
2974 -- fragment should never be analyzed or resolved unless it is
2975 -- attached to the current compilation unit.
2976
2977 if No (Parent (Expr)) then
2978 Set_Parent (Expr, N);
2979 Relocate := False;
2980 else
2981 Relocate := True;
2982 end if;
2983
2984 Analyze_And_Resolve (Expr, Expr_Type);
2985 Check_Expr_OK_In_Limited_Aggregate (Expr);
2986 Check_Non_Static_Context (Expr);
2987 Check_Unset_Reference (Expr);
2988
2989 -- Check wrong use of class-wide types
2990
2991 if Is_Class_Wide_Type (Etype (Expr)) then
2992 Error_Msg_N ("dynamically tagged expression not allowed", Expr);
2993 end if;
2994
2995 if not Has_Expansion_Delayed (Expr) then
2996 Aggregate_Constraint_Checks (Expr, Expr_Type);
2997 end if;
2998
2999 if Raises_Constraint_Error (Expr) then
3000 Set_Raises_Constraint_Error (N);
3001 end if;
3002
3003 -- If the expression has been marked as requiring a range check,
3004 -- then generate it here.
3005
3006 if Do_Range_Check (Expr) then
3007 Set_Do_Range_Check (Expr, False);
3008 Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
3009 end if;
3010
3011 if Relocate then
3012 Add_Association (New_C, Relocate_Node (Expr), New_Assoc_List);
3013 else
3014 Add_Association (New_C, Expr, New_Assoc_List);
3015 end if;
3016 end Resolve_Aggr_Expr;
3017
3018 -- Start of processing for Resolve_Record_Aggregate
3019
3020 begin
3021 -- We may end up calling Duplicate_Subexpr on expressions that are
3022 -- attached to New_Assoc_List. For this reason we need to attach it
3023 -- to the tree by setting its parent pointer to N. This parent point
3024 -- will change in STEP 8 below.
3025
3026 Set_Parent (New_Assoc_List, N);
3027
3028 -- STEP 1: abstract type and null record verification
3029
3030 if Is_Abstract_Type (Typ) then
3031 Error_Msg_N ("type of aggregate cannot be abstract", N);
3032 end if;
3033
3034 if No (First_Entity (Typ)) and then Null_Record_Present (N) then
3035 Set_Etype (N, Typ);
3036 return;
3037
3038 elsif Present (First_Entity (Typ))
3039 and then Null_Record_Present (N)
3040 and then not Is_Tagged_Type (Typ)
3041 then
3042 Error_Msg_N ("record aggregate cannot be null", N);
3043 return;
3044
3045 -- If the type has no components, then the aggregate should either
3046 -- have "null record", or in Ada 2005 it could instead have a single
3047 -- component association given by "others => <>". For Ada 95 we flag
3048 -- an error at this point, but for Ada 2005 we proceed with checking
3049 -- the associations below, which will catch the case where it's not
3050 -- an aggregate with "others => <>". Note that the legality of a <>
3051 -- aggregate for a null record type was established by AI05-016.
3052
3053 elsif No (First_Entity (Typ))
3054 and then Ada_Version < Ada_05
3055 then
3056 Error_Msg_N ("record aggregate must be null", N);
3057 return;
3058 end if;
3059
3060 -- STEP 2: Verify aggregate structure
3061
3062 Step_2 : declare
3063 Selector_Name : Node_Id;
3064 Bad_Aggregate : Boolean := False;
3065
3066 begin
3067 if Present (Component_Associations (N)) then
3068 Assoc := First (Component_Associations (N));
3069 else
3070 Assoc := Empty;
3071 end if;
3072
3073 while Present (Assoc) loop
3074 Selector_Name := First (Choices (Assoc));
3075 while Present (Selector_Name) loop
3076 if Nkind (Selector_Name) = N_Identifier then
3077 null;
3078
3079 elsif Nkind (Selector_Name) = N_Others_Choice then
3080 if Selector_Name /= First (Choices (Assoc))
3081 or else Present (Next (Selector_Name))
3082 then
3083 Error_Msg_N
3084 ("OTHERS must appear alone in a choice list",
3085 Selector_Name);
3086 return;
3087
3088 elsif Present (Next (Assoc)) then
3089 Error_Msg_N
3090 ("OTHERS must appear last in an aggregate",
3091 Selector_Name);
3092 return;
3093
3094 -- (Ada2005): If this is an association with a box,
3095 -- indicate that the association need not represent
3096 -- any component.
3097
3098 elsif Box_Present (Assoc) then
3099 Others_Box := True;
3100 end if;
3101
3102 else
3103 Error_Msg_N
3104 ("selector name should be identifier or OTHERS",
3105 Selector_Name);
3106 Bad_Aggregate := True;
3107 end if;
3108
3109 Next (Selector_Name);
3110 end loop;
3111
3112 Next (Assoc);
3113 end loop;
3114
3115 if Bad_Aggregate then
3116 return;
3117 end if;
3118 end Step_2;
3119
3120 -- STEP 3: Find discriminant Values
3121
3122 Step_3 : declare
3123 Discrim : Entity_Id;
3124 Missing_Discriminants : Boolean := False;
3125
3126 begin
3127 if Present (Expressions (N)) then
3128 Positional_Expr := First (Expressions (N));
3129 else
3130 Positional_Expr := Empty;
3131 end if;
3132
3133 if Has_Unknown_Discriminants (Typ)
3134 and then Present (Underlying_Record_View (Typ))
3135 then
3136 Discrim := First_Discriminant (Underlying_Record_View (Typ));
3137 elsif Has_Discriminants (Typ) then
3138 Discrim := First_Discriminant (Typ);
3139 else
3140 Discrim := Empty;
3141 end if;
3142
3143 -- First find the discriminant values in the positional components
3144
3145 while Present (Discrim) and then Present (Positional_Expr) loop
3146 if Discr_Present (Discrim) then
3147 Resolve_Aggr_Expr (Positional_Expr, Discrim);
3148
3149 -- Ada 2005 (AI-231)
3150
3151 if Ada_Version >= Ada_05
3152 and then Known_Null (Positional_Expr)
3153 then
3154 Check_Can_Never_Be_Null (Discrim, Positional_Expr);
3155 end if;
3156
3157 Next (Positional_Expr);
3158 end if;
3159
3160 if Present (Get_Value (Discrim, Component_Associations (N))) then
3161 Error_Msg_NE
3162 ("more than one value supplied for discriminant&",
3163 N, Discrim);
3164 end if;
3165
3166 Next_Discriminant (Discrim);
3167 end loop;
3168
3169 -- Find remaining discriminant values, if any, among named components
3170
3171 while Present (Discrim) loop
3172 Expr := Get_Value (Discrim, Component_Associations (N), True);
3173
3174 if not Discr_Present (Discrim) then
3175 if Present (Expr) then
3176 Error_Msg_NE
3177 ("more than one value supplied for discriminant&",
3178 N, Discrim);
3179 end if;
3180
3181 elsif No (Expr) then
3182 Error_Msg_NE
3183 ("no value supplied for discriminant &", N, Discrim);
3184 Missing_Discriminants := True;
3185
3186 else
3187 Resolve_Aggr_Expr (Expr, Discrim);
3188 end if;
3189
3190 Next_Discriminant (Discrim);
3191 end loop;
3192
3193 if Missing_Discriminants then
3194 return;
3195 end if;
3196
3197 -- At this point and until the beginning of STEP 6, New_Assoc_List
3198 -- contains only the discriminants and their values.
3199
3200 end Step_3;
3201
3202 -- STEP 4: Set the Etype of the record aggregate
3203
3204 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
3205 -- routine should really be exported in sem_util or some such and used
3206 -- in sem_ch3 and here rather than have a copy of the code which is a
3207 -- maintenance nightmare.
3208
3209 -- ??? Performance WARNING. The current implementation creates a new
3210 -- itype for all aggregates whose base type is discriminated.
3211 -- This means that for record aggregates nested inside an array
3212 -- aggregate we will create a new itype for each record aggregate
3213 -- if the array component type has discriminants. For large aggregates
3214 -- this may be a problem. What should be done in this case is
3215 -- to reuse itypes as much as possible.
3216
3217 if Has_Discriminants (Typ)
3218 or else (Has_Unknown_Discriminants (Typ)
3219 and then Present (Underlying_Record_View (Typ)))
3220 then
3221 Build_Constrained_Itype : declare
3222 Loc : constant Source_Ptr := Sloc (N);
3223 Indic : Node_Id;
3224 Subtyp_Decl : Node_Id;
3225 Def_Id : Entity_Id;
3226
3227 C : constant List_Id := New_List;
3228
3229 begin
3230 New_Assoc := First (New_Assoc_List);
3231 while Present (New_Assoc) loop
3232 Append (Duplicate_Subexpr (Expression (New_Assoc)), To => C);
3233 Next (New_Assoc);
3234 end loop;
3235
3236 if Has_Unknown_Discriminants (Typ)
3237 and then Present (Underlying_Record_View (Typ))
3238 then
3239 Indic :=
3240 Make_Subtype_Indication (Loc,
3241 Subtype_Mark =>
3242 New_Occurrence_Of (Underlying_Record_View (Typ), Loc),
3243 Constraint =>
3244 Make_Index_Or_Discriminant_Constraint (Loc, C));
3245 else
3246 Indic :=
3247 Make_Subtype_Indication (Loc,
3248 Subtype_Mark =>
3249 New_Occurrence_Of (Base_Type (Typ), Loc),
3250 Constraint =>
3251 Make_Index_Or_Discriminant_Constraint (Loc, C));
3252 end if;
3253
3254 Def_Id := Create_Itype (Ekind (Typ), N);
3255
3256 Subtyp_Decl :=
3257 Make_Subtype_Declaration (Loc,
3258 Defining_Identifier => Def_Id,
3259 Subtype_Indication => Indic);
3260 Set_Parent (Subtyp_Decl, Parent (N));
3261
3262 -- Itypes must be analyzed with checks off (see itypes.ads)
3263
3264 Analyze (Subtyp_Decl, Suppress => All_Checks);
3265
3266 Set_Etype (N, Def_Id);
3267 Check_Static_Discriminated_Subtype
3268 (Def_Id, Expression (First (New_Assoc_List)));
3269 end Build_Constrained_Itype;
3270
3271 else
3272 Set_Etype (N, Typ);
3273 end if;
3274
3275 -- STEP 5: Get remaining components according to discriminant values
3276
3277 Step_5 : declare
3278 Record_Def : Node_Id;
3279 Parent_Typ : Entity_Id;
3280 Root_Typ : Entity_Id;
3281 Parent_Typ_List : Elist_Id;
3282 Parent_Elmt : Elmt_Id;
3283 Errors_Found : Boolean := False;
3284 Dnode : Node_Id;
3285
3286 begin
3287 if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
3288 Parent_Typ_List := New_Elmt_List;
3289
3290 -- If this is an extension aggregate, the component list must
3291 -- include all components that are not in the given ancestor type.
3292 -- Otherwise, the component list must include components of all
3293 -- ancestors, starting with the root.
3294
3295 if Nkind (N) = N_Extension_Aggregate then
3296 Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
3297
3298 else
3299 Root_Typ := Root_Type (Typ);
3300
3301 if Nkind (Parent (Base_Type (Root_Typ))) =
3302 N_Private_Type_Declaration
3303 then
3304 Error_Msg_NE
3305 ("type of aggregate has private ancestor&!",
3306 N, Root_Typ);
3307 Error_Msg_N ("must use extension aggregate!", N);
3308 return;
3309 end if;
3310
3311 Dnode := Declaration_Node (Base_Type (Root_Typ));
3312
3313 -- If we don't get a full declaration, then we have some error
3314 -- which will get signalled later so skip this part. Otherwise
3315 -- gather components of root that apply to the aggregate type.
3316 -- We use the base type in case there is an applicable stored
3317 -- constraint that renames the discriminants of the root.
3318
3319 if Nkind (Dnode) = N_Full_Type_Declaration then
3320 Record_Def := Type_Definition (Dnode);
3321 Gather_Components (Base_Type (Typ),
3322 Component_List (Record_Def),
3323 Governed_By => New_Assoc_List,
3324 Into => Components,
3325 Report_Errors => Errors_Found);
3326 end if;
3327 end if;
3328
3329 Parent_Typ := Base_Type (Typ);
3330 while Parent_Typ /= Root_Typ loop
3331 Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
3332 Parent_Typ := Etype (Parent_Typ);
3333
3334 if Nkind (Parent (Base_Type (Parent_Typ))) =
3335 N_Private_Type_Declaration
3336 or else Nkind (Parent (Base_Type (Parent_Typ))) =
3337 N_Private_Extension_Declaration
3338 then
3339 if Nkind (N) /= N_Extension_Aggregate then
3340 Error_Msg_NE
3341 ("type of aggregate has private ancestor&!",
3342 N, Parent_Typ);
3343 Error_Msg_N ("must use extension aggregate!", N);
3344 return;
3345
3346 elsif Parent_Typ /= Root_Typ then
3347 Error_Msg_NE
3348 ("ancestor part of aggregate must be private type&",
3349 Ancestor_Part (N), Parent_Typ);
3350 return;
3351 end if;
3352
3353 -- The current view of ancestor part may be a private type,
3354 -- while the context type is always non-private.
3355
3356 elsif Is_Private_Type (Root_Typ)
3357 and then Present (Full_View (Root_Typ))
3358 and then Nkind (N) = N_Extension_Aggregate
3359 then
3360 exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
3361 end if;
3362 end loop;
3363
3364 -- Now collect components from all other ancestors, beginning
3365 -- with the current type. If the type has unknown discriminants
3366 -- use the component list of the Underlying_Record_View, which
3367 -- needs to be used for the subsequent expansion of the aggregate
3368 -- into assignments.
3369
3370 Parent_Elmt := First_Elmt (Parent_Typ_List);
3371 while Present (Parent_Elmt) loop
3372 Parent_Typ := Node (Parent_Elmt);
3373
3374 if Has_Unknown_Discriminants (Parent_Typ)
3375 and then Present (Underlying_Record_View (Typ))
3376 then
3377 Parent_Typ := Underlying_Record_View (Parent_Typ);
3378 end if;
3379
3380 Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
3381 Gather_Components (Empty,
3382 Component_List (Record_Extension_Part (Record_Def)),
3383 Governed_By => New_Assoc_List,
3384 Into => Components,
3385 Report_Errors => Errors_Found);
3386
3387 Next_Elmt (Parent_Elmt);
3388 end loop;
3389
3390 else
3391 Record_Def := Type_Definition (Parent (Base_Type (Typ)));
3392
3393 if Null_Present (Record_Def) then
3394 null;
3395
3396 elsif not Has_Unknown_Discriminants (Typ) then
3397 Gather_Components (Base_Type (Typ),
3398 Component_List (Record_Def),
3399 Governed_By => New_Assoc_List,
3400 Into => Components,
3401 Report_Errors => Errors_Found);
3402
3403 else
3404 Gather_Components
3405 (Base_Type (Underlying_Record_View (Typ)),
3406 Component_List (Record_Def),
3407 Governed_By => New_Assoc_List,
3408 Into => Components,
3409 Report_Errors => Errors_Found);
3410 end if;
3411 end if;
3412
3413 if Errors_Found then
3414 return;
3415 end if;
3416 end Step_5;
3417
3418 -- STEP 6: Find component Values
3419
3420 Component := Empty;
3421 Component_Elmt := First_Elmt (Components);
3422
3423 -- First scan the remaining positional associations in the aggregate.
3424 -- Remember that at this point Positional_Expr contains the current
3425 -- positional association if any is left after looking for discriminant
3426 -- values in step 3.
3427
3428 while Present (Positional_Expr) and then Present (Component_Elmt) loop
3429 Component := Node (Component_Elmt);
3430 Resolve_Aggr_Expr (Positional_Expr, Component);
3431
3432 -- Ada 2005 (AI-231)
3433
3434 if Ada_Version >= Ada_05
3435 and then Known_Null (Positional_Expr)
3436 then
3437 Check_Can_Never_Be_Null (Component, Positional_Expr);
3438 end if;
3439
3440 if Present (Get_Value (Component, Component_Associations (N))) then
3441 Error_Msg_NE
3442 ("more than one value supplied for Component &", N, Component);
3443 end if;
3444
3445 Next (Positional_Expr);
3446 Next_Elmt (Component_Elmt);
3447 end loop;
3448
3449 if Present (Positional_Expr) then
3450 Error_Msg_N
3451 ("too many components for record aggregate", Positional_Expr);
3452 end if;
3453
3454 -- Now scan for the named arguments of the aggregate
3455
3456 while Present (Component_Elmt) loop
3457 Component := Node (Component_Elmt);
3458 Expr := Get_Value (Component, Component_Associations (N), True);
3459
3460 -- Note: The previous call to Get_Value sets the value of the
3461 -- variable Is_Box_Present.
3462
3463 -- Ada 2005 (AI-287): Handle components with default initialization.
3464 -- Note: This feature was originally added to Ada 2005 for limited
3465 -- but it was finally allowed with any type.
3466
3467 if Is_Box_Present then
3468 Check_Box_Component : declare
3469 Ctyp : constant Entity_Id := Etype (Component);
3470
3471 begin
3472 -- If there is a default expression for the aggregate, copy
3473 -- it into a new association.
3474
3475 -- If the component has an initialization procedure (IP) we
3476 -- pass the component to the expander, which will generate
3477 -- the call to such IP.
3478
3479 -- If the component has discriminants, their values must
3480 -- be taken from their subtype. This is indispensable for
3481 -- constraints that are given by the current instance of an
3482 -- enclosing type, to allow the expansion of the aggregate
3483 -- to replace the reference to the current instance by the
3484 -- target object of the aggregate.
3485
3486 if Present (Parent (Component))
3487 and then
3488 Nkind (Parent (Component)) = N_Component_Declaration
3489 and then Present (Expression (Parent (Component)))
3490 then
3491 Expr :=
3492 New_Copy_Tree (Expression (Parent (Component)),
3493 New_Sloc => Sloc (N));
3494
3495 Add_Association
3496 (Component => Component,
3497 Expr => Expr,
3498 Assoc_List => New_Assoc_List);
3499 Set_Has_Self_Reference (N);
3500
3501 -- A box-defaulted access component gets the value null. Also
3502 -- included are components of private types whose underlying
3503 -- type is an access type. In either case set the type of the
3504 -- literal, for subsequent use in semantic checks.
3505
3506 elsif Present (Underlying_Type (Ctyp))
3507 and then Is_Access_Type (Underlying_Type (Ctyp))
3508 then
3509 if not Is_Private_Type (Ctyp) then
3510 Expr := Make_Null (Sloc (N));
3511 Set_Etype (Expr, Ctyp);
3512 Add_Association
3513 (Component => Component,
3514 Expr => Expr,
3515 Assoc_List => New_Assoc_List);
3516
3517 -- If the component's type is private with an access type as
3518 -- its underlying type then we have to create an unchecked
3519 -- conversion to satisfy type checking.
3520
3521 else
3522 declare
3523 Qual_Null : constant Node_Id :=
3524 Make_Qualified_Expression (Sloc (N),
3525 Subtype_Mark =>
3526 New_Occurrence_Of
3527 (Underlying_Type (Ctyp), Sloc (N)),
3528 Expression => Make_Null (Sloc (N)));
3529
3530 Convert_Null : constant Node_Id :=
3531 Unchecked_Convert_To
3532 (Ctyp, Qual_Null);
3533
3534 begin
3535 Analyze_And_Resolve (Convert_Null, Ctyp);
3536 Add_Association
3537 (Component => Component,
3538 Expr => Convert_Null,
3539 Assoc_List => New_Assoc_List);
3540 end;
3541 end if;
3542
3543 elsif Has_Non_Null_Base_Init_Proc (Ctyp)
3544 or else not Expander_Active
3545 then
3546 if Is_Record_Type (Ctyp)
3547 and then Has_Discriminants (Ctyp)
3548 and then not Is_Private_Type (Ctyp)
3549 then
3550 -- We build a partially initialized aggregate with the
3551 -- values of the discriminants and box initialization
3552 -- for the rest, if other components are present.
3553 -- The type of the aggregate is the known subtype of
3554 -- the component. The capture of discriminants must
3555 -- be recursive because subcomponents may be contrained
3556 -- (transitively) by discriminants of enclosing types.
3557 -- For a private type with discriminants, a call to the
3558 -- initialization procedure will be generated, and no
3559 -- subaggregate is needed.
3560
3561 Capture_Discriminants : declare
3562 Loc : constant Source_Ptr := Sloc (N);
3563 Expr : Node_Id;
3564
3565 procedure Add_Discriminant_Values
3566 (New_Aggr : Node_Id;
3567 Assoc_List : List_Id);
3568 -- The constraint to a component may be given by a
3569 -- discriminant of the enclosing type, in which case
3570 -- we have to retrieve its value, which is part of the
3571 -- enclosing aggregate. Assoc_List provides the
3572 -- discriminant associations of the current type or
3573 -- of some enclosing record.
3574
3575 procedure Propagate_Discriminants
3576 (Aggr : Node_Id;
3577 Assoc_List : List_Id);
3578 -- Nested components may themselves be discriminated
3579 -- types constrained by outer discriminants, whose
3580 -- values must be captured before the aggregate is
3581 -- expanded into assignments.
3582
3583 -----------------------------
3584 -- Add_Discriminant_Values --
3585 -----------------------------
3586
3587 procedure Add_Discriminant_Values
3588 (New_Aggr : Node_Id;
3589 Assoc_List : List_Id)
3590 is
3591 Assoc : Node_Id;
3592 Discr : Entity_Id;
3593 Discr_Elmt : Elmt_Id;
3594 Discr_Val : Node_Id;
3595 Val : Entity_Id;
3596
3597 begin
3598 Discr := First_Discriminant (Etype (New_Aggr));
3599 Discr_Elmt :=
3600 First_Elmt
3601 (Discriminant_Constraint (Etype (New_Aggr)));
3602 while Present (Discr_Elmt) loop
3603 Discr_Val := Node (Discr_Elmt);
3604
3605 -- If the constraint is given by a discriminant
3606 -- it is a discriminant of an enclosing record,
3607 -- and its value has already been placed in the
3608 -- association list.
3609
3610 if Is_Entity_Name (Discr_Val)
3611 and then
3612 Ekind (Entity (Discr_Val)) = E_Discriminant
3613 then
3614 Val := Entity (Discr_Val);
3615
3616 Assoc := First (Assoc_List);
3617 while Present (Assoc) loop
3618 if Present
3619 (Entity (First (Choices (Assoc))))
3620 and then
3621 Entity (First (Choices (Assoc)))
3622 = Val
3623 then
3624 Discr_Val := Expression (Assoc);
3625 exit;
3626 end if;
3627 Next (Assoc);
3628 end loop;
3629 end if;
3630
3631 Add_Association
3632 (Discr, New_Copy_Tree (Discr_Val),
3633 Component_Associations (New_Aggr));
3634
3635 -- If the discriminant constraint is a current
3636 -- instance, mark the current aggregate so that
3637 -- the self-reference can be expanded later.
3638
3639 if Nkind (Discr_Val) = N_Attribute_Reference
3640 and then Is_Entity_Name (Prefix (Discr_Val))
3641 and then Is_Type (Entity (Prefix (Discr_Val)))
3642 and then Etype (N) =
3643 Entity (Prefix (Discr_Val))
3644 then
3645 Set_Has_Self_Reference (N);
3646 end if;
3647
3648 Next_Elmt (Discr_Elmt);
3649 Next_Discriminant (Discr);
3650 end loop;
3651 end Add_Discriminant_Values;
3652
3653 ------------------------------
3654 -- Propagate_Discriminants --
3655 ------------------------------
3656
3657 procedure Propagate_Discriminants
3658 (Aggr : Node_Id;
3659 Assoc_List : List_Id)
3660 is
3661 Aggr_Type : constant Entity_Id :=
3662 Base_Type (Etype (Aggr));
3663 Def_Node : constant Node_Id :=
3664 Type_Definition
3665 (Declaration_Node (Aggr_Type));
3666
3667 Comp : Node_Id;
3668 Comp_Elmt : Elmt_Id;
3669 Components : constant Elist_Id := New_Elmt_List;
3670 Needs_Box : Boolean := False;
3671 Errors : Boolean;
3672
3673 procedure Process_Component (Comp : Entity_Id);
3674 -- Add one component with a box association to the
3675 -- inner aggregate, and recurse if component is
3676 -- itself composite.
3677
3678 ------------------------
3679 -- Process_Component --
3680 ------------------------
3681
3682 procedure Process_Component (Comp : Entity_Id) is
3683 T : constant Entity_Id := Etype (Comp);
3684 New_Aggr : Node_Id;
3685
3686 begin
3687 if Is_Record_Type (T)
3688 and then Has_Discriminants (T)
3689 then
3690 New_Aggr :=
3691 Make_Aggregate (Loc, New_List, New_List);
3692 Set_Etype (New_Aggr, T);
3693 Add_Association
3694 (Comp, New_Aggr,
3695 Component_Associations (Aggr));
3696
3697 -- Collect discriminant values and recurse
3698
3699 Add_Discriminant_Values
3700 (New_Aggr, Assoc_List);
3701 Propagate_Discriminants
3702 (New_Aggr, Assoc_List);
3703
3704 else
3705 Needs_Box := True;
3706 end if;
3707 end Process_Component;
3708
3709 begin
3710 -- The component type may be a variant type, so
3711 -- collect the components that are ruled by the
3712 -- known values of the discriminants.
3713
3714 if Nkind (Def_Node) = N_Record_Definition
3715 and then
3716 Present (Component_List (Def_Node))
3717 and then
3718 Present
3719 (Variant_Part (Component_List (Def_Node)))
3720 then
3721 Gather_Components (Aggr_Type,
3722 Component_List (Def_Node),
3723 Governed_By => Assoc_List,
3724 Into => Components,
3725 Report_Errors => Errors);
3726
3727 Comp_Elmt := First_Elmt (Components);
3728 while Present (Comp_Elmt) loop
3729 if
3730 Ekind (Node (Comp_Elmt)) /= E_Discriminant
3731 then
3732 Process_Component (Node (Comp_Elmt));
3733 end if;
3734
3735 Next_Elmt (Comp_Elmt);
3736 end loop;
3737
3738 -- No variant part, iterate over all components
3739
3740 else
3741 Comp := First_Component (Etype (Aggr));
3742 while Present (Comp) loop
3743 Process_Component (Comp);
3744 Next_Component (Comp);
3745 end loop;
3746 end if;
3747
3748 if Needs_Box then
3749 Append
3750 (Make_Component_Association (Loc,
3751 Choices =>
3752 New_List (Make_Others_Choice (Loc)),
3753 Expression => Empty,
3754 Box_Present => True),
3755 Component_Associations (Aggr));
3756 end if;
3757 end Propagate_Discriminants;
3758
3759 -- Start of processing for Capture_Discriminants
3760
3761 begin
3762 Expr := Make_Aggregate (Loc, New_List, New_List);
3763 Set_Etype (Expr, Ctyp);
3764
3765 -- If the enclosing type has discriminants, they have
3766 -- been collected in the aggregate earlier, and they
3767 -- may appear as constraints of subcomponents.
3768
3769 -- Similarly if this component has discriminants, they
3770 -- might in turn be propagated to their components.
3771
3772 if Has_Discriminants (Typ) then
3773 Add_Discriminant_Values (Expr, New_Assoc_List);
3774 Propagate_Discriminants (Expr, New_Assoc_List);
3775
3776 elsif Has_Discriminants (Ctyp) then
3777 Add_Discriminant_Values
3778 (Expr, Component_Associations (Expr));
3779 Propagate_Discriminants
3780 (Expr, Component_Associations (Expr));
3781
3782 else
3783 declare
3784 Comp : Entity_Id;
3785
3786 begin
3787 -- If the type has additional components, create
3788 -- an OTHERS box association for them.
3789
3790 Comp := First_Component (Ctyp);
3791 while Present (Comp) loop
3792 if Ekind (Comp) = E_Component then
3793 if not Is_Record_Type (Etype (Comp)) then
3794 Append
3795 (Make_Component_Association (Loc,
3796 Choices =>
3797 New_List
3798 (Make_Others_Choice (Loc)),
3799 Expression => Empty,
3800 Box_Present => True),
3801 Component_Associations (Expr));
3802 end if;
3803 exit;
3804 end if;
3805
3806 Next_Component (Comp);
3807 end loop;
3808 end;
3809 end if;
3810
3811 Add_Association
3812 (Component => Component,
3813 Expr => Expr,
3814 Assoc_List => New_Assoc_List);
3815 end Capture_Discriminants;
3816
3817 else
3818 Add_Association
3819 (Component => Component,
3820 Expr => Empty,
3821 Assoc_List => New_Assoc_List,
3822 Is_Box_Present => True);
3823 end if;
3824
3825 -- Otherwise we only need to resolve the expression if the
3826 -- component has partially initialized values (required to
3827 -- expand the corresponding assignments and run-time checks).
3828
3829 elsif Present (Expr)
3830 and then Is_Partially_Initialized_Type (Ctyp)
3831 then
3832 Resolve_Aggr_Expr (Expr, Component);
3833 end if;
3834 end Check_Box_Component;
3835
3836 elsif No (Expr) then
3837
3838 -- Ignore hidden components associated with the position of the
3839 -- interface tags: these are initialized dynamically.
3840
3841 if not Present (Related_Type (Component)) then
3842 Error_Msg_NE
3843 ("no value supplied for component &!", N, Component);
3844 end if;
3845
3846 else
3847 Resolve_Aggr_Expr (Expr, Component);
3848 end if;
3849
3850 Next_Elmt (Component_Elmt);
3851 end loop;
3852
3853 -- STEP 7: check for invalid components + check type in choice list
3854
3855 Step_7 : declare
3856 Selectr : Node_Id;
3857 -- Selector name
3858
3859 Typech : Entity_Id;
3860 -- Type of first component in choice list
3861
3862 begin
3863 if Present (Component_Associations (N)) then
3864 Assoc := First (Component_Associations (N));
3865 else
3866 Assoc := Empty;
3867 end if;
3868
3869 Verification : while Present (Assoc) loop
3870 Selectr := First (Choices (Assoc));
3871 Typech := Empty;
3872
3873 if Nkind (Selectr) = N_Others_Choice then
3874
3875 -- Ada 2005 (AI-287): others choice may have expression or box
3876
3877 if No (Others_Etype)
3878 and then not Others_Box
3879 then
3880 Error_Msg_N
3881 ("OTHERS must represent at least one component", Selectr);
3882 end if;
3883
3884 exit Verification;
3885 end if;
3886
3887 while Present (Selectr) loop
3888 New_Assoc := First (New_Assoc_List);
3889 while Present (New_Assoc) loop
3890 Component := First (Choices (New_Assoc));
3891
3892 if Chars (Selectr) = Chars (Component) then
3893 if Style_Check then
3894 Check_Identifier (Selectr, Entity (Component));
3895 end if;
3896
3897 exit;
3898 end if;
3899
3900 Next (New_Assoc);
3901 end loop;
3902
3903 -- If no association, this is not a legal component of
3904 -- of the type in question, except if its association
3905 -- is provided with a box.
3906
3907 if No (New_Assoc) then
3908 if Box_Present (Parent (Selectr)) then
3909
3910 -- This may still be a bogus component with a box. Scan
3911 -- list of components to verify that a component with
3912 -- that name exists.
3913
3914 declare
3915 C : Entity_Id;
3916
3917 begin
3918 C := First_Component (Typ);
3919 while Present (C) loop
3920 if Chars (C) = Chars (Selectr) then
3921
3922 -- If the context is an extension aggregate,
3923 -- the component must not be inherited from
3924 -- the ancestor part of the aggregate.
3925
3926 if Nkind (N) /= N_Extension_Aggregate
3927 or else
3928 Scope (Original_Record_Component (C)) /=
3929 Etype (Ancestor_Part (N))
3930 then
3931 exit;
3932 end if;
3933 end if;
3934
3935 Next_Component (C);
3936 end loop;
3937
3938 if No (C) then
3939 Error_Msg_Node_2 := Typ;
3940 Error_Msg_N ("& is not a component of}", Selectr);
3941 end if;
3942 end;
3943
3944 elsif Chars (Selectr) /= Name_uTag
3945 and then Chars (Selectr) /= Name_uParent
3946 and then Chars (Selectr) /= Name_uController
3947 then
3948 if not Has_Discriminants (Typ) then
3949 Error_Msg_Node_2 := Typ;
3950 Error_Msg_N ("& is not a component of}", Selectr);
3951 else
3952 Error_Msg_N
3953 ("& is not a component of the aggregate subtype",
3954 Selectr);
3955 end if;
3956
3957 Check_Misspelled_Component (Components, Selectr);
3958 end if;
3959
3960 elsif No (Typech) then
3961 Typech := Base_Type (Etype (Component));
3962
3963 -- AI05-0199: In Ada 2012, several components of anonymous
3964 -- access types can appear in a choice list, as long as the
3965 -- designated types match.
3966
3967 elsif Typech /= Base_Type (Etype (Component)) then
3968 if Ada_Version >= Ada_12
3969 and then Ekind (Typech) = E_Anonymous_Access_Type
3970 and then
3971 Ekind (Etype (Component)) = E_Anonymous_Access_Type
3972 and then Base_Type (Designated_Type (Typech)) =
3973 Base_Type (Designated_Type (Etype (Component)))
3974 and then
3975 Subtypes_Statically_Match (Typech, (Etype (Component)))
3976 then
3977 null;
3978
3979 elsif not Box_Present (Parent (Selectr)) then
3980 Error_Msg_N
3981 ("components in choice list must have same type",
3982 Selectr);
3983 end if;
3984 end if;
3985
3986 Next (Selectr);
3987 end loop;
3988
3989 Next (Assoc);
3990 end loop Verification;
3991 end Step_7;
3992
3993 -- STEP 8: replace the original aggregate
3994
3995 Step_8 : declare
3996 New_Aggregate : constant Node_Id := New_Copy (N);
3997
3998 begin
3999 Set_Expressions (New_Aggregate, No_List);
4000 Set_Etype (New_Aggregate, Etype (N));
4001 Set_Component_Associations (New_Aggregate, New_Assoc_List);
4002
4003 Rewrite (N, New_Aggregate);
4004 end Step_8;
4005 end Resolve_Record_Aggregate;
4006
4007 -----------------------------
4008 -- Check_Can_Never_Be_Null --
4009 -----------------------------
4010
4011 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
4012 Comp_Typ : Entity_Id;
4013
4014 begin
4015 pragma Assert
4016 (Ada_Version >= Ada_05
4017 and then Present (Expr)
4018 and then Known_Null (Expr));
4019
4020 case Ekind (Typ) is
4021 when E_Array_Type =>
4022 Comp_Typ := Component_Type (Typ);
4023
4024 when E_Component |
4025 E_Discriminant =>
4026 Comp_Typ := Etype (Typ);
4027
4028 when others =>
4029 return;
4030 end case;
4031
4032 if Can_Never_Be_Null (Comp_Typ) then
4033
4034 -- Here we know we have a constraint error. Note that we do not use
4035 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
4036 -- seem the more natural approach. That's because in some cases the
4037 -- components are rewritten, and the replacement would be missed.
4038
4039 Insert_Action
4040 (Compile_Time_Constraint_Error
4041 (Expr,
4042 "(Ada 2005) null not allowed in null-excluding component?"),
4043 Make_Raise_Constraint_Error (Sloc (Expr),
4044 Reason => CE_Access_Check_Failed));
4045
4046 -- Set proper type for bogus component (why is this needed???)
4047
4048 Set_Etype (Expr, Comp_Typ);
4049 Set_Analyzed (Expr);
4050 end if;
4051 end Check_Can_Never_Be_Null;
4052
4053 ---------------------
4054 -- Sort_Case_Table --
4055 ---------------------
4056
4057 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
4058 L : constant Int := Case_Table'First;
4059 U : constant Int := Case_Table'Last;
4060 K : Int;
4061 J : Int;
4062 T : Case_Bounds;
4063
4064 begin
4065 K := L;
4066 while K /= U loop
4067 T := Case_Table (K + 1);
4068
4069 J := K + 1;
4070 while J /= L
4071 and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
4072 Expr_Value (T.Choice_Lo)
4073 loop
4074 Case_Table (J) := Case_Table (J - 1);
4075 J := J - 1;
4076 end loop;
4077
4078 Case_Table (J) := T;
4079 K := K + 1;
4080 end loop;
4081 end Sort_Case_Table;
4082
4083 end Sem_Aggr;