]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgrtl.c
8de76449941e23d4b5a76d74b95119c9cb44ea35
[thirdparty/gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains low level functions to manipulate the CFG and analyze it
23 that are aware of the RTL intermediate language.
24
25 Available functionality:
26 - Basic CFG/RTL manipulation API documented in cfghooks.h
27 - CFG-aware instruction chain manipulation
28 delete_insn, delete_insn_chain
29 - Edge splitting and committing to edges
30 insert_insn_on_edge, commit_edge_insertions
31 - CFG updating after insn simplification
32 purge_dead_edges, purge_all_dead_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "tm.h"
44 #include "tree.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "basic-block.h"
48 #include "regs.h"
49 #include "flags.h"
50 #include "output.h"
51 #include "function.h"
52 #include "except.h"
53 #include "toplev.h"
54 #include "tm_p.h"
55 #include "obstack.h"
56 #include "insn-config.h"
57 #include "cfglayout.h"
58 #include "expr.h"
59 #include "target.h"
60
61
62 /* The labels mentioned in non-jump rtl. Valid during find_basic_blocks. */
63 /* ??? Should probably be using LABEL_NUSES instead. It would take a
64 bit of surgery to be able to use or co-opt the routines in jump. */
65 rtx label_value_list;
66
67 static int can_delete_note_p (rtx);
68 static int can_delete_label_p (rtx);
69 static void commit_one_edge_insertion (edge, int);
70 static rtx last_loop_beg_note (rtx);
71 static bool back_edge_of_syntactic_loop_p (basic_block, basic_block);
72 static basic_block rtl_split_edge (edge);
73 static bool rtl_move_block_after (basic_block, basic_block);
74 static int rtl_verify_flow_info (void);
75 static basic_block cfg_layout_split_block (basic_block, void *);
76 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
77 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
78 static void cfg_layout_delete_block (basic_block);
79 static void rtl_delete_block (basic_block);
80 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
81 static edge rtl_redirect_edge_and_branch (edge, basic_block);
82 static basic_block rtl_split_block (basic_block, void *);
83 static void rtl_dump_bb (basic_block, FILE *, int);
84 static int rtl_verify_flow_info_1 (void);
85 static void mark_killed_regs (rtx, rtx, void *);
86 static void rtl_make_forwarder_block (edge);
87 \f
88 /* Return true if NOTE is not one of the ones that must be kept paired,
89 so that we may simply delete it. */
90
91 static int
92 can_delete_note_p (rtx note)
93 {
94 return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
95 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK
96 || NOTE_LINE_NUMBER (note) == NOTE_INSN_UNLIKELY_EXECUTED_CODE);
97 }
98
99 /* True if a given label can be deleted. */
100
101 static int
102 can_delete_label_p (rtx label)
103 {
104 return (!LABEL_PRESERVE_P (label)
105 /* User declared labels must be preserved. */
106 && LABEL_NAME (label) == 0
107 && !in_expr_list_p (forced_labels, label)
108 && !in_expr_list_p (label_value_list, label));
109 }
110
111 /* Delete INSN by patching it out. Return the next insn. */
112
113 rtx
114 delete_insn (rtx insn)
115 {
116 rtx next = NEXT_INSN (insn);
117 rtx note;
118 bool really_delete = true;
119
120 if (LABEL_P (insn))
121 {
122 /* Some labels can't be directly removed from the INSN chain, as they
123 might be references via variables, constant pool etc.
124 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
125 if (! can_delete_label_p (insn))
126 {
127 const char *name = LABEL_NAME (insn);
128
129 really_delete = false;
130 PUT_CODE (insn, NOTE);
131 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
132 NOTE_DELETED_LABEL_NAME (insn) = name;
133 }
134
135 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
136 }
137
138 if (really_delete)
139 {
140 /* If this insn has already been deleted, something is very wrong. */
141 gcc_assert (!INSN_DELETED_P (insn));
142 remove_insn (insn);
143 INSN_DELETED_P (insn) = 1;
144 }
145
146 /* If deleting a jump, decrement the use count of the label. Deleting
147 the label itself should happen in the normal course of block merging. */
148 if (JUMP_P (insn)
149 && JUMP_LABEL (insn)
150 && LABEL_P (JUMP_LABEL (insn)))
151 LABEL_NUSES (JUMP_LABEL (insn))--;
152
153 /* Also if deleting an insn that references a label. */
154 else
155 {
156 while ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
157 && LABEL_P (XEXP (note, 0)))
158 {
159 LABEL_NUSES (XEXP (note, 0))--;
160 remove_note (insn, note);
161 }
162 }
163
164 if (JUMP_P (insn)
165 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
166 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
167 {
168 rtx pat = PATTERN (insn);
169 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
170 int len = XVECLEN (pat, diff_vec_p);
171 int i;
172
173 for (i = 0; i < len; i++)
174 {
175 rtx label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
176
177 /* When deleting code in bulk (e.g. removing many unreachable
178 blocks) we can delete a label that's a target of the vector
179 before deleting the vector itself. */
180 if (!NOTE_P (label))
181 LABEL_NUSES (label)--;
182 }
183 }
184
185 return next;
186 }
187
188 /* Like delete_insn but also purge dead edges from BB. */
189 rtx
190 delete_insn_and_edges (rtx insn)
191 {
192 rtx x;
193 bool purge = false;
194
195 if (INSN_P (insn)
196 && BLOCK_FOR_INSN (insn)
197 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
198 purge = true;
199 x = delete_insn (insn);
200 if (purge)
201 purge_dead_edges (BLOCK_FOR_INSN (insn));
202 return x;
203 }
204
205 /* Unlink a chain of insns between START and FINISH, leaving notes
206 that must be paired. */
207
208 void
209 delete_insn_chain (rtx start, rtx finish)
210 {
211 rtx next;
212
213 /* Unchain the insns one by one. It would be quicker to delete all of these
214 with a single unchaining, rather than one at a time, but we need to keep
215 the NOTE's. */
216 while (1)
217 {
218 next = NEXT_INSN (start);
219 if (NOTE_P (start) && !can_delete_note_p (start))
220 ;
221 else
222 next = delete_insn (start);
223
224 if (start == finish)
225 break;
226 start = next;
227 }
228 }
229
230 /* Like delete_insn but also purge dead edges from BB. */
231 void
232 delete_insn_chain_and_edges (rtx first, rtx last)
233 {
234 bool purge = false;
235
236 if (INSN_P (last)
237 && BLOCK_FOR_INSN (last)
238 && BB_END (BLOCK_FOR_INSN (last)) == last)
239 purge = true;
240 delete_insn_chain (first, last);
241 if (purge)
242 purge_dead_edges (BLOCK_FOR_INSN (last));
243 }
244 \f
245 /* Create a new basic block consisting of the instructions between HEAD and END
246 inclusive. This function is designed to allow fast BB construction - reuses
247 the note and basic block struct in BB_NOTE, if any and do not grow
248 BASIC_BLOCK chain and should be used directly only by CFG construction code.
249 END can be NULL in to create new empty basic block before HEAD. Both END
250 and HEAD can be NULL to create basic block at the end of INSN chain.
251 AFTER is the basic block we should be put after. */
252
253 basic_block
254 create_basic_block_structure (rtx head, rtx end, rtx bb_note, basic_block after)
255 {
256 basic_block bb;
257
258 if (bb_note
259 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
260 && bb->aux == NULL)
261 {
262 /* If we found an existing note, thread it back onto the chain. */
263
264 rtx after;
265
266 if (LABEL_P (head))
267 after = head;
268 else
269 {
270 after = PREV_INSN (head);
271 head = bb_note;
272 }
273
274 if (after != bb_note && NEXT_INSN (after) != bb_note)
275 reorder_insns_nobb (bb_note, bb_note, after);
276 }
277 else
278 {
279 /* Otherwise we must create a note and a basic block structure. */
280
281 bb = alloc_block ();
282
283 if (!head && !end)
284 head = end = bb_note
285 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
286 else if (LABEL_P (head) && end)
287 {
288 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
289 if (head == end)
290 end = bb_note;
291 }
292 else
293 {
294 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
295 head = bb_note;
296 if (!end)
297 end = head;
298 }
299
300 NOTE_BASIC_BLOCK (bb_note) = bb;
301 }
302
303 /* Always include the bb note in the block. */
304 if (NEXT_INSN (end) == bb_note)
305 end = bb_note;
306
307 BB_HEAD (bb) = head;
308 BB_END (bb) = end;
309 bb->index = last_basic_block++;
310 bb->flags = BB_NEW;
311 link_block (bb, after);
312 BASIC_BLOCK (bb->index) = bb;
313 update_bb_for_insn (bb);
314 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
315
316 /* Tag the block so that we know it has been used when considering
317 other basic block notes. */
318 bb->aux = bb;
319
320 return bb;
321 }
322
323 /* Create new basic block consisting of instructions in between HEAD and END
324 and place it to the BB chain after block AFTER. END can be NULL in to
325 create new empty basic block before HEAD. Both END and HEAD can be NULL to
326 create basic block at the end of INSN chain. */
327
328 static basic_block
329 rtl_create_basic_block (void *headp, void *endp, basic_block after)
330 {
331 rtx head = headp, end = endp;
332 basic_block bb;
333
334 /* Grow the basic block array if needed. */
335 if ((size_t) last_basic_block >= VARRAY_SIZE (basic_block_info))
336 {
337 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
338 VARRAY_GROW (basic_block_info, new_size);
339 }
340
341 n_basic_blocks++;
342
343 bb = create_basic_block_structure (head, end, NULL, after);
344 bb->aux = NULL;
345 return bb;
346 }
347
348 static basic_block
349 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
350 {
351 basic_block newbb = rtl_create_basic_block (head, end, after);
352
353 initialize_bb_rbi (newbb);
354 return newbb;
355 }
356 \f
357 /* Delete the insns in a (non-live) block. We physically delete every
358 non-deleted-note insn, and update the flow graph appropriately.
359
360 Return nonzero if we deleted an exception handler. */
361
362 /* ??? Preserving all such notes strikes me as wrong. It would be nice
363 to post-process the stream to remove empty blocks, loops, ranges, etc. */
364
365 static void
366 rtl_delete_block (basic_block b)
367 {
368 rtx insn, end, tmp;
369
370 /* If the head of this block is a CODE_LABEL, then it might be the
371 label for an exception handler which can't be reached. We need
372 to remove the label from the exception_handler_label list. */
373 insn = BB_HEAD (b);
374 if (LABEL_P (insn))
375 maybe_remove_eh_handler (insn);
376
377 /* Include any jump table following the basic block. */
378 end = BB_END (b);
379 if (tablejump_p (end, NULL, &tmp))
380 end = tmp;
381
382 /* Include any barriers that may follow the basic block. */
383 tmp = next_nonnote_insn (end);
384 while (tmp && BARRIER_P (tmp))
385 {
386 end = tmp;
387 tmp = next_nonnote_insn (end);
388 }
389
390 /* Selectively delete the entire chain. */
391 BB_HEAD (b) = NULL;
392 delete_insn_chain (insn, end);
393 }
394 \f
395 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
396
397 void
398 compute_bb_for_insn (void)
399 {
400 basic_block bb;
401
402 FOR_EACH_BB (bb)
403 {
404 rtx end = BB_END (bb);
405 rtx insn;
406
407 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
408 {
409 BLOCK_FOR_INSN (insn) = bb;
410 if (insn == end)
411 break;
412 }
413 }
414 }
415
416 /* Release the basic_block_for_insn array. */
417
418 void
419 free_bb_for_insn (void)
420 {
421 rtx insn;
422 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
423 if (!BARRIER_P (insn))
424 BLOCK_FOR_INSN (insn) = NULL;
425 }
426
427 /* Return RTX to emit after when we want to emit code on the entry of function. */
428 rtx
429 entry_of_function (void)
430 {
431 return (n_basic_blocks ? BB_HEAD (ENTRY_BLOCK_PTR->next_bb) : get_insns ());
432 }
433
434 /* Update insns block within BB. */
435
436 void
437 update_bb_for_insn (basic_block bb)
438 {
439 rtx insn;
440
441 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
442 {
443 if (!BARRIER_P (insn))
444 set_block_for_insn (insn, bb);
445 if (insn == BB_END (bb))
446 break;
447 }
448 }
449 \f
450 /* Creates a new basic block just after basic block B by splitting
451 everything after specified instruction I. */
452
453 static basic_block
454 rtl_split_block (basic_block bb, void *insnp)
455 {
456 basic_block new_bb;
457 rtx insn = insnp;
458 edge e;
459 edge_iterator ei;
460
461 if (!insn)
462 {
463 insn = first_insn_after_basic_block_note (bb);
464
465 if (insn)
466 insn = PREV_INSN (insn);
467 else
468 insn = get_last_insn ();
469 }
470
471 /* We probably should check type of the insn so that we do not create
472 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
473 bother. */
474 if (insn == BB_END (bb))
475 emit_note_after (NOTE_INSN_DELETED, insn);
476
477 /* Create the new basic block. */
478 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
479 BB_COPY_PARTITION (new_bb, bb);
480 BB_END (bb) = insn;
481
482 /* Redirect the outgoing edges. */
483 new_bb->succs = bb->succs;
484 bb->succs = NULL;
485 FOR_EACH_EDGE (e, ei, new_bb->succs)
486 e->src = new_bb;
487
488 if (bb->global_live_at_start)
489 {
490 new_bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
491 new_bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
492 COPY_REG_SET (new_bb->global_live_at_end, bb->global_live_at_end);
493
494 /* We now have to calculate which registers are live at the end
495 of the split basic block and at the start of the new basic
496 block. Start with those registers that are known to be live
497 at the end of the original basic block and get
498 propagate_block to determine which registers are live. */
499 COPY_REG_SET (new_bb->global_live_at_start, bb->global_live_at_end);
500 propagate_block (new_bb, new_bb->global_live_at_start, NULL, NULL, 0);
501 COPY_REG_SET (bb->global_live_at_end,
502 new_bb->global_live_at_start);
503 #ifdef HAVE_conditional_execution
504 /* In the presence of conditional execution we are not able to update
505 liveness precisely. */
506 if (reload_completed)
507 {
508 bb->flags |= BB_DIRTY;
509 new_bb->flags |= BB_DIRTY;
510 }
511 #endif
512 }
513
514 return new_bb;
515 }
516
517 /* Blocks A and B are to be merged into a single block A. The insns
518 are already contiguous. */
519
520 static void
521 rtl_merge_blocks (basic_block a, basic_block b)
522 {
523 rtx b_head = BB_HEAD (b), b_end = BB_END (b), a_end = BB_END (a);
524 rtx del_first = NULL_RTX, del_last = NULL_RTX;
525 int b_empty = 0;
526
527 /* If there was a CODE_LABEL beginning B, delete it. */
528 if (LABEL_P (b_head))
529 {
530 /* Detect basic blocks with nothing but a label. This can happen
531 in particular at the end of a function. */
532 if (b_head == b_end)
533 b_empty = 1;
534
535 del_first = del_last = b_head;
536 b_head = NEXT_INSN (b_head);
537 }
538
539 /* Delete the basic block note and handle blocks containing just that
540 note. */
541 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
542 {
543 if (b_head == b_end)
544 b_empty = 1;
545 if (! del_last)
546 del_first = b_head;
547
548 del_last = b_head;
549 b_head = NEXT_INSN (b_head);
550 }
551
552 /* If there was a jump out of A, delete it. */
553 if (JUMP_P (a_end))
554 {
555 rtx prev;
556
557 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
558 if (!NOTE_P (prev)
559 || NOTE_LINE_NUMBER (prev) == NOTE_INSN_BASIC_BLOCK
560 || prev == BB_HEAD (a))
561 break;
562
563 del_first = a_end;
564
565 #ifdef HAVE_cc0
566 /* If this was a conditional jump, we need to also delete
567 the insn that set cc0. */
568 if (only_sets_cc0_p (prev))
569 {
570 rtx tmp = prev;
571
572 prev = prev_nonnote_insn (prev);
573 if (!prev)
574 prev = BB_HEAD (a);
575 del_first = tmp;
576 }
577 #endif
578
579 a_end = PREV_INSN (del_first);
580 }
581 else if (BARRIER_P (NEXT_INSN (a_end)))
582 del_first = NEXT_INSN (a_end);
583
584 /* Delete everything marked above as well as crap that might be
585 hanging out between the two blocks. */
586 BB_HEAD (b) = NULL;
587 delete_insn_chain (del_first, del_last);
588
589 /* Reassociate the insns of B with A. */
590 if (!b_empty)
591 {
592 rtx x;
593
594 for (x = a_end; x != b_end; x = NEXT_INSN (x))
595 set_block_for_insn (x, a);
596
597 set_block_for_insn (b_end, a);
598
599 a_end = b_end;
600 }
601
602 BB_END (a) = a_end;
603 }
604
605 /* Return true when block A and B can be merged. */
606 static bool
607 rtl_can_merge_blocks (basic_block a,basic_block b)
608 {
609 /* If we are partitioning hot/cold basic blocks, we don't want to
610 mess up unconditional or indirect jumps that cross between hot
611 and cold sections.
612
613 Basic block partitioning may result in some jumps that appear to
614 be optimizable (or blocks that appear to be mergeable), but which really
615 must be left untouched (they are required to make it safely across
616 partition boundaries). See the comments at the top of
617 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
618
619 if (flag_reorder_blocks_and_partition
620 && (find_reg_note (BB_END (a), REG_CROSSING_JUMP, NULL_RTX)
621 || find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
622 || BB_PARTITION (a) != BB_PARTITION (b)))
623 return false;
624
625 /* There must be exactly one edge in between the blocks. */
626 return (EDGE_COUNT (a->succs) == 1
627 && EDGE_SUCC (a, 0)->dest == b
628 && EDGE_COUNT (b->preds) == 1
629 && a != b
630 /* Must be simple edge. */
631 && !(EDGE_SUCC (a, 0)->flags & EDGE_COMPLEX)
632 && a->next_bb == b
633 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
634 /* If the jump insn has side effects,
635 we can't kill the edge. */
636 && (!JUMP_P (BB_END (a))
637 || (reload_completed
638 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
639 }
640 \f
641 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
642 exist. */
643
644 rtx
645 block_label (basic_block block)
646 {
647 if (block == EXIT_BLOCK_PTR)
648 return NULL_RTX;
649
650 if (!LABEL_P (BB_HEAD (block)))
651 {
652 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
653 }
654
655 return BB_HEAD (block);
656 }
657
658 /* Attempt to perform edge redirection by replacing possibly complex jump
659 instruction by unconditional jump or removing jump completely. This can
660 apply only if all edges now point to the same block. The parameters and
661 return values are equivalent to redirect_edge_and_branch. */
662
663 edge
664 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
665 {
666 basic_block src = e->src;
667 rtx insn = BB_END (src), kill_from;
668 rtx set;
669 int fallthru = 0;
670
671 /* If we are partitioning hot/cold basic blocks, we don't want to
672 mess up unconditional or indirect jumps that cross between hot
673 and cold sections.
674
675 Basic block partitioning may result in some jumps that appear to
676 be optimizable (or blocks that appear to be mergeable), but which really
677 must be left untouched (they are required to make it safely across
678 partition boundaries). See the comments at the top of
679 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
680
681 if (flag_reorder_blocks_and_partition
682 && (find_reg_note (insn, REG_CROSSING_JUMP, NULL_RTX)
683 || BB_PARTITION (src) != BB_PARTITION (target)))
684 return NULL;
685
686 /* We can replace or remove a complex jump only when we have exactly
687 two edges. Also, if we have exactly one outgoing edge, we can
688 redirect that. */
689 if (EDGE_COUNT (src->succs) >= 3
690 /* Verify that all targets will be TARGET. Specifically, the
691 edge that is not E must also go to TARGET. */
692 || (EDGE_COUNT (src->succs) == 2
693 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
694 return NULL;
695
696 if (!onlyjump_p (insn))
697 return NULL;
698 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
699 return NULL;
700
701 /* Avoid removing branch with side effects. */
702 set = single_set (insn);
703 if (!set || side_effects_p (set))
704 return NULL;
705
706 /* In case we zap a conditional jump, we'll need to kill
707 the cc0 setter too. */
708 kill_from = insn;
709 #ifdef HAVE_cc0
710 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
711 kill_from = PREV_INSN (insn);
712 #endif
713
714 /* See if we can create the fallthru edge. */
715 if (in_cfglayout || can_fallthru (src, target))
716 {
717 if (dump_file)
718 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
719 fallthru = 1;
720
721 /* Selectively unlink whole insn chain. */
722 if (in_cfglayout)
723 {
724 rtx insn = src->rbi->footer;
725
726 delete_insn_chain (kill_from, BB_END (src));
727
728 /* Remove barriers but keep jumptables. */
729 while (insn)
730 {
731 if (BARRIER_P (insn))
732 {
733 if (PREV_INSN (insn))
734 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
735 else
736 src->rbi->footer = NEXT_INSN (insn);
737 if (NEXT_INSN (insn))
738 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
739 }
740 if (LABEL_P (insn))
741 break;
742 insn = NEXT_INSN (insn);
743 }
744 }
745 else
746 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)));
747 }
748
749 /* If this already is simplejump, redirect it. */
750 else if (simplejump_p (insn))
751 {
752 if (e->dest == target)
753 return NULL;
754 if (dump_file)
755 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
756 INSN_UID (insn), e->dest->index, target->index);
757 if (!redirect_jump (insn, block_label (target), 0))
758 {
759 gcc_assert (target == EXIT_BLOCK_PTR);
760 return NULL;
761 }
762 }
763
764 /* Cannot do anything for target exit block. */
765 else if (target == EXIT_BLOCK_PTR)
766 return NULL;
767
768 /* Or replace possibly complicated jump insn by simple jump insn. */
769 else
770 {
771 rtx target_label = block_label (target);
772 rtx barrier, label, table;
773
774 emit_jump_insn_after_noloc (gen_jump (target_label), insn);
775 JUMP_LABEL (BB_END (src)) = target_label;
776 LABEL_NUSES (target_label)++;
777 if (dump_file)
778 fprintf (dump_file, "Replacing insn %i by jump %i\n",
779 INSN_UID (insn), INSN_UID (BB_END (src)));
780
781
782 delete_insn_chain (kill_from, insn);
783
784 /* Recognize a tablejump that we are converting to a
785 simple jump and remove its associated CODE_LABEL
786 and ADDR_VEC or ADDR_DIFF_VEC. */
787 if (tablejump_p (insn, &label, &table))
788 delete_insn_chain (label, table);
789
790 barrier = next_nonnote_insn (BB_END (src));
791 if (!barrier || !BARRIER_P (barrier))
792 emit_barrier_after (BB_END (src));
793 else
794 {
795 if (barrier != NEXT_INSN (BB_END (src)))
796 {
797 /* Move the jump before barrier so that the notes
798 which originally were or were created before jump table are
799 inside the basic block. */
800 rtx new_insn = BB_END (src);
801 rtx tmp;
802
803 for (tmp = NEXT_INSN (BB_END (src)); tmp != barrier;
804 tmp = NEXT_INSN (tmp))
805 set_block_for_insn (tmp, src);
806
807 NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
808 PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
809
810 NEXT_INSN (new_insn) = barrier;
811 NEXT_INSN (PREV_INSN (barrier)) = new_insn;
812
813 PREV_INSN (new_insn) = PREV_INSN (barrier);
814 PREV_INSN (barrier) = new_insn;
815 }
816 }
817 }
818
819 /* Keep only one edge out and set proper flags. */
820 while (EDGE_COUNT (src->succs) > 1)
821 remove_edge (e);
822
823 e = EDGE_SUCC (src, 0);
824 if (fallthru)
825 e->flags = EDGE_FALLTHRU;
826 else
827 e->flags = 0;
828
829 e->probability = REG_BR_PROB_BASE;
830 e->count = src->count;
831
832 /* We don't want a block to end on a line-number note since that has
833 the potential of changing the code between -g and not -g. */
834 while (NOTE_P (BB_END (e->src))
835 && NOTE_LINE_NUMBER (BB_END (e->src)) >= 0)
836 delete_insn (BB_END (e->src));
837
838 if (e->dest != target)
839 redirect_edge_succ (e, target);
840
841 return e;
842 }
843
844 /* Return last loop_beg note appearing after INSN, before start of next
845 basic block. Return INSN if there are no such notes.
846
847 When emitting jump to redirect a fallthru edge, it should always appear
848 after the LOOP_BEG notes, as loop optimizer expect loop to either start by
849 fallthru edge or jump following the LOOP_BEG note jumping to the loop exit
850 test. */
851
852 static rtx
853 last_loop_beg_note (rtx insn)
854 {
855 rtx last = insn;
856
857 for (insn = NEXT_INSN (insn); insn && NOTE_P (insn)
858 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK;
859 insn = NEXT_INSN (insn))
860 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
861 last = insn;
862
863 return last;
864 }
865
866 /* Redirect edge representing branch of (un)conditional jump or tablejump,
867 NULL on failure */
868 static edge
869 redirect_branch_edge (edge e, basic_block target)
870 {
871 rtx tmp;
872 rtx old_label = BB_HEAD (e->dest);
873 basic_block src = e->src;
874 rtx insn = BB_END (src);
875
876 /* We can only redirect non-fallthru edges of jump insn. */
877 if (e->flags & EDGE_FALLTHRU)
878 return NULL;
879 else if (!JUMP_P (insn))
880 return NULL;
881
882 /* Recognize a tablejump and adjust all matching cases. */
883 if (tablejump_p (insn, NULL, &tmp))
884 {
885 rtvec vec;
886 int j;
887 rtx new_label = block_label (target);
888
889 if (target == EXIT_BLOCK_PTR)
890 return NULL;
891 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
892 vec = XVEC (PATTERN (tmp), 0);
893 else
894 vec = XVEC (PATTERN (tmp), 1);
895
896 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
897 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
898 {
899 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
900 --LABEL_NUSES (old_label);
901 ++LABEL_NUSES (new_label);
902 }
903
904 /* Handle casesi dispatch insns. */
905 if ((tmp = single_set (insn)) != NULL
906 && SET_DEST (tmp) == pc_rtx
907 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
908 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
909 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
910 {
911 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (VOIDmode,
912 new_label);
913 --LABEL_NUSES (old_label);
914 ++LABEL_NUSES (new_label);
915 }
916 }
917 else
918 {
919 /* ?? We may play the games with moving the named labels from
920 one basic block to the other in case only one computed_jump is
921 available. */
922 if (computed_jump_p (insn)
923 /* A return instruction can't be redirected. */
924 || returnjump_p (insn))
925 return NULL;
926
927 /* If the insn doesn't go where we think, we're confused. */
928 gcc_assert (JUMP_LABEL (insn) == old_label);
929
930 /* If the substitution doesn't succeed, die. This can happen
931 if the back end emitted unrecognizable instructions or if
932 target is exit block on some arches. */
933 if (!redirect_jump (insn, block_label (target), 0))
934 {
935 gcc_assert (target == EXIT_BLOCK_PTR);
936 return NULL;
937 }
938 }
939
940 if (dump_file)
941 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
942 e->src->index, e->dest->index, target->index);
943
944 if (e->dest != target)
945 e = redirect_edge_succ_nodup (e, target);
946 return e;
947 }
948
949 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
950 expense of adding new instructions or reordering basic blocks.
951
952 Function can be also called with edge destination equivalent to the TARGET.
953 Then it should try the simplifications and do nothing if none is possible.
954
955 Return edge representing the branch if transformation succeeded. Return NULL
956 on failure.
957 We still return NULL in case E already destinated TARGET and we didn't
958 managed to simplify instruction stream. */
959
960 static edge
961 rtl_redirect_edge_and_branch (edge e, basic_block target)
962 {
963 edge ret;
964 basic_block src = e->src;
965
966 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
967 return NULL;
968
969 if (e->dest == target)
970 return e;
971
972 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
973 {
974 src->flags |= BB_DIRTY;
975 return ret;
976 }
977
978 ret = redirect_branch_edge (e, target);
979 if (!ret)
980 return NULL;
981
982 src->flags |= BB_DIRTY;
983 return ret;
984 }
985
986 /* Like force_nonfallthru below, but additionally performs redirection
987 Used by redirect_edge_and_branch_force. */
988
989 static basic_block
990 force_nonfallthru_and_redirect (edge e, basic_block target)
991 {
992 basic_block jump_block, new_bb = NULL, src = e->src;
993 rtx note;
994 edge new_edge;
995 int abnormal_edge_flags = 0;
996
997 /* In the case the last instruction is conditional jump to the next
998 instruction, first redirect the jump itself and then continue
999 by creating a basic block afterwards to redirect fallthru edge. */
1000 if (e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR
1001 && any_condjump_p (BB_END (e->src))
1002 /* When called from cfglayout, fallthru edges do not
1003 necessarily go to the next block. */
1004 && e->src->next_bb == e->dest
1005 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1006 {
1007 rtx note;
1008 edge b = unchecked_make_edge (e->src, target, 0);
1009 bool redirected;
1010
1011 redirected = redirect_jump (BB_END (e->src), block_label (target), 0);
1012 gcc_assert (redirected);
1013
1014 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1015 if (note)
1016 {
1017 int prob = INTVAL (XEXP (note, 0));
1018
1019 b->probability = prob;
1020 b->count = e->count * prob / REG_BR_PROB_BASE;
1021 e->probability -= e->probability;
1022 e->count -= b->count;
1023 if (e->probability < 0)
1024 e->probability = 0;
1025 if (e->count < 0)
1026 e->count = 0;
1027 }
1028 }
1029
1030 if (e->flags & EDGE_ABNORMAL)
1031 {
1032 /* Irritating special case - fallthru edge to the same block as abnormal
1033 edge.
1034 We can't redirect abnormal edge, but we still can split the fallthru
1035 one and create separate abnormal edge to original destination.
1036 This allows bb-reorder to make such edge non-fallthru. */
1037 gcc_assert (e->dest == target);
1038 abnormal_edge_flags = e->flags & ~(EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
1039 e->flags &= EDGE_FALLTHRU | EDGE_CAN_FALLTHRU;
1040 }
1041 else
1042 {
1043 gcc_assert (e->flags & EDGE_FALLTHRU);
1044 if (e->src == ENTRY_BLOCK_PTR)
1045 {
1046 /* We can't redirect the entry block. Create an empty block
1047 at the start of the function which we use to add the new
1048 jump. */
1049 edge tmp;
1050 edge_iterator ei;
1051 bool found = false;
1052
1053 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL, ENTRY_BLOCK_PTR);
1054
1055 /* Change the existing edge's source to be the new block, and add
1056 a new edge from the entry block to the new block. */
1057 e->src = bb;
1058 for (ei = ei_start (ENTRY_BLOCK_PTR->succs); (tmp = ei_safe_edge (ei)); )
1059 {
1060 if (tmp == e)
1061 {
1062 VEC_unordered_remove (edge, ENTRY_BLOCK_PTR->succs, ei.index);
1063 found = true;
1064 break;
1065 }
1066 else
1067 ei_next (&ei);
1068 }
1069
1070 gcc_assert (found);
1071
1072 VEC_safe_push (edge, bb->succs, e);
1073 make_single_succ_edge (ENTRY_BLOCK_PTR, bb, EDGE_FALLTHRU);
1074 }
1075 }
1076
1077 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags)
1078 {
1079 /* Create the new structures. */
1080
1081 /* If the old block ended with a tablejump, skip its table
1082 by searching forward from there. Otherwise start searching
1083 forward from the last instruction of the old block. */
1084 if (!tablejump_p (BB_END (e->src), NULL, &note))
1085 note = BB_END (e->src);
1086
1087 /* Position the new block correctly relative to loop notes. */
1088 note = last_loop_beg_note (note);
1089 note = NEXT_INSN (note);
1090
1091 jump_block = create_basic_block (note, NULL, e->src);
1092 jump_block->count = e->count;
1093 jump_block->frequency = EDGE_FREQUENCY (e);
1094 jump_block->loop_depth = target->loop_depth;
1095
1096 if (target->global_live_at_start)
1097 {
1098 jump_block->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1099 jump_block->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1100 COPY_REG_SET (jump_block->global_live_at_start,
1101 target->global_live_at_start);
1102 COPY_REG_SET (jump_block->global_live_at_end,
1103 target->global_live_at_start);
1104 }
1105
1106 /* Make sure new block ends up in correct hot/cold section. */
1107
1108 BB_COPY_PARTITION (jump_block, e->src);
1109 if (flag_reorder_blocks_and_partition
1110 && targetm.have_named_sections)
1111 {
1112 if (BB_PARTITION (jump_block) == BB_COLD_PARTITION)
1113 {
1114 rtx bb_note, new_note;
1115 for (bb_note = BB_HEAD (jump_block);
1116 bb_note && bb_note != NEXT_INSN (BB_END (jump_block));
1117 bb_note = NEXT_INSN (bb_note))
1118 if (NOTE_P (bb_note)
1119 && NOTE_LINE_NUMBER (bb_note) == NOTE_INSN_BASIC_BLOCK)
1120 break;
1121 new_note = emit_note_after (NOTE_INSN_UNLIKELY_EXECUTED_CODE,
1122 bb_note);
1123 NOTE_BASIC_BLOCK (new_note) = jump_block;
1124 }
1125 if (JUMP_P (BB_END (jump_block))
1126 && !any_condjump_p (BB_END (jump_block))
1127 && (EDGE_SUCC (jump_block, 0)->flags & EDGE_CROSSING))
1128 REG_NOTES (BB_END (jump_block)) = gen_rtx_EXPR_LIST
1129 (REG_CROSSING_JUMP, NULL_RTX,
1130 REG_NOTES (BB_END (jump_block)));
1131 }
1132
1133 /* Wire edge in. */
1134 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1135 new_edge->probability = e->probability;
1136 new_edge->count = e->count;
1137
1138 /* Redirect old edge. */
1139 redirect_edge_pred (e, jump_block);
1140 e->probability = REG_BR_PROB_BASE;
1141
1142 new_bb = jump_block;
1143 }
1144 else
1145 jump_block = e->src;
1146
1147 e->flags &= ~EDGE_FALLTHRU;
1148 if (target == EXIT_BLOCK_PTR)
1149 {
1150 #ifdef HAVE_return
1151 emit_jump_insn_after_noloc (gen_return (), BB_END (jump_block));
1152 #else
1153 gcc_unreachable ();
1154 #endif
1155 }
1156 else
1157 {
1158 rtx label = block_label (target);
1159 emit_jump_insn_after_noloc (gen_jump (label), BB_END (jump_block));
1160 JUMP_LABEL (BB_END (jump_block)) = label;
1161 LABEL_NUSES (label)++;
1162 }
1163
1164 emit_barrier_after (BB_END (jump_block));
1165 redirect_edge_succ_nodup (e, target);
1166
1167 if (abnormal_edge_flags)
1168 make_edge (src, target, abnormal_edge_flags);
1169
1170 return new_bb;
1171 }
1172
1173 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1174 (and possibly create new basic block) to make edge non-fallthru.
1175 Return newly created BB or NULL if none. */
1176
1177 basic_block
1178 force_nonfallthru (edge e)
1179 {
1180 return force_nonfallthru_and_redirect (e, e->dest);
1181 }
1182
1183 /* Redirect edge even at the expense of creating new jump insn or
1184 basic block. Return new basic block if created, NULL otherwise.
1185 Abort if conversion is impossible. */
1186
1187 static basic_block
1188 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1189 {
1190 if (redirect_edge_and_branch (e, target)
1191 || e->dest == target)
1192 return NULL;
1193
1194 /* In case the edge redirection failed, try to force it to be non-fallthru
1195 and redirect newly created simplejump. */
1196 return force_nonfallthru_and_redirect (e, target);
1197 }
1198
1199 /* The given edge should potentially be a fallthru edge. If that is in
1200 fact true, delete the jump and barriers that are in the way. */
1201
1202 static void
1203 rtl_tidy_fallthru_edge (edge e)
1204 {
1205 rtx q;
1206 basic_block b = e->src, c = b->next_bb;
1207
1208 /* ??? In a late-running flow pass, other folks may have deleted basic
1209 blocks by nopping out blocks, leaving multiple BARRIERs between here
1210 and the target label. They ought to be chastized and fixed.
1211
1212 We can also wind up with a sequence of undeletable labels between
1213 one block and the next.
1214
1215 So search through a sequence of barriers, labels, and notes for
1216 the head of block C and assert that we really do fall through. */
1217
1218 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1219 if (INSN_P (q))
1220 return;
1221
1222 /* Remove what will soon cease being the jump insn from the source block.
1223 If block B consisted only of this single jump, turn it into a deleted
1224 note. */
1225 q = BB_END (b);
1226 if (JUMP_P (q)
1227 && onlyjump_p (q)
1228 && (any_uncondjump_p (q)
1229 || EDGE_COUNT (b->succs) == 1))
1230 {
1231 #ifdef HAVE_cc0
1232 /* If this was a conditional jump, we need to also delete
1233 the insn that set cc0. */
1234 if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1235 q = PREV_INSN (q);
1236 #endif
1237
1238 q = PREV_INSN (q);
1239
1240 /* We don't want a block to end on a line-number note since that has
1241 the potential of changing the code between -g and not -g. */
1242 while (NOTE_P (q) && NOTE_LINE_NUMBER (q) >= 0)
1243 q = PREV_INSN (q);
1244 }
1245
1246 /* Selectively unlink the sequence. */
1247 if (q != PREV_INSN (BB_HEAD (c)))
1248 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)));
1249
1250 e->flags |= EDGE_FALLTHRU;
1251 }
1252 \f
1253 /* Helper function for split_edge. Return true in case edge BB2 to BB1
1254 is back edge of syntactic loop. */
1255
1256 static bool
1257 back_edge_of_syntactic_loop_p (basic_block bb1, basic_block bb2)
1258 {
1259 rtx insn;
1260 int count = 0;
1261 basic_block bb;
1262
1263 if (bb1 == bb2)
1264 return true;
1265
1266 /* ??? Could we guarantee that bb indices are monotone, so that we could
1267 just compare them? */
1268 for (bb = bb1; bb && bb != bb2; bb = bb->next_bb)
1269 continue;
1270
1271 if (!bb)
1272 return false;
1273
1274 for (insn = BB_END (bb1); insn != BB_HEAD (bb2) && count >= 0;
1275 insn = NEXT_INSN (insn))
1276 if (NOTE_P (insn))
1277 {
1278 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1279 count++;
1280 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1281 count--;
1282 }
1283
1284 return count >= 0;
1285 }
1286
1287 /* Should move basic block BB after basic block AFTER. NIY. */
1288
1289 static bool
1290 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1291 basic_block after ATTRIBUTE_UNUSED)
1292 {
1293 return false;
1294 }
1295
1296 /* Split a (typically critical) edge. Return the new block.
1297 Abort on abnormal edges.
1298
1299 ??? The code generally expects to be called on critical edges.
1300 The case of a block ending in an unconditional jump to a
1301 block with multiple predecessors is not handled optimally. */
1302
1303 static basic_block
1304 rtl_split_edge (edge edge_in)
1305 {
1306 basic_block bb;
1307 rtx before;
1308
1309 /* Abnormal edges cannot be split. */
1310 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1311
1312 /* We are going to place the new block in front of edge destination.
1313 Avoid existence of fallthru predecessors. */
1314 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1315 {
1316 edge e;
1317 edge_iterator ei;
1318
1319 FOR_EACH_EDGE (e, ei, edge_in->dest->preds)
1320 if (e->flags & EDGE_FALLTHRU)
1321 break;
1322
1323 if (e)
1324 force_nonfallthru (e);
1325 }
1326
1327 /* Create the basic block note.
1328
1329 Where we place the note can have a noticeable impact on the generated
1330 code. Consider this cfg:
1331
1332 E
1333 |
1334 0
1335 / \
1336 +->1-->2--->E
1337 | |
1338 +--+
1339
1340 If we need to insert an insn on the edge from block 0 to block 1,
1341 we want to ensure the instructions we insert are outside of any
1342 loop notes that physically sit between block 0 and block 1. Otherwise
1343 we confuse the loop optimizer into thinking the loop is a phony. */
1344
1345 if (edge_in->dest != EXIT_BLOCK_PTR
1346 && PREV_INSN (BB_HEAD (edge_in->dest))
1347 && NOTE_P (PREV_INSN (BB_HEAD (edge_in->dest)))
1348 && (NOTE_LINE_NUMBER (PREV_INSN (BB_HEAD (edge_in->dest)))
1349 == NOTE_INSN_LOOP_BEG)
1350 && !back_edge_of_syntactic_loop_p (edge_in->dest, edge_in->src))
1351 before = PREV_INSN (BB_HEAD (edge_in->dest));
1352 else if (edge_in->dest != EXIT_BLOCK_PTR)
1353 before = BB_HEAD (edge_in->dest);
1354 else
1355 before = NULL_RTX;
1356
1357 /* If this is a fall through edge to the exit block, the blocks might be
1358 not adjacent, and the right place is the after the source. */
1359 if (edge_in->flags & EDGE_FALLTHRU && edge_in->dest == EXIT_BLOCK_PTR)
1360 {
1361 before = NEXT_INSN (BB_END (edge_in->src));
1362 if (before
1363 && NOTE_P (before)
1364 && NOTE_LINE_NUMBER (before) == NOTE_INSN_LOOP_END)
1365 before = NEXT_INSN (before);
1366 bb = create_basic_block (before, NULL, edge_in->src);
1367 BB_COPY_PARTITION (bb, edge_in->src);
1368 }
1369 else
1370 {
1371 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1372 /* ??? Why not edge_in->dest->prev_bb here? */
1373 BB_COPY_PARTITION (bb, edge_in->dest);
1374 }
1375
1376 /* ??? This info is likely going to be out of date very soon. */
1377 if (edge_in->dest->global_live_at_start)
1378 {
1379 bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1380 bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1381 COPY_REG_SET (bb->global_live_at_start,
1382 edge_in->dest->global_live_at_start);
1383 COPY_REG_SET (bb->global_live_at_end,
1384 edge_in->dest->global_live_at_start);
1385 }
1386
1387 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1388
1389 /* For non-fallthru edges, we must adjust the predecessor's
1390 jump instruction to target our new block. */
1391 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1392 {
1393 edge redirected = redirect_edge_and_branch (edge_in, bb);
1394 gcc_assert (redirected);
1395 }
1396 else
1397 redirect_edge_succ (edge_in, bb);
1398
1399 return bb;
1400 }
1401
1402 /* Queue instructions for insertion on an edge between two basic blocks.
1403 The new instructions and basic blocks (if any) will not appear in the
1404 CFG until commit_edge_insertions is called. */
1405
1406 void
1407 insert_insn_on_edge (rtx pattern, edge e)
1408 {
1409 /* We cannot insert instructions on an abnormal critical edge.
1410 It will be easier to find the culprit if we die now. */
1411 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1412
1413 if (e->insns.r == NULL_RTX)
1414 start_sequence ();
1415 else
1416 push_to_sequence (e->insns.r);
1417
1418 emit_insn (pattern);
1419
1420 e->insns.r = get_insns ();
1421 end_sequence ();
1422 }
1423
1424 /* Called from safe_insert_insn_on_edge through note_stores, marks live
1425 registers that are killed by the store. */
1426 static void
1427 mark_killed_regs (rtx reg, rtx set ATTRIBUTE_UNUSED, void *data)
1428 {
1429 regset killed = data;
1430 int regno, i;
1431
1432 if (GET_CODE (reg) == SUBREG)
1433 reg = SUBREG_REG (reg);
1434 if (!REG_P (reg))
1435 return;
1436 regno = REGNO (reg);
1437 if (regno >= FIRST_PSEUDO_REGISTER)
1438 SET_REGNO_REG_SET (killed, regno);
1439 else
1440 {
1441 for (i = 0; i < (int) hard_regno_nregs[regno][GET_MODE (reg)]; i++)
1442 SET_REGNO_REG_SET (killed, regno + i);
1443 }
1444 }
1445
1446 /* Similar to insert_insn_on_edge, tries to put INSN to edge E. Additionally
1447 it checks whether this will not clobber the registers that are live on the
1448 edge (i.e. it requires liveness information to be up-to-date) and if there
1449 are some, then it tries to save and restore them. Returns true if
1450 successful. */
1451 bool
1452 safe_insert_insn_on_edge (rtx insn, edge e)
1453 {
1454 rtx x;
1455 regset killed;
1456 rtx save_regs = NULL_RTX;
1457 unsigned regno;
1458 int noccmode;
1459 enum machine_mode mode;
1460 reg_set_iterator rsi;
1461
1462 #ifdef AVOID_CCMODE_COPIES
1463 noccmode = true;
1464 #else
1465 noccmode = false;
1466 #endif
1467
1468 killed = ALLOC_REG_SET (&reg_obstack);
1469
1470 for (x = insn; x; x = NEXT_INSN (x))
1471 if (INSN_P (x))
1472 note_stores (PATTERN (x), mark_killed_regs, killed);
1473
1474 /* Mark all hard registers as killed. Register allocator/reload cannot
1475 cope with the situation when life range of hard register spans operation
1476 for that the appropriate register is needed, i.e. it would be unsafe to
1477 extend the life ranges of hard registers. */
1478 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1479 if (!fixed_regs[regno]
1480 && !REGNO_PTR_FRAME_P (regno))
1481 SET_REGNO_REG_SET (killed, regno);
1482
1483 bitmap_and_into (killed, e->dest->global_live_at_start);
1484
1485 EXECUTE_IF_SET_IN_REG_SET (killed, 0, regno, rsi)
1486 {
1487 mode = regno < FIRST_PSEUDO_REGISTER
1488 ? reg_raw_mode[regno]
1489 : GET_MODE (regno_reg_rtx[regno]);
1490 if (mode == VOIDmode)
1491 return false;
1492
1493 if (noccmode && mode == CCmode)
1494 return false;
1495
1496 save_regs = alloc_EXPR_LIST (0,
1497 alloc_EXPR_LIST (0,
1498 gen_reg_rtx (mode),
1499 gen_raw_REG (mode, regno)),
1500 save_regs);
1501 }
1502
1503 if (save_regs)
1504 {
1505 rtx from, to;
1506
1507 start_sequence ();
1508 for (x = save_regs; x; x = XEXP (x, 1))
1509 {
1510 from = XEXP (XEXP (x, 0), 1);
1511 to = XEXP (XEXP (x, 0), 0);
1512 emit_move_insn (to, from);
1513 }
1514 emit_insn (insn);
1515 for (x = save_regs; x; x = XEXP (x, 1))
1516 {
1517 from = XEXP (XEXP (x, 0), 0);
1518 to = XEXP (XEXP (x, 0), 1);
1519 emit_move_insn (to, from);
1520 }
1521 insn = get_insns ();
1522 end_sequence ();
1523 free_EXPR_LIST_list (&save_regs);
1524 }
1525 insert_insn_on_edge (insn, e);
1526
1527 FREE_REG_SET (killed);
1528
1529 return true;
1530 }
1531
1532 /* Update the CFG for the instructions queued on edge E. */
1533
1534 static void
1535 commit_one_edge_insertion (edge e, int watch_calls)
1536 {
1537 rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1538 basic_block bb = NULL;
1539
1540 /* Pull the insns off the edge now since the edge might go away. */
1541 insns = e->insns.r;
1542 e->insns.r = NULL_RTX;
1543
1544 /* Special case -- avoid inserting code between call and storing
1545 its return value. */
1546 if (watch_calls && (e->flags & EDGE_FALLTHRU)
1547 && EDGE_COUNT (e->dest->preds) == 1
1548 && e->src != ENTRY_BLOCK_PTR
1549 && CALL_P (BB_END (e->src)))
1550 {
1551 rtx next = next_nonnote_insn (BB_END (e->src));
1552
1553 after = BB_HEAD (e->dest);
1554 /* The first insn after the call may be a stack pop, skip it. */
1555 while (next
1556 && keep_with_call_p (next))
1557 {
1558 after = next;
1559 next = next_nonnote_insn (next);
1560 }
1561 bb = e->dest;
1562 }
1563 if (!before && !after)
1564 {
1565 /* Figure out where to put these things. If the destination has
1566 one predecessor, insert there. Except for the exit block. */
1567 if (EDGE_COUNT (e->dest->preds) == 1 && e->dest != EXIT_BLOCK_PTR)
1568 {
1569 bb = e->dest;
1570
1571 /* Get the location correct wrt a code label, and "nice" wrt
1572 a basic block note, and before everything else. */
1573 tmp = BB_HEAD (bb);
1574 if (LABEL_P (tmp))
1575 tmp = NEXT_INSN (tmp);
1576 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1577 tmp = NEXT_INSN (tmp);
1578 if (tmp
1579 && NOTE_P (tmp)
1580 && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1581 tmp = NEXT_INSN (tmp);
1582 if (tmp == BB_HEAD (bb))
1583 before = tmp;
1584 else if (tmp)
1585 after = PREV_INSN (tmp);
1586 else
1587 after = get_last_insn ();
1588 }
1589
1590 /* If the source has one successor and the edge is not abnormal,
1591 insert there. Except for the entry block. */
1592 else if ((e->flags & EDGE_ABNORMAL) == 0
1593 && EDGE_COUNT (e->src->succs) == 1
1594 && e->src != ENTRY_BLOCK_PTR)
1595 {
1596 bb = e->src;
1597
1598 /* It is possible to have a non-simple jump here. Consider a target
1599 where some forms of unconditional jumps clobber a register. This
1600 happens on the fr30 for example.
1601
1602 We know this block has a single successor, so we can just emit
1603 the queued insns before the jump. */
1604 if (JUMP_P (BB_END (bb)))
1605 for (before = BB_END (bb);
1606 NOTE_P (PREV_INSN (before))
1607 && NOTE_LINE_NUMBER (PREV_INSN (before)) ==
1608 NOTE_INSN_LOOP_BEG; before = PREV_INSN (before))
1609 ;
1610 else
1611 {
1612 /* We'd better be fallthru, or we've lost track of
1613 what's what. */
1614 gcc_assert (e->flags & EDGE_FALLTHRU);
1615
1616 after = BB_END (bb);
1617 }
1618 }
1619 /* Otherwise we must split the edge. */
1620 else
1621 {
1622 bb = split_edge (e);
1623 after = BB_END (bb);
1624
1625 if (flag_reorder_blocks_and_partition
1626 && targetm.have_named_sections
1627 && e->src != ENTRY_BLOCK_PTR
1628 && BB_PARTITION (e->src) == BB_COLD_PARTITION
1629 && !(e->flags & EDGE_CROSSING))
1630 {
1631 rtx bb_note, new_note, cur_insn;
1632
1633 bb_note = NULL_RTX;
1634 for (cur_insn = BB_HEAD (bb); cur_insn != NEXT_INSN (BB_END (bb));
1635 cur_insn = NEXT_INSN (cur_insn))
1636 if (NOTE_P (cur_insn)
1637 && NOTE_LINE_NUMBER (cur_insn) == NOTE_INSN_BASIC_BLOCK)
1638 {
1639 bb_note = cur_insn;
1640 break;
1641 }
1642
1643 new_note = emit_note_after (NOTE_INSN_UNLIKELY_EXECUTED_CODE,
1644 bb_note);
1645 NOTE_BASIC_BLOCK (new_note) = bb;
1646 if (JUMP_P (BB_END (bb))
1647 && !any_condjump_p (BB_END (bb))
1648 && (EDGE_SUCC (bb, 0)->flags & EDGE_CROSSING))
1649 REG_NOTES (BB_END (bb)) = gen_rtx_EXPR_LIST
1650 (REG_CROSSING_JUMP, NULL_RTX, REG_NOTES (BB_END (bb)));
1651 if (after == bb_note)
1652 after = new_note;
1653 }
1654 }
1655 }
1656
1657 /* Now that we've found the spot, do the insertion. */
1658
1659 if (before)
1660 {
1661 emit_insn_before_noloc (insns, before);
1662 last = prev_nonnote_insn (before);
1663 }
1664 else
1665 last = emit_insn_after_noloc (insns, after);
1666
1667 if (returnjump_p (last))
1668 {
1669 /* ??? Remove all outgoing edges from BB and add one for EXIT.
1670 This is not currently a problem because this only happens
1671 for the (single) epilogue, which already has a fallthru edge
1672 to EXIT. */
1673
1674 e = EDGE_SUCC (bb, 0);
1675 gcc_assert (e->dest == EXIT_BLOCK_PTR
1676 && EDGE_COUNT (bb->succs) == 1 && (e->flags & EDGE_FALLTHRU));
1677
1678 e->flags &= ~EDGE_FALLTHRU;
1679 emit_barrier_after (last);
1680
1681 if (before)
1682 delete_insn (before);
1683 }
1684 else
1685 gcc_assert (!JUMP_P (last));
1686
1687 /* Mark the basic block for find_sub_basic_blocks. */
1688 bb->aux = &bb->aux;
1689 }
1690
1691 /* Update the CFG for all queued instructions. */
1692
1693 void
1694 commit_edge_insertions (void)
1695 {
1696 basic_block bb;
1697 sbitmap blocks;
1698 bool changed = false;
1699
1700 #ifdef ENABLE_CHECKING
1701 verify_flow_info ();
1702 #endif
1703
1704 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1705 {
1706 edge e;
1707 edge_iterator ei;
1708
1709 FOR_EACH_EDGE (e, ei, bb->succs)
1710 if (e->insns.r)
1711 {
1712 changed = true;
1713 commit_one_edge_insertion (e, false);
1714 }
1715 }
1716
1717 if (!changed)
1718 return;
1719
1720 blocks = sbitmap_alloc (last_basic_block);
1721 sbitmap_zero (blocks);
1722 FOR_EACH_BB (bb)
1723 if (bb->aux)
1724 {
1725 SET_BIT (blocks, bb->index);
1726 /* Check for forgotten bb->aux values before commit_edge_insertions
1727 call. */
1728 gcc_assert (bb->aux == &bb->aux);
1729 bb->aux = NULL;
1730 }
1731 find_many_sub_basic_blocks (blocks);
1732 sbitmap_free (blocks);
1733 }
1734 \f
1735 /* Update the CFG for all queued instructions, taking special care of inserting
1736 code on edges between call and storing its return value. */
1737
1738 void
1739 commit_edge_insertions_watch_calls (void)
1740 {
1741 basic_block bb;
1742 sbitmap blocks;
1743 bool changed = false;
1744
1745 #ifdef ENABLE_CHECKING
1746 verify_flow_info ();
1747 #endif
1748
1749 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1750 {
1751 edge e;
1752 edge_iterator ei;
1753
1754 FOR_EACH_EDGE (e, ei, bb->succs)
1755 if (e->insns.r)
1756 {
1757 changed = true;
1758 commit_one_edge_insertion (e, true);
1759 }
1760 }
1761
1762 if (!changed)
1763 return;
1764
1765 blocks = sbitmap_alloc (last_basic_block);
1766 sbitmap_zero (blocks);
1767 FOR_EACH_BB (bb)
1768 if (bb->aux)
1769 {
1770 SET_BIT (blocks, bb->index);
1771 /* Check for forgotten bb->aux values before commit_edge_insertions
1772 call. */
1773 gcc_assert (bb->aux == &bb->aux);
1774 bb->aux = NULL;
1775 }
1776 find_many_sub_basic_blocks (blocks);
1777 sbitmap_free (blocks);
1778 }
1779 \f
1780 /* Print out RTL-specific basic block information (live information
1781 at start and end). */
1782
1783 static void
1784 rtl_dump_bb (basic_block bb, FILE *outf, int indent)
1785 {
1786 rtx insn;
1787 rtx last;
1788 char *s_indent;
1789
1790 s_indent = alloca ((size_t) indent + 1);
1791 memset (s_indent, ' ', (size_t) indent);
1792 s_indent[indent] = '\0';
1793
1794 fprintf (outf, ";;%s Registers live at start: ", s_indent);
1795 dump_regset (bb->global_live_at_start, outf);
1796 putc ('\n', outf);
1797
1798 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
1799 insn = NEXT_INSN (insn))
1800 print_rtl_single (outf, insn);
1801
1802 fprintf (outf, ";;%s Registers live at end: ", s_indent);
1803 dump_regset (bb->global_live_at_end, outf);
1804 putc ('\n', outf);
1805 }
1806 \f
1807 /* Like print_rtl, but also print out live information for the start of each
1808 basic block. */
1809
1810 void
1811 print_rtl_with_bb (FILE *outf, rtx rtx_first)
1812 {
1813 rtx tmp_rtx;
1814
1815 if (rtx_first == 0)
1816 fprintf (outf, "(nil)\n");
1817 else
1818 {
1819 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
1820 int max_uid = get_max_uid ();
1821 basic_block *start = xcalloc (max_uid, sizeof (basic_block));
1822 basic_block *end = xcalloc (max_uid, sizeof (basic_block));
1823 enum bb_state *in_bb_p = xcalloc (max_uid, sizeof (enum bb_state));
1824
1825 basic_block bb;
1826
1827 FOR_EACH_BB_REVERSE (bb)
1828 {
1829 rtx x;
1830
1831 start[INSN_UID (BB_HEAD (bb))] = bb;
1832 end[INSN_UID (BB_END (bb))] = bb;
1833 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
1834 {
1835 enum bb_state state = IN_MULTIPLE_BB;
1836
1837 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
1838 state = IN_ONE_BB;
1839 in_bb_p[INSN_UID (x)] = state;
1840
1841 if (x == BB_END (bb))
1842 break;
1843 }
1844 }
1845
1846 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
1847 {
1848 int did_output;
1849
1850 if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
1851 {
1852 fprintf (outf, ";; Start of basic block %d, registers live:",
1853 bb->index);
1854 dump_regset (bb->global_live_at_start, outf);
1855 putc ('\n', outf);
1856 }
1857
1858 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
1859 && !NOTE_P (tmp_rtx)
1860 && !BARRIER_P (tmp_rtx))
1861 fprintf (outf, ";; Insn is not within a basic block\n");
1862 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
1863 fprintf (outf, ";; Insn is in multiple basic blocks\n");
1864
1865 did_output = print_rtl_single (outf, tmp_rtx);
1866
1867 if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
1868 {
1869 fprintf (outf, ";; End of basic block %d, registers live:\n",
1870 bb->index);
1871 dump_regset (bb->global_live_at_end, outf);
1872 putc ('\n', outf);
1873 }
1874
1875 if (did_output)
1876 putc ('\n', outf);
1877 }
1878
1879 free (start);
1880 free (end);
1881 free (in_bb_p);
1882 }
1883
1884 if (current_function_epilogue_delay_list != 0)
1885 {
1886 fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
1887 for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
1888 tmp_rtx = XEXP (tmp_rtx, 1))
1889 print_rtl_single (outf, XEXP (tmp_rtx, 0));
1890 }
1891 }
1892 \f
1893 void
1894 update_br_prob_note (basic_block bb)
1895 {
1896 rtx note;
1897 if (!JUMP_P (BB_END (bb)))
1898 return;
1899 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
1900 if (!note || INTVAL (XEXP (note, 0)) == BRANCH_EDGE (bb)->probability)
1901 return;
1902 XEXP (note, 0) = GEN_INT (BRANCH_EDGE (bb)->probability);
1903 }
1904 \f
1905 /* Verify the CFG and RTL consistency common for both underlying RTL and
1906 cfglayout RTL.
1907
1908 Currently it does following checks:
1909
1910 - test head/end pointers
1911 - overlapping of basic blocks
1912 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
1913 - tails of basic blocks (ensure that boundary is necessary)
1914 - scans body of the basic block for JUMP_INSN, CODE_LABEL
1915 and NOTE_INSN_BASIC_BLOCK
1916 - verify that no fall_thru edge crosses hot/cold partition boundaries
1917
1918 In future it can be extended check a lot of other stuff as well
1919 (reachability of basic blocks, life information, etc. etc.). */
1920
1921 static int
1922 rtl_verify_flow_info_1 (void)
1923 {
1924 const int max_uid = get_max_uid ();
1925 rtx last_head = get_last_insn ();
1926 basic_block *bb_info;
1927 rtx x;
1928 int err = 0;
1929 basic_block bb, last_bb_seen;
1930
1931 bb_info = xcalloc (max_uid, sizeof (basic_block));
1932
1933 /* Check bb chain & numbers. */
1934 last_bb_seen = ENTRY_BLOCK_PTR;
1935
1936 FOR_EACH_BB_REVERSE (bb)
1937 {
1938 rtx head = BB_HEAD (bb);
1939 rtx end = BB_END (bb);
1940
1941 /* Verify the end of the basic block is in the INSN chain. */
1942 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
1943 if (x == end)
1944 break;
1945
1946 if (!x)
1947 {
1948 error ("end insn %d for block %d not found in the insn stream",
1949 INSN_UID (end), bb->index);
1950 err = 1;
1951 }
1952
1953 /* Work backwards from the end to the head of the basic block
1954 to verify the head is in the RTL chain. */
1955 for (; x != NULL_RTX; x = PREV_INSN (x))
1956 {
1957 /* While walking over the insn chain, verify insns appear
1958 in only one basic block and initialize the BB_INFO array
1959 used by other passes. */
1960 if (bb_info[INSN_UID (x)] != NULL)
1961 {
1962 error ("insn %d is in multiple basic blocks (%d and %d)",
1963 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
1964 err = 1;
1965 }
1966
1967 bb_info[INSN_UID (x)] = bb;
1968
1969 if (x == head)
1970 break;
1971 }
1972 if (!x)
1973 {
1974 error ("head insn %d for block %d not found in the insn stream",
1975 INSN_UID (head), bb->index);
1976 err = 1;
1977 }
1978
1979 last_head = x;
1980 }
1981
1982 /* Now check the basic blocks (boundaries etc.) */
1983 FOR_EACH_BB_REVERSE (bb)
1984 {
1985 int n_fallthru = 0, n_eh = 0, n_call = 0, n_abnormal = 0, n_branch = 0;
1986 edge e, fallthru = NULL;
1987 rtx note;
1988 edge_iterator ei;
1989
1990 if (JUMP_P (BB_END (bb))
1991 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
1992 && EDGE_COUNT (bb->succs) >= 2
1993 && any_condjump_p (BB_END (bb)))
1994 {
1995 if (INTVAL (XEXP (note, 0)) != BRANCH_EDGE (bb)->probability
1996 && profile_status != PROFILE_ABSENT)
1997 {
1998 error ("verify_flow_info: REG_BR_PROB does not match cfg %wi %i",
1999 INTVAL (XEXP (note, 0)), BRANCH_EDGE (bb)->probability);
2000 err = 1;
2001 }
2002 }
2003 FOR_EACH_EDGE (e, ei, bb->succs)
2004 {
2005 if (e->flags & EDGE_FALLTHRU)
2006 {
2007 n_fallthru++, fallthru = e;
2008 if ((e->flags & EDGE_CROSSING)
2009 || (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
2010 && e->src != ENTRY_BLOCK_PTR
2011 && e->dest != EXIT_BLOCK_PTR))
2012 {
2013 error ("Fallthru edge crosses section boundary (bb %i)",
2014 e->src->index);
2015 err = 1;
2016 }
2017 }
2018
2019 if ((e->flags & ~(EDGE_DFS_BACK
2020 | EDGE_CAN_FALLTHRU
2021 | EDGE_IRREDUCIBLE_LOOP
2022 | EDGE_LOOP_EXIT
2023 | EDGE_CROSSING)) == 0)
2024 n_branch++;
2025
2026 if (e->flags & EDGE_ABNORMAL_CALL)
2027 n_call++;
2028
2029 if (e->flags & EDGE_EH)
2030 n_eh++;
2031 else if (e->flags & EDGE_ABNORMAL)
2032 n_abnormal++;
2033 }
2034
2035 if (n_eh && GET_CODE (PATTERN (BB_END (bb))) != RESX
2036 && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2037 {
2038 error ("Missing REG_EH_REGION note in the end of bb %i", bb->index);
2039 err = 1;
2040 }
2041 if (n_branch
2042 && (!JUMP_P (BB_END (bb))
2043 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2044 || any_condjump_p (BB_END (bb))))))
2045 {
2046 error ("Too many outgoing branch edges from bb %i", bb->index);
2047 err = 1;
2048 }
2049 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2050 {
2051 error ("Fallthru edge after unconditional jump %i", bb->index);
2052 err = 1;
2053 }
2054 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2055 {
2056 error ("Wrong amount of branch edges after unconditional jump %i", bb->index);
2057 err = 1;
2058 }
2059 if (n_branch != 1 && any_condjump_p (BB_END (bb))
2060 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
2061 {
2062 error ("Wrong amount of branch edges after conditional jump %i", bb->index);
2063 err = 1;
2064 }
2065 if (n_call && !CALL_P (BB_END (bb)))
2066 {
2067 error ("Call edges for non-call insn in bb %i", bb->index);
2068 err = 1;
2069 }
2070 if (n_abnormal
2071 && (!CALL_P (BB_END (bb)) && n_call != n_abnormal)
2072 && (!JUMP_P (BB_END (bb))
2073 || any_condjump_p (BB_END (bb))
2074 || any_uncondjump_p (BB_END (bb))))
2075 {
2076 error ("Abnormal edges for no purpose in bb %i", bb->index);
2077 err = 1;
2078 }
2079
2080 for (x = BB_HEAD (bb); x != NEXT_INSN (BB_END (bb)); x = NEXT_INSN (x))
2081 /* We may have a barrier inside a basic block before dead code
2082 elimination. There is no BLOCK_FOR_INSN field in a barrier. */
2083 if (!BARRIER_P (x) && BLOCK_FOR_INSN (x) != bb)
2084 {
2085 debug_rtx (x);
2086 if (! BLOCK_FOR_INSN (x))
2087 error
2088 ("insn %d inside basic block %d but block_for_insn is NULL",
2089 INSN_UID (x), bb->index);
2090 else
2091 error
2092 ("insn %d inside basic block %d but block_for_insn is %i",
2093 INSN_UID (x), bb->index, BLOCK_FOR_INSN (x)->index);
2094
2095 err = 1;
2096 }
2097
2098 /* OK pointers are correct. Now check the header of basic
2099 block. It ought to contain optional CODE_LABEL followed
2100 by NOTE_BASIC_BLOCK. */
2101 x = BB_HEAD (bb);
2102 if (LABEL_P (x))
2103 {
2104 if (BB_END (bb) == x)
2105 {
2106 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2107 bb->index);
2108 err = 1;
2109 }
2110
2111 x = NEXT_INSN (x);
2112 }
2113
2114 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2115 {
2116 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2117 bb->index);
2118 err = 1;
2119 }
2120
2121 if (BB_END (bb) == x)
2122 /* Do checks for empty blocks here. */
2123 ;
2124 else
2125 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2126 {
2127 if (NOTE_INSN_BASIC_BLOCK_P (x))
2128 {
2129 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2130 INSN_UID (x), bb->index);
2131 err = 1;
2132 }
2133
2134 if (x == BB_END (bb))
2135 break;
2136
2137 if (control_flow_insn_p (x))
2138 {
2139 error ("in basic block %d:", bb->index);
2140 fatal_insn ("flow control insn inside a basic block", x);
2141 }
2142 }
2143 }
2144
2145 /* Clean up. */
2146 free (bb_info);
2147 return err;
2148 }
2149
2150 /* Verify the CFG and RTL consistency common for both underlying RTL and
2151 cfglayout RTL.
2152
2153 Currently it does following checks:
2154 - all checks of rtl_verify_flow_info_1
2155 - check that all insns are in the basic blocks
2156 (except the switch handling code, barriers and notes)
2157 - check that all returns are followed by barriers
2158 - check that all fallthru edge points to the adjacent blocks. */
2159 static int
2160 rtl_verify_flow_info (void)
2161 {
2162 basic_block bb;
2163 int err = rtl_verify_flow_info_1 ();
2164 rtx x;
2165 int num_bb_notes;
2166 const rtx rtx_first = get_insns ();
2167 basic_block last_bb_seen = ENTRY_BLOCK_PTR, curr_bb = NULL;
2168
2169 FOR_EACH_BB_REVERSE (bb)
2170 {
2171 edge e;
2172 edge_iterator ei;
2173
2174 FOR_EACH_EDGE (e, ei, bb->succs)
2175 if (e->flags & EDGE_FALLTHRU)
2176 break;
2177 if (!e)
2178 {
2179 rtx insn;
2180
2181 /* Ensure existence of barrier in BB with no fallthru edges. */
2182 for (insn = BB_END (bb); !insn || !BARRIER_P (insn);
2183 insn = NEXT_INSN (insn))
2184 if (!insn
2185 || (NOTE_P (insn)
2186 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK))
2187 {
2188 error ("missing barrier after block %i", bb->index);
2189 err = 1;
2190 break;
2191 }
2192 }
2193 else if (e->src != ENTRY_BLOCK_PTR
2194 && e->dest != EXIT_BLOCK_PTR)
2195 {
2196 rtx insn;
2197
2198 if (e->src->next_bb != e->dest)
2199 {
2200 error
2201 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2202 e->src->index, e->dest->index);
2203 err = 1;
2204 }
2205 else
2206 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2207 insn = NEXT_INSN (insn))
2208 if (BARRIER_P (insn) || INSN_P (insn))
2209 {
2210 error ("verify_flow_info: Incorrect fallthru %i->%i",
2211 e->src->index, e->dest->index);
2212 fatal_insn ("wrong insn in the fallthru edge", insn);
2213 err = 1;
2214 }
2215 }
2216 }
2217
2218 num_bb_notes = 0;
2219 last_bb_seen = ENTRY_BLOCK_PTR;
2220
2221 for (x = rtx_first; x; x = NEXT_INSN (x))
2222 {
2223 if (NOTE_INSN_BASIC_BLOCK_P (x))
2224 {
2225 bb = NOTE_BASIC_BLOCK (x);
2226
2227 num_bb_notes++;
2228 if (bb != last_bb_seen->next_bb)
2229 internal_error ("basic blocks not laid down consecutively");
2230
2231 curr_bb = last_bb_seen = bb;
2232 }
2233
2234 if (!curr_bb)
2235 {
2236 switch (GET_CODE (x))
2237 {
2238 case BARRIER:
2239 case NOTE:
2240 break;
2241
2242 case CODE_LABEL:
2243 /* An addr_vec is placed outside any basic block. */
2244 if (NEXT_INSN (x)
2245 && JUMP_P (NEXT_INSN (x))
2246 && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
2247 || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
2248 x = NEXT_INSN (x);
2249
2250 /* But in any case, non-deletable labels can appear anywhere. */
2251 break;
2252
2253 default:
2254 fatal_insn ("insn outside basic block", x);
2255 }
2256 }
2257
2258 if (JUMP_P (x)
2259 && returnjump_p (x) && ! condjump_p (x)
2260 && ! (NEXT_INSN (x) && BARRIER_P (NEXT_INSN (x))))
2261 fatal_insn ("return not followed by barrier", x);
2262 if (curr_bb && x == BB_END (curr_bb))
2263 curr_bb = NULL;
2264 }
2265
2266 if (num_bb_notes != n_basic_blocks)
2267 internal_error
2268 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2269 num_bb_notes, n_basic_blocks);
2270
2271 return err;
2272 }
2273 \f
2274 /* Assume that the preceding pass has possibly eliminated jump instructions
2275 or converted the unconditional jumps. Eliminate the edges from CFG.
2276 Return true if any edges are eliminated. */
2277
2278 bool
2279 purge_dead_edges (basic_block bb)
2280 {
2281 edge e;
2282 rtx insn = BB_END (bb), note;
2283 bool purged = false;
2284 bool found;
2285 edge_iterator ei;
2286
2287 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
2288 if (NONJUMP_INSN_P (insn)
2289 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
2290 {
2291 rtx eqnote;
2292
2293 if (! may_trap_p (PATTERN (insn))
2294 || ((eqnote = find_reg_equal_equiv_note (insn))
2295 && ! may_trap_p (XEXP (eqnote, 0))))
2296 remove_note (insn, note);
2297 }
2298
2299 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
2300 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2301 {
2302 if (e->flags & EDGE_EH)
2303 {
2304 if (can_throw_internal (BB_END (bb)))
2305 {
2306 ei_next (&ei);
2307 continue;
2308 }
2309 }
2310 else if (e->flags & EDGE_ABNORMAL_CALL)
2311 {
2312 if (CALL_P (BB_END (bb))
2313 && (! (note = find_reg_note (insn, REG_EH_REGION, NULL))
2314 || INTVAL (XEXP (note, 0)) >= 0))
2315 {
2316 ei_next (&ei);
2317 continue;
2318 }
2319 }
2320 else
2321 {
2322 ei_next (&ei);
2323 continue;
2324 }
2325
2326 remove_edge (e);
2327 bb->flags |= BB_DIRTY;
2328 purged = true;
2329 }
2330
2331 if (JUMP_P (insn))
2332 {
2333 rtx note;
2334 edge b,f;
2335 edge_iterator ei;
2336
2337 /* We do care only about conditional jumps and simplejumps. */
2338 if (!any_condjump_p (insn)
2339 && !returnjump_p (insn)
2340 && !simplejump_p (insn))
2341 return purged;
2342
2343 /* Branch probability/prediction notes are defined only for
2344 condjumps. We've possibly turned condjump into simplejump. */
2345 if (simplejump_p (insn))
2346 {
2347 note = find_reg_note (insn, REG_BR_PROB, NULL);
2348 if (note)
2349 remove_note (insn, note);
2350 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
2351 remove_note (insn, note);
2352 }
2353
2354 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2355 {
2356 /* Avoid abnormal flags to leak from computed jumps turned
2357 into simplejumps. */
2358
2359 e->flags &= ~EDGE_ABNORMAL;
2360
2361 /* See if this edge is one we should keep. */
2362 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
2363 /* A conditional jump can fall through into the next
2364 block, so we should keep the edge. */
2365 {
2366 ei_next (&ei);
2367 continue;
2368 }
2369 else if (e->dest != EXIT_BLOCK_PTR
2370 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
2371 /* If the destination block is the target of the jump,
2372 keep the edge. */
2373 {
2374 ei_next (&ei);
2375 continue;
2376 }
2377 else if (e->dest == EXIT_BLOCK_PTR && returnjump_p (insn))
2378 /* If the destination block is the exit block, and this
2379 instruction is a return, then keep the edge. */
2380 {
2381 ei_next (&ei);
2382 continue;
2383 }
2384 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
2385 /* Keep the edges that correspond to exceptions thrown by
2386 this instruction and rematerialize the EDGE_ABNORMAL
2387 flag we just cleared above. */
2388 {
2389 e->flags |= EDGE_ABNORMAL;
2390 ei_next (&ei);
2391 continue;
2392 }
2393
2394 /* We do not need this edge. */
2395 bb->flags |= BB_DIRTY;
2396 purged = true;
2397 remove_edge (e);
2398 }
2399
2400 if (EDGE_COUNT (bb->succs) == 0 || !purged)
2401 return purged;
2402
2403 if (dump_file)
2404 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
2405
2406 if (!optimize)
2407 return purged;
2408
2409 /* Redistribute probabilities. */
2410 if (EDGE_COUNT (bb->succs) == 1)
2411 {
2412 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
2413 EDGE_SUCC (bb, 0)->count = bb->count;
2414 }
2415 else
2416 {
2417 note = find_reg_note (insn, REG_BR_PROB, NULL);
2418 if (!note)
2419 return purged;
2420
2421 b = BRANCH_EDGE (bb);
2422 f = FALLTHRU_EDGE (bb);
2423 b->probability = INTVAL (XEXP (note, 0));
2424 f->probability = REG_BR_PROB_BASE - b->probability;
2425 b->count = bb->count * b->probability / REG_BR_PROB_BASE;
2426 f->count = bb->count * f->probability / REG_BR_PROB_BASE;
2427 }
2428
2429 return purged;
2430 }
2431 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
2432 {
2433 /* First, there should not be any EH or ABCALL edges resulting
2434 from non-local gotos and the like. If there were, we shouldn't
2435 have created the sibcall in the first place. Second, there
2436 should of course never have been a fallthru edge. */
2437 gcc_assert (EDGE_COUNT (bb->succs) == 1);
2438 gcc_assert (EDGE_SUCC (bb, 0)->flags == (EDGE_SIBCALL | EDGE_ABNORMAL));
2439
2440 return 0;
2441 }
2442
2443 /* If we don't see a jump insn, we don't know exactly why the block would
2444 have been broken at this point. Look for a simple, non-fallthru edge,
2445 as these are only created by conditional branches. If we find such an
2446 edge we know that there used to be a jump here and can then safely
2447 remove all non-fallthru edges. */
2448 found = false;
2449 FOR_EACH_EDGE (e, ei, bb->succs)
2450 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
2451 {
2452 found = true;
2453 break;
2454 }
2455
2456 if (!found)
2457 return purged;
2458
2459 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
2460 {
2461 if (!(e->flags & EDGE_FALLTHRU))
2462 {
2463 bb->flags |= BB_DIRTY;
2464 remove_edge (e);
2465 purged = true;
2466 }
2467 else
2468 ei_next (&ei);
2469 }
2470
2471 gcc_assert (EDGE_COUNT (bb->succs) == 1);
2472
2473 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
2474 EDGE_SUCC (bb, 0)->count = bb->count;
2475
2476 if (dump_file)
2477 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
2478 bb->index);
2479 return purged;
2480 }
2481
2482 /* Search all basic blocks for potentially dead edges and purge them. Return
2483 true if some edge has been eliminated. */
2484
2485 bool
2486 purge_all_dead_edges (int update_life_p)
2487 {
2488 int purged = false;
2489 sbitmap blocks = 0;
2490 basic_block bb;
2491
2492 if (update_life_p)
2493 {
2494 blocks = sbitmap_alloc (last_basic_block);
2495 sbitmap_zero (blocks);
2496 }
2497
2498 FOR_EACH_BB (bb)
2499 {
2500 bool purged_here = purge_dead_edges (bb);
2501
2502 purged |= purged_here;
2503 if (purged_here && update_life_p)
2504 SET_BIT (blocks, bb->index);
2505 }
2506
2507 if (update_life_p && purged)
2508 update_life_info (blocks, UPDATE_LIFE_GLOBAL,
2509 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
2510 | PROP_KILL_DEAD_CODE);
2511
2512 if (update_life_p)
2513 sbitmap_free (blocks);
2514 return purged;
2515 }
2516
2517 /* Same as split_block but update cfg_layout structures. */
2518
2519 static basic_block
2520 cfg_layout_split_block (basic_block bb, void *insnp)
2521 {
2522 rtx insn = insnp;
2523 basic_block new_bb = rtl_split_block (bb, insn);
2524
2525 new_bb->rbi->footer = bb->rbi->footer;
2526 bb->rbi->footer = NULL;
2527
2528 return new_bb;
2529 }
2530
2531
2532 /* Redirect Edge to DEST. */
2533 static edge
2534 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
2535 {
2536 basic_block src = e->src;
2537 edge ret;
2538
2539 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
2540 return NULL;
2541
2542 if (e->dest == dest)
2543 return e;
2544
2545 if (e->src != ENTRY_BLOCK_PTR
2546 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
2547 {
2548 src->flags |= BB_DIRTY;
2549 return ret;
2550 }
2551
2552 if (e->src == ENTRY_BLOCK_PTR
2553 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
2554 {
2555 if (dump_file)
2556 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
2557 e->src->index, dest->index);
2558
2559 e->src->flags |= BB_DIRTY;
2560 redirect_edge_succ (e, dest);
2561 return e;
2562 }
2563
2564 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
2565 in the case the basic block appears to be in sequence. Avoid this
2566 transformation. */
2567
2568 if (e->flags & EDGE_FALLTHRU)
2569 {
2570 /* Redirect any branch edges unified with the fallthru one. */
2571 if (JUMP_P (BB_END (src))
2572 && label_is_jump_target_p (BB_HEAD (e->dest),
2573 BB_END (src)))
2574 {
2575 edge redirected;
2576
2577 if (dump_file)
2578 fprintf (dump_file, "Fallthru edge unified with branch "
2579 "%i->%i redirected to %i\n",
2580 e->src->index, e->dest->index, dest->index);
2581 e->flags &= ~EDGE_FALLTHRU;
2582 redirected = redirect_branch_edge (e, dest);
2583 gcc_assert (redirected);
2584 e->flags |= EDGE_FALLTHRU;
2585 e->src->flags |= BB_DIRTY;
2586 return e;
2587 }
2588 /* In case we are redirecting fallthru edge to the branch edge
2589 of conditional jump, remove it. */
2590 if (EDGE_COUNT (src->succs) == 2)
2591 {
2592 /* Find the edge that is different from E. */
2593 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
2594
2595 if (s->dest == dest
2596 && any_condjump_p (BB_END (src))
2597 && onlyjump_p (BB_END (src)))
2598 delete_insn (BB_END (src));
2599 }
2600 ret = redirect_edge_succ_nodup (e, dest);
2601 if (dump_file)
2602 fprintf (dump_file, "Fallthru edge %i->%i redirected to %i\n",
2603 e->src->index, e->dest->index, dest->index);
2604 }
2605 else
2606 ret = redirect_branch_edge (e, dest);
2607
2608 /* We don't want simplejumps in the insn stream during cfglayout. */
2609 gcc_assert (!simplejump_p (BB_END (src)));
2610
2611 src->flags |= BB_DIRTY;
2612 return ret;
2613 }
2614
2615 /* Simple wrapper as we always can redirect fallthru edges. */
2616 static basic_block
2617 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
2618 {
2619 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
2620
2621 gcc_assert (redirected);
2622 return NULL;
2623 }
2624
2625 /* Same as delete_basic_block but update cfg_layout structures. */
2626
2627 static void
2628 cfg_layout_delete_block (basic_block bb)
2629 {
2630 rtx insn, next, prev = PREV_INSN (BB_HEAD (bb)), *to, remaints;
2631
2632 if (bb->rbi->header)
2633 {
2634 next = BB_HEAD (bb);
2635 if (prev)
2636 NEXT_INSN (prev) = bb->rbi->header;
2637 else
2638 set_first_insn (bb->rbi->header);
2639 PREV_INSN (bb->rbi->header) = prev;
2640 insn = bb->rbi->header;
2641 while (NEXT_INSN (insn))
2642 insn = NEXT_INSN (insn);
2643 NEXT_INSN (insn) = next;
2644 PREV_INSN (next) = insn;
2645 }
2646 next = NEXT_INSN (BB_END (bb));
2647 if (bb->rbi->footer)
2648 {
2649 insn = bb->rbi->footer;
2650 while (insn)
2651 {
2652 if (BARRIER_P (insn))
2653 {
2654 if (PREV_INSN (insn))
2655 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2656 else
2657 bb->rbi->footer = NEXT_INSN (insn);
2658 if (NEXT_INSN (insn))
2659 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2660 }
2661 if (LABEL_P (insn))
2662 break;
2663 insn = NEXT_INSN (insn);
2664 }
2665 if (bb->rbi->footer)
2666 {
2667 insn = BB_END (bb);
2668 NEXT_INSN (insn) = bb->rbi->footer;
2669 PREV_INSN (bb->rbi->footer) = insn;
2670 while (NEXT_INSN (insn))
2671 insn = NEXT_INSN (insn);
2672 NEXT_INSN (insn) = next;
2673 if (next)
2674 PREV_INSN (next) = insn;
2675 else
2676 set_last_insn (insn);
2677 }
2678 }
2679 if (bb->next_bb != EXIT_BLOCK_PTR)
2680 to = &bb->next_bb->rbi->header;
2681 else
2682 to = &cfg_layout_function_footer;
2683 rtl_delete_block (bb);
2684
2685 if (prev)
2686 prev = NEXT_INSN (prev);
2687 else
2688 prev = get_insns ();
2689 if (next)
2690 next = PREV_INSN (next);
2691 else
2692 next = get_last_insn ();
2693
2694 if (next && NEXT_INSN (next) != prev)
2695 {
2696 remaints = unlink_insn_chain (prev, next);
2697 insn = remaints;
2698 while (NEXT_INSN (insn))
2699 insn = NEXT_INSN (insn);
2700 NEXT_INSN (insn) = *to;
2701 if (*to)
2702 PREV_INSN (*to) = insn;
2703 *to = remaints;
2704 }
2705 }
2706
2707 /* Return true when blocks A and B can be safely merged. */
2708 static bool
2709 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
2710 {
2711 /* If we are partitioning hot/cold basic blocks, we don't want to
2712 mess up unconditional or indirect jumps that cross between hot
2713 and cold sections.
2714
2715 Basic block partitioning may result in some jumps that appear to
2716 be optimizable (or blocks that appear to be mergeable), but which really
2717 must be left untouched (they are required to make it safely across
2718 partition boundaries). See the comments at the top of
2719 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2720
2721 if (flag_reorder_blocks_and_partition
2722 && (find_reg_note (BB_END (a), REG_CROSSING_JUMP, NULL_RTX)
2723 || find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
2724 || BB_PARTITION (a) != BB_PARTITION (b)))
2725 return false;
2726
2727 /* There must be exactly one edge in between the blocks. */
2728 return (EDGE_COUNT (a->succs) == 1
2729 && EDGE_SUCC (a, 0)->dest == b
2730 && EDGE_COUNT (b->preds) == 1
2731 && a != b
2732 /* Must be simple edge. */
2733 && !(EDGE_SUCC (a, 0)->flags & EDGE_COMPLEX)
2734 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
2735 /* If the jump insn has side effects,
2736 we can't kill the edge. */
2737 && (!JUMP_P (BB_END (a))
2738 || (reload_completed
2739 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
2740 }
2741
2742 /* Merge block A and B, abort when it is not possible. */
2743 static void
2744 cfg_layout_merge_blocks (basic_block a, basic_block b)
2745 {
2746 #ifdef ENABLE_CHECKING
2747 gcc_assert (cfg_layout_can_merge_blocks_p (a, b));
2748 #endif
2749
2750 /* If there was a CODE_LABEL beginning B, delete it. */
2751 if (LABEL_P (BB_HEAD (b)))
2752 delete_insn (BB_HEAD (b));
2753
2754 /* We should have fallthru edge in a, or we can do dummy redirection to get
2755 it cleaned up. */
2756 if (JUMP_P (BB_END (a)))
2757 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
2758 gcc_assert (!JUMP_P (BB_END (a)));
2759
2760 /* Possible line number notes should appear in between. */
2761 if (b->rbi->header)
2762 {
2763 rtx first = BB_END (a), last;
2764
2765 last = emit_insn_after_noloc (b->rbi->header, BB_END (a));
2766 delete_insn_chain (NEXT_INSN (first), last);
2767 b->rbi->header = NULL;
2768 }
2769
2770 /* In the case basic blocks are not adjacent, move them around. */
2771 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
2772 {
2773 rtx first = unlink_insn_chain (BB_HEAD (b), BB_END (b));
2774
2775 emit_insn_after_noloc (first, BB_END (a));
2776 /* Skip possible DELETED_LABEL insn. */
2777 if (!NOTE_INSN_BASIC_BLOCK_P (first))
2778 first = NEXT_INSN (first);
2779 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (first));
2780 BB_HEAD (b) = NULL;
2781 delete_insn (first);
2782 }
2783 /* Otherwise just re-associate the instructions. */
2784 else
2785 {
2786 rtx insn;
2787
2788 for (insn = BB_HEAD (b);
2789 insn != NEXT_INSN (BB_END (b));
2790 insn = NEXT_INSN (insn))
2791 set_block_for_insn (insn, a);
2792 insn = BB_HEAD (b);
2793 /* Skip possible DELETED_LABEL insn. */
2794 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
2795 insn = NEXT_INSN (insn);
2796 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
2797 BB_HEAD (b) = NULL;
2798 BB_END (a) = BB_END (b);
2799 delete_insn (insn);
2800 }
2801
2802 /* Possible tablejumps and barriers should appear after the block. */
2803 if (b->rbi->footer)
2804 {
2805 if (!a->rbi->footer)
2806 a->rbi->footer = b->rbi->footer;
2807 else
2808 {
2809 rtx last = a->rbi->footer;
2810
2811 while (NEXT_INSN (last))
2812 last = NEXT_INSN (last);
2813 NEXT_INSN (last) = b->rbi->footer;
2814 PREV_INSN (b->rbi->footer) = last;
2815 }
2816 b->rbi->footer = NULL;
2817 }
2818
2819 if (dump_file)
2820 fprintf (dump_file, "Merged blocks %d and %d.\n",
2821 a->index, b->index);
2822 }
2823
2824 /* Split edge E. */
2825
2826 static basic_block
2827 cfg_layout_split_edge (edge e)
2828 {
2829 edge new_e;
2830 basic_block new_bb =
2831 create_basic_block (e->src != ENTRY_BLOCK_PTR
2832 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
2833 NULL_RTX, e->src);
2834
2835 /* ??? This info is likely going to be out of date very soon, but we must
2836 create it to avoid getting an ICE later. */
2837 if (e->dest->global_live_at_start)
2838 {
2839 new_bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
2840 new_bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
2841 COPY_REG_SET (new_bb->global_live_at_start,
2842 e->dest->global_live_at_start);
2843 COPY_REG_SET (new_bb->global_live_at_end,
2844 e->dest->global_live_at_start);
2845 }
2846
2847 new_e = make_edge (new_bb, e->dest, EDGE_FALLTHRU);
2848 redirect_edge_and_branch_force (e, new_bb);
2849
2850 return new_bb;
2851 }
2852
2853 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
2854
2855 static void
2856 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
2857 {
2858 }
2859
2860 /* Return 1 if BB ends with a call, possibly followed by some
2861 instructions that must stay with the call, 0 otherwise. */
2862
2863 static bool
2864 rtl_block_ends_with_call_p (basic_block bb)
2865 {
2866 rtx insn = BB_END (bb);
2867
2868 while (!CALL_P (insn)
2869 && insn != BB_HEAD (bb)
2870 && keep_with_call_p (insn))
2871 insn = PREV_INSN (insn);
2872 return (CALL_P (insn));
2873 }
2874
2875 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
2876
2877 static bool
2878 rtl_block_ends_with_condjump_p (basic_block bb)
2879 {
2880 return any_condjump_p (BB_END (bb));
2881 }
2882
2883 /* Return true if we need to add fake edge to exit.
2884 Helper function for rtl_flow_call_edges_add. */
2885
2886 static bool
2887 need_fake_edge_p (rtx insn)
2888 {
2889 if (!INSN_P (insn))
2890 return false;
2891
2892 if ((CALL_P (insn)
2893 && !SIBLING_CALL_P (insn)
2894 && !find_reg_note (insn, REG_NORETURN, NULL)
2895 && !find_reg_note (insn, REG_ALWAYS_RETURN, NULL)
2896 && !CONST_OR_PURE_CALL_P (insn)))
2897 return true;
2898
2899 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2900 && MEM_VOLATILE_P (PATTERN (insn)))
2901 || (GET_CODE (PATTERN (insn)) == PARALLEL
2902 && asm_noperands (insn) != -1
2903 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
2904 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2905 }
2906
2907 /* Add fake edges to the function exit for any non constant and non noreturn
2908 calls, volatile inline assembly in the bitmap of blocks specified by
2909 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
2910 that were split.
2911
2912 The goal is to expose cases in which entering a basic block does not imply
2913 that all subsequent instructions must be executed. */
2914
2915 static int
2916 rtl_flow_call_edges_add (sbitmap blocks)
2917 {
2918 int i;
2919 int blocks_split = 0;
2920 int last_bb = last_basic_block;
2921 bool check_last_block = false;
2922
2923 if (n_basic_blocks == 0)
2924 return 0;
2925
2926 if (! blocks)
2927 check_last_block = true;
2928 else
2929 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
2930
2931 /* In the last basic block, before epilogue generation, there will be
2932 a fallthru edge to EXIT. Special care is required if the last insn
2933 of the last basic block is a call because make_edge folds duplicate
2934 edges, which would result in the fallthru edge also being marked
2935 fake, which would result in the fallthru edge being removed by
2936 remove_fake_edges, which would result in an invalid CFG.
2937
2938 Moreover, we can't elide the outgoing fake edge, since the block
2939 profiler needs to take this into account in order to solve the minimal
2940 spanning tree in the case that the call doesn't return.
2941
2942 Handle this by adding a dummy instruction in a new last basic block. */
2943 if (check_last_block)
2944 {
2945 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
2946 rtx insn = BB_END (bb);
2947
2948 /* Back up past insns that must be kept in the same block as a call. */
2949 while (insn != BB_HEAD (bb)
2950 && keep_with_call_p (insn))
2951 insn = PREV_INSN (insn);
2952
2953 if (need_fake_edge_p (insn))
2954 {
2955 edge e;
2956
2957 e = find_edge (bb, EXIT_BLOCK_PTR);
2958 if (e)
2959 {
2960 insert_insn_on_edge (gen_rtx_USE (VOIDmode, const0_rtx), e);
2961 commit_edge_insertions ();
2962 }
2963 }
2964 }
2965
2966 /* Now add fake edges to the function exit for any non constant
2967 calls since there is no way that we can determine if they will
2968 return or not... */
2969
2970 for (i = 0; i < last_bb; i++)
2971 {
2972 basic_block bb = BASIC_BLOCK (i);
2973 rtx insn;
2974 rtx prev_insn;
2975
2976 if (!bb)
2977 continue;
2978
2979 if (blocks && !TEST_BIT (blocks, i))
2980 continue;
2981
2982 for (insn = BB_END (bb); ; insn = prev_insn)
2983 {
2984 prev_insn = PREV_INSN (insn);
2985 if (need_fake_edge_p (insn))
2986 {
2987 edge e;
2988 rtx split_at_insn = insn;
2989
2990 /* Don't split the block between a call and an insn that should
2991 remain in the same block as the call. */
2992 if (CALL_P (insn))
2993 while (split_at_insn != BB_END (bb)
2994 && keep_with_call_p (NEXT_INSN (split_at_insn)))
2995 split_at_insn = NEXT_INSN (split_at_insn);
2996
2997 /* The handling above of the final block before the epilogue
2998 should be enough to verify that there is no edge to the exit
2999 block in CFG already. Calling make_edge in such case would
3000 cause us to mark that edge as fake and remove it later. */
3001
3002 #ifdef ENABLE_CHECKING
3003 if (split_at_insn == BB_END (bb))
3004 {
3005 e = find_edge (bb, EXIT_BLOCK_PTR);
3006 gcc_assert (e == NULL);
3007 }
3008 #endif
3009
3010 /* Note that the following may create a new basic block
3011 and renumber the existing basic blocks. */
3012 if (split_at_insn != BB_END (bb))
3013 {
3014 e = split_block (bb, split_at_insn);
3015 if (e)
3016 blocks_split++;
3017 }
3018
3019 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
3020 }
3021
3022 if (insn == BB_HEAD (bb))
3023 break;
3024 }
3025 }
3026
3027 if (blocks_split)
3028 verify_flow_info ();
3029
3030 return blocks_split;
3031 }
3032
3033 /* Implementation of CFG manipulation for linearized RTL. */
3034 struct cfg_hooks rtl_cfg_hooks = {
3035 "rtl",
3036 rtl_verify_flow_info,
3037 rtl_dump_bb,
3038 rtl_create_basic_block,
3039 rtl_redirect_edge_and_branch,
3040 rtl_redirect_edge_and_branch_force,
3041 rtl_delete_block,
3042 rtl_split_block,
3043 rtl_move_block_after,
3044 rtl_can_merge_blocks, /* can_merge_blocks_p */
3045 rtl_merge_blocks,
3046 rtl_predict_edge,
3047 rtl_predicted_by_p,
3048 NULL, /* can_duplicate_block_p */
3049 NULL, /* duplicate_block */
3050 rtl_split_edge,
3051 rtl_make_forwarder_block,
3052 rtl_tidy_fallthru_edge,
3053 rtl_block_ends_with_call_p,
3054 rtl_block_ends_with_condjump_p,
3055 rtl_flow_call_edges_add,
3056 NULL, /* execute_on_growing_pred */
3057 NULL /* execute_on_shrinking_pred */
3058 };
3059
3060 /* Implementation of CFG manipulation for cfg layout RTL, where
3061 basic block connected via fallthru edges does not have to be adjacent.
3062 This representation will hopefully become the default one in future
3063 version of the compiler. */
3064
3065 /* We do not want to declare these functions in a header file, since they
3066 should only be used through the cfghooks interface, and we do not want to
3067 move them here since it would require also moving quite a lot of related
3068 code. */
3069 extern bool cfg_layout_can_duplicate_bb_p (basic_block);
3070 extern basic_block cfg_layout_duplicate_bb (basic_block);
3071
3072 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
3073 "cfglayout mode",
3074 rtl_verify_flow_info_1,
3075 rtl_dump_bb,
3076 cfg_layout_create_basic_block,
3077 cfg_layout_redirect_edge_and_branch,
3078 cfg_layout_redirect_edge_and_branch_force,
3079 cfg_layout_delete_block,
3080 cfg_layout_split_block,
3081 rtl_move_block_after,
3082 cfg_layout_can_merge_blocks_p,
3083 cfg_layout_merge_blocks,
3084 rtl_predict_edge,
3085 rtl_predicted_by_p,
3086 cfg_layout_can_duplicate_bb_p,
3087 cfg_layout_duplicate_bb,
3088 cfg_layout_split_edge,
3089 rtl_make_forwarder_block,
3090 NULL,
3091 rtl_block_ends_with_call_p,
3092 rtl_block_ends_with_condjump_p,
3093 rtl_flow_call_edges_add,
3094 NULL, /* execute_on_growing_pred */
3095 NULL /* execute_on_shrinking_pred */
3096 };
3097