]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/bb-reorder.c
2015-10-29 Andrew MacLeod <amacleod@redhat.com>
[thirdparty/gcc.git] / gcc / bb-reorder.c
1 /* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the "reorder blocks" pass, which changes the control
21 flow of a function to encounter fewer branches; the "partition blocks"
22 pass, which divides the basic blocks into "hot" and "cold" partitions,
23 which are kept separate; and the "duplicate computed gotos" pass, which
24 duplicates blocks ending in an indirect jump.
25
26 There are two algorithms for "reorder blocks": the "simple" algorithm,
27 which just rearranges blocks, trying to minimize the number of executed
28 unconditional branches; and the "software trace cache" algorithm, which
29 also copies code, and in general tries a lot harder to have long linear
30 pieces of machine code executed. This algorithm is described next. */
31
32 /* This (greedy) algorithm constructs traces in several rounds.
33 The construction starts from "seeds". The seed for the first round
34 is the entry point of the function. When there are more than one seed,
35 the one with the lowest key in the heap is selected first (see bb_to_key).
36 Then the algorithm repeatedly adds the most probable successor to the end
37 of a trace. Finally it connects the traces.
38
39 There are two parameters: Branch Threshold and Exec Threshold.
40 If the probability of an edge to a successor of the current basic block is
41 lower than Branch Threshold or its frequency is lower than Exec Threshold,
42 then the successor will be the seed in one of the next rounds.
43 Each round has these parameters lower than the previous one.
44 The last round has to have these parameters set to zero so that the
45 remaining blocks are picked up.
46
47 The algorithm selects the most probable successor from all unvisited
48 successors and successors that have been added to this trace.
49 The other successors (that has not been "sent" to the next round) will be
50 other seeds for this round and the secondary traces will start from them.
51 If the successor has not been visited in this trace, it is added to the
52 trace (however, there is some heuristic for simple branches).
53 If the successor has been visited in this trace, a loop has been found.
54 If the loop has many iterations, the loop is rotated so that the source
55 block of the most probable edge going out of the loop is the last block
56 of the trace.
57 If the loop has few iterations and there is no edge from the last block of
58 the loop going out of the loop, the loop header is duplicated.
59
60 When connecting traces, the algorithm first checks whether there is an edge
61 from the last block of a trace to the first block of another trace.
62 When there are still some unconnected traces it checks whether there exists
63 a basic block BB such that BB is a successor of the last block of a trace
64 and BB is a predecessor of the first block of another trace. In this case,
65 BB is duplicated, added at the end of the first trace and the traces are
66 connected through it.
67 The rest of traces are simply connected so there will be a jump to the
68 beginning of the rest of traces.
69
70 The above description is for the full algorithm, which is used when the
71 function is optimized for speed. When the function is optimized for size,
72 in order to reduce long jumps and connect more fallthru edges, the
73 algorithm is modified as follows:
74 (1) Break long traces to short ones. A trace is broken at a block that has
75 multiple predecessors/ successors during trace discovery. When connecting
76 traces, only connect Trace n with Trace n + 1. This change reduces most
77 long jumps compared with the above algorithm.
78 (2) Ignore the edge probability and frequency for fallthru edges.
79 (3) Keep the original order of blocks when there is no chance to fall
80 through. We rely on the results of cfg_cleanup.
81
82 To implement the change for code size optimization, block's index is
83 selected as the key and all traces are found in one round.
84
85 References:
86
87 "Software Trace Cache"
88 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
89 http://citeseer.nj.nec.com/15361.html
90
91 */
92
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "backend.h"
97 #include "target.h"
98 #include "rtl.h"
99 #include "tree.h"
100 #include "cfghooks.h"
101 #include "df.h"
102 #include "tm_p.h"
103 #include "expmed.h"
104 #include "optabs.h"
105 #include "regs.h"
106 #include "emit-rtl.h"
107 #include "cgraph.h"
108 #include "diagnostic-core.h"
109 #include "alias.h"
110 #include "flags.h"
111 #include "output.h"
112 #include "dojump.h"
113 #include "explow.h"
114 #include "calls.h"
115 #include "varasm.h"
116 #include "stmt.h"
117 #include "expr.h"
118 #include "params.h"
119 #include "toplev.h" /* user_defined_section_attribute */
120 #include "tree-pass.h"
121 #include "cfgrtl.h"
122 #include "cfganal.h"
123 #include "cfgbuild.h"
124 #include "cfgcleanup.h"
125 #include "bb-reorder.h"
126 #include "except.h"
127 #include "fibonacci_heap.h"
128
129 /* The number of rounds. In most cases there will only be 4 rounds, but
130 when partitioning hot and cold basic blocks into separate sections of
131 the object file there will be an extra round. */
132 #define N_ROUNDS 5
133
134 struct target_bb_reorder default_target_bb_reorder;
135 #if SWITCHABLE_TARGET
136 struct target_bb_reorder *this_target_bb_reorder = &default_target_bb_reorder;
137 #endif
138
139 #define uncond_jump_length \
140 (this_target_bb_reorder->x_uncond_jump_length)
141
142 /* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
143 static const int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
144
145 /* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
146 static const int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
147
148 /* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
149 block the edge destination is not duplicated while connecting traces. */
150 #define DUPLICATION_THRESHOLD 100
151
152 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
153 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
154
155 /* Structure to hold needed information for each basic block. */
156 struct bbro_basic_block_data
157 {
158 /* Which trace is the bb start of (-1 means it is not a start of any). */
159 int start_of_trace;
160
161 /* Which trace is the bb end of (-1 means it is not an end of any). */
162 int end_of_trace;
163
164 /* Which trace is the bb in? */
165 int in_trace;
166
167 /* Which trace was this bb visited in? */
168 int visited;
169
170 /* Which heap is BB in (if any)? */
171 bb_heap_t *heap;
172
173 /* Which heap node is BB in (if any)? */
174 bb_heap_node_t *node;
175 };
176
177 /* The current size of the following dynamic array. */
178 static int array_size;
179
180 /* The array which holds needed information for basic blocks. */
181 static bbro_basic_block_data *bbd;
182
183 /* To avoid frequent reallocation the size of arrays is greater than needed,
184 the number of elements is (not less than) 1.25 * size_wanted. */
185 #define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
186
187 /* Free the memory and set the pointer to NULL. */
188 #define FREE(P) (gcc_assert (P), free (P), P = 0)
189
190 /* Structure for holding information about a trace. */
191 struct trace
192 {
193 /* First and last basic block of the trace. */
194 basic_block first, last;
195
196 /* The round of the STC creation which this trace was found in. */
197 int round;
198
199 /* The length (i.e. the number of basic blocks) of the trace. */
200 int length;
201 };
202
203 /* Maximum frequency and count of one of the entry blocks. */
204 static int max_entry_frequency;
205 static gcov_type max_entry_count;
206
207 /* Local function prototypes. */
208 static void find_traces (int *, struct trace *);
209 static basic_block rotate_loop (edge, struct trace *, int);
210 static void mark_bb_visited (basic_block, int);
211 static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
212 int, bb_heap_t **, int);
213 static basic_block copy_bb (basic_block, edge, basic_block, int);
214 static long bb_to_key (basic_block);
215 static bool better_edge_p (const_basic_block, const_edge, int, int, int, int,
216 const_edge);
217 static bool connect_better_edge_p (const_edge, bool, int, const_edge,
218 struct trace *);
219 static void connect_traces (int, struct trace *);
220 static bool copy_bb_p (const_basic_block, int);
221 static bool push_to_next_round_p (const_basic_block, int, int, int, gcov_type);
222 \f
223 /* Return the trace number in which BB was visited. */
224
225 static int
226 bb_visited_trace (const_basic_block bb)
227 {
228 gcc_assert (bb->index < array_size);
229 return bbd[bb->index].visited;
230 }
231
232 /* This function marks BB that it was visited in trace number TRACE. */
233
234 static void
235 mark_bb_visited (basic_block bb, int trace)
236 {
237 bbd[bb->index].visited = trace;
238 if (bbd[bb->index].heap)
239 {
240 bbd[bb->index].heap->delete_node (bbd[bb->index].node);
241 bbd[bb->index].heap = NULL;
242 bbd[bb->index].node = NULL;
243 }
244 }
245
246 /* Check to see if bb should be pushed into the next round of trace
247 collections or not. Reasons for pushing the block forward are 1).
248 If the block is cold, we are doing partitioning, and there will be
249 another round (cold partition blocks are not supposed to be
250 collected into traces until the very last round); or 2). There will
251 be another round, and the basic block is not "hot enough" for the
252 current round of trace collection. */
253
254 static bool
255 push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
256 int exec_th, gcov_type count_th)
257 {
258 bool there_exists_another_round;
259 bool block_not_hot_enough;
260
261 there_exists_another_round = round < number_of_rounds - 1;
262
263 block_not_hot_enough = (bb->frequency < exec_th
264 || bb->count < count_th
265 || probably_never_executed_bb_p (cfun, bb));
266
267 if (there_exists_another_round
268 && block_not_hot_enough)
269 return true;
270 else
271 return false;
272 }
273
274 /* Find the traces for Software Trace Cache. Chain each trace through
275 RBI()->next. Store the number of traces to N_TRACES and description of
276 traces to TRACES. */
277
278 static void
279 find_traces (int *n_traces, struct trace *traces)
280 {
281 int i;
282 int number_of_rounds;
283 edge e;
284 edge_iterator ei;
285 bb_heap_t *heap = new bb_heap_t (LONG_MIN);
286
287 /* Add one extra round of trace collection when partitioning hot/cold
288 basic blocks into separate sections. The last round is for all the
289 cold blocks (and ONLY the cold blocks). */
290
291 number_of_rounds = N_ROUNDS - 1;
292
293 /* Insert entry points of function into heap. */
294 max_entry_frequency = 0;
295 max_entry_count = 0;
296 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
297 {
298 bbd[e->dest->index].heap = heap;
299 bbd[e->dest->index].node = heap->insert (bb_to_key (e->dest), e->dest);
300 if (e->dest->frequency > max_entry_frequency)
301 max_entry_frequency = e->dest->frequency;
302 if (e->dest->count > max_entry_count)
303 max_entry_count = e->dest->count;
304 }
305
306 /* Find the traces. */
307 for (i = 0; i < number_of_rounds; i++)
308 {
309 gcov_type count_threshold;
310
311 if (dump_file)
312 fprintf (dump_file, "STC - round %d\n", i + 1);
313
314 if (max_entry_count < INT_MAX / 1000)
315 count_threshold = max_entry_count * exec_threshold[i] / 1000;
316 else
317 count_threshold = max_entry_count / 1000 * exec_threshold[i];
318
319 find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
320 max_entry_frequency * exec_threshold[i] / 1000,
321 count_threshold, traces, n_traces, i, &heap,
322 number_of_rounds);
323 }
324 delete heap;
325
326 if (dump_file)
327 {
328 for (i = 0; i < *n_traces; i++)
329 {
330 basic_block bb;
331 fprintf (dump_file, "Trace %d (round %d): ", i + 1,
332 traces[i].round + 1);
333 for (bb = traces[i].first;
334 bb != traces[i].last;
335 bb = (basic_block) bb->aux)
336 fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
337 fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
338 }
339 fflush (dump_file);
340 }
341 }
342
343 /* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
344 (with sequential number TRACE_N). */
345
346 static basic_block
347 rotate_loop (edge back_edge, struct trace *trace, int trace_n)
348 {
349 basic_block bb;
350
351 /* Information about the best end (end after rotation) of the loop. */
352 basic_block best_bb = NULL;
353 edge best_edge = NULL;
354 int best_freq = -1;
355 gcov_type best_count = -1;
356 /* The best edge is preferred when its destination is not visited yet
357 or is a start block of some trace. */
358 bool is_preferred = false;
359
360 /* Find the most frequent edge that goes out from current trace. */
361 bb = back_edge->dest;
362 do
363 {
364 edge e;
365 edge_iterator ei;
366
367 FOR_EACH_EDGE (e, ei, bb->succs)
368 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
369 && bb_visited_trace (e->dest) != trace_n
370 && (e->flags & EDGE_CAN_FALLTHRU)
371 && !(e->flags & EDGE_COMPLEX))
372 {
373 if (is_preferred)
374 {
375 /* The best edge is preferred. */
376 if (!bb_visited_trace (e->dest)
377 || bbd[e->dest->index].start_of_trace >= 0)
378 {
379 /* The current edge E is also preferred. */
380 int freq = EDGE_FREQUENCY (e);
381 if (freq > best_freq || e->count > best_count)
382 {
383 best_freq = freq;
384 best_count = e->count;
385 best_edge = e;
386 best_bb = bb;
387 }
388 }
389 }
390 else
391 {
392 if (!bb_visited_trace (e->dest)
393 || bbd[e->dest->index].start_of_trace >= 0)
394 {
395 /* The current edge E is preferred. */
396 is_preferred = true;
397 best_freq = EDGE_FREQUENCY (e);
398 best_count = e->count;
399 best_edge = e;
400 best_bb = bb;
401 }
402 else
403 {
404 int freq = EDGE_FREQUENCY (e);
405 if (!best_edge || freq > best_freq || e->count > best_count)
406 {
407 best_freq = freq;
408 best_count = e->count;
409 best_edge = e;
410 best_bb = bb;
411 }
412 }
413 }
414 }
415 bb = (basic_block) bb->aux;
416 }
417 while (bb != back_edge->dest);
418
419 if (best_bb)
420 {
421 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
422 the trace. */
423 if (back_edge->dest == trace->first)
424 {
425 trace->first = (basic_block) best_bb->aux;
426 }
427 else
428 {
429 basic_block prev_bb;
430
431 for (prev_bb = trace->first;
432 prev_bb->aux != back_edge->dest;
433 prev_bb = (basic_block) prev_bb->aux)
434 ;
435 prev_bb->aux = best_bb->aux;
436
437 /* Try to get rid of uncond jump to cond jump. */
438 if (single_succ_p (prev_bb))
439 {
440 basic_block header = single_succ (prev_bb);
441
442 /* Duplicate HEADER if it is a small block containing cond jump
443 in the end. */
444 if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
445 && !CROSSING_JUMP_P (BB_END (header)))
446 copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
447 }
448 }
449 }
450 else
451 {
452 /* We have not found suitable loop tail so do no rotation. */
453 best_bb = back_edge->src;
454 }
455 best_bb->aux = NULL;
456 return best_bb;
457 }
458
459 /* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
460 not include basic blocks whose probability is lower than BRANCH_TH or whose
461 frequency is lower than EXEC_TH into traces (or whose count is lower than
462 COUNT_TH). Store the new traces into TRACES and modify the number of
463 traces *N_TRACES. Set the round (which the trace belongs to) to ROUND.
464 The function expects starting basic blocks to be in *HEAP and will delete
465 *HEAP and store starting points for the next round into new *HEAP. */
466
467 static void
468 find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
469 struct trace *traces, int *n_traces, int round,
470 bb_heap_t **heap, int number_of_rounds)
471 {
472 /* Heap for discarded basic blocks which are possible starting points for
473 the next round. */
474 bb_heap_t *new_heap = new bb_heap_t (LONG_MIN);
475 bool for_size = optimize_function_for_size_p (cfun);
476
477 while (!(*heap)->empty ())
478 {
479 basic_block bb;
480 struct trace *trace;
481 edge best_edge, e;
482 long key;
483 edge_iterator ei;
484
485 bb = (*heap)->extract_min ();
486 bbd[bb->index].heap = NULL;
487 bbd[bb->index].node = NULL;
488
489 if (dump_file)
490 fprintf (dump_file, "Getting bb %d\n", bb->index);
491
492 /* If the BB's frequency is too low, send BB to the next round. When
493 partitioning hot/cold blocks into separate sections, make sure all
494 the cold blocks (and ONLY the cold blocks) go into the (extra) final
495 round. When optimizing for size, do not push to next round. */
496
497 if (!for_size
498 && push_to_next_round_p (bb, round, number_of_rounds, exec_th,
499 count_th))
500 {
501 int key = bb_to_key (bb);
502 bbd[bb->index].heap = new_heap;
503 bbd[bb->index].node = new_heap->insert (key, bb);
504
505 if (dump_file)
506 fprintf (dump_file,
507 " Possible start point of next round: %d (key: %d)\n",
508 bb->index, key);
509 continue;
510 }
511
512 trace = traces + *n_traces;
513 trace->first = bb;
514 trace->round = round;
515 trace->length = 0;
516 bbd[bb->index].in_trace = *n_traces;
517 (*n_traces)++;
518
519 do
520 {
521 int prob, freq;
522 bool ends_in_call;
523
524 /* The probability and frequency of the best edge. */
525 int best_prob = INT_MIN / 2;
526 int best_freq = INT_MIN / 2;
527
528 best_edge = NULL;
529 mark_bb_visited (bb, *n_traces);
530 trace->length++;
531
532 if (dump_file)
533 fprintf (dump_file, "Basic block %d was visited in trace %d\n",
534 bb->index, *n_traces - 1);
535
536 ends_in_call = block_ends_with_call_p (bb);
537
538 /* Select the successor that will be placed after BB. */
539 FOR_EACH_EDGE (e, ei, bb->succs)
540 {
541 gcc_assert (!(e->flags & EDGE_FAKE));
542
543 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
544 continue;
545
546 if (bb_visited_trace (e->dest)
547 && bb_visited_trace (e->dest) != *n_traces)
548 continue;
549
550 if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
551 continue;
552
553 prob = e->probability;
554 freq = e->dest->frequency;
555
556 /* The only sensible preference for a call instruction is the
557 fallthru edge. Don't bother selecting anything else. */
558 if (ends_in_call)
559 {
560 if (e->flags & EDGE_CAN_FALLTHRU)
561 {
562 best_edge = e;
563 best_prob = prob;
564 best_freq = freq;
565 }
566 continue;
567 }
568
569 /* Edge that cannot be fallthru or improbable or infrequent
570 successor (i.e. it is unsuitable successor). When optimizing
571 for size, ignore the probability and frequency. */
572 if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
573 || ((prob < branch_th || EDGE_FREQUENCY (e) < exec_th
574 || e->count < count_th) && (!for_size)))
575 continue;
576
577 /* If partitioning hot/cold basic blocks, don't consider edges
578 that cross section boundaries. */
579
580 if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
581 best_edge))
582 {
583 best_edge = e;
584 best_prob = prob;
585 best_freq = freq;
586 }
587 }
588
589 /* If the best destination has multiple predecessors, and can be
590 duplicated cheaper than a jump, don't allow it to be added
591 to a trace. We'll duplicate it when connecting traces. */
592 if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
593 && copy_bb_p (best_edge->dest, 0))
594 best_edge = NULL;
595
596 /* If the best destination has multiple successors or predecessors,
597 don't allow it to be added when optimizing for size. This makes
598 sure predecessors with smaller index are handled before the best
599 destinarion. It breaks long trace and reduces long jumps.
600
601 Take if-then-else as an example.
602 A
603 / \
604 B C
605 \ /
606 D
607 If we do not remove the best edge B->D/C->D, the final order might
608 be A B D ... C. C is at the end of the program. If D's successors
609 and D are complicated, might need long jumps for A->C and C->D.
610 Similar issue for order: A C D ... B.
611
612 After removing the best edge, the final result will be ABCD/ ACBD.
613 It does not add jump compared with the previous order. But it
614 reduces the possibility of long jumps. */
615 if (best_edge && for_size
616 && (EDGE_COUNT (best_edge->dest->succs) > 1
617 || EDGE_COUNT (best_edge->dest->preds) > 1))
618 best_edge = NULL;
619
620 /* Add all non-selected successors to the heaps. */
621 FOR_EACH_EDGE (e, ei, bb->succs)
622 {
623 if (e == best_edge
624 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
625 || bb_visited_trace (e->dest))
626 continue;
627
628 key = bb_to_key (e->dest);
629
630 if (bbd[e->dest->index].heap)
631 {
632 /* E->DEST is already in some heap. */
633 if (key != bbd[e->dest->index].node->get_key ())
634 {
635 if (dump_file)
636 {
637 fprintf (dump_file,
638 "Changing key for bb %d from %ld to %ld.\n",
639 e->dest->index,
640 (long) bbd[e->dest->index].node->get_key (),
641 key);
642 }
643 bbd[e->dest->index].heap->replace_key
644 (bbd[e->dest->index].node, key);
645 }
646 }
647 else
648 {
649 bb_heap_t *which_heap = *heap;
650
651 prob = e->probability;
652 freq = EDGE_FREQUENCY (e);
653
654 if (!(e->flags & EDGE_CAN_FALLTHRU)
655 || (e->flags & EDGE_COMPLEX)
656 || prob < branch_th || freq < exec_th
657 || e->count < count_th)
658 {
659 /* When partitioning hot/cold basic blocks, make sure
660 the cold blocks (and only the cold blocks) all get
661 pushed to the last round of trace collection. When
662 optimizing for size, do not push to next round. */
663
664 if (!for_size && push_to_next_round_p (e->dest, round,
665 number_of_rounds,
666 exec_th, count_th))
667 which_heap = new_heap;
668 }
669
670 bbd[e->dest->index].heap = which_heap;
671 bbd[e->dest->index].node = which_heap->insert (key, e->dest);
672
673 if (dump_file)
674 {
675 fprintf (dump_file,
676 " Possible start of %s round: %d (key: %ld)\n",
677 (which_heap == new_heap) ? "next" : "this",
678 e->dest->index, (long) key);
679 }
680
681 }
682 }
683
684 if (best_edge) /* Suitable successor was found. */
685 {
686 if (bb_visited_trace (best_edge->dest) == *n_traces)
687 {
688 /* We do nothing with one basic block loops. */
689 if (best_edge->dest != bb)
690 {
691 if (EDGE_FREQUENCY (best_edge)
692 > 4 * best_edge->dest->frequency / 5)
693 {
694 /* The loop has at least 4 iterations. If the loop
695 header is not the first block of the function
696 we can rotate the loop. */
697
698 if (best_edge->dest
699 != ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
700 {
701 if (dump_file)
702 {
703 fprintf (dump_file,
704 "Rotating loop %d - %d\n",
705 best_edge->dest->index, bb->index);
706 }
707 bb->aux = best_edge->dest;
708 bbd[best_edge->dest->index].in_trace =
709 (*n_traces) - 1;
710 bb = rotate_loop (best_edge, trace, *n_traces);
711 }
712 }
713 else
714 {
715 /* The loop has less than 4 iterations. */
716
717 if (single_succ_p (bb)
718 && copy_bb_p (best_edge->dest,
719 optimize_edge_for_speed_p
720 (best_edge)))
721 {
722 bb = copy_bb (best_edge->dest, best_edge, bb,
723 *n_traces);
724 trace->length++;
725 }
726 }
727 }
728
729 /* Terminate the trace. */
730 break;
731 }
732 else
733 {
734 /* Check for a situation
735
736 A
737 /|
738 B |
739 \|
740 C
741
742 where
743 EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
744 >= EDGE_FREQUENCY (AC).
745 (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
746 Best ordering is then A B C.
747
748 When optimizing for size, A B C is always the best order.
749
750 This situation is created for example by:
751
752 if (A) B;
753 C;
754
755 */
756
757 FOR_EACH_EDGE (e, ei, bb->succs)
758 if (e != best_edge
759 && (e->flags & EDGE_CAN_FALLTHRU)
760 && !(e->flags & EDGE_COMPLEX)
761 && !bb_visited_trace (e->dest)
762 && single_pred_p (e->dest)
763 && !(e->flags & EDGE_CROSSING)
764 && single_succ_p (e->dest)
765 && (single_succ_edge (e->dest)->flags
766 & EDGE_CAN_FALLTHRU)
767 && !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
768 && single_succ (e->dest) == best_edge->dest
769 && (2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge)
770 || for_size))
771 {
772 best_edge = e;
773 if (dump_file)
774 fprintf (dump_file, "Selecting BB %d\n",
775 best_edge->dest->index);
776 break;
777 }
778
779 bb->aux = best_edge->dest;
780 bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
781 bb = best_edge->dest;
782 }
783 }
784 }
785 while (best_edge);
786 trace->last = bb;
787 bbd[trace->first->index].start_of_trace = *n_traces - 1;
788 bbd[trace->last->index].end_of_trace = *n_traces - 1;
789
790 /* The trace is terminated so we have to recount the keys in heap
791 (some block can have a lower key because now one of its predecessors
792 is an end of the trace). */
793 FOR_EACH_EDGE (e, ei, bb->succs)
794 {
795 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
796 || bb_visited_trace (e->dest))
797 continue;
798
799 if (bbd[e->dest->index].heap)
800 {
801 key = bb_to_key (e->dest);
802 if (key != bbd[e->dest->index].node->get_key ())
803 {
804 if (dump_file)
805 {
806 fprintf (dump_file,
807 "Changing key for bb %d from %ld to %ld.\n",
808 e->dest->index,
809 (long) bbd[e->dest->index].node->get_key (), key);
810 }
811 bbd[e->dest->index].heap->replace_key
812 (bbd[e->dest->index].node, key);
813 }
814 }
815 }
816 }
817
818 delete (*heap);
819
820 /* "Return" the new heap. */
821 *heap = new_heap;
822 }
823
824 /* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
825 it to trace after BB, mark OLD_BB visited and update pass' data structures
826 (TRACE is a number of trace which OLD_BB is duplicated to). */
827
828 static basic_block
829 copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
830 {
831 basic_block new_bb;
832
833 new_bb = duplicate_block (old_bb, e, bb);
834 BB_COPY_PARTITION (new_bb, old_bb);
835
836 gcc_assert (e->dest == new_bb);
837
838 if (dump_file)
839 fprintf (dump_file,
840 "Duplicated bb %d (created bb %d)\n",
841 old_bb->index, new_bb->index);
842
843 if (new_bb->index >= array_size
844 || last_basic_block_for_fn (cfun) > array_size)
845 {
846 int i;
847 int new_size;
848
849 new_size = MAX (last_basic_block_for_fn (cfun), new_bb->index + 1);
850 new_size = GET_ARRAY_SIZE (new_size);
851 bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
852 for (i = array_size; i < new_size; i++)
853 {
854 bbd[i].start_of_trace = -1;
855 bbd[i].end_of_trace = -1;
856 bbd[i].in_trace = -1;
857 bbd[i].visited = 0;
858 bbd[i].heap = NULL;
859 bbd[i].node = NULL;
860 }
861 array_size = new_size;
862
863 if (dump_file)
864 {
865 fprintf (dump_file,
866 "Growing the dynamic array to %d elements.\n",
867 array_size);
868 }
869 }
870
871 gcc_assert (!bb_visited_trace (e->dest));
872 mark_bb_visited (new_bb, trace);
873 new_bb->aux = bb->aux;
874 bb->aux = new_bb;
875
876 bbd[new_bb->index].in_trace = trace;
877
878 return new_bb;
879 }
880
881 /* Compute and return the key (for the heap) of the basic block BB. */
882
883 static long
884 bb_to_key (basic_block bb)
885 {
886 edge e;
887 edge_iterator ei;
888 int priority = 0;
889
890 /* Use index as key to align with its original order. */
891 if (optimize_function_for_size_p (cfun))
892 return bb->index;
893
894 /* Do not start in probably never executed blocks. */
895
896 if (BB_PARTITION (bb) == BB_COLD_PARTITION
897 || probably_never_executed_bb_p (cfun, bb))
898 return BB_FREQ_MAX;
899
900 /* Prefer blocks whose predecessor is an end of some trace
901 or whose predecessor edge is EDGE_DFS_BACK. */
902 FOR_EACH_EDGE (e, ei, bb->preds)
903 {
904 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
905 && bbd[e->src->index].end_of_trace >= 0)
906 || (e->flags & EDGE_DFS_BACK))
907 {
908 int edge_freq = EDGE_FREQUENCY (e);
909
910 if (edge_freq > priority)
911 priority = edge_freq;
912 }
913 }
914
915 if (priority)
916 /* The block with priority should have significantly lower key. */
917 return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
918
919 return -bb->frequency;
920 }
921
922 /* Return true when the edge E from basic block BB is better than the temporary
923 best edge (details are in function). The probability of edge E is PROB. The
924 frequency of the successor is FREQ. The current best probability is
925 BEST_PROB, the best frequency is BEST_FREQ.
926 The edge is considered to be equivalent when PROB does not differ much from
927 BEST_PROB; similarly for frequency. */
928
929 static bool
930 better_edge_p (const_basic_block bb, const_edge e, int prob, int freq,
931 int best_prob, int best_freq, const_edge cur_best_edge)
932 {
933 bool is_better_edge;
934
935 /* The BEST_* values do not have to be best, but can be a bit smaller than
936 maximum values. */
937 int diff_prob = best_prob / 10;
938 int diff_freq = best_freq / 10;
939
940 /* The smaller one is better to keep the original order. */
941 if (optimize_function_for_size_p (cfun))
942 return !cur_best_edge
943 || cur_best_edge->dest->index > e->dest->index;
944
945 if (prob > best_prob + diff_prob)
946 /* The edge has higher probability than the temporary best edge. */
947 is_better_edge = true;
948 else if (prob < best_prob - diff_prob)
949 /* The edge has lower probability than the temporary best edge. */
950 is_better_edge = false;
951 else if (freq < best_freq - diff_freq)
952 /* The edge and the temporary best edge have almost equivalent
953 probabilities. The higher frequency of a successor now means
954 that there is another edge going into that successor.
955 This successor has lower frequency so it is better. */
956 is_better_edge = true;
957 else if (freq > best_freq + diff_freq)
958 /* This successor has higher frequency so it is worse. */
959 is_better_edge = false;
960 else if (e->dest->prev_bb == bb)
961 /* The edges have equivalent probabilities and the successors
962 have equivalent frequencies. Select the previous successor. */
963 is_better_edge = true;
964 else
965 is_better_edge = false;
966
967 /* If we are doing hot/cold partitioning, make sure that we always favor
968 non-crossing edges over crossing edges. */
969
970 if (!is_better_edge
971 && flag_reorder_blocks_and_partition
972 && cur_best_edge
973 && (cur_best_edge->flags & EDGE_CROSSING)
974 && !(e->flags & EDGE_CROSSING))
975 is_better_edge = true;
976
977 return is_better_edge;
978 }
979
980 /* Return true when the edge E is better than the temporary best edge
981 CUR_BEST_EDGE. If SRC_INDEX_P is true, the function compares the src bb of
982 E and CUR_BEST_EDGE; otherwise it will compare the dest bb.
983 BEST_LEN is the trace length of src (or dest) bb in CUR_BEST_EDGE.
984 TRACES record the information about traces.
985 When optimizing for size, the edge with smaller index is better.
986 When optimizing for speed, the edge with bigger probability or longer trace
987 is better. */
988
989 static bool
990 connect_better_edge_p (const_edge e, bool src_index_p, int best_len,
991 const_edge cur_best_edge, struct trace *traces)
992 {
993 int e_index;
994 int b_index;
995 bool is_better_edge;
996
997 if (!cur_best_edge)
998 return true;
999
1000 if (optimize_function_for_size_p (cfun))
1001 {
1002 e_index = src_index_p ? e->src->index : e->dest->index;
1003 b_index = src_index_p ? cur_best_edge->src->index
1004 : cur_best_edge->dest->index;
1005 /* The smaller one is better to keep the original order. */
1006 return b_index > e_index;
1007 }
1008
1009 if (src_index_p)
1010 {
1011 e_index = e->src->index;
1012
1013 if (e->probability > cur_best_edge->probability)
1014 /* The edge has higher probability than the temporary best edge. */
1015 is_better_edge = true;
1016 else if (e->probability < cur_best_edge->probability)
1017 /* The edge has lower probability than the temporary best edge. */
1018 is_better_edge = false;
1019 else if (traces[bbd[e_index].end_of_trace].length > best_len)
1020 /* The edge and the temporary best edge have equivalent probabilities.
1021 The edge with longer trace is better. */
1022 is_better_edge = true;
1023 else
1024 is_better_edge = false;
1025 }
1026 else
1027 {
1028 e_index = e->dest->index;
1029
1030 if (e->probability > cur_best_edge->probability)
1031 /* The edge has higher probability than the temporary best edge. */
1032 is_better_edge = true;
1033 else if (e->probability < cur_best_edge->probability)
1034 /* The edge has lower probability than the temporary best edge. */
1035 is_better_edge = false;
1036 else if (traces[bbd[e_index].start_of_trace].length > best_len)
1037 /* The edge and the temporary best edge have equivalent probabilities.
1038 The edge with longer trace is better. */
1039 is_better_edge = true;
1040 else
1041 is_better_edge = false;
1042 }
1043
1044 return is_better_edge;
1045 }
1046
1047 /* Connect traces in array TRACES, N_TRACES is the count of traces. */
1048
1049 static void
1050 connect_traces (int n_traces, struct trace *traces)
1051 {
1052 int i;
1053 bool *connected;
1054 bool two_passes;
1055 int last_trace;
1056 int current_pass;
1057 int current_partition;
1058 int freq_threshold;
1059 gcov_type count_threshold;
1060 bool for_size = optimize_function_for_size_p (cfun);
1061
1062 freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
1063 if (max_entry_count < INT_MAX / 1000)
1064 count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
1065 else
1066 count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
1067
1068 connected = XCNEWVEC (bool, n_traces);
1069 last_trace = -1;
1070 current_pass = 1;
1071 current_partition = BB_PARTITION (traces[0].first);
1072 two_passes = false;
1073
1074 if (crtl->has_bb_partition)
1075 for (i = 0; i < n_traces && !two_passes; i++)
1076 if (BB_PARTITION (traces[0].first)
1077 != BB_PARTITION (traces[i].first))
1078 two_passes = true;
1079
1080 for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
1081 {
1082 int t = i;
1083 int t2;
1084 edge e, best;
1085 int best_len;
1086
1087 if (i >= n_traces)
1088 {
1089 gcc_assert (two_passes && current_pass == 1);
1090 i = 0;
1091 t = i;
1092 current_pass = 2;
1093 if (current_partition == BB_HOT_PARTITION)
1094 current_partition = BB_COLD_PARTITION;
1095 else
1096 current_partition = BB_HOT_PARTITION;
1097 }
1098
1099 if (connected[t])
1100 continue;
1101
1102 if (two_passes
1103 && BB_PARTITION (traces[t].first) != current_partition)
1104 continue;
1105
1106 connected[t] = true;
1107
1108 /* Find the predecessor traces. */
1109 for (t2 = t; t2 > 0;)
1110 {
1111 edge_iterator ei;
1112 best = NULL;
1113 best_len = 0;
1114 FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
1115 {
1116 int si = e->src->index;
1117
1118 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1119 && (e->flags & EDGE_CAN_FALLTHRU)
1120 && !(e->flags & EDGE_COMPLEX)
1121 && bbd[si].end_of_trace >= 0
1122 && !connected[bbd[si].end_of_trace]
1123 && (BB_PARTITION (e->src) == current_partition)
1124 && connect_better_edge_p (e, true, best_len, best, traces))
1125 {
1126 best = e;
1127 best_len = traces[bbd[si].end_of_trace].length;
1128 }
1129 }
1130 if (best)
1131 {
1132 best->src->aux = best->dest;
1133 t2 = bbd[best->src->index].end_of_trace;
1134 connected[t2] = true;
1135
1136 if (dump_file)
1137 {
1138 fprintf (dump_file, "Connection: %d %d\n",
1139 best->src->index, best->dest->index);
1140 }
1141 }
1142 else
1143 break;
1144 }
1145
1146 if (last_trace >= 0)
1147 traces[last_trace].last->aux = traces[t2].first;
1148 last_trace = t;
1149
1150 /* Find the successor traces. */
1151 while (1)
1152 {
1153 /* Find the continuation of the chain. */
1154 edge_iterator ei;
1155 best = NULL;
1156 best_len = 0;
1157 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1158 {
1159 int di = e->dest->index;
1160
1161 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1162 && (e->flags & EDGE_CAN_FALLTHRU)
1163 && !(e->flags & EDGE_COMPLEX)
1164 && bbd[di].start_of_trace >= 0
1165 && !connected[bbd[di].start_of_trace]
1166 && (BB_PARTITION (e->dest) == current_partition)
1167 && connect_better_edge_p (e, false, best_len, best, traces))
1168 {
1169 best = e;
1170 best_len = traces[bbd[di].start_of_trace].length;
1171 }
1172 }
1173
1174 if (for_size)
1175 {
1176 if (!best)
1177 /* Stop finding the successor traces. */
1178 break;
1179
1180 /* It is OK to connect block n with block n + 1 or a block
1181 before n. For others, only connect to the loop header. */
1182 if (best->dest->index > (traces[t].last->index + 1))
1183 {
1184 int count = EDGE_COUNT (best->dest->preds);
1185
1186 FOR_EACH_EDGE (e, ei, best->dest->preds)
1187 if (e->flags & EDGE_DFS_BACK)
1188 count--;
1189
1190 /* If dest has multiple predecessors, skip it. We expect
1191 that one predecessor with smaller index connects with it
1192 later. */
1193 if (count != 1)
1194 break;
1195 }
1196
1197 /* Only connect Trace n with Trace n + 1. It is conservative
1198 to keep the order as close as possible to the original order.
1199 It also helps to reduce long jumps. */
1200 if (last_trace != bbd[best->dest->index].start_of_trace - 1)
1201 break;
1202
1203 if (dump_file)
1204 fprintf (dump_file, "Connection: %d %d\n",
1205 best->src->index, best->dest->index);
1206
1207 t = bbd[best->dest->index].start_of_trace;
1208 traces[last_trace].last->aux = traces[t].first;
1209 connected[t] = true;
1210 last_trace = t;
1211 }
1212 else if (best)
1213 {
1214 if (dump_file)
1215 {
1216 fprintf (dump_file, "Connection: %d %d\n",
1217 best->src->index, best->dest->index);
1218 }
1219 t = bbd[best->dest->index].start_of_trace;
1220 traces[last_trace].last->aux = traces[t].first;
1221 connected[t] = true;
1222 last_trace = t;
1223 }
1224 else
1225 {
1226 /* Try to connect the traces by duplication of 1 block. */
1227 edge e2;
1228 basic_block next_bb = NULL;
1229 bool try_copy = false;
1230
1231 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1232 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1233 && (e->flags & EDGE_CAN_FALLTHRU)
1234 && !(e->flags & EDGE_COMPLEX)
1235 && (!best || e->probability > best->probability))
1236 {
1237 edge_iterator ei;
1238 edge best2 = NULL;
1239 int best2_len = 0;
1240
1241 /* If the destination is a start of a trace which is only
1242 one block long, then no need to search the successor
1243 blocks of the trace. Accept it. */
1244 if (bbd[e->dest->index].start_of_trace >= 0
1245 && traces[bbd[e->dest->index].start_of_trace].length
1246 == 1)
1247 {
1248 best = e;
1249 try_copy = true;
1250 continue;
1251 }
1252
1253 FOR_EACH_EDGE (e2, ei, e->dest->succs)
1254 {
1255 int di = e2->dest->index;
1256
1257 if (e2->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
1258 || ((e2->flags & EDGE_CAN_FALLTHRU)
1259 && !(e2->flags & EDGE_COMPLEX)
1260 && bbd[di].start_of_trace >= 0
1261 && !connected[bbd[di].start_of_trace]
1262 && BB_PARTITION (e2->dest) == current_partition
1263 && EDGE_FREQUENCY (e2) >= freq_threshold
1264 && e2->count >= count_threshold
1265 && (!best2
1266 || e2->probability > best2->probability
1267 || (e2->probability == best2->probability
1268 && traces[bbd[di].start_of_trace].length
1269 > best2_len))))
1270 {
1271 best = e;
1272 best2 = e2;
1273 if (e2->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1274 best2_len = traces[bbd[di].start_of_trace].length;
1275 else
1276 best2_len = INT_MAX;
1277 next_bb = e2->dest;
1278 try_copy = true;
1279 }
1280 }
1281 }
1282
1283 if (crtl->has_bb_partition)
1284 try_copy = false;
1285
1286 /* Copy tiny blocks always; copy larger blocks only when the
1287 edge is traversed frequently enough. */
1288 if (try_copy
1289 && copy_bb_p (best->dest,
1290 optimize_edge_for_speed_p (best)
1291 && EDGE_FREQUENCY (best) >= freq_threshold
1292 && best->count >= count_threshold))
1293 {
1294 basic_block new_bb;
1295
1296 if (dump_file)
1297 {
1298 fprintf (dump_file, "Connection: %d %d ",
1299 traces[t].last->index, best->dest->index);
1300 if (!next_bb)
1301 fputc ('\n', dump_file);
1302 else if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1303 fprintf (dump_file, "exit\n");
1304 else
1305 fprintf (dump_file, "%d\n", next_bb->index);
1306 }
1307
1308 new_bb = copy_bb (best->dest, best, traces[t].last, t);
1309 traces[t].last = new_bb;
1310 if (next_bb && next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
1311 {
1312 t = bbd[next_bb->index].start_of_trace;
1313 traces[last_trace].last->aux = traces[t].first;
1314 connected[t] = true;
1315 last_trace = t;
1316 }
1317 else
1318 break; /* Stop finding the successor traces. */
1319 }
1320 else
1321 break; /* Stop finding the successor traces. */
1322 }
1323 }
1324 }
1325
1326 if (dump_file)
1327 {
1328 basic_block bb;
1329
1330 fprintf (dump_file, "Final order:\n");
1331 for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
1332 fprintf (dump_file, "%d ", bb->index);
1333 fprintf (dump_file, "\n");
1334 fflush (dump_file);
1335 }
1336
1337 FREE (connected);
1338 }
1339
1340 /* Return true when BB can and should be copied. CODE_MAY_GROW is true
1341 when code size is allowed to grow by duplication. */
1342
1343 static bool
1344 copy_bb_p (const_basic_block bb, int code_may_grow)
1345 {
1346 int size = 0;
1347 int max_size = uncond_jump_length;
1348 rtx_insn *insn;
1349
1350 if (!bb->frequency)
1351 return false;
1352 if (EDGE_COUNT (bb->preds) < 2)
1353 return false;
1354 if (!can_duplicate_block_p (bb))
1355 return false;
1356
1357 /* Avoid duplicating blocks which have many successors (PR/13430). */
1358 if (EDGE_COUNT (bb->succs) > 8)
1359 return false;
1360
1361 if (code_may_grow && optimize_bb_for_speed_p (bb))
1362 max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
1363
1364 FOR_BB_INSNS (bb, insn)
1365 {
1366 if (INSN_P (insn))
1367 size += get_attr_min_length (insn);
1368 }
1369
1370 if (size <= max_size)
1371 return true;
1372
1373 if (dump_file)
1374 {
1375 fprintf (dump_file,
1376 "Block %d can't be copied because its size = %d.\n",
1377 bb->index, size);
1378 }
1379
1380 return false;
1381 }
1382
1383 /* Return the length of unconditional jump instruction. */
1384
1385 int
1386 get_uncond_jump_length (void)
1387 {
1388 int length;
1389
1390 start_sequence ();
1391 rtx_code_label *label = emit_label (gen_label_rtx ());
1392 rtx_insn *jump = emit_jump_insn (targetm.gen_jump (label));
1393 length = get_attr_min_length (jump);
1394 end_sequence ();
1395
1396 return length;
1397 }
1398
1399 /* The landing pad OLD_LP, in block OLD_BB, has edges from both partitions.
1400 Duplicate the landing pad and split the edges so that no EH edge
1401 crosses partitions. */
1402
1403 static void
1404 fix_up_crossing_landing_pad (eh_landing_pad old_lp, basic_block old_bb)
1405 {
1406 eh_landing_pad new_lp;
1407 basic_block new_bb, last_bb, post_bb;
1408 rtx_insn *jump;
1409 unsigned new_partition;
1410 edge_iterator ei;
1411 edge e;
1412
1413 /* Generate the new landing-pad structure. */
1414 new_lp = gen_eh_landing_pad (old_lp->region);
1415 new_lp->post_landing_pad = old_lp->post_landing_pad;
1416 new_lp->landing_pad = gen_label_rtx ();
1417 LABEL_PRESERVE_P (new_lp->landing_pad) = 1;
1418
1419 /* Put appropriate instructions in new bb. */
1420 rtx_code_label *new_label = emit_label (new_lp->landing_pad);
1421
1422 expand_dw2_landing_pad_for_region (old_lp->region);
1423
1424 post_bb = BLOCK_FOR_INSN (old_lp->landing_pad);
1425 post_bb = single_succ (post_bb);
1426 rtx_code_label *post_label = block_label (post_bb);
1427 jump = emit_jump_insn (targetm.gen_jump (post_label));
1428 JUMP_LABEL (jump) = post_label;
1429
1430 /* Create new basic block to be dest for lp. */
1431 last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
1432 new_bb = create_basic_block (new_label, jump, last_bb);
1433 new_bb->aux = last_bb->aux;
1434 last_bb->aux = new_bb;
1435
1436 emit_barrier_after_bb (new_bb);
1437
1438 make_edge (new_bb, post_bb, 0);
1439
1440 /* Make sure new bb is in the other partition. */
1441 new_partition = BB_PARTITION (old_bb);
1442 new_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1443 BB_SET_PARTITION (new_bb, new_partition);
1444
1445 /* Fix up the edges. */
1446 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)) != NULL; )
1447 if (BB_PARTITION (e->src) == new_partition)
1448 {
1449 rtx_insn *insn = BB_END (e->src);
1450 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1451
1452 gcc_assert (note != NULL);
1453 gcc_checking_assert (INTVAL (XEXP (note, 0)) == old_lp->index);
1454 XEXP (note, 0) = GEN_INT (new_lp->index);
1455
1456 /* Adjust the edge to the new destination. */
1457 redirect_edge_succ (e, new_bb);
1458 }
1459 else
1460 ei_next (&ei);
1461 }
1462
1463
1464 /* Ensure that all hot bbs are included in a hot path through the
1465 procedure. This is done by calling this function twice, once
1466 with WALK_UP true (to look for paths from the entry to hot bbs) and
1467 once with WALK_UP false (to look for paths from hot bbs to the exit).
1468 Returns the updated value of COLD_BB_COUNT and adds newly-hot bbs
1469 to BBS_IN_HOT_PARTITION. */
1470
1471 static unsigned int
1472 sanitize_hot_paths (bool walk_up, unsigned int cold_bb_count,
1473 vec<basic_block> *bbs_in_hot_partition)
1474 {
1475 /* Callers check this. */
1476 gcc_checking_assert (cold_bb_count);
1477
1478 /* Keep examining hot bbs while we still have some left to check
1479 and there are remaining cold bbs. */
1480 vec<basic_block> hot_bbs_to_check = bbs_in_hot_partition->copy ();
1481 while (! hot_bbs_to_check.is_empty ()
1482 && cold_bb_count)
1483 {
1484 basic_block bb = hot_bbs_to_check.pop ();
1485 vec<edge, va_gc> *edges = walk_up ? bb->preds : bb->succs;
1486 edge e;
1487 edge_iterator ei;
1488 int highest_probability = 0;
1489 int highest_freq = 0;
1490 gcov_type highest_count = 0;
1491 bool found = false;
1492
1493 /* Walk the preds/succs and check if there is at least one already
1494 marked hot. Keep track of the most frequent pred/succ so that we
1495 can mark it hot if we don't find one. */
1496 FOR_EACH_EDGE (e, ei, edges)
1497 {
1498 basic_block reach_bb = walk_up ? e->src : e->dest;
1499
1500 if (e->flags & EDGE_DFS_BACK)
1501 continue;
1502
1503 if (BB_PARTITION (reach_bb) != BB_COLD_PARTITION)
1504 {
1505 found = true;
1506 break;
1507 }
1508 /* The following loop will look for the hottest edge via
1509 the edge count, if it is non-zero, then fallback to the edge
1510 frequency and finally the edge probability. */
1511 if (e->count > highest_count)
1512 highest_count = e->count;
1513 int edge_freq = EDGE_FREQUENCY (e);
1514 if (edge_freq > highest_freq)
1515 highest_freq = edge_freq;
1516 if (e->probability > highest_probability)
1517 highest_probability = e->probability;
1518 }
1519
1520 /* If bb is reached by (or reaches, in the case of !WALK_UP) another hot
1521 block (or unpartitioned, e.g. the entry block) then it is ok. If not,
1522 then the most frequent pred (or succ) needs to be adjusted. In the
1523 case where multiple preds/succs have the same frequency (e.g. a
1524 50-50 branch), then both will be adjusted. */
1525 if (found)
1526 continue;
1527
1528 FOR_EACH_EDGE (e, ei, edges)
1529 {
1530 if (e->flags & EDGE_DFS_BACK)
1531 continue;
1532 /* Select the hottest edge using the edge count, if it is non-zero,
1533 then fallback to the edge frequency and finally the edge
1534 probability. */
1535 if (highest_count)
1536 {
1537 if (e->count < highest_count)
1538 continue;
1539 }
1540 else if (highest_freq)
1541 {
1542 if (EDGE_FREQUENCY (e) < highest_freq)
1543 continue;
1544 }
1545 else if (e->probability < highest_probability)
1546 continue;
1547
1548 basic_block reach_bb = walk_up ? e->src : e->dest;
1549
1550 /* We have a hot bb with an immediate dominator that is cold.
1551 The dominator needs to be re-marked hot. */
1552 BB_SET_PARTITION (reach_bb, BB_HOT_PARTITION);
1553 cold_bb_count--;
1554
1555 /* Now we need to examine newly-hot reach_bb to see if it is also
1556 dominated by a cold bb. */
1557 bbs_in_hot_partition->safe_push (reach_bb);
1558 hot_bbs_to_check.safe_push (reach_bb);
1559 }
1560 }
1561
1562 return cold_bb_count;
1563 }
1564
1565
1566 /* Find the basic blocks that are rarely executed and need to be moved to
1567 a separate section of the .o file (to cut down on paging and improve
1568 cache locality). Return a vector of all edges that cross. */
1569
1570 static vec<edge>
1571 find_rarely_executed_basic_blocks_and_crossing_edges (void)
1572 {
1573 vec<edge> crossing_edges = vNULL;
1574 basic_block bb;
1575 edge e;
1576 edge_iterator ei;
1577 unsigned int cold_bb_count = 0;
1578 auto_vec<basic_block> bbs_in_hot_partition;
1579
1580 /* Mark which partition (hot/cold) each basic block belongs in. */
1581 FOR_EACH_BB_FN (bb, cfun)
1582 {
1583 bool cold_bb = false;
1584
1585 if (probably_never_executed_bb_p (cfun, bb))
1586 {
1587 /* Handle profile insanities created by upstream optimizations
1588 by also checking the incoming edge weights. If there is a non-cold
1589 incoming edge, conservatively prevent this block from being split
1590 into the cold section. */
1591 cold_bb = true;
1592 FOR_EACH_EDGE (e, ei, bb->preds)
1593 if (!probably_never_executed_edge_p (cfun, e))
1594 {
1595 cold_bb = false;
1596 break;
1597 }
1598 }
1599 if (cold_bb)
1600 {
1601 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1602 cold_bb_count++;
1603 }
1604 else
1605 {
1606 BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1607 bbs_in_hot_partition.safe_push (bb);
1608 }
1609 }
1610
1611 /* Ensure that hot bbs are included along a hot path from the entry to exit.
1612 Several different possibilities may include cold bbs along all paths
1613 to/from a hot bb. One is that there are edge weight insanities
1614 due to optimization phases that do not properly update basic block profile
1615 counts. The second is that the entry of the function may not be hot, because
1616 it is entered fewer times than the number of profile training runs, but there
1617 is a loop inside the function that causes blocks within the function to be
1618 above the threshold for hotness. This is fixed by walking up from hot bbs
1619 to the entry block, and then down from hot bbs to the exit, performing
1620 partitioning fixups as necessary. */
1621 if (cold_bb_count)
1622 {
1623 mark_dfs_back_edges ();
1624 cold_bb_count = sanitize_hot_paths (true, cold_bb_count,
1625 &bbs_in_hot_partition);
1626 if (cold_bb_count)
1627 sanitize_hot_paths (false, cold_bb_count, &bbs_in_hot_partition);
1628 }
1629
1630 /* The format of .gcc_except_table does not allow landing pads to
1631 be in a different partition as the throw. Fix this by either
1632 moving or duplicating the landing pads. */
1633 if (cfun->eh->lp_array)
1634 {
1635 unsigned i;
1636 eh_landing_pad lp;
1637
1638 FOR_EACH_VEC_ELT (*cfun->eh->lp_array, i, lp)
1639 {
1640 bool all_same, all_diff;
1641
1642 if (lp == NULL
1643 || lp->landing_pad == NULL_RTX
1644 || !LABEL_P (lp->landing_pad))
1645 continue;
1646
1647 all_same = all_diff = true;
1648 bb = BLOCK_FOR_INSN (lp->landing_pad);
1649 FOR_EACH_EDGE (e, ei, bb->preds)
1650 {
1651 gcc_assert (e->flags & EDGE_EH);
1652 if (BB_PARTITION (bb) == BB_PARTITION (e->src))
1653 all_diff = false;
1654 else
1655 all_same = false;
1656 }
1657
1658 if (all_same)
1659 ;
1660 else if (all_diff)
1661 {
1662 int which = BB_PARTITION (bb);
1663 which ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1664 BB_SET_PARTITION (bb, which);
1665 }
1666 else
1667 fix_up_crossing_landing_pad (lp, bb);
1668 }
1669 }
1670
1671 /* Mark every edge that crosses between sections. */
1672
1673 FOR_EACH_BB_FN (bb, cfun)
1674 FOR_EACH_EDGE (e, ei, bb->succs)
1675 {
1676 unsigned int flags = e->flags;
1677
1678 /* We should never have EDGE_CROSSING set yet. */
1679 gcc_checking_assert ((flags & EDGE_CROSSING) == 0);
1680
1681 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1682 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1683 && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1684 {
1685 crossing_edges.safe_push (e);
1686 flags |= EDGE_CROSSING;
1687 }
1688
1689 /* Now that we've split eh edges as appropriate, allow landing pads
1690 to be merged with the post-landing pads. */
1691 flags &= ~EDGE_PRESERVE;
1692
1693 e->flags = flags;
1694 }
1695
1696 return crossing_edges;
1697 }
1698
1699 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
1700
1701 static void
1702 set_edge_can_fallthru_flag (void)
1703 {
1704 basic_block bb;
1705
1706 FOR_EACH_BB_FN (bb, cfun)
1707 {
1708 edge e;
1709 edge_iterator ei;
1710
1711 FOR_EACH_EDGE (e, ei, bb->succs)
1712 {
1713 e->flags &= ~EDGE_CAN_FALLTHRU;
1714
1715 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
1716 if (e->flags & EDGE_FALLTHRU)
1717 e->flags |= EDGE_CAN_FALLTHRU;
1718 }
1719
1720 /* If the BB ends with an invertible condjump all (2) edges are
1721 CAN_FALLTHRU edges. */
1722 if (EDGE_COUNT (bb->succs) != 2)
1723 continue;
1724 if (!any_condjump_p (BB_END (bb)))
1725 continue;
1726
1727 rtx_jump_insn *bb_end_jump = as_a <rtx_jump_insn *> (BB_END (bb));
1728 if (!invert_jump (bb_end_jump, JUMP_LABEL (bb_end_jump), 0))
1729 continue;
1730 invert_jump (bb_end_jump, JUMP_LABEL (bb_end_jump), 0);
1731 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
1732 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
1733 }
1734 }
1735
1736 /* If any destination of a crossing edge does not have a label, add label;
1737 Convert any easy fall-through crossing edges to unconditional jumps. */
1738
1739 static void
1740 add_labels_and_missing_jumps (vec<edge> crossing_edges)
1741 {
1742 size_t i;
1743 edge e;
1744
1745 FOR_EACH_VEC_ELT (crossing_edges, i, e)
1746 {
1747 basic_block src = e->src;
1748 basic_block dest = e->dest;
1749 rtx_jump_insn *new_jump;
1750
1751 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1752 continue;
1753
1754 /* Make sure dest has a label. */
1755 rtx_code_label *label = block_label (dest);
1756
1757 /* Nothing to do for non-fallthru edges. */
1758 if (src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1759 continue;
1760 if ((e->flags & EDGE_FALLTHRU) == 0)
1761 continue;
1762
1763 /* If the block does not end with a control flow insn, then we
1764 can trivially add a jump to the end to fixup the crossing.
1765 Otherwise the jump will have to go in a new bb, which will
1766 be handled by fix_up_fall_thru_edges function. */
1767 if (control_flow_insn_p (BB_END (src)))
1768 continue;
1769
1770 /* Make sure there's only one successor. */
1771 gcc_assert (single_succ_p (src));
1772
1773 new_jump = emit_jump_insn_after (targetm.gen_jump (label), BB_END (src));
1774 BB_END (src) = new_jump;
1775 JUMP_LABEL (new_jump) = label;
1776 LABEL_NUSES (label) += 1;
1777
1778 emit_barrier_after_bb (src);
1779
1780 /* Mark edge as non-fallthru. */
1781 e->flags &= ~EDGE_FALLTHRU;
1782 }
1783 }
1784
1785 /* Find any bb's where the fall-through edge is a crossing edge (note that
1786 these bb's must also contain a conditional jump or end with a call
1787 instruction; we've already dealt with fall-through edges for blocks
1788 that didn't have a conditional jump or didn't end with call instruction
1789 in the call to add_labels_and_missing_jumps). Convert the fall-through
1790 edge to non-crossing edge by inserting a new bb to fall-through into.
1791 The new bb will contain an unconditional jump (crossing edge) to the
1792 original fall through destination. */
1793
1794 static void
1795 fix_up_fall_thru_edges (void)
1796 {
1797 basic_block cur_bb;
1798 basic_block new_bb;
1799 edge succ1;
1800 edge succ2;
1801 edge fall_thru;
1802 edge cond_jump = NULL;
1803 bool cond_jump_crosses;
1804 int invert_worked;
1805 rtx_insn *old_jump;
1806 rtx_code_label *fall_thru_label;
1807
1808 FOR_EACH_BB_FN (cur_bb, cfun)
1809 {
1810 fall_thru = NULL;
1811 if (EDGE_COUNT (cur_bb->succs) > 0)
1812 succ1 = EDGE_SUCC (cur_bb, 0);
1813 else
1814 succ1 = NULL;
1815
1816 if (EDGE_COUNT (cur_bb->succs) > 1)
1817 succ2 = EDGE_SUCC (cur_bb, 1);
1818 else
1819 succ2 = NULL;
1820
1821 /* Find the fall-through edge. */
1822
1823 if (succ1
1824 && (succ1->flags & EDGE_FALLTHRU))
1825 {
1826 fall_thru = succ1;
1827 cond_jump = succ2;
1828 }
1829 else if (succ2
1830 && (succ2->flags & EDGE_FALLTHRU))
1831 {
1832 fall_thru = succ2;
1833 cond_jump = succ1;
1834 }
1835 else if (succ1
1836 && (block_ends_with_call_p (cur_bb)
1837 || can_throw_internal (BB_END (cur_bb))))
1838 {
1839 edge e;
1840 edge_iterator ei;
1841
1842 FOR_EACH_EDGE (e, ei, cur_bb->succs)
1843 if (e->flags & EDGE_FALLTHRU)
1844 {
1845 fall_thru = e;
1846 break;
1847 }
1848 }
1849
1850 if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
1851 {
1852 /* Check to see if the fall-thru edge is a crossing edge. */
1853
1854 if (fall_thru->flags & EDGE_CROSSING)
1855 {
1856 /* The fall_thru edge crosses; now check the cond jump edge, if
1857 it exists. */
1858
1859 cond_jump_crosses = true;
1860 invert_worked = 0;
1861 old_jump = BB_END (cur_bb);
1862
1863 /* Find the jump instruction, if there is one. */
1864
1865 if (cond_jump)
1866 {
1867 if (!(cond_jump->flags & EDGE_CROSSING))
1868 cond_jump_crosses = false;
1869
1870 /* We know the fall-thru edge crosses; if the cond
1871 jump edge does NOT cross, and its destination is the
1872 next block in the bb order, invert the jump
1873 (i.e. fix it so the fall through does not cross and
1874 the cond jump does). */
1875
1876 if (!cond_jump_crosses)
1877 {
1878 /* Find label in fall_thru block. We've already added
1879 any missing labels, so there must be one. */
1880
1881 fall_thru_label = block_label (fall_thru->dest);
1882
1883 if (old_jump && fall_thru_label)
1884 {
1885 rtx_jump_insn *old_jump_insn =
1886 dyn_cast <rtx_jump_insn *> (old_jump);
1887 if (old_jump_insn)
1888 invert_worked = invert_jump (old_jump_insn,
1889 fall_thru_label, 0);
1890 }
1891
1892 if (invert_worked)
1893 {
1894 fall_thru->flags &= ~EDGE_FALLTHRU;
1895 cond_jump->flags |= EDGE_FALLTHRU;
1896 update_br_prob_note (cur_bb);
1897 std::swap (fall_thru, cond_jump);
1898 cond_jump->flags |= EDGE_CROSSING;
1899 fall_thru->flags &= ~EDGE_CROSSING;
1900 }
1901 }
1902 }
1903
1904 if (cond_jump_crosses || !invert_worked)
1905 {
1906 /* This is the case where both edges out of the basic
1907 block are crossing edges. Here we will fix up the
1908 fall through edge. The jump edge will be taken care
1909 of later. The EDGE_CROSSING flag of fall_thru edge
1910 is unset before the call to force_nonfallthru
1911 function because if a new basic-block is created
1912 this edge remains in the current section boundary
1913 while the edge between new_bb and the fall_thru->dest
1914 becomes EDGE_CROSSING. */
1915
1916 fall_thru->flags &= ~EDGE_CROSSING;
1917 new_bb = force_nonfallthru (fall_thru);
1918
1919 if (new_bb)
1920 {
1921 new_bb->aux = cur_bb->aux;
1922 cur_bb->aux = new_bb;
1923
1924 /* This is done by force_nonfallthru_and_redirect. */
1925 gcc_assert (BB_PARTITION (new_bb)
1926 == BB_PARTITION (cur_bb));
1927
1928 single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
1929 }
1930 else
1931 {
1932 /* If a new basic-block was not created; restore
1933 the EDGE_CROSSING flag. */
1934 fall_thru->flags |= EDGE_CROSSING;
1935 }
1936
1937 /* Add barrier after new jump */
1938 emit_barrier_after_bb (new_bb ? new_bb : cur_bb);
1939 }
1940 }
1941 }
1942 }
1943 }
1944
1945 /* This function checks the destination block of a "crossing jump" to
1946 see if it has any crossing predecessors that begin with a code label
1947 and end with an unconditional jump. If so, it returns that predecessor
1948 block. (This is to avoid creating lots of new basic blocks that all
1949 contain unconditional jumps to the same destination). */
1950
1951 static basic_block
1952 find_jump_block (basic_block jump_dest)
1953 {
1954 basic_block source_bb = NULL;
1955 edge e;
1956 rtx_insn *insn;
1957 edge_iterator ei;
1958
1959 FOR_EACH_EDGE (e, ei, jump_dest->preds)
1960 if (e->flags & EDGE_CROSSING)
1961 {
1962 basic_block src = e->src;
1963
1964 /* Check each predecessor to see if it has a label, and contains
1965 only one executable instruction, which is an unconditional jump.
1966 If so, we can use it. */
1967
1968 if (LABEL_P (BB_HEAD (src)))
1969 for (insn = BB_HEAD (src);
1970 !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1971 insn = NEXT_INSN (insn))
1972 {
1973 if (INSN_P (insn)
1974 && insn == BB_END (src)
1975 && JUMP_P (insn)
1976 && !any_condjump_p (insn))
1977 {
1978 source_bb = src;
1979 break;
1980 }
1981 }
1982
1983 if (source_bb)
1984 break;
1985 }
1986
1987 return source_bb;
1988 }
1989
1990 /* Find all BB's with conditional jumps that are crossing edges;
1991 insert a new bb and make the conditional jump branch to the new
1992 bb instead (make the new bb same color so conditional branch won't
1993 be a 'crossing' edge). Insert an unconditional jump from the
1994 new bb to the original destination of the conditional jump. */
1995
1996 static void
1997 fix_crossing_conditional_branches (void)
1998 {
1999 basic_block cur_bb;
2000 basic_block new_bb;
2001 basic_block dest;
2002 edge succ1;
2003 edge succ2;
2004 edge crossing_edge;
2005 edge new_edge;
2006 rtx set_src;
2007 rtx old_label = NULL_RTX;
2008 rtx_code_label *new_label;
2009
2010 FOR_EACH_BB_FN (cur_bb, cfun)
2011 {
2012 crossing_edge = NULL;
2013 if (EDGE_COUNT (cur_bb->succs) > 0)
2014 succ1 = EDGE_SUCC (cur_bb, 0);
2015 else
2016 succ1 = NULL;
2017
2018 if (EDGE_COUNT (cur_bb->succs) > 1)
2019 succ2 = EDGE_SUCC (cur_bb, 1);
2020 else
2021 succ2 = NULL;
2022
2023 /* We already took care of fall-through edges, so only one successor
2024 can be a crossing edge. */
2025
2026 if (succ1 && (succ1->flags & EDGE_CROSSING))
2027 crossing_edge = succ1;
2028 else if (succ2 && (succ2->flags & EDGE_CROSSING))
2029 crossing_edge = succ2;
2030
2031 if (crossing_edge)
2032 {
2033 rtx_insn *old_jump = BB_END (cur_bb);
2034
2035 /* Check to make sure the jump instruction is a
2036 conditional jump. */
2037
2038 set_src = NULL_RTX;
2039
2040 if (any_condjump_p (old_jump))
2041 {
2042 if (GET_CODE (PATTERN (old_jump)) == SET)
2043 set_src = SET_SRC (PATTERN (old_jump));
2044 else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
2045 {
2046 set_src = XVECEXP (PATTERN (old_jump), 0,0);
2047 if (GET_CODE (set_src) == SET)
2048 set_src = SET_SRC (set_src);
2049 else
2050 set_src = NULL_RTX;
2051 }
2052 }
2053
2054 if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
2055 {
2056 rtx_jump_insn *old_jump_insn =
2057 as_a <rtx_jump_insn *> (old_jump);
2058
2059 if (GET_CODE (XEXP (set_src, 1)) == PC)
2060 old_label = XEXP (set_src, 2);
2061 else if (GET_CODE (XEXP (set_src, 2)) == PC)
2062 old_label = XEXP (set_src, 1);
2063
2064 /* Check to see if new bb for jumping to that dest has
2065 already been created; if so, use it; if not, create
2066 a new one. */
2067
2068 new_bb = find_jump_block (crossing_edge->dest);
2069
2070 if (new_bb)
2071 new_label = block_label (new_bb);
2072 else
2073 {
2074 basic_block last_bb;
2075 rtx_code_label *old_jump_target;
2076 rtx_jump_insn *new_jump;
2077
2078 /* Create new basic block to be dest for
2079 conditional jump. */
2080
2081 /* Put appropriate instructions in new bb. */
2082
2083 new_label = gen_label_rtx ();
2084 emit_label (new_label);
2085
2086 gcc_assert (GET_CODE (old_label) == LABEL_REF);
2087 old_jump_target = old_jump_insn->jump_target ();
2088 new_jump = as_a <rtx_jump_insn *>
2089 (emit_jump_insn (targetm.gen_jump (old_jump_target)));
2090 new_jump->set_jump_target (old_jump_target);
2091
2092 last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2093 new_bb = create_basic_block (new_label, new_jump, last_bb);
2094 new_bb->aux = last_bb->aux;
2095 last_bb->aux = new_bb;
2096
2097 emit_barrier_after_bb (new_bb);
2098
2099 /* Make sure new bb is in same partition as source
2100 of conditional branch. */
2101 BB_COPY_PARTITION (new_bb, cur_bb);
2102 }
2103
2104 /* Make old jump branch to new bb. */
2105
2106 redirect_jump (old_jump_insn, new_label, 0);
2107
2108 /* Remove crossing_edge as predecessor of 'dest'. */
2109
2110 dest = crossing_edge->dest;
2111
2112 redirect_edge_succ (crossing_edge, new_bb);
2113
2114 /* Make a new edge from new_bb to old dest; new edge
2115 will be a successor for new_bb and a predecessor
2116 for 'dest'. */
2117
2118 if (EDGE_COUNT (new_bb->succs) == 0)
2119 new_edge = make_edge (new_bb, dest, 0);
2120 else
2121 new_edge = EDGE_SUCC (new_bb, 0);
2122
2123 crossing_edge->flags &= ~EDGE_CROSSING;
2124 new_edge->flags |= EDGE_CROSSING;
2125 }
2126 }
2127 }
2128 }
2129
2130 /* Find any unconditional branches that cross between hot and cold
2131 sections. Convert them into indirect jumps instead. */
2132
2133 static void
2134 fix_crossing_unconditional_branches (void)
2135 {
2136 basic_block cur_bb;
2137 rtx_insn *last_insn;
2138 rtx label;
2139 rtx label_addr;
2140 rtx_insn *indirect_jump_sequence;
2141 rtx_insn *jump_insn = NULL;
2142 rtx new_reg;
2143 rtx_insn *cur_insn;
2144 edge succ;
2145
2146 FOR_EACH_BB_FN (cur_bb, cfun)
2147 {
2148 last_insn = BB_END (cur_bb);
2149
2150 if (EDGE_COUNT (cur_bb->succs) < 1)
2151 continue;
2152
2153 succ = EDGE_SUCC (cur_bb, 0);
2154
2155 /* Check to see if bb ends in a crossing (unconditional) jump. At
2156 this point, no crossing jumps should be conditional. */
2157
2158 if (JUMP_P (last_insn)
2159 && (succ->flags & EDGE_CROSSING))
2160 {
2161 gcc_assert (!any_condjump_p (last_insn));
2162
2163 /* Make sure the jump is not already an indirect or table jump. */
2164
2165 if (!computed_jump_p (last_insn)
2166 && !tablejump_p (last_insn, NULL, NULL))
2167 {
2168 /* We have found a "crossing" unconditional branch. Now
2169 we must convert it to an indirect jump. First create
2170 reference of label, as target for jump. */
2171
2172 label = JUMP_LABEL (last_insn);
2173 label_addr = gen_rtx_LABEL_REF (Pmode, label);
2174 LABEL_NUSES (label) += 1;
2175
2176 /* Get a register to use for the indirect jump. */
2177
2178 new_reg = gen_reg_rtx (Pmode);
2179
2180 /* Generate indirect the jump sequence. */
2181
2182 start_sequence ();
2183 emit_move_insn (new_reg, label_addr);
2184 emit_indirect_jump (new_reg);
2185 indirect_jump_sequence = get_insns ();
2186 end_sequence ();
2187
2188 /* Make sure every instruction in the new jump sequence has
2189 its basic block set to be cur_bb. */
2190
2191 for (cur_insn = indirect_jump_sequence; cur_insn;
2192 cur_insn = NEXT_INSN (cur_insn))
2193 {
2194 if (!BARRIER_P (cur_insn))
2195 BLOCK_FOR_INSN (cur_insn) = cur_bb;
2196 if (JUMP_P (cur_insn))
2197 jump_insn = cur_insn;
2198 }
2199
2200 /* Insert the new (indirect) jump sequence immediately before
2201 the unconditional jump, then delete the unconditional jump. */
2202
2203 emit_insn_before (indirect_jump_sequence, last_insn);
2204 delete_insn (last_insn);
2205
2206 JUMP_LABEL (jump_insn) = label;
2207 LABEL_NUSES (label)++;
2208
2209 /* Make BB_END for cur_bb be the jump instruction (NOT the
2210 barrier instruction at the end of the sequence...). */
2211
2212 BB_END (cur_bb) = jump_insn;
2213 }
2214 }
2215 }
2216 }
2217
2218 /* Update CROSSING_JUMP_P flags on all jump insns. */
2219
2220 static void
2221 update_crossing_jump_flags (void)
2222 {
2223 basic_block bb;
2224 edge e;
2225 edge_iterator ei;
2226
2227 FOR_EACH_BB_FN (bb, cfun)
2228 FOR_EACH_EDGE (e, ei, bb->succs)
2229 if (e->flags & EDGE_CROSSING)
2230 {
2231 if (JUMP_P (BB_END (bb))
2232 /* Some flags were added during fix_up_fall_thru_edges, via
2233 force_nonfallthru_and_redirect. */
2234 && !CROSSING_JUMP_P (BB_END (bb)))
2235 CROSSING_JUMP_P (BB_END (bb)) = 1;
2236 break;
2237 }
2238 }
2239
2240 /* Reorder basic blocks using the software trace cache (STC) algorithm. */
2241
2242 static void
2243 reorder_basic_blocks_software_trace_cache (void)
2244 {
2245 if (dump_file)
2246 fprintf (dump_file, "\nReordering with the STC algorithm.\n\n");
2247
2248 int n_traces;
2249 int i;
2250 struct trace *traces;
2251
2252 /* We are estimating the length of uncond jump insn only once since the code
2253 for getting the insn length always returns the minimal length now. */
2254 if (uncond_jump_length == 0)
2255 uncond_jump_length = get_uncond_jump_length ();
2256
2257 /* We need to know some information for each basic block. */
2258 array_size = GET_ARRAY_SIZE (last_basic_block_for_fn (cfun));
2259 bbd = XNEWVEC (bbro_basic_block_data, array_size);
2260 for (i = 0; i < array_size; i++)
2261 {
2262 bbd[i].start_of_trace = -1;
2263 bbd[i].end_of_trace = -1;
2264 bbd[i].in_trace = -1;
2265 bbd[i].visited = 0;
2266 bbd[i].heap = NULL;
2267 bbd[i].node = NULL;
2268 }
2269
2270 traces = XNEWVEC (struct trace, n_basic_blocks_for_fn (cfun));
2271 n_traces = 0;
2272 find_traces (&n_traces, traces);
2273 connect_traces (n_traces, traces);
2274 FREE (traces);
2275 FREE (bbd);
2276 }
2277
2278 /* Return true if edge E1 is more desirable as a fallthrough edge than
2279 edge E2 is. */
2280
2281 static bool
2282 edge_order (edge e1, edge e2)
2283 {
2284 return EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2);
2285 }
2286
2287 /* Reorder basic blocks using the "simple" algorithm. This tries to
2288 maximize the dynamic number of branches that are fallthrough, without
2289 copying instructions. The algorithm is greedy, looking at the most
2290 frequently executed branch first. */
2291
2292 static void
2293 reorder_basic_blocks_simple (void)
2294 {
2295 if (dump_file)
2296 fprintf (dump_file, "\nReordering with the \"simple\" algorithm.\n\n");
2297
2298 edge *edges = new edge[2 * n_basic_blocks_for_fn (cfun)];
2299
2300 /* First, collect all edges that can be optimized by reordering blocks:
2301 simple jumps and conditional jumps, as well as the function entry edge. */
2302
2303 int n = 0;
2304 edges[n++] = EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0);
2305
2306 basic_block bb;
2307 FOR_EACH_BB_FN (bb, cfun)
2308 {
2309 rtx_insn *end = BB_END (bb);
2310
2311 if (computed_jump_p (end) || tablejump_p (end, NULL, NULL))
2312 continue;
2313
2314 /* We cannot optimize asm goto. */
2315 if (JUMP_P (end) && extract_asm_operands (end))
2316 continue;
2317
2318 if (any_condjump_p (end))
2319 {
2320 edge e0 = EDGE_SUCC (bb, 0);
2321 edge e1 = EDGE_SUCC (bb, 1);
2322 /* When optimizing for size it is best to keep the original
2323 fallthrough edges. */
2324 if (e1->flags & EDGE_FALLTHRU)
2325 std::swap (e0, e1);
2326 edges[n++] = e0;
2327 edges[n++] = e1;
2328 }
2329 else if (single_succ_p (bb))
2330 edges[n++] = EDGE_SUCC (bb, 0);
2331 }
2332
2333 /* Sort the edges, the most desirable first. When optimizing for size
2334 all edges are equally desirable. */
2335
2336 if (optimize_function_for_speed_p (cfun))
2337 std::stable_sort (edges, edges + n, edge_order);
2338
2339 /* Now decide which of those edges to make fallthrough edges. We set
2340 BB_VISITED if a block already has a fallthrough successor assigned
2341 to it. We make ->AUX of an endpoint point to the opposite endpoint
2342 of a sequence of blocks that fall through, and ->AUX will be NULL
2343 for a block that is in such a sequence but not an endpoint anymore.
2344
2345 To start with, everything points to itself, nothing is assigned yet. */
2346
2347 FOR_ALL_BB_FN (bb, cfun)
2348 bb->aux = bb;
2349
2350 EXIT_BLOCK_PTR_FOR_FN (cfun)->aux = 0;
2351
2352 /* Now for all edges, the most desirable first, see if that edge can
2353 connect two sequences. If it can, update AUX and BB_VISITED; if it
2354 cannot, zero out the edge in the table. */
2355
2356 for (int j = 0; j < n; j++)
2357 {
2358 edge e = edges[j];
2359
2360 basic_block tail_a = e->src;
2361 basic_block head_b = e->dest;
2362 basic_block head_a = (basic_block) tail_a->aux;
2363 basic_block tail_b = (basic_block) head_b->aux;
2364
2365 /* An edge cannot connect two sequences if:
2366 - it crosses partitions;
2367 - its src is not a current endpoint;
2368 - its dest is not a current endpoint;
2369 - or, it would create a loop. */
2370
2371 if (e->flags & EDGE_CROSSING
2372 || tail_a->flags & BB_VISITED
2373 || !tail_b
2374 || (!(head_b->flags & BB_VISITED) && head_b != tail_b)
2375 || tail_a == tail_b)
2376 {
2377 edges[j] = 0;
2378 continue;
2379 }
2380
2381 tail_a->aux = 0;
2382 head_b->aux = 0;
2383 head_a->aux = tail_b;
2384 tail_b->aux = head_a;
2385 tail_a->flags |= BB_VISITED;
2386 }
2387
2388 /* Put the pieces together, in the same order that the start blocks of
2389 the sequences already had. The hot/cold partitioning gives a little
2390 complication: as a first pass only do this for blocks in the same
2391 partition as the start block, and (if there is anything left to do)
2392 in a second pass handle the other partition. */
2393
2394 basic_block last_tail = (basic_block) ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux;
2395
2396 int current_partition = BB_PARTITION (last_tail);
2397 bool need_another_pass = true;
2398
2399 for (int pass = 0; pass < 2 && need_another_pass; pass++)
2400 {
2401 need_another_pass = false;
2402
2403 FOR_EACH_BB_FN (bb, cfun)
2404 if ((bb->flags & BB_VISITED && bb->aux) || bb->aux == bb)
2405 {
2406 if (BB_PARTITION (bb) != current_partition)
2407 {
2408 need_another_pass = true;
2409 continue;
2410 }
2411
2412 last_tail->aux = bb;
2413 last_tail = (basic_block) bb->aux;
2414 }
2415
2416 current_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
2417 }
2418
2419 last_tail->aux = 0;
2420
2421 /* Finally, link all the chosen fallthrough edges. */
2422
2423 for (int j = 0; j < n; j++)
2424 if (edges[j])
2425 edges[j]->src->aux = edges[j]->dest;
2426
2427 delete[] edges;
2428
2429 /* If the entry edge no longer falls through we have to make a new
2430 block so it can do so again. */
2431
2432 edge e = EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0);
2433 if (e->dest != ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux)
2434 {
2435 force_nonfallthru (e);
2436 e->src->aux = ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux;
2437 BB_COPY_PARTITION (e->src, e->dest);
2438 }
2439 }
2440
2441 /* Reorder basic blocks. The main entry point to this file. */
2442
2443 static void
2444 reorder_basic_blocks (void)
2445 {
2446 gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
2447
2448 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1)
2449 return;
2450
2451 set_edge_can_fallthru_flag ();
2452 mark_dfs_back_edges ();
2453
2454 switch (flag_reorder_blocks_algorithm)
2455 {
2456 case REORDER_BLOCKS_ALGORITHM_SIMPLE:
2457 reorder_basic_blocks_simple ();
2458 break;
2459
2460 case REORDER_BLOCKS_ALGORITHM_STC:
2461 reorder_basic_blocks_software_trace_cache ();
2462 break;
2463
2464 default:
2465 gcc_unreachable ();
2466 }
2467
2468 relink_block_chain (/*stay_in_cfglayout_mode=*/true);
2469
2470 if (dump_file)
2471 {
2472 if (dump_flags & TDF_DETAILS)
2473 dump_reg_info (dump_file);
2474 dump_flow_info (dump_file, dump_flags);
2475 }
2476
2477 /* Signal that rtl_verify_flow_info_1 can now verify that there
2478 is at most one switch between hot/cold sections. */
2479 crtl->bb_reorder_complete = true;
2480 }
2481
2482 /* Determine which partition the first basic block in the function
2483 belongs to, then find the first basic block in the current function
2484 that belongs to a different section, and insert a
2485 NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
2486 instruction stream. When writing out the assembly code,
2487 encountering this note will make the compiler switch between the
2488 hot and cold text sections. */
2489
2490 void
2491 insert_section_boundary_note (void)
2492 {
2493 basic_block bb;
2494 bool switched_sections = false;
2495 int current_partition = 0;
2496
2497 if (!crtl->has_bb_partition)
2498 return;
2499
2500 FOR_EACH_BB_FN (bb, cfun)
2501 {
2502 if (!current_partition)
2503 current_partition = BB_PARTITION (bb);
2504 if (BB_PARTITION (bb) != current_partition)
2505 {
2506 gcc_assert (!switched_sections);
2507 switched_sections = true;
2508 emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS, BB_HEAD (bb));
2509 current_partition = BB_PARTITION (bb);
2510 }
2511 }
2512 }
2513
2514 namespace {
2515
2516 const pass_data pass_data_reorder_blocks =
2517 {
2518 RTL_PASS, /* type */
2519 "bbro", /* name */
2520 OPTGROUP_NONE, /* optinfo_flags */
2521 TV_REORDER_BLOCKS, /* tv_id */
2522 0, /* properties_required */
2523 0, /* properties_provided */
2524 0, /* properties_destroyed */
2525 0, /* todo_flags_start */
2526 0, /* todo_flags_finish */
2527 };
2528
2529 class pass_reorder_blocks : public rtl_opt_pass
2530 {
2531 public:
2532 pass_reorder_blocks (gcc::context *ctxt)
2533 : rtl_opt_pass (pass_data_reorder_blocks, ctxt)
2534 {}
2535
2536 /* opt_pass methods: */
2537 virtual bool gate (function *)
2538 {
2539 if (targetm.cannot_modify_jumps_p ())
2540 return false;
2541 return (optimize > 0
2542 && (flag_reorder_blocks || flag_reorder_blocks_and_partition));
2543 }
2544
2545 virtual unsigned int execute (function *);
2546
2547 }; // class pass_reorder_blocks
2548
2549 unsigned int
2550 pass_reorder_blocks::execute (function *fun)
2551 {
2552 basic_block bb;
2553
2554 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2555 splitting possibly introduced more crossjumping opportunities. */
2556 cfg_layout_initialize (CLEANUP_EXPENSIVE);
2557
2558 reorder_basic_blocks ();
2559 cleanup_cfg (CLEANUP_EXPENSIVE);
2560
2561 FOR_EACH_BB_FN (bb, fun)
2562 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
2563 bb->aux = bb->next_bb;
2564 cfg_layout_finalize ();
2565
2566 return 0;
2567 }
2568
2569 } // anon namespace
2570
2571 rtl_opt_pass *
2572 make_pass_reorder_blocks (gcc::context *ctxt)
2573 {
2574 return new pass_reorder_blocks (ctxt);
2575 }
2576
2577 /* Duplicate the blocks containing computed gotos. This basically unfactors
2578 computed gotos that were factored early on in the compilation process to
2579 speed up edge based data flow. We used to not unfactoring them again,
2580 which can seriously pessimize code with many computed jumps in the source
2581 code, such as interpreters. See e.g. PR15242. */
2582
2583 namespace {
2584
2585 const pass_data pass_data_duplicate_computed_gotos =
2586 {
2587 RTL_PASS, /* type */
2588 "compgotos", /* name */
2589 OPTGROUP_NONE, /* optinfo_flags */
2590 TV_REORDER_BLOCKS, /* tv_id */
2591 0, /* properties_required */
2592 0, /* properties_provided */
2593 0, /* properties_destroyed */
2594 0, /* todo_flags_start */
2595 0, /* todo_flags_finish */
2596 };
2597
2598 class pass_duplicate_computed_gotos : public rtl_opt_pass
2599 {
2600 public:
2601 pass_duplicate_computed_gotos (gcc::context *ctxt)
2602 : rtl_opt_pass (pass_data_duplicate_computed_gotos, ctxt)
2603 {}
2604
2605 /* opt_pass methods: */
2606 virtual bool gate (function *);
2607 virtual unsigned int execute (function *);
2608
2609 }; // class pass_duplicate_computed_gotos
2610
2611 bool
2612 pass_duplicate_computed_gotos::gate (function *fun)
2613 {
2614 if (targetm.cannot_modify_jumps_p ())
2615 return false;
2616 return (optimize > 0
2617 && flag_expensive_optimizations
2618 && ! optimize_function_for_size_p (fun));
2619 }
2620
2621 unsigned int
2622 pass_duplicate_computed_gotos::execute (function *fun)
2623 {
2624 basic_block bb, new_bb;
2625 bitmap candidates;
2626 int max_size;
2627 bool changed = false;
2628
2629 if (n_basic_blocks_for_fn (fun) <= NUM_FIXED_BLOCKS + 1)
2630 return 0;
2631
2632 clear_bb_flags ();
2633 cfg_layout_initialize (0);
2634
2635 /* We are estimating the length of uncond jump insn only once
2636 since the code for getting the insn length always returns
2637 the minimal length now. */
2638 if (uncond_jump_length == 0)
2639 uncond_jump_length = get_uncond_jump_length ();
2640
2641 max_size
2642 = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
2643 candidates = BITMAP_ALLOC (NULL);
2644
2645 /* Look for blocks that end in a computed jump, and see if such blocks
2646 are suitable for unfactoring. If a block is a candidate for unfactoring,
2647 mark it in the candidates. */
2648 FOR_EACH_BB_FN (bb, fun)
2649 {
2650 rtx_insn *insn;
2651 edge e;
2652 edge_iterator ei;
2653 int size, all_flags;
2654
2655 /* Build the reorder chain for the original order of blocks. */
2656 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
2657 bb->aux = bb->next_bb;
2658
2659 /* Obviously the block has to end in a computed jump. */
2660 if (!computed_jump_p (BB_END (bb)))
2661 continue;
2662
2663 /* Only consider blocks that can be duplicated. */
2664 if (CROSSING_JUMP_P (BB_END (bb))
2665 || !can_duplicate_block_p (bb))
2666 continue;
2667
2668 /* Make sure that the block is small enough. */
2669 size = 0;
2670 FOR_BB_INSNS (bb, insn)
2671 if (INSN_P (insn))
2672 {
2673 size += get_attr_min_length (insn);
2674 if (size > max_size)
2675 break;
2676 }
2677 if (size > max_size)
2678 continue;
2679
2680 /* Final check: there must not be any incoming abnormal edges. */
2681 all_flags = 0;
2682 FOR_EACH_EDGE (e, ei, bb->preds)
2683 all_flags |= e->flags;
2684 if (all_flags & EDGE_COMPLEX)
2685 continue;
2686
2687 bitmap_set_bit (candidates, bb->index);
2688 }
2689
2690 /* Nothing to do if there is no computed jump here. */
2691 if (bitmap_empty_p (candidates))
2692 goto done;
2693
2694 /* Duplicate computed gotos. */
2695 FOR_EACH_BB_FN (bb, fun)
2696 {
2697 if (bb->flags & BB_VISITED)
2698 continue;
2699
2700 bb->flags |= BB_VISITED;
2701
2702 /* BB must have one outgoing edge. That edge must not lead to
2703 the exit block or the next block.
2704 The destination must have more than one predecessor. */
2705 if (!single_succ_p (bb)
2706 || single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (fun)
2707 || single_succ (bb) == bb->next_bb
2708 || single_pred_p (single_succ (bb)))
2709 continue;
2710
2711 /* The successor block has to be a duplication candidate. */
2712 if (!bitmap_bit_p (candidates, single_succ (bb)->index))
2713 continue;
2714
2715 /* Don't duplicate a partition crossing edge, which requires difficult
2716 fixup. */
2717 if (JUMP_P (BB_END (bb)) && CROSSING_JUMP_P (BB_END (bb)))
2718 continue;
2719
2720 new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
2721 new_bb->aux = bb->aux;
2722 bb->aux = new_bb;
2723 new_bb->flags |= BB_VISITED;
2724 changed = true;
2725 }
2726
2727 done:
2728 if (changed)
2729 {
2730 /* Duplicating blocks above will redirect edges and may cause hot
2731 blocks previously reached by both hot and cold blocks to become
2732 dominated only by cold blocks. */
2733 fixup_partitions ();
2734
2735 /* Merge the duplicated blocks into predecessors, when possible. */
2736 cfg_layout_finalize ();
2737 cleanup_cfg (0);
2738 }
2739 else
2740 cfg_layout_finalize ();
2741
2742 BITMAP_FREE (candidates);
2743 return 0;
2744 }
2745
2746 } // anon namespace
2747
2748 rtl_opt_pass *
2749 make_pass_duplicate_computed_gotos (gcc::context *ctxt)
2750 {
2751 return new pass_duplicate_computed_gotos (ctxt);
2752 }
2753
2754 /* This function is the main 'entrance' for the optimization that
2755 partitions hot and cold basic blocks into separate sections of the
2756 .o file (to improve performance and cache locality). Ideally it
2757 would be called after all optimizations that rearrange the CFG have
2758 been called. However part of this optimization may introduce new
2759 register usage, so it must be called before register allocation has
2760 occurred. This means that this optimization is actually called
2761 well before the optimization that reorders basic blocks (see
2762 function above).
2763
2764 This optimization checks the feedback information to determine
2765 which basic blocks are hot/cold, updates flags on the basic blocks
2766 to indicate which section they belong in. This information is
2767 later used for writing out sections in the .o file. Because hot
2768 and cold sections can be arbitrarily large (within the bounds of
2769 memory), far beyond the size of a single function, it is necessary
2770 to fix up all edges that cross section boundaries, to make sure the
2771 instructions used can actually span the required distance. The
2772 fixes are described below.
2773
2774 Fall-through edges must be changed into jumps; it is not safe or
2775 legal to fall through across a section boundary. Whenever a
2776 fall-through edge crossing a section boundary is encountered, a new
2777 basic block is inserted (in the same section as the fall-through
2778 source), and the fall through edge is redirected to the new basic
2779 block. The new basic block contains an unconditional jump to the
2780 original fall-through target. (If the unconditional jump is
2781 insufficient to cross section boundaries, that is dealt with a
2782 little later, see below).
2783
2784 In order to deal with architectures that have short conditional
2785 branches (which cannot span all of memory) we take any conditional
2786 jump that attempts to cross a section boundary and add a level of
2787 indirection: it becomes a conditional jump to a new basic block, in
2788 the same section. The new basic block contains an unconditional
2789 jump to the original target, in the other section.
2790
2791 For those architectures whose unconditional branch is also
2792 incapable of reaching all of memory, those unconditional jumps are
2793 converted into indirect jumps, through a register.
2794
2795 IMPORTANT NOTE: This optimization causes some messy interactions
2796 with the cfg cleanup optimizations; those optimizations want to
2797 merge blocks wherever possible, and to collapse indirect jump
2798 sequences (change "A jumps to B jumps to C" directly into "A jumps
2799 to C"). Those optimizations can undo the jump fixes that
2800 partitioning is required to make (see above), in order to ensure
2801 that jumps attempting to cross section boundaries are really able
2802 to cover whatever distance the jump requires (on many architectures
2803 conditional or unconditional jumps are not able to reach all of
2804 memory). Therefore tests have to be inserted into each such
2805 optimization to make sure that it does not undo stuff necessary to
2806 cross partition boundaries. This would be much less of a problem
2807 if we could perform this optimization later in the compilation, but
2808 unfortunately the fact that we may need to create indirect jumps
2809 (through registers) requires that this optimization be performed
2810 before register allocation.
2811
2812 Hot and cold basic blocks are partitioned and put in separate
2813 sections of the .o file, to reduce paging and improve cache
2814 performance (hopefully). This can result in bits of code from the
2815 same function being widely separated in the .o file. However this
2816 is not obvious to the current bb structure. Therefore we must take
2817 care to ensure that: 1). There are no fall_thru edges that cross
2818 between sections; 2). For those architectures which have "short"
2819 conditional branches, all conditional branches that attempt to
2820 cross between sections are converted to unconditional branches;
2821 and, 3). For those architectures which have "short" unconditional
2822 branches, all unconditional branches that attempt to cross between
2823 sections are converted to indirect jumps.
2824
2825 The code for fixing up fall_thru edges that cross between hot and
2826 cold basic blocks does so by creating new basic blocks containing
2827 unconditional branches to the appropriate label in the "other"
2828 section. The new basic block is then put in the same (hot or cold)
2829 section as the original conditional branch, and the fall_thru edge
2830 is modified to fall into the new basic block instead. By adding
2831 this level of indirection we end up with only unconditional branches
2832 crossing between hot and cold sections.
2833
2834 Conditional branches are dealt with by adding a level of indirection.
2835 A new basic block is added in the same (hot/cold) section as the
2836 conditional branch, and the conditional branch is retargeted to the
2837 new basic block. The new basic block contains an unconditional branch
2838 to the original target of the conditional branch (in the other section).
2839
2840 Unconditional branches are dealt with by converting them into
2841 indirect jumps. */
2842
2843 namespace {
2844
2845 const pass_data pass_data_partition_blocks =
2846 {
2847 RTL_PASS, /* type */
2848 "bbpart", /* name */
2849 OPTGROUP_NONE, /* optinfo_flags */
2850 TV_REORDER_BLOCKS, /* tv_id */
2851 PROP_cfglayout, /* properties_required */
2852 0, /* properties_provided */
2853 0, /* properties_destroyed */
2854 0, /* todo_flags_start */
2855 0, /* todo_flags_finish */
2856 };
2857
2858 class pass_partition_blocks : public rtl_opt_pass
2859 {
2860 public:
2861 pass_partition_blocks (gcc::context *ctxt)
2862 : rtl_opt_pass (pass_data_partition_blocks, ctxt)
2863 {}
2864
2865 /* opt_pass methods: */
2866 virtual bool gate (function *);
2867 virtual unsigned int execute (function *);
2868
2869 }; // class pass_partition_blocks
2870
2871 bool
2872 pass_partition_blocks::gate (function *fun)
2873 {
2874 /* The optimization to partition hot/cold basic blocks into separate
2875 sections of the .o file does not work well with linkonce or with
2876 user defined section attributes. Don't call it if either case
2877 arises. */
2878 return (flag_reorder_blocks_and_partition
2879 && optimize
2880 /* See gate_handle_reorder_blocks. We should not partition if
2881 we are going to omit the reordering. */
2882 && optimize_function_for_speed_p (fun)
2883 && !DECL_COMDAT_GROUP (current_function_decl)
2884 && !user_defined_section_attribute);
2885 }
2886
2887 unsigned
2888 pass_partition_blocks::execute (function *fun)
2889 {
2890 vec<edge> crossing_edges;
2891
2892 if (n_basic_blocks_for_fn (fun) <= NUM_FIXED_BLOCKS + 1)
2893 return 0;
2894
2895 df_set_flags (DF_DEFER_INSN_RESCAN);
2896
2897 crossing_edges = find_rarely_executed_basic_blocks_and_crossing_edges ();
2898 if (!crossing_edges.exists ())
2899 return 0;
2900
2901 crtl->has_bb_partition = true;
2902
2903 /* Make sure the source of any crossing edge ends in a jump and the
2904 destination of any crossing edge has a label. */
2905 add_labels_and_missing_jumps (crossing_edges);
2906
2907 /* Convert all crossing fall_thru edges to non-crossing fall
2908 thrus to unconditional jumps (that jump to the original fall
2909 through dest). */
2910 fix_up_fall_thru_edges ();
2911
2912 /* If the architecture does not have conditional branches that can
2913 span all of memory, convert crossing conditional branches into
2914 crossing unconditional branches. */
2915 if (!HAS_LONG_COND_BRANCH)
2916 fix_crossing_conditional_branches ();
2917
2918 /* If the architecture does not have unconditional branches that
2919 can span all of memory, convert crossing unconditional branches
2920 into indirect jumps. Since adding an indirect jump also adds
2921 a new register usage, update the register usage information as
2922 well. */
2923 if (!HAS_LONG_UNCOND_BRANCH)
2924 fix_crossing_unconditional_branches ();
2925
2926 update_crossing_jump_flags ();
2927
2928 /* Clear bb->aux fields that the above routines were using. */
2929 clear_aux_for_blocks ();
2930
2931 crossing_edges.release ();
2932
2933 /* ??? FIXME: DF generates the bb info for a block immediately.
2934 And by immediately, I mean *during* creation of the block.
2935
2936 #0 df_bb_refs_collect
2937 #1 in df_bb_refs_record
2938 #2 in create_basic_block_structure
2939
2940 Which means that the bb_has_eh_pred test in df_bb_refs_collect
2941 will *always* fail, because no edges can have been added to the
2942 block yet. Which of course means we don't add the right
2943 artificial refs, which means we fail df_verify (much) later.
2944
2945 Cleanest solution would seem to make DF_DEFER_INSN_RESCAN imply
2946 that we also shouldn't grab data from the new blocks those new
2947 insns are in either. In this way one can create the block, link
2948 it up properly, and have everything Just Work later, when deferred
2949 insns are processed.
2950
2951 In the meantime, we have no other option but to throw away all
2952 of the DF data and recompute it all. */
2953 if (fun->eh->lp_array)
2954 {
2955 df_finish_pass (true);
2956 df_scan_alloc (NULL);
2957 df_scan_blocks ();
2958 /* Not all post-landing pads use all of the EH_RETURN_DATA_REGNO
2959 data. We blindly generated all of them when creating the new
2960 landing pad. Delete those assignments we don't use. */
2961 df_set_flags (DF_LR_RUN_DCE);
2962 df_analyze ();
2963 }
2964
2965 return 0;
2966 }
2967
2968 } // anon namespace
2969
2970 rtl_opt_pass *
2971 make_pass_partition_blocks (gcc::context *ctxt)
2972 {
2973 return new pass_partition_blocks (ctxt);
2974 }