]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/basic-block.h
174b650d63114b853be39d670470fe4060a7fdac
[thirdparty/gcc.git] / gcc / basic-block.h
1 /* Define control flow data structures for the CFG.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_BASIC_BLOCK_H
21 #define GCC_BASIC_BLOCK_H
22
23 #include "predict.h"
24 #include "vec.h"
25 #include "function.h"
26
27 /* Use gcov_type to hold basic block counters. Should be at least
28 64bit. Although a counter cannot be negative, we use a signed
29 type, because erroneous negative counts can be generated when the
30 flow graph is manipulated by various optimizations. A signed type
31 makes those easy to detect. */
32
33 /* Control flow edge information. */
34 struct GTY((user)) edge_def {
35 /* The two blocks at the ends of the edge. */
36 basic_block src;
37 basic_block dest;
38
39 /* Instructions queued on the edge. */
40 union edge_def_insns {
41 gimple_seq g;
42 rtx r;
43 } insns;
44
45 /* Auxiliary info specific to a pass. */
46 PTR aux;
47
48 /* Location of any goto implicit in the edge. */
49 location_t goto_locus;
50
51 /* The index number corresponding to this edge in the edge vector
52 dest->preds. */
53 unsigned int dest_idx;
54
55 int flags; /* see cfg-flags.def */
56 int probability; /* biased by REG_BR_PROB_BASE */
57 gcov_type count; /* Expected number of executions calculated
58 in profile.c */
59 };
60
61
62 /* Garbage collection and PCH support for edge_def. */
63 extern void gt_ggc_mx (edge_def *e);
64 extern void gt_pch_nx (edge_def *e);
65 extern void gt_pch_nx (edge_def *e, gt_pointer_operator, void *);
66
67 /* Masks for edge.flags. */
68 #define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX ,
69 enum cfg_edge_flags {
70 #include "cfg-flags.def"
71 LAST_CFG_EDGE_FLAG /* this is only used for EDGE_ALL_FLAGS */
72 };
73 #undef DEF_EDGE_FLAG
74
75 /* Bit mask for all edge flags. */
76 #define EDGE_ALL_FLAGS ((LAST_CFG_EDGE_FLAG - 1) * 2 - 1)
77
78 /* The following four flags all indicate something special about an edge.
79 Test the edge flags on EDGE_COMPLEX to detect all forms of "strange"
80 control flow transfers. */
81 #define EDGE_COMPLEX \
82 (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE)
83
84 /* Counter summary from the last set of coverage counts read by
85 profile.c. */
86 extern const struct gcov_ctr_summary *profile_info;
87
88 /* Structure to gather statistic about profile consistency, per pass.
89 An array of this structure, indexed by pass static number, is allocated
90 in passes.c. The structure is defined here so that different CFG modes
91 can do their book-keeping via CFG hooks.
92
93 For every field[2], field[0] is the count before the pass runs, and
94 field[1] is the post-pass count. This allows us to monitor the effect
95 of each individual pass on the profile consistency.
96
97 This structure is not supposed to be used by anything other than passes.c
98 and one CFG hook per CFG mode. */
99 struct profile_record
100 {
101 /* The number of basic blocks where sum(freq) of the block's predecessors
102 doesn't match reasonably well with the incoming frequency. */
103 int num_mismatched_freq_in[2];
104 /* Likewise for a basic block's successors. */
105 int num_mismatched_freq_out[2];
106 /* The number of basic blocks where sum(count) of the block's predecessors
107 doesn't match reasonably well with the incoming frequency. */
108 int num_mismatched_count_in[2];
109 /* Likewise for a basic block's successors. */
110 int num_mismatched_count_out[2];
111 /* A weighted cost of the run-time of the function body. */
112 gcov_type time[2];
113 /* A weighted cost of the size of the function body. */
114 int size[2];
115 /* True iff this pass actually was run. */
116 bool run;
117 };
118
119 /* Declared in cfgloop.h. */
120 struct loop;
121
122 struct GTY(()) rtl_bb_info {
123 /* The first insn of the block is embedded into bb->il.x. */
124 /* The last insn of the block. */
125 rtx end_;
126
127 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
128 and after the block. */
129 rtx header_;
130 rtx footer_;
131 };
132
133 struct GTY(()) gimple_bb_info {
134 /* Sequence of statements in this block. */
135 gimple_seq seq;
136
137 /* PHI nodes for this block. */
138 gimple_seq phi_nodes;
139 };
140
141 /* A basic block is a sequence of instructions with only one entry and
142 only one exit. If any one of the instructions are executed, they
143 will all be executed, and in sequence from first to last.
144
145 There may be COND_EXEC instructions in the basic block. The
146 COND_EXEC *instructions* will be executed -- but if the condition
147 is false the conditionally executed *expressions* will of course
148 not be executed. We don't consider the conditionally executed
149 expression (which might have side-effects) to be in a separate
150 basic block because the program counter will always be at the same
151 location after the COND_EXEC instruction, regardless of whether the
152 condition is true or not.
153
154 Basic blocks need not start with a label nor end with a jump insn.
155 For example, a previous basic block may just "conditionally fall"
156 into the succeeding basic block, and the last basic block need not
157 end with a jump insn. Block 0 is a descendant of the entry block.
158
159 A basic block beginning with two labels cannot have notes between
160 the labels.
161
162 Data for jump tables are stored in jump_insns that occur in no
163 basic block even though these insns can follow or precede insns in
164 basic blocks. */
165
166 /* Basic block information indexed by block number. */
167 struct GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb"))) basic_block_def {
168 /* The edges into and out of the block. */
169 vec<edge, va_gc> *preds;
170 vec<edge, va_gc> *succs;
171
172 /* Auxiliary info specific to a pass. */
173 PTR GTY ((skip (""))) aux;
174
175 /* Innermost loop containing the block. */
176 struct loop *loop_father;
177
178 /* The dominance and postdominance information node. */
179 struct et_node * GTY ((skip (""))) dom[2];
180
181 /* Previous and next blocks in the chain. */
182 basic_block prev_bb;
183 basic_block next_bb;
184
185 union basic_block_il_dependent {
186 struct gimple_bb_info GTY ((tag ("0"))) gimple;
187 struct {
188 rtx head_;
189 struct rtl_bb_info * rtl;
190 } GTY ((tag ("1"))) x;
191 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
192
193 /* Various flags. See cfg-flags.def. */
194 int flags;
195
196 /* The index of this block. */
197 int index;
198
199 /* Expected number of executions: calculated in profile.c. */
200 gcov_type count;
201
202 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
203 int frequency;
204
205 /* The discriminator for this block. The discriminator distinguishes
206 among several basic blocks that share a common locus, allowing for
207 more accurate sample-based profiling. */
208 int discriminator;
209 };
210
211 /* This ensures that struct gimple_bb_info is smaller than
212 struct rtl_bb_info, so that inlining the former into basic_block_def
213 is the better choice. */
214 typedef int __assert_gimple_bb_smaller_rtl_bb
215 [(int) sizeof (struct rtl_bb_info)
216 - (int) sizeof (struct gimple_bb_info)];
217
218
219 #define BB_FREQ_MAX 10000
220
221 /* Masks for basic_block.flags. */
222 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX ,
223 enum cfg_bb_flags
224 {
225 #include "cfg-flags.def"
226 LAST_CFG_BB_FLAG /* this is only used for BB_ALL_FLAGS */
227 };
228 #undef DEF_BASIC_BLOCK_FLAG
229
230 /* Bit mask for all basic block flags. */
231 #define BB_ALL_FLAGS ((LAST_CFG_BB_FLAG - 1) * 2 - 1)
232
233 /* Bit mask for all basic block flags that must be preserved. These are
234 the bit masks that are *not* cleared by clear_bb_flags. */
235 #define BB_FLAGS_TO_PRESERVE \
236 (BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET \
237 | BB_HOT_PARTITION | BB_COLD_PARTITION)
238
239 /* Dummy bitmask for convenience in the hot/cold partitioning code. */
240 #define BB_UNPARTITIONED 0
241
242 /* Partitions, to be used when partitioning hot and cold basic blocks into
243 separate sections. */
244 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
245 #define BB_SET_PARTITION(bb, part) do { \
246 basic_block bb_ = (bb); \
247 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
248 | (part)); \
249 } while (0)
250
251 #define BB_COPY_PARTITION(dstbb, srcbb) \
252 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
253
254 /* State of dominance information. */
255
256 enum dom_state
257 {
258 DOM_NONE, /* Not computed at all. */
259 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
260 DOM_OK /* Everything is ok. */
261 };
262
263 /* What sort of profiling information we have. */
264 enum profile_status_d
265 {
266 PROFILE_ABSENT,
267 PROFILE_GUESSED,
268 PROFILE_READ,
269 PROFILE_LAST /* Last value, used by profile streaming. */
270 };
271
272 /* A structure to group all the per-function control flow graph data.
273 The x_* prefixing is necessary because otherwise references to the
274 fields of this struct are interpreted as the defines for backward
275 source compatibility following the definition of this struct. */
276 struct GTY(()) control_flow_graph {
277 /* Block pointers for the exit and entry of a function.
278 These are always the head and tail of the basic block list. */
279 basic_block x_entry_block_ptr;
280 basic_block x_exit_block_ptr;
281
282 /* Index by basic block number, get basic block struct info. */
283 vec<basic_block, va_gc> *x_basic_block_info;
284
285 /* Number of basic blocks in this flow graph. */
286 int x_n_basic_blocks;
287
288 /* Number of edges in this flow graph. */
289 int x_n_edges;
290
291 /* The first free basic block number. */
292 int x_last_basic_block;
293
294 /* UIDs for LABEL_DECLs. */
295 int last_label_uid;
296
297 /* Mapping of labels to their associated blocks. At present
298 only used for the gimple CFG. */
299 vec<basic_block, va_gc> *x_label_to_block_map;
300
301 enum profile_status_d x_profile_status;
302
303 /* Whether the dominators and the postdominators are available. */
304 enum dom_state x_dom_computed[2];
305
306 /* Number of basic blocks in the dominance tree. */
307 unsigned x_n_bbs_in_dom_tree[2];
308
309 /* Maximal number of entities in the single jumptable. Used to estimate
310 final flowgraph size. */
311 int max_jumptable_ents;
312 };
313
314 /* Defines for accessing the fields of the CFG structure for function FN. */
315 #define ENTRY_BLOCK_PTR_FOR_FN(FN) ((FN)->cfg->x_entry_block_ptr)
316 #define EXIT_BLOCK_PTR_FOR_FN(FN) ((FN)->cfg->x_exit_block_ptr)
317 #define basic_block_info_for_fn(FN) ((FN)->cfg->x_basic_block_info)
318 #define n_basic_blocks_for_fn(FN) ((FN)->cfg->x_n_basic_blocks)
319 #define n_edges_for_fn(FN) ((FN)->cfg->x_n_edges)
320 #define last_basic_block_for_fn(FN) ((FN)->cfg->x_last_basic_block)
321 #define label_to_block_map_for_fn(FN) ((FN)->cfg->x_label_to_block_map)
322 #define profile_status_for_fn(FN) ((FN)->cfg->x_profile_status)
323
324 #define BASIC_BLOCK_FOR_FN(FN,N) \
325 ((*basic_block_info_for_fn (FN))[(N)])
326 #define SET_BASIC_BLOCK_FOR_FN(FN,N,BB) \
327 ((*basic_block_info_for_fn (FN))[(N)] = (BB))
328
329 /* For iterating over basic blocks. */
330 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
331 for (BB = FROM; BB != TO; BB = BB->DIR)
332
333 #define FOR_EACH_BB_FN(BB, FN) \
334 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
335
336 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
337
338 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
339 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
340
341 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN (BB, cfun)
342
343 /* For iterating over insns in basic block. */
344 #define FOR_BB_INSNS(BB, INSN) \
345 for ((INSN) = BB_HEAD (BB); \
346 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
347 (INSN) = NEXT_INSN (INSN))
348
349 /* For iterating over insns in basic block when we might remove the
350 current insn. */
351 #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \
352 for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)): NULL; \
353 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
354 (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL)
355
356 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
357 for ((INSN) = BB_END (BB); \
358 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
359 (INSN) = PREV_INSN (INSN))
360
361 #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \
362 for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \
363 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
364 (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL)
365
366 /* Cycles through _all_ basic blocks, even the fake ones (entry and
367 exit block). */
368
369 #define FOR_ALL_BB(BB) \
370 for (BB = ENTRY_BLOCK_PTR_FOR_FN (cfun); BB; BB = BB->next_bb)
371
372 #define FOR_ALL_BB_FN(BB, FN) \
373 for (BB = ENTRY_BLOCK_PTR_FOR_FN (FN); BB; BB = BB->next_bb)
374
375 \f
376 /* Stuff for recording basic block info. */
377
378 #define BB_HEAD(B) (B)->il.x.head_
379 #define BB_END(B) (B)->il.x.rtl->end_
380 #define BB_HEADER(B) (B)->il.x.rtl->header_
381 #define BB_FOOTER(B) (B)->il.x.rtl->footer_
382
383 /* Special block numbers [markers] for entry and exit.
384 Neither of them is supposed to hold actual statements. */
385 #define ENTRY_BLOCK (0)
386 #define EXIT_BLOCK (1)
387
388 /* The two blocks that are always in the cfg. */
389 #define NUM_FIXED_BLOCKS (2)
390
391 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
392
393 extern void compute_bb_for_insn (void);
394 extern unsigned int free_bb_for_insn (void);
395 extern void update_bb_for_insn (basic_block);
396
397 extern void insert_insn_on_edge (rtx, edge);
398 basic_block split_edge_and_insert (edge, rtx);
399
400 extern void commit_one_edge_insertion (edge e);
401 extern void commit_edge_insertions (void);
402
403 extern edge unchecked_make_edge (basic_block, basic_block, int);
404 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
405 extern edge make_edge (basic_block, basic_block, int);
406 extern edge make_single_succ_edge (basic_block, basic_block, int);
407 extern void remove_edge_raw (edge);
408 extern void redirect_edge_succ (edge, basic_block);
409 extern edge redirect_edge_succ_nodup (edge, basic_block);
410 extern void redirect_edge_pred (edge, basic_block);
411 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
412 extern void clear_bb_flags (void);
413 extern void dump_bb_info (FILE *, basic_block, int, int, bool, bool);
414 extern void dump_edge_info (FILE *, edge, int, int);
415 extern void debug (edge_def &ref);
416 extern void debug (edge_def *ptr);
417 extern void brief_dump_cfg (FILE *, int);
418 extern void clear_edges (void);
419 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
420 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
421 gcov_type);
422
423 /* Structure to group all of the information to process IF-THEN and
424 IF-THEN-ELSE blocks for the conditional execution support. This
425 needs to be in a public file in case the IFCVT macros call
426 functions passing the ce_if_block data structure. */
427
428 typedef struct ce_if_block
429 {
430 basic_block test_bb; /* First test block. */
431 basic_block then_bb; /* THEN block. */
432 basic_block else_bb; /* ELSE block or NULL. */
433 basic_block join_bb; /* Join THEN/ELSE blocks. */
434 basic_block last_test_bb; /* Last bb to hold && or || tests. */
435 int num_multiple_test_blocks; /* # of && and || basic blocks. */
436 int num_and_and_blocks; /* # of && blocks. */
437 int num_or_or_blocks; /* # of || blocks. */
438 int num_multiple_test_insns; /* # of insns in && and || blocks. */
439 int and_and_p; /* Complex test is &&. */
440 int num_then_insns; /* # of insns in THEN block. */
441 int num_else_insns; /* # of insns in ELSE block. */
442 int pass; /* Pass number. */
443 } ce_if_block_t;
444
445 /* This structure maintains an edge list vector. */
446 /* FIXME: Make this a vec<edge>. */
447 struct edge_list
448 {
449 int num_edges;
450 edge *index_to_edge;
451 };
452
453 /* Class to compute and manage control dependences on an edge-list. */
454 class control_dependences
455 {
456 public:
457 control_dependences (edge_list *);
458 ~control_dependences ();
459 bitmap get_edges_dependent_on (int);
460 edge get_edge (int);
461
462 private:
463 void set_control_dependence_map_bit (basic_block, int);
464 void clear_control_dependence_bitmap (basic_block);
465 void find_control_dependence (int);
466 vec<bitmap> control_dependence_map;
467 edge_list *m_el;
468 };
469
470 /* The base value for branch probability notes and edge probabilities. */
471 #define REG_BR_PROB_BASE 10000
472
473 /* This is the value which indicates no edge is present. */
474 #define EDGE_INDEX_NO_EDGE -1
475
476 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
477 if there is no edge between the 2 basic blocks. */
478 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
479
480 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
481 block which is either the pred or succ end of the indexed edge. */
482 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
483 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
484
485 /* INDEX_EDGE returns a pointer to the edge. */
486 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
487
488 /* Number of edges in the compressed edge list. */
489 #define NUM_EDGES(el) ((el)->num_edges)
490
491 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
492 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
493 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
494
495 /* BB is assumed to contain conditional jump. Return the branch edge. */
496 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
497 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
498
499 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
500 /* Return expected execution frequency of the edge E. */
501 #define EDGE_FREQUENCY(e) RDIV ((e)->src->frequency * (e)->probability, \
502 REG_BR_PROB_BASE)
503
504 /* Compute a scale factor (or probability) suitable for scaling of
505 gcov_type values via apply_probability() and apply_scale(). */
506 #define GCOV_COMPUTE_SCALE(num,den) \
507 ((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den)) : REG_BR_PROB_BASE)
508
509 /* Return nonzero if edge is critical. */
510 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
511 && EDGE_COUNT ((e)->dest->preds) >= 2)
512
513 #define EDGE_COUNT(ev) vec_safe_length (ev)
514 #define EDGE_I(ev,i) (*ev)[(i)]
515 #define EDGE_PRED(bb,i) (*(bb)->preds)[(i)]
516 #define EDGE_SUCC(bb,i) (*(bb)->succs)[(i)]
517
518 /* Returns true if BB has precisely one successor. */
519
520 static inline bool
521 single_succ_p (const_basic_block bb)
522 {
523 return EDGE_COUNT (bb->succs) == 1;
524 }
525
526 /* Returns true if BB has precisely one predecessor. */
527
528 static inline bool
529 single_pred_p (const_basic_block bb)
530 {
531 return EDGE_COUNT (bb->preds) == 1;
532 }
533
534 /* Returns the single successor edge of basic block BB. Aborts if
535 BB does not have exactly one successor. */
536
537 static inline edge
538 single_succ_edge (const_basic_block bb)
539 {
540 gcc_checking_assert (single_succ_p (bb));
541 return EDGE_SUCC (bb, 0);
542 }
543
544 /* Returns the single predecessor edge of basic block BB. Aborts
545 if BB does not have exactly one predecessor. */
546
547 static inline edge
548 single_pred_edge (const_basic_block bb)
549 {
550 gcc_checking_assert (single_pred_p (bb));
551 return EDGE_PRED (bb, 0);
552 }
553
554 /* Returns the single successor block of basic block BB. Aborts
555 if BB does not have exactly one successor. */
556
557 static inline basic_block
558 single_succ (const_basic_block bb)
559 {
560 return single_succ_edge (bb)->dest;
561 }
562
563 /* Returns the single predecessor block of basic block BB. Aborts
564 if BB does not have exactly one predecessor.*/
565
566 static inline basic_block
567 single_pred (const_basic_block bb)
568 {
569 return single_pred_edge (bb)->src;
570 }
571
572 /* Iterator object for edges. */
573
574 typedef struct {
575 unsigned index;
576 vec<edge, va_gc> **container;
577 } edge_iterator;
578
579 static inline vec<edge, va_gc> *
580 ei_container (edge_iterator i)
581 {
582 gcc_checking_assert (i.container);
583 return *i.container;
584 }
585
586 #define ei_start(iter) ei_start_1 (&(iter))
587 #define ei_last(iter) ei_last_1 (&(iter))
588
589 /* Return an iterator pointing to the start of an edge vector. */
590 static inline edge_iterator
591 ei_start_1 (vec<edge, va_gc> **ev)
592 {
593 edge_iterator i;
594
595 i.index = 0;
596 i.container = ev;
597
598 return i;
599 }
600
601 /* Return an iterator pointing to the last element of an edge
602 vector. */
603 static inline edge_iterator
604 ei_last_1 (vec<edge, va_gc> **ev)
605 {
606 edge_iterator i;
607
608 i.index = EDGE_COUNT (*ev) - 1;
609 i.container = ev;
610
611 return i;
612 }
613
614 /* Is the iterator `i' at the end of the sequence? */
615 static inline bool
616 ei_end_p (edge_iterator i)
617 {
618 return (i.index == EDGE_COUNT (ei_container (i)));
619 }
620
621 /* Is the iterator `i' at one position before the end of the
622 sequence? */
623 static inline bool
624 ei_one_before_end_p (edge_iterator i)
625 {
626 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
627 }
628
629 /* Advance the iterator to the next element. */
630 static inline void
631 ei_next (edge_iterator *i)
632 {
633 gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i)));
634 i->index++;
635 }
636
637 /* Move the iterator to the previous element. */
638 static inline void
639 ei_prev (edge_iterator *i)
640 {
641 gcc_checking_assert (i->index > 0);
642 i->index--;
643 }
644
645 /* Return the edge pointed to by the iterator `i'. */
646 static inline edge
647 ei_edge (edge_iterator i)
648 {
649 return EDGE_I (ei_container (i), i.index);
650 }
651
652 /* Return an edge pointed to by the iterator. Do it safely so that
653 NULL is returned when the iterator is pointing at the end of the
654 sequence. */
655 static inline edge
656 ei_safe_edge (edge_iterator i)
657 {
658 return !ei_end_p (i) ? ei_edge (i) : NULL;
659 }
660
661 /* Return 1 if we should continue to iterate. Return 0 otherwise.
662 *Edge P is set to the next edge if we are to continue to iterate
663 and NULL otherwise. */
664
665 static inline bool
666 ei_cond (edge_iterator ei, edge *p)
667 {
668 if (!ei_end_p (ei))
669 {
670 *p = ei_edge (ei);
671 return 1;
672 }
673 else
674 {
675 *p = NULL;
676 return 0;
677 }
678 }
679
680 /* This macro serves as a convenient way to iterate each edge in a
681 vector of predecessor or successor edges. It must not be used when
682 an element might be removed during the traversal, otherwise
683 elements will be missed. Instead, use a for-loop like that shown
684 in the following pseudo-code:
685
686 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
687 {
688 IF (e != taken_edge)
689 remove_edge (e);
690 ELSE
691 ei_next (&ei);
692 }
693 */
694
695 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
696 for ((ITER) = ei_start ((EDGE_VEC)); \
697 ei_cond ((ITER), &(EDGE)); \
698 ei_next (&(ITER)))
699
700 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
701 except for edge forwarding */
702 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
703 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
704 to care REG_DEAD notes. */
705 #define CLEANUP_THREADING 8 /* Do jump threading. */
706 #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead
707 insns. */
708 #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */
709 #define CLEANUP_CFG_CHANGED 64 /* The caller changed the CFG. */
710
711 /* In cfganal.c */
712 extern void bitmap_intersection_of_succs (sbitmap, sbitmap *, basic_block);
713 extern void bitmap_intersection_of_preds (sbitmap, sbitmap *, basic_block);
714 extern void bitmap_union_of_succs (sbitmap, sbitmap *, basic_block);
715 extern void bitmap_union_of_preds (sbitmap, sbitmap *, basic_block);
716
717 /* In lcm.c */
718 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
719 sbitmap *, sbitmap *, sbitmap **,
720 sbitmap **);
721 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
722 sbitmap *, sbitmap *,
723 sbitmap *, sbitmap **,
724 sbitmap **);
725 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
726
727 /* In predict.c */
728 extern bool maybe_hot_bb_p (struct function *, const_basic_block);
729 extern bool maybe_hot_edge_p (edge);
730 extern bool probably_never_executed_bb_p (struct function *, const_basic_block);
731 extern bool probably_never_executed_edge_p (struct function *, edge);
732 extern bool optimize_bb_for_size_p (const_basic_block);
733 extern bool optimize_bb_for_speed_p (const_basic_block);
734 extern bool optimize_edge_for_size_p (edge);
735 extern bool optimize_edge_for_speed_p (edge);
736 extern bool optimize_loop_for_size_p (struct loop *);
737 extern bool optimize_loop_for_speed_p (struct loop *);
738 extern bool optimize_loop_nest_for_size_p (struct loop *);
739 extern bool optimize_loop_nest_for_speed_p (struct loop *);
740 extern bool gimple_predicted_by_p (const_basic_block, enum br_predictor);
741 extern bool rtl_predicted_by_p (const_basic_block, enum br_predictor);
742 extern void gimple_predict_edge (edge, enum br_predictor, int);
743 extern void rtl_predict_edge (edge, enum br_predictor, int);
744 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
745 extern void guess_outgoing_edge_probabilities (basic_block);
746 extern void remove_predictions_associated_with_edge (edge);
747 extern bool edge_probability_reliable_p (const_edge);
748 extern bool br_prob_note_reliable_p (const_rtx);
749 extern bool predictable_edge_p (edge);
750
751 /* In cfg.c */
752 extern void init_flow (struct function *);
753 extern void debug_bb (basic_block);
754 extern basic_block debug_bb_n (int);
755 extern void dump_flow_info (FILE *, int);
756 extern void expunge_block (basic_block);
757 extern void link_block (basic_block, basic_block);
758 extern void unlink_block (basic_block);
759 extern void compact_blocks (void);
760 extern basic_block alloc_block (void);
761 extern void alloc_aux_for_blocks (int);
762 extern void clear_aux_for_blocks (void);
763 extern void free_aux_for_blocks (void);
764 extern void alloc_aux_for_edge (edge, int);
765 extern void alloc_aux_for_edges (int);
766 extern void clear_aux_for_edges (void);
767 extern void free_aux_for_edges (void);
768
769 /* In cfganal.c */
770 extern void find_unreachable_blocks (void);
771 extern bool mark_dfs_back_edges (void);
772 struct edge_list * create_edge_list (void);
773 void free_edge_list (struct edge_list *);
774 void print_edge_list (FILE *, struct edge_list *);
775 void verify_edge_list (FILE *, struct edge_list *);
776 int find_edge_index (struct edge_list *, basic_block, basic_block);
777 edge find_edge (basic_block, basic_block);
778 extern void remove_fake_edges (void);
779 extern void remove_fake_exit_edges (void);
780 extern void add_noreturn_fake_exit_edges (void);
781 extern void connect_infinite_loops_to_exit (void);
782 extern int post_order_compute (int *, bool, bool);
783 extern basic_block dfs_find_deadend (basic_block);
784 extern int inverted_post_order_compute (int *);
785 extern int pre_and_rev_post_order_compute_fn (struct function *,
786 int *, int *, bool);
787 extern int pre_and_rev_post_order_compute (int *, int *, bool);
788 extern int dfs_enumerate_from (basic_block, int,
789 bool (*)(const_basic_block, const void *),
790 basic_block *, int, const void *);
791 extern void compute_dominance_frontiers (struct bitmap_head_def *);
792 extern bitmap compute_idf (bitmap, struct bitmap_head_def *);
793 extern basic_block * single_pred_before_succ_order (void);
794
795 /* In cfgrtl.c */
796 extern rtx block_label (basic_block);
797 extern rtx bb_note (basic_block);
798 extern bool purge_all_dead_edges (void);
799 extern bool purge_dead_edges (basic_block);
800 extern bool fixup_abnormal_edges (void);
801 extern basic_block force_nonfallthru_and_redirect (edge, basic_block, rtx);
802 extern bool contains_no_active_insn_p (const_basic_block);
803 extern bool forwarder_block_p (const_basic_block);
804 extern bool can_fallthru (basic_block, basic_block);
805 extern void emit_barrier_after_bb (basic_block bb);
806 extern void fixup_partitions (void);
807
808 /* In cfgbuild.c. */
809 extern void find_many_sub_basic_blocks (sbitmap);
810 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
811
812 enum replace_direction { dir_none, dir_forward, dir_backward, dir_both };
813
814 /* In cfgcleanup.c. */
815 extern bool cleanup_cfg (int);
816 extern int flow_find_cross_jump (basic_block, basic_block, rtx *, rtx *,
817 enum replace_direction*);
818 extern int flow_find_head_matching_sequence (basic_block, basic_block,
819 rtx *, rtx *, int);
820
821 extern bool delete_unreachable_blocks (void);
822
823 extern void update_br_prob_note (basic_block);
824 extern bool inside_basic_block_p (const_rtx);
825 extern bool control_flow_insn_p (const_rtx);
826 extern rtx get_last_bb_insn (basic_block);
827
828 /* In dominance.c */
829
830 enum cdi_direction
831 {
832 CDI_DOMINATORS = 1,
833 CDI_POST_DOMINATORS = 2
834 };
835
836 extern enum dom_state dom_info_state (enum cdi_direction);
837 extern void set_dom_info_availability (enum cdi_direction, enum dom_state);
838 extern bool dom_info_available_p (enum cdi_direction);
839 extern void calculate_dominance_info (enum cdi_direction);
840 extern void free_dominance_info (enum cdi_direction);
841 extern basic_block nearest_common_dominator (enum cdi_direction,
842 basic_block, basic_block);
843 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
844 bitmap);
845 extern void set_immediate_dominator (enum cdi_direction, basic_block,
846 basic_block);
847 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
848 extern bool dominated_by_p (enum cdi_direction, const_basic_block, const_basic_block);
849 extern vec<basic_block> get_dominated_by (enum cdi_direction, basic_block);
850 extern vec<basic_block> get_dominated_by_region (enum cdi_direction,
851 basic_block *,
852 unsigned);
853 extern vec<basic_block> get_dominated_to_depth (enum cdi_direction,
854 basic_block, int);
855 extern vec<basic_block> get_all_dominated_blocks (enum cdi_direction,
856 basic_block);
857 extern void add_to_dominance_info (enum cdi_direction, basic_block);
858 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
859 basic_block recompute_dominator (enum cdi_direction, basic_block);
860 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
861 basic_block);
862 extern void iterate_fix_dominators (enum cdi_direction,
863 vec<basic_block> , bool);
864 extern void verify_dominators (enum cdi_direction);
865 extern basic_block first_dom_son (enum cdi_direction, basic_block);
866 extern basic_block next_dom_son (enum cdi_direction, basic_block);
867 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
868 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
869
870 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
871 extern void break_superblocks (void);
872 extern void relink_block_chain (bool);
873 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
874 extern void init_rtl_bb_info (basic_block);
875
876 extern void initialize_original_copy_tables (void);
877 extern void free_original_copy_tables (void);
878 extern void set_bb_original (basic_block, basic_block);
879 extern basic_block get_bb_original (basic_block);
880 extern void set_bb_copy (basic_block, basic_block);
881 extern basic_block get_bb_copy (basic_block);
882 void set_loop_copy (struct loop *, struct loop *);
883 struct loop *get_loop_copy (struct loop *);
884
885 #include "cfghooks.h"
886
887 /* Return true if BB is in a transaction. */
888
889 static inline bool
890 bb_in_transaction (basic_block bb)
891 {
892 return bb->flags & BB_IN_TRANSACTION;
893 }
894
895 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
896 static inline bool
897 bb_has_eh_pred (basic_block bb)
898 {
899 edge e;
900 edge_iterator ei;
901
902 FOR_EACH_EDGE (e, ei, bb->preds)
903 {
904 if (e->flags & EDGE_EH)
905 return true;
906 }
907 return false;
908 }
909
910 /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */
911 static inline bool
912 bb_has_abnormal_pred (basic_block bb)
913 {
914 edge e;
915 edge_iterator ei;
916
917 FOR_EACH_EDGE (e, ei, bb->preds)
918 {
919 if (e->flags & EDGE_ABNORMAL)
920 return true;
921 }
922 return false;
923 }
924
925 /* Return the fallthru edge in EDGES if it exists, NULL otherwise. */
926 static inline edge
927 find_fallthru_edge (vec<edge, va_gc> *edges)
928 {
929 edge e;
930 edge_iterator ei;
931
932 FOR_EACH_EDGE (e, ei, edges)
933 if (e->flags & EDGE_FALLTHRU)
934 break;
935
936 return e;
937 }
938
939 /* In cfgloopmanip.c. */
940 extern edge mfb_kj_edge;
941 extern bool mfb_keep_just (edge);
942
943 /* In cfgexpand.c. */
944 extern void rtl_profile_for_bb (basic_block);
945 extern void rtl_profile_for_edge (edge);
946 extern void default_rtl_profile (void);
947
948 /* In profile.c. */
949 typedef struct gcov_working_set_info gcov_working_set_t;
950 extern gcov_working_set_t *find_working_set (unsigned pct_times_10);
951
952 /* Check tha probability is sane. */
953
954 static inline void
955 check_probability (int prob)
956 {
957 gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
958 }
959
960 /* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE.
961 Used to combine BB probabilities. */
962
963 static inline int
964 combine_probabilities (int prob1, int prob2)
965 {
966 check_probability (prob1);
967 check_probability (prob2);
968 return RDIV (prob1 * prob2, REG_BR_PROB_BASE);
969 }
970
971 /* Apply scale factor SCALE on frequency or count FREQ. Use this
972 interface when potentially scaling up, so that SCALE is not
973 constrained to be < REG_BR_PROB_BASE. */
974
975 static inline gcov_type
976 apply_scale (gcov_type freq, gcov_type scale)
977 {
978 return RDIV (freq * scale, REG_BR_PROB_BASE);
979 }
980
981 /* Apply probability PROB on frequency or count FREQ. */
982
983 static inline gcov_type
984 apply_probability (gcov_type freq, int prob)
985 {
986 check_probability (prob);
987 return apply_scale (freq, prob);
988 }
989
990 /* Return inverse probability for PROB. */
991
992 static inline int
993 inverse_probability (int prob1)
994 {
995 check_probability (prob1);
996 return REG_BR_PROB_BASE - prob1;
997 }
998
999 /* Return true if BB has at least one abnormal outgoing edge. */
1000
1001 static inline bool
1002 has_abnormal_or_eh_outgoing_edge_p (basic_block bb)
1003 {
1004 edge e;
1005 edge_iterator ei;
1006
1007 FOR_EACH_EDGE (e, ei, bb->succs)
1008 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
1009 return true;
1010
1011 return false;
1012 }
1013 #endif /* GCC_BASIC_BLOCK_H */