]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cfgrtl.c
ee98660d00fad3b0f912bddc2536419e16e8f8e6
[thirdparty/gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains low level functions to manipulate the CFG and analyze it
21 that are aware of the RTL intermediate language.
22
23 Available functionality:
24 - Basic CFG/RTL manipulation API documented in cfghooks.h
25 - CFG-aware instruction chain manipulation
26 delete_insn, delete_insn_chain
27 - Edge splitting and committing to edges
28 insert_insn_on_edge, commit_edge_insertions
29 - CFG updating after insn simplification
30 purge_dead_edges, purge_all_dead_edges
31 - CFG fixing after coarse manipulation
32 fixup_abnormal_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "tm.h"
44 #include "tree.h"
45 #include "hard-reg-set.h"
46 #include "basic-block.h"
47 #include "bb-reorder.h"
48 #include "regs.h"
49 #include "flags.h"
50 #include "function.h"
51 #include "except.h"
52 #include "rtl-error.h"
53 #include "tm_p.h"
54 #include "obstack.h"
55 #include "insn-attr.h"
56 #include "insn-config.h"
57 #include "expr.h"
58 #include "target.h"
59 #include "common/common-target.h"
60 #include "cfgloop.h"
61 #include "ggc.h"
62 #include "tree-pass.h"
63 #include "df.h"
64
65 /* Holds the interesting leading and trailing notes for the function.
66 Only applicable if the CFG is in cfglayout mode. */
67 static GTY(()) rtx cfg_layout_function_footer;
68 static GTY(()) rtx cfg_layout_function_header;
69
70 static rtx_insn *skip_insns_after_block (basic_block);
71 static void record_effective_endpoints (void);
72 static rtx label_for_bb (basic_block);
73 static void fixup_reorder_chain (void);
74
75 void verify_insn_chain (void);
76 static void fixup_fallthru_exit_predecessor (void);
77 static int can_delete_note_p (const rtx_note *);
78 static int can_delete_label_p (const rtx_code_label *);
79 static basic_block rtl_split_edge (edge);
80 static bool rtl_move_block_after (basic_block, basic_block);
81 static int rtl_verify_flow_info (void);
82 static basic_block cfg_layout_split_block (basic_block, void *);
83 static edge cfg_layout_redirect_edge_and_branch (edge, basic_block);
84 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
85 static void cfg_layout_delete_block (basic_block);
86 static void rtl_delete_block (basic_block);
87 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
88 static edge rtl_redirect_edge_and_branch (edge, basic_block);
89 static basic_block rtl_split_block (basic_block, void *);
90 static void rtl_dump_bb (FILE *, basic_block, int, int);
91 static int rtl_verify_flow_info_1 (void);
92 static void rtl_make_forwarder_block (edge);
93 \f
94 /* Return true if NOTE is not one of the ones that must be kept paired,
95 so that we may simply delete it. */
96
97 static int
98 can_delete_note_p (const rtx_note *note)
99 {
100 switch (NOTE_KIND (note))
101 {
102 case NOTE_INSN_DELETED:
103 case NOTE_INSN_BASIC_BLOCK:
104 case NOTE_INSN_EPILOGUE_BEG:
105 return true;
106
107 default:
108 return false;
109 }
110 }
111
112 /* True if a given label can be deleted. */
113
114 static int
115 can_delete_label_p (const rtx_code_label *label)
116 {
117 return (!LABEL_PRESERVE_P (label)
118 /* User declared labels must be preserved. */
119 && LABEL_NAME (label) == 0
120 && !in_expr_list_p (forced_labels, label));
121 }
122
123 /* Delete INSN by patching it out. */
124
125 void
126 delete_insn (rtx insn)
127 {
128 rtx note;
129 bool really_delete = true;
130
131 if (LABEL_P (insn))
132 {
133 /* Some labels can't be directly removed from the INSN chain, as they
134 might be references via variables, constant pool etc.
135 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
136 if (! can_delete_label_p (as_a <rtx_code_label *> (insn)))
137 {
138 const char *name = LABEL_NAME (insn);
139 basic_block bb = BLOCK_FOR_INSN (insn);
140 rtx_insn *bb_note = NEXT_INSN (insn);
141
142 really_delete = false;
143 PUT_CODE (insn, NOTE);
144 NOTE_KIND (insn) = NOTE_INSN_DELETED_LABEL;
145 NOTE_DELETED_LABEL_NAME (insn) = name;
146
147 /* If the note following the label starts a basic block, and the
148 label is a member of the same basic block, interchange the two. */
149 if (bb_note != NULL_RTX
150 && NOTE_INSN_BASIC_BLOCK_P (bb_note)
151 && bb != NULL
152 && bb == BLOCK_FOR_INSN (bb_note))
153 {
154 reorder_insns_nobb (insn, insn, bb_note);
155 SET_BB_HEAD (bb) = bb_note;
156 if (BB_END (bb) == bb_note)
157 SET_BB_END (bb) = insn;
158 }
159 }
160
161 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
162 }
163
164 if (really_delete)
165 {
166 /* If this insn has already been deleted, something is very wrong. */
167 gcc_assert (!INSN_DELETED_P (insn));
168 if (INSN_P (insn))
169 df_insn_delete (insn);
170 remove_insn (insn);
171 INSN_DELETED_P (insn) = 1;
172 }
173
174 /* If deleting a jump, decrement the use count of the label. Deleting
175 the label itself should happen in the normal course of block merging. */
176 if (JUMP_P (insn))
177 {
178 if (JUMP_LABEL (insn)
179 && LABEL_P (JUMP_LABEL (insn)))
180 LABEL_NUSES (JUMP_LABEL (insn))--;
181
182 /* If there are more targets, remove them too. */
183 while ((note
184 = find_reg_note (insn, REG_LABEL_TARGET, NULL_RTX)) != NULL_RTX
185 && LABEL_P (XEXP (note, 0)))
186 {
187 LABEL_NUSES (XEXP (note, 0))--;
188 remove_note (insn, note);
189 }
190 }
191
192 /* Also if deleting any insn that references a label as an operand. */
193 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX)) != NULL_RTX
194 && LABEL_P (XEXP (note, 0)))
195 {
196 LABEL_NUSES (XEXP (note, 0))--;
197 remove_note (insn, note);
198 }
199
200 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
201 {
202 rtvec vec = table->get_labels ();
203 int len = GET_NUM_ELEM (vec);
204 int i;
205
206 for (i = 0; i < len; i++)
207 {
208 rtx label = XEXP (RTVEC_ELT (vec, i), 0);
209
210 /* When deleting code in bulk (e.g. removing many unreachable
211 blocks) we can delete a label that's a target of the vector
212 before deleting the vector itself. */
213 if (!NOTE_P (label))
214 LABEL_NUSES (label)--;
215 }
216 }
217 }
218
219 /* Like delete_insn but also purge dead edges from BB. */
220
221 void
222 delete_insn_and_edges (rtx_insn *insn)
223 {
224 bool purge = false;
225
226 if (INSN_P (insn)
227 && BLOCK_FOR_INSN (insn)
228 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
229 purge = true;
230 delete_insn (insn);
231 if (purge)
232 purge_dead_edges (BLOCK_FOR_INSN (insn));
233 }
234
235 /* Unlink a chain of insns between START and FINISH, leaving notes
236 that must be paired. If CLEAR_BB is true, we set bb field for
237 insns that cannot be removed to NULL. */
238
239 void
240 delete_insn_chain (rtx start, rtx finish, bool clear_bb)
241 {
242 rtx_insn *prev, *current;
243
244 /* Unchain the insns one by one. It would be quicker to delete all of these
245 with a single unchaining, rather than one at a time, but we need to keep
246 the NOTE's. */
247 current = safe_as_a <rtx_insn *> (finish);
248 while (1)
249 {
250 prev = PREV_INSN (current);
251 if (NOTE_P (current) && !can_delete_note_p (as_a <rtx_note *> (current)))
252 ;
253 else
254 delete_insn (current);
255
256 if (clear_bb && !INSN_DELETED_P (current))
257 set_block_for_insn (current, NULL);
258
259 if (current == start)
260 break;
261 current = prev;
262 }
263 }
264 \f
265 /* Create a new basic block consisting of the instructions between HEAD and END
266 inclusive. This function is designed to allow fast BB construction - reuses
267 the note and basic block struct in BB_NOTE, if any and do not grow
268 BASIC_BLOCK chain and should be used directly only by CFG construction code.
269 END can be NULL in to create new empty basic block before HEAD. Both END
270 and HEAD can be NULL to create basic block at the end of INSN chain.
271 AFTER is the basic block we should be put after. */
272
273 basic_block
274 create_basic_block_structure (rtx head, rtx end, rtx_note *bb_note,
275 basic_block after)
276 {
277 basic_block bb;
278
279 if (bb_note
280 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
281 && bb->aux == NULL)
282 {
283 /* If we found an existing note, thread it back onto the chain. */
284
285 rtx after;
286
287 if (LABEL_P (head))
288 after = head;
289 else
290 {
291 after = PREV_INSN (head);
292 head = bb_note;
293 }
294
295 if (after != bb_note && NEXT_INSN (after) != bb_note)
296 reorder_insns_nobb (bb_note, bb_note, after);
297 }
298 else
299 {
300 /* Otherwise we must create a note and a basic block structure. */
301
302 bb = alloc_block ();
303
304 init_rtl_bb_info (bb);
305 if (!head && !end)
306 head = end = bb_note
307 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
308 else if (LABEL_P (head) && end)
309 {
310 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
311 if (head == end)
312 end = bb_note;
313 }
314 else
315 {
316 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
317 head = bb_note;
318 if (!end)
319 end = head;
320 }
321
322 NOTE_BASIC_BLOCK (bb_note) = bb;
323 }
324
325 /* Always include the bb note in the block. */
326 if (NEXT_INSN (end) == bb_note)
327 end = bb_note;
328
329 SET_BB_HEAD (bb) = head;
330 SET_BB_END (bb) = end;
331 bb->index = last_basic_block_for_fn (cfun)++;
332 bb->flags = BB_NEW | BB_RTL;
333 link_block (bb, after);
334 SET_BASIC_BLOCK_FOR_FN (cfun, bb->index, bb);
335 df_bb_refs_record (bb->index, false);
336 update_bb_for_insn (bb);
337 BB_SET_PARTITION (bb, BB_UNPARTITIONED);
338
339 /* Tag the block so that we know it has been used when considering
340 other basic block notes. */
341 bb->aux = bb;
342
343 return bb;
344 }
345
346 /* Create new basic block consisting of instructions in between HEAD and END
347 and place it to the BB chain after block AFTER. END can be NULL to
348 create a new empty basic block before HEAD. Both END and HEAD can be
349 NULL to create basic block at the end of INSN chain. */
350
351 static basic_block
352 rtl_create_basic_block (void *headp, void *endp, basic_block after)
353 {
354 rtx head = (rtx) headp, end = (rtx) endp;
355 basic_block bb;
356
357 /* Grow the basic block array if needed. */
358 if ((size_t) last_basic_block_for_fn (cfun)
359 >= basic_block_info_for_fn (cfun)->length ())
360 {
361 size_t new_size =
362 (last_basic_block_for_fn (cfun)
363 + (last_basic_block_for_fn (cfun) + 3) / 4);
364 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
365 }
366
367 n_basic_blocks_for_fn (cfun)++;
368
369 bb = create_basic_block_structure (head, end, NULL, after);
370 bb->aux = NULL;
371 return bb;
372 }
373
374 static basic_block
375 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
376 {
377 basic_block newbb = rtl_create_basic_block (head, end, after);
378
379 return newbb;
380 }
381 \f
382 /* Delete the insns in a (non-live) block. We physically delete every
383 non-deleted-note insn, and update the flow graph appropriately.
384
385 Return nonzero if we deleted an exception handler. */
386
387 /* ??? Preserving all such notes strikes me as wrong. It would be nice
388 to post-process the stream to remove empty blocks, loops, ranges, etc. */
389
390 static void
391 rtl_delete_block (basic_block b)
392 {
393 rtx_insn *insn, *end;
394
395 /* If the head of this block is a CODE_LABEL, then it might be the
396 label for an exception handler which can't be reached. We need
397 to remove the label from the exception_handler_label list. */
398 insn = BB_HEAD (b);
399
400 end = get_last_bb_insn (b);
401
402 /* Selectively delete the entire chain. */
403 SET_BB_HEAD (b) = NULL;
404 delete_insn_chain (insn, end, true);
405
406
407 if (dump_file)
408 fprintf (dump_file, "deleting block %d\n", b->index);
409 df_bb_delete (b->index);
410 }
411 \f
412 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
413
414 void
415 compute_bb_for_insn (void)
416 {
417 basic_block bb;
418
419 FOR_EACH_BB_FN (bb, cfun)
420 {
421 rtx_insn *end = BB_END (bb);
422 rtx_insn *insn;
423
424 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
425 {
426 BLOCK_FOR_INSN (insn) = bb;
427 if (insn == end)
428 break;
429 }
430 }
431 }
432
433 /* Release the basic_block_for_insn array. */
434
435 unsigned int
436 free_bb_for_insn (void)
437 {
438 rtx_insn *insn;
439 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
440 if (!BARRIER_P (insn))
441 BLOCK_FOR_INSN (insn) = NULL;
442 return 0;
443 }
444
445 namespace {
446
447 const pass_data pass_data_free_cfg =
448 {
449 RTL_PASS, /* type */
450 "*free_cfg", /* name */
451 OPTGROUP_NONE, /* optinfo_flags */
452 TV_NONE, /* tv_id */
453 0, /* properties_required */
454 0, /* properties_provided */
455 PROP_cfg, /* properties_destroyed */
456 0, /* todo_flags_start */
457 0, /* todo_flags_finish */
458 };
459
460 class pass_free_cfg : public rtl_opt_pass
461 {
462 public:
463 pass_free_cfg (gcc::context *ctxt)
464 : rtl_opt_pass (pass_data_free_cfg, ctxt)
465 {}
466
467 /* opt_pass methods: */
468 virtual unsigned int execute (function *);
469
470 }; // class pass_free_cfg
471
472 unsigned int
473 pass_free_cfg::execute (function *)
474 {
475 #ifdef DELAY_SLOTS
476 /* The resource.c machinery uses DF but the CFG isn't guaranteed to be
477 valid at that point so it would be too late to call df_analyze. */
478 if (optimize > 0 && flag_delayed_branch)
479 {
480 df_note_add_problem ();
481 df_analyze ();
482 }
483 #endif
484
485 if (crtl->has_bb_partition)
486 insert_section_boundary_note ();
487
488 free_bb_for_insn ();
489 return 0;
490 }
491
492 } // anon namespace
493
494 rtl_opt_pass *
495 make_pass_free_cfg (gcc::context *ctxt)
496 {
497 return new pass_free_cfg (ctxt);
498 }
499
500 /* Return RTX to emit after when we want to emit code on the entry of function. */
501 rtx_insn *
502 entry_of_function (void)
503 {
504 return (n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS ?
505 BB_HEAD (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) : get_insns ());
506 }
507
508 /* Emit INSN at the entry point of the function, ensuring that it is only
509 executed once per function. */
510 void
511 emit_insn_at_entry (rtx insn)
512 {
513 edge_iterator ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
514 edge e = ei_safe_edge (ei);
515 gcc_assert (e->flags & EDGE_FALLTHRU);
516
517 insert_insn_on_edge (insn, e);
518 commit_edge_insertions ();
519 }
520
521 /* Update BLOCK_FOR_INSN of insns between BEGIN and END
522 (or BARRIER if found) and notify df of the bb change.
523 The insn chain range is inclusive
524 (i.e. both BEGIN and END will be updated. */
525
526 static void
527 update_bb_for_insn_chain (rtx_insn *begin, rtx_insn *end, basic_block bb)
528 {
529 rtx_insn *insn;
530
531 end = NEXT_INSN (end);
532 for (insn = begin; insn != end; insn = NEXT_INSN (insn))
533 if (!BARRIER_P (insn))
534 df_insn_change_bb (insn, bb);
535 }
536
537 /* Update BLOCK_FOR_INSN of insns in BB to BB,
538 and notify df of the change. */
539
540 void
541 update_bb_for_insn (basic_block bb)
542 {
543 update_bb_for_insn_chain (BB_HEAD (bb), BB_END (bb), bb);
544 }
545
546 \f
547 /* Like active_insn_p, except keep the return value clobber around
548 even after reload. */
549
550 static bool
551 flow_active_insn_p (const rtx_insn *insn)
552 {
553 if (active_insn_p (insn))
554 return true;
555
556 /* A clobber of the function return value exists for buggy
557 programs that fail to return a value. Its effect is to
558 keep the return value from being live across the entire
559 function. If we allow it to be skipped, we introduce the
560 possibility for register lifetime confusion. */
561 if (GET_CODE (PATTERN (insn)) == CLOBBER
562 && REG_P (XEXP (PATTERN (insn), 0))
563 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
564 return true;
565
566 return false;
567 }
568
569 /* Return true if the block has no effect and only forwards control flow to
570 its single destination. */
571
572 bool
573 contains_no_active_insn_p (const_basic_block bb)
574 {
575 rtx_insn *insn;
576
577 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
578 || !single_succ_p (bb))
579 return false;
580
581 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
582 if (INSN_P (insn) && flow_active_insn_p (insn))
583 return false;
584
585 return (!INSN_P (insn)
586 || (JUMP_P (insn) && simplejump_p (insn))
587 || !flow_active_insn_p (insn));
588 }
589
590 /* Likewise, but protect loop latches, headers and preheaders. */
591 /* FIXME: Make this a cfg hook. */
592
593 bool
594 forwarder_block_p (const_basic_block bb)
595 {
596 if (!contains_no_active_insn_p (bb))
597 return false;
598
599 /* Protect loop latches, headers and preheaders. */
600 if (current_loops)
601 {
602 basic_block dest;
603 if (bb->loop_father->header == bb)
604 return false;
605 dest = EDGE_SUCC (bb, 0)->dest;
606 if (dest->loop_father->header == dest)
607 return false;
608 }
609
610 return true;
611 }
612
613 /* Return nonzero if we can reach target from src by falling through. */
614 /* FIXME: Make this a cfg hook, the result is only valid in cfgrtl mode. */
615
616 bool
617 can_fallthru (basic_block src, basic_block target)
618 {
619 rtx_insn *insn = BB_END (src);
620 rtx_insn *insn2;
621 edge e;
622 edge_iterator ei;
623
624 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
625 return true;
626 if (src->next_bb != target)
627 return false;
628
629 /* ??? Later we may add code to move jump tables offline. */
630 if (tablejump_p (insn, NULL, NULL))
631 return false;
632
633 FOR_EACH_EDGE (e, ei, src->succs)
634 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
635 && e->flags & EDGE_FALLTHRU)
636 return false;
637
638 insn2 = BB_HEAD (target);
639 if (!active_insn_p (insn2))
640 insn2 = next_active_insn (insn2);
641
642 return next_active_insn (insn) == insn2;
643 }
644
645 /* Return nonzero if we could reach target from src by falling through,
646 if the target was made adjacent. If we already have a fall-through
647 edge to the exit block, we can't do that. */
648 static bool
649 could_fall_through (basic_block src, basic_block target)
650 {
651 edge e;
652 edge_iterator ei;
653
654 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
655 return true;
656 FOR_EACH_EDGE (e, ei, src->succs)
657 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
658 && e->flags & EDGE_FALLTHRU)
659 return 0;
660 return true;
661 }
662 \f
663 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
664 rtx_note *
665 bb_note (basic_block bb)
666 {
667 rtx_insn *note;
668
669 note = BB_HEAD (bb);
670 if (LABEL_P (note))
671 note = NEXT_INSN (note);
672
673 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
674 return as_a <rtx_note *> (note);
675 }
676
677 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
678 note associated with the BLOCK. */
679
680 static rtx_insn *
681 first_insn_after_basic_block_note (basic_block block)
682 {
683 rtx_insn *insn;
684
685 /* Get the first instruction in the block. */
686 insn = BB_HEAD (block);
687
688 if (insn == NULL_RTX)
689 return NULL;
690 if (LABEL_P (insn))
691 insn = NEXT_INSN (insn);
692 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
693
694 return NEXT_INSN (insn);
695 }
696
697 /* Creates a new basic block just after basic block B by splitting
698 everything after specified instruction I. */
699
700 static basic_block
701 rtl_split_block (basic_block bb, void *insnp)
702 {
703 basic_block new_bb;
704 rtx_insn *insn = (rtx_insn *) insnp;
705 edge e;
706 edge_iterator ei;
707
708 if (!insn)
709 {
710 insn = first_insn_after_basic_block_note (bb);
711
712 if (insn)
713 {
714 rtx_insn *next = insn;
715
716 insn = PREV_INSN (insn);
717
718 /* If the block contains only debug insns, insn would have
719 been NULL in a non-debug compilation, and then we'd end
720 up emitting a DELETED note. For -fcompare-debug
721 stability, emit the note too. */
722 if (insn != BB_END (bb)
723 && DEBUG_INSN_P (next)
724 && DEBUG_INSN_P (BB_END (bb)))
725 {
726 while (next != BB_END (bb) && DEBUG_INSN_P (next))
727 next = NEXT_INSN (next);
728
729 if (next == BB_END (bb))
730 emit_note_after (NOTE_INSN_DELETED, next);
731 }
732 }
733 else
734 insn = get_last_insn ();
735 }
736
737 /* We probably should check type of the insn so that we do not create
738 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
739 bother. */
740 if (insn == BB_END (bb))
741 emit_note_after (NOTE_INSN_DELETED, insn);
742
743 /* Create the new basic block. */
744 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
745 BB_COPY_PARTITION (new_bb, bb);
746 SET_BB_END (bb) = insn;
747
748 /* Redirect the outgoing edges. */
749 new_bb->succs = bb->succs;
750 bb->succs = NULL;
751 FOR_EACH_EDGE (e, ei, new_bb->succs)
752 e->src = new_bb;
753
754 /* The new block starts off being dirty. */
755 df_set_bb_dirty (bb);
756 return new_bb;
757 }
758
759 /* Return true if the single edge between blocks A and B is the only place
760 in RTL which holds some unique locus. */
761
762 static bool
763 unique_locus_on_edge_between_p (basic_block a, basic_block b)
764 {
765 const location_t goto_locus = EDGE_SUCC (a, 0)->goto_locus;
766 rtx_insn *insn, *end;
767
768 if (LOCATION_LOCUS (goto_locus) == UNKNOWN_LOCATION)
769 return false;
770
771 /* First scan block A backward. */
772 insn = BB_END (a);
773 end = PREV_INSN (BB_HEAD (a));
774 while (insn != end && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
775 insn = PREV_INSN (insn);
776
777 if (insn != end && INSN_LOCATION (insn) == goto_locus)
778 return false;
779
780 /* Then scan block B forward. */
781 insn = BB_HEAD (b);
782 if (insn)
783 {
784 end = NEXT_INSN (BB_END (b));
785 while (insn != end && !NONDEBUG_INSN_P (insn))
786 insn = NEXT_INSN (insn);
787
788 if (insn != end && INSN_HAS_LOCATION (insn)
789 && INSN_LOCATION (insn) == goto_locus)
790 return false;
791 }
792
793 return true;
794 }
795
796 /* If the single edge between blocks A and B is the only place in RTL which
797 holds some unique locus, emit a nop with that locus between the blocks. */
798
799 static void
800 emit_nop_for_unique_locus_between (basic_block a, basic_block b)
801 {
802 if (!unique_locus_on_edge_between_p (a, b))
803 return;
804
805 SET_BB_END (a) = emit_insn_after_noloc (gen_nop (), BB_END (a), a);
806 INSN_LOCATION (BB_END (a)) = EDGE_SUCC (a, 0)->goto_locus;
807 }
808
809 /* Blocks A and B are to be merged into a single block A. The insns
810 are already contiguous. */
811
812 static void
813 rtl_merge_blocks (basic_block a, basic_block b)
814 {
815 rtx_insn *b_head = BB_HEAD (b), *b_end = BB_END (b), *a_end = BB_END (a);
816 rtx_insn *del_first = NULL, *del_last = NULL;
817 rtx_insn *b_debug_start = b_end, *b_debug_end = b_end;
818 bool forwarder_p = (b->flags & BB_FORWARDER_BLOCK) != 0;
819 int b_empty = 0;
820
821 if (dump_file)
822 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
823 a->index);
824
825 while (DEBUG_INSN_P (b_end))
826 b_end = PREV_INSN (b_debug_start = b_end);
827
828 /* If there was a CODE_LABEL beginning B, delete it. */
829 if (LABEL_P (b_head))
830 {
831 /* Detect basic blocks with nothing but a label. This can happen
832 in particular at the end of a function. */
833 if (b_head == b_end)
834 b_empty = 1;
835
836 del_first = del_last = b_head;
837 b_head = NEXT_INSN (b_head);
838 }
839
840 /* Delete the basic block note and handle blocks containing just that
841 note. */
842 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
843 {
844 if (b_head == b_end)
845 b_empty = 1;
846 if (! del_last)
847 del_first = b_head;
848
849 del_last = b_head;
850 b_head = NEXT_INSN (b_head);
851 }
852
853 /* If there was a jump out of A, delete it. */
854 if (JUMP_P (a_end))
855 {
856 rtx_insn *prev;
857
858 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
859 if (!NOTE_P (prev)
860 || NOTE_INSN_BASIC_BLOCK_P (prev)
861 || prev == BB_HEAD (a))
862 break;
863
864 del_first = a_end;
865
866 #ifdef HAVE_cc0
867 /* If this was a conditional jump, we need to also delete
868 the insn that set cc0. */
869 if (only_sets_cc0_p (prev))
870 {
871 rtx_insn *tmp = prev;
872
873 prev = prev_nonnote_insn (prev);
874 if (!prev)
875 prev = BB_HEAD (a);
876 del_first = tmp;
877 }
878 #endif
879
880 a_end = PREV_INSN (del_first);
881 }
882 else if (BARRIER_P (NEXT_INSN (a_end)))
883 del_first = NEXT_INSN (a_end);
884
885 /* Delete everything marked above as well as crap that might be
886 hanging out between the two blocks. */
887 SET_BB_END (a) = a_end;
888 SET_BB_HEAD (b) = b_empty ? NULL_RTX : b_head;
889 delete_insn_chain (del_first, del_last, true);
890
891 /* When not optimizing and the edge is the only place in RTL which holds
892 some unique locus, emit a nop with that locus in between. */
893 if (!optimize)
894 {
895 emit_nop_for_unique_locus_between (a, b);
896 a_end = BB_END (a);
897 }
898
899 /* Reassociate the insns of B with A. */
900 if (!b_empty)
901 {
902 update_bb_for_insn_chain (a_end, b_debug_end, a);
903
904 SET_BB_END (a) = b_debug_end;
905 SET_BB_HEAD (b) = NULL_RTX;
906 }
907 else if (b_end != b_debug_end)
908 {
909 /* Move any deleted labels and other notes between the end of A
910 and the debug insns that make up B after the debug insns,
911 bringing the debug insns into A while keeping the notes after
912 the end of A. */
913 if (NEXT_INSN (a_end) != b_debug_start)
914 reorder_insns_nobb (NEXT_INSN (a_end), PREV_INSN (b_debug_start),
915 b_debug_end);
916 update_bb_for_insn_chain (b_debug_start, b_debug_end, a);
917 SET_BB_END (a) = b_debug_end;
918 }
919
920 df_bb_delete (b->index);
921
922 /* If B was a forwarder block, propagate the locus on the edge. */
923 if (forwarder_p
924 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION)
925 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
926
927 if (dump_file)
928 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
929 }
930
931
932 /* Return true when block A and B can be merged. */
933
934 static bool
935 rtl_can_merge_blocks (basic_block a, basic_block b)
936 {
937 /* If we are partitioning hot/cold basic blocks, we don't want to
938 mess up unconditional or indirect jumps that cross between hot
939 and cold sections.
940
941 Basic block partitioning may result in some jumps that appear to
942 be optimizable (or blocks that appear to be mergeable), but which really
943 must be left untouched (they are required to make it safely across
944 partition boundaries). See the comments at the top of
945 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
946
947 if (BB_PARTITION (a) != BB_PARTITION (b))
948 return false;
949
950 /* Protect the loop latches. */
951 if (current_loops && b->loop_father->latch == b)
952 return false;
953
954 /* There must be exactly one edge in between the blocks. */
955 return (single_succ_p (a)
956 && single_succ (a) == b
957 && single_pred_p (b)
958 && a != b
959 /* Must be simple edge. */
960 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
961 && a->next_bb == b
962 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
963 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
964 /* If the jump insn has side effects,
965 we can't kill the edge. */
966 && (!JUMP_P (BB_END (a))
967 || (reload_completed
968 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
969 }
970 \f
971 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
972 exist. */
973
974 rtx
975 block_label (basic_block block)
976 {
977 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
978 return NULL_RTX;
979
980 if (!LABEL_P (BB_HEAD (block)))
981 {
982 SET_BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
983 }
984
985 return BB_HEAD (block);
986 }
987
988 /* Attempt to perform edge redirection by replacing possibly complex jump
989 instruction by unconditional jump or removing jump completely. This can
990 apply only if all edges now point to the same block. The parameters and
991 return values are equivalent to redirect_edge_and_branch. */
992
993 edge
994 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
995 {
996 basic_block src = e->src;
997 rtx_insn *insn = BB_END (src), *kill_from;
998 rtx set;
999 int fallthru = 0;
1000
1001 /* If we are partitioning hot/cold basic blocks, we don't want to
1002 mess up unconditional or indirect jumps that cross between hot
1003 and cold sections.
1004
1005 Basic block partitioning may result in some jumps that appear to
1006 be optimizable (or blocks that appear to be mergeable), but which really
1007 must be left untouched (they are required to make it safely across
1008 partition boundaries). See the comments at the top of
1009 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1010
1011 if (BB_PARTITION (src) != BB_PARTITION (target))
1012 return NULL;
1013
1014 /* We can replace or remove a complex jump only when we have exactly
1015 two edges. Also, if we have exactly one outgoing edge, we can
1016 redirect that. */
1017 if (EDGE_COUNT (src->succs) >= 3
1018 /* Verify that all targets will be TARGET. Specifically, the
1019 edge that is not E must also go to TARGET. */
1020 || (EDGE_COUNT (src->succs) == 2
1021 && EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target))
1022 return NULL;
1023
1024 if (!onlyjump_p (insn))
1025 return NULL;
1026 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
1027 return NULL;
1028
1029 /* Avoid removing branch with side effects. */
1030 set = single_set (insn);
1031 if (!set || side_effects_p (set))
1032 return NULL;
1033
1034 /* In case we zap a conditional jump, we'll need to kill
1035 the cc0 setter too. */
1036 kill_from = insn;
1037 #ifdef HAVE_cc0
1038 if (reg_mentioned_p (cc0_rtx, PATTERN (insn))
1039 && only_sets_cc0_p (PREV_INSN (insn)))
1040 kill_from = PREV_INSN (insn);
1041 #endif
1042
1043 /* See if we can create the fallthru edge. */
1044 if (in_cfglayout || can_fallthru (src, target))
1045 {
1046 if (dump_file)
1047 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
1048 fallthru = 1;
1049
1050 /* Selectively unlink whole insn chain. */
1051 if (in_cfglayout)
1052 {
1053 rtx_insn *insn = BB_FOOTER (src);
1054
1055 delete_insn_chain (kill_from, BB_END (src), false);
1056
1057 /* Remove barriers but keep jumptables. */
1058 while (insn)
1059 {
1060 if (BARRIER_P (insn))
1061 {
1062 if (PREV_INSN (insn))
1063 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1064 else
1065 BB_FOOTER (src) = NEXT_INSN (insn);
1066 if (NEXT_INSN (insn))
1067 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1068 }
1069 if (LABEL_P (insn))
1070 break;
1071 insn = NEXT_INSN (insn);
1072 }
1073 }
1074 else
1075 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)),
1076 false);
1077 }
1078
1079 /* If this already is simplejump, redirect it. */
1080 else if (simplejump_p (insn))
1081 {
1082 if (e->dest == target)
1083 return NULL;
1084 if (dump_file)
1085 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
1086 INSN_UID (insn), e->dest->index, target->index);
1087 if (!redirect_jump (insn, block_label (target), 0))
1088 {
1089 gcc_assert (target == EXIT_BLOCK_PTR_FOR_FN (cfun));
1090 return NULL;
1091 }
1092 }
1093
1094 /* Cannot do anything for target exit block. */
1095 else if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1096 return NULL;
1097
1098 /* Or replace possibly complicated jump insn by simple jump insn. */
1099 else
1100 {
1101 rtx target_label = block_label (target);
1102 rtx_insn *barrier;
1103 rtx label;
1104 rtx_jump_table_data *table;
1105
1106 emit_jump_insn_after_noloc (gen_jump (target_label), insn);
1107 JUMP_LABEL (BB_END (src)) = target_label;
1108 LABEL_NUSES (target_label)++;
1109 if (dump_file)
1110 fprintf (dump_file, "Replacing insn %i by jump %i\n",
1111 INSN_UID (insn), INSN_UID (BB_END (src)));
1112
1113
1114 delete_insn_chain (kill_from, insn, false);
1115
1116 /* Recognize a tablejump that we are converting to a
1117 simple jump and remove its associated CODE_LABEL
1118 and ADDR_VEC or ADDR_DIFF_VEC. */
1119 if (tablejump_p (insn, &label, &table))
1120 delete_insn_chain (label, table, false);
1121
1122 barrier = next_nonnote_insn (BB_END (src));
1123 if (!barrier || !BARRIER_P (barrier))
1124 emit_barrier_after (BB_END (src));
1125 else
1126 {
1127 if (barrier != NEXT_INSN (BB_END (src)))
1128 {
1129 /* Move the jump before barrier so that the notes
1130 which originally were or were created before jump table are
1131 inside the basic block. */
1132 rtx_insn *new_insn = BB_END (src);
1133
1134 update_bb_for_insn_chain (NEXT_INSN (BB_END (src)),
1135 PREV_INSN (barrier), src);
1136
1137 SET_NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
1138 SET_PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
1139
1140 SET_NEXT_INSN (new_insn) = barrier;
1141 SET_NEXT_INSN (PREV_INSN (barrier)) = new_insn;
1142
1143 SET_PREV_INSN (new_insn) = PREV_INSN (barrier);
1144 SET_PREV_INSN (barrier) = new_insn;
1145 }
1146 }
1147 }
1148
1149 /* Keep only one edge out and set proper flags. */
1150 if (!single_succ_p (src))
1151 remove_edge (e);
1152 gcc_assert (single_succ_p (src));
1153
1154 e = single_succ_edge (src);
1155 if (fallthru)
1156 e->flags = EDGE_FALLTHRU;
1157 else
1158 e->flags = 0;
1159
1160 e->probability = REG_BR_PROB_BASE;
1161 e->count = src->count;
1162
1163 if (e->dest != target)
1164 redirect_edge_succ (e, target);
1165 return e;
1166 }
1167
1168 /* Subroutine of redirect_branch_edge that tries to patch the jump
1169 instruction INSN so that it reaches block NEW. Do this
1170 only when it originally reached block OLD. Return true if this
1171 worked or the original target wasn't OLD, return false if redirection
1172 doesn't work. */
1173
1174 static bool
1175 patch_jump_insn (rtx_insn *insn, rtx_insn *old_label, basic_block new_bb)
1176 {
1177 rtx_jump_table_data *table;
1178 rtx tmp;
1179 /* Recognize a tablejump and adjust all matching cases. */
1180 if (tablejump_p (insn, NULL, &table))
1181 {
1182 rtvec vec;
1183 int j;
1184 rtx new_label = block_label (new_bb);
1185
1186 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1187 return false;
1188 vec = table->get_labels ();
1189
1190 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1191 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
1192 {
1193 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
1194 --LABEL_NUSES (old_label);
1195 ++LABEL_NUSES (new_label);
1196 }
1197
1198 /* Handle casesi dispatch insns. */
1199 if ((tmp = single_set (insn)) != NULL
1200 && SET_DEST (tmp) == pc_rtx
1201 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1202 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
1203 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
1204 {
1205 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (Pmode,
1206 new_label);
1207 --LABEL_NUSES (old_label);
1208 ++LABEL_NUSES (new_label);
1209 }
1210 }
1211 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
1212 {
1213 int i, n = ASM_OPERANDS_LABEL_LENGTH (tmp);
1214 rtx new_label, note;
1215
1216 if (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1217 return false;
1218 new_label = block_label (new_bb);
1219
1220 for (i = 0; i < n; ++i)
1221 {
1222 rtx old_ref = ASM_OPERANDS_LABEL (tmp, i);
1223 gcc_assert (GET_CODE (old_ref) == LABEL_REF);
1224 if (XEXP (old_ref, 0) == old_label)
1225 {
1226 ASM_OPERANDS_LABEL (tmp, i)
1227 = gen_rtx_LABEL_REF (Pmode, new_label);
1228 --LABEL_NUSES (old_label);
1229 ++LABEL_NUSES (new_label);
1230 }
1231 }
1232
1233 if (JUMP_LABEL (insn) == old_label)
1234 {
1235 JUMP_LABEL (insn) = new_label;
1236 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1237 if (note)
1238 remove_note (insn, note);
1239 }
1240 else
1241 {
1242 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1243 if (note)
1244 remove_note (insn, note);
1245 if (JUMP_LABEL (insn) != new_label
1246 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1247 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1248 }
1249 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1250 != NULL_RTX)
1251 XEXP (note, 0) = new_label;
1252 }
1253 else
1254 {
1255 /* ?? We may play the games with moving the named labels from
1256 one basic block to the other in case only one computed_jump is
1257 available. */
1258 if (computed_jump_p (insn)
1259 /* A return instruction can't be redirected. */
1260 || returnjump_p (insn))
1261 return false;
1262
1263 if (!currently_expanding_to_rtl || JUMP_LABEL (insn) == old_label)
1264 {
1265 /* If the insn doesn't go where we think, we're confused. */
1266 gcc_assert (JUMP_LABEL (insn) == old_label);
1267
1268 /* If the substitution doesn't succeed, die. This can happen
1269 if the back end emitted unrecognizable instructions or if
1270 target is exit block on some arches. */
1271 if (!redirect_jump (insn, block_label (new_bb), 0))
1272 {
1273 gcc_assert (new_bb == EXIT_BLOCK_PTR_FOR_FN (cfun));
1274 return false;
1275 }
1276 }
1277 }
1278 return true;
1279 }
1280
1281
1282 /* Redirect edge representing branch of (un)conditional jump or tablejump,
1283 NULL on failure */
1284 static edge
1285 redirect_branch_edge (edge e, basic_block target)
1286 {
1287 rtx_insn *old_label = BB_HEAD (e->dest);
1288 basic_block src = e->src;
1289 rtx_insn *insn = BB_END (src);
1290
1291 /* We can only redirect non-fallthru edges of jump insn. */
1292 if (e->flags & EDGE_FALLTHRU)
1293 return NULL;
1294 else if (!JUMP_P (insn) && !currently_expanding_to_rtl)
1295 return NULL;
1296
1297 if (!currently_expanding_to_rtl)
1298 {
1299 if (!patch_jump_insn (insn, old_label, target))
1300 return NULL;
1301 }
1302 else
1303 /* When expanding this BB might actually contain multiple
1304 jumps (i.e. not yet split by find_many_sub_basic_blocks).
1305 Redirect all of those that match our label. */
1306 FOR_BB_INSNS (src, insn)
1307 if (JUMP_P (insn) && !patch_jump_insn (insn, old_label, target))
1308 return NULL;
1309
1310 if (dump_file)
1311 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
1312 e->src->index, e->dest->index, target->index);
1313
1314 if (e->dest != target)
1315 e = redirect_edge_succ_nodup (e, target);
1316
1317 return e;
1318 }
1319
1320 /* Called when edge E has been redirected to a new destination,
1321 in order to update the region crossing flag on the edge and
1322 jump. */
1323
1324 static void
1325 fixup_partition_crossing (edge e)
1326 {
1327 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun) || e->dest
1328 == EXIT_BLOCK_PTR_FOR_FN (cfun))
1329 return;
1330 /* If we redirected an existing edge, it may already be marked
1331 crossing, even though the new src is missing a reg crossing note.
1332 But make sure reg crossing note doesn't already exist before
1333 inserting. */
1334 if (BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1335 {
1336 e->flags |= EDGE_CROSSING;
1337 if (JUMP_P (BB_END (e->src))
1338 && !CROSSING_JUMP_P (BB_END (e->src)))
1339 CROSSING_JUMP_P (BB_END (e->src)) = 1;
1340 }
1341 else if (BB_PARTITION (e->src) == BB_PARTITION (e->dest))
1342 {
1343 e->flags &= ~EDGE_CROSSING;
1344 /* Remove the section crossing note from jump at end of
1345 src if it exists, and if no other successors are
1346 still crossing. */
1347 if (JUMP_P (BB_END (e->src)) && CROSSING_JUMP_P (BB_END (e->src)))
1348 {
1349 bool has_crossing_succ = false;
1350 edge e2;
1351 edge_iterator ei;
1352 FOR_EACH_EDGE (e2, ei, e->src->succs)
1353 {
1354 has_crossing_succ |= (e2->flags & EDGE_CROSSING);
1355 if (has_crossing_succ)
1356 break;
1357 }
1358 if (!has_crossing_succ)
1359 CROSSING_JUMP_P (BB_END (e->src)) = 0;
1360 }
1361 }
1362 }
1363
1364 /* Called when block BB has been reassigned to the cold partition,
1365 because it is now dominated by another cold block,
1366 to ensure that the region crossing attributes are updated. */
1367
1368 static void
1369 fixup_new_cold_bb (basic_block bb)
1370 {
1371 edge e;
1372 edge_iterator ei;
1373
1374 /* This is called when a hot bb is found to now be dominated
1375 by a cold bb and therefore needs to become cold. Therefore,
1376 its preds will no longer be region crossing. Any non-dominating
1377 preds that were previously hot would also have become cold
1378 in the caller for the same region. Any preds that were previously
1379 region-crossing will be adjusted in fixup_partition_crossing. */
1380 FOR_EACH_EDGE (e, ei, bb->preds)
1381 {
1382 fixup_partition_crossing (e);
1383 }
1384
1385 /* Possibly need to make bb's successor edges region crossing,
1386 or remove stale region crossing. */
1387 FOR_EACH_EDGE (e, ei, bb->succs)
1388 {
1389 /* We can't have fall-through edges across partition boundaries.
1390 Note that force_nonfallthru will do any necessary partition
1391 boundary fixup by calling fixup_partition_crossing itself. */
1392 if ((e->flags & EDGE_FALLTHRU)
1393 && BB_PARTITION (bb) != BB_PARTITION (e->dest)
1394 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1395 force_nonfallthru (e);
1396 else
1397 fixup_partition_crossing (e);
1398 }
1399 }
1400
1401 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
1402 expense of adding new instructions or reordering basic blocks.
1403
1404 Function can be also called with edge destination equivalent to the TARGET.
1405 Then it should try the simplifications and do nothing if none is possible.
1406
1407 Return edge representing the branch if transformation succeeded. Return NULL
1408 on failure.
1409 We still return NULL in case E already destinated TARGET and we didn't
1410 managed to simplify instruction stream. */
1411
1412 static edge
1413 rtl_redirect_edge_and_branch (edge e, basic_block target)
1414 {
1415 edge ret;
1416 basic_block src = e->src;
1417 basic_block dest = e->dest;
1418
1419 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1420 return NULL;
1421
1422 if (dest == target)
1423 return e;
1424
1425 if ((ret = try_redirect_by_replacing_jump (e, target, false)) != NULL)
1426 {
1427 df_set_bb_dirty (src);
1428 fixup_partition_crossing (ret);
1429 return ret;
1430 }
1431
1432 ret = redirect_branch_edge (e, target);
1433 if (!ret)
1434 return NULL;
1435
1436 df_set_bb_dirty (src);
1437 fixup_partition_crossing (ret);
1438 return ret;
1439 }
1440
1441 /* Emit a barrier after BB, into the footer if we are in CFGLAYOUT mode. */
1442
1443 void
1444 emit_barrier_after_bb (basic_block bb)
1445 {
1446 rtx_barrier *barrier = emit_barrier_after (BB_END (bb));
1447 gcc_assert (current_ir_type () == IR_RTL_CFGRTL
1448 || current_ir_type () == IR_RTL_CFGLAYOUT);
1449 if (current_ir_type () == IR_RTL_CFGLAYOUT)
1450 BB_FOOTER (bb) = unlink_insn_chain (barrier, barrier);
1451 }
1452
1453 /* Like force_nonfallthru below, but additionally performs redirection
1454 Used by redirect_edge_and_branch_force. JUMP_LABEL is used only
1455 when redirecting to the EXIT_BLOCK, it is either ret_rtx or
1456 simple_return_rtx, indicating which kind of returnjump to create.
1457 It should be NULL otherwise. */
1458
1459 basic_block
1460 force_nonfallthru_and_redirect (edge e, basic_block target, rtx jump_label)
1461 {
1462 basic_block jump_block, new_bb = NULL, src = e->src;
1463 rtx note;
1464 edge new_edge;
1465 int abnormal_edge_flags = 0;
1466 bool asm_goto_edge = false;
1467 int loc;
1468
1469 /* In the case the last instruction is conditional jump to the next
1470 instruction, first redirect the jump itself and then continue
1471 by creating a basic block afterwards to redirect fallthru edge. */
1472 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1473 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1474 && any_condjump_p (BB_END (e->src))
1475 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
1476 {
1477 rtx note;
1478 edge b = unchecked_make_edge (e->src, target, 0);
1479 bool redirected;
1480
1481 redirected = redirect_jump (BB_END (e->src), block_label (target), 0);
1482 gcc_assert (redirected);
1483
1484 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
1485 if (note)
1486 {
1487 int prob = XINT (note, 0);
1488
1489 b->probability = prob;
1490 /* Update this to use GCOV_COMPUTE_SCALE. */
1491 b->count = e->count * prob / REG_BR_PROB_BASE;
1492 e->probability -= e->probability;
1493 e->count -= b->count;
1494 if (e->probability < 0)
1495 e->probability = 0;
1496 if (e->count < 0)
1497 e->count = 0;
1498 }
1499 }
1500
1501 if (e->flags & EDGE_ABNORMAL)
1502 {
1503 /* Irritating special case - fallthru edge to the same block as abnormal
1504 edge.
1505 We can't redirect abnormal edge, but we still can split the fallthru
1506 one and create separate abnormal edge to original destination.
1507 This allows bb-reorder to make such edge non-fallthru. */
1508 gcc_assert (e->dest == target);
1509 abnormal_edge_flags = e->flags & ~EDGE_FALLTHRU;
1510 e->flags &= EDGE_FALLTHRU;
1511 }
1512 else
1513 {
1514 gcc_assert (e->flags & EDGE_FALLTHRU);
1515 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1516 {
1517 /* We can't redirect the entry block. Create an empty block
1518 at the start of the function which we use to add the new
1519 jump. */
1520 edge tmp;
1521 edge_iterator ei;
1522 bool found = false;
1523
1524 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL,
1525 ENTRY_BLOCK_PTR_FOR_FN (cfun));
1526
1527 /* Change the existing edge's source to be the new block, and add
1528 a new edge from the entry block to the new block. */
1529 e->src = bb;
1530 for (ei = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
1531 (tmp = ei_safe_edge (ei)); )
1532 {
1533 if (tmp == e)
1534 {
1535 ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs->unordered_remove (ei.index);
1536 found = true;
1537 break;
1538 }
1539 else
1540 ei_next (&ei);
1541 }
1542
1543 gcc_assert (found);
1544
1545 vec_safe_push (bb->succs, e);
1546 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb,
1547 EDGE_FALLTHRU);
1548 }
1549 }
1550
1551 /* If e->src ends with asm goto, see if any of the ASM_OPERANDS_LABELs
1552 don't point to the target or fallthru label. */
1553 if (JUMP_P (BB_END (e->src))
1554 && target != EXIT_BLOCK_PTR_FOR_FN (cfun)
1555 && (e->flags & EDGE_FALLTHRU)
1556 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
1557 {
1558 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
1559 bool adjust_jump_target = false;
1560
1561 for (i = 0; i < n; ++i)
1562 {
1563 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (e->dest))
1564 {
1565 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))--;
1566 XEXP (ASM_OPERANDS_LABEL (note, i), 0) = block_label (target);
1567 LABEL_NUSES (XEXP (ASM_OPERANDS_LABEL (note, i), 0))++;
1568 adjust_jump_target = true;
1569 }
1570 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (target))
1571 asm_goto_edge = true;
1572 }
1573 if (adjust_jump_target)
1574 {
1575 rtx_insn *insn = BB_END (e->src);
1576 rtx note;
1577 rtx_insn *old_label = BB_HEAD (e->dest);
1578 rtx_insn *new_label = BB_HEAD (target);
1579
1580 if (JUMP_LABEL (insn) == old_label)
1581 {
1582 JUMP_LABEL (insn) = new_label;
1583 note = find_reg_note (insn, REG_LABEL_TARGET, new_label);
1584 if (note)
1585 remove_note (insn, note);
1586 }
1587 else
1588 {
1589 note = find_reg_note (insn, REG_LABEL_TARGET, old_label);
1590 if (note)
1591 remove_note (insn, note);
1592 if (JUMP_LABEL (insn) != new_label
1593 && !find_reg_note (insn, REG_LABEL_TARGET, new_label))
1594 add_reg_note (insn, REG_LABEL_TARGET, new_label);
1595 }
1596 while ((note = find_reg_note (insn, REG_LABEL_OPERAND, old_label))
1597 != NULL_RTX)
1598 XEXP (note, 0) = new_label;
1599 }
1600 }
1601
1602 if (EDGE_COUNT (e->src->succs) >= 2 || abnormal_edge_flags || asm_goto_edge)
1603 {
1604 gcov_type count = e->count;
1605 int probability = e->probability;
1606 /* Create the new structures. */
1607
1608 /* If the old block ended with a tablejump, skip its table
1609 by searching forward from there. Otherwise start searching
1610 forward from the last instruction of the old block. */
1611 rtx_jump_table_data *table;
1612 if (tablejump_p (BB_END (e->src), NULL, &table))
1613 note = table;
1614 else
1615 note = BB_END (e->src);
1616 note = NEXT_INSN (note);
1617
1618 jump_block = create_basic_block (note, NULL, e->src);
1619 jump_block->count = count;
1620 jump_block->frequency = EDGE_FREQUENCY (e);
1621
1622 /* Make sure new block ends up in correct hot/cold section. */
1623
1624 BB_COPY_PARTITION (jump_block, e->src);
1625
1626 /* Wire edge in. */
1627 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1628 new_edge->probability = probability;
1629 new_edge->count = count;
1630
1631 /* Redirect old edge. */
1632 redirect_edge_pred (e, jump_block);
1633 e->probability = REG_BR_PROB_BASE;
1634
1635 /* If e->src was previously region crossing, it no longer is
1636 and the reg crossing note should be removed. */
1637 fixup_partition_crossing (new_edge);
1638
1639 /* If asm goto has any label refs to target's label,
1640 add also edge from asm goto bb to target. */
1641 if (asm_goto_edge)
1642 {
1643 new_edge->probability /= 2;
1644 new_edge->count /= 2;
1645 jump_block->count /= 2;
1646 jump_block->frequency /= 2;
1647 new_edge = make_edge (new_edge->src, target,
1648 e->flags & ~EDGE_FALLTHRU);
1649 new_edge->probability = probability - probability / 2;
1650 new_edge->count = count - count / 2;
1651 }
1652
1653 new_bb = jump_block;
1654 }
1655 else
1656 jump_block = e->src;
1657
1658 loc = e->goto_locus;
1659 e->flags &= ~EDGE_FALLTHRU;
1660 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
1661 {
1662 if (jump_label == ret_rtx)
1663 {
1664 #ifdef HAVE_return
1665 emit_jump_insn_after_setloc (gen_return (), BB_END (jump_block), loc);
1666 #else
1667 gcc_unreachable ();
1668 #endif
1669 }
1670 else
1671 {
1672 gcc_assert (jump_label == simple_return_rtx);
1673 #ifdef HAVE_simple_return
1674 emit_jump_insn_after_setloc (gen_simple_return (),
1675 BB_END (jump_block), loc);
1676 #else
1677 gcc_unreachable ();
1678 #endif
1679 }
1680 set_return_jump_label (BB_END (jump_block));
1681 }
1682 else
1683 {
1684 rtx label = block_label (target);
1685 emit_jump_insn_after_setloc (gen_jump (label), BB_END (jump_block), loc);
1686 JUMP_LABEL (BB_END (jump_block)) = label;
1687 LABEL_NUSES (label)++;
1688 }
1689
1690 /* We might be in cfg layout mode, and if so, the following routine will
1691 insert the barrier correctly. */
1692 emit_barrier_after_bb (jump_block);
1693 redirect_edge_succ_nodup (e, target);
1694
1695 if (abnormal_edge_flags)
1696 make_edge (src, target, abnormal_edge_flags);
1697
1698 df_mark_solutions_dirty ();
1699 fixup_partition_crossing (e);
1700 return new_bb;
1701 }
1702
1703 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1704 (and possibly create new basic block) to make edge non-fallthru.
1705 Return newly created BB or NULL if none. */
1706
1707 static basic_block
1708 rtl_force_nonfallthru (edge e)
1709 {
1710 return force_nonfallthru_and_redirect (e, e->dest, NULL_RTX);
1711 }
1712
1713 /* Redirect edge even at the expense of creating new jump insn or
1714 basic block. Return new basic block if created, NULL otherwise.
1715 Conversion must be possible. */
1716
1717 static basic_block
1718 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1719 {
1720 if (redirect_edge_and_branch (e, target)
1721 || e->dest == target)
1722 return NULL;
1723
1724 /* In case the edge redirection failed, try to force it to be non-fallthru
1725 and redirect newly created simplejump. */
1726 df_set_bb_dirty (e->src);
1727 return force_nonfallthru_and_redirect (e, target, NULL_RTX);
1728 }
1729
1730 /* The given edge should potentially be a fallthru edge. If that is in
1731 fact true, delete the jump and barriers that are in the way. */
1732
1733 static void
1734 rtl_tidy_fallthru_edge (edge e)
1735 {
1736 rtx_insn *q;
1737 basic_block b = e->src, c = b->next_bb;
1738
1739 /* ??? In a late-running flow pass, other folks may have deleted basic
1740 blocks by nopping out blocks, leaving multiple BARRIERs between here
1741 and the target label. They ought to be chastised and fixed.
1742
1743 We can also wind up with a sequence of undeletable labels between
1744 one block and the next.
1745
1746 So search through a sequence of barriers, labels, and notes for
1747 the head of block C and assert that we really do fall through. */
1748
1749 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1750 if (INSN_P (q))
1751 return;
1752
1753 /* Remove what will soon cease being the jump insn from the source block.
1754 If block B consisted only of this single jump, turn it into a deleted
1755 note. */
1756 q = BB_END (b);
1757 if (JUMP_P (q)
1758 && onlyjump_p (q)
1759 && (any_uncondjump_p (q)
1760 || single_succ_p (b)))
1761 {
1762 #ifdef HAVE_cc0
1763 /* If this was a conditional jump, we need to also delete
1764 the insn that set cc0. */
1765 if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1766 q = PREV_INSN (q);
1767 #endif
1768
1769 q = PREV_INSN (q);
1770 }
1771
1772 /* Selectively unlink the sequence. */
1773 if (q != PREV_INSN (BB_HEAD (c)))
1774 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)), false);
1775
1776 e->flags |= EDGE_FALLTHRU;
1777 }
1778 \f
1779 /* Should move basic block BB after basic block AFTER. NIY. */
1780
1781 static bool
1782 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1783 basic_block after ATTRIBUTE_UNUSED)
1784 {
1785 return false;
1786 }
1787
1788 /* Locate the last bb in the same partition as START_BB. */
1789
1790 static basic_block
1791 last_bb_in_partition (basic_block start_bb)
1792 {
1793 basic_block bb;
1794 FOR_BB_BETWEEN (bb, start_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1795 {
1796 if (BB_PARTITION (start_bb) != BB_PARTITION (bb->next_bb))
1797 return bb;
1798 }
1799 /* Return bb before the exit block. */
1800 return bb->prev_bb;
1801 }
1802
1803 /* Split a (typically critical) edge. Return the new block.
1804 The edge must not be abnormal.
1805
1806 ??? The code generally expects to be called on critical edges.
1807 The case of a block ending in an unconditional jump to a
1808 block with multiple predecessors is not handled optimally. */
1809
1810 static basic_block
1811 rtl_split_edge (edge edge_in)
1812 {
1813 basic_block bb, new_bb;
1814 rtx_insn *before;
1815
1816 /* Abnormal edges cannot be split. */
1817 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
1818
1819 /* We are going to place the new block in front of edge destination.
1820 Avoid existence of fallthru predecessors. */
1821 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1822 {
1823 edge e = find_fallthru_edge (edge_in->dest->preds);
1824
1825 if (e)
1826 force_nonfallthru (e);
1827 }
1828
1829 /* Create the basic block note. */
1830 if (edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1831 before = BB_HEAD (edge_in->dest);
1832 else
1833 before = NULL;
1834
1835 /* If this is a fall through edge to the exit block, the blocks might be
1836 not adjacent, and the right place is after the source. */
1837 if ((edge_in->flags & EDGE_FALLTHRU)
1838 && edge_in->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1839 {
1840 before = NEXT_INSN (BB_END (edge_in->src));
1841 bb = create_basic_block (before, NULL, edge_in->src);
1842 BB_COPY_PARTITION (bb, edge_in->src);
1843 }
1844 else
1845 {
1846 if (edge_in->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1847 {
1848 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1849 BB_COPY_PARTITION (bb, edge_in->dest);
1850 }
1851 else
1852 {
1853 basic_block after = edge_in->dest->prev_bb;
1854 /* If this is post-bb reordering, and the edge crosses a partition
1855 boundary, the new block needs to be inserted in the bb chain
1856 at the end of the src partition (since we put the new bb into
1857 that partition, see below). Otherwise we may end up creating
1858 an extra partition crossing in the chain, which is illegal.
1859 It can't go after the src, because src may have a fall-through
1860 to a different block. */
1861 if (crtl->bb_reorder_complete
1862 && (edge_in->flags & EDGE_CROSSING))
1863 {
1864 after = last_bb_in_partition (edge_in->src);
1865 before = NEXT_INSN (BB_END (after));
1866 /* The instruction following the last bb in partition should
1867 be a barrier, since it cannot end in a fall-through. */
1868 gcc_checking_assert (BARRIER_P (before));
1869 before = NEXT_INSN (before);
1870 }
1871 bb = create_basic_block (before, NULL, after);
1872 /* Put the split bb into the src partition, to avoid creating
1873 a situation where a cold bb dominates a hot bb, in the case
1874 where src is cold and dest is hot. The src will dominate
1875 the new bb (whereas it might not have dominated dest). */
1876 BB_COPY_PARTITION (bb, edge_in->src);
1877 }
1878 }
1879
1880 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1881
1882 /* Can't allow a region crossing edge to be fallthrough. */
1883 if (BB_PARTITION (bb) != BB_PARTITION (edge_in->dest)
1884 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1885 {
1886 new_bb = force_nonfallthru (single_succ_edge (bb));
1887 gcc_assert (!new_bb);
1888 }
1889
1890 /* For non-fallthru edges, we must adjust the predecessor's
1891 jump instruction to target our new block. */
1892 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1893 {
1894 edge redirected = redirect_edge_and_branch (edge_in, bb);
1895 gcc_assert (redirected);
1896 }
1897 else
1898 {
1899 if (edge_in->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1900 {
1901 /* For asm goto even splitting of fallthru edge might
1902 need insn patching, as other labels might point to the
1903 old label. */
1904 rtx_insn *last = BB_END (edge_in->src);
1905 if (last
1906 && JUMP_P (last)
1907 && edge_in->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1908 && extract_asm_operands (PATTERN (last)) != NULL_RTX
1909 && patch_jump_insn (last, before, bb))
1910 df_set_bb_dirty (edge_in->src);
1911 }
1912 redirect_edge_succ (edge_in, bb);
1913 }
1914
1915 return bb;
1916 }
1917
1918 /* Queue instructions for insertion on an edge between two basic blocks.
1919 The new instructions and basic blocks (if any) will not appear in the
1920 CFG until commit_edge_insertions is called. */
1921
1922 void
1923 insert_insn_on_edge (rtx pattern, edge e)
1924 {
1925 /* We cannot insert instructions on an abnormal critical edge.
1926 It will be easier to find the culprit if we die now. */
1927 gcc_assert (!((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e)));
1928
1929 if (e->insns.r == NULL_RTX)
1930 start_sequence ();
1931 else
1932 push_to_sequence (e->insns.r);
1933
1934 emit_insn (pattern);
1935
1936 e->insns.r = get_insns ();
1937 end_sequence ();
1938 }
1939
1940 /* Update the CFG for the instructions queued on edge E. */
1941
1942 void
1943 commit_one_edge_insertion (edge e)
1944 {
1945 rtx_insn *before = NULL, *after = NULL, *insns, *tmp, *last;
1946 basic_block bb;
1947
1948 /* Pull the insns off the edge now since the edge might go away. */
1949 insns = e->insns.r;
1950 e->insns.r = NULL;
1951
1952 /* Figure out where to put these insns. If the destination has
1953 one predecessor, insert there. Except for the exit block. */
1954 if (single_pred_p (e->dest) && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1955 {
1956 bb = e->dest;
1957
1958 /* Get the location correct wrt a code label, and "nice" wrt
1959 a basic block note, and before everything else. */
1960 tmp = BB_HEAD (bb);
1961 if (LABEL_P (tmp))
1962 tmp = NEXT_INSN (tmp);
1963 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1964 tmp = NEXT_INSN (tmp);
1965 if (tmp == BB_HEAD (bb))
1966 before = tmp;
1967 else if (tmp)
1968 after = PREV_INSN (tmp);
1969 else
1970 after = get_last_insn ();
1971 }
1972
1973 /* If the source has one successor and the edge is not abnormal,
1974 insert there. Except for the entry block.
1975 Don't do this if the predecessor ends in a jump other than
1976 unconditional simple jump. E.g. for asm goto that points all
1977 its labels at the fallthru basic block, we can't insert instructions
1978 before the asm goto, as the asm goto can have various of side effects,
1979 and can't emit instructions after the asm goto, as it must end
1980 the basic block. */
1981 else if ((e->flags & EDGE_ABNORMAL) == 0
1982 && single_succ_p (e->src)
1983 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1984 && (!JUMP_P (BB_END (e->src))
1985 || simplejump_p (BB_END (e->src))))
1986 {
1987 bb = e->src;
1988
1989 /* It is possible to have a non-simple jump here. Consider a target
1990 where some forms of unconditional jumps clobber a register. This
1991 happens on the fr30 for example.
1992
1993 We know this block has a single successor, so we can just emit
1994 the queued insns before the jump. */
1995 if (JUMP_P (BB_END (bb)))
1996 before = BB_END (bb);
1997 else
1998 {
1999 /* We'd better be fallthru, or we've lost track of what's what. */
2000 gcc_assert (e->flags & EDGE_FALLTHRU);
2001
2002 after = BB_END (bb);
2003 }
2004 }
2005
2006 /* Otherwise we must split the edge. */
2007 else
2008 {
2009 bb = split_edge (e);
2010
2011 /* If E crossed a partition boundary, we needed to make bb end in
2012 a region-crossing jump, even though it was originally fallthru. */
2013 if (JUMP_P (BB_END (bb)))
2014 before = BB_END (bb);
2015 else
2016 after = BB_END (bb);
2017 }
2018
2019 /* Now that we've found the spot, do the insertion. */
2020 if (before)
2021 {
2022 emit_insn_before_noloc (insns, before, bb);
2023 last = prev_nonnote_insn (before);
2024 }
2025 else
2026 last = emit_insn_after_noloc (insns, after, bb);
2027
2028 if (returnjump_p (last))
2029 {
2030 /* ??? Remove all outgoing edges from BB and add one for EXIT.
2031 This is not currently a problem because this only happens
2032 for the (single) epilogue, which already has a fallthru edge
2033 to EXIT. */
2034
2035 e = single_succ_edge (bb);
2036 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2037 && single_succ_p (bb) && (e->flags & EDGE_FALLTHRU));
2038
2039 e->flags &= ~EDGE_FALLTHRU;
2040 emit_barrier_after (last);
2041
2042 if (before)
2043 delete_insn (before);
2044 }
2045 else
2046 gcc_assert (!JUMP_P (last));
2047 }
2048
2049 /* Update the CFG for all queued instructions. */
2050
2051 void
2052 commit_edge_insertions (void)
2053 {
2054 basic_block bb;
2055
2056 /* Optimization passes that invoke this routine can cause hot blocks
2057 previously reached by both hot and cold blocks to become dominated only
2058 by cold blocks. This will cause the verification below to fail,
2059 and lead to now cold code in the hot section. In some cases this
2060 may only be visible after newly unreachable blocks are deleted,
2061 which will be done by fixup_partitions. */
2062 fixup_partitions ();
2063
2064 #ifdef ENABLE_CHECKING
2065 verify_flow_info ();
2066 #endif
2067
2068 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
2069 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
2070 {
2071 edge e;
2072 edge_iterator ei;
2073
2074 FOR_EACH_EDGE (e, ei, bb->succs)
2075 if (e->insns.r)
2076 commit_one_edge_insertion (e);
2077 }
2078 }
2079 \f
2080
2081 /* Print out RTL-specific basic block information (live information
2082 at start and end with TDF_DETAILS). FLAGS are the TDF_* masks
2083 documented in dumpfile.h. */
2084
2085 static void
2086 rtl_dump_bb (FILE *outf, basic_block bb, int indent, int flags)
2087 {
2088 rtx_insn *insn;
2089 rtx_insn *last;
2090 char *s_indent;
2091
2092 s_indent = (char *) alloca ((size_t) indent + 1);
2093 memset (s_indent, ' ', (size_t) indent);
2094 s_indent[indent] = '\0';
2095
2096 if (df && (flags & TDF_DETAILS))
2097 {
2098 df_dump_top (bb, outf);
2099 putc ('\n', outf);
2100 }
2101
2102 if (bb->index != ENTRY_BLOCK && bb->index != EXIT_BLOCK)
2103 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
2104 insn = NEXT_INSN (insn))
2105 {
2106 if (flags & TDF_DETAILS)
2107 df_dump_insn_top (insn, outf);
2108 if (! (flags & TDF_SLIM))
2109 print_rtl_single (outf, insn);
2110 else
2111 dump_insn_slim (outf, insn);
2112 if (flags & TDF_DETAILS)
2113 df_dump_insn_bottom (insn, outf);
2114 }
2115
2116 if (df && (flags & TDF_DETAILS))
2117 {
2118 df_dump_bottom (bb, outf);
2119 putc ('\n', outf);
2120 }
2121
2122 }
2123 \f
2124 /* Like dump_function_to_file, but for RTL. Print out dataflow information
2125 for the start of each basic block. FLAGS are the TDF_* masks documented
2126 in dumpfile.h. */
2127
2128 void
2129 print_rtl_with_bb (FILE *outf, const_rtx rtx_first, int flags)
2130 {
2131 const_rtx tmp_rtx;
2132 if (rtx_first == 0)
2133 fprintf (outf, "(nil)\n");
2134 else
2135 {
2136 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
2137 int max_uid = get_max_uid ();
2138 basic_block *start = XCNEWVEC (basic_block, max_uid);
2139 basic_block *end = XCNEWVEC (basic_block, max_uid);
2140 enum bb_state *in_bb_p = XCNEWVEC (enum bb_state, max_uid);
2141 basic_block bb;
2142
2143 /* After freeing the CFG, we still have BLOCK_FOR_INSN set on most
2144 insns, but the CFG is not maintained so the basic block info
2145 is not reliable. Therefore it's omitted from the dumps. */
2146 if (! (cfun->curr_properties & PROP_cfg))
2147 flags &= ~TDF_BLOCKS;
2148
2149 if (df)
2150 df_dump_start (outf);
2151
2152 if (flags & TDF_BLOCKS)
2153 {
2154 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2155 {
2156 rtx_insn *x;
2157
2158 start[INSN_UID (BB_HEAD (bb))] = bb;
2159 end[INSN_UID (BB_END (bb))] = bb;
2160 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
2161 {
2162 enum bb_state state = IN_MULTIPLE_BB;
2163
2164 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
2165 state = IN_ONE_BB;
2166 in_bb_p[INSN_UID (x)] = state;
2167
2168 if (x == BB_END (bb))
2169 break;
2170 }
2171 }
2172 }
2173
2174 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
2175 {
2176 if (flags & TDF_BLOCKS)
2177 {
2178 bb = start[INSN_UID (tmp_rtx)];
2179 if (bb != NULL)
2180 {
2181 dump_bb_info (outf, bb, 0, dump_flags | TDF_COMMENT, true, false);
2182 if (df && (flags & TDF_DETAILS))
2183 df_dump_top (bb, outf);
2184 }
2185
2186 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
2187 && !NOTE_P (tmp_rtx)
2188 && !BARRIER_P (tmp_rtx))
2189 fprintf (outf, ";; Insn is not within a basic block\n");
2190 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
2191 fprintf (outf, ";; Insn is in multiple basic blocks\n");
2192 }
2193
2194 if (flags & TDF_DETAILS)
2195 df_dump_insn_top (tmp_rtx, outf);
2196 if (! (flags & TDF_SLIM))
2197 print_rtl_single (outf, tmp_rtx);
2198 else
2199 dump_insn_slim (outf, tmp_rtx);
2200 if (flags & TDF_DETAILS)
2201 df_dump_insn_bottom (tmp_rtx, outf);
2202
2203 if (flags & TDF_BLOCKS)
2204 {
2205 bb = end[INSN_UID (tmp_rtx)];
2206 if (bb != NULL)
2207 {
2208 dump_bb_info (outf, bb, 0, dump_flags | TDF_COMMENT, false, true);
2209 if (df && (flags & TDF_DETAILS))
2210 df_dump_bottom (bb, outf);
2211 putc ('\n', outf);
2212 }
2213 }
2214 }
2215
2216 free (start);
2217 free (end);
2218 free (in_bb_p);
2219 }
2220 }
2221 \f
2222 /* Update the branch probability of BB if a REG_BR_PROB is present. */
2223
2224 void
2225 update_br_prob_note (basic_block bb)
2226 {
2227 rtx note;
2228 if (!JUMP_P (BB_END (bb)))
2229 return;
2230 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
2231 if (!note || XINT (note, 0) == BRANCH_EDGE (bb)->probability)
2232 return;
2233 XINT (note, 0) = BRANCH_EDGE (bb)->probability;
2234 }
2235
2236 /* Get the last insn associated with block BB (that includes barriers and
2237 tablejumps after BB). */
2238 rtx_insn *
2239 get_last_bb_insn (basic_block bb)
2240 {
2241 rtx_jump_table_data *table;
2242 rtx_insn *tmp;
2243 rtx_insn *end = BB_END (bb);
2244
2245 /* Include any jump table following the basic block. */
2246 if (tablejump_p (end, NULL, &table))
2247 end = table;
2248
2249 /* Include any barriers that may follow the basic block. */
2250 tmp = next_nonnote_insn_bb (end);
2251 while (tmp && BARRIER_P (tmp))
2252 {
2253 end = tmp;
2254 tmp = next_nonnote_insn_bb (end);
2255 }
2256
2257 return end;
2258 }
2259
2260 /* Sanity check partition hotness to ensure that basic blocks in
2261   the cold partition don't dominate basic blocks in the hot partition.
2262 If FLAG_ONLY is true, report violations as errors. Otherwise
2263 re-mark the dominated blocks as cold, since this is run after
2264 cfg optimizations that may make hot blocks previously reached
2265 by both hot and cold blocks now only reachable along cold paths. */
2266
2267 static vec<basic_block>
2268 find_partition_fixes (bool flag_only)
2269 {
2270 basic_block bb;
2271 vec<basic_block> bbs_in_cold_partition = vNULL;
2272 vec<basic_block> bbs_to_fix = vNULL;
2273
2274 /* Callers check this. */
2275 gcc_checking_assert (crtl->has_bb_partition);
2276
2277 FOR_EACH_BB_FN (bb, cfun)
2278 if ((BB_PARTITION (bb) == BB_COLD_PARTITION))
2279 bbs_in_cold_partition.safe_push (bb);
2280
2281 if (bbs_in_cold_partition.is_empty ())
2282 return vNULL;
2283
2284 bool dom_calculated_here = !dom_info_available_p (CDI_DOMINATORS);
2285
2286 if (dom_calculated_here)
2287 calculate_dominance_info (CDI_DOMINATORS);
2288
2289 while (! bbs_in_cold_partition.is_empty ())
2290 {
2291 bb = bbs_in_cold_partition.pop ();
2292 /* Any blocks dominated by a block in the cold section
2293 must also be cold. */
2294 basic_block son;
2295 for (son = first_dom_son (CDI_DOMINATORS, bb);
2296 son;
2297 son = next_dom_son (CDI_DOMINATORS, son))
2298 {
2299 /* If son is not yet cold, then mark it cold here and
2300 enqueue it for further processing. */
2301 if ((BB_PARTITION (son) != BB_COLD_PARTITION))
2302 {
2303 if (flag_only)
2304 error ("non-cold basic block %d dominated "
2305 "by a block in the cold partition (%d)", son->index, bb->index);
2306 else
2307 BB_SET_PARTITION (son, BB_COLD_PARTITION);
2308 bbs_to_fix.safe_push (son);
2309 bbs_in_cold_partition.safe_push (son);
2310 }
2311 }
2312 }
2313
2314 if (dom_calculated_here)
2315 free_dominance_info (CDI_DOMINATORS);
2316
2317 return bbs_to_fix;
2318 }
2319
2320 /* Perform cleanup on the hot/cold bb partitioning after optimization
2321 passes that modify the cfg. */
2322
2323 void
2324 fixup_partitions (void)
2325 {
2326 basic_block bb;
2327
2328 if (!crtl->has_bb_partition)
2329 return;
2330
2331 /* Delete any blocks that became unreachable and weren't
2332 already cleaned up, for example during edge forwarding
2333 and convert_jumps_to_returns. This will expose more
2334 opportunities for fixing the partition boundaries here.
2335 Also, the calculation of the dominance graph during verification
2336 will assert if there are unreachable nodes. */
2337 delete_unreachable_blocks ();
2338
2339 /* If there are partitions, do a sanity check on them: A basic block in
2340   a cold partition cannot dominate a basic block in a hot partition.
2341 Fixup any that now violate this requirement, as a result of edge
2342 forwarding and unreachable block deletion.  */
2343 vec<basic_block> bbs_to_fix = find_partition_fixes (false);
2344
2345 /* Do the partition fixup after all necessary blocks have been converted to
2346 cold, so that we only update the region crossings the minimum number of
2347 places, which can require forcing edges to be non fallthru. */
2348 while (! bbs_to_fix.is_empty ())
2349 {
2350 bb = bbs_to_fix.pop ();
2351 fixup_new_cold_bb (bb);
2352 }
2353 }
2354
2355 /* Verify, in the basic block chain, that there is at most one switch
2356 between hot/cold partitions. This condition will not be true until
2357 after reorder_basic_blocks is called. */
2358
2359 static int
2360 verify_hot_cold_block_grouping (void)
2361 {
2362 basic_block bb;
2363 int err = 0;
2364 bool switched_sections = false;
2365 int current_partition = BB_UNPARTITIONED;
2366
2367 /* Even after bb reordering is complete, we go into cfglayout mode
2368 again (in compgoto). Ensure we don't call this before going back
2369 into linearized RTL when any layout fixes would have been committed. */
2370 if (!crtl->bb_reorder_complete
2371 || current_ir_type () != IR_RTL_CFGRTL)
2372 return err;
2373
2374 FOR_EACH_BB_FN (bb, cfun)
2375 {
2376 if (current_partition != BB_UNPARTITIONED
2377 && BB_PARTITION (bb) != current_partition)
2378 {
2379 if (switched_sections)
2380 {
2381 error ("multiple hot/cold transitions found (bb %i)",
2382 bb->index);
2383 err = 1;
2384 }
2385 else
2386 switched_sections = true;
2387
2388 if (!crtl->has_bb_partition)
2389 error ("partition found but function partition flag not set");
2390 }
2391 current_partition = BB_PARTITION (bb);
2392 }
2393
2394 return err;
2395 }
2396 \f
2397
2398 /* Perform several checks on the edges out of each block, such as
2399 the consistency of the branch probabilities, the correctness
2400 of hot/cold partition crossing edges, and the number of expected
2401 successor edges. Also verify that the dominance relationship
2402 between hot/cold blocks is sane. */
2403
2404 static int
2405 rtl_verify_edges (void)
2406 {
2407 int err = 0;
2408 basic_block bb;
2409
2410 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2411 {
2412 int n_fallthru = 0, n_branch = 0, n_abnormal_call = 0, n_sibcall = 0;
2413 int n_eh = 0, n_abnormal = 0;
2414 edge e, fallthru = NULL;
2415 edge_iterator ei;
2416 rtx note;
2417 bool has_crossing_edge = false;
2418
2419 if (JUMP_P (BB_END (bb))
2420 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
2421 && EDGE_COUNT (bb->succs) >= 2
2422 && any_condjump_p (BB_END (bb)))
2423 {
2424 if (XINT (note, 0) != BRANCH_EDGE (bb)->probability
2425 && profile_status_for_fn (cfun) != PROFILE_ABSENT)
2426 {
2427 error ("verify_flow_info: REG_BR_PROB does not match cfg %i %i",
2428 XINT (note, 0), BRANCH_EDGE (bb)->probability);
2429 err = 1;
2430 }
2431 }
2432
2433 FOR_EACH_EDGE (e, ei, bb->succs)
2434 {
2435 bool is_crossing;
2436
2437 if (e->flags & EDGE_FALLTHRU)
2438 n_fallthru++, fallthru = e;
2439
2440 is_crossing = (BB_PARTITION (e->src) != BB_PARTITION (e->dest)
2441 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2442 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun));
2443 has_crossing_edge |= is_crossing;
2444 if (e->flags & EDGE_CROSSING)
2445 {
2446 if (!is_crossing)
2447 {
2448 error ("EDGE_CROSSING incorrectly set across same section");
2449 err = 1;
2450 }
2451 if (e->flags & EDGE_FALLTHRU)
2452 {
2453 error ("fallthru edge crosses section boundary in bb %i",
2454 e->src->index);
2455 err = 1;
2456 }
2457 if (e->flags & EDGE_EH)
2458 {
2459 error ("EH edge crosses section boundary in bb %i",
2460 e->src->index);
2461 err = 1;
2462 }
2463 if (JUMP_P (BB_END (bb)) && !CROSSING_JUMP_P (BB_END (bb)))
2464 {
2465 error ("No region crossing jump at section boundary in bb %i",
2466 bb->index);
2467 err = 1;
2468 }
2469 }
2470 else if (is_crossing)
2471 {
2472 error ("EDGE_CROSSING missing across section boundary");
2473 err = 1;
2474 }
2475
2476 if ((e->flags & ~(EDGE_DFS_BACK
2477 | EDGE_CAN_FALLTHRU
2478 | EDGE_IRREDUCIBLE_LOOP
2479 | EDGE_LOOP_EXIT
2480 | EDGE_CROSSING
2481 | EDGE_PRESERVE)) == 0)
2482 n_branch++;
2483
2484 if (e->flags & EDGE_ABNORMAL_CALL)
2485 n_abnormal_call++;
2486
2487 if (e->flags & EDGE_SIBCALL)
2488 n_sibcall++;
2489
2490 if (e->flags & EDGE_EH)
2491 n_eh++;
2492
2493 if (e->flags & EDGE_ABNORMAL)
2494 n_abnormal++;
2495 }
2496
2497 if (!has_crossing_edge
2498 && JUMP_P (BB_END (bb))
2499 && CROSSING_JUMP_P (BB_END (bb)))
2500 {
2501 print_rtl_with_bb (stderr, get_insns (), TDF_RTL | TDF_BLOCKS | TDF_DETAILS);
2502 error ("Region crossing jump across same section in bb %i",
2503 bb->index);
2504 err = 1;
2505 }
2506
2507 if (n_eh && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
2508 {
2509 error ("missing REG_EH_REGION note at the end of bb %i", bb->index);
2510 err = 1;
2511 }
2512 if (n_eh > 1)
2513 {
2514 error ("too many exception handling edges in bb %i", bb->index);
2515 err = 1;
2516 }
2517 if (n_branch
2518 && (!JUMP_P (BB_END (bb))
2519 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
2520 || any_condjump_p (BB_END (bb))))))
2521 {
2522 error ("too many outgoing branch edges from bb %i", bb->index);
2523 err = 1;
2524 }
2525 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
2526 {
2527 error ("fallthru edge after unconditional jump in bb %i", bb->index);
2528 err = 1;
2529 }
2530 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
2531 {
2532 error ("wrong number of branch edges after unconditional jump"
2533 " in bb %i", bb->index);
2534 err = 1;
2535 }
2536 if (n_branch != 1 && any_condjump_p (BB_END (bb))
2537 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
2538 {
2539 error ("wrong amount of branch edges after conditional jump"
2540 " in bb %i", bb->index);
2541 err = 1;
2542 }
2543 if (n_abnormal_call && !CALL_P (BB_END (bb)))
2544 {
2545 error ("abnormal call edges for non-call insn in bb %i", bb->index);
2546 err = 1;
2547 }
2548 if (n_sibcall && !CALL_P (BB_END (bb)))
2549 {
2550 error ("sibcall edges for non-call insn in bb %i", bb->index);
2551 err = 1;
2552 }
2553 if (n_abnormal > n_eh
2554 && !(CALL_P (BB_END (bb))
2555 && n_abnormal == n_abnormal_call + n_sibcall)
2556 && (!JUMP_P (BB_END (bb))
2557 || any_condjump_p (BB_END (bb))
2558 || any_uncondjump_p (BB_END (bb))))
2559 {
2560 error ("abnormal edges for no purpose in bb %i", bb->index);
2561 err = 1;
2562 }
2563 }
2564
2565 /* If there are partitions, do a sanity check on them: A basic block in
2566   a cold partition cannot dominate a basic block in a hot partition.  */
2567 if (crtl->has_bb_partition && !err)
2568 {
2569 vec<basic_block> bbs_to_fix = find_partition_fixes (true);
2570 err = !bbs_to_fix.is_empty ();
2571 }
2572
2573 /* Clean up. */
2574 return err;
2575 }
2576
2577 /* Checks on the instructions within blocks. Currently checks that each
2578 block starts with a basic block note, and that basic block notes and
2579 control flow jumps are not found in the middle of the block. */
2580
2581 static int
2582 rtl_verify_bb_insns (void)
2583 {
2584 rtx_insn *x;
2585 int err = 0;
2586 basic_block bb;
2587
2588 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2589 {
2590 /* Now check the header of basic
2591 block. It ought to contain optional CODE_LABEL followed
2592 by NOTE_BASIC_BLOCK. */
2593 x = BB_HEAD (bb);
2594 if (LABEL_P (x))
2595 {
2596 if (BB_END (bb) == x)
2597 {
2598 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2599 bb->index);
2600 err = 1;
2601 }
2602
2603 x = NEXT_INSN (x);
2604 }
2605
2606 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
2607 {
2608 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
2609 bb->index);
2610 err = 1;
2611 }
2612
2613 if (BB_END (bb) == x)
2614 /* Do checks for empty blocks here. */
2615 ;
2616 else
2617 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
2618 {
2619 if (NOTE_INSN_BASIC_BLOCK_P (x))
2620 {
2621 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
2622 INSN_UID (x), bb->index);
2623 err = 1;
2624 }
2625
2626 if (x == BB_END (bb))
2627 break;
2628
2629 if (control_flow_insn_p (x))
2630 {
2631 error ("in basic block %d:", bb->index);
2632 fatal_insn ("flow control insn inside a basic block", x);
2633 }
2634 }
2635 }
2636
2637 /* Clean up. */
2638 return err;
2639 }
2640
2641 /* Verify that block pointers for instructions in basic blocks, headers and
2642 footers are set appropriately. */
2643
2644 static int
2645 rtl_verify_bb_pointers (void)
2646 {
2647 int err = 0;
2648 basic_block bb;
2649
2650 /* Check the general integrity of the basic blocks. */
2651 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2652 {
2653 rtx_insn *insn;
2654
2655 if (!(bb->flags & BB_RTL))
2656 {
2657 error ("BB_RTL flag not set for block %d", bb->index);
2658 err = 1;
2659 }
2660
2661 FOR_BB_INSNS (bb, insn)
2662 if (BLOCK_FOR_INSN (insn) != bb)
2663 {
2664 error ("insn %d basic block pointer is %d, should be %d",
2665 INSN_UID (insn),
2666 BLOCK_FOR_INSN (insn) ? BLOCK_FOR_INSN (insn)->index : 0,
2667 bb->index);
2668 err = 1;
2669 }
2670
2671 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
2672 if (!BARRIER_P (insn)
2673 && BLOCK_FOR_INSN (insn) != NULL)
2674 {
2675 error ("insn %d in header of bb %d has non-NULL basic block",
2676 INSN_UID (insn), bb->index);
2677 err = 1;
2678 }
2679 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2680 if (!BARRIER_P (insn)
2681 && BLOCK_FOR_INSN (insn) != NULL)
2682 {
2683 error ("insn %d in footer of bb %d has non-NULL basic block",
2684 INSN_UID (insn), bb->index);
2685 err = 1;
2686 }
2687 }
2688
2689 /* Clean up. */
2690 return err;
2691 }
2692
2693 /* Verify the CFG and RTL consistency common for both underlying RTL and
2694 cfglayout RTL.
2695
2696 Currently it does following checks:
2697
2698 - overlapping of basic blocks
2699 - insns with wrong BLOCK_FOR_INSN pointers
2700 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
2701 - tails of basic blocks (ensure that boundary is necessary)
2702 - scans body of the basic block for JUMP_INSN, CODE_LABEL
2703 and NOTE_INSN_BASIC_BLOCK
2704 - verify that no fall_thru edge crosses hot/cold partition boundaries
2705 - verify that there are no pending RTL branch predictions
2706 - verify that hot blocks are not dominated by cold blocks
2707
2708 In future it can be extended check a lot of other stuff as well
2709 (reachability of basic blocks, life information, etc. etc.). */
2710
2711 static int
2712 rtl_verify_flow_info_1 (void)
2713 {
2714 int err = 0;
2715
2716 err |= rtl_verify_bb_pointers ();
2717
2718 err |= rtl_verify_bb_insns ();
2719
2720 err |= rtl_verify_edges ();
2721
2722 return err;
2723 }
2724
2725 /* Walk the instruction chain and verify that bb head/end pointers
2726 are correct, and that instructions are in exactly one bb and have
2727 correct block pointers. */
2728
2729 static int
2730 rtl_verify_bb_insn_chain (void)
2731 {
2732 basic_block bb;
2733 int err = 0;
2734 rtx_insn *x;
2735 rtx_insn *last_head = get_last_insn ();
2736 basic_block *bb_info;
2737 const int max_uid = get_max_uid ();
2738
2739 bb_info = XCNEWVEC (basic_block, max_uid);
2740
2741 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2742 {
2743 rtx_insn *head = BB_HEAD (bb);
2744 rtx_insn *end = BB_END (bb);
2745
2746 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2747 {
2748 /* Verify the end of the basic block is in the INSN chain. */
2749 if (x == end)
2750 break;
2751
2752 /* And that the code outside of basic blocks has NULL bb field. */
2753 if (!BARRIER_P (x)
2754 && BLOCK_FOR_INSN (x) != NULL)
2755 {
2756 error ("insn %d outside of basic blocks has non-NULL bb field",
2757 INSN_UID (x));
2758 err = 1;
2759 }
2760 }
2761
2762 if (!x)
2763 {
2764 error ("end insn %d for block %d not found in the insn stream",
2765 INSN_UID (end), bb->index);
2766 err = 1;
2767 }
2768
2769 /* Work backwards from the end to the head of the basic block
2770 to verify the head is in the RTL chain. */
2771 for (; x != NULL_RTX; x = PREV_INSN (x))
2772 {
2773 /* While walking over the insn chain, verify insns appear
2774 in only one basic block. */
2775 if (bb_info[INSN_UID (x)] != NULL)
2776 {
2777 error ("insn %d is in multiple basic blocks (%d and %d)",
2778 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
2779 err = 1;
2780 }
2781
2782 bb_info[INSN_UID (x)] = bb;
2783
2784 if (x == head)
2785 break;
2786 }
2787 if (!x)
2788 {
2789 error ("head insn %d for block %d not found in the insn stream",
2790 INSN_UID (head), bb->index);
2791 err = 1;
2792 }
2793
2794 last_head = PREV_INSN (x);
2795 }
2796
2797 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
2798 {
2799 /* Check that the code before the first basic block has NULL
2800 bb field. */
2801 if (!BARRIER_P (x)
2802 && BLOCK_FOR_INSN (x) != NULL)
2803 {
2804 error ("insn %d outside of basic blocks has non-NULL bb field",
2805 INSN_UID (x));
2806 err = 1;
2807 }
2808 }
2809 free (bb_info);
2810
2811 return err;
2812 }
2813
2814 /* Verify that fallthru edges point to adjacent blocks in layout order and
2815 that barriers exist after non-fallthru blocks. */
2816
2817 static int
2818 rtl_verify_fallthru (void)
2819 {
2820 basic_block bb;
2821 int err = 0;
2822
2823 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2824 {
2825 edge e;
2826
2827 e = find_fallthru_edge (bb->succs);
2828 if (!e)
2829 {
2830 rtx_insn *insn;
2831
2832 /* Ensure existence of barrier in BB with no fallthru edges. */
2833 for (insn = NEXT_INSN (BB_END (bb)); ; insn = NEXT_INSN (insn))
2834 {
2835 if (!insn || NOTE_INSN_BASIC_BLOCK_P (insn))
2836 {
2837 error ("missing barrier after block %i", bb->index);
2838 err = 1;
2839 break;
2840 }
2841 if (BARRIER_P (insn))
2842 break;
2843 }
2844 }
2845 else if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
2846 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2847 {
2848 rtx_insn *insn;
2849
2850 if (e->src->next_bb != e->dest)
2851 {
2852 error
2853 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2854 e->src->index, e->dest->index);
2855 err = 1;
2856 }
2857 else
2858 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2859 insn = NEXT_INSN (insn))
2860 if (BARRIER_P (insn) || INSN_P (insn))
2861 {
2862 error ("verify_flow_info: Incorrect fallthru %i->%i",
2863 e->src->index, e->dest->index);
2864 fatal_insn ("wrong insn in the fallthru edge", insn);
2865 err = 1;
2866 }
2867 }
2868 }
2869
2870 return err;
2871 }
2872
2873 /* Verify that blocks are laid out in consecutive order. While walking the
2874 instructions, verify that all expected instructions are inside the basic
2875 blocks, and that all returns are followed by barriers. */
2876
2877 static int
2878 rtl_verify_bb_layout (void)
2879 {
2880 basic_block bb;
2881 int err = 0;
2882 rtx_insn *x;
2883 int num_bb_notes;
2884 rtx_insn * const rtx_first = get_insns ();
2885 basic_block last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun), curr_bb = NULL;
2886
2887 num_bb_notes = 0;
2888 last_bb_seen = ENTRY_BLOCK_PTR_FOR_FN (cfun);
2889
2890 for (x = rtx_first; x; x = NEXT_INSN (x))
2891 {
2892 if (NOTE_INSN_BASIC_BLOCK_P (x))
2893 {
2894 bb = NOTE_BASIC_BLOCK (x);
2895
2896 num_bb_notes++;
2897 if (bb != last_bb_seen->next_bb)
2898 internal_error ("basic blocks not laid down consecutively");
2899
2900 curr_bb = last_bb_seen = bb;
2901 }
2902
2903 if (!curr_bb)
2904 {
2905 switch (GET_CODE (x))
2906 {
2907 case BARRIER:
2908 case NOTE:
2909 break;
2910
2911 case CODE_LABEL:
2912 /* An ADDR_VEC is placed outside any basic block. */
2913 if (NEXT_INSN (x)
2914 && JUMP_TABLE_DATA_P (NEXT_INSN (x)))
2915 x = NEXT_INSN (x);
2916
2917 /* But in any case, non-deletable labels can appear anywhere. */
2918 break;
2919
2920 default:
2921 fatal_insn ("insn outside basic block", x);
2922 }
2923 }
2924
2925 if (JUMP_P (x)
2926 && returnjump_p (x) && ! condjump_p (x)
2927 && ! (next_nonnote_insn (x) && BARRIER_P (next_nonnote_insn (x))))
2928 fatal_insn ("return not followed by barrier", x);
2929
2930 if (curr_bb && x == BB_END (curr_bb))
2931 curr_bb = NULL;
2932 }
2933
2934 if (num_bb_notes != n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS)
2935 internal_error
2936 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2937 num_bb_notes, n_basic_blocks_for_fn (cfun));
2938
2939 return err;
2940 }
2941
2942 /* Verify the CFG and RTL consistency common for both underlying RTL and
2943 cfglayout RTL, plus consistency checks specific to linearized RTL mode.
2944
2945 Currently it does following checks:
2946 - all checks of rtl_verify_flow_info_1
2947 - test head/end pointers
2948 - check that blocks are laid out in consecutive order
2949 - check that all insns are in the basic blocks
2950 (except the switch handling code, barriers and notes)
2951 - check that all returns are followed by barriers
2952 - check that all fallthru edge points to the adjacent blocks
2953 - verify that there is a single hot/cold partition boundary after bbro */
2954
2955 static int
2956 rtl_verify_flow_info (void)
2957 {
2958 int err = 0;
2959
2960 err |= rtl_verify_flow_info_1 ();
2961
2962 err |= rtl_verify_bb_insn_chain ();
2963
2964 err |= rtl_verify_fallthru ();
2965
2966 err |= rtl_verify_bb_layout ();
2967
2968 err |= verify_hot_cold_block_grouping ();
2969
2970 return err;
2971 }
2972 \f
2973 /* Assume that the preceding pass has possibly eliminated jump instructions
2974 or converted the unconditional jumps. Eliminate the edges from CFG.
2975 Return true if any edges are eliminated. */
2976
2977 bool
2978 purge_dead_edges (basic_block bb)
2979 {
2980 edge e;
2981 rtx_insn *insn = BB_END (bb);
2982 rtx note;
2983 bool purged = false;
2984 bool found;
2985 edge_iterator ei;
2986
2987 if (DEBUG_INSN_P (insn) && insn != BB_HEAD (bb))
2988 do
2989 insn = PREV_INSN (insn);
2990 while ((DEBUG_INSN_P (insn) || NOTE_P (insn)) && insn != BB_HEAD (bb));
2991
2992 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
2993 if (NONJUMP_INSN_P (insn)
2994 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
2995 {
2996 rtx eqnote;
2997
2998 if (! may_trap_p (PATTERN (insn))
2999 || ((eqnote = find_reg_equal_equiv_note (insn))
3000 && ! may_trap_p (XEXP (eqnote, 0))))
3001 remove_note (insn, note);
3002 }
3003
3004 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
3005 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3006 {
3007 bool remove = false;
3008
3009 /* There are three types of edges we need to handle correctly here: EH
3010 edges, abnormal call EH edges, and abnormal call non-EH edges. The
3011 latter can appear when nonlocal gotos are used. */
3012 if (e->flags & EDGE_ABNORMAL_CALL)
3013 {
3014 if (!CALL_P (insn))
3015 remove = true;
3016 else if (can_nonlocal_goto (insn))
3017 ;
3018 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3019 ;
3020 else if (flag_tm && find_reg_note (insn, REG_TM, NULL))
3021 ;
3022 else
3023 remove = true;
3024 }
3025 else if (e->flags & EDGE_EH)
3026 remove = !can_throw_internal (insn);
3027
3028 if (remove)
3029 {
3030 remove_edge (e);
3031 df_set_bb_dirty (bb);
3032 purged = true;
3033 }
3034 else
3035 ei_next (&ei);
3036 }
3037
3038 if (JUMP_P (insn))
3039 {
3040 rtx note;
3041 edge b,f;
3042 edge_iterator ei;
3043
3044 /* We do care only about conditional jumps and simplejumps. */
3045 if (!any_condjump_p (insn)
3046 && !returnjump_p (insn)
3047 && !simplejump_p (insn))
3048 return purged;
3049
3050 /* Branch probability/prediction notes are defined only for
3051 condjumps. We've possibly turned condjump into simplejump. */
3052 if (simplejump_p (insn))
3053 {
3054 note = find_reg_note (insn, REG_BR_PROB, NULL);
3055 if (note)
3056 remove_note (insn, note);
3057 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
3058 remove_note (insn, note);
3059 }
3060
3061 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3062 {
3063 /* Avoid abnormal flags to leak from computed jumps turned
3064 into simplejumps. */
3065
3066 e->flags &= ~EDGE_ABNORMAL;
3067
3068 /* See if this edge is one we should keep. */
3069 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
3070 /* A conditional jump can fall through into the next
3071 block, so we should keep the edge. */
3072 {
3073 ei_next (&ei);
3074 continue;
3075 }
3076 else if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
3077 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
3078 /* If the destination block is the target of the jump,
3079 keep the edge. */
3080 {
3081 ei_next (&ei);
3082 continue;
3083 }
3084 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
3085 && returnjump_p (insn))
3086 /* If the destination block is the exit block, and this
3087 instruction is a return, then keep the edge. */
3088 {
3089 ei_next (&ei);
3090 continue;
3091 }
3092 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
3093 /* Keep the edges that correspond to exceptions thrown by
3094 this instruction and rematerialize the EDGE_ABNORMAL
3095 flag we just cleared above. */
3096 {
3097 e->flags |= EDGE_ABNORMAL;
3098 ei_next (&ei);
3099 continue;
3100 }
3101
3102 /* We do not need this edge. */
3103 df_set_bb_dirty (bb);
3104 purged = true;
3105 remove_edge (e);
3106 }
3107
3108 if (EDGE_COUNT (bb->succs) == 0 || !purged)
3109 return purged;
3110
3111 if (dump_file)
3112 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
3113
3114 if (!optimize)
3115 return purged;
3116
3117 /* Redistribute probabilities. */
3118 if (single_succ_p (bb))
3119 {
3120 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
3121 single_succ_edge (bb)->count = bb->count;
3122 }
3123 else
3124 {
3125 note = find_reg_note (insn, REG_BR_PROB, NULL);
3126 if (!note)
3127 return purged;
3128
3129 b = BRANCH_EDGE (bb);
3130 f = FALLTHRU_EDGE (bb);
3131 b->probability = XINT (note, 0);
3132 f->probability = REG_BR_PROB_BASE - b->probability;
3133 /* Update these to use GCOV_COMPUTE_SCALE. */
3134 b->count = bb->count * b->probability / REG_BR_PROB_BASE;
3135 f->count = bb->count * f->probability / REG_BR_PROB_BASE;
3136 }
3137
3138 return purged;
3139 }
3140 else if (CALL_P (insn) && SIBLING_CALL_P (insn))
3141 {
3142 /* First, there should not be any EH or ABCALL edges resulting
3143 from non-local gotos and the like. If there were, we shouldn't
3144 have created the sibcall in the first place. Second, there
3145 should of course never have been a fallthru edge. */
3146 gcc_assert (single_succ_p (bb));
3147 gcc_assert (single_succ_edge (bb)->flags
3148 == (EDGE_SIBCALL | EDGE_ABNORMAL));
3149
3150 return 0;
3151 }
3152
3153 /* If we don't see a jump insn, we don't know exactly why the block would
3154 have been broken at this point. Look for a simple, non-fallthru edge,
3155 as these are only created by conditional branches. If we find such an
3156 edge we know that there used to be a jump here and can then safely
3157 remove all non-fallthru edges. */
3158 found = false;
3159 FOR_EACH_EDGE (e, ei, bb->succs)
3160 if (! (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU)))
3161 {
3162 found = true;
3163 break;
3164 }
3165
3166 if (!found)
3167 return purged;
3168
3169 /* Remove all but the fake and fallthru edges. The fake edge may be
3170 the only successor for this block in the case of noreturn
3171 calls. */
3172 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
3173 {
3174 if (!(e->flags & (EDGE_FALLTHRU | EDGE_FAKE)))
3175 {
3176 df_set_bb_dirty (bb);
3177 remove_edge (e);
3178 purged = true;
3179 }
3180 else
3181 ei_next (&ei);
3182 }
3183
3184 gcc_assert (single_succ_p (bb));
3185
3186 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
3187 single_succ_edge (bb)->count = bb->count;
3188
3189 if (dump_file)
3190 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
3191 bb->index);
3192 return purged;
3193 }
3194
3195 /* Search all basic blocks for potentially dead edges and purge them. Return
3196 true if some edge has been eliminated. */
3197
3198 bool
3199 purge_all_dead_edges (void)
3200 {
3201 int purged = false;
3202 basic_block bb;
3203
3204 FOR_EACH_BB_FN (bb, cfun)
3205 {
3206 bool purged_here = purge_dead_edges (bb);
3207
3208 purged |= purged_here;
3209 }
3210
3211 return purged;
3212 }
3213
3214 /* This is used by a few passes that emit some instructions after abnormal
3215 calls, moving the basic block's end, while they in fact do want to emit
3216 them on the fallthru edge. Look for abnormal call edges, find backward
3217 the call in the block and insert the instructions on the edge instead.
3218
3219 Similarly, handle instructions throwing exceptions internally.
3220
3221 Return true when instructions have been found and inserted on edges. */
3222
3223 bool
3224 fixup_abnormal_edges (void)
3225 {
3226 bool inserted = false;
3227 basic_block bb;
3228
3229 FOR_EACH_BB_FN (bb, cfun)
3230 {
3231 edge e;
3232 edge_iterator ei;
3233
3234 /* Look for cases we are interested in - calls or instructions causing
3235 exceptions. */
3236 FOR_EACH_EDGE (e, ei, bb->succs)
3237 if ((e->flags & EDGE_ABNORMAL_CALL)
3238 || ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
3239 == (EDGE_ABNORMAL | EDGE_EH)))
3240 break;
3241
3242 if (e && !CALL_P (BB_END (bb)) && !can_throw_internal (BB_END (bb)))
3243 {
3244 rtx_insn *insn;
3245
3246 /* Get past the new insns generated. Allow notes, as the insns
3247 may be already deleted. */
3248 insn = BB_END (bb);
3249 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
3250 && !can_throw_internal (insn)
3251 && insn != BB_HEAD (bb))
3252 insn = PREV_INSN (insn);
3253
3254 if (CALL_P (insn) || can_throw_internal (insn))
3255 {
3256 rtx_insn *stop, *next;
3257
3258 e = find_fallthru_edge (bb->succs);
3259
3260 stop = NEXT_INSN (BB_END (bb));
3261 SET_BB_END (bb) = insn;
3262
3263 for (insn = NEXT_INSN (insn); insn != stop; insn = next)
3264 {
3265 next = NEXT_INSN (insn);
3266 if (INSN_P (insn))
3267 {
3268 delete_insn (insn);
3269
3270 /* Sometimes there's still the return value USE.
3271 If it's placed after a trapping call (i.e. that
3272 call is the last insn anyway), we have no fallthru
3273 edge. Simply delete this use and don't try to insert
3274 on the non-existent edge. */
3275 if (GET_CODE (PATTERN (insn)) != USE)
3276 {
3277 /* We're not deleting it, we're moving it. */
3278 INSN_DELETED_P (insn) = 0;
3279 SET_PREV_INSN (insn) = NULL_RTX;
3280 SET_NEXT_INSN (insn) = NULL_RTX;
3281
3282 insert_insn_on_edge (insn, e);
3283 inserted = true;
3284 }
3285 }
3286 else if (!BARRIER_P (insn))
3287 set_block_for_insn (insn, NULL);
3288 }
3289 }
3290
3291 /* It may be that we don't find any trapping insn. In this
3292 case we discovered quite late that the insn that had been
3293 marked as can_throw_internal in fact couldn't trap at all.
3294 So we should in fact delete the EH edges out of the block. */
3295 else
3296 purge_dead_edges (bb);
3297 }
3298 }
3299
3300 return inserted;
3301 }
3302 \f
3303 /* Cut the insns from FIRST to LAST out of the insns stream. */
3304
3305 rtx_insn *
3306 unlink_insn_chain (rtx first, rtx last)
3307 {
3308 rtx_insn *prevfirst = PREV_INSN (first);
3309 rtx_insn *nextlast = NEXT_INSN (last);
3310
3311 SET_PREV_INSN (first) = NULL;
3312 SET_NEXT_INSN (last) = NULL;
3313 if (prevfirst)
3314 SET_NEXT_INSN (prevfirst) = nextlast;
3315 if (nextlast)
3316 SET_PREV_INSN (nextlast) = prevfirst;
3317 else
3318 set_last_insn (prevfirst);
3319 if (!prevfirst)
3320 set_first_insn (nextlast);
3321 return as_a <rtx_insn *> (first);
3322 }
3323 \f
3324 /* Skip over inter-block insns occurring after BB which are typically
3325 associated with BB (e.g., barriers). If there are any such insns,
3326 we return the last one. Otherwise, we return the end of BB. */
3327
3328 static rtx_insn *
3329 skip_insns_after_block (basic_block bb)
3330 {
3331 rtx_insn *insn, *last_insn, *next_head, *prev;
3332
3333 next_head = NULL;
3334 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3335 next_head = BB_HEAD (bb->next_bb);
3336
3337 for (last_insn = insn = BB_END (bb); (insn = NEXT_INSN (insn)) != 0; )
3338 {
3339 if (insn == next_head)
3340 break;
3341
3342 switch (GET_CODE (insn))
3343 {
3344 case BARRIER:
3345 last_insn = insn;
3346 continue;
3347
3348 case NOTE:
3349 switch (NOTE_KIND (insn))
3350 {
3351 case NOTE_INSN_BLOCK_END:
3352 gcc_unreachable ();
3353 continue;
3354 default:
3355 continue;
3356 break;
3357 }
3358 break;
3359
3360 case CODE_LABEL:
3361 if (NEXT_INSN (insn)
3362 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
3363 {
3364 insn = NEXT_INSN (insn);
3365 last_insn = insn;
3366 continue;
3367 }
3368 break;
3369
3370 default:
3371 break;
3372 }
3373
3374 break;
3375 }
3376
3377 /* It is possible to hit contradictory sequence. For instance:
3378
3379 jump_insn
3380 NOTE_INSN_BLOCK_BEG
3381 barrier
3382
3383 Where barrier belongs to jump_insn, but the note does not. This can be
3384 created by removing the basic block originally following
3385 NOTE_INSN_BLOCK_BEG. In such case reorder the notes. */
3386
3387 for (insn = last_insn; insn != BB_END (bb); insn = prev)
3388 {
3389 prev = PREV_INSN (insn);
3390 if (NOTE_P (insn))
3391 switch (NOTE_KIND (insn))
3392 {
3393 case NOTE_INSN_BLOCK_END:
3394 gcc_unreachable ();
3395 break;
3396 case NOTE_INSN_DELETED:
3397 case NOTE_INSN_DELETED_LABEL:
3398 case NOTE_INSN_DELETED_DEBUG_LABEL:
3399 continue;
3400 default:
3401 reorder_insns (insn, insn, last_insn);
3402 }
3403 }
3404
3405 return last_insn;
3406 }
3407
3408 /* Locate or create a label for a given basic block. */
3409
3410 static rtx
3411 label_for_bb (basic_block bb)
3412 {
3413 rtx label = BB_HEAD (bb);
3414
3415 if (!LABEL_P (label))
3416 {
3417 if (dump_file)
3418 fprintf (dump_file, "Emitting label for block %d\n", bb->index);
3419
3420 label = block_label (bb);
3421 }
3422
3423 return label;
3424 }
3425
3426 /* Locate the effective beginning and end of the insn chain for each
3427 block, as defined by skip_insns_after_block above. */
3428
3429 static void
3430 record_effective_endpoints (void)
3431 {
3432 rtx_insn *next_insn;
3433 basic_block bb;
3434 rtx_insn *insn;
3435
3436 for (insn = get_insns ();
3437 insn
3438 && NOTE_P (insn)
3439 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK;
3440 insn = NEXT_INSN (insn))
3441 continue;
3442 /* No basic blocks at all? */
3443 gcc_assert (insn);
3444
3445 if (PREV_INSN (insn))
3446 cfg_layout_function_header =
3447 unlink_insn_chain (get_insns (), PREV_INSN (insn));
3448 else
3449 cfg_layout_function_header = NULL_RTX;
3450
3451 next_insn = get_insns ();
3452 FOR_EACH_BB_FN (bb, cfun)
3453 {
3454 rtx_insn *end;
3455
3456 if (PREV_INSN (BB_HEAD (bb)) && next_insn != BB_HEAD (bb))
3457 SET_BB_HEADER (bb) = unlink_insn_chain (next_insn,
3458 PREV_INSN (BB_HEAD (bb)));
3459 end = skip_insns_after_block (bb);
3460 if (NEXT_INSN (BB_END (bb)) && BB_END (bb) != end)
3461 BB_FOOTER (bb) = unlink_insn_chain (NEXT_INSN (BB_END (bb)), end);
3462 next_insn = NEXT_INSN (BB_END (bb));
3463 }
3464
3465 cfg_layout_function_footer = next_insn;
3466 if (cfg_layout_function_footer)
3467 cfg_layout_function_footer = unlink_insn_chain (cfg_layout_function_footer, get_last_insn ());
3468 }
3469 \f
3470 namespace {
3471
3472 const pass_data pass_data_into_cfg_layout_mode =
3473 {
3474 RTL_PASS, /* type */
3475 "into_cfglayout", /* name */
3476 OPTGROUP_NONE, /* optinfo_flags */
3477 TV_CFG, /* tv_id */
3478 0, /* properties_required */
3479 PROP_cfglayout, /* properties_provided */
3480 0, /* properties_destroyed */
3481 0, /* todo_flags_start */
3482 0, /* todo_flags_finish */
3483 };
3484
3485 class pass_into_cfg_layout_mode : public rtl_opt_pass
3486 {
3487 public:
3488 pass_into_cfg_layout_mode (gcc::context *ctxt)
3489 : rtl_opt_pass (pass_data_into_cfg_layout_mode, ctxt)
3490 {}
3491
3492 /* opt_pass methods: */
3493 virtual unsigned int execute (function *)
3494 {
3495 cfg_layout_initialize (0);
3496 return 0;
3497 }
3498
3499 }; // class pass_into_cfg_layout_mode
3500
3501 } // anon namespace
3502
3503 rtl_opt_pass *
3504 make_pass_into_cfg_layout_mode (gcc::context *ctxt)
3505 {
3506 return new pass_into_cfg_layout_mode (ctxt);
3507 }
3508
3509 namespace {
3510
3511 const pass_data pass_data_outof_cfg_layout_mode =
3512 {
3513 RTL_PASS, /* type */
3514 "outof_cfglayout", /* name */
3515 OPTGROUP_NONE, /* optinfo_flags */
3516 TV_CFG, /* tv_id */
3517 0, /* properties_required */
3518 0, /* properties_provided */
3519 PROP_cfglayout, /* properties_destroyed */
3520 0, /* todo_flags_start */
3521 0, /* todo_flags_finish */
3522 };
3523
3524 class pass_outof_cfg_layout_mode : public rtl_opt_pass
3525 {
3526 public:
3527 pass_outof_cfg_layout_mode (gcc::context *ctxt)
3528 : rtl_opt_pass (pass_data_outof_cfg_layout_mode, ctxt)
3529 {}
3530
3531 /* opt_pass methods: */
3532 virtual unsigned int execute (function *);
3533
3534 }; // class pass_outof_cfg_layout_mode
3535
3536 unsigned int
3537 pass_outof_cfg_layout_mode::execute (function *fun)
3538 {
3539 basic_block bb;
3540
3541 FOR_EACH_BB_FN (bb, fun)
3542 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3543 bb->aux = bb->next_bb;
3544
3545 cfg_layout_finalize ();
3546
3547 return 0;
3548 }
3549
3550 } // anon namespace
3551
3552 rtl_opt_pass *
3553 make_pass_outof_cfg_layout_mode (gcc::context *ctxt)
3554 {
3555 return new pass_outof_cfg_layout_mode (ctxt);
3556 }
3557 \f
3558
3559 /* Link the basic blocks in the correct order, compacting the basic
3560 block queue while at it. If STAY_IN_CFGLAYOUT_MODE is false, this
3561 function also clears the basic block header and footer fields.
3562
3563 This function is usually called after a pass (e.g. tracer) finishes
3564 some transformations while in cfglayout mode. The required sequence
3565 of the basic blocks is in a linked list along the bb->aux field.
3566 This functions re-links the basic block prev_bb and next_bb pointers
3567 accordingly, and it compacts and renumbers the blocks.
3568
3569 FIXME: This currently works only for RTL, but the only RTL-specific
3570 bits are the STAY_IN_CFGLAYOUT_MODE bits. The tracer pass was moved
3571 to GIMPLE a long time ago, but it doesn't relink the basic block
3572 chain. It could do that (to give better initial RTL) if this function
3573 is made IR-agnostic (and moved to cfganal.c or cfg.c while at it). */
3574
3575 void
3576 relink_block_chain (bool stay_in_cfglayout_mode)
3577 {
3578 basic_block bb, prev_bb;
3579 int index;
3580
3581 /* Maybe dump the re-ordered sequence. */
3582 if (dump_file)
3583 {
3584 fprintf (dump_file, "Reordered sequence:\n");
3585 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, index =
3586 NUM_FIXED_BLOCKS;
3587 bb;
3588 bb = (basic_block) bb->aux, index++)
3589 {
3590 fprintf (dump_file, " %i ", index);
3591 if (get_bb_original (bb))
3592 fprintf (dump_file, "duplicate of %i ",
3593 get_bb_original (bb)->index);
3594 else if (forwarder_block_p (bb)
3595 && !LABEL_P (BB_HEAD (bb)))
3596 fprintf (dump_file, "compensation ");
3597 else
3598 fprintf (dump_file, "bb %i ", bb->index);
3599 fprintf (dump_file, " [%i]\n", bb->frequency);
3600 }
3601 }
3602
3603 /* Now reorder the blocks. */
3604 prev_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3605 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
3606 for (; bb; prev_bb = bb, bb = (basic_block) bb->aux)
3607 {
3608 bb->prev_bb = prev_bb;
3609 prev_bb->next_bb = bb;
3610 }
3611 prev_bb->next_bb = EXIT_BLOCK_PTR_FOR_FN (cfun);
3612 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb = prev_bb;
3613
3614 /* Then, clean up the aux fields. */
3615 FOR_ALL_BB_FN (bb, cfun)
3616 {
3617 bb->aux = NULL;
3618 if (!stay_in_cfglayout_mode)
3619 SET_BB_HEADER (bb) = BB_FOOTER (bb) = NULL;
3620 }
3621
3622 /* Maybe reset the original copy tables, they are not valid anymore
3623 when we renumber the basic blocks in compact_blocks. If we are
3624 are going out of cfglayout mode, don't re-allocate the tables. */
3625 free_original_copy_tables ();
3626 if (stay_in_cfglayout_mode)
3627 initialize_original_copy_tables ();
3628
3629 /* Finally, put basic_block_info in the new order. */
3630 compact_blocks ();
3631 }
3632 \f
3633
3634 /* Given a reorder chain, rearrange the code to match. */
3635
3636 static void
3637 fixup_reorder_chain (void)
3638 {
3639 basic_block bb;
3640 rtx insn = NULL;
3641
3642 if (cfg_layout_function_header)
3643 {
3644 set_first_insn (cfg_layout_function_header);
3645 insn = cfg_layout_function_header;
3646 while (NEXT_INSN (insn))
3647 insn = NEXT_INSN (insn);
3648 }
3649
3650 /* First do the bulk reordering -- rechain the blocks without regard to
3651 the needed changes to jumps and labels. */
3652
3653 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb; bb = (basic_block)
3654 bb->aux)
3655 {
3656 if (BB_HEADER (bb))
3657 {
3658 if (insn)
3659 SET_NEXT_INSN (insn) = BB_HEADER (bb);
3660 else
3661 set_first_insn (BB_HEADER (bb));
3662 SET_PREV_INSN (BB_HEADER (bb)) = insn;
3663 insn = BB_HEADER (bb);
3664 while (NEXT_INSN (insn))
3665 insn = NEXT_INSN (insn);
3666 }
3667 if (insn)
3668 SET_NEXT_INSN (insn) = BB_HEAD (bb);
3669 else
3670 set_first_insn (BB_HEAD (bb));
3671 SET_PREV_INSN (BB_HEAD (bb)) = insn;
3672 insn = BB_END (bb);
3673 if (BB_FOOTER (bb))
3674 {
3675 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
3676 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
3677 while (NEXT_INSN (insn))
3678 insn = NEXT_INSN (insn);
3679 }
3680 }
3681
3682 SET_NEXT_INSN (insn) = cfg_layout_function_footer;
3683 if (cfg_layout_function_footer)
3684 SET_PREV_INSN (cfg_layout_function_footer) = insn;
3685
3686 while (NEXT_INSN (insn))
3687 insn = NEXT_INSN (insn);
3688
3689 set_last_insn (insn);
3690 #ifdef ENABLE_CHECKING
3691 verify_insn_chain ();
3692 #endif
3693
3694 /* Now add jumps and labels as needed to match the blocks new
3695 outgoing edges. */
3696
3697 for (bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; bb ; bb = (basic_block)
3698 bb->aux)
3699 {
3700 edge e_fall, e_taken, e;
3701 rtx_insn *bb_end_insn;
3702 rtx ret_label = NULL_RTX;
3703 basic_block nb;
3704 edge_iterator ei;
3705
3706 if (EDGE_COUNT (bb->succs) == 0)
3707 continue;
3708
3709 /* Find the old fallthru edge, and another non-EH edge for
3710 a taken jump. */
3711 e_taken = e_fall = NULL;
3712
3713 FOR_EACH_EDGE (e, ei, bb->succs)
3714 if (e->flags & EDGE_FALLTHRU)
3715 e_fall = e;
3716 else if (! (e->flags & EDGE_EH))
3717 e_taken = e;
3718
3719 bb_end_insn = BB_END (bb);
3720 if (JUMP_P (bb_end_insn))
3721 {
3722 ret_label = JUMP_LABEL (bb_end_insn);
3723 if (any_condjump_p (bb_end_insn))
3724 {
3725 /* This might happen if the conditional jump has side
3726 effects and could therefore not be optimized away.
3727 Make the basic block to end with a barrier in order
3728 to prevent rtl_verify_flow_info from complaining. */
3729 if (!e_fall)
3730 {
3731 gcc_assert (!onlyjump_p (bb_end_insn)
3732 || returnjump_p (bb_end_insn)
3733 || (e_taken->flags & EDGE_CROSSING));
3734 emit_barrier_after (bb_end_insn);
3735 continue;
3736 }
3737
3738 /* If the old fallthru is still next, nothing to do. */
3739 if (bb->aux == e_fall->dest
3740 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3741 continue;
3742
3743 /* The degenerated case of conditional jump jumping to the next
3744 instruction can happen for jumps with side effects. We need
3745 to construct a forwarder block and this will be done just
3746 fine by force_nonfallthru below. */
3747 if (!e_taken)
3748 ;
3749
3750 /* There is another special case: if *neither* block is next,
3751 such as happens at the very end of a function, then we'll
3752 need to add a new unconditional jump. Choose the taken
3753 edge based on known or assumed probability. */
3754 else if (bb->aux != e_taken->dest)
3755 {
3756 rtx note = find_reg_note (bb_end_insn, REG_BR_PROB, 0);
3757
3758 if (note
3759 && XINT (note, 0) < REG_BR_PROB_BASE / 2
3760 && invert_jump (bb_end_insn,
3761 (e_fall->dest
3762 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3763 ? NULL_RTX
3764 : label_for_bb (e_fall->dest)), 0))
3765 {
3766 e_fall->flags &= ~EDGE_FALLTHRU;
3767 gcc_checking_assert (could_fall_through
3768 (e_taken->src, e_taken->dest));
3769 e_taken->flags |= EDGE_FALLTHRU;
3770 update_br_prob_note (bb);
3771 e = e_fall, e_fall = e_taken, e_taken = e;
3772 }
3773 }
3774
3775 /* If the "jumping" edge is a crossing edge, and the fall
3776 through edge is non-crossing, leave things as they are. */
3777 else if ((e_taken->flags & EDGE_CROSSING)
3778 && !(e_fall->flags & EDGE_CROSSING))
3779 continue;
3780
3781 /* Otherwise we can try to invert the jump. This will
3782 basically never fail, however, keep up the pretense. */
3783 else if (invert_jump (bb_end_insn,
3784 (e_fall->dest
3785 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3786 ? NULL_RTX
3787 : label_for_bb (e_fall->dest)), 0))
3788 {
3789 e_fall->flags &= ~EDGE_FALLTHRU;
3790 gcc_checking_assert (could_fall_through
3791 (e_taken->src, e_taken->dest));
3792 e_taken->flags |= EDGE_FALLTHRU;
3793 update_br_prob_note (bb);
3794 if (LABEL_NUSES (ret_label) == 0
3795 && single_pred_p (e_taken->dest))
3796 delete_insn (ret_label);
3797 continue;
3798 }
3799 }
3800 else if (extract_asm_operands (PATTERN (bb_end_insn)) != NULL)
3801 {
3802 /* If the old fallthru is still next or if
3803 asm goto doesn't have a fallthru (e.g. when followed by
3804 __builtin_unreachable ()), nothing to do. */
3805 if (! e_fall
3806 || bb->aux == e_fall->dest
3807 || e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3808 continue;
3809
3810 /* Otherwise we'll have to use the fallthru fixup below. */
3811 }
3812 else
3813 {
3814 /* Otherwise we have some return, switch or computed
3815 jump. In the 99% case, there should not have been a
3816 fallthru edge. */
3817 gcc_assert (returnjump_p (bb_end_insn) || !e_fall);
3818 continue;
3819 }
3820 }
3821 else
3822 {
3823 /* No fallthru implies a noreturn function with EH edges, or
3824 something similarly bizarre. In any case, we don't need to
3825 do anything. */
3826 if (! e_fall)
3827 continue;
3828
3829 /* If the fallthru block is still next, nothing to do. */
3830 if (bb->aux == e_fall->dest)
3831 continue;
3832
3833 /* A fallthru to exit block. */
3834 if (e_fall->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3835 continue;
3836 }
3837
3838 /* We got here if we need to add a new jump insn.
3839 Note force_nonfallthru can delete E_FALL and thus we have to
3840 save E_FALL->src prior to the call to force_nonfallthru. */
3841 nb = force_nonfallthru_and_redirect (e_fall, e_fall->dest, ret_label);
3842 if (nb)
3843 {
3844 nb->aux = bb->aux;
3845 bb->aux = nb;
3846 /* Don't process this new block. */
3847 bb = nb;
3848 }
3849 }
3850
3851 relink_block_chain (/*stay_in_cfglayout_mode=*/false);
3852
3853 /* Annoying special case - jump around dead jumptables left in the code. */
3854 FOR_EACH_BB_FN (bb, cfun)
3855 {
3856 edge e = find_fallthru_edge (bb->succs);
3857
3858 if (e && !can_fallthru (e->src, e->dest))
3859 force_nonfallthru (e);
3860 }
3861
3862 /* Ensure goto_locus from edges has some instructions with that locus
3863 in RTL. */
3864 if (!optimize)
3865 FOR_EACH_BB_FN (bb, cfun)
3866 {
3867 edge e;
3868 edge_iterator ei;
3869
3870 FOR_EACH_EDGE (e, ei, bb->succs)
3871 if (LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
3872 && !(e->flags & EDGE_ABNORMAL))
3873 {
3874 edge e2;
3875 edge_iterator ei2;
3876 basic_block dest, nb;
3877 rtx_insn *end;
3878
3879 insn = BB_END (e->src);
3880 end = PREV_INSN (BB_HEAD (e->src));
3881 while (insn != end
3882 && (!NONDEBUG_INSN_P (insn) || !INSN_HAS_LOCATION (insn)))
3883 insn = PREV_INSN (insn);
3884 if (insn != end
3885 && INSN_LOCATION (insn) == e->goto_locus)
3886 continue;
3887 if (simplejump_p (BB_END (e->src))
3888 && !INSN_HAS_LOCATION (BB_END (e->src)))
3889 {
3890 INSN_LOCATION (BB_END (e->src)) = e->goto_locus;
3891 continue;
3892 }
3893 dest = e->dest;
3894 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
3895 {
3896 /* Non-fallthru edges to the exit block cannot be split. */
3897 if (!(e->flags & EDGE_FALLTHRU))
3898 continue;
3899 }
3900 else
3901 {
3902 insn = BB_HEAD (dest);
3903 end = NEXT_INSN (BB_END (dest));
3904 while (insn != end && !NONDEBUG_INSN_P (insn))
3905 insn = NEXT_INSN (insn);
3906 if (insn != end && INSN_HAS_LOCATION (insn)
3907 && INSN_LOCATION (insn) == e->goto_locus)
3908 continue;
3909 }
3910 nb = split_edge (e);
3911 if (!INSN_P (BB_END (nb)))
3912 SET_BB_END (nb) = emit_insn_after_noloc (gen_nop (), BB_END (nb),
3913 nb);
3914 INSN_LOCATION (BB_END (nb)) = e->goto_locus;
3915
3916 /* If there are other incoming edges to the destination block
3917 with the same goto locus, redirect them to the new block as
3918 well, this can prevent other such blocks from being created
3919 in subsequent iterations of the loop. */
3920 for (ei2 = ei_start (dest->preds); (e2 = ei_safe_edge (ei2)); )
3921 if (LOCATION_LOCUS (e2->goto_locus) != UNKNOWN_LOCATION
3922 && !(e2->flags & (EDGE_ABNORMAL | EDGE_FALLTHRU))
3923 && e->goto_locus == e2->goto_locus)
3924 redirect_edge_and_branch (e2, nb);
3925 else
3926 ei_next (&ei2);
3927 }
3928 }
3929 }
3930 \f
3931 /* Perform sanity checks on the insn chain.
3932 1. Check that next/prev pointers are consistent in both the forward and
3933 reverse direction.
3934 2. Count insns in chain, going both directions, and check if equal.
3935 3. Check that get_last_insn () returns the actual end of chain. */
3936
3937 DEBUG_FUNCTION void
3938 verify_insn_chain (void)
3939 {
3940 rtx_insn *x, *prevx, *nextx;
3941 int insn_cnt1, insn_cnt2;
3942
3943 for (prevx = NULL, insn_cnt1 = 1, x = get_insns ();
3944 x != 0;
3945 prevx = x, insn_cnt1++, x = NEXT_INSN (x))
3946 gcc_assert (PREV_INSN (x) == prevx);
3947
3948 gcc_assert (prevx == get_last_insn ());
3949
3950 for (nextx = NULL, insn_cnt2 = 1, x = get_last_insn ();
3951 x != 0;
3952 nextx = x, insn_cnt2++, x = PREV_INSN (x))
3953 gcc_assert (NEXT_INSN (x) == nextx);
3954
3955 gcc_assert (insn_cnt1 == insn_cnt2);
3956 }
3957 \f
3958 /* If we have assembler epilogues, the block falling through to exit must
3959 be the last one in the reordered chain when we reach final. Ensure
3960 that this condition is met. */
3961 static void
3962 fixup_fallthru_exit_predecessor (void)
3963 {
3964 edge e;
3965 basic_block bb = NULL;
3966
3967 /* This transformation is not valid before reload, because we might
3968 separate a call from the instruction that copies the return
3969 value. */
3970 gcc_assert (reload_completed);
3971
3972 e = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
3973 if (e)
3974 bb = e->src;
3975
3976 if (bb && bb->aux)
3977 {
3978 basic_block c = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
3979
3980 /* If the very first block is the one with the fall-through exit
3981 edge, we have to split that block. */
3982 if (c == bb)
3983 {
3984 bb = split_block (bb, NULL)->dest;
3985 bb->aux = c->aux;
3986 c->aux = bb;
3987 BB_FOOTER (bb) = BB_FOOTER (c);
3988 BB_FOOTER (c) = NULL;
3989 }
3990
3991 while (c->aux != bb)
3992 c = (basic_block) c->aux;
3993
3994 c->aux = bb->aux;
3995 while (c->aux)
3996 c = (basic_block) c->aux;
3997
3998 c->aux = bb;
3999 bb->aux = NULL;
4000 }
4001 }
4002
4003 /* In case there are more than one fallthru predecessors of exit, force that
4004 there is only one. */
4005
4006 static void
4007 force_one_exit_fallthru (void)
4008 {
4009 edge e, predecessor = NULL;
4010 bool more = false;
4011 edge_iterator ei;
4012 basic_block forwarder, bb;
4013
4014 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4015 if (e->flags & EDGE_FALLTHRU)
4016 {
4017 if (predecessor == NULL)
4018 predecessor = e;
4019 else
4020 {
4021 more = true;
4022 break;
4023 }
4024 }
4025
4026 if (!more)
4027 return;
4028
4029 /* Exit has several fallthru predecessors. Create a forwarder block for
4030 them. */
4031 forwarder = split_edge (predecessor);
4032 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
4033 (e = ei_safe_edge (ei)); )
4034 {
4035 if (e->src == forwarder
4036 || !(e->flags & EDGE_FALLTHRU))
4037 ei_next (&ei);
4038 else
4039 redirect_edge_and_branch_force (e, forwarder);
4040 }
4041
4042 /* Fix up the chain of blocks -- make FORWARDER immediately precede the
4043 exit block. */
4044 FOR_EACH_BB_FN (bb, cfun)
4045 {
4046 if (bb->aux == NULL && bb != forwarder)
4047 {
4048 bb->aux = forwarder;
4049 break;
4050 }
4051 }
4052 }
4053 \f
4054 /* Return true in case it is possible to duplicate the basic block BB. */
4055
4056 static bool
4057 cfg_layout_can_duplicate_bb_p (const_basic_block bb)
4058 {
4059 /* Do not attempt to duplicate tablejumps, as we need to unshare
4060 the dispatch table. This is difficult to do, as the instructions
4061 computing jump destination may be hoisted outside the basic block. */
4062 if (tablejump_p (BB_END (bb), NULL, NULL))
4063 return false;
4064
4065 /* Do not duplicate blocks containing insns that can't be copied. */
4066 if (targetm.cannot_copy_insn_p)
4067 {
4068 rtx_insn *insn = BB_HEAD (bb);
4069 while (1)
4070 {
4071 if (INSN_P (insn) && targetm.cannot_copy_insn_p (insn))
4072 return false;
4073 if (insn == BB_END (bb))
4074 break;
4075 insn = NEXT_INSN (insn);
4076 }
4077 }
4078
4079 return true;
4080 }
4081
4082 rtx_insn *
4083 duplicate_insn_chain (rtx from, rtx to)
4084 {
4085 rtx insn, next, copy;
4086 rtx_note *last;
4087
4088 /* Avoid updating of boundaries of previous basic block. The
4089 note will get removed from insn stream in fixup. */
4090 last = emit_note (NOTE_INSN_DELETED);
4091
4092 /* Create copy at the end of INSN chain. The chain will
4093 be reordered later. */
4094 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
4095 {
4096 switch (GET_CODE (insn))
4097 {
4098 case DEBUG_INSN:
4099 /* Don't duplicate label debug insns. */
4100 if (TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL)
4101 break;
4102 /* FALLTHRU */
4103 case INSN:
4104 case CALL_INSN:
4105 case JUMP_INSN:
4106 copy = emit_copy_of_insn_after (insn, get_last_insn ());
4107 if (JUMP_P (insn) && JUMP_LABEL (insn) != NULL_RTX
4108 && ANY_RETURN_P (JUMP_LABEL (insn)))
4109 JUMP_LABEL (copy) = JUMP_LABEL (insn);
4110 maybe_copy_prologue_epilogue_insn (insn, copy);
4111 break;
4112
4113 case JUMP_TABLE_DATA:
4114 /* Avoid copying of dispatch tables. We never duplicate
4115 tablejumps, so this can hit only in case the table got
4116 moved far from original jump.
4117 Avoid copying following barrier as well if any
4118 (and debug insns in between). */
4119 for (next = NEXT_INSN (insn);
4120 next != NEXT_INSN (to);
4121 next = NEXT_INSN (next))
4122 if (!DEBUG_INSN_P (next))
4123 break;
4124 if (next != NEXT_INSN (to) && BARRIER_P (next))
4125 insn = next;
4126 break;
4127
4128 case CODE_LABEL:
4129 break;
4130
4131 case BARRIER:
4132 emit_barrier ();
4133 break;
4134
4135 case NOTE:
4136 switch (NOTE_KIND (insn))
4137 {
4138 /* In case prologue is empty and function contain label
4139 in first BB, we may want to copy the block. */
4140 case NOTE_INSN_PROLOGUE_END:
4141
4142 case NOTE_INSN_DELETED:
4143 case NOTE_INSN_DELETED_LABEL:
4144 case NOTE_INSN_DELETED_DEBUG_LABEL:
4145 /* No problem to strip these. */
4146 case NOTE_INSN_FUNCTION_BEG:
4147 /* There is always just single entry to function. */
4148 case NOTE_INSN_BASIC_BLOCK:
4149 /* We should only switch text sections once. */
4150 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4151 break;
4152
4153 case NOTE_INSN_EPILOGUE_BEG:
4154 emit_note_copy (as_a <rtx_note *> (insn));
4155 break;
4156
4157 default:
4158 /* All other notes should have already been eliminated. */
4159 gcc_unreachable ();
4160 }
4161 break;
4162 default:
4163 gcc_unreachable ();
4164 }
4165 }
4166 insn = NEXT_INSN (last);
4167 delete_insn (last);
4168 return safe_as_a <rtx_insn *> (insn);
4169 }
4170
4171 /* Create a duplicate of the basic block BB. */
4172
4173 static basic_block
4174 cfg_layout_duplicate_bb (basic_block bb)
4175 {
4176 rtx_insn *insn;
4177 basic_block new_bb;
4178
4179 insn = duplicate_insn_chain (BB_HEAD (bb), BB_END (bb));
4180 new_bb = create_basic_block (insn,
4181 insn ? get_last_insn () : NULL,
4182 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
4183
4184 BB_COPY_PARTITION (new_bb, bb);
4185 if (BB_HEADER (bb))
4186 {
4187 insn = BB_HEADER (bb);
4188 while (NEXT_INSN (insn))
4189 insn = NEXT_INSN (insn);
4190 insn = duplicate_insn_chain (BB_HEADER (bb), insn);
4191 if (insn)
4192 SET_BB_HEADER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4193 }
4194
4195 if (BB_FOOTER (bb))
4196 {
4197 insn = BB_FOOTER (bb);
4198 while (NEXT_INSN (insn))
4199 insn = NEXT_INSN (insn);
4200 insn = duplicate_insn_chain (BB_FOOTER (bb), insn);
4201 if (insn)
4202 BB_FOOTER (new_bb) = unlink_insn_chain (insn, get_last_insn ());
4203 }
4204
4205 return new_bb;
4206 }
4207
4208 \f
4209 /* Main entry point to this module - initialize the datastructures for
4210 CFG layout changes. It keeps LOOPS up-to-date if not null.
4211
4212 FLAGS is a set of additional flags to pass to cleanup_cfg(). */
4213
4214 void
4215 cfg_layout_initialize (unsigned int flags)
4216 {
4217 rtx x;
4218 basic_block bb;
4219
4220 /* Once bb partitioning is complete, cfg layout mode should not be
4221 re-entered. Entering cfg layout mode may require fixups. As an
4222 example, if edge forwarding performed when optimizing the cfg
4223 layout required moving a block from the hot to the cold
4224 section. This would create an illegal partitioning unless some
4225 manual fixup was performed. */
4226 gcc_assert (!(crtl->bb_reorder_complete
4227 && flag_reorder_blocks_and_partition));
4228
4229 initialize_original_copy_tables ();
4230
4231 cfg_layout_rtl_register_cfg_hooks ();
4232
4233 record_effective_endpoints ();
4234
4235 /* Make sure that the targets of non local gotos are marked. */
4236 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
4237 {
4238 bb = BLOCK_FOR_INSN (XEXP (x, 0));
4239 bb->flags |= BB_NON_LOCAL_GOTO_TARGET;
4240 }
4241
4242 cleanup_cfg (CLEANUP_CFGLAYOUT | flags);
4243 }
4244
4245 /* Splits superblocks. */
4246 void
4247 break_superblocks (void)
4248 {
4249 sbitmap superblocks;
4250 bool need = false;
4251 basic_block bb;
4252
4253 superblocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
4254 bitmap_clear (superblocks);
4255
4256 FOR_EACH_BB_FN (bb, cfun)
4257 if (bb->flags & BB_SUPERBLOCK)
4258 {
4259 bb->flags &= ~BB_SUPERBLOCK;
4260 bitmap_set_bit (superblocks, bb->index);
4261 need = true;
4262 }
4263
4264 if (need)
4265 {
4266 rebuild_jump_labels (get_insns ());
4267 find_many_sub_basic_blocks (superblocks);
4268 }
4269
4270 free (superblocks);
4271 }
4272
4273 /* Finalize the changes: reorder insn list according to the sequence specified
4274 by aux pointers, enter compensation code, rebuild scope forest. */
4275
4276 void
4277 cfg_layout_finalize (void)
4278 {
4279 #ifdef ENABLE_CHECKING
4280 verify_flow_info ();
4281 #endif
4282 force_one_exit_fallthru ();
4283 rtl_register_cfg_hooks ();
4284 if (reload_completed
4285 #ifdef HAVE_epilogue
4286 && !HAVE_epilogue
4287 #endif
4288 )
4289 fixup_fallthru_exit_predecessor ();
4290 fixup_reorder_chain ();
4291
4292 rebuild_jump_labels (get_insns ());
4293 delete_dead_jumptables ();
4294
4295 #ifdef ENABLE_CHECKING
4296 verify_insn_chain ();
4297 verify_flow_info ();
4298 #endif
4299 }
4300
4301
4302 /* Same as split_block but update cfg_layout structures. */
4303
4304 static basic_block
4305 cfg_layout_split_block (basic_block bb, void *insnp)
4306 {
4307 rtx insn = (rtx) insnp;
4308 basic_block new_bb = rtl_split_block (bb, insn);
4309
4310 BB_FOOTER (new_bb) = BB_FOOTER (bb);
4311 BB_FOOTER (bb) = NULL;
4312
4313 return new_bb;
4314 }
4315
4316 /* Redirect Edge to DEST. */
4317 static edge
4318 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
4319 {
4320 basic_block src = e->src;
4321 edge ret;
4322
4323 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4324 return NULL;
4325
4326 if (e->dest == dest)
4327 return e;
4328
4329 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4330 && (ret = try_redirect_by_replacing_jump (e, dest, true)))
4331 {
4332 df_set_bb_dirty (src);
4333 return ret;
4334 }
4335
4336 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4337 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
4338 {
4339 if (dump_file)
4340 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
4341 e->src->index, dest->index);
4342
4343 df_set_bb_dirty (e->src);
4344 redirect_edge_succ (e, dest);
4345 return e;
4346 }
4347
4348 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
4349 in the case the basic block appears to be in sequence. Avoid this
4350 transformation. */
4351
4352 if (e->flags & EDGE_FALLTHRU)
4353 {
4354 /* Redirect any branch edges unified with the fallthru one. */
4355 if (JUMP_P (BB_END (src))
4356 && label_is_jump_target_p (BB_HEAD (e->dest),
4357 BB_END (src)))
4358 {
4359 edge redirected;
4360
4361 if (dump_file)
4362 fprintf (dump_file, "Fallthru edge unified with branch "
4363 "%i->%i redirected to %i\n",
4364 e->src->index, e->dest->index, dest->index);
4365 e->flags &= ~EDGE_FALLTHRU;
4366 redirected = redirect_branch_edge (e, dest);
4367 gcc_assert (redirected);
4368 redirected->flags |= EDGE_FALLTHRU;
4369 df_set_bb_dirty (redirected->src);
4370 return redirected;
4371 }
4372 /* In case we are redirecting fallthru edge to the branch edge
4373 of conditional jump, remove it. */
4374 if (EDGE_COUNT (src->succs) == 2)
4375 {
4376 /* Find the edge that is different from E. */
4377 edge s = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e);
4378
4379 if (s->dest == dest
4380 && any_condjump_p (BB_END (src))
4381 && onlyjump_p (BB_END (src)))
4382 delete_insn (BB_END (src));
4383 }
4384 if (dump_file)
4385 fprintf (dump_file, "Redirecting fallthru edge %i->%i to %i\n",
4386 e->src->index, e->dest->index, dest->index);
4387 ret = redirect_edge_succ_nodup (e, dest);
4388 }
4389 else
4390 ret = redirect_branch_edge (e, dest);
4391
4392 /* We don't want simplejumps in the insn stream during cfglayout. */
4393 gcc_assert (!simplejump_p (BB_END (src)));
4394
4395 df_set_bb_dirty (src);
4396 return ret;
4397 }
4398
4399 /* Simple wrapper as we always can redirect fallthru edges. */
4400 static basic_block
4401 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
4402 {
4403 edge redirected = cfg_layout_redirect_edge_and_branch (e, dest);
4404
4405 gcc_assert (redirected);
4406 return NULL;
4407 }
4408
4409 /* Same as delete_basic_block but update cfg_layout structures. */
4410
4411 static void
4412 cfg_layout_delete_block (basic_block bb)
4413 {
4414 rtx_insn *insn, *next, *prev = PREV_INSN (BB_HEAD (bb)), *remaints;
4415 rtx *to;
4416
4417 if (BB_HEADER (bb))
4418 {
4419 next = BB_HEAD (bb);
4420 if (prev)
4421 SET_NEXT_INSN (prev) = BB_HEADER (bb);
4422 else
4423 set_first_insn (BB_HEADER (bb));
4424 SET_PREV_INSN (BB_HEADER (bb)) = prev;
4425 insn = BB_HEADER (bb);
4426 while (NEXT_INSN (insn))
4427 insn = NEXT_INSN (insn);
4428 SET_NEXT_INSN (insn) = next;
4429 SET_PREV_INSN (next) = insn;
4430 }
4431 next = NEXT_INSN (BB_END (bb));
4432 if (BB_FOOTER (bb))
4433 {
4434 insn = BB_FOOTER (bb);
4435 while (insn)
4436 {
4437 if (BARRIER_P (insn))
4438 {
4439 if (PREV_INSN (insn))
4440 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
4441 else
4442 BB_FOOTER (bb) = NEXT_INSN (insn);
4443 if (NEXT_INSN (insn))
4444 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
4445 }
4446 if (LABEL_P (insn))
4447 break;
4448 insn = NEXT_INSN (insn);
4449 }
4450 if (BB_FOOTER (bb))
4451 {
4452 insn = BB_END (bb);
4453 SET_NEXT_INSN (insn) = BB_FOOTER (bb);
4454 SET_PREV_INSN (BB_FOOTER (bb)) = insn;
4455 while (NEXT_INSN (insn))
4456 insn = NEXT_INSN (insn);
4457 SET_NEXT_INSN (insn) = next;
4458 if (next)
4459 SET_PREV_INSN (next) = insn;
4460 else
4461 set_last_insn (insn);
4462 }
4463 }
4464 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4465 to = &SET_BB_HEADER (bb->next_bb);
4466 else
4467 to = &cfg_layout_function_footer;
4468
4469 rtl_delete_block (bb);
4470
4471 if (prev)
4472 prev = NEXT_INSN (prev);
4473 else
4474 prev = get_insns ();
4475 if (next)
4476 next = PREV_INSN (next);
4477 else
4478 next = get_last_insn ();
4479
4480 if (next && NEXT_INSN (next) != prev)
4481 {
4482 remaints = unlink_insn_chain (prev, next);
4483 insn = remaints;
4484 while (NEXT_INSN (insn))
4485 insn = NEXT_INSN (insn);
4486 SET_NEXT_INSN (insn) = *to;
4487 if (*to)
4488 SET_PREV_INSN (*to) = insn;
4489 *to = remaints;
4490 }
4491 }
4492
4493 /* Return true when blocks A and B can be safely merged. */
4494
4495 static bool
4496 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
4497 {
4498 /* If we are partitioning hot/cold basic blocks, we don't want to
4499 mess up unconditional or indirect jumps that cross between hot
4500 and cold sections.
4501
4502 Basic block partitioning may result in some jumps that appear to
4503 be optimizable (or blocks that appear to be mergeable), but which really
4504 must be left untouched (they are required to make it safely across
4505 partition boundaries). See the comments at the top of
4506 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4507
4508 if (BB_PARTITION (a) != BB_PARTITION (b))
4509 return false;
4510
4511 /* Protect the loop latches. */
4512 if (current_loops && b->loop_father->latch == b)
4513 return false;
4514
4515 /* If we would end up moving B's instructions, make sure it doesn't fall
4516 through into the exit block, since we cannot recover from a fallthrough
4517 edge into the exit block occurring in the middle of a function. */
4518 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4519 {
4520 edge e = find_fallthru_edge (b->succs);
4521 if (e && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4522 return false;
4523 }
4524
4525 /* There must be exactly one edge in between the blocks. */
4526 return (single_succ_p (a)
4527 && single_succ (a) == b
4528 && single_pred_p (b) == 1
4529 && a != b
4530 /* Must be simple edge. */
4531 && !(single_succ_edge (a)->flags & EDGE_COMPLEX)
4532 && a != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4533 && b != EXIT_BLOCK_PTR_FOR_FN (cfun)
4534 /* If the jump insn has side effects, we can't kill the edge.
4535 When not optimizing, try_redirect_by_replacing_jump will
4536 not allow us to redirect an edge by replacing a table jump. */
4537 && (!JUMP_P (BB_END (a))
4538 || ((!optimize || reload_completed)
4539 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
4540 }
4541
4542 /* Merge block A and B. The blocks must be mergeable. */
4543
4544 static void
4545 cfg_layout_merge_blocks (basic_block a, basic_block b)
4546 {
4547 bool forwarder_p = (b->flags & BB_FORWARDER_BLOCK) != 0;
4548 rtx_insn *insn;
4549
4550 gcc_checking_assert (cfg_layout_can_merge_blocks_p (a, b));
4551
4552 if (dump_file)
4553 fprintf (dump_file, "Merging block %d into block %d...\n", b->index,
4554 a->index);
4555
4556 /* If there was a CODE_LABEL beginning B, delete it. */
4557 if (LABEL_P (BB_HEAD (b)))
4558 {
4559 delete_insn (BB_HEAD (b));
4560 }
4561
4562 /* We should have fallthru edge in a, or we can do dummy redirection to get
4563 it cleaned up. */
4564 if (JUMP_P (BB_END (a)))
4565 try_redirect_by_replacing_jump (EDGE_SUCC (a, 0), b, true);
4566 gcc_assert (!JUMP_P (BB_END (a)));
4567
4568 /* When not optimizing and the edge is the only place in RTL which holds
4569 some unique locus, emit a nop with that locus in between. */
4570 if (!optimize)
4571 emit_nop_for_unique_locus_between (a, b);
4572
4573 /* Move things from b->footer after a->footer. */
4574 if (BB_FOOTER (b))
4575 {
4576 if (!BB_FOOTER (a))
4577 BB_FOOTER (a) = BB_FOOTER (b);
4578 else
4579 {
4580 rtx_insn *last = BB_FOOTER (a);
4581
4582 while (NEXT_INSN (last))
4583 last = NEXT_INSN (last);
4584 SET_NEXT_INSN (last) = BB_FOOTER (b);
4585 SET_PREV_INSN (BB_FOOTER (b)) = last;
4586 }
4587 BB_FOOTER (b) = NULL;
4588 }
4589
4590 /* Move things from b->header before a->footer.
4591 Note that this may include dead tablejump data, but we don't clean
4592 those up until we go out of cfglayout mode. */
4593 if (BB_HEADER (b))
4594 {
4595 if (! BB_FOOTER (a))
4596 BB_FOOTER (a) = BB_HEADER (b);
4597 else
4598 {
4599 rtx_insn *last = BB_HEADER (b);
4600
4601 while (NEXT_INSN (last))
4602 last = NEXT_INSN (last);
4603 SET_NEXT_INSN (last) = BB_FOOTER (a);
4604 SET_PREV_INSN (BB_FOOTER (a)) = last;
4605 BB_FOOTER (a) = BB_HEADER (b);
4606 }
4607 SET_BB_HEADER (b) = NULL;
4608 }
4609
4610 /* In the case basic blocks are not adjacent, move them around. */
4611 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
4612 {
4613 insn = unlink_insn_chain (BB_HEAD (b), BB_END (b));
4614
4615 emit_insn_after_noloc (insn, BB_END (a), a);
4616 }
4617 /* Otherwise just re-associate the instructions. */
4618 else
4619 {
4620 insn = BB_HEAD (b);
4621 SET_BB_END (a) = BB_END (b);
4622 }
4623
4624 /* emit_insn_after_noloc doesn't call df_insn_change_bb.
4625 We need to explicitly call. */
4626 update_bb_for_insn_chain (insn, BB_END (b), a);
4627
4628 /* Skip possible DELETED_LABEL insn. */
4629 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
4630 insn = NEXT_INSN (insn);
4631 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4632 SET_BB_HEAD (b) = SET_BB_END (b) = NULL;
4633 delete_insn (insn);
4634
4635 df_bb_delete (b->index);
4636
4637 /* If B was a forwarder block, propagate the locus on the edge. */
4638 if (forwarder_p
4639 && LOCATION_LOCUS (EDGE_SUCC (b, 0)->goto_locus) == UNKNOWN_LOCATION)
4640 EDGE_SUCC (b, 0)->goto_locus = EDGE_SUCC (a, 0)->goto_locus;
4641
4642 if (dump_file)
4643 fprintf (dump_file, "Merged blocks %d and %d.\n", a->index, b->index);
4644 }
4645
4646 /* Split edge E. */
4647
4648 static basic_block
4649 cfg_layout_split_edge (edge e)
4650 {
4651 basic_block new_bb =
4652 create_basic_block (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4653 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
4654 NULL_RTX, e->src);
4655
4656 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4657 BB_COPY_PARTITION (new_bb, e->src);
4658 else
4659 BB_COPY_PARTITION (new_bb, e->dest);
4660 make_edge (new_bb, e->dest, EDGE_FALLTHRU);
4661 redirect_edge_and_branch_force (e, new_bb);
4662
4663 return new_bb;
4664 }
4665
4666 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
4667
4668 static void
4669 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
4670 {
4671 }
4672
4673 /* Return true if BB contains only labels or non-executable
4674 instructions. */
4675
4676 static bool
4677 rtl_block_empty_p (basic_block bb)
4678 {
4679 rtx_insn *insn;
4680
4681 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
4682 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4683 return true;
4684
4685 FOR_BB_INSNS (bb, insn)
4686 if (NONDEBUG_INSN_P (insn) && !any_uncondjump_p (insn))
4687 return false;
4688
4689 return true;
4690 }
4691
4692 /* Split a basic block if it ends with a conditional branch and if
4693 the other part of the block is not empty. */
4694
4695 static basic_block
4696 rtl_split_block_before_cond_jump (basic_block bb)
4697 {
4698 rtx_insn *insn;
4699 rtx_insn *split_point = NULL;
4700 rtx_insn *last = NULL;
4701 bool found_code = false;
4702
4703 FOR_BB_INSNS (bb, insn)
4704 {
4705 if (any_condjump_p (insn))
4706 split_point = last;
4707 else if (NONDEBUG_INSN_P (insn))
4708 found_code = true;
4709 last = insn;
4710 }
4711
4712 /* Did not find everything. */
4713 if (found_code && split_point)
4714 return split_block (bb, split_point)->dest;
4715 else
4716 return NULL;
4717 }
4718
4719 /* Return 1 if BB ends with a call, possibly followed by some
4720 instructions that must stay with the call, 0 otherwise. */
4721
4722 static bool
4723 rtl_block_ends_with_call_p (basic_block bb)
4724 {
4725 rtx_insn *insn = BB_END (bb);
4726
4727 while (!CALL_P (insn)
4728 && insn != BB_HEAD (bb)
4729 && (keep_with_call_p (insn)
4730 || NOTE_P (insn)
4731 || DEBUG_INSN_P (insn)))
4732 insn = PREV_INSN (insn);
4733 return (CALL_P (insn));
4734 }
4735
4736 /* Return 1 if BB ends with a conditional branch, 0 otherwise. */
4737
4738 static bool
4739 rtl_block_ends_with_condjump_p (const_basic_block bb)
4740 {
4741 return any_condjump_p (BB_END (bb));
4742 }
4743
4744 /* Return true if we need to add fake edge to exit.
4745 Helper function for rtl_flow_call_edges_add. */
4746
4747 static bool
4748 need_fake_edge_p (const rtx_insn *insn)
4749 {
4750 if (!INSN_P (insn))
4751 return false;
4752
4753 if ((CALL_P (insn)
4754 && !SIBLING_CALL_P (insn)
4755 && !find_reg_note (insn, REG_NORETURN, NULL)
4756 && !(RTL_CONST_OR_PURE_CALL_P (insn))))
4757 return true;
4758
4759 return ((GET_CODE (PATTERN (insn)) == ASM_OPERANDS
4760 && MEM_VOLATILE_P (PATTERN (insn)))
4761 || (GET_CODE (PATTERN (insn)) == PARALLEL
4762 && asm_noperands (insn) != -1
4763 && MEM_VOLATILE_P (XVECEXP (PATTERN (insn), 0, 0)))
4764 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
4765 }
4766
4767 /* Add fake edges to the function exit for any non constant and non noreturn
4768 calls, volatile inline assembly in the bitmap of blocks specified by
4769 BLOCKS or to the whole CFG if BLOCKS is zero. Return the number of blocks
4770 that were split.
4771
4772 The goal is to expose cases in which entering a basic block does not imply
4773 that all subsequent instructions must be executed. */
4774
4775 static int
4776 rtl_flow_call_edges_add (sbitmap blocks)
4777 {
4778 int i;
4779 int blocks_split = 0;
4780 int last_bb = last_basic_block_for_fn (cfun);
4781 bool check_last_block = false;
4782
4783 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
4784 return 0;
4785
4786 if (! blocks)
4787 check_last_block = true;
4788 else
4789 check_last_block = bitmap_bit_p (blocks,
4790 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
4791
4792 /* In the last basic block, before epilogue generation, there will be
4793 a fallthru edge to EXIT. Special care is required if the last insn
4794 of the last basic block is a call because make_edge folds duplicate
4795 edges, which would result in the fallthru edge also being marked
4796 fake, which would result in the fallthru edge being removed by
4797 remove_fake_edges, which would result in an invalid CFG.
4798
4799 Moreover, we can't elide the outgoing fake edge, since the block
4800 profiler needs to take this into account in order to solve the minimal
4801 spanning tree in the case that the call doesn't return.
4802
4803 Handle this by adding a dummy instruction in a new last basic block. */
4804 if (check_last_block)
4805 {
4806 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
4807 rtx_insn *insn = BB_END (bb);
4808
4809 /* Back up past insns that must be kept in the same block as a call. */
4810 while (insn != BB_HEAD (bb)
4811 && keep_with_call_p (insn))
4812 insn = PREV_INSN (insn);
4813
4814 if (need_fake_edge_p (insn))
4815 {
4816 edge e;
4817
4818 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4819 if (e)
4820 {
4821 insert_insn_on_edge (gen_use (const0_rtx), e);
4822 commit_edge_insertions ();
4823 }
4824 }
4825 }
4826
4827 /* Now add fake edges to the function exit for any non constant
4828 calls since there is no way that we can determine if they will
4829 return or not... */
4830
4831 for (i = NUM_FIXED_BLOCKS; i < last_bb; i++)
4832 {
4833 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
4834 rtx_insn *insn;
4835 rtx_insn *prev_insn;
4836
4837 if (!bb)
4838 continue;
4839
4840 if (blocks && !bitmap_bit_p (blocks, i))
4841 continue;
4842
4843 for (insn = BB_END (bb); ; insn = prev_insn)
4844 {
4845 prev_insn = PREV_INSN (insn);
4846 if (need_fake_edge_p (insn))
4847 {
4848 edge e;
4849 rtx_insn *split_at_insn = insn;
4850
4851 /* Don't split the block between a call and an insn that should
4852 remain in the same block as the call. */
4853 if (CALL_P (insn))
4854 while (split_at_insn != BB_END (bb)
4855 && keep_with_call_p (NEXT_INSN (split_at_insn)))
4856 split_at_insn = NEXT_INSN (split_at_insn);
4857
4858 /* The handling above of the final block before the epilogue
4859 should be enough to verify that there is no edge to the exit
4860 block in CFG already. Calling make_edge in such case would
4861 cause us to mark that edge as fake and remove it later. */
4862
4863 #ifdef ENABLE_CHECKING
4864 if (split_at_insn == BB_END (bb))
4865 {
4866 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
4867 gcc_assert (e == NULL);
4868 }
4869 #endif
4870
4871 /* Note that the following may create a new basic block
4872 and renumber the existing basic blocks. */
4873 if (split_at_insn != BB_END (bb))
4874 {
4875 e = split_block (bb, split_at_insn);
4876 if (e)
4877 blocks_split++;
4878 }
4879
4880 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
4881 }
4882
4883 if (insn == BB_HEAD (bb))
4884 break;
4885 }
4886 }
4887
4888 if (blocks_split)
4889 verify_flow_info ();
4890
4891 return blocks_split;
4892 }
4893
4894 /* Add COMP_RTX as a condition at end of COND_BB. FIRST_HEAD is
4895 the conditional branch target, SECOND_HEAD should be the fall-thru
4896 there is no need to handle this here the loop versioning code handles
4897 this. the reason for SECON_HEAD is that it is needed for condition
4898 in trees, and this should be of the same type since it is a hook. */
4899 static void
4900 rtl_lv_add_condition_to_bb (basic_block first_head ,
4901 basic_block second_head ATTRIBUTE_UNUSED,
4902 basic_block cond_bb, void *comp_rtx)
4903 {
4904 rtx label;
4905 rtx_insn *seq, *jump;
4906 rtx op0 = XEXP ((rtx)comp_rtx, 0);
4907 rtx op1 = XEXP ((rtx)comp_rtx, 1);
4908 enum rtx_code comp = GET_CODE ((rtx)comp_rtx);
4909 enum machine_mode mode;
4910
4911
4912 label = block_label (first_head);
4913 mode = GET_MODE (op0);
4914 if (mode == VOIDmode)
4915 mode = GET_MODE (op1);
4916
4917 start_sequence ();
4918 op0 = force_operand (op0, NULL_RTX);
4919 op1 = force_operand (op1, NULL_RTX);
4920 do_compare_rtx_and_jump (op0, op1, comp, 0,
4921 mode, NULL_RTX, NULL_RTX, label, -1);
4922 jump = get_last_insn ();
4923 JUMP_LABEL (jump) = label;
4924 LABEL_NUSES (label)++;
4925 seq = get_insns ();
4926 end_sequence ();
4927
4928 /* Add the new cond , in the new head. */
4929 emit_insn_after (seq, BB_END (cond_bb));
4930 }
4931
4932
4933 /* Given a block B with unconditional branch at its end, get the
4934 store the return the branch edge and the fall-thru edge in
4935 BRANCH_EDGE and FALLTHRU_EDGE respectively. */
4936 static void
4937 rtl_extract_cond_bb_edges (basic_block b, edge *branch_edge,
4938 edge *fallthru_edge)
4939 {
4940 edge e = EDGE_SUCC (b, 0);
4941
4942 if (e->flags & EDGE_FALLTHRU)
4943 {
4944 *fallthru_edge = e;
4945 *branch_edge = EDGE_SUCC (b, 1);
4946 }
4947 else
4948 {
4949 *branch_edge = e;
4950 *fallthru_edge = EDGE_SUCC (b, 1);
4951 }
4952 }
4953
4954 void
4955 init_rtl_bb_info (basic_block bb)
4956 {
4957 gcc_assert (!bb->il.x.rtl);
4958 bb->il.x.head_ = NULL;
4959 bb->il.x.rtl = ggc_cleared_alloc<rtl_bb_info> ();
4960 }
4961
4962 /* Returns true if it is possible to remove edge E by redirecting
4963 it to the destination of the other edge from E->src. */
4964
4965 static bool
4966 rtl_can_remove_branch_p (const_edge e)
4967 {
4968 const_basic_block src = e->src;
4969 const_basic_block target = EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest;
4970 const rtx_insn *insn = BB_END (src);
4971 rtx set;
4972
4973 /* The conditions are taken from try_redirect_by_replacing_jump. */
4974 if (target == EXIT_BLOCK_PTR_FOR_FN (cfun))
4975 return false;
4976
4977 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4978 return false;
4979
4980 if (BB_PARTITION (src) != BB_PARTITION (target))
4981 return false;
4982
4983 if (!onlyjump_p (insn)
4984 || tablejump_p (insn, NULL, NULL))
4985 return false;
4986
4987 set = single_set (insn);
4988 if (!set || side_effects_p (set))
4989 return false;
4990
4991 return true;
4992 }
4993
4994 static basic_block
4995 rtl_duplicate_bb (basic_block bb)
4996 {
4997 bb = cfg_layout_duplicate_bb (bb);
4998 bb->aux = NULL;
4999 return bb;
5000 }
5001
5002 /* Do book-keeping of basic block BB for the profile consistency checker.
5003 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
5004 then do post-pass accounting. Store the counting in RECORD. */
5005 static void
5006 rtl_account_profile_record (basic_block bb, int after_pass,
5007 struct profile_record *record)
5008 {
5009 rtx_insn *insn;
5010 FOR_BB_INSNS (bb, insn)
5011 if (INSN_P (insn))
5012 {
5013 record->size[after_pass]
5014 += insn_rtx_cost (PATTERN (insn), false);
5015 if (profile_status_for_fn (cfun) == PROFILE_READ)
5016 record->time[after_pass]
5017 += insn_rtx_cost (PATTERN (insn), true) * bb->count;
5018 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
5019 record->time[after_pass]
5020 += insn_rtx_cost (PATTERN (insn), true) * bb->frequency;
5021 }
5022 }
5023
5024 /* Implementation of CFG manipulation for linearized RTL. */
5025 struct cfg_hooks rtl_cfg_hooks = {
5026 "rtl",
5027 rtl_verify_flow_info,
5028 rtl_dump_bb,
5029 rtl_dump_bb_for_graph,
5030 rtl_create_basic_block,
5031 rtl_redirect_edge_and_branch,
5032 rtl_redirect_edge_and_branch_force,
5033 rtl_can_remove_branch_p,
5034 rtl_delete_block,
5035 rtl_split_block,
5036 rtl_move_block_after,
5037 rtl_can_merge_blocks, /* can_merge_blocks_p */
5038 rtl_merge_blocks,
5039 rtl_predict_edge,
5040 rtl_predicted_by_p,
5041 cfg_layout_can_duplicate_bb_p,
5042 rtl_duplicate_bb,
5043 rtl_split_edge,
5044 rtl_make_forwarder_block,
5045 rtl_tidy_fallthru_edge,
5046 rtl_force_nonfallthru,
5047 rtl_block_ends_with_call_p,
5048 rtl_block_ends_with_condjump_p,
5049 rtl_flow_call_edges_add,
5050 NULL, /* execute_on_growing_pred */
5051 NULL, /* execute_on_shrinking_pred */
5052 NULL, /* duplicate loop for trees */
5053 NULL, /* lv_add_condition_to_bb */
5054 NULL, /* lv_adjust_loop_header_phi*/
5055 NULL, /* extract_cond_bb_edges */
5056 NULL, /* flush_pending_stmts */
5057 rtl_block_empty_p, /* block_empty_p */
5058 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5059 rtl_account_profile_record,
5060 };
5061
5062 /* Implementation of CFG manipulation for cfg layout RTL, where
5063 basic block connected via fallthru edges does not have to be adjacent.
5064 This representation will hopefully become the default one in future
5065 version of the compiler. */
5066
5067 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
5068 "cfglayout mode",
5069 rtl_verify_flow_info_1,
5070 rtl_dump_bb,
5071 rtl_dump_bb_for_graph,
5072 cfg_layout_create_basic_block,
5073 cfg_layout_redirect_edge_and_branch,
5074 cfg_layout_redirect_edge_and_branch_force,
5075 rtl_can_remove_branch_p,
5076 cfg_layout_delete_block,
5077 cfg_layout_split_block,
5078 rtl_move_block_after,
5079 cfg_layout_can_merge_blocks_p,
5080 cfg_layout_merge_blocks,
5081 rtl_predict_edge,
5082 rtl_predicted_by_p,
5083 cfg_layout_can_duplicate_bb_p,
5084 cfg_layout_duplicate_bb,
5085 cfg_layout_split_edge,
5086 rtl_make_forwarder_block,
5087 NULL, /* tidy_fallthru_edge */
5088 rtl_force_nonfallthru,
5089 rtl_block_ends_with_call_p,
5090 rtl_block_ends_with_condjump_p,
5091 rtl_flow_call_edges_add,
5092 NULL, /* execute_on_growing_pred */
5093 NULL, /* execute_on_shrinking_pred */
5094 duplicate_loop_to_header_edge, /* duplicate loop for trees */
5095 rtl_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
5096 NULL, /* lv_adjust_loop_header_phi*/
5097 rtl_extract_cond_bb_edges, /* extract_cond_bb_edges */
5098 NULL, /* flush_pending_stmts */
5099 rtl_block_empty_p, /* block_empty_p */
5100 rtl_split_block_before_cond_jump, /* split_block_before_cond_jump */
5101 rtl_account_profile_record,
5102 };
5103
5104 /* BB_HEAD as an rvalue. */
5105
5106 rtx_insn *BB_HEAD (const_basic_block bb)
5107 {
5108 rtx insn = bb->il.x.head_;
5109 return safe_as_a <rtx_insn *> (insn);
5110 }
5111
5112 /* BB_HEAD for use as an lvalue. */
5113
5114 rtx& SET_BB_HEAD (basic_block bb)
5115 {
5116 return bb->il.x.head_;
5117 }
5118
5119 /* BB_END as an rvalue. */
5120
5121 rtx_insn *BB_END (const_basic_block bb)
5122 {
5123 rtx insn = bb->il.x.rtl->end_;
5124 return safe_as_a <rtx_insn *> (insn);
5125 }
5126
5127 /* BB_END as an lvalue. */
5128
5129 rtx& SET_BB_END (basic_block bb)
5130 {
5131 return bb->il.x.rtl->end_;
5132 }
5133
5134 /* BB_HEADER as an rvalue. */
5135
5136 rtx_insn *BB_HEADER (const_basic_block bb)
5137 {
5138 rtx insn = bb->il.x.rtl->header_;
5139 return safe_as_a <rtx_insn *> (insn);
5140 }
5141
5142 /* BB_HEADER as an lvalue. */
5143
5144 rtx& SET_BB_HEADER (basic_block bb)
5145 {
5146 return bb->il.x.rtl->header_;
5147 }
5148
5149 #include "gt-cfgrtl.h"