]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgcleanup.c
909d3462d7454b1d941986f0ae3fc5cf1c65cadb
[thirdparty/gcc.git] / gcc / cfgcleanup.c
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
24
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "regs.h"
41 #include "timevar.h"
42 #include "insn-config.h"
43 #include "flags.h"
44 #include "recog.h"
45 #include "diagnostic-core.h"
46 #include "cselib.h"
47 #include "params.h"
48 #include "tm_p.h"
49 #include "target.h"
50 #include "function.h" /* For inline functions in emit-rtl.h they need crtl. */
51 #include "emit-rtl.h"
52 #include "tree-pass.h"
53 #include "cfgloop.h"
54 #include "expr.h"
55 #include "df.h"
56 #include "dce.h"
57 #include "dbgcnt.h"
58
59 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
60
61 /* Set to true when we are running first pass of try_optimize_cfg loop. */
62 static bool first_pass;
63
64 /* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
65 static bool crossjumps_occured;
66
67 /* Set to true if we couldn't run an optimization due to stale liveness
68 information; we should run df_analyze to enable more opportunities. */
69 static bool block_was_dirty;
70
71 static bool try_crossjump_to_edge (int, edge, edge, enum replace_direction);
72 static bool try_crossjump_bb (int, basic_block);
73 static bool outgoing_edges_match (int, basic_block, basic_block);
74 static enum replace_direction old_insns_match_p (int, rtx, rtx);
75
76 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
77 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
78 static bool try_optimize_cfg (int);
79 static bool try_simplify_condjump (basic_block);
80 static bool try_forward_edges (int, basic_block);
81 static edge thread_jump (edge, basic_block);
82 static bool mark_effect (rtx, bitmap);
83 static void notice_new_block (basic_block);
84 static void update_forwarder_flag (basic_block);
85 static int mentions_nonequal_regs (rtx *, void *);
86 static void merge_memattrs (rtx, rtx);
87 \f
88 /* Set flags for newly created block. */
89
90 static void
91 notice_new_block (basic_block bb)
92 {
93 if (!bb)
94 return;
95
96 if (forwarder_block_p (bb))
97 bb->flags |= BB_FORWARDER_BLOCK;
98 }
99
100 /* Recompute forwarder flag after block has been modified. */
101
102 static void
103 update_forwarder_flag (basic_block bb)
104 {
105 if (forwarder_block_p (bb))
106 bb->flags |= BB_FORWARDER_BLOCK;
107 else
108 bb->flags &= ~BB_FORWARDER_BLOCK;
109 }
110 \f
111 /* Simplify a conditional jump around an unconditional jump.
112 Return true if something changed. */
113
114 static bool
115 try_simplify_condjump (basic_block cbranch_block)
116 {
117 basic_block jump_block, jump_dest_block, cbranch_dest_block;
118 edge cbranch_jump_edge, cbranch_fallthru_edge;
119 rtx cbranch_insn;
120
121 /* Verify that there are exactly two successors. */
122 if (EDGE_COUNT (cbranch_block->succs) != 2)
123 return false;
124
125 /* Verify that we've got a normal conditional branch at the end
126 of the block. */
127 cbranch_insn = BB_END (cbranch_block);
128 if (!any_condjump_p (cbranch_insn))
129 return false;
130
131 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
132 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
133
134 /* The next block must not have multiple predecessors, must not
135 be the last block in the function, and must contain just the
136 unconditional jump. */
137 jump_block = cbranch_fallthru_edge->dest;
138 if (!single_pred_p (jump_block)
139 || jump_block->next_bb == EXIT_BLOCK_PTR
140 || !FORWARDER_BLOCK_P (jump_block))
141 return false;
142 jump_dest_block = single_succ (jump_block);
143
144 /* If we are partitioning hot/cold basic blocks, we don't want to
145 mess up unconditional or indirect jumps that cross between hot
146 and cold sections.
147
148 Basic block partitioning may result in some jumps that appear to
149 be optimizable (or blocks that appear to be mergeable), but which really
150 must be left untouched (they are required to make it safely across
151 partition boundaries). See the comments at the top of
152 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
153
154 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
155 || (cbranch_jump_edge->flags & EDGE_CROSSING))
156 return false;
157
158 /* The conditional branch must target the block after the
159 unconditional branch. */
160 cbranch_dest_block = cbranch_jump_edge->dest;
161
162 if (cbranch_dest_block == EXIT_BLOCK_PTR
163 || !can_fallthru (jump_block, cbranch_dest_block))
164 return false;
165
166 /* Invert the conditional branch. */
167 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
168 return false;
169
170 if (dump_file)
171 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
172 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
173
174 /* Success. Update the CFG to match. Note that after this point
175 the edge variable names appear backwards; the redirection is done
176 this way to preserve edge profile data. */
177 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
178 cbranch_dest_block);
179 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
180 jump_dest_block);
181 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
182 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
183 update_br_prob_note (cbranch_block);
184
185 /* Delete the block with the unconditional jump, and clean up the mess. */
186 delete_basic_block (jump_block);
187 tidy_fallthru_edge (cbranch_jump_edge);
188 update_forwarder_flag (cbranch_block);
189
190 return true;
191 }
192 \f
193 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
194 on register. Used by jump threading. */
195
196 static bool
197 mark_effect (rtx exp, regset nonequal)
198 {
199 int regno;
200 rtx dest;
201 switch (GET_CODE (exp))
202 {
203 /* In case we do clobber the register, mark it as equal, as we know the
204 value is dead so it don't have to match. */
205 case CLOBBER:
206 if (REG_P (XEXP (exp, 0)))
207 {
208 dest = XEXP (exp, 0);
209 regno = REGNO (dest);
210 if (HARD_REGISTER_NUM_P (regno))
211 bitmap_clear_range (nonequal, regno,
212 hard_regno_nregs[regno][GET_MODE (dest)]);
213 else
214 bitmap_clear_bit (nonequal, regno);
215 }
216 return false;
217
218 case SET:
219 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
220 return false;
221 dest = SET_DEST (exp);
222 if (dest == pc_rtx)
223 return false;
224 if (!REG_P (dest))
225 return true;
226 regno = REGNO (dest);
227 if (HARD_REGISTER_NUM_P (regno))
228 bitmap_set_range (nonequal, regno,
229 hard_regno_nregs[regno][GET_MODE (dest)]);
230 else
231 bitmap_set_bit (nonequal, regno);
232 return false;
233
234 default:
235 return false;
236 }
237 }
238
239 /* Return nonzero if X is a register set in regset DATA.
240 Called via for_each_rtx. */
241 static int
242 mentions_nonequal_regs (rtx *x, void *data)
243 {
244 regset nonequal = (regset) data;
245 if (REG_P (*x))
246 {
247 int regno;
248
249 regno = REGNO (*x);
250 if (REGNO_REG_SET_P (nonequal, regno))
251 return 1;
252 if (regno < FIRST_PSEUDO_REGISTER)
253 {
254 int n = hard_regno_nregs[regno][GET_MODE (*x)];
255 while (--n > 0)
256 if (REGNO_REG_SET_P (nonequal, regno + n))
257 return 1;
258 }
259 }
260 return 0;
261 }
262 /* Attempt to prove that the basic block B will have no side effects and
263 always continues in the same edge if reached via E. Return the edge
264 if exist, NULL otherwise. */
265
266 static edge
267 thread_jump (edge e, basic_block b)
268 {
269 rtx set1, set2, cond1, cond2, insn;
270 enum rtx_code code1, code2, reversed_code2;
271 bool reverse1 = false;
272 unsigned i;
273 regset nonequal;
274 bool failed = false;
275 reg_set_iterator rsi;
276
277 if (b->flags & BB_NONTHREADABLE_BLOCK)
278 return NULL;
279
280 /* At the moment, we do handle only conditional jumps, but later we may
281 want to extend this code to tablejumps and others. */
282 if (EDGE_COUNT (e->src->succs) != 2)
283 return NULL;
284 if (EDGE_COUNT (b->succs) != 2)
285 {
286 b->flags |= BB_NONTHREADABLE_BLOCK;
287 return NULL;
288 }
289
290 /* Second branch must end with onlyjump, as we will eliminate the jump. */
291 if (!any_condjump_p (BB_END (e->src)))
292 return NULL;
293
294 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
295 {
296 b->flags |= BB_NONTHREADABLE_BLOCK;
297 return NULL;
298 }
299
300 set1 = pc_set (BB_END (e->src));
301 set2 = pc_set (BB_END (b));
302 if (((e->flags & EDGE_FALLTHRU) != 0)
303 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
304 reverse1 = true;
305
306 cond1 = XEXP (SET_SRC (set1), 0);
307 cond2 = XEXP (SET_SRC (set2), 0);
308 if (reverse1)
309 code1 = reversed_comparison_code (cond1, BB_END (e->src));
310 else
311 code1 = GET_CODE (cond1);
312
313 code2 = GET_CODE (cond2);
314 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
315
316 if (!comparison_dominates_p (code1, code2)
317 && !comparison_dominates_p (code1, reversed_code2))
318 return NULL;
319
320 /* Ensure that the comparison operators are equivalent.
321 ??? This is far too pessimistic. We should allow swapped operands,
322 different CCmodes, or for example comparisons for interval, that
323 dominate even when operands are not equivalent. */
324 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
325 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
326 return NULL;
327
328 /* Short circuit cases where block B contains some side effects, as we can't
329 safely bypass it. */
330 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
331 insn = NEXT_INSN (insn))
332 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
333 {
334 b->flags |= BB_NONTHREADABLE_BLOCK;
335 return NULL;
336 }
337
338 cselib_init (0);
339
340 /* First process all values computed in the source basic block. */
341 for (insn = NEXT_INSN (BB_HEAD (e->src));
342 insn != NEXT_INSN (BB_END (e->src));
343 insn = NEXT_INSN (insn))
344 if (INSN_P (insn))
345 cselib_process_insn (insn);
346
347 nonequal = BITMAP_ALLOC (NULL);
348 CLEAR_REG_SET (nonequal);
349
350 /* Now assume that we've continued by the edge E to B and continue
351 processing as if it were same basic block.
352 Our goal is to prove that whole block is an NOOP. */
353
354 for (insn = NEXT_INSN (BB_HEAD (b));
355 insn != NEXT_INSN (BB_END (b)) && !failed;
356 insn = NEXT_INSN (insn))
357 {
358 if (INSN_P (insn))
359 {
360 rtx pat = PATTERN (insn);
361
362 if (GET_CODE (pat) == PARALLEL)
363 {
364 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
365 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
366 }
367 else
368 failed |= mark_effect (pat, nonequal);
369 }
370
371 cselib_process_insn (insn);
372 }
373
374 /* Later we should clear nonequal of dead registers. So far we don't
375 have life information in cfg_cleanup. */
376 if (failed)
377 {
378 b->flags |= BB_NONTHREADABLE_BLOCK;
379 goto failed_exit;
380 }
381
382 /* cond2 must not mention any register that is not equal to the
383 former block. */
384 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
385 goto failed_exit;
386
387 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
388 goto failed_exit;
389
390 BITMAP_FREE (nonequal);
391 cselib_finish ();
392 if ((comparison_dominates_p (code1, code2) != 0)
393 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
394 return BRANCH_EDGE (b);
395 else
396 return FALLTHRU_EDGE (b);
397
398 failed_exit:
399 BITMAP_FREE (nonequal);
400 cselib_finish ();
401 return NULL;
402 }
403 \f
404 /* Attempt to forward edges leaving basic block B.
405 Return true if successful. */
406
407 static bool
408 try_forward_edges (int mode, basic_block b)
409 {
410 bool changed = false;
411 edge_iterator ei;
412 edge e, *threaded_edges = NULL;
413
414 /* If we are partitioning hot/cold basic blocks, we don't want to
415 mess up unconditional or indirect jumps that cross between hot
416 and cold sections.
417
418 Basic block partitioning may result in some jumps that appear to
419 be optimizable (or blocks that appear to be mergeable), but which really
420 must be left untouched (they are required to make it safely across
421 partition boundaries). See the comments at the top of
422 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
423
424 if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
425 return false;
426
427 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
428 {
429 basic_block target, first;
430 int counter, goto_locus;
431 bool threaded = false;
432 int nthreaded_edges = 0;
433 bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
434
435 /* Skip complex edges because we don't know how to update them.
436
437 Still handle fallthru edges, as we can succeed to forward fallthru
438 edge to the same place as the branch edge of conditional branch
439 and turn conditional branch to an unconditional branch. */
440 if (e->flags & EDGE_COMPLEX)
441 {
442 ei_next (&ei);
443 continue;
444 }
445
446 target = first = e->dest;
447 counter = NUM_FIXED_BLOCKS;
448 goto_locus = e->goto_locus;
449
450 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
451 up jumps that cross between hot/cold sections.
452
453 Basic block partitioning may result in some jumps that appear
454 to be optimizable (or blocks that appear to be mergeable), but which
455 really must be left untouched (they are required to make it safely
456 across partition boundaries). See the comments at the top of
457 bb-reorder.c:partition_hot_cold_basic_blocks for complete
458 details. */
459
460 if (first != EXIT_BLOCK_PTR
461 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
462 return false;
463
464 while (counter < n_basic_blocks)
465 {
466 basic_block new_target = NULL;
467 bool new_target_threaded = false;
468 may_thread |= (target->flags & BB_MODIFIED) != 0;
469
470 if (FORWARDER_BLOCK_P (target)
471 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
472 && single_succ (target) != EXIT_BLOCK_PTR)
473 {
474 /* Bypass trivial infinite loops. */
475 new_target = single_succ (target);
476 if (target == new_target)
477 counter = n_basic_blocks;
478 else if (!optimize)
479 {
480 /* When not optimizing, ensure that edges or forwarder
481 blocks with different locus are not optimized out. */
482 int new_locus = single_succ_edge (target)->goto_locus;
483 int locus = goto_locus;
484
485 if (new_locus && locus && !locator_eq (new_locus, locus))
486 new_target = NULL;
487 else
488 {
489 rtx last;
490
491 if (new_locus)
492 locus = new_locus;
493
494 last = BB_END (target);
495 if (DEBUG_INSN_P (last))
496 last = prev_nondebug_insn (last);
497
498 new_locus = last && INSN_P (last)
499 ? INSN_LOCATOR (last) : 0;
500
501 if (new_locus && locus && !locator_eq (new_locus, locus))
502 new_target = NULL;
503 else
504 {
505 if (new_locus)
506 locus = new_locus;
507
508 goto_locus = locus;
509 }
510 }
511 }
512 }
513
514 /* Allow to thread only over one edge at time to simplify updating
515 of probabilities. */
516 else if ((mode & CLEANUP_THREADING) && may_thread)
517 {
518 edge t = thread_jump (e, target);
519 if (t)
520 {
521 if (!threaded_edges)
522 threaded_edges = XNEWVEC (edge, n_basic_blocks);
523 else
524 {
525 int i;
526
527 /* Detect an infinite loop across blocks not
528 including the start block. */
529 for (i = 0; i < nthreaded_edges; ++i)
530 if (threaded_edges[i] == t)
531 break;
532 if (i < nthreaded_edges)
533 {
534 counter = n_basic_blocks;
535 break;
536 }
537 }
538
539 /* Detect an infinite loop across the start block. */
540 if (t->dest == b)
541 break;
542
543 gcc_assert (nthreaded_edges < n_basic_blocks - NUM_FIXED_BLOCKS);
544 threaded_edges[nthreaded_edges++] = t;
545
546 new_target = t->dest;
547 new_target_threaded = true;
548 }
549 }
550
551 if (!new_target)
552 break;
553
554 counter++;
555 target = new_target;
556 threaded |= new_target_threaded;
557 }
558
559 if (counter >= n_basic_blocks)
560 {
561 if (dump_file)
562 fprintf (dump_file, "Infinite loop in BB %i.\n",
563 target->index);
564 }
565 else if (target == first)
566 ; /* We didn't do anything. */
567 else
568 {
569 /* Save the values now, as the edge may get removed. */
570 gcov_type edge_count = e->count;
571 int edge_probability = e->probability;
572 int edge_frequency;
573 int n = 0;
574
575 e->goto_locus = goto_locus;
576
577 /* Don't force if target is exit block. */
578 if (threaded && target != EXIT_BLOCK_PTR)
579 {
580 notice_new_block (redirect_edge_and_branch_force (e, target));
581 if (dump_file)
582 fprintf (dump_file, "Conditionals threaded.\n");
583 }
584 else if (!redirect_edge_and_branch (e, target))
585 {
586 if (dump_file)
587 fprintf (dump_file,
588 "Forwarding edge %i->%i to %i failed.\n",
589 b->index, e->dest->index, target->index);
590 ei_next (&ei);
591 continue;
592 }
593
594 /* We successfully forwarded the edge. Now update profile
595 data: for each edge we traversed in the chain, remove
596 the original edge's execution count. */
597 edge_frequency = ((edge_probability * b->frequency
598 + REG_BR_PROB_BASE / 2)
599 / REG_BR_PROB_BASE);
600
601 do
602 {
603 edge t;
604
605 if (!single_succ_p (first))
606 {
607 gcc_assert (n < nthreaded_edges);
608 t = threaded_edges [n++];
609 gcc_assert (t->src == first);
610 update_bb_profile_for_threading (first, edge_frequency,
611 edge_count, t);
612 update_br_prob_note (first);
613 }
614 else
615 {
616 first->count -= edge_count;
617 if (first->count < 0)
618 first->count = 0;
619 first->frequency -= edge_frequency;
620 if (first->frequency < 0)
621 first->frequency = 0;
622 /* It is possible that as the result of
623 threading we've removed edge as it is
624 threaded to the fallthru edge. Avoid
625 getting out of sync. */
626 if (n < nthreaded_edges
627 && first == threaded_edges [n]->src)
628 n++;
629 t = single_succ_edge (first);
630 }
631
632 t->count -= edge_count;
633 if (t->count < 0)
634 t->count = 0;
635 first = t->dest;
636 }
637 while (first != target);
638
639 changed = true;
640 continue;
641 }
642 ei_next (&ei);
643 }
644
645 free (threaded_edges);
646 return changed;
647 }
648 \f
649
650 /* Blocks A and B are to be merged into a single block. A has no incoming
651 fallthru edge, so it can be moved before B without adding or modifying
652 any jumps (aside from the jump from A to B). */
653
654 static void
655 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
656 {
657 rtx barrier;
658
659 /* If we are partitioning hot/cold basic blocks, we don't want to
660 mess up unconditional or indirect jumps that cross between hot
661 and cold sections.
662
663 Basic block partitioning may result in some jumps that appear to
664 be optimizable (or blocks that appear to be mergeable), but which really
665 must be left untouched (they are required to make it safely across
666 partition boundaries). See the comments at the top of
667 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
668
669 if (BB_PARTITION (a) != BB_PARTITION (b))
670 return;
671
672 barrier = next_nonnote_insn (BB_END (a));
673 gcc_assert (BARRIER_P (barrier));
674 delete_insn (barrier);
675
676 /* Scramble the insn chain. */
677 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
678 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
679 df_set_bb_dirty (a);
680
681 if (dump_file)
682 fprintf (dump_file, "Moved block %d before %d and merged.\n",
683 a->index, b->index);
684
685 /* Swap the records for the two blocks around. */
686
687 unlink_block (a);
688 link_block (a, b->prev_bb);
689
690 /* Now blocks A and B are contiguous. Merge them. */
691 merge_blocks (a, b);
692 }
693
694 /* Blocks A and B are to be merged into a single block. B has no outgoing
695 fallthru edge, so it can be moved after A without adding or modifying
696 any jumps (aside from the jump from A to B). */
697
698 static void
699 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
700 {
701 rtx barrier, real_b_end;
702 rtx label, table;
703
704 /* If we are partitioning hot/cold basic blocks, we don't want to
705 mess up unconditional or indirect jumps that cross between hot
706 and cold sections.
707
708 Basic block partitioning may result in some jumps that appear to
709 be optimizable (or blocks that appear to be mergeable), but which really
710 must be left untouched (they are required to make it safely across
711 partition boundaries). See the comments at the top of
712 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
713
714 if (BB_PARTITION (a) != BB_PARTITION (b))
715 return;
716
717 real_b_end = BB_END (b);
718
719 /* If there is a jump table following block B temporarily add the jump table
720 to block B so that it will also be moved to the correct location. */
721 if (tablejump_p (BB_END (b), &label, &table)
722 && prev_active_insn (label) == BB_END (b))
723 {
724 BB_END (b) = table;
725 }
726
727 /* There had better have been a barrier there. Delete it. */
728 barrier = NEXT_INSN (BB_END (b));
729 if (barrier && BARRIER_P (barrier))
730 delete_insn (barrier);
731
732
733 /* Scramble the insn chain. */
734 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
735
736 /* Restore the real end of b. */
737 BB_END (b) = real_b_end;
738
739 if (dump_file)
740 fprintf (dump_file, "Moved block %d after %d and merged.\n",
741 b->index, a->index);
742
743 /* Now blocks A and B are contiguous. Merge them. */
744 merge_blocks (a, b);
745 }
746
747 /* Attempt to merge basic blocks that are potentially non-adjacent.
748 Return NULL iff the attempt failed, otherwise return basic block
749 where cleanup_cfg should continue. Because the merging commonly
750 moves basic block away or introduces another optimization
751 possibility, return basic block just before B so cleanup_cfg don't
752 need to iterate.
753
754 It may be good idea to return basic block before C in the case
755 C has been moved after B and originally appeared earlier in the
756 insn sequence, but we have no information available about the
757 relative ordering of these two. Hopefully it is not too common. */
758
759 static basic_block
760 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
761 {
762 basic_block next;
763
764 /* If we are partitioning hot/cold basic blocks, we don't want to
765 mess up unconditional or indirect jumps that cross between hot
766 and cold sections.
767
768 Basic block partitioning may result in some jumps that appear to
769 be optimizable (or blocks that appear to be mergeable), but which really
770 must be left untouched (they are required to make it safely across
771 partition boundaries). See the comments at the top of
772 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
773
774 if (BB_PARTITION (b) != BB_PARTITION (c))
775 return NULL;
776
777 /* If B has a fallthru edge to C, no need to move anything. */
778 if (e->flags & EDGE_FALLTHRU)
779 {
780 int b_index = b->index, c_index = c->index;
781
782 /* Protect the loop latches. */
783 if (current_loops && c->loop_father->latch == c)
784 return NULL;
785
786 merge_blocks (b, c);
787 update_forwarder_flag (b);
788
789 if (dump_file)
790 fprintf (dump_file, "Merged %d and %d without moving.\n",
791 b_index, c_index);
792
793 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
794 }
795
796 /* Otherwise we will need to move code around. Do that only if expensive
797 transformations are allowed. */
798 else if (mode & CLEANUP_EXPENSIVE)
799 {
800 edge tmp_edge, b_fallthru_edge;
801 bool c_has_outgoing_fallthru;
802 bool b_has_incoming_fallthru;
803
804 /* Avoid overactive code motion, as the forwarder blocks should be
805 eliminated by edge redirection instead. One exception might have
806 been if B is a forwarder block and C has no fallthru edge, but
807 that should be cleaned up by bb-reorder instead. */
808 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
809 return NULL;
810
811 /* We must make sure to not munge nesting of lexical blocks,
812 and loop notes. This is done by squeezing out all the notes
813 and leaving them there to lie. Not ideal, but functional. */
814
815 tmp_edge = find_fallthru_edge (c->succs);
816 c_has_outgoing_fallthru = (tmp_edge != NULL);
817
818 tmp_edge = find_fallthru_edge (b->preds);
819 b_has_incoming_fallthru = (tmp_edge != NULL);
820 b_fallthru_edge = tmp_edge;
821 next = b->prev_bb;
822 if (next == c)
823 next = next->prev_bb;
824
825 /* Otherwise, we're going to try to move C after B. If C does
826 not have an outgoing fallthru, then it can be moved
827 immediately after B without introducing or modifying jumps. */
828 if (! c_has_outgoing_fallthru)
829 {
830 merge_blocks_move_successor_nojumps (b, c);
831 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
832 }
833
834 /* If B does not have an incoming fallthru, then it can be moved
835 immediately before C without introducing or modifying jumps.
836 C cannot be the first block, so we do not have to worry about
837 accessing a non-existent block. */
838
839 if (b_has_incoming_fallthru)
840 {
841 basic_block bb;
842
843 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
844 return NULL;
845 bb = force_nonfallthru (b_fallthru_edge);
846 if (bb)
847 notice_new_block (bb);
848 }
849
850 merge_blocks_move_predecessor_nojumps (b, c);
851 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
852 }
853
854 return NULL;
855 }
856 \f
857
858 /* Removes the memory attributes of MEM expression
859 if they are not equal. */
860
861 void
862 merge_memattrs (rtx x, rtx y)
863 {
864 int i;
865 int j;
866 enum rtx_code code;
867 const char *fmt;
868
869 if (x == y)
870 return;
871 if (x == 0 || y == 0)
872 return;
873
874 code = GET_CODE (x);
875
876 if (code != GET_CODE (y))
877 return;
878
879 if (GET_MODE (x) != GET_MODE (y))
880 return;
881
882 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
883 {
884 if (! MEM_ATTRS (x))
885 MEM_ATTRS (y) = 0;
886 else if (! MEM_ATTRS (y))
887 MEM_ATTRS (x) = 0;
888 else
889 {
890 HOST_WIDE_INT mem_size;
891
892 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
893 {
894 set_mem_alias_set (x, 0);
895 set_mem_alias_set (y, 0);
896 }
897
898 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
899 {
900 set_mem_expr (x, 0);
901 set_mem_expr (y, 0);
902 clear_mem_offset (x);
903 clear_mem_offset (y);
904 }
905 else if (MEM_OFFSET_KNOWN_P (x) != MEM_OFFSET_KNOWN_P (y)
906 || (MEM_OFFSET_KNOWN_P (x)
907 && MEM_OFFSET (x) != MEM_OFFSET (y)))
908 {
909 clear_mem_offset (x);
910 clear_mem_offset (y);
911 }
912
913 if (MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y))
914 {
915 mem_size = MAX (MEM_SIZE (x), MEM_SIZE (y));
916 set_mem_size (x, mem_size);
917 set_mem_size (y, mem_size);
918 }
919 else
920 {
921 clear_mem_size (x);
922 clear_mem_size (y);
923 }
924
925 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
926 set_mem_align (y, MEM_ALIGN (x));
927 }
928 }
929
930 fmt = GET_RTX_FORMAT (code);
931 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
932 {
933 switch (fmt[i])
934 {
935 case 'E':
936 /* Two vectors must have the same length. */
937 if (XVECLEN (x, i) != XVECLEN (y, i))
938 return;
939
940 for (j = 0; j < XVECLEN (x, i); j++)
941 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
942
943 break;
944
945 case 'e':
946 merge_memattrs (XEXP (x, i), XEXP (y, i));
947 }
948 }
949 return;
950 }
951
952
953 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
954 different single sets S1 and S2. */
955
956 static bool
957 equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
958 {
959 int i;
960 rtx e1, e2;
961
962 if (p1 == s1 && p2 == s2)
963 return true;
964
965 if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
966 return false;
967
968 if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
969 return false;
970
971 for (i = 0; i < XVECLEN (p1, 0); i++)
972 {
973 e1 = XVECEXP (p1, 0, i);
974 e2 = XVECEXP (p2, 0, i);
975 if (e1 == s1 && e2 == s2)
976 continue;
977 if (reload_completed
978 ? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
979 continue;
980
981 return false;
982 }
983
984 return true;
985 }
986
987 /* Examine register notes on I1 and I2 and return:
988 - dir_forward if I1 can be replaced by I2, or
989 - dir_backward if I2 can be replaced by I1, or
990 - dir_both if both are the case. */
991
992 static enum replace_direction
993 can_replace_by (rtx i1, rtx i2)
994 {
995 rtx s1, s2, d1, d2, src1, src2, note1, note2;
996 bool c1, c2;
997
998 /* Check for 2 sets. */
999 s1 = single_set (i1);
1000 s2 = single_set (i2);
1001 if (s1 == NULL_RTX || s2 == NULL_RTX)
1002 return dir_none;
1003
1004 /* Check that the 2 sets set the same dest. */
1005 d1 = SET_DEST (s1);
1006 d2 = SET_DEST (s2);
1007 if (!(reload_completed
1008 ? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
1009 return dir_none;
1010
1011 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1012 set dest to the same value. */
1013 note1 = find_reg_equal_equiv_note (i1);
1014 note2 = find_reg_equal_equiv_note (i2);
1015 if (!note1 || !note2 || !rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0))
1016 || !CONST_INT_P (XEXP (note1, 0)))
1017 return dir_none;
1018
1019 if (!equal_different_set_p (PATTERN (i1), s1, PATTERN (i2), s2))
1020 return dir_none;
1021
1022 /* Although the 2 sets set dest to the same value, we cannot replace
1023 (set (dest) (const_int))
1024 by
1025 (set (dest) (reg))
1026 because we don't know if the reg is live and has the same value at the
1027 location of replacement. */
1028 src1 = SET_SRC (s1);
1029 src2 = SET_SRC (s2);
1030 c1 = CONST_INT_P (src1);
1031 c2 = CONST_INT_P (src2);
1032 if (c1 && c2)
1033 return dir_both;
1034 else if (c2)
1035 return dir_forward;
1036 else if (c1)
1037 return dir_backward;
1038
1039 return dir_none;
1040 }
1041
1042 /* Merges directions A and B. */
1043
1044 static enum replace_direction
1045 merge_dir (enum replace_direction a, enum replace_direction b)
1046 {
1047 /* Implements the following table:
1048 |bo fw bw no
1049 ---+-----------
1050 bo |bo fw bw no
1051 fw |-- fw no no
1052 bw |-- -- bw no
1053 no |-- -- -- no. */
1054
1055 if (a == b)
1056 return a;
1057
1058 if (a == dir_both)
1059 return b;
1060 if (b == dir_both)
1061 return a;
1062
1063 return dir_none;
1064 }
1065
1066 /* Examine I1 and I2 and return:
1067 - dir_forward if I1 can be replaced by I2, or
1068 - dir_backward if I2 can be replaced by I1, or
1069 - dir_both if both are the case. */
1070
1071 static enum replace_direction
1072 old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
1073 {
1074 rtx p1, p2;
1075
1076 /* Verify that I1 and I2 are equivalent. */
1077 if (GET_CODE (i1) != GET_CODE (i2))
1078 return dir_none;
1079
1080 /* __builtin_unreachable() may lead to empty blocks (ending with
1081 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1082 if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
1083 return dir_both;
1084
1085 /* ??? Do not allow cross-jumping between different stack levels. */
1086 p1 = find_reg_note (i1, REG_ARGS_SIZE, NULL);
1087 p2 = find_reg_note (i2, REG_ARGS_SIZE, NULL);
1088 if (p1 && p2)
1089 {
1090 p1 = XEXP (p1, 0);
1091 p2 = XEXP (p2, 0);
1092 if (!rtx_equal_p (p1, p2))
1093 return dir_none;
1094
1095 /* ??? Worse, this adjustment had better be constant lest we
1096 have differing incoming stack levels. */
1097 if (!frame_pointer_needed
1098 && find_args_size_adjust (i1) == HOST_WIDE_INT_MIN)
1099 return dir_none;
1100 }
1101 else if (p1 || p2)
1102 return dir_none;
1103
1104 p1 = PATTERN (i1);
1105 p2 = PATTERN (i2);
1106
1107 if (GET_CODE (p1) != GET_CODE (p2))
1108 return dir_none;
1109
1110 /* If this is a CALL_INSN, compare register usage information.
1111 If we don't check this on stack register machines, the two
1112 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1113 numbers of stack registers in the same basic block.
1114 If we don't check this on machines with delay slots, a delay slot may
1115 be filled that clobbers a parameter expected by the subroutine.
1116
1117 ??? We take the simple route for now and assume that if they're
1118 equal, they were constructed identically.
1119
1120 Also check for identical exception regions. */
1121
1122 if (CALL_P (i1))
1123 {
1124 /* Ensure the same EH region. */
1125 rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
1126 rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
1127
1128 if (!n1 && n2)
1129 return dir_none;
1130
1131 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1132 return dir_none;
1133
1134 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1135 CALL_INSN_FUNCTION_USAGE (i2))
1136 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
1137 return dir_none;
1138 }
1139
1140 #ifdef STACK_REGS
1141 /* If cross_jump_death_matters is not 0, the insn's mode
1142 indicates whether or not the insn contains any stack-like
1143 regs. */
1144
1145 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1146 {
1147 /* If register stack conversion has already been done, then
1148 death notes must also be compared before it is certain that
1149 the two instruction streams match. */
1150
1151 rtx note;
1152 HARD_REG_SET i1_regset, i2_regset;
1153
1154 CLEAR_HARD_REG_SET (i1_regset);
1155 CLEAR_HARD_REG_SET (i2_regset);
1156
1157 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1158 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1159 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1160
1161 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1162 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1163 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1164
1165 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
1166 return dir_none;
1167 }
1168 #endif
1169
1170 if (reload_completed
1171 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1172 return dir_both;
1173
1174 return can_replace_by (i1, i2);
1175 }
1176 \f
1177 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1178 flow_find_head_matching_sequence, ensure the notes match. */
1179
1180 static void
1181 merge_notes (rtx i1, rtx i2)
1182 {
1183 /* If the merged insns have different REG_EQUAL notes, then
1184 remove them. */
1185 rtx equiv1 = find_reg_equal_equiv_note (i1);
1186 rtx equiv2 = find_reg_equal_equiv_note (i2);
1187
1188 if (equiv1 && !equiv2)
1189 remove_note (i1, equiv1);
1190 else if (!equiv1 && equiv2)
1191 remove_note (i2, equiv2);
1192 else if (equiv1 && equiv2
1193 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1194 {
1195 remove_note (i1, equiv1);
1196 remove_note (i2, equiv2);
1197 }
1198 }
1199
1200 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1201 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1202 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1203 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1204 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1205
1206 static void
1207 walk_to_nondebug_insn (rtx *i1, basic_block *bb1, bool follow_fallthru,
1208 bool *did_fallthru)
1209 {
1210 edge fallthru;
1211
1212 *did_fallthru = false;
1213
1214 /* Ignore notes. */
1215 while (!NONDEBUG_INSN_P (*i1))
1216 {
1217 if (*i1 != BB_HEAD (*bb1))
1218 {
1219 *i1 = PREV_INSN (*i1);
1220 continue;
1221 }
1222
1223 if (!follow_fallthru)
1224 return;
1225
1226 fallthru = find_fallthru_edge ((*bb1)->preds);
1227 if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FUNCTION (cfun)
1228 || !single_succ_p (fallthru->src))
1229 return;
1230
1231 *bb1 = fallthru->src;
1232 *i1 = BB_END (*bb1);
1233 *did_fallthru = true;
1234 }
1235 }
1236
1237 /* Look through the insns at the end of BB1 and BB2 and find the longest
1238 sequence that are either equivalent, or allow forward or backward
1239 replacement. Store the first insns for that sequence in *F1 and *F2 and
1240 return the sequence length.
1241
1242 DIR_P indicates the allowed replacement direction on function entry, and
1243 the actual replacement direction on function exit. If NULL, only equivalent
1244 sequences are allowed.
1245
1246 To simplify callers of this function, if the blocks match exactly,
1247 store the head of the blocks in *F1 and *F2. */
1248
1249 int
1250 flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx *f1, rtx *f2,
1251 enum replace_direction *dir_p)
1252 {
1253 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1254 int ninsns = 0;
1255 rtx p1;
1256 enum replace_direction dir, last_dir, afterlast_dir;
1257 bool follow_fallthru, did_fallthru;
1258
1259 if (dir_p)
1260 dir = *dir_p;
1261 else
1262 dir = dir_both;
1263 afterlast_dir = dir;
1264 last_dir = afterlast_dir;
1265
1266 /* Skip simple jumps at the end of the blocks. Complex jumps still
1267 need to be compared for equivalence, which we'll do below. */
1268
1269 i1 = BB_END (bb1);
1270 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1271 if (onlyjump_p (i1)
1272 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1273 {
1274 last1 = i1;
1275 i1 = PREV_INSN (i1);
1276 }
1277
1278 i2 = BB_END (bb2);
1279 if (onlyjump_p (i2)
1280 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1281 {
1282 last2 = i2;
1283 /* Count everything except for unconditional jump as insn. */
1284 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1285 ninsns++;
1286 i2 = PREV_INSN (i2);
1287 }
1288
1289 while (true)
1290 {
1291 /* In the following example, we can replace all jumps to C by jumps to A.
1292
1293 This removes 4 duplicate insns.
1294 [bb A] insn1 [bb C] insn1
1295 insn2 insn2
1296 [bb B] insn3 insn3
1297 insn4 insn4
1298 jump_insn jump_insn
1299
1300 We could also replace all jumps to A by jumps to C, but that leaves B
1301 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1302 step, all jumps to B would be replaced with jumps to the middle of C,
1303 achieving the same result with more effort.
1304 So we allow only the first possibility, which means that we don't allow
1305 fallthru in the block that's being replaced. */
1306
1307 follow_fallthru = dir_p && dir != dir_forward;
1308 walk_to_nondebug_insn (&i1, &bb1, follow_fallthru, &did_fallthru);
1309 if (did_fallthru)
1310 dir = dir_backward;
1311
1312 follow_fallthru = dir_p && dir != dir_backward;
1313 walk_to_nondebug_insn (&i2, &bb2, follow_fallthru, &did_fallthru);
1314 if (did_fallthru)
1315 dir = dir_forward;
1316
1317 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1318 break;
1319
1320 dir = merge_dir (dir, old_insns_match_p (0, i1, i2));
1321 if (dir == dir_none || (!dir_p && dir != dir_both))
1322 break;
1323
1324 merge_memattrs (i1, i2);
1325
1326 /* Don't begin a cross-jump with a NOTE insn. */
1327 if (INSN_P (i1))
1328 {
1329 merge_notes (i1, i2);
1330
1331 afterlast1 = last1, afterlast2 = last2;
1332 last1 = i1, last2 = i2;
1333 afterlast_dir = last_dir;
1334 last_dir = dir;
1335 p1 = PATTERN (i1);
1336 if (!(GET_CODE (p1) == USE || GET_CODE (p1) == CLOBBER))
1337 ninsns++;
1338 }
1339
1340 i1 = PREV_INSN (i1);
1341 i2 = PREV_INSN (i2);
1342 }
1343
1344 #ifdef HAVE_cc0
1345 /* Don't allow the insn after a compare to be shared by
1346 cross-jumping unless the compare is also shared. */
1347 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1348 last1 = afterlast1, last2 = afterlast2, last_dir = afterlast_dir, ninsns--;
1349 #endif
1350
1351 /* Include preceding notes and labels in the cross-jump. One,
1352 this may bring us to the head of the blocks as requested above.
1353 Two, it keeps line number notes as matched as may be. */
1354 if (ninsns)
1355 {
1356 bb1 = BLOCK_FOR_INSN (last1);
1357 while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
1358 last1 = PREV_INSN (last1);
1359
1360 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1361 last1 = PREV_INSN (last1);
1362
1363 bb2 = BLOCK_FOR_INSN (last2);
1364 while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
1365 last2 = PREV_INSN (last2);
1366
1367 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1368 last2 = PREV_INSN (last2);
1369
1370 *f1 = last1;
1371 *f2 = last2;
1372 }
1373
1374 if (dir_p)
1375 *dir_p = last_dir;
1376 return ninsns;
1377 }
1378
1379 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1380 the head of the two blocks. Do not include jumps at the end.
1381 If STOP_AFTER is nonzero, stop after finding that many matching
1382 instructions. */
1383
1384 int
1385 flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx *f1,
1386 rtx *f2, int stop_after)
1387 {
1388 rtx i1, i2, last1, last2, beforelast1, beforelast2;
1389 int ninsns = 0;
1390 edge e;
1391 edge_iterator ei;
1392 int nehedges1 = 0, nehedges2 = 0;
1393
1394 FOR_EACH_EDGE (e, ei, bb1->succs)
1395 if (e->flags & EDGE_EH)
1396 nehedges1++;
1397 FOR_EACH_EDGE (e, ei, bb2->succs)
1398 if (e->flags & EDGE_EH)
1399 nehedges2++;
1400
1401 i1 = BB_HEAD (bb1);
1402 i2 = BB_HEAD (bb2);
1403 last1 = beforelast1 = last2 = beforelast2 = NULL_RTX;
1404
1405 while (true)
1406 {
1407 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1408 while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
1409 {
1410 if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
1411 break;
1412 i1 = NEXT_INSN (i1);
1413 }
1414
1415 while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
1416 {
1417 if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
1418 break;
1419 i2 = NEXT_INSN (i2);
1420 }
1421
1422 if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
1423 || (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
1424 break;
1425
1426 if (NOTE_P (i1) || NOTE_P (i2)
1427 || JUMP_P (i1) || JUMP_P (i2))
1428 break;
1429
1430 /* A sanity check to make sure we're not merging insns with different
1431 effects on EH. If only one of them ends a basic block, it shouldn't
1432 have an EH edge; if both end a basic block, there should be the same
1433 number of EH edges. */
1434 if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
1435 && nehedges1 > 0)
1436 || (i2 == BB_END (bb2) && i1 != BB_END (bb1)
1437 && nehedges2 > 0)
1438 || (i1 == BB_END (bb1) && i2 == BB_END (bb2)
1439 && nehedges1 != nehedges2))
1440 break;
1441
1442 if (old_insns_match_p (0, i1, i2) != dir_both)
1443 break;
1444
1445 merge_memattrs (i1, i2);
1446
1447 /* Don't begin a cross-jump with a NOTE insn. */
1448 if (INSN_P (i1))
1449 {
1450 merge_notes (i1, i2);
1451
1452 beforelast1 = last1, beforelast2 = last2;
1453 last1 = i1, last2 = i2;
1454 ninsns++;
1455 }
1456
1457 if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
1458 || (stop_after > 0 && ninsns == stop_after))
1459 break;
1460
1461 i1 = NEXT_INSN (i1);
1462 i2 = NEXT_INSN (i2);
1463 }
1464
1465 #ifdef HAVE_cc0
1466 /* Don't allow a compare to be shared by cross-jumping unless the insn
1467 after the compare is also shared. */
1468 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && sets_cc0_p (last1))
1469 last1 = beforelast1, last2 = beforelast2, ninsns--;
1470 #endif
1471
1472 if (ninsns)
1473 {
1474 *f1 = last1;
1475 *f2 = last2;
1476 }
1477
1478 return ninsns;
1479 }
1480
1481 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1482 the branch instruction. This means that if we commonize the control
1483 flow before end of the basic block, the semantic remains unchanged.
1484
1485 We may assume that there exists one edge with a common destination. */
1486
1487 static bool
1488 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1489 {
1490 int nehedges1 = 0, nehedges2 = 0;
1491 edge fallthru1 = 0, fallthru2 = 0;
1492 edge e1, e2;
1493 edge_iterator ei;
1494
1495 /* If we performed shrink-wrapping, edges to the EXIT_BLOCK_PTR can
1496 only be distinguished for JUMP_INSNs. The two paths may differ in
1497 whether they went through the prologue. Sibcalls are fine, we know
1498 that we either didn't need or inserted an epilogue before them. */
1499 if (crtl->shrink_wrapped
1500 && single_succ_p (bb1) && single_succ (bb1) == EXIT_BLOCK_PTR
1501 && !JUMP_P (BB_END (bb1))
1502 && !(CALL_P (BB_END (bb1)) && SIBLING_CALL_P (BB_END (bb1))))
1503 return false;
1504
1505 /* If BB1 has only one successor, we may be looking at either an
1506 unconditional jump, or a fake edge to exit. */
1507 if (single_succ_p (bb1)
1508 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1509 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1510 return (single_succ_p (bb2)
1511 && (single_succ_edge (bb2)->flags
1512 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1513 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1514
1515 /* Match conditional jumps - this may get tricky when fallthru and branch
1516 edges are crossed. */
1517 if (EDGE_COUNT (bb1->succs) == 2
1518 && any_condjump_p (BB_END (bb1))
1519 && onlyjump_p (BB_END (bb1)))
1520 {
1521 edge b1, f1, b2, f2;
1522 bool reverse, match;
1523 rtx set1, set2, cond1, cond2;
1524 enum rtx_code code1, code2;
1525
1526 if (EDGE_COUNT (bb2->succs) != 2
1527 || !any_condjump_p (BB_END (bb2))
1528 || !onlyjump_p (BB_END (bb2)))
1529 return false;
1530
1531 b1 = BRANCH_EDGE (bb1);
1532 b2 = BRANCH_EDGE (bb2);
1533 f1 = FALLTHRU_EDGE (bb1);
1534 f2 = FALLTHRU_EDGE (bb2);
1535
1536 /* Get around possible forwarders on fallthru edges. Other cases
1537 should be optimized out already. */
1538 if (FORWARDER_BLOCK_P (f1->dest))
1539 f1 = single_succ_edge (f1->dest);
1540
1541 if (FORWARDER_BLOCK_P (f2->dest))
1542 f2 = single_succ_edge (f2->dest);
1543
1544 /* To simplify use of this function, return false if there are
1545 unneeded forwarder blocks. These will get eliminated later
1546 during cleanup_cfg. */
1547 if (FORWARDER_BLOCK_P (f1->dest)
1548 || FORWARDER_BLOCK_P (f2->dest)
1549 || FORWARDER_BLOCK_P (b1->dest)
1550 || FORWARDER_BLOCK_P (b2->dest))
1551 return false;
1552
1553 if (f1->dest == f2->dest && b1->dest == b2->dest)
1554 reverse = false;
1555 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1556 reverse = true;
1557 else
1558 return false;
1559
1560 set1 = pc_set (BB_END (bb1));
1561 set2 = pc_set (BB_END (bb2));
1562 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1563 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1564 reverse = !reverse;
1565
1566 cond1 = XEXP (SET_SRC (set1), 0);
1567 cond2 = XEXP (SET_SRC (set2), 0);
1568 code1 = GET_CODE (cond1);
1569 if (reverse)
1570 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1571 else
1572 code2 = GET_CODE (cond2);
1573
1574 if (code2 == UNKNOWN)
1575 return false;
1576
1577 /* Verify codes and operands match. */
1578 match = ((code1 == code2
1579 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1580 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1581 || (code1 == swap_condition (code2)
1582 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1583 XEXP (cond2, 0))
1584 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1585 XEXP (cond2, 1))));
1586
1587 /* If we return true, we will join the blocks. Which means that
1588 we will only have one branch prediction bit to work with. Thus
1589 we require the existing branches to have probabilities that are
1590 roughly similar. */
1591 if (match
1592 && optimize_bb_for_speed_p (bb1)
1593 && optimize_bb_for_speed_p (bb2))
1594 {
1595 int prob2;
1596
1597 if (b1->dest == b2->dest)
1598 prob2 = b2->probability;
1599 else
1600 /* Do not use f2 probability as f2 may be forwarded. */
1601 prob2 = REG_BR_PROB_BASE - b2->probability;
1602
1603 /* Fail if the difference in probabilities is greater than 50%.
1604 This rules out two well-predicted branches with opposite
1605 outcomes. */
1606 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1607 {
1608 if (dump_file)
1609 fprintf (dump_file,
1610 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1611 bb1->index, bb2->index, b1->probability, prob2);
1612
1613 return false;
1614 }
1615 }
1616
1617 if (dump_file && match)
1618 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1619 bb1->index, bb2->index);
1620
1621 return match;
1622 }
1623
1624 /* Generic case - we are seeing a computed jump, table jump or trapping
1625 instruction. */
1626
1627 /* Check whether there are tablejumps in the end of BB1 and BB2.
1628 Return true if they are identical. */
1629 {
1630 rtx label1, label2;
1631 rtx table1, table2;
1632
1633 if (tablejump_p (BB_END (bb1), &label1, &table1)
1634 && tablejump_p (BB_END (bb2), &label2, &table2)
1635 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1636 {
1637 /* The labels should never be the same rtx. If they really are same
1638 the jump tables are same too. So disable crossjumping of blocks BB1
1639 and BB2 because when deleting the common insns in the end of BB1
1640 by delete_basic_block () the jump table would be deleted too. */
1641 /* If LABEL2 is referenced in BB1->END do not do anything
1642 because we would loose information when replacing
1643 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1644 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1645 {
1646 /* Set IDENTICAL to true when the tables are identical. */
1647 bool identical = false;
1648 rtx p1, p2;
1649
1650 p1 = PATTERN (table1);
1651 p2 = PATTERN (table2);
1652 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1653 {
1654 identical = true;
1655 }
1656 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1657 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1658 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1659 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1660 {
1661 int i;
1662
1663 identical = true;
1664 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1665 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1666 identical = false;
1667 }
1668
1669 if (identical)
1670 {
1671 replace_label_data rr;
1672 bool match;
1673
1674 /* Temporarily replace references to LABEL1 with LABEL2
1675 in BB1->END so that we could compare the instructions. */
1676 rr.r1 = label1;
1677 rr.r2 = label2;
1678 rr.update_label_nuses = false;
1679 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1680
1681 match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
1682 == dir_both);
1683 if (dump_file && match)
1684 fprintf (dump_file,
1685 "Tablejumps in bb %i and %i match.\n",
1686 bb1->index, bb2->index);
1687
1688 /* Set the original label in BB1->END because when deleting
1689 a block whose end is a tablejump, the tablejump referenced
1690 from the instruction is deleted too. */
1691 rr.r1 = label2;
1692 rr.r2 = label1;
1693 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1694
1695 return match;
1696 }
1697 }
1698 return false;
1699 }
1700 }
1701
1702 /* First ensure that the instructions match. There may be many outgoing
1703 edges so this test is generally cheaper. */
1704 if (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2)) != dir_both)
1705 return false;
1706
1707 /* Search the outgoing edges, ensure that the counts do match, find possible
1708 fallthru and exception handling edges since these needs more
1709 validation. */
1710 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1711 return false;
1712
1713 FOR_EACH_EDGE (e1, ei, bb1->succs)
1714 {
1715 e2 = EDGE_SUCC (bb2, ei.index);
1716
1717 if (e1->flags & EDGE_EH)
1718 nehedges1++;
1719
1720 if (e2->flags & EDGE_EH)
1721 nehedges2++;
1722
1723 if (e1->flags & EDGE_FALLTHRU)
1724 fallthru1 = e1;
1725 if (e2->flags & EDGE_FALLTHRU)
1726 fallthru2 = e2;
1727 }
1728
1729 /* If number of edges of various types does not match, fail. */
1730 if (nehedges1 != nehedges2
1731 || (fallthru1 != 0) != (fallthru2 != 0))
1732 return false;
1733
1734 /* fallthru edges must be forwarded to the same destination. */
1735 if (fallthru1)
1736 {
1737 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1738 ? single_succ (fallthru1->dest): fallthru1->dest);
1739 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1740 ? single_succ (fallthru2->dest): fallthru2->dest);
1741
1742 if (d1 != d2)
1743 return false;
1744 }
1745
1746 /* Ensure the same EH region. */
1747 {
1748 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1749 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1750
1751 if (!n1 && n2)
1752 return false;
1753
1754 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1755 return false;
1756 }
1757
1758 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1759 version of sequence abstraction. */
1760 FOR_EACH_EDGE (e1, ei, bb2->succs)
1761 {
1762 edge e2;
1763 edge_iterator ei;
1764 basic_block d1 = e1->dest;
1765
1766 if (FORWARDER_BLOCK_P (d1))
1767 d1 = EDGE_SUCC (d1, 0)->dest;
1768
1769 FOR_EACH_EDGE (e2, ei, bb1->succs)
1770 {
1771 basic_block d2 = e2->dest;
1772 if (FORWARDER_BLOCK_P (d2))
1773 d2 = EDGE_SUCC (d2, 0)->dest;
1774 if (d1 == d2)
1775 break;
1776 }
1777
1778 if (!e2)
1779 return false;
1780 }
1781
1782 return true;
1783 }
1784
1785 /* Returns true if BB basic block has a preserve label. */
1786
1787 static bool
1788 block_has_preserve_label (basic_block bb)
1789 {
1790 return (bb
1791 && block_label (bb)
1792 && LABEL_PRESERVE_P (block_label (bb)));
1793 }
1794
1795 /* E1 and E2 are edges with the same destination block. Search their
1796 predecessors for common code. If found, redirect control flow from
1797 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1798 or the other way around (dir_backward). DIR specifies the allowed
1799 replacement direction. */
1800
1801 static bool
1802 try_crossjump_to_edge (int mode, edge e1, edge e2,
1803 enum replace_direction dir)
1804 {
1805 int nmatch;
1806 basic_block src1 = e1->src, src2 = e2->src;
1807 basic_block redirect_to, redirect_from, to_remove;
1808 basic_block osrc1, osrc2, redirect_edges_to, tmp;
1809 rtx newpos1, newpos2;
1810 edge s;
1811 edge_iterator ei;
1812
1813 newpos1 = newpos2 = NULL_RTX;
1814
1815 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1816 to try this optimization.
1817
1818 Basic block partitioning may result in some jumps that appear to
1819 be optimizable (or blocks that appear to be mergeable), but which really
1820 must be left untouched (they are required to make it safely across
1821 partition boundaries). See the comments at the top of
1822 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1823
1824 if (flag_reorder_blocks_and_partition && reload_completed)
1825 return false;
1826
1827 /* Search backward through forwarder blocks. We don't need to worry
1828 about multiple entry or chained forwarders, as they will be optimized
1829 away. We do this to look past the unconditional jump following a
1830 conditional jump that is required due to the current CFG shape. */
1831 if (single_pred_p (src1)
1832 && FORWARDER_BLOCK_P (src1))
1833 e1 = single_pred_edge (src1), src1 = e1->src;
1834
1835 if (single_pred_p (src2)
1836 && FORWARDER_BLOCK_P (src2))
1837 e2 = single_pred_edge (src2), src2 = e2->src;
1838
1839 /* Nothing to do if we reach ENTRY, or a common source block. */
1840 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1841 return false;
1842 if (src1 == src2)
1843 return false;
1844
1845 /* Seeing more than 1 forwarder blocks would confuse us later... */
1846 if (FORWARDER_BLOCK_P (e1->dest)
1847 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1848 return false;
1849
1850 if (FORWARDER_BLOCK_P (e2->dest)
1851 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1852 return false;
1853
1854 /* Likewise with dead code (possibly newly created by the other optimizations
1855 of cfg_cleanup). */
1856 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1857 return false;
1858
1859 /* Look for the common insn sequence, part the first ... */
1860 if (!outgoing_edges_match (mode, src1, src2))
1861 return false;
1862
1863 /* ... and part the second. */
1864 nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2, &dir);
1865
1866 osrc1 = src1;
1867 osrc2 = src2;
1868 if (newpos1 != NULL_RTX)
1869 src1 = BLOCK_FOR_INSN (newpos1);
1870 if (newpos2 != NULL_RTX)
1871 src2 = BLOCK_FOR_INSN (newpos2);
1872
1873 if (dir == dir_backward)
1874 {
1875 #define SWAP(T, X, Y) do { T tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
1876 SWAP (basic_block, osrc1, osrc2);
1877 SWAP (basic_block, src1, src2);
1878 SWAP (edge, e1, e2);
1879 SWAP (rtx, newpos1, newpos2);
1880 #undef SWAP
1881 }
1882
1883 /* Don't proceed with the crossjump unless we found a sufficient number
1884 of matching instructions or the 'from' block was totally matched
1885 (such that its predecessors will hopefully be redirected and the
1886 block removed). */
1887 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1888 && (newpos1 != BB_HEAD (src1)))
1889 return false;
1890
1891 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1892 if (block_has_preserve_label (e1->dest)
1893 && (e1->flags & EDGE_ABNORMAL))
1894 return false;
1895
1896 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1897 will be deleted.
1898 If we have tablejumps in the end of SRC1 and SRC2
1899 they have been already compared for equivalence in outgoing_edges_match ()
1900 so replace the references to TABLE1 by references to TABLE2. */
1901 {
1902 rtx label1, label2;
1903 rtx table1, table2;
1904
1905 if (tablejump_p (BB_END (osrc1), &label1, &table1)
1906 && tablejump_p (BB_END (osrc2), &label2, &table2)
1907 && label1 != label2)
1908 {
1909 replace_label_data rr;
1910 rtx insn;
1911
1912 /* Replace references to LABEL1 with LABEL2. */
1913 rr.r1 = label1;
1914 rr.r2 = label2;
1915 rr.update_label_nuses = true;
1916 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1917 {
1918 /* Do not replace the label in SRC1->END because when deleting
1919 a block whose end is a tablejump, the tablejump referenced
1920 from the instruction is deleted too. */
1921 if (insn != BB_END (osrc1))
1922 for_each_rtx (&insn, replace_label, &rr);
1923 }
1924 }
1925 }
1926
1927 /* Avoid splitting if possible. We must always split when SRC2 has
1928 EH predecessor edges, or we may end up with basic blocks with both
1929 normal and EH predecessor edges. */
1930 if (newpos2 == BB_HEAD (src2)
1931 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
1932 redirect_to = src2;
1933 else
1934 {
1935 if (newpos2 == BB_HEAD (src2))
1936 {
1937 /* Skip possible basic block header. */
1938 if (LABEL_P (newpos2))
1939 newpos2 = NEXT_INSN (newpos2);
1940 while (DEBUG_INSN_P (newpos2))
1941 newpos2 = NEXT_INSN (newpos2);
1942 if (NOTE_P (newpos2))
1943 newpos2 = NEXT_INSN (newpos2);
1944 while (DEBUG_INSN_P (newpos2))
1945 newpos2 = NEXT_INSN (newpos2);
1946 }
1947
1948 if (dump_file)
1949 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1950 src2->index, nmatch);
1951 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1952 }
1953
1954 if (dump_file)
1955 fprintf (dump_file,
1956 "Cross jumping from bb %i to bb %i; %i common insns\n",
1957 src1->index, src2->index, nmatch);
1958
1959 /* We may have some registers visible through the block. */
1960 df_set_bb_dirty (redirect_to);
1961
1962 if (osrc2 == src2)
1963 redirect_edges_to = redirect_to;
1964 else
1965 redirect_edges_to = osrc2;
1966
1967 /* Recompute the frequencies and counts of outgoing edges. */
1968 FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
1969 {
1970 edge s2;
1971 edge_iterator ei;
1972 basic_block d = s->dest;
1973
1974 if (FORWARDER_BLOCK_P (d))
1975 d = single_succ (d);
1976
1977 FOR_EACH_EDGE (s2, ei, src1->succs)
1978 {
1979 basic_block d2 = s2->dest;
1980 if (FORWARDER_BLOCK_P (d2))
1981 d2 = single_succ (d2);
1982 if (d == d2)
1983 break;
1984 }
1985
1986 s->count += s2->count;
1987
1988 /* Take care to update possible forwarder blocks. We verified
1989 that there is no more than one in the chain, so we can't run
1990 into infinite loop. */
1991 if (FORWARDER_BLOCK_P (s->dest))
1992 {
1993 single_succ_edge (s->dest)->count += s2->count;
1994 s->dest->count += s2->count;
1995 s->dest->frequency += EDGE_FREQUENCY (s);
1996 }
1997
1998 if (FORWARDER_BLOCK_P (s2->dest))
1999 {
2000 single_succ_edge (s2->dest)->count -= s2->count;
2001 if (single_succ_edge (s2->dest)->count < 0)
2002 single_succ_edge (s2->dest)->count = 0;
2003 s2->dest->count -= s2->count;
2004 s2->dest->frequency -= EDGE_FREQUENCY (s);
2005 if (s2->dest->frequency < 0)
2006 s2->dest->frequency = 0;
2007 if (s2->dest->count < 0)
2008 s2->dest->count = 0;
2009 }
2010
2011 if (!redirect_edges_to->frequency && !src1->frequency)
2012 s->probability = (s->probability + s2->probability) / 2;
2013 else
2014 s->probability
2015 = ((s->probability * redirect_edges_to->frequency +
2016 s2->probability * src1->frequency)
2017 / (redirect_edges_to->frequency + src1->frequency));
2018 }
2019
2020 /* Adjust count and frequency for the block. An earlier jump
2021 threading pass may have left the profile in an inconsistent
2022 state (see update_bb_profile_for_threading) so we must be
2023 prepared for overflows. */
2024 tmp = redirect_to;
2025 do
2026 {
2027 tmp->count += src1->count;
2028 tmp->frequency += src1->frequency;
2029 if (tmp->frequency > BB_FREQ_MAX)
2030 tmp->frequency = BB_FREQ_MAX;
2031 if (tmp == redirect_edges_to)
2032 break;
2033 tmp = find_fallthru_edge (tmp->succs)->dest;
2034 }
2035 while (true);
2036 update_br_prob_note (redirect_edges_to);
2037
2038 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2039
2040 /* Skip possible basic block header. */
2041 if (LABEL_P (newpos1))
2042 newpos1 = NEXT_INSN (newpos1);
2043
2044 while (DEBUG_INSN_P (newpos1))
2045 newpos1 = NEXT_INSN (newpos1);
2046
2047 if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
2048 newpos1 = NEXT_INSN (newpos1);
2049
2050 while (DEBUG_INSN_P (newpos1))
2051 newpos1 = NEXT_INSN (newpos1);
2052
2053 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
2054 to_remove = single_succ (redirect_from);
2055
2056 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
2057 delete_basic_block (to_remove);
2058
2059 update_forwarder_flag (redirect_from);
2060 if (redirect_to != src2)
2061 update_forwarder_flag (src2);
2062
2063 return true;
2064 }
2065
2066 /* Search the predecessors of BB for common insn sequences. When found,
2067 share code between them by redirecting control flow. Return true if
2068 any changes made. */
2069
2070 static bool
2071 try_crossjump_bb (int mode, basic_block bb)
2072 {
2073 edge e, e2, fallthru;
2074 bool changed;
2075 unsigned max, ix, ix2;
2076
2077 /* Nothing to do if there is not at least two incoming edges. */
2078 if (EDGE_COUNT (bb->preds) < 2)
2079 return false;
2080
2081 /* Don't crossjump if this block ends in a computed jump,
2082 unless we are optimizing for size. */
2083 if (optimize_bb_for_size_p (bb)
2084 && bb != EXIT_BLOCK_PTR
2085 && computed_jump_p (BB_END (bb)))
2086 return false;
2087
2088 /* If we are partitioning hot/cold basic blocks, we don't want to
2089 mess up unconditional or indirect jumps that cross between hot
2090 and cold sections.
2091
2092 Basic block partitioning may result in some jumps that appear to
2093 be optimizable (or blocks that appear to be mergeable), but which really
2094 must be left untouched (they are required to make it safely across
2095 partition boundaries). See the comments at the top of
2096 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2097
2098 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
2099 BB_PARTITION (EDGE_PRED (bb, 1)->src)
2100 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
2101 return false;
2102
2103 /* It is always cheapest to redirect a block that ends in a branch to
2104 a block that falls through into BB, as that adds no branches to the
2105 program. We'll try that combination first. */
2106 fallthru = NULL;
2107 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
2108
2109 if (EDGE_COUNT (bb->preds) > max)
2110 return false;
2111
2112 fallthru = find_fallthru_edge (bb->preds);
2113
2114 changed = false;
2115 for (ix = 0; ix < EDGE_COUNT (bb->preds);)
2116 {
2117 e = EDGE_PRED (bb, ix);
2118 ix++;
2119
2120 /* As noted above, first try with the fallthru predecessor (or, a
2121 fallthru predecessor if we are in cfglayout mode). */
2122 if (fallthru)
2123 {
2124 /* Don't combine the fallthru edge into anything else.
2125 If there is a match, we'll do it the other way around. */
2126 if (e == fallthru)
2127 continue;
2128 /* If nothing changed since the last attempt, there is nothing
2129 we can do. */
2130 if (!first_pass
2131 && !((e->src->flags & BB_MODIFIED)
2132 || (fallthru->src->flags & BB_MODIFIED)))
2133 continue;
2134
2135 if (try_crossjump_to_edge (mode, e, fallthru, dir_forward))
2136 {
2137 changed = true;
2138 ix = 0;
2139 continue;
2140 }
2141 }
2142
2143 /* Non-obvious work limiting check: Recognize that we're going
2144 to call try_crossjump_bb on every basic block. So if we have
2145 two blocks with lots of outgoing edges (a switch) and they
2146 share lots of common destinations, then we would do the
2147 cross-jump check once for each common destination.
2148
2149 Now, if the blocks actually are cross-jump candidates, then
2150 all of their destinations will be shared. Which means that
2151 we only need check them for cross-jump candidacy once. We
2152 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2153 choosing to do the check from the block for which the edge
2154 in question is the first successor of A. */
2155 if (EDGE_SUCC (e->src, 0) != e)
2156 continue;
2157
2158 for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
2159 {
2160 e2 = EDGE_PRED (bb, ix2);
2161
2162 if (e2 == e)
2163 continue;
2164
2165 /* We've already checked the fallthru edge above. */
2166 if (e2 == fallthru)
2167 continue;
2168
2169 /* The "first successor" check above only prevents multiple
2170 checks of crossjump(A,B). In order to prevent redundant
2171 checks of crossjump(B,A), require that A be the block
2172 with the lowest index. */
2173 if (e->src->index > e2->src->index)
2174 continue;
2175
2176 /* If nothing changed since the last attempt, there is nothing
2177 we can do. */
2178 if (!first_pass
2179 && !((e->src->flags & BB_MODIFIED)
2180 || (e2->src->flags & BB_MODIFIED)))
2181 continue;
2182
2183 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2184 direction. */
2185 if (try_crossjump_to_edge (mode, e, e2, dir_both))
2186 {
2187 changed = true;
2188 ix = 0;
2189 break;
2190 }
2191 }
2192 }
2193
2194 if (changed)
2195 crossjumps_occured = true;
2196
2197 return changed;
2198 }
2199
2200 /* Search the successors of BB for common insn sequences. When found,
2201 share code between them by moving it across the basic block
2202 boundary. Return true if any changes made. */
2203
2204 static bool
2205 try_head_merge_bb (basic_block bb)
2206 {
2207 basic_block final_dest_bb = NULL;
2208 int max_match = INT_MAX;
2209 edge e0;
2210 rtx *headptr, *currptr, *nextptr;
2211 bool changed, moveall;
2212 unsigned ix;
2213 rtx e0_last_head, cond, move_before;
2214 unsigned nedges = EDGE_COUNT (bb->succs);
2215 rtx jump = BB_END (bb);
2216 regset live, live_union;
2217
2218 /* Nothing to do if there is not at least two outgoing edges. */
2219 if (nedges < 2)
2220 return false;
2221
2222 /* Don't crossjump if this block ends in a computed jump,
2223 unless we are optimizing for size. */
2224 if (optimize_bb_for_size_p (bb)
2225 && bb != EXIT_BLOCK_PTR
2226 && computed_jump_p (BB_END (bb)))
2227 return false;
2228
2229 cond = get_condition (jump, &move_before, true, false);
2230 if (cond == NULL_RTX)
2231 {
2232 #ifdef HAVE_cc0
2233 if (reg_mentioned_p (cc0_rtx, jump))
2234 move_before = prev_nonnote_nondebug_insn (jump);
2235 else
2236 #endif
2237 move_before = jump;
2238 }
2239
2240 for (ix = 0; ix < nedges; ix++)
2241 if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR)
2242 return false;
2243
2244 for (ix = 0; ix < nedges; ix++)
2245 {
2246 edge e = EDGE_SUCC (bb, ix);
2247 basic_block other_bb = e->dest;
2248
2249 if (df_get_bb_dirty (other_bb))
2250 {
2251 block_was_dirty = true;
2252 return false;
2253 }
2254
2255 if (e->flags & EDGE_ABNORMAL)
2256 return false;
2257
2258 /* Normally, all destination blocks must only be reachable from this
2259 block, i.e. they must have one incoming edge.
2260
2261 There is one special case we can handle, that of multiple consecutive
2262 jumps where the first jumps to one of the targets of the second jump.
2263 This happens frequently in switch statements for default labels.
2264 The structure is as follows:
2265 FINAL_DEST_BB
2266 ....
2267 if (cond) jump A;
2268 fall through
2269 BB
2270 jump with targets A, B, C, D...
2271 A
2272 has two incoming edges, from FINAL_DEST_BB and BB
2273
2274 In this case, we can try to move the insns through BB and into
2275 FINAL_DEST_BB. */
2276 if (EDGE_COUNT (other_bb->preds) != 1)
2277 {
2278 edge incoming_edge, incoming_bb_other_edge;
2279 edge_iterator ei;
2280
2281 if (final_dest_bb != NULL
2282 || EDGE_COUNT (other_bb->preds) != 2)
2283 return false;
2284
2285 /* We must be able to move the insns across the whole block. */
2286 move_before = BB_HEAD (bb);
2287 while (!NONDEBUG_INSN_P (move_before))
2288 move_before = NEXT_INSN (move_before);
2289
2290 if (EDGE_COUNT (bb->preds) != 1)
2291 return false;
2292 incoming_edge = EDGE_PRED (bb, 0);
2293 final_dest_bb = incoming_edge->src;
2294 if (EDGE_COUNT (final_dest_bb->succs) != 2)
2295 return false;
2296 FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
2297 if (incoming_bb_other_edge != incoming_edge)
2298 break;
2299 if (incoming_bb_other_edge->dest != other_bb)
2300 return false;
2301 }
2302 }
2303
2304 e0 = EDGE_SUCC (bb, 0);
2305 e0_last_head = NULL_RTX;
2306 changed = false;
2307
2308 for (ix = 1; ix < nedges; ix++)
2309 {
2310 edge e = EDGE_SUCC (bb, ix);
2311 rtx e0_last, e_last;
2312 int nmatch;
2313
2314 nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
2315 &e0_last, &e_last, 0);
2316 if (nmatch == 0)
2317 return false;
2318
2319 if (nmatch < max_match)
2320 {
2321 max_match = nmatch;
2322 e0_last_head = e0_last;
2323 }
2324 }
2325
2326 /* If we matched an entire block, we probably have to avoid moving the
2327 last insn. */
2328 if (max_match > 0
2329 && e0_last_head == BB_END (e0->dest)
2330 && (find_reg_note (e0_last_head, REG_EH_REGION, 0)
2331 || control_flow_insn_p (e0_last_head)))
2332 {
2333 max_match--;
2334 if (max_match == 0)
2335 return false;
2336 do
2337 e0_last_head = prev_real_insn (e0_last_head);
2338 while (DEBUG_INSN_P (e0_last_head));
2339 }
2340
2341 if (max_match == 0)
2342 return false;
2343
2344 /* We must find a union of the live registers at each of the end points. */
2345 live = BITMAP_ALLOC (NULL);
2346 live_union = BITMAP_ALLOC (NULL);
2347
2348 currptr = XNEWVEC (rtx, nedges);
2349 headptr = XNEWVEC (rtx, nedges);
2350 nextptr = XNEWVEC (rtx, nedges);
2351
2352 for (ix = 0; ix < nedges; ix++)
2353 {
2354 int j;
2355 basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
2356 rtx head = BB_HEAD (merge_bb);
2357
2358 while (!NONDEBUG_INSN_P (head))
2359 head = NEXT_INSN (head);
2360 headptr[ix] = head;
2361 currptr[ix] = head;
2362
2363 /* Compute the end point and live information */
2364 for (j = 1; j < max_match; j++)
2365 do
2366 head = NEXT_INSN (head);
2367 while (!NONDEBUG_INSN_P (head));
2368 simulate_backwards_to_point (merge_bb, live, head);
2369 IOR_REG_SET (live_union, live);
2370 }
2371
2372 /* If we're moving across two blocks, verify the validity of the
2373 first move, then adjust the target and let the loop below deal
2374 with the final move. */
2375 if (final_dest_bb != NULL)
2376 {
2377 rtx move_upto;
2378
2379 moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
2380 jump, e0->dest, live_union,
2381 NULL, &move_upto);
2382 if (!moveall)
2383 {
2384 if (move_upto == NULL_RTX)
2385 goto out;
2386
2387 while (e0_last_head != move_upto)
2388 {
2389 df_simulate_one_insn_backwards (e0->dest, e0_last_head,
2390 live_union);
2391 e0_last_head = PREV_INSN (e0_last_head);
2392 }
2393 }
2394 if (e0_last_head == NULL_RTX)
2395 goto out;
2396
2397 jump = BB_END (final_dest_bb);
2398 cond = get_condition (jump, &move_before, true, false);
2399 if (cond == NULL_RTX)
2400 {
2401 #ifdef HAVE_cc0
2402 if (reg_mentioned_p (cc0_rtx, jump))
2403 move_before = prev_nonnote_nondebug_insn (jump);
2404 else
2405 #endif
2406 move_before = jump;
2407 }
2408 }
2409
2410 do
2411 {
2412 rtx move_upto;
2413 moveall = can_move_insns_across (currptr[0], e0_last_head,
2414 move_before, jump, e0->dest, live_union,
2415 NULL, &move_upto);
2416 if (!moveall && move_upto == NULL_RTX)
2417 {
2418 if (jump == move_before)
2419 break;
2420
2421 /* Try again, using a different insertion point. */
2422 move_before = jump;
2423
2424 #ifdef HAVE_cc0
2425 /* Don't try moving before a cc0 user, as that may invalidate
2426 the cc0. */
2427 if (reg_mentioned_p (cc0_rtx, jump))
2428 break;
2429 #endif
2430
2431 continue;
2432 }
2433
2434 if (final_dest_bb && !moveall)
2435 /* We haven't checked whether a partial move would be OK for the first
2436 move, so we have to fail this case. */
2437 break;
2438
2439 changed = true;
2440 for (;;)
2441 {
2442 if (currptr[0] == move_upto)
2443 break;
2444 for (ix = 0; ix < nedges; ix++)
2445 {
2446 rtx curr = currptr[ix];
2447 do
2448 curr = NEXT_INSN (curr);
2449 while (!NONDEBUG_INSN_P (curr));
2450 currptr[ix] = curr;
2451 }
2452 }
2453
2454 /* If we can't currently move all of the identical insns, remember
2455 each insn after the range that we'll merge. */
2456 if (!moveall)
2457 for (ix = 0; ix < nedges; ix++)
2458 {
2459 rtx curr = currptr[ix];
2460 do
2461 curr = NEXT_INSN (curr);
2462 while (!NONDEBUG_INSN_P (curr));
2463 nextptr[ix] = curr;
2464 }
2465
2466 reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
2467 df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
2468 if (final_dest_bb != NULL)
2469 df_set_bb_dirty (final_dest_bb);
2470 df_set_bb_dirty (bb);
2471 for (ix = 1; ix < nedges; ix++)
2472 {
2473 df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
2474 delete_insn_chain (headptr[ix], currptr[ix], false);
2475 }
2476 if (!moveall)
2477 {
2478 if (jump == move_before)
2479 break;
2480
2481 /* For the unmerged insns, try a different insertion point. */
2482 move_before = jump;
2483
2484 #ifdef HAVE_cc0
2485 /* Don't try moving before a cc0 user, as that may invalidate
2486 the cc0. */
2487 if (reg_mentioned_p (cc0_rtx, jump))
2488 break;
2489 #endif
2490
2491 for (ix = 0; ix < nedges; ix++)
2492 currptr[ix] = headptr[ix] = nextptr[ix];
2493 }
2494 }
2495 while (!moveall);
2496
2497 out:
2498 free (currptr);
2499 free (headptr);
2500 free (nextptr);
2501
2502 crossjumps_occured |= changed;
2503
2504 return changed;
2505 }
2506
2507 /* Return true if BB contains just bb note, or bb note followed
2508 by only DEBUG_INSNs. */
2509
2510 static bool
2511 trivially_empty_bb_p (basic_block bb)
2512 {
2513 rtx insn = BB_END (bb);
2514
2515 while (1)
2516 {
2517 if (insn == BB_HEAD (bb))
2518 return true;
2519 if (!DEBUG_INSN_P (insn))
2520 return false;
2521 insn = PREV_INSN (insn);
2522 }
2523 }
2524
2525 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2526 instructions etc. Return nonzero if changes were made. */
2527
2528 static bool
2529 try_optimize_cfg (int mode)
2530 {
2531 bool changed_overall = false;
2532 bool changed;
2533 int iterations = 0;
2534 basic_block bb, b, next;
2535
2536 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
2537 clear_bb_flags ();
2538
2539 crossjumps_occured = false;
2540
2541 FOR_EACH_BB (bb)
2542 update_forwarder_flag (bb);
2543
2544 if (! targetm.cannot_modify_jumps_p ())
2545 {
2546 first_pass = true;
2547 /* Attempt to merge blocks as made possible by edge removal. If
2548 a block has only one successor, and the successor has only
2549 one predecessor, they may be combined. */
2550 do
2551 {
2552 block_was_dirty = false;
2553 changed = false;
2554 iterations++;
2555
2556 if (dump_file)
2557 fprintf (dump_file,
2558 "\n\ntry_optimize_cfg iteration %i\n\n",
2559 iterations);
2560
2561 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
2562 {
2563 basic_block c;
2564 edge s;
2565 bool changed_here = false;
2566
2567 /* Delete trivially dead basic blocks. This is either
2568 blocks with no predecessors, or empty blocks with no
2569 successors. However if the empty block with no
2570 successors is the successor of the ENTRY_BLOCK, it is
2571 kept. This ensures that the ENTRY_BLOCK will have a
2572 successor which is a precondition for many RTL
2573 passes. Empty blocks may result from expanding
2574 __builtin_unreachable (). */
2575 if (EDGE_COUNT (b->preds) == 0
2576 || (EDGE_COUNT (b->succs) == 0
2577 && trivially_empty_bb_p (b)
2578 && single_succ_edge (ENTRY_BLOCK_PTR)->dest != b))
2579 {
2580 c = b->prev_bb;
2581 if (EDGE_COUNT (b->preds) > 0)
2582 {
2583 edge e;
2584 edge_iterator ei;
2585
2586 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2587 {
2588 if (BB_FOOTER (b)
2589 && BARRIER_P (BB_FOOTER (b)))
2590 FOR_EACH_EDGE (e, ei, b->preds)
2591 if ((e->flags & EDGE_FALLTHRU)
2592 && BB_FOOTER (e->src) == NULL)
2593 {
2594 if (BB_FOOTER (b))
2595 {
2596 BB_FOOTER (e->src) = BB_FOOTER (b);
2597 BB_FOOTER (b) = NULL;
2598 }
2599 else
2600 {
2601 start_sequence ();
2602 BB_FOOTER (e->src) = emit_barrier ();
2603 end_sequence ();
2604 }
2605 }
2606 }
2607 else
2608 {
2609 rtx last = get_last_bb_insn (b);
2610 if (last && BARRIER_P (last))
2611 FOR_EACH_EDGE (e, ei, b->preds)
2612 if ((e->flags & EDGE_FALLTHRU))
2613 emit_barrier_after (BB_END (e->src));
2614 }
2615 }
2616 delete_basic_block (b);
2617 changed = true;
2618 /* Avoid trying to remove ENTRY_BLOCK_PTR. */
2619 b = (c == ENTRY_BLOCK_PTR ? c->next_bb : c);
2620 continue;
2621 }
2622
2623 /* Remove code labels no longer used. */
2624 if (single_pred_p (b)
2625 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2626 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
2627 && LABEL_P (BB_HEAD (b))
2628 /* If the previous block ends with a branch to this
2629 block, we can't delete the label. Normally this
2630 is a condjump that is yet to be simplified, but
2631 if CASE_DROPS_THRU, this can be a tablejump with
2632 some element going to the same place as the
2633 default (fallthru). */
2634 && (single_pred (b) == ENTRY_BLOCK_PTR
2635 || !JUMP_P (BB_END (single_pred (b)))
2636 || ! label_is_jump_target_p (BB_HEAD (b),
2637 BB_END (single_pred (b)))))
2638 {
2639 delete_insn (BB_HEAD (b));
2640 if (dump_file)
2641 fprintf (dump_file, "Deleted label in block %i.\n",
2642 b->index);
2643 }
2644
2645 /* If we fall through an empty block, we can remove it. */
2646 if (!(mode & (CLEANUP_CFGLAYOUT | CLEANUP_NO_INSN_DEL))
2647 && single_pred_p (b)
2648 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2649 && !LABEL_P (BB_HEAD (b))
2650 && FORWARDER_BLOCK_P (b)
2651 /* Note that forwarder_block_p true ensures that
2652 there is a successor for this block. */
2653 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
2654 && n_basic_blocks > NUM_FIXED_BLOCKS + 1)
2655 {
2656 if (dump_file)
2657 fprintf (dump_file,
2658 "Deleting fallthru block %i.\n",
2659 b->index);
2660
2661 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
2662 redirect_edge_succ_nodup (single_pred_edge (b),
2663 single_succ (b));
2664 delete_basic_block (b);
2665 changed = true;
2666 b = c;
2667 continue;
2668 }
2669
2670 /* Merge B with its single successor, if any. */
2671 if (single_succ_p (b)
2672 && (s = single_succ_edge (b))
2673 && !(s->flags & EDGE_COMPLEX)
2674 && (c = s->dest) != EXIT_BLOCK_PTR
2675 && single_pred_p (c)
2676 && b != c)
2677 {
2678 /* When not in cfg_layout mode use code aware of reordering
2679 INSN. This code possibly creates new basic blocks so it
2680 does not fit merge_blocks interface and is kept here in
2681 hope that it will become useless once more of compiler
2682 is transformed to use cfg_layout mode. */
2683
2684 if ((mode & CLEANUP_CFGLAYOUT)
2685 && can_merge_blocks_p (b, c))
2686 {
2687 merge_blocks (b, c);
2688 update_forwarder_flag (b);
2689 changed_here = true;
2690 }
2691 else if (!(mode & CLEANUP_CFGLAYOUT)
2692 /* If the jump insn has side effects,
2693 we can't kill the edge. */
2694 && (!JUMP_P (BB_END (b))
2695 || (reload_completed
2696 ? simplejump_p (BB_END (b))
2697 : (onlyjump_p (BB_END (b))
2698 && !tablejump_p (BB_END (b),
2699 NULL, NULL))))
2700 && (next = merge_blocks_move (s, b, c, mode)))
2701 {
2702 b = next;
2703 changed_here = true;
2704 }
2705 }
2706
2707 /* Simplify branch over branch. */
2708 if ((mode & CLEANUP_EXPENSIVE)
2709 && !(mode & CLEANUP_CFGLAYOUT)
2710 && try_simplify_condjump (b))
2711 changed_here = true;
2712
2713 /* If B has a single outgoing edge, but uses a
2714 non-trivial jump instruction without side-effects, we
2715 can either delete the jump entirely, or replace it
2716 with a simple unconditional jump. */
2717 if (single_succ_p (b)
2718 && single_succ (b) != EXIT_BLOCK_PTR
2719 && onlyjump_p (BB_END (b))
2720 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
2721 && try_redirect_by_replacing_jump (single_succ_edge (b),
2722 single_succ (b),
2723 (mode & CLEANUP_CFGLAYOUT) != 0))
2724 {
2725 update_forwarder_flag (b);
2726 changed_here = true;
2727 }
2728
2729 /* Simplify branch to branch. */
2730 if (try_forward_edges (mode, b))
2731 {
2732 update_forwarder_flag (b);
2733 changed_here = true;
2734 }
2735
2736 /* Look for shared code between blocks. */
2737 if ((mode & CLEANUP_CROSSJUMP)
2738 && try_crossjump_bb (mode, b))
2739 changed_here = true;
2740
2741 if ((mode & CLEANUP_CROSSJUMP)
2742 /* This can lengthen register lifetimes. Do it only after
2743 reload. */
2744 && reload_completed
2745 && try_head_merge_bb (b))
2746 changed_here = true;
2747
2748 /* Don't get confused by the index shift caused by
2749 deleting blocks. */
2750 if (!changed_here)
2751 b = b->next_bb;
2752 else
2753 changed = true;
2754 }
2755
2756 if ((mode & CLEANUP_CROSSJUMP)
2757 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
2758 changed = true;
2759
2760 if (block_was_dirty)
2761 {
2762 /* This should only be set by head-merging. */
2763 gcc_assert (mode & CLEANUP_CROSSJUMP);
2764 df_analyze ();
2765 }
2766
2767 #ifdef ENABLE_CHECKING
2768 if (changed)
2769 verify_flow_info ();
2770 #endif
2771
2772 changed_overall |= changed;
2773 first_pass = false;
2774 }
2775 while (changed);
2776 }
2777
2778 FOR_ALL_BB (b)
2779 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2780
2781 return changed_overall;
2782 }
2783 \f
2784 /* Delete all unreachable basic blocks. */
2785
2786 bool
2787 delete_unreachable_blocks (void)
2788 {
2789 bool changed = false;
2790 basic_block b, prev_bb;
2791
2792 find_unreachable_blocks ();
2793
2794 /* When we're in GIMPLE mode and there may be debug insns, we should
2795 delete blocks in reverse dominator order, so as to get a chance
2796 to substitute all released DEFs into debug stmts. If we don't
2797 have dominators information, walking blocks backward gets us a
2798 better chance of retaining most debug information than
2799 otherwise. */
2800 if (MAY_HAVE_DEBUG_STMTS && current_ir_type () == IR_GIMPLE
2801 && dom_info_available_p (CDI_DOMINATORS))
2802 {
2803 for (b = EXIT_BLOCK_PTR->prev_bb; b != ENTRY_BLOCK_PTR; b = prev_bb)
2804 {
2805 prev_bb = b->prev_bb;
2806
2807 if (!(b->flags & BB_REACHABLE))
2808 {
2809 /* Speed up the removal of blocks that don't dominate
2810 others. Walking backwards, this should be the common
2811 case. */
2812 if (!first_dom_son (CDI_DOMINATORS, b))
2813 delete_basic_block (b);
2814 else
2815 {
2816 VEC (basic_block, heap) *h
2817 = get_all_dominated_blocks (CDI_DOMINATORS, b);
2818
2819 while (VEC_length (basic_block, h))
2820 {
2821 b = VEC_pop (basic_block, h);
2822
2823 prev_bb = b->prev_bb;
2824
2825 gcc_assert (!(b->flags & BB_REACHABLE));
2826
2827 delete_basic_block (b);
2828 }
2829
2830 VEC_free (basic_block, heap, h);
2831 }
2832
2833 changed = true;
2834 }
2835 }
2836 }
2837 else
2838 {
2839 for (b = EXIT_BLOCK_PTR->prev_bb; b != ENTRY_BLOCK_PTR; b = prev_bb)
2840 {
2841 prev_bb = b->prev_bb;
2842
2843 if (!(b->flags & BB_REACHABLE))
2844 {
2845 delete_basic_block (b);
2846 changed = true;
2847 }
2848 }
2849 }
2850
2851 if (changed)
2852 tidy_fallthru_edges ();
2853 return changed;
2854 }
2855
2856 /* Delete any jump tables never referenced. We can't delete them at the
2857 time of removing tablejump insn as they are referenced by the preceding
2858 insns computing the destination, so we delay deleting and garbagecollect
2859 them once life information is computed. */
2860 void
2861 delete_dead_jumptables (void)
2862 {
2863 basic_block bb;
2864
2865 /* A dead jump table does not belong to any basic block. Scan insns
2866 between two adjacent basic blocks. */
2867 FOR_EACH_BB (bb)
2868 {
2869 rtx insn, next;
2870
2871 for (insn = NEXT_INSN (BB_END (bb));
2872 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
2873 insn = next)
2874 {
2875 next = NEXT_INSN (insn);
2876 if (LABEL_P (insn)
2877 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
2878 && JUMP_TABLE_DATA_P (next))
2879 {
2880 rtx label = insn, jump = next;
2881
2882 if (dump_file)
2883 fprintf (dump_file, "Dead jumptable %i removed\n",
2884 INSN_UID (insn));
2885
2886 next = NEXT_INSN (next);
2887 delete_insn (jump);
2888 delete_insn (label);
2889 }
2890 }
2891 }
2892 }
2893
2894 \f
2895 /* Tidy the CFG by deleting unreachable code and whatnot. */
2896
2897 bool
2898 cleanup_cfg (int mode)
2899 {
2900 bool changed = false;
2901
2902 /* Set the cfglayout mode flag here. We could update all the callers
2903 but that is just inconvenient, especially given that we eventually
2904 want to have cfglayout mode as the default. */
2905 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2906 mode |= CLEANUP_CFGLAYOUT;
2907
2908 timevar_push (TV_CLEANUP_CFG);
2909 if (delete_unreachable_blocks ())
2910 {
2911 changed = true;
2912 /* We've possibly created trivially dead code. Cleanup it right
2913 now to introduce more opportunities for try_optimize_cfg. */
2914 if (!(mode & (CLEANUP_NO_INSN_DEL))
2915 && !reload_completed)
2916 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2917 }
2918
2919 compact_blocks ();
2920
2921 /* To tail-merge blocks ending in the same noreturn function (e.g.
2922 a call to abort) we have to insert fake edges to exit. Do this
2923 here once. The fake edges do not interfere with any other CFG
2924 cleanups. */
2925 if (mode & CLEANUP_CROSSJUMP)
2926 add_noreturn_fake_exit_edges ();
2927
2928 if (!dbg_cnt (cfg_cleanup))
2929 return changed;
2930
2931 while (try_optimize_cfg (mode))
2932 {
2933 delete_unreachable_blocks (), changed = true;
2934 if (!(mode & CLEANUP_NO_INSN_DEL))
2935 {
2936 /* Try to remove some trivially dead insns when doing an expensive
2937 cleanup. But delete_trivially_dead_insns doesn't work after
2938 reload (it only handles pseudos) and run_fast_dce is too costly
2939 to run in every iteration.
2940
2941 For effective cross jumping, we really want to run a fast DCE to
2942 clean up any dead conditions, or they get in the way of performing
2943 useful tail merges.
2944
2945 Other transformations in cleanup_cfg are not so sensitive to dead
2946 code, so delete_trivially_dead_insns or even doing nothing at all
2947 is good enough. */
2948 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
2949 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
2950 break;
2951 if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occured)
2952 run_fast_dce ();
2953 }
2954 else
2955 break;
2956 }
2957
2958 if (mode & CLEANUP_CROSSJUMP)
2959 remove_fake_exit_edges ();
2960
2961 /* Don't call delete_dead_jumptables in cfglayout mode, because
2962 that function assumes that jump tables are in the insns stream.
2963 But we also don't _have_ to delete dead jumptables in cfglayout
2964 mode because we shouldn't even be looking at things that are
2965 not in a basic block. Dead jumptables are cleaned up when
2966 going out of cfglayout mode. */
2967 if (!(mode & CLEANUP_CFGLAYOUT))
2968 delete_dead_jumptables ();
2969
2970 /* ??? We probably do this way too often. */
2971 if (current_loops
2972 && (changed
2973 || (mode & CLEANUP_CFG_CHANGED)))
2974 {
2975 bitmap changed_bbs;
2976 timevar_push (TV_REPAIR_LOOPS);
2977 /* The above doesn't preserve dominance info if available. */
2978 gcc_assert (!dom_info_available_p (CDI_DOMINATORS));
2979 calculate_dominance_info (CDI_DOMINATORS);
2980 changed_bbs = BITMAP_ALLOC (NULL);
2981 fix_loop_structure (changed_bbs);
2982 BITMAP_FREE (changed_bbs);
2983 free_dominance_info (CDI_DOMINATORS);
2984 timevar_pop (TV_REPAIR_LOOPS);
2985 }
2986
2987 timevar_pop (TV_CLEANUP_CFG);
2988
2989 return changed;
2990 }
2991 \f
2992 static unsigned int
2993 execute_jump (void)
2994 {
2995 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2996 if (dump_file)
2997 dump_flow_info (dump_file, dump_flags);
2998 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
2999 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
3000 return 0;
3001 }
3002
3003 struct rtl_opt_pass pass_jump =
3004 {
3005 {
3006 RTL_PASS,
3007 "jump", /* name */
3008 NULL, /* gate */
3009 execute_jump, /* execute */
3010 NULL, /* sub */
3011 NULL, /* next */
3012 0, /* static_pass_number */
3013 TV_JUMP, /* tv_id */
3014 0, /* properties_required */
3015 0, /* properties_provided */
3016 0, /* properties_destroyed */
3017 TODO_ggc_collect, /* todo_flags_start */
3018 TODO_verify_rtl_sharing, /* todo_flags_finish */
3019 }
3020 };
3021 \f
3022 static unsigned int
3023 execute_jump2 (void)
3024 {
3025 cleanup_cfg (flag_crossjumping ? CLEANUP_CROSSJUMP : 0);
3026 return 0;
3027 }
3028
3029 struct rtl_opt_pass pass_jump2 =
3030 {
3031 {
3032 RTL_PASS,
3033 "jump2", /* name */
3034 NULL, /* gate */
3035 execute_jump2, /* execute */
3036 NULL, /* sub */
3037 NULL, /* next */
3038 0, /* static_pass_number */
3039 TV_JUMP, /* tv_id */
3040 0, /* properties_required */
3041 0, /* properties_provided */
3042 0, /* properties_destroyed */
3043 TODO_ggc_collect, /* todo_flags_start */
3044 TODO_verify_rtl_sharing, /* todo_flags_finish */
3045 }
3046 };