]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/combine.c
022a5b5f15c4c77949961bfbe880a6507c176c2f
[thirdparty/gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
107
108 /* Number of attempts to combine instructions in this function. */
109
110 static int combine_attempts;
111
112 /* Number of attempts that got as far as substitution in this function. */
113
114 static int combine_merges;
115
116 /* Number of instructions combined with added SETs in this function. */
117
118 static int combine_extras;
119
120 /* Number of instructions combined in this function. */
121
122 static int combine_successes;
123
124 /* Totals over entire compilation. */
125
126 static int total_attempts, total_merges, total_extras, total_successes;
127
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
134
135 static rtx_insn *i2mod;
136
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
138
139 static rtx i2mod_old_rhs;
140
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
142
143 static rtx i2mod_new_rhs;
144 \f
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
148
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
151
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
157
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
160
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
164
165 Therefore, we maintain the following fields:
166
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
175
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
180
181 (The next two parameters are out of date).
182
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
194
195 /* Record last value assigned to (hard or pseudo) register n. */
196
197 rtx last_set_value;
198
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
201
202 int last_set_table_tick;
203
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
206
207 int last_set_label;
208
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
213
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
221
222 char last_set_invalid;
223
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
228
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
233
234 If an entry is zero, it means that we don't know anything special. */
235
236 unsigned char sign_bit_copies;
237
238 unsigned HOST_WIDE_INT nonzero_bits;
239
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
243
244 int truncation_label;
245
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
250
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
252 };
253
254
255 static vec<reg_stat_type> reg_stat;
256
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
264
265 static unsigned int reg_n_sets_max;
266
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
269
270 static int mem_last_set;
271
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
274
275 static int last_call_luid;
276
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
282
283 static rtx_insn *subst_insn;
284
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
291
292 static int subst_low_luid;
293
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
296
297 static HARD_REG_SET newpat_used_regs;
298
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
302
303 static rtx_insn *added_links_insn;
304
305 /* Basic block in which we are performing combines. */
306 static basic_block this_basic_block;
307 static bool optimize_this_for_speed_p;
308
309 \f
310 /* Length of the currently allocated uid_insn_cost array. */
311
312 static int max_uid_known;
313
314 /* The following array records the insn_rtx_cost for every insn
315 in the instruction stream. */
316
317 static int *uid_insn_cost;
318
319 /* The following array records the LOG_LINKS for every insn in the
320 instruction stream as struct insn_link pointers. */
321
322 struct insn_link {
323 rtx_insn *insn;
324 unsigned int regno;
325 struct insn_link *next;
326 };
327
328 static struct insn_link **uid_log_links;
329
330 static inline int
331 insn_uid_check (const_rtx insn)
332 {
333 int uid = INSN_UID (insn);
334 gcc_checking_assert (uid <= max_uid_known);
335 return uid;
336 }
337
338 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
339 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
340
341 #define FOR_EACH_LOG_LINK(L, INSN) \
342 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
343
344 /* Links for LOG_LINKS are allocated from this obstack. */
345
346 static struct obstack insn_link_obstack;
347
348 /* Allocate a link. */
349
350 static inline struct insn_link *
351 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
352 {
353 struct insn_link *l
354 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
355 sizeof (struct insn_link));
356 l->insn = insn;
357 l->regno = regno;
358 l->next = next;
359 return l;
360 }
361
362 /* Incremented for each basic block. */
363
364 static int label_tick;
365
366 /* Reset to label_tick for each extended basic block in scanning order. */
367
368 static int label_tick_ebb_start;
369
370 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
371 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
372
373 static machine_mode nonzero_bits_mode;
374
375 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
376 be safely used. It is zero while computing them and after combine has
377 completed. This former test prevents propagating values based on
378 previously set values, which can be incorrect if a variable is modified
379 in a loop. */
380
381 static int nonzero_sign_valid;
382
383 \f
384 /* Record one modification to rtl structure
385 to be undone by storing old_contents into *where. */
386
387 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
388
389 struct undo
390 {
391 struct undo *next;
392 enum undo_kind kind;
393 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
394 union { rtx *r; int *i; struct insn_link **l; } where;
395 };
396
397 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
398 num_undo says how many are currently recorded.
399
400 other_insn is nonzero if we have modified some other insn in the process
401 of working on subst_insn. It must be verified too. */
402
403 struct undobuf
404 {
405 struct undo *undos;
406 struct undo *frees;
407 rtx_insn *other_insn;
408 };
409
410 static struct undobuf undobuf;
411
412 /* Number of times the pseudo being substituted for
413 was found and replaced. */
414
415 static int n_occurrences;
416
417 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
418 scalar_int_mode,
419 unsigned HOST_WIDE_INT *);
420 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
421 scalar_int_mode,
422 unsigned int *);
423 static void do_SUBST (rtx *, rtx);
424 static void do_SUBST_INT (int *, int);
425 static void init_reg_last (void);
426 static void setup_incoming_promotions (rtx_insn *);
427 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
428 static int cant_combine_insn_p (rtx_insn *);
429 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
430 rtx_insn *, rtx_insn *, rtx *, rtx *);
431 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
432 static int contains_muldiv (rtx);
433 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
434 int *, rtx_insn *);
435 static void undo_all (void);
436 static void undo_commit (void);
437 static rtx *find_split_point (rtx *, rtx_insn *, bool);
438 static rtx subst (rtx, rtx, rtx, int, int, int);
439 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
440 static rtx simplify_if_then_else (rtx);
441 static rtx simplify_set (rtx);
442 static rtx simplify_logical (rtx);
443 static rtx expand_compound_operation (rtx);
444 static const_rtx expand_field_assignment (const_rtx);
445 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
446 rtx, unsigned HOST_WIDE_INT, int, int, int);
447 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
448 unsigned HOST_WIDE_INT *);
449 static rtx canon_reg_for_combine (rtx, rtx);
450 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
451 scalar_int_mode, unsigned HOST_WIDE_INT, int);
452 static rtx force_to_mode (rtx, machine_mode,
453 unsigned HOST_WIDE_INT, int);
454 static rtx if_then_else_cond (rtx, rtx *, rtx *);
455 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
456 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
457 static rtx make_field_assignment (rtx);
458 static rtx apply_distributive_law (rtx);
459 static rtx distribute_and_simplify_rtx (rtx, int);
460 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
461 unsigned HOST_WIDE_INT);
462 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
463 unsigned HOST_WIDE_INT);
464 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
465 HOST_WIDE_INT, machine_mode, int *);
466 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
467 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
468 int);
469 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
470 static rtx gen_lowpart_for_combine (machine_mode, rtx);
471 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
472 rtx, rtx *);
473 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
474 static void update_table_tick (rtx);
475 static void record_value_for_reg (rtx, rtx_insn *, rtx);
476 static void check_promoted_subreg (rtx_insn *, rtx);
477 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
478 static void record_dead_and_set_regs (rtx_insn *);
479 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
480 static rtx get_last_value (const_rtx);
481 static int use_crosses_set_p (const_rtx, int);
482 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
483 static int reg_dead_at_p (rtx, rtx_insn *);
484 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
485 static int reg_bitfield_target_p (rtx, rtx);
486 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
487 static void distribute_links (struct insn_link *);
488 static void mark_used_regs_combine (rtx);
489 static void record_promoted_value (rtx_insn *, rtx);
490 static bool unmentioned_reg_p (rtx, rtx);
491 static void record_truncated_values (rtx *, void *);
492 static bool reg_truncated_to_mode (machine_mode, const_rtx);
493 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
494 \f
495
496 /* It is not safe to use ordinary gen_lowpart in combine.
497 See comments in gen_lowpart_for_combine. */
498 #undef RTL_HOOKS_GEN_LOWPART
499 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
500
501 /* Our implementation of gen_lowpart never emits a new pseudo. */
502 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
503 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
504
505 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
506 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
507
508 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
509 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
510
511 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
512 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
513
514 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
515
516 \f
517 /* Convenience wrapper for the canonicalize_comparison target hook.
518 Target hooks cannot use enum rtx_code. */
519 static inline void
520 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
521 bool op0_preserve_value)
522 {
523 int code_int = (int)*code;
524 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
525 *code = (enum rtx_code)code_int;
526 }
527
528 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
529 PATTERN can not be split. Otherwise, it returns an insn sequence.
530 This is a wrapper around split_insns which ensures that the
531 reg_stat vector is made larger if the splitter creates a new
532 register. */
533
534 static rtx_insn *
535 combine_split_insns (rtx pattern, rtx_insn *insn)
536 {
537 rtx_insn *ret;
538 unsigned int nregs;
539
540 ret = split_insns (pattern, insn);
541 nregs = max_reg_num ();
542 if (nregs > reg_stat.length ())
543 reg_stat.safe_grow_cleared (nregs);
544 return ret;
545 }
546
547 /* This is used by find_single_use to locate an rtx in LOC that
548 contains exactly one use of DEST, which is typically either a REG
549 or CC0. It returns a pointer to the innermost rtx expression
550 containing DEST. Appearances of DEST that are being used to
551 totally replace it are not counted. */
552
553 static rtx *
554 find_single_use_1 (rtx dest, rtx *loc)
555 {
556 rtx x = *loc;
557 enum rtx_code code = GET_CODE (x);
558 rtx *result = NULL;
559 rtx *this_result;
560 int i;
561 const char *fmt;
562
563 switch (code)
564 {
565 case CONST:
566 case LABEL_REF:
567 case SYMBOL_REF:
568 CASE_CONST_ANY:
569 case CLOBBER:
570 return 0;
571
572 case SET:
573 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
574 of a REG that occupies all of the REG, the insn uses DEST if
575 it is mentioned in the destination or the source. Otherwise, we
576 need just check the source. */
577 if (GET_CODE (SET_DEST (x)) != CC0
578 && GET_CODE (SET_DEST (x)) != PC
579 && !REG_P (SET_DEST (x))
580 && ! (GET_CODE (SET_DEST (x)) == SUBREG
581 && REG_P (SUBREG_REG (SET_DEST (x)))
582 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
583 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
584 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
585 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
586 break;
587
588 return find_single_use_1 (dest, &SET_SRC (x));
589
590 case MEM:
591 case SUBREG:
592 return find_single_use_1 (dest, &XEXP (x, 0));
593
594 default:
595 break;
596 }
597
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
600
601 fmt = GET_RTX_FORMAT (code);
602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
603 {
604 if (fmt[i] == 'e')
605 {
606 if (dest == XEXP (x, i)
607 || (REG_P (dest) && REG_P (XEXP (x, i))
608 && REGNO (dest) == REGNO (XEXP (x, i))))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XEXP (x, i));
612
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 /* Duplicate usage. */
617 return NULL;
618 }
619 else if (fmt[i] == 'E')
620 {
621 int j;
622
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
624 {
625 if (XVECEXP (x, i, j) == dest
626 || (REG_P (dest)
627 && REG_P (XVECEXP (x, i, j))
628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 this_result = loc;
630 else
631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
632
633 if (result == NULL)
634 result = this_result;
635 else if (this_result)
636 return NULL;
637 }
638 }
639 }
640
641 return result;
642 }
643
644
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
647 it is used.
648
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
650
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
653
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
658
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
661 {
662 basic_block bb;
663 rtx_insn *next;
664 rtx *result;
665 struct insn_link *link;
666
667 if (dest == cc0_rtx)
668 {
669 next = NEXT_INSN (insn);
670 if (next == 0
671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 return 0;
673
674 result = find_single_use_1 (dest, &PATTERN (next));
675 if (result && ploc)
676 *ploc = next;
677 return result;
678 }
679
680 if (!REG_P (dest))
681 return 0;
682
683 bb = BLOCK_FOR_INSN (insn);
684 for (next = NEXT_INSN (insn);
685 next && BLOCK_FOR_INSN (next) == bb;
686 next = NEXT_INSN (next))
687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
688 {
689 FOR_EACH_LOG_LINK (link, next)
690 if (link->insn == insn && link->regno == REGNO (dest))
691 break;
692
693 if (link)
694 {
695 result = find_single_use_1 (dest, &PATTERN (next));
696 if (ploc)
697 *ploc = next;
698 return result;
699 }
700 }
701
702 return 0;
703 }
704 \f
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
709 the undo table. */
710
711 static void
712 do_SUBST (rtx *into, rtx newval)
713 {
714 struct undo *buf;
715 rtx oldval = *into;
716
717 if (oldval == newval)
718 return;
719
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726 && CONST_INT_P (newval))
727 {
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval)
731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
732
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval))));
741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval, 0))));
743 }
744
745 if (undobuf.frees)
746 buf = undobuf.frees, undobuf.frees = buf->next;
747 else
748 buf = XNEW (struct undo);
749
750 buf->kind = UNDO_RTX;
751 buf->where.r = into;
752 buf->old_contents.r = oldval;
753 *into = newval;
754
755 buf->next = undobuf.undos, undobuf.undos = buf;
756 }
757
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
759
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
762 not safe. */
763
764 static void
765 do_SUBST_INT (int *into, int newval)
766 {
767 struct undo *buf;
768 int oldval = *into;
769
770 if (oldval == newval)
771 return;
772
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
777
778 buf->kind = UNDO_INT;
779 buf->where.i = into;
780 buf->old_contents.i = oldval;
781 *into = newval;
782
783 buf->next = undobuf.undos, undobuf.undos = buf;
784 }
785
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
787
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
791 well. */
792
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
795 {
796 struct undo *buf;
797 machine_mode oldval = GET_MODE (*into);
798
799 if (oldval == newval)
800 return;
801
802 if (undobuf.frees)
803 buf = undobuf.frees, undobuf.frees = buf->next;
804 else
805 buf = XNEW (struct undo);
806
807 buf->kind = UNDO_MODE;
808 buf->where.r = into;
809 buf->old_contents.m = oldval;
810 adjust_reg_mode (*into, newval);
811
812 buf->next = undobuf.undos, undobuf.undos = buf;
813 }
814
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
816
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
818
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
821 {
822 struct undo *buf;
823 struct insn_link * oldval = *into;
824
825 if (oldval == newval)
826 return;
827
828 if (undobuf.frees)
829 buf = undobuf.frees, undobuf.frees = buf->next;
830 else
831 buf = XNEW (struct undo);
832
833 buf->kind = UNDO_LINKS;
834 buf->where.l = into;
835 buf->old_contents.l = oldval;
836 *into = newval;
837
838 buf->next = undobuf.undos, undobuf.undos = buf;
839 }
840
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
842 \f
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
850
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 rtx newpat, rtx newi2pat, rtx newotherpat)
854 {
855 int i0_cost, i1_cost, i2_cost, i3_cost;
856 int new_i2_cost, new_i3_cost;
857 int old_cost, new_cost;
858
859 /* Lookup the original insn_rtx_costs. */
860 i2_cost = INSN_COST (i2);
861 i3_cost = INSN_COST (i3);
862
863 if (i1)
864 {
865 i1_cost = INSN_COST (i1);
866 if (i0)
867 {
868 i0_cost = INSN_COST (i0);
869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
871 }
872 else
873 {
874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 ? i1_cost + i2_cost + i3_cost : 0);
876 i0_cost = 0;
877 }
878 }
879 else
880 {
881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882 i1_cost = i0_cost = 0;
883 }
884
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886 correct that. */
887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888 old_cost -= i1_cost;
889
890
891 /* Calculate the replacement insn_rtx_costs. */
892 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
893 if (newi2pat)
894 {
895 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
896 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
897 ? new_i2_cost + new_i3_cost : 0;
898 }
899 else
900 {
901 new_cost = new_i3_cost;
902 new_i2_cost = 0;
903 }
904
905 if (undobuf.other_insn)
906 {
907 int old_other_cost, new_other_cost;
908
909 old_other_cost = INSN_COST (undobuf.other_insn);
910 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
911 if (old_other_cost > 0 && new_other_cost > 0)
912 {
913 old_cost += old_other_cost;
914 new_cost += new_other_cost;
915 }
916 else
917 old_cost = 0;
918 }
919
920 /* Disallow this combination if both new_cost and old_cost are greater than
921 zero, and new_cost is greater than old cost. */
922 int reject = old_cost > 0 && new_cost > old_cost;
923
924 if (dump_file)
925 {
926 fprintf (dump_file, "%s combination of insns ",
927 reject ? "rejecting" : "allowing");
928 if (i0)
929 fprintf (dump_file, "%d, ", INSN_UID (i0));
930 if (i1 && INSN_UID (i1) != INSN_UID (i2))
931 fprintf (dump_file, "%d, ", INSN_UID (i1));
932 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
933
934 fprintf (dump_file, "original costs ");
935 if (i0)
936 fprintf (dump_file, "%d + ", i0_cost);
937 if (i1 && INSN_UID (i1) != INSN_UID (i2))
938 fprintf (dump_file, "%d + ", i1_cost);
939 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
940
941 if (newi2pat)
942 fprintf (dump_file, "replacement costs %d + %d = %d\n",
943 new_i2_cost, new_i3_cost, new_cost);
944 else
945 fprintf (dump_file, "replacement cost %d\n", new_cost);
946 }
947
948 if (reject)
949 return false;
950
951 /* Update the uid_insn_cost array with the replacement costs. */
952 INSN_COST (i2) = new_i2_cost;
953 INSN_COST (i3) = new_i3_cost;
954 if (i1)
955 {
956 INSN_COST (i1) = 0;
957 if (i0)
958 INSN_COST (i0) = 0;
959 }
960
961 return true;
962 }
963
964
965 /* Delete any insns that copy a register to itself. */
966
967 static void
968 delete_noop_moves (void)
969 {
970 rtx_insn *insn, *next;
971 basic_block bb;
972
973 FOR_EACH_BB_FN (bb, cfun)
974 {
975 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
976 {
977 next = NEXT_INSN (insn);
978 if (INSN_P (insn) && noop_move_p (insn))
979 {
980 if (dump_file)
981 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
982
983 delete_insn_and_edges (insn);
984 }
985 }
986 }
987 }
988
989 \f
990 /* Return false if we do not want to (or cannot) combine DEF. */
991 static bool
992 can_combine_def_p (df_ref def)
993 {
994 /* Do not consider if it is pre/post modification in MEM. */
995 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
996 return false;
997
998 unsigned int regno = DF_REF_REGNO (def);
999
1000 /* Do not combine frame pointer adjustments. */
1001 if ((regno == FRAME_POINTER_REGNUM
1002 && (!reload_completed || frame_pointer_needed))
1003 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1004 && regno == HARD_FRAME_POINTER_REGNUM
1005 && (!reload_completed || frame_pointer_needed))
1006 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1007 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1008 return false;
1009
1010 return true;
1011 }
1012
1013 /* Return false if we do not want to (or cannot) combine USE. */
1014 static bool
1015 can_combine_use_p (df_ref use)
1016 {
1017 /* Do not consider the usage of the stack pointer by function call. */
1018 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1019 return false;
1020
1021 return true;
1022 }
1023
1024 /* Fill in log links field for all insns. */
1025
1026 static void
1027 create_log_links (void)
1028 {
1029 basic_block bb;
1030 rtx_insn **next_use;
1031 rtx_insn *insn;
1032 df_ref def, use;
1033
1034 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1035
1036 /* Pass through each block from the end, recording the uses of each
1037 register and establishing log links when def is encountered.
1038 Note that we do not clear next_use array in order to save time,
1039 so we have to test whether the use is in the same basic block as def.
1040
1041 There are a few cases below when we do not consider the definition or
1042 usage -- these are taken from original flow.c did. Don't ask me why it is
1043 done this way; I don't know and if it works, I don't want to know. */
1044
1045 FOR_EACH_BB_FN (bb, cfun)
1046 {
1047 FOR_BB_INSNS_REVERSE (bb, insn)
1048 {
1049 if (!NONDEBUG_INSN_P (insn))
1050 continue;
1051
1052 /* Log links are created only once. */
1053 gcc_assert (!LOG_LINKS (insn));
1054
1055 FOR_EACH_INSN_DEF (def, insn)
1056 {
1057 unsigned int regno = DF_REF_REGNO (def);
1058 rtx_insn *use_insn;
1059
1060 if (!next_use[regno])
1061 continue;
1062
1063 if (!can_combine_def_p (def))
1064 continue;
1065
1066 use_insn = next_use[regno];
1067 next_use[regno] = NULL;
1068
1069 if (BLOCK_FOR_INSN (use_insn) != bb)
1070 continue;
1071
1072 /* flow.c claimed:
1073
1074 We don't build a LOG_LINK for hard registers contained
1075 in ASM_OPERANDs. If these registers get replaced,
1076 we might wind up changing the semantics of the insn,
1077 even if reload can make what appear to be valid
1078 assignments later. */
1079 if (regno < FIRST_PSEUDO_REGISTER
1080 && asm_noperands (PATTERN (use_insn)) >= 0)
1081 continue;
1082
1083 /* Don't add duplicate links between instructions. */
1084 struct insn_link *links;
1085 FOR_EACH_LOG_LINK (links, use_insn)
1086 if (insn == links->insn && regno == links->regno)
1087 break;
1088
1089 if (!links)
1090 LOG_LINKS (use_insn)
1091 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1092 }
1093
1094 FOR_EACH_INSN_USE (use, insn)
1095 if (can_combine_use_p (use))
1096 next_use[DF_REF_REGNO (use)] = insn;
1097 }
1098 }
1099
1100 free (next_use);
1101 }
1102
1103 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1104 true if we found a LOG_LINK that proves that A feeds B. This only works
1105 if there are no instructions between A and B which could have a link
1106 depending on A, since in that case we would not record a link for B.
1107 We also check the implicit dependency created by a cc0 setter/user
1108 pair. */
1109
1110 static bool
1111 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1112 {
1113 struct insn_link *links;
1114 FOR_EACH_LOG_LINK (links, b)
1115 if (links->insn == a)
1116 return true;
1117 if (HAVE_cc0 && sets_cc0_p (a))
1118 return true;
1119 return false;
1120 }
1121 \f
1122 /* Main entry point for combiner. F is the first insn of the function.
1123 NREGS is the first unused pseudo-reg number.
1124
1125 Return nonzero if the combiner has turned an indirect jump
1126 instruction into a direct jump. */
1127 static int
1128 combine_instructions (rtx_insn *f, unsigned int nregs)
1129 {
1130 rtx_insn *insn, *next;
1131 rtx_insn *prev;
1132 struct insn_link *links, *nextlinks;
1133 rtx_insn *first;
1134 basic_block last_bb;
1135
1136 int new_direct_jump_p = 0;
1137
1138 for (first = f; first && !NONDEBUG_INSN_P (first); )
1139 first = NEXT_INSN (first);
1140 if (!first)
1141 return 0;
1142
1143 combine_attempts = 0;
1144 combine_merges = 0;
1145 combine_extras = 0;
1146 combine_successes = 0;
1147
1148 rtl_hooks = combine_rtl_hooks;
1149
1150 reg_stat.safe_grow_cleared (nregs);
1151
1152 init_recog_no_volatile ();
1153
1154 /* Allocate array for insn info. */
1155 max_uid_known = get_max_uid ();
1156 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1157 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1158 gcc_obstack_init (&insn_link_obstack);
1159
1160 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1161
1162 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1163 problems when, for example, we have j <<= 1 in a loop. */
1164
1165 nonzero_sign_valid = 0;
1166 label_tick = label_tick_ebb_start = 1;
1167
1168 /* Scan all SETs and see if we can deduce anything about what
1169 bits are known to be zero for some registers and how many copies
1170 of the sign bit are known to exist for those registers.
1171
1172 Also set any known values so that we can use it while searching
1173 for what bits are known to be set. */
1174
1175 setup_incoming_promotions (first);
1176 /* Allow the entry block and the first block to fall into the same EBB.
1177 Conceptually the incoming promotions are assigned to the entry block. */
1178 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1179
1180 create_log_links ();
1181 FOR_EACH_BB_FN (this_basic_block, cfun)
1182 {
1183 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1184 last_call_luid = 0;
1185 mem_last_set = -1;
1186
1187 label_tick++;
1188 if (!single_pred_p (this_basic_block)
1189 || single_pred (this_basic_block) != last_bb)
1190 label_tick_ebb_start = label_tick;
1191 last_bb = this_basic_block;
1192
1193 FOR_BB_INSNS (this_basic_block, insn)
1194 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1195 {
1196 rtx links;
1197
1198 subst_low_luid = DF_INSN_LUID (insn);
1199 subst_insn = insn;
1200
1201 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1202 insn);
1203 record_dead_and_set_regs (insn);
1204
1205 if (AUTO_INC_DEC)
1206 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1207 if (REG_NOTE_KIND (links) == REG_INC)
1208 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1209 insn);
1210
1211 /* Record the current insn_rtx_cost of this instruction. */
1212 if (NONJUMP_INSN_P (insn))
1213 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1214 optimize_this_for_speed_p);
1215 if (dump_file)
1216 {
1217 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1218 dump_insn_slim (dump_file, insn);
1219 }
1220 }
1221 }
1222
1223 nonzero_sign_valid = 1;
1224
1225 /* Now scan all the insns in forward order. */
1226 label_tick = label_tick_ebb_start = 1;
1227 init_reg_last ();
1228 setup_incoming_promotions (first);
1229 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1230 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1231
1232 FOR_EACH_BB_FN (this_basic_block, cfun)
1233 {
1234 rtx_insn *last_combined_insn = NULL;
1235 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1236 last_call_luid = 0;
1237 mem_last_set = -1;
1238
1239 label_tick++;
1240 if (!single_pred_p (this_basic_block)
1241 || single_pred (this_basic_block) != last_bb)
1242 label_tick_ebb_start = label_tick;
1243 last_bb = this_basic_block;
1244
1245 rtl_profile_for_bb (this_basic_block);
1246 for (insn = BB_HEAD (this_basic_block);
1247 insn != NEXT_INSN (BB_END (this_basic_block));
1248 insn = next ? next : NEXT_INSN (insn))
1249 {
1250 next = 0;
1251 if (!NONDEBUG_INSN_P (insn))
1252 continue;
1253
1254 while (last_combined_insn
1255 && (!NONDEBUG_INSN_P (last_combined_insn)
1256 || last_combined_insn->deleted ()))
1257 last_combined_insn = PREV_INSN (last_combined_insn);
1258 if (last_combined_insn == NULL_RTX
1259 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1260 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1261 last_combined_insn = insn;
1262
1263 /* See if we know about function return values before this
1264 insn based upon SUBREG flags. */
1265 check_promoted_subreg (insn, PATTERN (insn));
1266
1267 /* See if we can find hardregs and subreg of pseudos in
1268 narrower modes. This could help turning TRUNCATEs
1269 into SUBREGs. */
1270 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1271
1272 /* Try this insn with each insn it links back to. */
1273
1274 FOR_EACH_LOG_LINK (links, insn)
1275 if ((next = try_combine (insn, links->insn, NULL,
1276 NULL, &new_direct_jump_p,
1277 last_combined_insn)) != 0)
1278 {
1279 statistics_counter_event (cfun, "two-insn combine", 1);
1280 goto retry;
1281 }
1282
1283 /* Try each sequence of three linked insns ending with this one. */
1284
1285 if (max_combine >= 3)
1286 FOR_EACH_LOG_LINK (links, insn)
1287 {
1288 rtx_insn *link = links->insn;
1289
1290 /* If the linked insn has been replaced by a note, then there
1291 is no point in pursuing this chain any further. */
1292 if (NOTE_P (link))
1293 continue;
1294
1295 FOR_EACH_LOG_LINK (nextlinks, link)
1296 if ((next = try_combine (insn, link, nextlinks->insn,
1297 NULL, &new_direct_jump_p,
1298 last_combined_insn)) != 0)
1299 {
1300 statistics_counter_event (cfun, "three-insn combine", 1);
1301 goto retry;
1302 }
1303 }
1304
1305 /* Try to combine a jump insn that uses CC0
1306 with a preceding insn that sets CC0, and maybe with its
1307 logical predecessor as well.
1308 This is how we make decrement-and-branch insns.
1309 We need this special code because data flow connections
1310 via CC0 do not get entered in LOG_LINKS. */
1311
1312 if (HAVE_cc0
1313 && JUMP_P (insn)
1314 && (prev = prev_nonnote_insn (insn)) != 0
1315 && NONJUMP_INSN_P (prev)
1316 && sets_cc0_p (PATTERN (prev)))
1317 {
1318 if ((next = try_combine (insn, prev, NULL, NULL,
1319 &new_direct_jump_p,
1320 last_combined_insn)) != 0)
1321 goto retry;
1322
1323 FOR_EACH_LOG_LINK (nextlinks, prev)
1324 if ((next = try_combine (insn, prev, nextlinks->insn,
1325 NULL, &new_direct_jump_p,
1326 last_combined_insn)) != 0)
1327 goto retry;
1328 }
1329
1330 /* Do the same for an insn that explicitly references CC0. */
1331 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1332 && (prev = prev_nonnote_insn (insn)) != 0
1333 && NONJUMP_INSN_P (prev)
1334 && sets_cc0_p (PATTERN (prev))
1335 && GET_CODE (PATTERN (insn)) == SET
1336 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1337 {
1338 if ((next = try_combine (insn, prev, NULL, NULL,
1339 &new_direct_jump_p,
1340 last_combined_insn)) != 0)
1341 goto retry;
1342
1343 FOR_EACH_LOG_LINK (nextlinks, prev)
1344 if ((next = try_combine (insn, prev, nextlinks->insn,
1345 NULL, &new_direct_jump_p,
1346 last_combined_insn)) != 0)
1347 goto retry;
1348 }
1349
1350 /* Finally, see if any of the insns that this insn links to
1351 explicitly references CC0. If so, try this insn, that insn,
1352 and its predecessor if it sets CC0. */
1353 if (HAVE_cc0)
1354 {
1355 FOR_EACH_LOG_LINK (links, insn)
1356 if (NONJUMP_INSN_P (links->insn)
1357 && GET_CODE (PATTERN (links->insn)) == SET
1358 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1359 && (prev = prev_nonnote_insn (links->insn)) != 0
1360 && NONJUMP_INSN_P (prev)
1361 && sets_cc0_p (PATTERN (prev))
1362 && (next = try_combine (insn, links->insn,
1363 prev, NULL, &new_direct_jump_p,
1364 last_combined_insn)) != 0)
1365 goto retry;
1366 }
1367
1368 /* Try combining an insn with two different insns whose results it
1369 uses. */
1370 if (max_combine >= 3)
1371 FOR_EACH_LOG_LINK (links, insn)
1372 for (nextlinks = links->next; nextlinks;
1373 nextlinks = nextlinks->next)
1374 if ((next = try_combine (insn, links->insn,
1375 nextlinks->insn, NULL,
1376 &new_direct_jump_p,
1377 last_combined_insn)) != 0)
1378
1379 {
1380 statistics_counter_event (cfun, "three-insn combine", 1);
1381 goto retry;
1382 }
1383
1384 /* Try four-instruction combinations. */
1385 if (max_combine >= 4)
1386 FOR_EACH_LOG_LINK (links, insn)
1387 {
1388 struct insn_link *next1;
1389 rtx_insn *link = links->insn;
1390
1391 /* If the linked insn has been replaced by a note, then there
1392 is no point in pursuing this chain any further. */
1393 if (NOTE_P (link))
1394 continue;
1395
1396 FOR_EACH_LOG_LINK (next1, link)
1397 {
1398 rtx_insn *link1 = next1->insn;
1399 if (NOTE_P (link1))
1400 continue;
1401 /* I0 -> I1 -> I2 -> I3. */
1402 FOR_EACH_LOG_LINK (nextlinks, link1)
1403 if ((next = try_combine (insn, link, link1,
1404 nextlinks->insn,
1405 &new_direct_jump_p,
1406 last_combined_insn)) != 0)
1407 {
1408 statistics_counter_event (cfun, "four-insn combine", 1);
1409 goto retry;
1410 }
1411 /* I0, I1 -> I2, I2 -> I3. */
1412 for (nextlinks = next1->next; nextlinks;
1413 nextlinks = nextlinks->next)
1414 if ((next = try_combine (insn, link, link1,
1415 nextlinks->insn,
1416 &new_direct_jump_p,
1417 last_combined_insn)) != 0)
1418 {
1419 statistics_counter_event (cfun, "four-insn combine", 1);
1420 goto retry;
1421 }
1422 }
1423
1424 for (next1 = links->next; next1; next1 = next1->next)
1425 {
1426 rtx_insn *link1 = next1->insn;
1427 if (NOTE_P (link1))
1428 continue;
1429 /* I0 -> I2; I1, I2 -> I3. */
1430 FOR_EACH_LOG_LINK (nextlinks, link)
1431 if ((next = try_combine (insn, link, link1,
1432 nextlinks->insn,
1433 &new_direct_jump_p,
1434 last_combined_insn)) != 0)
1435 {
1436 statistics_counter_event (cfun, "four-insn combine", 1);
1437 goto retry;
1438 }
1439 /* I0 -> I1; I1, I2 -> I3. */
1440 FOR_EACH_LOG_LINK (nextlinks, link1)
1441 if ((next = try_combine (insn, link, link1,
1442 nextlinks->insn,
1443 &new_direct_jump_p,
1444 last_combined_insn)) != 0)
1445 {
1446 statistics_counter_event (cfun, "four-insn combine", 1);
1447 goto retry;
1448 }
1449 }
1450 }
1451
1452 /* Try this insn with each REG_EQUAL note it links back to. */
1453 FOR_EACH_LOG_LINK (links, insn)
1454 {
1455 rtx set, note;
1456 rtx_insn *temp = links->insn;
1457 if ((set = single_set (temp)) != 0
1458 && (note = find_reg_equal_equiv_note (temp)) != 0
1459 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1460 /* Avoid using a register that may already been marked
1461 dead by an earlier instruction. */
1462 && ! unmentioned_reg_p (note, SET_SRC (set))
1463 && (GET_MODE (note) == VOIDmode
1464 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1465 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1466 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1467 || (GET_MODE (XEXP (SET_DEST (set), 0))
1468 == GET_MODE (note))))))
1469 {
1470 /* Temporarily replace the set's source with the
1471 contents of the REG_EQUAL note. The insn will
1472 be deleted or recognized by try_combine. */
1473 rtx orig_src = SET_SRC (set);
1474 rtx orig_dest = SET_DEST (set);
1475 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1476 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1477 SET_SRC (set) = note;
1478 i2mod = temp;
1479 i2mod_old_rhs = copy_rtx (orig_src);
1480 i2mod_new_rhs = copy_rtx (note);
1481 next = try_combine (insn, i2mod, NULL, NULL,
1482 &new_direct_jump_p,
1483 last_combined_insn);
1484 i2mod = NULL;
1485 if (next)
1486 {
1487 statistics_counter_event (cfun, "insn-with-note combine", 1);
1488 goto retry;
1489 }
1490 SET_SRC (set) = orig_src;
1491 SET_DEST (set) = orig_dest;
1492 }
1493 }
1494
1495 if (!NOTE_P (insn))
1496 record_dead_and_set_regs (insn);
1497
1498 retry:
1499 ;
1500 }
1501 }
1502
1503 default_rtl_profile ();
1504 clear_bb_flags ();
1505 new_direct_jump_p |= purge_all_dead_edges ();
1506 delete_noop_moves ();
1507
1508 /* Clean up. */
1509 obstack_free (&insn_link_obstack, NULL);
1510 free (uid_log_links);
1511 free (uid_insn_cost);
1512 reg_stat.release ();
1513
1514 {
1515 struct undo *undo, *next;
1516 for (undo = undobuf.frees; undo; undo = next)
1517 {
1518 next = undo->next;
1519 free (undo);
1520 }
1521 undobuf.frees = 0;
1522 }
1523
1524 total_attempts += combine_attempts;
1525 total_merges += combine_merges;
1526 total_extras += combine_extras;
1527 total_successes += combine_successes;
1528
1529 nonzero_sign_valid = 0;
1530 rtl_hooks = general_rtl_hooks;
1531
1532 /* Make recognizer allow volatile MEMs again. */
1533 init_recog ();
1534
1535 return new_direct_jump_p;
1536 }
1537
1538 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1539
1540 static void
1541 init_reg_last (void)
1542 {
1543 unsigned int i;
1544 reg_stat_type *p;
1545
1546 FOR_EACH_VEC_ELT (reg_stat, i, p)
1547 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1548 }
1549 \f
1550 /* Set up any promoted values for incoming argument registers. */
1551
1552 static void
1553 setup_incoming_promotions (rtx_insn *first)
1554 {
1555 tree arg;
1556 bool strictly_local = false;
1557
1558 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1559 arg = DECL_CHAIN (arg))
1560 {
1561 rtx x, reg = DECL_INCOMING_RTL (arg);
1562 int uns1, uns3;
1563 machine_mode mode1, mode2, mode3, mode4;
1564
1565 /* Only continue if the incoming argument is in a register. */
1566 if (!REG_P (reg))
1567 continue;
1568
1569 /* Determine, if possible, whether all call sites of the current
1570 function lie within the current compilation unit. (This does
1571 take into account the exporting of a function via taking its
1572 address, and so forth.) */
1573 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1574
1575 /* The mode and signedness of the argument before any promotions happen
1576 (equal to the mode of the pseudo holding it at that stage). */
1577 mode1 = TYPE_MODE (TREE_TYPE (arg));
1578 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1579
1580 /* The mode and signedness of the argument after any source language and
1581 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1582 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1583 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1584
1585 /* The mode and signedness of the argument as it is actually passed,
1586 see assign_parm_setup_reg in function.c. */
1587 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1588 TREE_TYPE (cfun->decl), 0);
1589
1590 /* The mode of the register in which the argument is being passed. */
1591 mode4 = GET_MODE (reg);
1592
1593 /* Eliminate sign extensions in the callee when:
1594 (a) A mode promotion has occurred; */
1595 if (mode1 == mode3)
1596 continue;
1597 /* (b) The mode of the register is the same as the mode of
1598 the argument as it is passed; */
1599 if (mode3 != mode4)
1600 continue;
1601 /* (c) There's no language level extension; */
1602 if (mode1 == mode2)
1603 ;
1604 /* (c.1) All callers are from the current compilation unit. If that's
1605 the case we don't have to rely on an ABI, we only have to know
1606 what we're generating right now, and we know that we will do the
1607 mode1 to mode2 promotion with the given sign. */
1608 else if (!strictly_local)
1609 continue;
1610 /* (c.2) The combination of the two promotions is useful. This is
1611 true when the signs match, or if the first promotion is unsigned.
1612 In the later case, (sign_extend (zero_extend x)) is the same as
1613 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1614 else if (uns1)
1615 uns3 = true;
1616 else if (uns3)
1617 continue;
1618
1619 /* Record that the value was promoted from mode1 to mode3,
1620 so that any sign extension at the head of the current
1621 function may be eliminated. */
1622 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1623 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1624 record_value_for_reg (reg, first, x);
1625 }
1626 }
1627
1628 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1629 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1630 because some machines (maybe most) will actually do the sign-extension and
1631 this is the conservative approach.
1632
1633 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1634 kludge. */
1635
1636 static rtx
1637 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1638 {
1639 scalar_int_mode int_mode;
1640 if (CONST_INT_P (src)
1641 && is_a <scalar_int_mode> (mode, &int_mode)
1642 && GET_MODE_PRECISION (int_mode) < prec
1643 && INTVAL (src) > 0
1644 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1645 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1646
1647 return src;
1648 }
1649
1650 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1651 and SET. */
1652
1653 static void
1654 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1655 rtx x)
1656 {
1657 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1658 unsigned HOST_WIDE_INT bits = 0;
1659 rtx reg_equal = NULL, src = SET_SRC (set);
1660 unsigned int num = 0;
1661
1662 if (reg_equal_note)
1663 reg_equal = XEXP (reg_equal_note, 0);
1664
1665 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1666 {
1667 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1668 if (reg_equal)
1669 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1670 }
1671
1672 /* Don't call nonzero_bits if it cannot change anything. */
1673 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1674 {
1675 bits = nonzero_bits (src, nonzero_bits_mode);
1676 if (reg_equal && bits)
1677 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1678 rsp->nonzero_bits |= bits;
1679 }
1680
1681 /* Don't call num_sign_bit_copies if it cannot change anything. */
1682 if (rsp->sign_bit_copies != 1)
1683 {
1684 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1685 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1686 {
1687 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1688 if (num == 0 || numeq > num)
1689 num = numeq;
1690 }
1691 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1692 rsp->sign_bit_copies = num;
1693 }
1694 }
1695
1696 /* Called via note_stores. If X is a pseudo that is narrower than
1697 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1698
1699 If we are setting only a portion of X and we can't figure out what
1700 portion, assume all bits will be used since we don't know what will
1701 be happening.
1702
1703 Similarly, set how many bits of X are known to be copies of the sign bit
1704 at all locations in the function. This is the smallest number implied
1705 by any set of X. */
1706
1707 static void
1708 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1709 {
1710 rtx_insn *insn = (rtx_insn *) data;
1711 scalar_int_mode mode;
1712
1713 if (REG_P (x)
1714 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1715 /* If this register is undefined at the start of the file, we can't
1716 say what its contents were. */
1717 && ! REGNO_REG_SET_P
1718 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1719 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1720 && HWI_COMPUTABLE_MODE_P (mode))
1721 {
1722 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1723
1724 if (set == 0 || GET_CODE (set) == CLOBBER)
1725 {
1726 rsp->nonzero_bits = GET_MODE_MASK (mode);
1727 rsp->sign_bit_copies = 1;
1728 return;
1729 }
1730
1731 /* If this register is being initialized using itself, and the
1732 register is uninitialized in this basic block, and there are
1733 no LOG_LINKS which set the register, then part of the
1734 register is uninitialized. In that case we can't assume
1735 anything about the number of nonzero bits.
1736
1737 ??? We could do better if we checked this in
1738 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1739 could avoid making assumptions about the insn which initially
1740 sets the register, while still using the information in other
1741 insns. We would have to be careful to check every insn
1742 involved in the combination. */
1743
1744 if (insn
1745 && reg_referenced_p (x, PATTERN (insn))
1746 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1747 REGNO (x)))
1748 {
1749 struct insn_link *link;
1750
1751 FOR_EACH_LOG_LINK (link, insn)
1752 if (dead_or_set_p (link->insn, x))
1753 break;
1754 if (!link)
1755 {
1756 rsp->nonzero_bits = GET_MODE_MASK (mode);
1757 rsp->sign_bit_copies = 1;
1758 return;
1759 }
1760 }
1761
1762 /* If this is a complex assignment, see if we can convert it into a
1763 simple assignment. */
1764 set = expand_field_assignment (set);
1765
1766 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1767 set what we know about X. */
1768
1769 if (SET_DEST (set) == x
1770 || (paradoxical_subreg_p (SET_DEST (set))
1771 && SUBREG_REG (SET_DEST (set)) == x))
1772 update_rsp_from_reg_equal (rsp, insn, set, x);
1773 else
1774 {
1775 rsp->nonzero_bits = GET_MODE_MASK (mode);
1776 rsp->sign_bit_copies = 1;
1777 }
1778 }
1779 }
1780 \f
1781 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1782 optionally insns that were previously combined into I3 or that will be
1783 combined into the merger of INSN and I3. The order is PRED, PRED2,
1784 INSN, SUCC, SUCC2, I3.
1785
1786 Return 0 if the combination is not allowed for any reason.
1787
1788 If the combination is allowed, *PDEST will be set to the single
1789 destination of INSN and *PSRC to the single source, and this function
1790 will return 1. */
1791
1792 static int
1793 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1794 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1795 rtx *pdest, rtx *psrc)
1796 {
1797 int i;
1798 const_rtx set = 0;
1799 rtx src, dest;
1800 rtx_insn *p;
1801 rtx link;
1802 bool all_adjacent = true;
1803 int (*is_volatile_p) (const_rtx);
1804
1805 if (succ)
1806 {
1807 if (succ2)
1808 {
1809 if (next_active_insn (succ2) != i3)
1810 all_adjacent = false;
1811 if (next_active_insn (succ) != succ2)
1812 all_adjacent = false;
1813 }
1814 else if (next_active_insn (succ) != i3)
1815 all_adjacent = false;
1816 if (next_active_insn (insn) != succ)
1817 all_adjacent = false;
1818 }
1819 else if (next_active_insn (insn) != i3)
1820 all_adjacent = false;
1821
1822 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1823 or a PARALLEL consisting of such a SET and CLOBBERs.
1824
1825 If INSN has CLOBBER parallel parts, ignore them for our processing.
1826 By definition, these happen during the execution of the insn. When it
1827 is merged with another insn, all bets are off. If they are, in fact,
1828 needed and aren't also supplied in I3, they may be added by
1829 recog_for_combine. Otherwise, it won't match.
1830
1831 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1832 note.
1833
1834 Get the source and destination of INSN. If more than one, can't
1835 combine. */
1836
1837 if (GET_CODE (PATTERN (insn)) == SET)
1838 set = PATTERN (insn);
1839 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1840 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1841 {
1842 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1843 {
1844 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1845
1846 switch (GET_CODE (elt))
1847 {
1848 /* This is important to combine floating point insns
1849 for the SH4 port. */
1850 case USE:
1851 /* Combining an isolated USE doesn't make sense.
1852 We depend here on combinable_i3pat to reject them. */
1853 /* The code below this loop only verifies that the inputs of
1854 the SET in INSN do not change. We call reg_set_between_p
1855 to verify that the REG in the USE does not change between
1856 I3 and INSN.
1857 If the USE in INSN was for a pseudo register, the matching
1858 insn pattern will likely match any register; combining this
1859 with any other USE would only be safe if we knew that the
1860 used registers have identical values, or if there was
1861 something to tell them apart, e.g. different modes. For
1862 now, we forgo such complicated tests and simply disallow
1863 combining of USES of pseudo registers with any other USE. */
1864 if (REG_P (XEXP (elt, 0))
1865 && GET_CODE (PATTERN (i3)) == PARALLEL)
1866 {
1867 rtx i3pat = PATTERN (i3);
1868 int i = XVECLEN (i3pat, 0) - 1;
1869 unsigned int regno = REGNO (XEXP (elt, 0));
1870
1871 do
1872 {
1873 rtx i3elt = XVECEXP (i3pat, 0, i);
1874
1875 if (GET_CODE (i3elt) == USE
1876 && REG_P (XEXP (i3elt, 0))
1877 && (REGNO (XEXP (i3elt, 0)) == regno
1878 ? reg_set_between_p (XEXP (elt, 0),
1879 PREV_INSN (insn), i3)
1880 : regno >= FIRST_PSEUDO_REGISTER))
1881 return 0;
1882 }
1883 while (--i >= 0);
1884 }
1885 break;
1886
1887 /* We can ignore CLOBBERs. */
1888 case CLOBBER:
1889 break;
1890
1891 case SET:
1892 /* Ignore SETs whose result isn't used but not those that
1893 have side-effects. */
1894 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1895 && insn_nothrow_p (insn)
1896 && !side_effects_p (elt))
1897 break;
1898
1899 /* If we have already found a SET, this is a second one and
1900 so we cannot combine with this insn. */
1901 if (set)
1902 return 0;
1903
1904 set = elt;
1905 break;
1906
1907 default:
1908 /* Anything else means we can't combine. */
1909 return 0;
1910 }
1911 }
1912
1913 if (set == 0
1914 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1915 so don't do anything with it. */
1916 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1917 return 0;
1918 }
1919 else
1920 return 0;
1921
1922 if (set == 0)
1923 return 0;
1924
1925 /* The simplification in expand_field_assignment may call back to
1926 get_last_value, so set safe guard here. */
1927 subst_low_luid = DF_INSN_LUID (insn);
1928
1929 set = expand_field_assignment (set);
1930 src = SET_SRC (set), dest = SET_DEST (set);
1931
1932 /* Do not eliminate user-specified register if it is in an
1933 asm input because we may break the register asm usage defined
1934 in GCC manual if allow to do so.
1935 Be aware that this may cover more cases than we expect but this
1936 should be harmless. */
1937 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1938 && extract_asm_operands (PATTERN (i3)))
1939 return 0;
1940
1941 /* Don't eliminate a store in the stack pointer. */
1942 if (dest == stack_pointer_rtx
1943 /* Don't combine with an insn that sets a register to itself if it has
1944 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1945 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1946 /* Can't merge an ASM_OPERANDS. */
1947 || GET_CODE (src) == ASM_OPERANDS
1948 /* Can't merge a function call. */
1949 || GET_CODE (src) == CALL
1950 /* Don't eliminate a function call argument. */
1951 || (CALL_P (i3)
1952 && (find_reg_fusage (i3, USE, dest)
1953 || (REG_P (dest)
1954 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1955 && global_regs[REGNO (dest)])))
1956 /* Don't substitute into an incremented register. */
1957 || FIND_REG_INC_NOTE (i3, dest)
1958 || (succ && FIND_REG_INC_NOTE (succ, dest))
1959 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1960 /* Don't substitute into a non-local goto, this confuses CFG. */
1961 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1962 /* Make sure that DEST is not used after INSN but before SUCC, or
1963 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1964 || (!all_adjacent
1965 && ((succ2
1966 && (reg_used_between_p (dest, succ2, i3)
1967 || reg_used_between_p (dest, succ, succ2)))
1968 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1969 || (succ
1970 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1971 that case SUCC is not in the insn stream, so use SUCC2
1972 instead for this test. */
1973 && reg_used_between_p (dest, insn,
1974 succ2
1975 && INSN_UID (succ) == INSN_UID (succ2)
1976 ? succ2 : succ))))
1977 /* Make sure that the value that is to be substituted for the register
1978 does not use any registers whose values alter in between. However,
1979 If the insns are adjacent, a use can't cross a set even though we
1980 think it might (this can happen for a sequence of insns each setting
1981 the same destination; last_set of that register might point to
1982 a NOTE). If INSN has a REG_EQUIV note, the register is always
1983 equivalent to the memory so the substitution is valid even if there
1984 are intervening stores. Also, don't move a volatile asm or
1985 UNSPEC_VOLATILE across any other insns. */
1986 || (! all_adjacent
1987 && (((!MEM_P (src)
1988 || ! find_reg_note (insn, REG_EQUIV, src))
1989 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1990 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1991 || GET_CODE (src) == UNSPEC_VOLATILE))
1992 /* Don't combine across a CALL_INSN, because that would possibly
1993 change whether the life span of some REGs crosses calls or not,
1994 and it is a pain to update that information.
1995 Exception: if source is a constant, moving it later can't hurt.
1996 Accept that as a special case. */
1997 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1998 return 0;
1999
2000 /* DEST must either be a REG or CC0. */
2001 if (REG_P (dest))
2002 {
2003 /* If register alignment is being enforced for multi-word items in all
2004 cases except for parameters, it is possible to have a register copy
2005 insn referencing a hard register that is not allowed to contain the
2006 mode being copied and which would not be valid as an operand of most
2007 insns. Eliminate this problem by not combining with such an insn.
2008
2009 Also, on some machines we don't want to extend the life of a hard
2010 register. */
2011
2012 if (REG_P (src)
2013 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2014 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2015 /* Don't extend the life of a hard register unless it is
2016 user variable (if we have few registers) or it can't
2017 fit into the desired register (meaning something special
2018 is going on).
2019 Also avoid substituting a return register into I3, because
2020 reload can't handle a conflict with constraints of other
2021 inputs. */
2022 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2023 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2024 return 0;
2025 }
2026 else if (GET_CODE (dest) != CC0)
2027 return 0;
2028
2029
2030 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2031 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2032 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2033 {
2034 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2035
2036 /* If the clobber represents an earlyclobber operand, we must not
2037 substitute an expression containing the clobbered register.
2038 As we do not analyze the constraint strings here, we have to
2039 make the conservative assumption. However, if the register is
2040 a fixed hard reg, the clobber cannot represent any operand;
2041 we leave it up to the machine description to either accept or
2042 reject use-and-clobber patterns. */
2043 if (!REG_P (reg)
2044 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2045 || !fixed_regs[REGNO (reg)])
2046 if (reg_overlap_mentioned_p (reg, src))
2047 return 0;
2048 }
2049
2050 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2051 or not), reject, unless nothing volatile comes between it and I3 */
2052
2053 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2054 {
2055 /* Make sure neither succ nor succ2 contains a volatile reference. */
2056 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2057 return 0;
2058 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2059 return 0;
2060 /* We'll check insns between INSN and I3 below. */
2061 }
2062
2063 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2064 to be an explicit register variable, and was chosen for a reason. */
2065
2066 if (GET_CODE (src) == ASM_OPERANDS
2067 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2068 return 0;
2069
2070 /* If INSN contains volatile references (specifically volatile MEMs),
2071 we cannot combine across any other volatile references.
2072 Even if INSN doesn't contain volatile references, any intervening
2073 volatile insn might affect machine state. */
2074
2075 is_volatile_p = volatile_refs_p (PATTERN (insn))
2076 ? volatile_refs_p
2077 : volatile_insn_p;
2078
2079 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2080 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2081 return 0;
2082
2083 /* If INSN contains an autoincrement or autodecrement, make sure that
2084 register is not used between there and I3, and not already used in
2085 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2086 Also insist that I3 not be a jump; if it were one
2087 and the incremented register were spilled, we would lose. */
2088
2089 if (AUTO_INC_DEC)
2090 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2091 if (REG_NOTE_KIND (link) == REG_INC
2092 && (JUMP_P (i3)
2093 || reg_used_between_p (XEXP (link, 0), insn, i3)
2094 || (pred != NULL_RTX
2095 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2096 || (pred2 != NULL_RTX
2097 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2098 || (succ != NULL_RTX
2099 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2100 || (succ2 != NULL_RTX
2101 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2102 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2103 return 0;
2104
2105 /* Don't combine an insn that follows a CC0-setting insn.
2106 An insn that uses CC0 must not be separated from the one that sets it.
2107 We do, however, allow I2 to follow a CC0-setting insn if that insn
2108 is passed as I1; in that case it will be deleted also.
2109 We also allow combining in this case if all the insns are adjacent
2110 because that would leave the two CC0 insns adjacent as well.
2111 It would be more logical to test whether CC0 occurs inside I1 or I2,
2112 but that would be much slower, and this ought to be equivalent. */
2113
2114 if (HAVE_cc0)
2115 {
2116 p = prev_nonnote_insn (insn);
2117 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2118 && ! all_adjacent)
2119 return 0;
2120 }
2121
2122 /* If we get here, we have passed all the tests and the combination is
2123 to be allowed. */
2124
2125 *pdest = dest;
2126 *psrc = src;
2127
2128 return 1;
2129 }
2130 \f
2131 /* LOC is the location within I3 that contains its pattern or the component
2132 of a PARALLEL of the pattern. We validate that it is valid for combining.
2133
2134 One problem is if I3 modifies its output, as opposed to replacing it
2135 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2136 doing so would produce an insn that is not equivalent to the original insns.
2137
2138 Consider:
2139
2140 (set (reg:DI 101) (reg:DI 100))
2141 (set (subreg:SI (reg:DI 101) 0) <foo>)
2142
2143 This is NOT equivalent to:
2144
2145 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2146 (set (reg:DI 101) (reg:DI 100))])
2147
2148 Not only does this modify 100 (in which case it might still be valid
2149 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2150
2151 We can also run into a problem if I2 sets a register that I1
2152 uses and I1 gets directly substituted into I3 (not via I2). In that
2153 case, we would be getting the wrong value of I2DEST into I3, so we
2154 must reject the combination. This case occurs when I2 and I1 both
2155 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2156 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2157 of a SET must prevent combination from occurring. The same situation
2158 can occur for I0, in which case I0_NOT_IN_SRC is set.
2159
2160 Before doing the above check, we first try to expand a field assignment
2161 into a set of logical operations.
2162
2163 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2164 we place a register that is both set and used within I3. If more than one
2165 such register is detected, we fail.
2166
2167 Return 1 if the combination is valid, zero otherwise. */
2168
2169 static int
2170 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2171 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2172 {
2173 rtx x = *loc;
2174
2175 if (GET_CODE (x) == SET)
2176 {
2177 rtx set = x ;
2178 rtx dest = SET_DEST (set);
2179 rtx src = SET_SRC (set);
2180 rtx inner_dest = dest;
2181 rtx subdest;
2182
2183 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2184 || GET_CODE (inner_dest) == SUBREG
2185 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2186 inner_dest = XEXP (inner_dest, 0);
2187
2188 /* Check for the case where I3 modifies its output, as discussed
2189 above. We don't want to prevent pseudos from being combined
2190 into the address of a MEM, so only prevent the combination if
2191 i1 or i2 set the same MEM. */
2192 if ((inner_dest != dest &&
2193 (!MEM_P (inner_dest)
2194 || rtx_equal_p (i2dest, inner_dest)
2195 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2196 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2197 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2198 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2199 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2200
2201 /* This is the same test done in can_combine_p except we can't test
2202 all_adjacent; we don't have to, since this instruction will stay
2203 in place, thus we are not considering increasing the lifetime of
2204 INNER_DEST.
2205
2206 Also, if this insn sets a function argument, combining it with
2207 something that might need a spill could clobber a previous
2208 function argument; the all_adjacent test in can_combine_p also
2209 checks this; here, we do a more specific test for this case. */
2210
2211 || (REG_P (inner_dest)
2212 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2213 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2214 GET_MODE (inner_dest))))
2215 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2216 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2217 return 0;
2218
2219 /* If DEST is used in I3, it is being killed in this insn, so
2220 record that for later. We have to consider paradoxical
2221 subregs here, since they kill the whole register, but we
2222 ignore partial subregs, STRICT_LOW_PART, etc.
2223 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2224 STACK_POINTER_REGNUM, since these are always considered to be
2225 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2226 subdest = dest;
2227 if (GET_CODE (subdest) == SUBREG
2228 && (GET_MODE_SIZE (GET_MODE (subdest))
2229 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2230 subdest = SUBREG_REG (subdest);
2231 if (pi3dest_killed
2232 && REG_P (subdest)
2233 && reg_referenced_p (subdest, PATTERN (i3))
2234 && REGNO (subdest) != FRAME_POINTER_REGNUM
2235 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2236 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2237 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2238 || (REGNO (subdest) != ARG_POINTER_REGNUM
2239 || ! fixed_regs [REGNO (subdest)]))
2240 && REGNO (subdest) != STACK_POINTER_REGNUM)
2241 {
2242 if (*pi3dest_killed)
2243 return 0;
2244
2245 *pi3dest_killed = subdest;
2246 }
2247 }
2248
2249 else if (GET_CODE (x) == PARALLEL)
2250 {
2251 int i;
2252
2253 for (i = 0; i < XVECLEN (x, 0); i++)
2254 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2255 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2256 return 0;
2257 }
2258
2259 return 1;
2260 }
2261 \f
2262 /* Return 1 if X is an arithmetic expression that contains a multiplication
2263 and division. We don't count multiplications by powers of two here. */
2264
2265 static int
2266 contains_muldiv (rtx x)
2267 {
2268 switch (GET_CODE (x))
2269 {
2270 case MOD: case DIV: case UMOD: case UDIV:
2271 return 1;
2272
2273 case MULT:
2274 return ! (CONST_INT_P (XEXP (x, 1))
2275 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2276 default:
2277 if (BINARY_P (x))
2278 return contains_muldiv (XEXP (x, 0))
2279 || contains_muldiv (XEXP (x, 1));
2280
2281 if (UNARY_P (x))
2282 return contains_muldiv (XEXP (x, 0));
2283
2284 return 0;
2285 }
2286 }
2287 \f
2288 /* Determine whether INSN can be used in a combination. Return nonzero if
2289 not. This is used in try_combine to detect early some cases where we
2290 can't perform combinations. */
2291
2292 static int
2293 cant_combine_insn_p (rtx_insn *insn)
2294 {
2295 rtx set;
2296 rtx src, dest;
2297
2298 /* If this isn't really an insn, we can't do anything.
2299 This can occur when flow deletes an insn that it has merged into an
2300 auto-increment address. */
2301 if (!NONDEBUG_INSN_P (insn))
2302 return 1;
2303
2304 /* Never combine loads and stores involving hard regs that are likely
2305 to be spilled. The register allocator can usually handle such
2306 reg-reg moves by tying. If we allow the combiner to make
2307 substitutions of likely-spilled regs, reload might die.
2308 As an exception, we allow combinations involving fixed regs; these are
2309 not available to the register allocator so there's no risk involved. */
2310
2311 set = single_set (insn);
2312 if (! set)
2313 return 0;
2314 src = SET_SRC (set);
2315 dest = SET_DEST (set);
2316 if (GET_CODE (src) == SUBREG)
2317 src = SUBREG_REG (src);
2318 if (GET_CODE (dest) == SUBREG)
2319 dest = SUBREG_REG (dest);
2320 if (REG_P (src) && REG_P (dest)
2321 && ((HARD_REGISTER_P (src)
2322 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2323 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2324 || (HARD_REGISTER_P (dest)
2325 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2326 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2327 return 1;
2328
2329 return 0;
2330 }
2331
2332 struct likely_spilled_retval_info
2333 {
2334 unsigned regno, nregs;
2335 unsigned mask;
2336 };
2337
2338 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2339 hard registers that are known to be written to / clobbered in full. */
2340 static void
2341 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2342 {
2343 struct likely_spilled_retval_info *const info =
2344 (struct likely_spilled_retval_info *) data;
2345 unsigned regno, nregs;
2346 unsigned new_mask;
2347
2348 if (!REG_P (XEXP (set, 0)))
2349 return;
2350 regno = REGNO (x);
2351 if (regno >= info->regno + info->nregs)
2352 return;
2353 nregs = REG_NREGS (x);
2354 if (regno + nregs <= info->regno)
2355 return;
2356 new_mask = (2U << (nregs - 1)) - 1;
2357 if (regno < info->regno)
2358 new_mask >>= info->regno - regno;
2359 else
2360 new_mask <<= regno - info->regno;
2361 info->mask &= ~new_mask;
2362 }
2363
2364 /* Return nonzero iff part of the return value is live during INSN, and
2365 it is likely spilled. This can happen when more than one insn is needed
2366 to copy the return value, e.g. when we consider to combine into the
2367 second copy insn for a complex value. */
2368
2369 static int
2370 likely_spilled_retval_p (rtx_insn *insn)
2371 {
2372 rtx_insn *use = BB_END (this_basic_block);
2373 rtx reg;
2374 rtx_insn *p;
2375 unsigned regno, nregs;
2376 /* We assume here that no machine mode needs more than
2377 32 hard registers when the value overlaps with a register
2378 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2379 unsigned mask;
2380 struct likely_spilled_retval_info info;
2381
2382 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2383 return 0;
2384 reg = XEXP (PATTERN (use), 0);
2385 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2386 return 0;
2387 regno = REGNO (reg);
2388 nregs = REG_NREGS (reg);
2389 if (nregs == 1)
2390 return 0;
2391 mask = (2U << (nregs - 1)) - 1;
2392
2393 /* Disregard parts of the return value that are set later. */
2394 info.regno = regno;
2395 info.nregs = nregs;
2396 info.mask = mask;
2397 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2398 if (INSN_P (p))
2399 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2400 mask = info.mask;
2401
2402 /* Check if any of the (probably) live return value registers is
2403 likely spilled. */
2404 nregs --;
2405 do
2406 {
2407 if ((mask & 1 << nregs)
2408 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2409 return 1;
2410 } while (nregs--);
2411 return 0;
2412 }
2413
2414 /* Adjust INSN after we made a change to its destination.
2415
2416 Changing the destination can invalidate notes that say something about
2417 the results of the insn and a LOG_LINK pointing to the insn. */
2418
2419 static void
2420 adjust_for_new_dest (rtx_insn *insn)
2421 {
2422 /* For notes, be conservative and simply remove them. */
2423 remove_reg_equal_equiv_notes (insn);
2424
2425 /* The new insn will have a destination that was previously the destination
2426 of an insn just above it. Call distribute_links to make a LOG_LINK from
2427 the next use of that destination. */
2428
2429 rtx set = single_set (insn);
2430 gcc_assert (set);
2431
2432 rtx reg = SET_DEST (set);
2433
2434 while (GET_CODE (reg) == ZERO_EXTRACT
2435 || GET_CODE (reg) == STRICT_LOW_PART
2436 || GET_CODE (reg) == SUBREG)
2437 reg = XEXP (reg, 0);
2438 gcc_assert (REG_P (reg));
2439
2440 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2441
2442 df_insn_rescan (insn);
2443 }
2444
2445 /* Return TRUE if combine can reuse reg X in mode MODE.
2446 ADDED_SETS is nonzero if the original set is still required. */
2447 static bool
2448 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2449 {
2450 unsigned int regno;
2451
2452 if (!REG_P (x))
2453 return false;
2454
2455 regno = REGNO (x);
2456 /* Allow hard registers if the new mode is legal, and occupies no more
2457 registers than the old mode. */
2458 if (regno < FIRST_PSEUDO_REGISTER)
2459 return (HARD_REGNO_MODE_OK (regno, mode)
2460 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2461
2462 /* Or a pseudo that is only used once. */
2463 return (regno < reg_n_sets_max
2464 && REG_N_SETS (regno) == 1
2465 && !added_sets
2466 && !REG_USERVAR_P (x));
2467 }
2468
2469
2470 /* Check whether X, the destination of a set, refers to part of
2471 the register specified by REG. */
2472
2473 static bool
2474 reg_subword_p (rtx x, rtx reg)
2475 {
2476 /* Check that reg is an integer mode register. */
2477 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2478 return false;
2479
2480 if (GET_CODE (x) == STRICT_LOW_PART
2481 || GET_CODE (x) == ZERO_EXTRACT)
2482 x = XEXP (x, 0);
2483
2484 return GET_CODE (x) == SUBREG
2485 && SUBREG_REG (x) == reg
2486 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2487 }
2488
2489 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2490 Note that the INSN should be deleted *after* removing dead edges, so
2491 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2492 but not for a (set (pc) (label_ref FOO)). */
2493
2494 static void
2495 update_cfg_for_uncondjump (rtx_insn *insn)
2496 {
2497 basic_block bb = BLOCK_FOR_INSN (insn);
2498 gcc_assert (BB_END (bb) == insn);
2499
2500 purge_dead_edges (bb);
2501
2502 delete_insn (insn);
2503 if (EDGE_COUNT (bb->succs) == 1)
2504 {
2505 rtx_insn *insn;
2506
2507 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2508
2509 /* Remove barriers from the footer if there are any. */
2510 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2511 if (BARRIER_P (insn))
2512 {
2513 if (PREV_INSN (insn))
2514 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2515 else
2516 BB_FOOTER (bb) = NEXT_INSN (insn);
2517 if (NEXT_INSN (insn))
2518 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2519 }
2520 else if (LABEL_P (insn))
2521 break;
2522 }
2523 }
2524
2525 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2526 by an arbitrary number of CLOBBERs. */
2527 static bool
2528 is_parallel_of_n_reg_sets (rtx pat, int n)
2529 {
2530 if (GET_CODE (pat) != PARALLEL)
2531 return false;
2532
2533 int len = XVECLEN (pat, 0);
2534 if (len < n)
2535 return false;
2536
2537 int i;
2538 for (i = 0; i < n; i++)
2539 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2540 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2541 return false;
2542 for ( ; i < len; i++)
2543 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2544 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2545 return false;
2546
2547 return true;
2548 }
2549
2550 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2551 CLOBBERs), can be split into individual SETs in that order, without
2552 changing semantics. */
2553 static bool
2554 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2555 {
2556 if (!insn_nothrow_p (insn))
2557 return false;
2558
2559 rtx pat = PATTERN (insn);
2560
2561 int i, j;
2562 for (i = 0; i < n; i++)
2563 {
2564 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2565 return false;
2566
2567 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2568
2569 for (j = i + 1; j < n; j++)
2570 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2571 return false;
2572 }
2573
2574 return true;
2575 }
2576
2577 /* Try to combine the insns I0, I1 and I2 into I3.
2578 Here I0, I1 and I2 appear earlier than I3.
2579 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2580 I3.
2581
2582 If we are combining more than two insns and the resulting insn is not
2583 recognized, try splitting it into two insns. If that happens, I2 and I3
2584 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2585 Otherwise, I0, I1 and I2 are pseudo-deleted.
2586
2587 Return 0 if the combination does not work. Then nothing is changed.
2588 If we did the combination, return the insn at which combine should
2589 resume scanning.
2590
2591 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2592 new direct jump instruction.
2593
2594 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2595 been I3 passed to an earlier try_combine within the same basic
2596 block. */
2597
2598 static rtx_insn *
2599 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2600 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2601 {
2602 /* New patterns for I3 and I2, respectively. */
2603 rtx newpat, newi2pat = 0;
2604 rtvec newpat_vec_with_clobbers = 0;
2605 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2606 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2607 dead. */
2608 int added_sets_0, added_sets_1, added_sets_2;
2609 /* Total number of SETs to put into I3. */
2610 int total_sets;
2611 /* Nonzero if I2's or I1's body now appears in I3. */
2612 int i2_is_used = 0, i1_is_used = 0;
2613 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2614 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2615 /* Contains I3 if the destination of I3 is used in its source, which means
2616 that the old life of I3 is being killed. If that usage is placed into
2617 I2 and not in I3, a REG_DEAD note must be made. */
2618 rtx i3dest_killed = 0;
2619 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2620 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2621 /* Copy of SET_SRC of I1 and I0, if needed. */
2622 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2623 /* Set if I2DEST was reused as a scratch register. */
2624 bool i2scratch = false;
2625 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2626 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2627 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2628 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2629 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2630 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2631 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2632 /* Notes that must be added to REG_NOTES in I3 and I2. */
2633 rtx new_i3_notes, new_i2_notes;
2634 /* Notes that we substituted I3 into I2 instead of the normal case. */
2635 int i3_subst_into_i2 = 0;
2636 /* Notes that I1, I2 or I3 is a MULT operation. */
2637 int have_mult = 0;
2638 int swap_i2i3 = 0;
2639 int changed_i3_dest = 0;
2640
2641 int maxreg;
2642 rtx_insn *temp_insn;
2643 rtx temp_expr;
2644 struct insn_link *link;
2645 rtx other_pat = 0;
2646 rtx new_other_notes;
2647 int i;
2648 scalar_int_mode dest_mode, temp_mode;
2649
2650 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2651 never be). */
2652 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2653 return 0;
2654
2655 /* Only try four-insn combinations when there's high likelihood of
2656 success. Look for simple insns, such as loads of constants or
2657 binary operations involving a constant. */
2658 if (i0)
2659 {
2660 int i;
2661 int ngood = 0;
2662 int nshift = 0;
2663 rtx set0, set3;
2664
2665 if (!flag_expensive_optimizations)
2666 return 0;
2667
2668 for (i = 0; i < 4; i++)
2669 {
2670 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2671 rtx set = single_set (insn);
2672 rtx src;
2673 if (!set)
2674 continue;
2675 src = SET_SRC (set);
2676 if (CONSTANT_P (src))
2677 {
2678 ngood += 2;
2679 break;
2680 }
2681 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2682 ngood++;
2683 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2684 || GET_CODE (src) == LSHIFTRT)
2685 nshift++;
2686 }
2687
2688 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2689 are likely manipulating its value. Ideally we'll be able to combine
2690 all four insns into a bitfield insertion of some kind.
2691
2692 Note the source in I0 might be inside a sign/zero extension and the
2693 memory modes in I0 and I3 might be different. So extract the address
2694 from the destination of I3 and search for it in the source of I0.
2695
2696 In the event that there's a match but the source/dest do not actually
2697 refer to the same memory, the worst that happens is we try some
2698 combinations that we wouldn't have otherwise. */
2699 if ((set0 = single_set (i0))
2700 /* Ensure the source of SET0 is a MEM, possibly buried inside
2701 an extension. */
2702 && (GET_CODE (SET_SRC (set0)) == MEM
2703 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2704 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2705 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2706 && (set3 = single_set (i3))
2707 /* Ensure the destination of SET3 is a MEM. */
2708 && GET_CODE (SET_DEST (set3)) == MEM
2709 /* Would it be better to extract the base address for the MEM
2710 in SET3 and look for that? I don't have cases where it matters
2711 but I could envision such cases. */
2712 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2713 ngood += 2;
2714
2715 if (ngood < 2 && nshift < 2)
2716 return 0;
2717 }
2718
2719 /* Exit early if one of the insns involved can't be used for
2720 combinations. */
2721 if (CALL_P (i2)
2722 || (i1 && CALL_P (i1))
2723 || (i0 && CALL_P (i0))
2724 || cant_combine_insn_p (i3)
2725 || cant_combine_insn_p (i2)
2726 || (i1 && cant_combine_insn_p (i1))
2727 || (i0 && cant_combine_insn_p (i0))
2728 || likely_spilled_retval_p (i3))
2729 return 0;
2730
2731 combine_attempts++;
2732 undobuf.other_insn = 0;
2733
2734 /* Reset the hard register usage information. */
2735 CLEAR_HARD_REG_SET (newpat_used_regs);
2736
2737 if (dump_file && (dump_flags & TDF_DETAILS))
2738 {
2739 if (i0)
2740 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2741 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2742 else if (i1)
2743 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2744 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2745 else
2746 fprintf (dump_file, "\nTrying %d -> %d:\n",
2747 INSN_UID (i2), INSN_UID (i3));
2748 }
2749
2750 /* If multiple insns feed into one of I2 or I3, they can be in any
2751 order. To simplify the code below, reorder them in sequence. */
2752 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2753 std::swap (i0, i2);
2754 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2755 std::swap (i0, i1);
2756 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2757 std::swap (i1, i2);
2758
2759 added_links_insn = 0;
2760
2761 /* First check for one important special case that the code below will
2762 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2763 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2764 we may be able to replace that destination with the destination of I3.
2765 This occurs in the common code where we compute both a quotient and
2766 remainder into a structure, in which case we want to do the computation
2767 directly into the structure to avoid register-register copies.
2768
2769 Note that this case handles both multiple sets in I2 and also cases
2770 where I2 has a number of CLOBBERs inside the PARALLEL.
2771
2772 We make very conservative checks below and only try to handle the
2773 most common cases of this. For example, we only handle the case
2774 where I2 and I3 are adjacent to avoid making difficult register
2775 usage tests. */
2776
2777 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2778 && REG_P (SET_SRC (PATTERN (i3)))
2779 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2780 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2781 && GET_CODE (PATTERN (i2)) == PARALLEL
2782 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2783 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2784 below would need to check what is inside (and reg_overlap_mentioned_p
2785 doesn't support those codes anyway). Don't allow those destinations;
2786 the resulting insn isn't likely to be recognized anyway. */
2787 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2788 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2789 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2790 SET_DEST (PATTERN (i3)))
2791 && next_active_insn (i2) == i3)
2792 {
2793 rtx p2 = PATTERN (i2);
2794
2795 /* Make sure that the destination of I3,
2796 which we are going to substitute into one output of I2,
2797 is not used within another output of I2. We must avoid making this:
2798 (parallel [(set (mem (reg 69)) ...)
2799 (set (reg 69) ...)])
2800 which is not well-defined as to order of actions.
2801 (Besides, reload can't handle output reloads for this.)
2802
2803 The problem can also happen if the dest of I3 is a memory ref,
2804 if another dest in I2 is an indirect memory ref.
2805
2806 Neither can this PARALLEL be an asm. We do not allow combining
2807 that usually (see can_combine_p), so do not here either. */
2808 bool ok = true;
2809 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2810 {
2811 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2812 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2813 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2814 SET_DEST (XVECEXP (p2, 0, i))))
2815 ok = false;
2816 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2817 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2818 ok = false;
2819 }
2820
2821 if (ok)
2822 for (i = 0; i < XVECLEN (p2, 0); i++)
2823 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2824 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2825 {
2826 combine_merges++;
2827
2828 subst_insn = i3;
2829 subst_low_luid = DF_INSN_LUID (i2);
2830
2831 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2832 i2src = SET_SRC (XVECEXP (p2, 0, i));
2833 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2834 i2dest_killed = dead_or_set_p (i2, i2dest);
2835
2836 /* Replace the dest in I2 with our dest and make the resulting
2837 insn the new pattern for I3. Then skip to where we validate
2838 the pattern. Everything was set up above. */
2839 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2840 newpat = p2;
2841 i3_subst_into_i2 = 1;
2842 goto validate_replacement;
2843 }
2844 }
2845
2846 /* If I2 is setting a pseudo to a constant and I3 is setting some
2847 sub-part of it to another constant, merge them by making a new
2848 constant. */
2849 if (i1 == 0
2850 && (temp_expr = single_set (i2)) != 0
2851 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2852 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2853 && GET_CODE (PATTERN (i3)) == SET
2854 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2855 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2856 {
2857 rtx dest = SET_DEST (PATTERN (i3));
2858 rtx temp_dest = SET_DEST (temp_expr);
2859 int offset = -1;
2860 int width = 0;
2861
2862 if (GET_CODE (dest) == ZERO_EXTRACT)
2863 {
2864 if (CONST_INT_P (XEXP (dest, 1))
2865 && CONST_INT_P (XEXP (dest, 2))
2866 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2867 &dest_mode))
2868 {
2869 width = INTVAL (XEXP (dest, 1));
2870 offset = INTVAL (XEXP (dest, 2));
2871 dest = XEXP (dest, 0);
2872 if (BITS_BIG_ENDIAN)
2873 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2874 }
2875 }
2876 else
2877 {
2878 if (GET_CODE (dest) == STRICT_LOW_PART)
2879 dest = XEXP (dest, 0);
2880 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2881 {
2882 width = GET_MODE_PRECISION (dest_mode);
2883 offset = 0;
2884 }
2885 }
2886
2887 if (offset >= 0)
2888 {
2889 /* If this is the low part, we're done. */
2890 if (subreg_lowpart_p (dest))
2891 ;
2892 /* Handle the case where inner is twice the size of outer. */
2893 else if (GET_MODE_PRECISION (temp_mode)
2894 == 2 * GET_MODE_PRECISION (dest_mode))
2895 offset += GET_MODE_PRECISION (dest_mode);
2896 /* Otherwise give up for now. */
2897 else
2898 offset = -1;
2899 }
2900
2901 if (offset >= 0)
2902 {
2903 rtx inner = SET_SRC (PATTERN (i3));
2904 rtx outer = SET_SRC (temp_expr);
2905
2906 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2907 rtx_mode_t (inner, dest_mode),
2908 offset, width);
2909
2910 combine_merges++;
2911 subst_insn = i3;
2912 subst_low_luid = DF_INSN_LUID (i2);
2913 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2914 i2dest = temp_dest;
2915 i2dest_killed = dead_or_set_p (i2, i2dest);
2916
2917 /* Replace the source in I2 with the new constant and make the
2918 resulting insn the new pattern for I3. Then skip to where we
2919 validate the pattern. Everything was set up above. */
2920 SUBST (SET_SRC (temp_expr),
2921 immed_wide_int_const (o, temp_mode));
2922
2923 newpat = PATTERN (i2);
2924
2925 /* The dest of I3 has been replaced with the dest of I2. */
2926 changed_i3_dest = 1;
2927 goto validate_replacement;
2928 }
2929 }
2930
2931 /* If we have no I1 and I2 looks like:
2932 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2933 (set Y OP)])
2934 make up a dummy I1 that is
2935 (set Y OP)
2936 and change I2 to be
2937 (set (reg:CC X) (compare:CC Y (const_int 0)))
2938
2939 (We can ignore any trailing CLOBBERs.)
2940
2941 This undoes a previous combination and allows us to match a branch-and-
2942 decrement insn. */
2943
2944 if (!HAVE_cc0 && i1 == 0
2945 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2946 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2947 == MODE_CC)
2948 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2949 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2950 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2951 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2952 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2953 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2954 {
2955 /* We make I1 with the same INSN_UID as I2. This gives it
2956 the same DF_INSN_LUID for value tracking. Our fake I1 will
2957 never appear in the insn stream so giving it the same INSN_UID
2958 as I2 will not cause a problem. */
2959
2960 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2961 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2962 -1, NULL_RTX);
2963 INSN_UID (i1) = INSN_UID (i2);
2964
2965 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2966 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2967 SET_DEST (PATTERN (i1)));
2968 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2969 SUBST_LINK (LOG_LINKS (i2),
2970 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2971 }
2972
2973 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2974 make those two SETs separate I1 and I2 insns, and make an I0 that is
2975 the original I1. */
2976 if (!HAVE_cc0 && i0 == 0
2977 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2978 && can_split_parallel_of_n_reg_sets (i2, 2)
2979 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2980 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2981 {
2982 /* If there is no I1, there is no I0 either. */
2983 i0 = i1;
2984
2985 /* We make I1 with the same INSN_UID as I2. This gives it
2986 the same DF_INSN_LUID for value tracking. Our fake I1 will
2987 never appear in the insn stream so giving it the same INSN_UID
2988 as I2 will not cause a problem. */
2989
2990 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2991 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2992 -1, NULL_RTX);
2993 INSN_UID (i1) = INSN_UID (i2);
2994
2995 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2996 }
2997
2998 /* Verify that I2 and I1 are valid for combining. */
2999 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
3000 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
3001 &i1dest, &i1src))
3002 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
3003 &i0dest, &i0src)))
3004 {
3005 undo_all ();
3006 return 0;
3007 }
3008
3009 /* Record whether I2DEST is used in I2SRC and similarly for the other
3010 cases. Knowing this will help in register status updating below. */
3011 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3012 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3013 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3014 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3015 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3016 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3017 i2dest_killed = dead_or_set_p (i2, i2dest);
3018 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3019 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3020
3021 /* For the earlier insns, determine which of the subsequent ones they
3022 feed. */
3023 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3024 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3025 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3026 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3027 && reg_overlap_mentioned_p (i0dest, i2src))));
3028
3029 /* Ensure that I3's pattern can be the destination of combines. */
3030 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3031 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3032 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3033 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3034 &i3dest_killed))
3035 {
3036 undo_all ();
3037 return 0;
3038 }
3039
3040 /* See if any of the insns is a MULT operation. Unless one is, we will
3041 reject a combination that is, since it must be slower. Be conservative
3042 here. */
3043 if (GET_CODE (i2src) == MULT
3044 || (i1 != 0 && GET_CODE (i1src) == MULT)
3045 || (i0 != 0 && GET_CODE (i0src) == MULT)
3046 || (GET_CODE (PATTERN (i3)) == SET
3047 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3048 have_mult = 1;
3049
3050 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3051 We used to do this EXCEPT in one case: I3 has a post-inc in an
3052 output operand. However, that exception can give rise to insns like
3053 mov r3,(r3)+
3054 which is a famous insn on the PDP-11 where the value of r3 used as the
3055 source was model-dependent. Avoid this sort of thing. */
3056
3057 #if 0
3058 if (!(GET_CODE (PATTERN (i3)) == SET
3059 && REG_P (SET_SRC (PATTERN (i3)))
3060 && MEM_P (SET_DEST (PATTERN (i3)))
3061 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3062 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3063 /* It's not the exception. */
3064 #endif
3065 if (AUTO_INC_DEC)
3066 {
3067 rtx link;
3068 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3069 if (REG_NOTE_KIND (link) == REG_INC
3070 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3071 || (i1 != 0
3072 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3073 {
3074 undo_all ();
3075 return 0;
3076 }
3077 }
3078
3079 /* See if the SETs in I1 or I2 need to be kept around in the merged
3080 instruction: whenever the value set there is still needed past I3.
3081 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3082
3083 For the SET in I1, we have two cases: if I1 and I2 independently feed
3084 into I3, the set in I1 needs to be kept around unless I1DEST dies
3085 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3086 in I1 needs to be kept around unless I1DEST dies or is set in either
3087 I2 or I3. The same considerations apply to I0. */
3088
3089 added_sets_2 = !dead_or_set_p (i3, i2dest);
3090
3091 if (i1)
3092 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3093 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3094 else
3095 added_sets_1 = 0;
3096
3097 if (i0)
3098 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3099 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3100 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3101 && dead_or_set_p (i2, i0dest)));
3102 else
3103 added_sets_0 = 0;
3104
3105 /* We are about to copy insns for the case where they need to be kept
3106 around. Check that they can be copied in the merged instruction. */
3107
3108 if (targetm.cannot_copy_insn_p
3109 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3110 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3111 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3112 {
3113 undo_all ();
3114 return 0;
3115 }
3116
3117 /* If the set in I2 needs to be kept around, we must make a copy of
3118 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3119 PATTERN (I2), we are only substituting for the original I1DEST, not into
3120 an already-substituted copy. This also prevents making self-referential
3121 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3122 I2DEST. */
3123
3124 if (added_sets_2)
3125 {
3126 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3127 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3128 else
3129 i2pat = copy_rtx (PATTERN (i2));
3130 }
3131
3132 if (added_sets_1)
3133 {
3134 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3135 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3136 else
3137 i1pat = copy_rtx (PATTERN (i1));
3138 }
3139
3140 if (added_sets_0)
3141 {
3142 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3143 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3144 else
3145 i0pat = copy_rtx (PATTERN (i0));
3146 }
3147
3148 combine_merges++;
3149
3150 /* Substitute in the latest insn for the regs set by the earlier ones. */
3151
3152 maxreg = max_reg_num ();
3153
3154 subst_insn = i3;
3155
3156 /* Many machines that don't use CC0 have insns that can both perform an
3157 arithmetic operation and set the condition code. These operations will
3158 be represented as a PARALLEL with the first element of the vector
3159 being a COMPARE of an arithmetic operation with the constant zero.
3160 The second element of the vector will set some pseudo to the result
3161 of the same arithmetic operation. If we simplify the COMPARE, we won't
3162 match such a pattern and so will generate an extra insn. Here we test
3163 for this case, where both the comparison and the operation result are
3164 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3165 I2SRC. Later we will make the PARALLEL that contains I2. */
3166
3167 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3168 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3169 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3170 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3171 {
3172 rtx newpat_dest;
3173 rtx *cc_use_loc = NULL;
3174 rtx_insn *cc_use_insn = NULL;
3175 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3176 machine_mode compare_mode, orig_compare_mode;
3177 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3178 scalar_int_mode mode;
3179
3180 newpat = PATTERN (i3);
3181 newpat_dest = SET_DEST (newpat);
3182 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3183
3184 if (undobuf.other_insn == 0
3185 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3186 &cc_use_insn)))
3187 {
3188 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3189 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3190 compare_code = simplify_compare_const (compare_code, mode,
3191 op0, &op1);
3192 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3193 }
3194
3195 /* Do the rest only if op1 is const0_rtx, which may be the
3196 result of simplification. */
3197 if (op1 == const0_rtx)
3198 {
3199 /* If a single use of the CC is found, prepare to modify it
3200 when SELECT_CC_MODE returns a new CC-class mode, or when
3201 the above simplify_compare_const() returned a new comparison
3202 operator. undobuf.other_insn is assigned the CC use insn
3203 when modifying it. */
3204 if (cc_use_loc)
3205 {
3206 #ifdef SELECT_CC_MODE
3207 machine_mode new_mode
3208 = SELECT_CC_MODE (compare_code, op0, op1);
3209 if (new_mode != orig_compare_mode
3210 && can_change_dest_mode (SET_DEST (newpat),
3211 added_sets_2, new_mode))
3212 {
3213 unsigned int regno = REGNO (newpat_dest);
3214 compare_mode = new_mode;
3215 if (regno < FIRST_PSEUDO_REGISTER)
3216 newpat_dest = gen_rtx_REG (compare_mode, regno);
3217 else
3218 {
3219 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3220 newpat_dest = regno_reg_rtx[regno];
3221 }
3222 }
3223 #endif
3224 /* Cases for modifying the CC-using comparison. */
3225 if (compare_code != orig_compare_code
3226 /* ??? Do we need to verify the zero rtx? */
3227 && XEXP (*cc_use_loc, 1) == const0_rtx)
3228 {
3229 /* Replace cc_use_loc with entire new RTX. */
3230 SUBST (*cc_use_loc,
3231 gen_rtx_fmt_ee (compare_code, compare_mode,
3232 newpat_dest, const0_rtx));
3233 undobuf.other_insn = cc_use_insn;
3234 }
3235 else if (compare_mode != orig_compare_mode)
3236 {
3237 /* Just replace the CC reg with a new mode. */
3238 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3239 undobuf.other_insn = cc_use_insn;
3240 }
3241 }
3242
3243 /* Now we modify the current newpat:
3244 First, SET_DEST(newpat) is updated if the CC mode has been
3245 altered. For targets without SELECT_CC_MODE, this should be
3246 optimized away. */
3247 if (compare_mode != orig_compare_mode)
3248 SUBST (SET_DEST (newpat), newpat_dest);
3249 /* This is always done to propagate i2src into newpat. */
3250 SUBST (SET_SRC (newpat),
3251 gen_rtx_COMPARE (compare_mode, op0, op1));
3252 /* Create new version of i2pat if needed; the below PARALLEL
3253 creation needs this to work correctly. */
3254 if (! rtx_equal_p (i2src, op0))
3255 i2pat = gen_rtx_SET (i2dest, op0);
3256 i2_is_used = 1;
3257 }
3258 }
3259
3260 if (i2_is_used == 0)
3261 {
3262 /* It is possible that the source of I2 or I1 may be performing
3263 an unneeded operation, such as a ZERO_EXTEND of something
3264 that is known to have the high part zero. Handle that case
3265 by letting subst look at the inner insns.
3266
3267 Another way to do this would be to have a function that tries
3268 to simplify a single insn instead of merging two or more
3269 insns. We don't do this because of the potential of infinite
3270 loops and because of the potential extra memory required.
3271 However, doing it the way we are is a bit of a kludge and
3272 doesn't catch all cases.
3273
3274 But only do this if -fexpensive-optimizations since it slows
3275 things down and doesn't usually win.
3276
3277 This is not done in the COMPARE case above because the
3278 unmodified I2PAT is used in the PARALLEL and so a pattern
3279 with a modified I2SRC would not match. */
3280
3281 if (flag_expensive_optimizations)
3282 {
3283 /* Pass pc_rtx so no substitutions are done, just
3284 simplifications. */
3285 if (i1)
3286 {
3287 subst_low_luid = DF_INSN_LUID (i1);
3288 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3289 }
3290
3291 subst_low_luid = DF_INSN_LUID (i2);
3292 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3293 }
3294
3295 n_occurrences = 0; /* `subst' counts here */
3296 subst_low_luid = DF_INSN_LUID (i2);
3297
3298 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3299 copy of I2SRC each time we substitute it, in order to avoid creating
3300 self-referential RTL when we will be substituting I1SRC for I1DEST
3301 later. Likewise if I0 feeds into I2, either directly or indirectly
3302 through I1, and I0DEST is in I0SRC. */
3303 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3304 (i1_feeds_i2_n && i1dest_in_i1src)
3305 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3306 && i0dest_in_i0src));
3307 substed_i2 = 1;
3308
3309 /* Record whether I2's body now appears within I3's body. */
3310 i2_is_used = n_occurrences;
3311 }
3312
3313 /* If we already got a failure, don't try to do more. Otherwise, try to
3314 substitute I1 if we have it. */
3315
3316 if (i1 && GET_CODE (newpat) != CLOBBER)
3317 {
3318 /* Check that an autoincrement side-effect on I1 has not been lost.
3319 This happens if I1DEST is mentioned in I2 and dies there, and
3320 has disappeared from the new pattern. */
3321 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3322 && i1_feeds_i2_n
3323 && dead_or_set_p (i2, i1dest)
3324 && !reg_overlap_mentioned_p (i1dest, newpat))
3325 /* Before we can do this substitution, we must redo the test done
3326 above (see detailed comments there) that ensures I1DEST isn't
3327 mentioned in any SETs in NEWPAT that are field assignments. */
3328 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3329 0, 0, 0))
3330 {
3331 undo_all ();
3332 return 0;
3333 }
3334
3335 n_occurrences = 0;
3336 subst_low_luid = DF_INSN_LUID (i1);
3337
3338 /* If the following substitution will modify I1SRC, make a copy of it
3339 for the case where it is substituted for I1DEST in I2PAT later. */
3340 if (added_sets_2 && i1_feeds_i2_n)
3341 i1src_copy = copy_rtx (i1src);
3342
3343 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3344 copy of I1SRC each time we substitute it, in order to avoid creating
3345 self-referential RTL when we will be substituting I0SRC for I0DEST
3346 later. */
3347 newpat = subst (newpat, i1dest, i1src, 0, 0,
3348 i0_feeds_i1_n && i0dest_in_i0src);
3349 substed_i1 = 1;
3350
3351 /* Record whether I1's body now appears within I3's body. */
3352 i1_is_used = n_occurrences;
3353 }
3354
3355 /* Likewise for I0 if we have it. */
3356
3357 if (i0 && GET_CODE (newpat) != CLOBBER)
3358 {
3359 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3360 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3361 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3362 && !reg_overlap_mentioned_p (i0dest, newpat))
3363 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3364 0, 0, 0))
3365 {
3366 undo_all ();
3367 return 0;
3368 }
3369
3370 /* If the following substitution will modify I0SRC, make a copy of it
3371 for the case where it is substituted for I0DEST in I1PAT later. */
3372 if (added_sets_1 && i0_feeds_i1_n)
3373 i0src_copy = copy_rtx (i0src);
3374 /* And a copy for I0DEST in I2PAT substitution. */
3375 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3376 || (i0_feeds_i2_n)))
3377 i0src_copy2 = copy_rtx (i0src);
3378
3379 n_occurrences = 0;
3380 subst_low_luid = DF_INSN_LUID (i0);
3381 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3382 substed_i0 = 1;
3383 }
3384
3385 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3386 to count all the ways that I2SRC and I1SRC can be used. */
3387 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3388 && i2_is_used + added_sets_2 > 1)
3389 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3390 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3391 > 1))
3392 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3393 && (n_occurrences + added_sets_0
3394 + (added_sets_1 && i0_feeds_i1_n)
3395 + (added_sets_2 && i0_feeds_i2_n)
3396 > 1))
3397 /* Fail if we tried to make a new register. */
3398 || max_reg_num () != maxreg
3399 /* Fail if we couldn't do something and have a CLOBBER. */
3400 || GET_CODE (newpat) == CLOBBER
3401 /* Fail if this new pattern is a MULT and we didn't have one before
3402 at the outer level. */
3403 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3404 && ! have_mult))
3405 {
3406 undo_all ();
3407 return 0;
3408 }
3409
3410 /* If the actions of the earlier insns must be kept
3411 in addition to substituting them into the latest one,
3412 we must make a new PARALLEL for the latest insn
3413 to hold additional the SETs. */
3414
3415 if (added_sets_0 || added_sets_1 || added_sets_2)
3416 {
3417 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3418 combine_extras++;
3419
3420 if (GET_CODE (newpat) == PARALLEL)
3421 {
3422 rtvec old = XVEC (newpat, 0);
3423 total_sets = XVECLEN (newpat, 0) + extra_sets;
3424 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3425 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3426 sizeof (old->elem[0]) * old->num_elem);
3427 }
3428 else
3429 {
3430 rtx old = newpat;
3431 total_sets = 1 + extra_sets;
3432 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3433 XVECEXP (newpat, 0, 0) = old;
3434 }
3435
3436 if (added_sets_0)
3437 XVECEXP (newpat, 0, --total_sets) = i0pat;
3438
3439 if (added_sets_1)
3440 {
3441 rtx t = i1pat;
3442 if (i0_feeds_i1_n)
3443 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3444
3445 XVECEXP (newpat, 0, --total_sets) = t;
3446 }
3447 if (added_sets_2)
3448 {
3449 rtx t = i2pat;
3450 if (i1_feeds_i2_n)
3451 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3452 i0_feeds_i1_n && i0dest_in_i0src);
3453 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3454 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3455
3456 XVECEXP (newpat, 0, --total_sets) = t;
3457 }
3458 }
3459
3460 validate_replacement:
3461
3462 /* Note which hard regs this insn has as inputs. */
3463 mark_used_regs_combine (newpat);
3464
3465 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3466 consider splitting this pattern, we might need these clobbers. */
3467 if (i1 && GET_CODE (newpat) == PARALLEL
3468 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3469 {
3470 int len = XVECLEN (newpat, 0);
3471
3472 newpat_vec_with_clobbers = rtvec_alloc (len);
3473 for (i = 0; i < len; i++)
3474 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3475 }
3476
3477 /* We have recognized nothing yet. */
3478 insn_code_number = -1;
3479
3480 /* See if this is a PARALLEL of two SETs where one SET's destination is
3481 a register that is unused and this isn't marked as an instruction that
3482 might trap in an EH region. In that case, we just need the other SET.
3483 We prefer this over the PARALLEL.
3484
3485 This can occur when simplifying a divmod insn. We *must* test for this
3486 case here because the code below that splits two independent SETs doesn't
3487 handle this case correctly when it updates the register status.
3488
3489 It's pointless doing this if we originally had two sets, one from
3490 i3, and one from i2. Combining then splitting the parallel results
3491 in the original i2 again plus an invalid insn (which we delete).
3492 The net effect is only to move instructions around, which makes
3493 debug info less accurate. */
3494
3495 if (!(added_sets_2 && i1 == 0)
3496 && is_parallel_of_n_reg_sets (newpat, 2)
3497 && asm_noperands (newpat) < 0)
3498 {
3499 rtx set0 = XVECEXP (newpat, 0, 0);
3500 rtx set1 = XVECEXP (newpat, 0, 1);
3501 rtx oldpat = newpat;
3502
3503 if (((REG_P (SET_DEST (set1))
3504 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3505 || (GET_CODE (SET_DEST (set1)) == SUBREG
3506 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3507 && insn_nothrow_p (i3)
3508 && !side_effects_p (SET_SRC (set1)))
3509 {
3510 newpat = set0;
3511 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3512 }
3513
3514 else if (((REG_P (SET_DEST (set0))
3515 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3516 || (GET_CODE (SET_DEST (set0)) == SUBREG
3517 && find_reg_note (i3, REG_UNUSED,
3518 SUBREG_REG (SET_DEST (set0)))))
3519 && insn_nothrow_p (i3)
3520 && !side_effects_p (SET_SRC (set0)))
3521 {
3522 newpat = set1;
3523 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3524
3525 if (insn_code_number >= 0)
3526 changed_i3_dest = 1;
3527 }
3528
3529 if (insn_code_number < 0)
3530 newpat = oldpat;
3531 }
3532
3533 /* Is the result of combination a valid instruction? */
3534 if (insn_code_number < 0)
3535 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3536
3537 /* If we were combining three insns and the result is a simple SET
3538 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3539 insns. There are two ways to do this. It can be split using a
3540 machine-specific method (like when you have an addition of a large
3541 constant) or by combine in the function find_split_point. */
3542
3543 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3544 && asm_noperands (newpat) < 0)
3545 {
3546 rtx parallel, *split;
3547 rtx_insn *m_split_insn;
3548
3549 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3550 use I2DEST as a scratch register will help. In the latter case,
3551 convert I2DEST to the mode of the source of NEWPAT if we can. */
3552
3553 m_split_insn = combine_split_insns (newpat, i3);
3554
3555 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3556 inputs of NEWPAT. */
3557
3558 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3559 possible to try that as a scratch reg. This would require adding
3560 more code to make it work though. */
3561
3562 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3563 {
3564 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3565
3566 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3567 (temporarily, until we are committed to this instruction
3568 combination) does not work: for example, any call to nonzero_bits
3569 on the register (from a splitter in the MD file, for example)
3570 will get the old information, which is invalid.
3571
3572 Since nowadays we can create registers during combine just fine,
3573 we should just create a new one here, not reuse i2dest. */
3574
3575 /* First try to split using the original register as a
3576 scratch register. */
3577 parallel = gen_rtx_PARALLEL (VOIDmode,
3578 gen_rtvec (2, newpat,
3579 gen_rtx_CLOBBER (VOIDmode,
3580 i2dest)));
3581 m_split_insn = combine_split_insns (parallel, i3);
3582
3583 /* If that didn't work, try changing the mode of I2DEST if
3584 we can. */
3585 if (m_split_insn == 0
3586 && new_mode != GET_MODE (i2dest)
3587 && new_mode != VOIDmode
3588 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3589 {
3590 machine_mode old_mode = GET_MODE (i2dest);
3591 rtx ni2dest;
3592
3593 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3594 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3595 else
3596 {
3597 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3598 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3599 }
3600
3601 parallel = (gen_rtx_PARALLEL
3602 (VOIDmode,
3603 gen_rtvec (2, newpat,
3604 gen_rtx_CLOBBER (VOIDmode,
3605 ni2dest))));
3606 m_split_insn = combine_split_insns (parallel, i3);
3607
3608 if (m_split_insn == 0
3609 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3610 {
3611 struct undo *buf;
3612
3613 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3614 buf = undobuf.undos;
3615 undobuf.undos = buf->next;
3616 buf->next = undobuf.frees;
3617 undobuf.frees = buf;
3618 }
3619 }
3620
3621 i2scratch = m_split_insn != 0;
3622 }
3623
3624 /* If recog_for_combine has discarded clobbers, try to use them
3625 again for the split. */
3626 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3627 {
3628 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3629 m_split_insn = combine_split_insns (parallel, i3);
3630 }
3631
3632 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3633 {
3634 rtx m_split_pat = PATTERN (m_split_insn);
3635 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3636 if (insn_code_number >= 0)
3637 newpat = m_split_pat;
3638 }
3639 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3640 && (next_nonnote_nondebug_insn (i2) == i3
3641 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3642 {
3643 rtx i2set, i3set;
3644 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3645 newi2pat = PATTERN (m_split_insn);
3646
3647 i3set = single_set (NEXT_INSN (m_split_insn));
3648 i2set = single_set (m_split_insn);
3649
3650 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3651
3652 /* If I2 or I3 has multiple SETs, we won't know how to track
3653 register status, so don't use these insns. If I2's destination
3654 is used between I2 and I3, we also can't use these insns. */
3655
3656 if (i2_code_number >= 0 && i2set && i3set
3657 && (next_nonnote_nondebug_insn (i2) == i3
3658 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3659 insn_code_number = recog_for_combine (&newi3pat, i3,
3660 &new_i3_notes);
3661 if (insn_code_number >= 0)
3662 newpat = newi3pat;
3663
3664 /* It is possible that both insns now set the destination of I3.
3665 If so, we must show an extra use of it. */
3666
3667 if (insn_code_number >= 0)
3668 {
3669 rtx new_i3_dest = SET_DEST (i3set);
3670 rtx new_i2_dest = SET_DEST (i2set);
3671
3672 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3673 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3674 || GET_CODE (new_i3_dest) == SUBREG)
3675 new_i3_dest = XEXP (new_i3_dest, 0);
3676
3677 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3678 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3679 || GET_CODE (new_i2_dest) == SUBREG)
3680 new_i2_dest = XEXP (new_i2_dest, 0);
3681
3682 if (REG_P (new_i3_dest)
3683 && REG_P (new_i2_dest)
3684 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3685 && REGNO (new_i2_dest) < reg_n_sets_max)
3686 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3687 }
3688 }
3689
3690 /* If we can split it and use I2DEST, go ahead and see if that
3691 helps things be recognized. Verify that none of the registers
3692 are set between I2 and I3. */
3693 if (insn_code_number < 0
3694 && (split = find_split_point (&newpat, i3, false)) != 0
3695 && (!HAVE_cc0 || REG_P (i2dest))
3696 /* We need I2DEST in the proper mode. If it is a hard register
3697 or the only use of a pseudo, we can change its mode.
3698 Make sure we don't change a hard register to have a mode that
3699 isn't valid for it, or change the number of registers. */
3700 && (GET_MODE (*split) == GET_MODE (i2dest)
3701 || GET_MODE (*split) == VOIDmode
3702 || can_change_dest_mode (i2dest, added_sets_2,
3703 GET_MODE (*split)))
3704 && (next_nonnote_nondebug_insn (i2) == i3
3705 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3706 /* We can't overwrite I2DEST if its value is still used by
3707 NEWPAT. */
3708 && ! reg_referenced_p (i2dest, newpat))
3709 {
3710 rtx newdest = i2dest;
3711 enum rtx_code split_code = GET_CODE (*split);
3712 machine_mode split_mode = GET_MODE (*split);
3713 bool subst_done = false;
3714 newi2pat = NULL_RTX;
3715
3716 i2scratch = true;
3717
3718 /* *SPLIT may be part of I2SRC, so make sure we have the
3719 original expression around for later debug processing.
3720 We should not need I2SRC any more in other cases. */
3721 if (MAY_HAVE_DEBUG_INSNS)
3722 i2src = copy_rtx (i2src);
3723 else
3724 i2src = NULL;
3725
3726 /* Get NEWDEST as a register in the proper mode. We have already
3727 validated that we can do this. */
3728 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3729 {
3730 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3731 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3732 else
3733 {
3734 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3735 newdest = regno_reg_rtx[REGNO (i2dest)];
3736 }
3737 }
3738
3739 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3740 an ASHIFT. This can occur if it was inside a PLUS and hence
3741 appeared to be a memory address. This is a kludge. */
3742 if (split_code == MULT
3743 && CONST_INT_P (XEXP (*split, 1))
3744 && INTVAL (XEXP (*split, 1)) > 0
3745 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3746 {
3747 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3748 XEXP (*split, 0), GEN_INT (i)));
3749 /* Update split_code because we may not have a multiply
3750 anymore. */
3751 split_code = GET_CODE (*split);
3752 }
3753
3754 /* Similarly for (plus (mult FOO (const_int pow2))). */
3755 if (split_code == PLUS
3756 && GET_CODE (XEXP (*split, 0)) == MULT
3757 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3758 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3759 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3760 {
3761 rtx nsplit = XEXP (*split, 0);
3762 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3763 XEXP (nsplit, 0), GEN_INT (i)));
3764 /* Update split_code because we may not have a multiply
3765 anymore. */
3766 split_code = GET_CODE (*split);
3767 }
3768
3769 #ifdef INSN_SCHEDULING
3770 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3771 be written as a ZERO_EXTEND. */
3772 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3773 {
3774 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3775 what it really is. */
3776 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3777 == SIGN_EXTEND)
3778 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3779 SUBREG_REG (*split)));
3780 else
3781 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3782 SUBREG_REG (*split)));
3783 }
3784 #endif
3785
3786 /* Attempt to split binary operators using arithmetic identities. */
3787 if (BINARY_P (SET_SRC (newpat))
3788 && split_mode == GET_MODE (SET_SRC (newpat))
3789 && ! side_effects_p (SET_SRC (newpat)))
3790 {
3791 rtx setsrc = SET_SRC (newpat);
3792 machine_mode mode = GET_MODE (setsrc);
3793 enum rtx_code code = GET_CODE (setsrc);
3794 rtx src_op0 = XEXP (setsrc, 0);
3795 rtx src_op1 = XEXP (setsrc, 1);
3796
3797 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3798 if (rtx_equal_p (src_op0, src_op1))
3799 {
3800 newi2pat = gen_rtx_SET (newdest, src_op0);
3801 SUBST (XEXP (setsrc, 0), newdest);
3802 SUBST (XEXP (setsrc, 1), newdest);
3803 subst_done = true;
3804 }
3805 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3806 else if ((code == PLUS || code == MULT)
3807 && GET_CODE (src_op0) == code
3808 && GET_CODE (XEXP (src_op0, 0)) == code
3809 && (INTEGRAL_MODE_P (mode)
3810 || (FLOAT_MODE_P (mode)
3811 && flag_unsafe_math_optimizations)))
3812 {
3813 rtx p = XEXP (XEXP (src_op0, 0), 0);
3814 rtx q = XEXP (XEXP (src_op0, 0), 1);
3815 rtx r = XEXP (src_op0, 1);
3816 rtx s = src_op1;
3817
3818 /* Split both "((X op Y) op X) op Y" and
3819 "((X op Y) op Y) op X" as "T op T" where T is
3820 "X op Y". */
3821 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3822 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3823 {
3824 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3825 SUBST (XEXP (setsrc, 0), newdest);
3826 SUBST (XEXP (setsrc, 1), newdest);
3827 subst_done = true;
3828 }
3829 /* Split "((X op X) op Y) op Y)" as "T op T" where
3830 T is "X op Y". */
3831 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3832 {
3833 rtx tmp = simplify_gen_binary (code, mode, p, r);
3834 newi2pat = gen_rtx_SET (newdest, tmp);
3835 SUBST (XEXP (setsrc, 0), newdest);
3836 SUBST (XEXP (setsrc, 1), newdest);
3837 subst_done = true;
3838 }
3839 }
3840 }
3841
3842 if (!subst_done)
3843 {
3844 newi2pat = gen_rtx_SET (newdest, *split);
3845 SUBST (*split, newdest);
3846 }
3847
3848 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3849
3850 /* recog_for_combine might have added CLOBBERs to newi2pat.
3851 Make sure NEWPAT does not depend on the clobbered regs. */
3852 if (GET_CODE (newi2pat) == PARALLEL)
3853 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3854 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3855 {
3856 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3857 if (reg_overlap_mentioned_p (reg, newpat))
3858 {
3859 undo_all ();
3860 return 0;
3861 }
3862 }
3863
3864 /* If the split point was a MULT and we didn't have one before,
3865 don't use one now. */
3866 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3867 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3868 }
3869 }
3870
3871 /* Check for a case where we loaded from memory in a narrow mode and
3872 then sign extended it, but we need both registers. In that case,
3873 we have a PARALLEL with both loads from the same memory location.
3874 We can split this into a load from memory followed by a register-register
3875 copy. This saves at least one insn, more if register allocation can
3876 eliminate the copy.
3877
3878 We cannot do this if the destination of the first assignment is a
3879 condition code register or cc0. We eliminate this case by making sure
3880 the SET_DEST and SET_SRC have the same mode.
3881
3882 We cannot do this if the destination of the second assignment is
3883 a register that we have already assumed is zero-extended. Similarly
3884 for a SUBREG of such a register. */
3885
3886 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3887 && GET_CODE (newpat) == PARALLEL
3888 && XVECLEN (newpat, 0) == 2
3889 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3890 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3891 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3892 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3893 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3894 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3895 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3896 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3897 DF_INSN_LUID (i2))
3898 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3899 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3900 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3901 (REG_P (temp_expr)
3902 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3903 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3904 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3905 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3906 != GET_MODE_MASK (word_mode))))
3907 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3908 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3909 (REG_P (temp_expr)
3910 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3911 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3912 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3913 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3914 != GET_MODE_MASK (word_mode)))))
3915 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3916 SET_SRC (XVECEXP (newpat, 0, 1)))
3917 && ! find_reg_note (i3, REG_UNUSED,
3918 SET_DEST (XVECEXP (newpat, 0, 0))))
3919 {
3920 rtx ni2dest;
3921
3922 newi2pat = XVECEXP (newpat, 0, 0);
3923 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3924 newpat = XVECEXP (newpat, 0, 1);
3925 SUBST (SET_SRC (newpat),
3926 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3927 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3928
3929 if (i2_code_number >= 0)
3930 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3931
3932 if (insn_code_number >= 0)
3933 swap_i2i3 = 1;
3934 }
3935
3936 /* Similarly, check for a case where we have a PARALLEL of two independent
3937 SETs but we started with three insns. In this case, we can do the sets
3938 as two separate insns. This case occurs when some SET allows two
3939 other insns to combine, but the destination of that SET is still live.
3940
3941 Also do this if we started with two insns and (at least) one of the
3942 resulting sets is a noop; this noop will be deleted later. */
3943
3944 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3945 && GET_CODE (newpat) == PARALLEL
3946 && XVECLEN (newpat, 0) == 2
3947 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3948 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3949 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3950 || set_noop_p (XVECEXP (newpat, 0, 1)))
3951 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3952 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3953 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3954 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3955 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3956 XVECEXP (newpat, 0, 0))
3957 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3958 XVECEXP (newpat, 0, 1))
3959 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3960 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3961 {
3962 rtx set0 = XVECEXP (newpat, 0, 0);
3963 rtx set1 = XVECEXP (newpat, 0, 1);
3964
3965 /* Normally, it doesn't matter which of the two is done first,
3966 but the one that references cc0 can't be the second, and
3967 one which uses any regs/memory set in between i2 and i3 can't
3968 be first. The PARALLEL might also have been pre-existing in i3,
3969 so we need to make sure that we won't wrongly hoist a SET to i2
3970 that would conflict with a death note present in there. */
3971 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3972 && !(REG_P (SET_DEST (set1))
3973 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3974 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3975 && find_reg_note (i2, REG_DEAD,
3976 SUBREG_REG (SET_DEST (set1))))
3977 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3978 /* If I3 is a jump, ensure that set0 is a jump so that
3979 we do not create invalid RTL. */
3980 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3981 )
3982 {
3983 newi2pat = set1;
3984 newpat = set0;
3985 }
3986 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3987 && !(REG_P (SET_DEST (set0))
3988 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3989 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3990 && find_reg_note (i2, REG_DEAD,
3991 SUBREG_REG (SET_DEST (set0))))
3992 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3993 /* If I3 is a jump, ensure that set1 is a jump so that
3994 we do not create invalid RTL. */
3995 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3996 )
3997 {
3998 newi2pat = set0;
3999 newpat = set1;
4000 }
4001 else
4002 {
4003 undo_all ();
4004 return 0;
4005 }
4006
4007 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4008
4009 if (i2_code_number >= 0)
4010 {
4011 /* recog_for_combine might have added CLOBBERs to newi2pat.
4012 Make sure NEWPAT does not depend on the clobbered regs. */
4013 if (GET_CODE (newi2pat) == PARALLEL)
4014 {
4015 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4016 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4017 {
4018 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4019 if (reg_overlap_mentioned_p (reg, newpat))
4020 {
4021 undo_all ();
4022 return 0;
4023 }
4024 }
4025 }
4026
4027 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4028 }
4029 }
4030
4031 /* If it still isn't recognized, fail and change things back the way they
4032 were. */
4033 if ((insn_code_number < 0
4034 /* Is the result a reasonable ASM_OPERANDS? */
4035 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4036 {
4037 undo_all ();
4038 return 0;
4039 }
4040
4041 /* If we had to change another insn, make sure it is valid also. */
4042 if (undobuf.other_insn)
4043 {
4044 CLEAR_HARD_REG_SET (newpat_used_regs);
4045
4046 other_pat = PATTERN (undobuf.other_insn);
4047 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4048 &new_other_notes);
4049
4050 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4051 {
4052 undo_all ();
4053 return 0;
4054 }
4055 }
4056
4057 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4058 they are adjacent to each other or not. */
4059 if (HAVE_cc0)
4060 {
4061 rtx_insn *p = prev_nonnote_insn (i3);
4062 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4063 && sets_cc0_p (newi2pat))
4064 {
4065 undo_all ();
4066 return 0;
4067 }
4068 }
4069
4070 /* Only allow this combination if insn_rtx_costs reports that the
4071 replacement instructions are cheaper than the originals. */
4072 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4073 {
4074 undo_all ();
4075 return 0;
4076 }
4077
4078 if (MAY_HAVE_DEBUG_INSNS)
4079 {
4080 struct undo *undo;
4081
4082 for (undo = undobuf.undos; undo; undo = undo->next)
4083 if (undo->kind == UNDO_MODE)
4084 {
4085 rtx reg = *undo->where.r;
4086 machine_mode new_mode = GET_MODE (reg);
4087 machine_mode old_mode = undo->old_contents.m;
4088
4089 /* Temporarily revert mode back. */
4090 adjust_reg_mode (reg, old_mode);
4091
4092 if (reg == i2dest && i2scratch)
4093 {
4094 /* If we used i2dest as a scratch register with a
4095 different mode, substitute it for the original
4096 i2src while its original mode is temporarily
4097 restored, and then clear i2scratch so that we don't
4098 do it again later. */
4099 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4100 this_basic_block);
4101 i2scratch = false;
4102 /* Put back the new mode. */
4103 adjust_reg_mode (reg, new_mode);
4104 }
4105 else
4106 {
4107 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4108 rtx_insn *first, *last;
4109
4110 if (reg == i2dest)
4111 {
4112 first = i2;
4113 last = last_combined_insn;
4114 }
4115 else
4116 {
4117 first = i3;
4118 last = undobuf.other_insn;
4119 gcc_assert (last);
4120 if (DF_INSN_LUID (last)
4121 < DF_INSN_LUID (last_combined_insn))
4122 last = last_combined_insn;
4123 }
4124
4125 /* We're dealing with a reg that changed mode but not
4126 meaning, so we want to turn it into a subreg for
4127 the new mode. However, because of REG sharing and
4128 because its mode had already changed, we have to do
4129 it in two steps. First, replace any debug uses of
4130 reg, with its original mode temporarily restored,
4131 with this copy we have created; then, replace the
4132 copy with the SUBREG of the original shared reg,
4133 once again changed to the new mode. */
4134 propagate_for_debug (first, last, reg, tempreg,
4135 this_basic_block);
4136 adjust_reg_mode (reg, new_mode);
4137 propagate_for_debug (first, last, tempreg,
4138 lowpart_subreg (old_mode, reg, new_mode),
4139 this_basic_block);
4140 }
4141 }
4142 }
4143
4144 /* If we will be able to accept this, we have made a
4145 change to the destination of I3. This requires us to
4146 do a few adjustments. */
4147
4148 if (changed_i3_dest)
4149 {
4150 PATTERN (i3) = newpat;
4151 adjust_for_new_dest (i3);
4152 }
4153
4154 /* We now know that we can do this combination. Merge the insns and
4155 update the status of registers and LOG_LINKS. */
4156
4157 if (undobuf.other_insn)
4158 {
4159 rtx note, next;
4160
4161 PATTERN (undobuf.other_insn) = other_pat;
4162
4163 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4164 ensure that they are still valid. Then add any non-duplicate
4165 notes added by recog_for_combine. */
4166 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4167 {
4168 next = XEXP (note, 1);
4169
4170 if ((REG_NOTE_KIND (note) == REG_DEAD
4171 && !reg_referenced_p (XEXP (note, 0),
4172 PATTERN (undobuf.other_insn)))
4173 ||(REG_NOTE_KIND (note) == REG_UNUSED
4174 && !reg_set_p (XEXP (note, 0),
4175 PATTERN (undobuf.other_insn)))
4176 /* Simply drop equal note since it may be no longer valid
4177 for other_insn. It may be possible to record that CC
4178 register is changed and only discard those notes, but
4179 in practice it's unnecessary complication and doesn't
4180 give any meaningful improvement.
4181
4182 See PR78559. */
4183 || REG_NOTE_KIND (note) == REG_EQUAL
4184 || REG_NOTE_KIND (note) == REG_EQUIV)
4185 remove_note (undobuf.other_insn, note);
4186 }
4187
4188 distribute_notes (new_other_notes, undobuf.other_insn,
4189 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4190 NULL_RTX);
4191 }
4192
4193 if (swap_i2i3)
4194 {
4195 rtx_insn *insn;
4196 struct insn_link *link;
4197 rtx ni2dest;
4198
4199 /* I3 now uses what used to be its destination and which is now
4200 I2's destination. This requires us to do a few adjustments. */
4201 PATTERN (i3) = newpat;
4202 adjust_for_new_dest (i3);
4203
4204 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4205 so we still will.
4206
4207 However, some later insn might be using I2's dest and have
4208 a LOG_LINK pointing at I3. We must remove this link.
4209 The simplest way to remove the link is to point it at I1,
4210 which we know will be a NOTE. */
4211
4212 /* newi2pat is usually a SET here; however, recog_for_combine might
4213 have added some clobbers. */
4214 if (GET_CODE (newi2pat) == PARALLEL)
4215 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4216 else
4217 ni2dest = SET_DEST (newi2pat);
4218
4219 for (insn = NEXT_INSN (i3);
4220 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4221 || insn != BB_HEAD (this_basic_block->next_bb));
4222 insn = NEXT_INSN (insn))
4223 {
4224 if (NONDEBUG_INSN_P (insn)
4225 && reg_referenced_p (ni2dest, PATTERN (insn)))
4226 {
4227 FOR_EACH_LOG_LINK (link, insn)
4228 if (link->insn == i3)
4229 link->insn = i1;
4230
4231 break;
4232 }
4233 }
4234 }
4235
4236 {
4237 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4238 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4239 rtx midnotes = 0;
4240 int from_luid;
4241 /* Compute which registers we expect to eliminate. newi2pat may be setting
4242 either i3dest or i2dest, so we must check it. */
4243 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4244 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4245 || !i2dest_killed
4246 ? 0 : i2dest);
4247 /* For i1, we need to compute both local elimination and global
4248 elimination information with respect to newi2pat because i1dest
4249 may be the same as i3dest, in which case newi2pat may be setting
4250 i1dest. Global information is used when distributing REG_DEAD
4251 note for i2 and i3, in which case it does matter if newi2pat sets
4252 i1dest or not.
4253
4254 Local information is used when distributing REG_DEAD note for i1,
4255 in which case it doesn't matter if newi2pat sets i1dest or not.
4256 See PR62151, if we have four insns combination:
4257 i0: r0 <- i0src
4258 i1: r1 <- i1src (using r0)
4259 REG_DEAD (r0)
4260 i2: r0 <- i2src (using r1)
4261 i3: r3 <- i3src (using r0)
4262 ix: using r0
4263 From i1's point of view, r0 is eliminated, no matter if it is set
4264 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4265 should be discarded.
4266
4267 Note local information only affects cases in forms like "I1->I2->I3",
4268 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4269 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4270 i0dest anyway. */
4271 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4272 || !i1dest_killed
4273 ? 0 : i1dest);
4274 rtx elim_i1 = (local_elim_i1 == 0
4275 || (newi2pat && reg_set_p (i1dest, newi2pat))
4276 ? 0 : i1dest);
4277 /* Same case as i1. */
4278 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4279 ? 0 : i0dest);
4280 rtx elim_i0 = (local_elim_i0 == 0
4281 || (newi2pat && reg_set_p (i0dest, newi2pat))
4282 ? 0 : i0dest);
4283
4284 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4285 clear them. */
4286 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4287 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4288 if (i1)
4289 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4290 if (i0)
4291 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4292
4293 /* Ensure that we do not have something that should not be shared but
4294 occurs multiple times in the new insns. Check this by first
4295 resetting all the `used' flags and then copying anything is shared. */
4296
4297 reset_used_flags (i3notes);
4298 reset_used_flags (i2notes);
4299 reset_used_flags (i1notes);
4300 reset_used_flags (i0notes);
4301 reset_used_flags (newpat);
4302 reset_used_flags (newi2pat);
4303 if (undobuf.other_insn)
4304 reset_used_flags (PATTERN (undobuf.other_insn));
4305
4306 i3notes = copy_rtx_if_shared (i3notes);
4307 i2notes = copy_rtx_if_shared (i2notes);
4308 i1notes = copy_rtx_if_shared (i1notes);
4309 i0notes = copy_rtx_if_shared (i0notes);
4310 newpat = copy_rtx_if_shared (newpat);
4311 newi2pat = copy_rtx_if_shared (newi2pat);
4312 if (undobuf.other_insn)
4313 reset_used_flags (PATTERN (undobuf.other_insn));
4314
4315 INSN_CODE (i3) = insn_code_number;
4316 PATTERN (i3) = newpat;
4317
4318 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4319 {
4320 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4321 link = XEXP (link, 1))
4322 {
4323 if (substed_i2)
4324 {
4325 /* I2SRC must still be meaningful at this point. Some
4326 splitting operations can invalidate I2SRC, but those
4327 operations do not apply to calls. */
4328 gcc_assert (i2src);
4329 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4330 i2dest, i2src);
4331 }
4332 if (substed_i1)
4333 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4334 i1dest, i1src);
4335 if (substed_i0)
4336 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4337 i0dest, i0src);
4338 }
4339 }
4340
4341 if (undobuf.other_insn)
4342 INSN_CODE (undobuf.other_insn) = other_code_number;
4343
4344 /* We had one special case above where I2 had more than one set and
4345 we replaced a destination of one of those sets with the destination
4346 of I3. In that case, we have to update LOG_LINKS of insns later
4347 in this basic block. Note that this (expensive) case is rare.
4348
4349 Also, in this case, we must pretend that all REG_NOTEs for I2
4350 actually came from I3, so that REG_UNUSED notes from I2 will be
4351 properly handled. */
4352
4353 if (i3_subst_into_i2)
4354 {
4355 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4356 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4357 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4358 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4359 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4360 && ! find_reg_note (i2, REG_UNUSED,
4361 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4362 for (temp_insn = NEXT_INSN (i2);
4363 temp_insn
4364 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4365 || BB_HEAD (this_basic_block) != temp_insn);
4366 temp_insn = NEXT_INSN (temp_insn))
4367 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4368 FOR_EACH_LOG_LINK (link, temp_insn)
4369 if (link->insn == i2)
4370 link->insn = i3;
4371
4372 if (i3notes)
4373 {
4374 rtx link = i3notes;
4375 while (XEXP (link, 1))
4376 link = XEXP (link, 1);
4377 XEXP (link, 1) = i2notes;
4378 }
4379 else
4380 i3notes = i2notes;
4381 i2notes = 0;
4382 }
4383
4384 LOG_LINKS (i3) = NULL;
4385 REG_NOTES (i3) = 0;
4386 LOG_LINKS (i2) = NULL;
4387 REG_NOTES (i2) = 0;
4388
4389 if (newi2pat)
4390 {
4391 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4392 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4393 this_basic_block);
4394 INSN_CODE (i2) = i2_code_number;
4395 PATTERN (i2) = newi2pat;
4396 }
4397 else
4398 {
4399 if (MAY_HAVE_DEBUG_INSNS && i2src)
4400 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4401 this_basic_block);
4402 SET_INSN_DELETED (i2);
4403 }
4404
4405 if (i1)
4406 {
4407 LOG_LINKS (i1) = NULL;
4408 REG_NOTES (i1) = 0;
4409 if (MAY_HAVE_DEBUG_INSNS)
4410 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4411 this_basic_block);
4412 SET_INSN_DELETED (i1);
4413 }
4414
4415 if (i0)
4416 {
4417 LOG_LINKS (i0) = NULL;
4418 REG_NOTES (i0) = 0;
4419 if (MAY_HAVE_DEBUG_INSNS)
4420 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4421 this_basic_block);
4422 SET_INSN_DELETED (i0);
4423 }
4424
4425 /* Get death notes for everything that is now used in either I3 or
4426 I2 and used to die in a previous insn. If we built two new
4427 patterns, move from I1 to I2 then I2 to I3 so that we get the
4428 proper movement on registers that I2 modifies. */
4429
4430 if (i0)
4431 from_luid = DF_INSN_LUID (i0);
4432 else if (i1)
4433 from_luid = DF_INSN_LUID (i1);
4434 else
4435 from_luid = DF_INSN_LUID (i2);
4436 if (newi2pat)
4437 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4438 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4439
4440 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4441 if (i3notes)
4442 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4443 elim_i2, elim_i1, elim_i0);
4444 if (i2notes)
4445 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4446 elim_i2, elim_i1, elim_i0);
4447 if (i1notes)
4448 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4449 elim_i2, local_elim_i1, local_elim_i0);
4450 if (i0notes)
4451 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4452 elim_i2, elim_i1, local_elim_i0);
4453 if (midnotes)
4454 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4455 elim_i2, elim_i1, elim_i0);
4456
4457 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4458 know these are REG_UNUSED and want them to go to the desired insn,
4459 so we always pass it as i3. */
4460
4461 if (newi2pat && new_i2_notes)
4462 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4463 NULL_RTX);
4464
4465 if (new_i3_notes)
4466 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4467 NULL_RTX);
4468
4469 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4470 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4471 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4472 in that case, it might delete I2. Similarly for I2 and I1.
4473 Show an additional death due to the REG_DEAD note we make here. If
4474 we discard it in distribute_notes, we will decrement it again. */
4475
4476 if (i3dest_killed)
4477 {
4478 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4479 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4480 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4481 elim_i1, elim_i0);
4482 else
4483 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4484 elim_i2, elim_i1, elim_i0);
4485 }
4486
4487 if (i2dest_in_i2src)
4488 {
4489 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4490 if (newi2pat && reg_set_p (i2dest, newi2pat))
4491 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4492 NULL_RTX, NULL_RTX);
4493 else
4494 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4495 NULL_RTX, NULL_RTX, NULL_RTX);
4496 }
4497
4498 if (i1dest_in_i1src)
4499 {
4500 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4501 if (newi2pat && reg_set_p (i1dest, newi2pat))
4502 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4503 NULL_RTX, NULL_RTX);
4504 else
4505 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4506 NULL_RTX, NULL_RTX, NULL_RTX);
4507 }
4508
4509 if (i0dest_in_i0src)
4510 {
4511 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4512 if (newi2pat && reg_set_p (i0dest, newi2pat))
4513 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4514 NULL_RTX, NULL_RTX);
4515 else
4516 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4517 NULL_RTX, NULL_RTX, NULL_RTX);
4518 }
4519
4520 distribute_links (i3links);
4521 distribute_links (i2links);
4522 distribute_links (i1links);
4523 distribute_links (i0links);
4524
4525 if (REG_P (i2dest))
4526 {
4527 struct insn_link *link;
4528 rtx_insn *i2_insn = 0;
4529 rtx i2_val = 0, set;
4530
4531 /* The insn that used to set this register doesn't exist, and
4532 this life of the register may not exist either. See if one of
4533 I3's links points to an insn that sets I2DEST. If it does,
4534 that is now the last known value for I2DEST. If we don't update
4535 this and I2 set the register to a value that depended on its old
4536 contents, we will get confused. If this insn is used, thing
4537 will be set correctly in combine_instructions. */
4538 FOR_EACH_LOG_LINK (link, i3)
4539 if ((set = single_set (link->insn)) != 0
4540 && rtx_equal_p (i2dest, SET_DEST (set)))
4541 i2_insn = link->insn, i2_val = SET_SRC (set);
4542
4543 record_value_for_reg (i2dest, i2_insn, i2_val);
4544
4545 /* If the reg formerly set in I2 died only once and that was in I3,
4546 zero its use count so it won't make `reload' do any work. */
4547 if (! added_sets_2
4548 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4549 && ! i2dest_in_i2src
4550 && REGNO (i2dest) < reg_n_sets_max)
4551 INC_REG_N_SETS (REGNO (i2dest), -1);
4552 }
4553
4554 if (i1 && REG_P (i1dest))
4555 {
4556 struct insn_link *link;
4557 rtx_insn *i1_insn = 0;
4558 rtx i1_val = 0, set;
4559
4560 FOR_EACH_LOG_LINK (link, i3)
4561 if ((set = single_set (link->insn)) != 0
4562 && rtx_equal_p (i1dest, SET_DEST (set)))
4563 i1_insn = link->insn, i1_val = SET_SRC (set);
4564
4565 record_value_for_reg (i1dest, i1_insn, i1_val);
4566
4567 if (! added_sets_1
4568 && ! i1dest_in_i1src
4569 && REGNO (i1dest) < reg_n_sets_max)
4570 INC_REG_N_SETS (REGNO (i1dest), -1);
4571 }
4572
4573 if (i0 && REG_P (i0dest))
4574 {
4575 struct insn_link *link;
4576 rtx_insn *i0_insn = 0;
4577 rtx i0_val = 0, set;
4578
4579 FOR_EACH_LOG_LINK (link, i3)
4580 if ((set = single_set (link->insn)) != 0
4581 && rtx_equal_p (i0dest, SET_DEST (set)))
4582 i0_insn = link->insn, i0_val = SET_SRC (set);
4583
4584 record_value_for_reg (i0dest, i0_insn, i0_val);
4585
4586 if (! added_sets_0
4587 && ! i0dest_in_i0src
4588 && REGNO (i0dest) < reg_n_sets_max)
4589 INC_REG_N_SETS (REGNO (i0dest), -1);
4590 }
4591
4592 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4593 been made to this insn. The order is important, because newi2pat
4594 can affect nonzero_bits of newpat. */
4595 if (newi2pat)
4596 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4597 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4598 }
4599
4600 if (undobuf.other_insn != NULL_RTX)
4601 {
4602 if (dump_file)
4603 {
4604 fprintf (dump_file, "modifying other_insn ");
4605 dump_insn_slim (dump_file, undobuf.other_insn);
4606 }
4607 df_insn_rescan (undobuf.other_insn);
4608 }
4609
4610 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4611 {
4612 if (dump_file)
4613 {
4614 fprintf (dump_file, "modifying insn i0 ");
4615 dump_insn_slim (dump_file, i0);
4616 }
4617 df_insn_rescan (i0);
4618 }
4619
4620 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4621 {
4622 if (dump_file)
4623 {
4624 fprintf (dump_file, "modifying insn i1 ");
4625 dump_insn_slim (dump_file, i1);
4626 }
4627 df_insn_rescan (i1);
4628 }
4629
4630 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4631 {
4632 if (dump_file)
4633 {
4634 fprintf (dump_file, "modifying insn i2 ");
4635 dump_insn_slim (dump_file, i2);
4636 }
4637 df_insn_rescan (i2);
4638 }
4639
4640 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4641 {
4642 if (dump_file)
4643 {
4644 fprintf (dump_file, "modifying insn i3 ");
4645 dump_insn_slim (dump_file, i3);
4646 }
4647 df_insn_rescan (i3);
4648 }
4649
4650 /* Set new_direct_jump_p if a new return or simple jump instruction
4651 has been created. Adjust the CFG accordingly. */
4652 if (returnjump_p (i3) || any_uncondjump_p (i3))
4653 {
4654 *new_direct_jump_p = 1;
4655 mark_jump_label (PATTERN (i3), i3, 0);
4656 update_cfg_for_uncondjump (i3);
4657 }
4658
4659 if (undobuf.other_insn != NULL_RTX
4660 && (returnjump_p (undobuf.other_insn)
4661 || any_uncondjump_p (undobuf.other_insn)))
4662 {
4663 *new_direct_jump_p = 1;
4664 update_cfg_for_uncondjump (undobuf.other_insn);
4665 }
4666
4667 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4668 && XEXP (PATTERN (i3), 0) == const1_rtx)
4669 {
4670 basic_block bb = BLOCK_FOR_INSN (i3);
4671 gcc_assert (bb);
4672 remove_edge (split_block (bb, i3));
4673 emit_barrier_after_bb (bb);
4674 *new_direct_jump_p = 1;
4675 }
4676
4677 if (undobuf.other_insn
4678 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4679 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4680 {
4681 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4682 gcc_assert (bb);
4683 remove_edge (split_block (bb, undobuf.other_insn));
4684 emit_barrier_after_bb (bb);
4685 *new_direct_jump_p = 1;
4686 }
4687
4688 /* A noop might also need cleaning up of CFG, if it comes from the
4689 simplification of a jump. */
4690 if (JUMP_P (i3)
4691 && GET_CODE (newpat) == SET
4692 && SET_SRC (newpat) == pc_rtx
4693 && SET_DEST (newpat) == pc_rtx)
4694 {
4695 *new_direct_jump_p = 1;
4696 update_cfg_for_uncondjump (i3);
4697 }
4698
4699 if (undobuf.other_insn != NULL_RTX
4700 && JUMP_P (undobuf.other_insn)
4701 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4702 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4703 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4704 {
4705 *new_direct_jump_p = 1;
4706 update_cfg_for_uncondjump (undobuf.other_insn);
4707 }
4708
4709 combine_successes++;
4710 undo_commit ();
4711
4712 if (added_links_insn
4713 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4714 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4715 return added_links_insn;
4716 else
4717 return newi2pat ? i2 : i3;
4718 }
4719 \f
4720 /* Get a marker for undoing to the current state. */
4721
4722 static void *
4723 get_undo_marker (void)
4724 {
4725 return undobuf.undos;
4726 }
4727
4728 /* Undo the modifications up to the marker. */
4729
4730 static void
4731 undo_to_marker (void *marker)
4732 {
4733 struct undo *undo, *next;
4734
4735 for (undo = undobuf.undos; undo != marker; undo = next)
4736 {
4737 gcc_assert (undo);
4738
4739 next = undo->next;
4740 switch (undo->kind)
4741 {
4742 case UNDO_RTX:
4743 *undo->where.r = undo->old_contents.r;
4744 break;
4745 case UNDO_INT:
4746 *undo->where.i = undo->old_contents.i;
4747 break;
4748 case UNDO_MODE:
4749 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4750 break;
4751 case UNDO_LINKS:
4752 *undo->where.l = undo->old_contents.l;
4753 break;
4754 default:
4755 gcc_unreachable ();
4756 }
4757
4758 undo->next = undobuf.frees;
4759 undobuf.frees = undo;
4760 }
4761
4762 undobuf.undos = (struct undo *) marker;
4763 }
4764
4765 /* Undo all the modifications recorded in undobuf. */
4766
4767 static void
4768 undo_all (void)
4769 {
4770 undo_to_marker (0);
4771 }
4772
4773 /* We've committed to accepting the changes we made. Move all
4774 of the undos to the free list. */
4775
4776 static void
4777 undo_commit (void)
4778 {
4779 struct undo *undo, *next;
4780
4781 for (undo = undobuf.undos; undo; undo = next)
4782 {
4783 next = undo->next;
4784 undo->next = undobuf.frees;
4785 undobuf.frees = undo;
4786 }
4787 undobuf.undos = 0;
4788 }
4789 \f
4790 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4791 where we have an arithmetic expression and return that point. LOC will
4792 be inside INSN.
4793
4794 try_combine will call this function to see if an insn can be split into
4795 two insns. */
4796
4797 static rtx *
4798 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4799 {
4800 rtx x = *loc;
4801 enum rtx_code code = GET_CODE (x);
4802 rtx *split;
4803 unsigned HOST_WIDE_INT len = 0;
4804 HOST_WIDE_INT pos = 0;
4805 int unsignedp = 0;
4806 rtx inner = NULL_RTX;
4807 scalar_int_mode mode, inner_mode;
4808
4809 /* First special-case some codes. */
4810 switch (code)
4811 {
4812 case SUBREG:
4813 #ifdef INSN_SCHEDULING
4814 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4815 point. */
4816 if (MEM_P (SUBREG_REG (x)))
4817 return loc;
4818 #endif
4819 return find_split_point (&SUBREG_REG (x), insn, false);
4820
4821 case MEM:
4822 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4823 using LO_SUM and HIGH. */
4824 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4825 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4826 {
4827 machine_mode address_mode = get_address_mode (x);
4828
4829 SUBST (XEXP (x, 0),
4830 gen_rtx_LO_SUM (address_mode,
4831 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4832 XEXP (x, 0)));
4833 return &XEXP (XEXP (x, 0), 0);
4834 }
4835
4836 /* If we have a PLUS whose second operand is a constant and the
4837 address is not valid, perhaps will can split it up using
4838 the machine-specific way to split large constants. We use
4839 the first pseudo-reg (one of the virtual regs) as a placeholder;
4840 it will not remain in the result. */
4841 if (GET_CODE (XEXP (x, 0)) == PLUS
4842 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4843 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4844 MEM_ADDR_SPACE (x)))
4845 {
4846 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4847 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4848 subst_insn);
4849
4850 /* This should have produced two insns, each of which sets our
4851 placeholder. If the source of the second is a valid address,
4852 we can make put both sources together and make a split point
4853 in the middle. */
4854
4855 if (seq
4856 && NEXT_INSN (seq) != NULL_RTX
4857 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4858 && NONJUMP_INSN_P (seq)
4859 && GET_CODE (PATTERN (seq)) == SET
4860 && SET_DEST (PATTERN (seq)) == reg
4861 && ! reg_mentioned_p (reg,
4862 SET_SRC (PATTERN (seq)))
4863 && NONJUMP_INSN_P (NEXT_INSN (seq))
4864 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4865 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4866 && memory_address_addr_space_p
4867 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4868 MEM_ADDR_SPACE (x)))
4869 {
4870 rtx src1 = SET_SRC (PATTERN (seq));
4871 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4872
4873 /* Replace the placeholder in SRC2 with SRC1. If we can
4874 find where in SRC2 it was placed, that can become our
4875 split point and we can replace this address with SRC2.
4876 Just try two obvious places. */
4877
4878 src2 = replace_rtx (src2, reg, src1);
4879 split = 0;
4880 if (XEXP (src2, 0) == src1)
4881 split = &XEXP (src2, 0);
4882 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4883 && XEXP (XEXP (src2, 0), 0) == src1)
4884 split = &XEXP (XEXP (src2, 0), 0);
4885
4886 if (split)
4887 {
4888 SUBST (XEXP (x, 0), src2);
4889 return split;
4890 }
4891 }
4892
4893 /* If that didn't work, perhaps the first operand is complex and
4894 needs to be computed separately, so make a split point there.
4895 This will occur on machines that just support REG + CONST
4896 and have a constant moved through some previous computation. */
4897
4898 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4899 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4900 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4901 return &XEXP (XEXP (x, 0), 0);
4902 }
4903
4904 /* If we have a PLUS whose first operand is complex, try computing it
4905 separately by making a split there. */
4906 if (GET_CODE (XEXP (x, 0)) == PLUS
4907 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4908 MEM_ADDR_SPACE (x))
4909 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4910 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4911 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4912 return &XEXP (XEXP (x, 0), 0);
4913 break;
4914
4915 case SET:
4916 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4917 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4918 we need to put the operand into a register. So split at that
4919 point. */
4920
4921 if (SET_DEST (x) == cc0_rtx
4922 && GET_CODE (SET_SRC (x)) != COMPARE
4923 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4924 && !OBJECT_P (SET_SRC (x))
4925 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4926 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4927 return &SET_SRC (x);
4928
4929 /* See if we can split SET_SRC as it stands. */
4930 split = find_split_point (&SET_SRC (x), insn, true);
4931 if (split && split != &SET_SRC (x))
4932 return split;
4933
4934 /* See if we can split SET_DEST as it stands. */
4935 split = find_split_point (&SET_DEST (x), insn, false);
4936 if (split && split != &SET_DEST (x))
4937 return split;
4938
4939 /* See if this is a bitfield assignment with everything constant. If
4940 so, this is an IOR of an AND, so split it into that. */
4941 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4942 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
4943 &inner_mode)
4944 && HWI_COMPUTABLE_MODE_P (inner_mode)
4945 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4946 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4947 && CONST_INT_P (SET_SRC (x))
4948 && ((INTVAL (XEXP (SET_DEST (x), 1))
4949 + INTVAL (XEXP (SET_DEST (x), 2)))
4950 <= GET_MODE_PRECISION (inner_mode))
4951 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4952 {
4953 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4954 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4955 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4956 rtx dest = XEXP (SET_DEST (x), 0);
4957 unsigned HOST_WIDE_INT mask
4958 = (HOST_WIDE_INT_1U << len) - 1;
4959 rtx or_mask;
4960
4961 if (BITS_BIG_ENDIAN)
4962 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
4963
4964 or_mask = gen_int_mode (src << pos, inner_mode);
4965 if (src == mask)
4966 SUBST (SET_SRC (x),
4967 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
4968 else
4969 {
4970 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
4971 SUBST (SET_SRC (x),
4972 simplify_gen_binary (IOR, inner_mode,
4973 simplify_gen_binary (AND, inner_mode,
4974 dest, negmask),
4975 or_mask));
4976 }
4977
4978 SUBST (SET_DEST (x), dest);
4979
4980 split = find_split_point (&SET_SRC (x), insn, true);
4981 if (split && split != &SET_SRC (x))
4982 return split;
4983 }
4984
4985 /* Otherwise, see if this is an operation that we can split into two.
4986 If so, try to split that. */
4987 code = GET_CODE (SET_SRC (x));
4988
4989 switch (code)
4990 {
4991 case AND:
4992 /* If we are AND'ing with a large constant that is only a single
4993 bit and the result is only being used in a context where we
4994 need to know if it is zero or nonzero, replace it with a bit
4995 extraction. This will avoid the large constant, which might
4996 have taken more than one insn to make. If the constant were
4997 not a valid argument to the AND but took only one insn to make,
4998 this is no worse, but if it took more than one insn, it will
4999 be better. */
5000
5001 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5002 && REG_P (XEXP (SET_SRC (x), 0))
5003 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5004 && REG_P (SET_DEST (x))
5005 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5006 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5007 && XEXP (*split, 0) == SET_DEST (x)
5008 && XEXP (*split, 1) == const0_rtx)
5009 {
5010 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5011 XEXP (SET_SRC (x), 0),
5012 pos, NULL_RTX, 1, 1, 0, 0);
5013 if (extraction != 0)
5014 {
5015 SUBST (SET_SRC (x), extraction);
5016 return find_split_point (loc, insn, false);
5017 }
5018 }
5019 break;
5020
5021 case NE:
5022 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5023 is known to be on, this can be converted into a NEG of a shift. */
5024 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5025 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5026 && 1 <= (pos = exact_log2
5027 (nonzero_bits (XEXP (SET_SRC (x), 0),
5028 GET_MODE (XEXP (SET_SRC (x), 0))))))
5029 {
5030 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5031
5032 SUBST (SET_SRC (x),
5033 gen_rtx_NEG (mode,
5034 gen_rtx_LSHIFTRT (mode,
5035 XEXP (SET_SRC (x), 0),
5036 GEN_INT (pos))));
5037
5038 split = find_split_point (&SET_SRC (x), insn, true);
5039 if (split && split != &SET_SRC (x))
5040 return split;
5041 }
5042 break;
5043
5044 case SIGN_EXTEND:
5045 inner = XEXP (SET_SRC (x), 0);
5046
5047 /* We can't optimize if either mode is a partial integer
5048 mode as we don't know how many bits are significant
5049 in those modes. */
5050 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5051 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5052 break;
5053
5054 pos = 0;
5055 len = GET_MODE_PRECISION (inner_mode);
5056 unsignedp = 0;
5057 break;
5058
5059 case SIGN_EXTRACT:
5060 case ZERO_EXTRACT:
5061 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5062 &inner_mode)
5063 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5064 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5065 {
5066 inner = XEXP (SET_SRC (x), 0);
5067 len = INTVAL (XEXP (SET_SRC (x), 1));
5068 pos = INTVAL (XEXP (SET_SRC (x), 2));
5069
5070 if (BITS_BIG_ENDIAN)
5071 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5072 unsignedp = (code == ZERO_EXTRACT);
5073 }
5074 break;
5075
5076 default:
5077 break;
5078 }
5079
5080 if (len && pos >= 0
5081 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner))
5082 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5083 {
5084 /* For unsigned, we have a choice of a shift followed by an
5085 AND or two shifts. Use two shifts for field sizes where the
5086 constant might be too large. We assume here that we can
5087 always at least get 8-bit constants in an AND insn, which is
5088 true for every current RISC. */
5089
5090 if (unsignedp && len <= 8)
5091 {
5092 unsigned HOST_WIDE_INT mask
5093 = (HOST_WIDE_INT_1U << len) - 1;
5094 SUBST (SET_SRC (x),
5095 gen_rtx_AND (mode,
5096 gen_rtx_LSHIFTRT
5097 (mode, gen_lowpart (mode, inner),
5098 GEN_INT (pos)),
5099 gen_int_mode (mask, mode)));
5100
5101 split = find_split_point (&SET_SRC (x), insn, true);
5102 if (split && split != &SET_SRC (x))
5103 return split;
5104 }
5105 else
5106 {
5107 SUBST (SET_SRC (x),
5108 gen_rtx_fmt_ee
5109 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5110 gen_rtx_ASHIFT (mode,
5111 gen_lowpart (mode, inner),
5112 GEN_INT (GET_MODE_PRECISION (mode)
5113 - len - pos)),
5114 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5115
5116 split = find_split_point (&SET_SRC (x), insn, true);
5117 if (split && split != &SET_SRC (x))
5118 return split;
5119 }
5120 }
5121
5122 /* See if this is a simple operation with a constant as the second
5123 operand. It might be that this constant is out of range and hence
5124 could be used as a split point. */
5125 if (BINARY_P (SET_SRC (x))
5126 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5127 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5128 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5129 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5130 return &XEXP (SET_SRC (x), 1);
5131
5132 /* Finally, see if this is a simple operation with its first operand
5133 not in a register. The operation might require this operand in a
5134 register, so return it as a split point. We can always do this
5135 because if the first operand were another operation, we would have
5136 already found it as a split point. */
5137 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5138 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5139 return &XEXP (SET_SRC (x), 0);
5140
5141 return 0;
5142
5143 case AND:
5144 case IOR:
5145 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5146 it is better to write this as (not (ior A B)) so we can split it.
5147 Similarly for IOR. */
5148 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5149 {
5150 SUBST (*loc,
5151 gen_rtx_NOT (GET_MODE (x),
5152 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5153 GET_MODE (x),
5154 XEXP (XEXP (x, 0), 0),
5155 XEXP (XEXP (x, 1), 0))));
5156 return find_split_point (loc, insn, set_src);
5157 }
5158
5159 /* Many RISC machines have a large set of logical insns. If the
5160 second operand is a NOT, put it first so we will try to split the
5161 other operand first. */
5162 if (GET_CODE (XEXP (x, 1)) == NOT)
5163 {
5164 rtx tem = XEXP (x, 0);
5165 SUBST (XEXP (x, 0), XEXP (x, 1));
5166 SUBST (XEXP (x, 1), tem);
5167 }
5168 break;
5169
5170 case PLUS:
5171 case MINUS:
5172 /* Canonicalization can produce (minus A (mult B C)), where C is a
5173 constant. It may be better to try splitting (plus (mult B -C) A)
5174 instead if this isn't a multiply by a power of two. */
5175 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5176 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5177 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5178 {
5179 machine_mode mode = GET_MODE (x);
5180 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5181 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5182 SUBST (*loc, gen_rtx_PLUS (mode,
5183 gen_rtx_MULT (mode,
5184 XEXP (XEXP (x, 1), 0),
5185 gen_int_mode (other_int,
5186 mode)),
5187 XEXP (x, 0)));
5188 return find_split_point (loc, insn, set_src);
5189 }
5190
5191 /* Split at a multiply-accumulate instruction. However if this is
5192 the SET_SRC, we likely do not have such an instruction and it's
5193 worthless to try this split. */
5194 if (!set_src
5195 && (GET_CODE (XEXP (x, 0)) == MULT
5196 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5197 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5198 return loc;
5199
5200 default:
5201 break;
5202 }
5203
5204 /* Otherwise, select our actions depending on our rtx class. */
5205 switch (GET_RTX_CLASS (code))
5206 {
5207 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5208 case RTX_TERNARY:
5209 split = find_split_point (&XEXP (x, 2), insn, false);
5210 if (split)
5211 return split;
5212 /* fall through */
5213 case RTX_BIN_ARITH:
5214 case RTX_COMM_ARITH:
5215 case RTX_COMPARE:
5216 case RTX_COMM_COMPARE:
5217 split = find_split_point (&XEXP (x, 1), insn, false);
5218 if (split)
5219 return split;
5220 /* fall through */
5221 case RTX_UNARY:
5222 /* Some machines have (and (shift ...) ...) insns. If X is not
5223 an AND, but XEXP (X, 0) is, use it as our split point. */
5224 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5225 return &XEXP (x, 0);
5226
5227 split = find_split_point (&XEXP (x, 0), insn, false);
5228 if (split)
5229 return split;
5230 return loc;
5231
5232 default:
5233 /* Otherwise, we don't have a split point. */
5234 return 0;
5235 }
5236 }
5237 \f
5238 /* Throughout X, replace FROM with TO, and return the result.
5239 The result is TO if X is FROM;
5240 otherwise the result is X, but its contents may have been modified.
5241 If they were modified, a record was made in undobuf so that
5242 undo_all will (among other things) return X to its original state.
5243
5244 If the number of changes necessary is too much to record to undo,
5245 the excess changes are not made, so the result is invalid.
5246 The changes already made can still be undone.
5247 undobuf.num_undo is incremented for such changes, so by testing that
5248 the caller can tell whether the result is valid.
5249
5250 `n_occurrences' is incremented each time FROM is replaced.
5251
5252 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5253
5254 IN_COND is nonzero if we are at the top level of a condition.
5255
5256 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5257 by copying if `n_occurrences' is nonzero. */
5258
5259 static rtx
5260 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5261 {
5262 enum rtx_code code = GET_CODE (x);
5263 machine_mode op0_mode = VOIDmode;
5264 const char *fmt;
5265 int len, i;
5266 rtx new_rtx;
5267
5268 /* Two expressions are equal if they are identical copies of a shared
5269 RTX or if they are both registers with the same register number
5270 and mode. */
5271
5272 #define COMBINE_RTX_EQUAL_P(X,Y) \
5273 ((X) == (Y) \
5274 || (REG_P (X) && REG_P (Y) \
5275 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5276
5277 /* Do not substitute into clobbers of regs -- this will never result in
5278 valid RTL. */
5279 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5280 return x;
5281
5282 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5283 {
5284 n_occurrences++;
5285 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5286 }
5287
5288 /* If X and FROM are the same register but different modes, they
5289 will not have been seen as equal above. However, the log links code
5290 will make a LOG_LINKS entry for that case. If we do nothing, we
5291 will try to rerecognize our original insn and, when it succeeds,
5292 we will delete the feeding insn, which is incorrect.
5293
5294 So force this insn not to match in this (rare) case. */
5295 if (! in_dest && code == REG && REG_P (from)
5296 && reg_overlap_mentioned_p (x, from))
5297 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5298
5299 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5300 of which may contain things that can be combined. */
5301 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5302 return x;
5303
5304 /* It is possible to have a subexpression appear twice in the insn.
5305 Suppose that FROM is a register that appears within TO.
5306 Then, after that subexpression has been scanned once by `subst',
5307 the second time it is scanned, TO may be found. If we were
5308 to scan TO here, we would find FROM within it and create a
5309 self-referent rtl structure which is completely wrong. */
5310 if (COMBINE_RTX_EQUAL_P (x, to))
5311 return to;
5312
5313 /* Parallel asm_operands need special attention because all of the
5314 inputs are shared across the arms. Furthermore, unsharing the
5315 rtl results in recognition failures. Failure to handle this case
5316 specially can result in circular rtl.
5317
5318 Solve this by doing a normal pass across the first entry of the
5319 parallel, and only processing the SET_DESTs of the subsequent
5320 entries. Ug. */
5321
5322 if (code == PARALLEL
5323 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5324 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5325 {
5326 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5327
5328 /* If this substitution failed, this whole thing fails. */
5329 if (GET_CODE (new_rtx) == CLOBBER
5330 && XEXP (new_rtx, 0) == const0_rtx)
5331 return new_rtx;
5332
5333 SUBST (XVECEXP (x, 0, 0), new_rtx);
5334
5335 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5336 {
5337 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5338
5339 if (!REG_P (dest)
5340 && GET_CODE (dest) != CC0
5341 && GET_CODE (dest) != PC)
5342 {
5343 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5344
5345 /* If this substitution failed, this whole thing fails. */
5346 if (GET_CODE (new_rtx) == CLOBBER
5347 && XEXP (new_rtx, 0) == const0_rtx)
5348 return new_rtx;
5349
5350 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5351 }
5352 }
5353 }
5354 else
5355 {
5356 len = GET_RTX_LENGTH (code);
5357 fmt = GET_RTX_FORMAT (code);
5358
5359 /* We don't need to process a SET_DEST that is a register, CC0,
5360 or PC, so set up to skip this common case. All other cases
5361 where we want to suppress replacing something inside a
5362 SET_SRC are handled via the IN_DEST operand. */
5363 if (code == SET
5364 && (REG_P (SET_DEST (x))
5365 || GET_CODE (SET_DEST (x)) == CC0
5366 || GET_CODE (SET_DEST (x)) == PC))
5367 fmt = "ie";
5368
5369 /* Trying to simplify the operands of a widening MULT is not likely
5370 to create RTL matching a machine insn. */
5371 if (code == MULT
5372 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5373 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5374 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5375 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5376 && REG_P (XEXP (XEXP (x, 0), 0))
5377 && REG_P (XEXP (XEXP (x, 1), 0))
5378 && from == to)
5379 return x;
5380
5381
5382 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5383 constant. */
5384 if (fmt[0] == 'e')
5385 op0_mode = GET_MODE (XEXP (x, 0));
5386
5387 for (i = 0; i < len; i++)
5388 {
5389 if (fmt[i] == 'E')
5390 {
5391 int j;
5392 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5393 {
5394 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5395 {
5396 new_rtx = (unique_copy && n_occurrences
5397 ? copy_rtx (to) : to);
5398 n_occurrences++;
5399 }
5400 else
5401 {
5402 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5403 unique_copy);
5404
5405 /* If this substitution failed, this whole thing
5406 fails. */
5407 if (GET_CODE (new_rtx) == CLOBBER
5408 && XEXP (new_rtx, 0) == const0_rtx)
5409 return new_rtx;
5410 }
5411
5412 SUBST (XVECEXP (x, i, j), new_rtx);
5413 }
5414 }
5415 else if (fmt[i] == 'e')
5416 {
5417 /* If this is a register being set, ignore it. */
5418 new_rtx = XEXP (x, i);
5419 if (in_dest
5420 && i == 0
5421 && (((code == SUBREG || code == ZERO_EXTRACT)
5422 && REG_P (new_rtx))
5423 || code == STRICT_LOW_PART))
5424 ;
5425
5426 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5427 {
5428 /* In general, don't install a subreg involving two
5429 modes not tieable. It can worsen register
5430 allocation, and can even make invalid reload
5431 insns, since the reg inside may need to be copied
5432 from in the outside mode, and that may be invalid
5433 if it is an fp reg copied in integer mode.
5434
5435 We allow two exceptions to this: It is valid if
5436 it is inside another SUBREG and the mode of that
5437 SUBREG and the mode of the inside of TO is
5438 tieable and it is valid if X is a SET that copies
5439 FROM to CC0. */
5440
5441 if (GET_CODE (to) == SUBREG
5442 && ! MODES_TIEABLE_P (GET_MODE (to),
5443 GET_MODE (SUBREG_REG (to)))
5444 && ! (code == SUBREG
5445 && MODES_TIEABLE_P (GET_MODE (x),
5446 GET_MODE (SUBREG_REG (to))))
5447 && (!HAVE_cc0
5448 || (! (code == SET
5449 && i == 1
5450 && XEXP (x, 0) == cc0_rtx))))
5451 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5452
5453 if (code == SUBREG
5454 && REG_P (to)
5455 && REGNO (to) < FIRST_PSEUDO_REGISTER
5456 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5457 SUBREG_BYTE (x),
5458 GET_MODE (x)) < 0)
5459 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5460
5461 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5462 n_occurrences++;
5463 }
5464 else
5465 /* If we are in a SET_DEST, suppress most cases unless we
5466 have gone inside a MEM, in which case we want to
5467 simplify the address. We assume here that things that
5468 are actually part of the destination have their inner
5469 parts in the first expression. This is true for SUBREG,
5470 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5471 things aside from REG and MEM that should appear in a
5472 SET_DEST. */
5473 new_rtx = subst (XEXP (x, i), from, to,
5474 (((in_dest
5475 && (code == SUBREG || code == STRICT_LOW_PART
5476 || code == ZERO_EXTRACT))
5477 || code == SET)
5478 && i == 0),
5479 code == IF_THEN_ELSE && i == 0,
5480 unique_copy);
5481
5482 /* If we found that we will have to reject this combination,
5483 indicate that by returning the CLOBBER ourselves, rather than
5484 an expression containing it. This will speed things up as
5485 well as prevent accidents where two CLOBBERs are considered
5486 to be equal, thus producing an incorrect simplification. */
5487
5488 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5489 return new_rtx;
5490
5491 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5492 {
5493 machine_mode mode = GET_MODE (x);
5494
5495 x = simplify_subreg (GET_MODE (x), new_rtx,
5496 GET_MODE (SUBREG_REG (x)),
5497 SUBREG_BYTE (x));
5498 if (! x)
5499 x = gen_rtx_CLOBBER (mode, const0_rtx);
5500 }
5501 else if (CONST_SCALAR_INT_P (new_rtx)
5502 && GET_CODE (x) == ZERO_EXTEND)
5503 {
5504 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5505 new_rtx, GET_MODE (XEXP (x, 0)));
5506 gcc_assert (x);
5507 }
5508 else
5509 SUBST (XEXP (x, i), new_rtx);
5510 }
5511 }
5512 }
5513
5514 /* Check if we are loading something from the constant pool via float
5515 extension; in this case we would undo compress_float_constant
5516 optimization and degenerate constant load to an immediate value. */
5517 if (GET_CODE (x) == FLOAT_EXTEND
5518 && MEM_P (XEXP (x, 0))
5519 && MEM_READONLY_P (XEXP (x, 0)))
5520 {
5521 rtx tmp = avoid_constant_pool_reference (x);
5522 if (x != tmp)
5523 return x;
5524 }
5525
5526 /* Try to simplify X. If the simplification changed the code, it is likely
5527 that further simplification will help, so loop, but limit the number
5528 of repetitions that will be performed. */
5529
5530 for (i = 0; i < 4; i++)
5531 {
5532 /* If X is sufficiently simple, don't bother trying to do anything
5533 with it. */
5534 if (code != CONST_INT && code != REG && code != CLOBBER)
5535 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5536
5537 if (GET_CODE (x) == code)
5538 break;
5539
5540 code = GET_CODE (x);
5541
5542 /* We no longer know the original mode of operand 0 since we
5543 have changed the form of X) */
5544 op0_mode = VOIDmode;
5545 }
5546
5547 return x;
5548 }
5549 \f
5550 /* If X is a commutative operation whose operands are not in the canonical
5551 order, use substitutions to swap them. */
5552
5553 static void
5554 maybe_swap_commutative_operands (rtx x)
5555 {
5556 if (COMMUTATIVE_ARITH_P (x)
5557 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5558 {
5559 rtx temp = XEXP (x, 0);
5560 SUBST (XEXP (x, 0), XEXP (x, 1));
5561 SUBST (XEXP (x, 1), temp);
5562 }
5563 }
5564
5565 /* Simplify X, a piece of RTL. We just operate on the expression at the
5566 outer level; call `subst' to simplify recursively. Return the new
5567 expression.
5568
5569 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5570 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5571 of a condition. */
5572
5573 static rtx
5574 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5575 int in_cond)
5576 {
5577 enum rtx_code code = GET_CODE (x);
5578 machine_mode mode = GET_MODE (x);
5579 scalar_int_mode int_mode;
5580 rtx temp;
5581 int i;
5582
5583 /* If this is a commutative operation, put a constant last and a complex
5584 expression first. We don't need to do this for comparisons here. */
5585 maybe_swap_commutative_operands (x);
5586
5587 /* Try to fold this expression in case we have constants that weren't
5588 present before. */
5589 temp = 0;
5590 switch (GET_RTX_CLASS (code))
5591 {
5592 case RTX_UNARY:
5593 if (op0_mode == VOIDmode)
5594 op0_mode = GET_MODE (XEXP (x, 0));
5595 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5596 break;
5597 case RTX_COMPARE:
5598 case RTX_COMM_COMPARE:
5599 {
5600 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5601 if (cmp_mode == VOIDmode)
5602 {
5603 cmp_mode = GET_MODE (XEXP (x, 1));
5604 if (cmp_mode == VOIDmode)
5605 cmp_mode = op0_mode;
5606 }
5607 temp = simplify_relational_operation (code, mode, cmp_mode,
5608 XEXP (x, 0), XEXP (x, 1));
5609 }
5610 break;
5611 case RTX_COMM_ARITH:
5612 case RTX_BIN_ARITH:
5613 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5614 break;
5615 case RTX_BITFIELD_OPS:
5616 case RTX_TERNARY:
5617 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5618 XEXP (x, 1), XEXP (x, 2));
5619 break;
5620 default:
5621 break;
5622 }
5623
5624 if (temp)
5625 {
5626 x = temp;
5627 code = GET_CODE (temp);
5628 op0_mode = VOIDmode;
5629 mode = GET_MODE (temp);
5630 }
5631
5632 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5633 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5634 things. Check for cases where both arms are testing the same
5635 condition.
5636
5637 Don't do anything if all operands are very simple. */
5638
5639 if ((BINARY_P (x)
5640 && ((!OBJECT_P (XEXP (x, 0))
5641 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5642 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5643 || (!OBJECT_P (XEXP (x, 1))
5644 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5645 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5646 || (UNARY_P (x)
5647 && (!OBJECT_P (XEXP (x, 0))
5648 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5649 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5650 {
5651 rtx cond, true_rtx, false_rtx;
5652
5653 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5654 if (cond != 0
5655 /* If everything is a comparison, what we have is highly unlikely
5656 to be simpler, so don't use it. */
5657 && ! (COMPARISON_P (x)
5658 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5659 {
5660 rtx cop1 = const0_rtx;
5661 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5662
5663 if (cond_code == NE && COMPARISON_P (cond))
5664 return x;
5665
5666 /* Simplify the alternative arms; this may collapse the true and
5667 false arms to store-flag values. Be careful to use copy_rtx
5668 here since true_rtx or false_rtx might share RTL with x as a
5669 result of the if_then_else_cond call above. */
5670 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5671 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5672
5673 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5674 is unlikely to be simpler. */
5675 if (general_operand (true_rtx, VOIDmode)
5676 && general_operand (false_rtx, VOIDmode))
5677 {
5678 enum rtx_code reversed;
5679
5680 /* Restarting if we generate a store-flag expression will cause
5681 us to loop. Just drop through in this case. */
5682
5683 /* If the result values are STORE_FLAG_VALUE and zero, we can
5684 just make the comparison operation. */
5685 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5686 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5687 cond, cop1);
5688 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5689 && ((reversed = reversed_comparison_code_parts
5690 (cond_code, cond, cop1, NULL))
5691 != UNKNOWN))
5692 x = simplify_gen_relational (reversed, mode, VOIDmode,
5693 cond, cop1);
5694
5695 /* Likewise, we can make the negate of a comparison operation
5696 if the result values are - STORE_FLAG_VALUE and zero. */
5697 else if (CONST_INT_P (true_rtx)
5698 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5699 && false_rtx == const0_rtx)
5700 x = simplify_gen_unary (NEG, mode,
5701 simplify_gen_relational (cond_code,
5702 mode, VOIDmode,
5703 cond, cop1),
5704 mode);
5705 else if (CONST_INT_P (false_rtx)
5706 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5707 && true_rtx == const0_rtx
5708 && ((reversed = reversed_comparison_code_parts
5709 (cond_code, cond, cop1, NULL))
5710 != UNKNOWN))
5711 x = simplify_gen_unary (NEG, mode,
5712 simplify_gen_relational (reversed,
5713 mode, VOIDmode,
5714 cond, cop1),
5715 mode);
5716 else
5717 return gen_rtx_IF_THEN_ELSE (mode,
5718 simplify_gen_relational (cond_code,
5719 mode,
5720 VOIDmode,
5721 cond,
5722 cop1),
5723 true_rtx, false_rtx);
5724
5725 code = GET_CODE (x);
5726 op0_mode = VOIDmode;
5727 }
5728 }
5729 }
5730
5731 /* First see if we can apply the inverse distributive law. */
5732 if (code == PLUS || code == MINUS
5733 || code == AND || code == IOR || code == XOR)
5734 {
5735 x = apply_distributive_law (x);
5736 code = GET_CODE (x);
5737 op0_mode = VOIDmode;
5738 }
5739
5740 /* If CODE is an associative operation not otherwise handled, see if we
5741 can associate some operands. This can win if they are constants or
5742 if they are logically related (i.e. (a & b) & a). */
5743 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5744 || code == AND || code == IOR || code == XOR
5745 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5746 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5747 || (flag_associative_math && FLOAT_MODE_P (mode))))
5748 {
5749 if (GET_CODE (XEXP (x, 0)) == code)
5750 {
5751 rtx other = XEXP (XEXP (x, 0), 0);
5752 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5753 rtx inner_op1 = XEXP (x, 1);
5754 rtx inner;
5755
5756 /* Make sure we pass the constant operand if any as the second
5757 one if this is a commutative operation. */
5758 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5759 std::swap (inner_op0, inner_op1);
5760 inner = simplify_binary_operation (code == MINUS ? PLUS
5761 : code == DIV ? MULT
5762 : code,
5763 mode, inner_op0, inner_op1);
5764
5765 /* For commutative operations, try the other pair if that one
5766 didn't simplify. */
5767 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5768 {
5769 other = XEXP (XEXP (x, 0), 1);
5770 inner = simplify_binary_operation (code, mode,
5771 XEXP (XEXP (x, 0), 0),
5772 XEXP (x, 1));
5773 }
5774
5775 if (inner)
5776 return simplify_gen_binary (code, mode, other, inner);
5777 }
5778 }
5779
5780 /* A little bit of algebraic simplification here. */
5781 switch (code)
5782 {
5783 case MEM:
5784 /* Ensure that our address has any ASHIFTs converted to MULT in case
5785 address-recognizing predicates are called later. */
5786 temp = make_compound_operation (XEXP (x, 0), MEM);
5787 SUBST (XEXP (x, 0), temp);
5788 break;
5789
5790 case SUBREG:
5791 if (op0_mode == VOIDmode)
5792 op0_mode = GET_MODE (SUBREG_REG (x));
5793
5794 /* See if this can be moved to simplify_subreg. */
5795 if (CONSTANT_P (SUBREG_REG (x))
5796 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5797 /* Don't call gen_lowpart if the inner mode
5798 is VOIDmode and we cannot simplify it, as SUBREG without
5799 inner mode is invalid. */
5800 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5801 || gen_lowpart_common (mode, SUBREG_REG (x))))
5802 return gen_lowpart (mode, SUBREG_REG (x));
5803
5804 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5805 break;
5806 {
5807 rtx temp;
5808 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5809 SUBREG_BYTE (x));
5810 if (temp)
5811 return temp;
5812
5813 /* If op is known to have all lower bits zero, the result is zero. */
5814 scalar_int_mode int_mode, int_op0_mode;
5815 if (!in_dest
5816 && is_a <scalar_int_mode> (mode, &int_mode)
5817 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5818 && (GET_MODE_PRECISION (int_mode)
5819 < GET_MODE_PRECISION (int_op0_mode))
5820 && (subreg_lowpart_offset (int_mode, int_op0_mode)
5821 == SUBREG_BYTE (x))
5822 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5823 && (nonzero_bits (SUBREG_REG (x), int_op0_mode)
5824 & GET_MODE_MASK (int_mode)) == 0)
5825 return CONST0_RTX (int_mode);
5826 }
5827
5828 /* Don't change the mode of the MEM if that would change the meaning
5829 of the address. */
5830 if (MEM_P (SUBREG_REG (x))
5831 && (MEM_VOLATILE_P (SUBREG_REG (x))
5832 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5833 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5834 return gen_rtx_CLOBBER (mode, const0_rtx);
5835
5836 /* Note that we cannot do any narrowing for non-constants since
5837 we might have been counting on using the fact that some bits were
5838 zero. We now do this in the SET. */
5839
5840 break;
5841
5842 case NEG:
5843 temp = expand_compound_operation (XEXP (x, 0));
5844
5845 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5846 replaced by (lshiftrt X C). This will convert
5847 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5848
5849 if (GET_CODE (temp) == ASHIFTRT
5850 && CONST_INT_P (XEXP (temp, 1))
5851 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5852 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5853 INTVAL (XEXP (temp, 1)));
5854
5855 /* If X has only a single bit that might be nonzero, say, bit I, convert
5856 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5857 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5858 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5859 or a SUBREG of one since we'd be making the expression more
5860 complex if it was just a register. */
5861
5862 if (!REG_P (temp)
5863 && ! (GET_CODE (temp) == SUBREG
5864 && REG_P (SUBREG_REG (temp)))
5865 && is_a <scalar_int_mode> (mode, &int_mode)
5866 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5867 {
5868 rtx temp1 = simplify_shift_const
5869 (NULL_RTX, ASHIFTRT, int_mode,
5870 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5871 GET_MODE_PRECISION (int_mode) - 1 - i),
5872 GET_MODE_PRECISION (int_mode) - 1 - i);
5873
5874 /* If all we did was surround TEMP with the two shifts, we
5875 haven't improved anything, so don't use it. Otherwise,
5876 we are better off with TEMP1. */
5877 if (GET_CODE (temp1) != ASHIFTRT
5878 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5879 || XEXP (XEXP (temp1, 0), 0) != temp)
5880 return temp1;
5881 }
5882 break;
5883
5884 case TRUNCATE:
5885 /* We can't handle truncation to a partial integer mode here
5886 because we don't know the real bitsize of the partial
5887 integer mode. */
5888 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5889 break;
5890
5891 if (HWI_COMPUTABLE_MODE_P (mode))
5892 SUBST (XEXP (x, 0),
5893 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5894 GET_MODE_MASK (mode), 0));
5895
5896 /* We can truncate a constant value and return it. */
5897 if (CONST_INT_P (XEXP (x, 0)))
5898 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5899
5900 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5901 whose value is a comparison can be replaced with a subreg if
5902 STORE_FLAG_VALUE permits. */
5903 if (HWI_COMPUTABLE_MODE_P (mode)
5904 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5905 && (temp = get_last_value (XEXP (x, 0)))
5906 && COMPARISON_P (temp))
5907 return gen_lowpart (mode, XEXP (x, 0));
5908 break;
5909
5910 case CONST:
5911 /* (const (const X)) can become (const X). Do it this way rather than
5912 returning the inner CONST since CONST can be shared with a
5913 REG_EQUAL note. */
5914 if (GET_CODE (XEXP (x, 0)) == CONST)
5915 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5916 break;
5917
5918 case LO_SUM:
5919 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5920 can add in an offset. find_split_point will split this address up
5921 again if it doesn't match. */
5922 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5923 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5924 return XEXP (x, 1);
5925 break;
5926
5927 case PLUS:
5928 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5929 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5930 bit-field and can be replaced by either a sign_extend or a
5931 sign_extract. The `and' may be a zero_extend and the two
5932 <c>, -<c> constants may be reversed. */
5933 if (GET_CODE (XEXP (x, 0)) == XOR
5934 && is_a <scalar_int_mode> (mode, &int_mode)
5935 && CONST_INT_P (XEXP (x, 1))
5936 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5937 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5938 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5939 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5940 && HWI_COMPUTABLE_MODE_P (int_mode)
5941 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5942 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5943 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5944 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5945 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5946 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5947 == (unsigned int) i + 1))))
5948 return simplify_shift_const
5949 (NULL_RTX, ASHIFTRT, int_mode,
5950 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
5951 XEXP (XEXP (XEXP (x, 0), 0), 0),
5952 GET_MODE_PRECISION (int_mode) - (i + 1)),
5953 GET_MODE_PRECISION (int_mode) - (i + 1));
5954
5955 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5956 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5957 the bitsize of the mode - 1. This allows simplification of
5958 "a = (b & 8) == 0;" */
5959 if (XEXP (x, 1) == constm1_rtx
5960 && !REG_P (XEXP (x, 0))
5961 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5962 && REG_P (SUBREG_REG (XEXP (x, 0))))
5963 && is_a <scalar_int_mode> (mode, &int_mode)
5964 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
5965 return simplify_shift_const
5966 (NULL_RTX, ASHIFTRT, int_mode,
5967 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
5968 gen_rtx_XOR (int_mode, XEXP (x, 0),
5969 const1_rtx),
5970 GET_MODE_PRECISION (int_mode) - 1),
5971 GET_MODE_PRECISION (int_mode) - 1);
5972
5973 /* If we are adding two things that have no bits in common, convert
5974 the addition into an IOR. This will often be further simplified,
5975 for example in cases like ((a & 1) + (a & 2)), which can
5976 become a & 3. */
5977
5978 if (HWI_COMPUTABLE_MODE_P (mode)
5979 && (nonzero_bits (XEXP (x, 0), mode)
5980 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5981 {
5982 /* Try to simplify the expression further. */
5983 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5984 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5985
5986 /* If we could, great. If not, do not go ahead with the IOR
5987 replacement, since PLUS appears in many special purpose
5988 address arithmetic instructions. */
5989 if (GET_CODE (temp) != CLOBBER
5990 && (GET_CODE (temp) != IOR
5991 || ((XEXP (temp, 0) != XEXP (x, 0)
5992 || XEXP (temp, 1) != XEXP (x, 1))
5993 && (XEXP (temp, 0) != XEXP (x, 1)
5994 || XEXP (temp, 1) != XEXP (x, 0)))))
5995 return temp;
5996 }
5997
5998 /* Canonicalize x + x into x << 1. */
5999 if (GET_MODE_CLASS (mode) == MODE_INT
6000 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6001 && !side_effects_p (XEXP (x, 0)))
6002 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6003
6004 break;
6005
6006 case MINUS:
6007 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6008 (and <foo> (const_int pow2-1)) */
6009 if (is_a <scalar_int_mode> (mode, &int_mode)
6010 && GET_CODE (XEXP (x, 1)) == AND
6011 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6012 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6013 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6014 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6015 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6016 break;
6017
6018 case MULT:
6019 /* If we have (mult (plus A B) C), apply the distributive law and then
6020 the inverse distributive law to see if things simplify. This
6021 occurs mostly in addresses, often when unrolling loops. */
6022
6023 if (GET_CODE (XEXP (x, 0)) == PLUS)
6024 {
6025 rtx result = distribute_and_simplify_rtx (x, 0);
6026 if (result)
6027 return result;
6028 }
6029
6030 /* Try simplify a*(b/c) as (a*b)/c. */
6031 if (FLOAT_MODE_P (mode) && flag_associative_math
6032 && GET_CODE (XEXP (x, 0)) == DIV)
6033 {
6034 rtx tem = simplify_binary_operation (MULT, mode,
6035 XEXP (XEXP (x, 0), 0),
6036 XEXP (x, 1));
6037 if (tem)
6038 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6039 }
6040 break;
6041
6042 case UDIV:
6043 /* If this is a divide by a power of two, treat it as a shift if
6044 its first operand is a shift. */
6045 if (is_a <scalar_int_mode> (mode, &int_mode)
6046 && CONST_INT_P (XEXP (x, 1))
6047 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6048 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6049 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6050 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6051 || GET_CODE (XEXP (x, 0)) == ROTATE
6052 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6053 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6054 XEXP (x, 0), i);
6055 break;
6056
6057 case EQ: case NE:
6058 case GT: case GTU: case GE: case GEU:
6059 case LT: case LTU: case LE: case LEU:
6060 case UNEQ: case LTGT:
6061 case UNGT: case UNGE:
6062 case UNLT: case UNLE:
6063 case UNORDERED: case ORDERED:
6064 /* If the first operand is a condition code, we can't do anything
6065 with it. */
6066 if (GET_CODE (XEXP (x, 0)) == COMPARE
6067 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6068 && ! CC0_P (XEXP (x, 0))))
6069 {
6070 rtx op0 = XEXP (x, 0);
6071 rtx op1 = XEXP (x, 1);
6072 enum rtx_code new_code;
6073
6074 if (GET_CODE (op0) == COMPARE)
6075 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6076
6077 /* Simplify our comparison, if possible. */
6078 new_code = simplify_comparison (code, &op0, &op1);
6079
6080 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6081 if only the low-order bit is possibly nonzero in X (such as when
6082 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6083 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6084 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6085 (plus X 1).
6086
6087 Remove any ZERO_EXTRACT we made when thinking this was a
6088 comparison. It may now be simpler to use, e.g., an AND. If a
6089 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6090 the call to make_compound_operation in the SET case.
6091
6092 Don't apply these optimizations if the caller would
6093 prefer a comparison rather than a value.
6094 E.g., for the condition in an IF_THEN_ELSE most targets need
6095 an explicit comparison. */
6096
6097 if (in_cond)
6098 ;
6099
6100 else if (STORE_FLAG_VALUE == 1
6101 && new_code == NE
6102 && is_int_mode (mode, &int_mode)
6103 && op1 == const0_rtx
6104 && int_mode == GET_MODE (op0)
6105 && nonzero_bits (op0, int_mode) == 1)
6106 return gen_lowpart (int_mode,
6107 expand_compound_operation (op0));
6108
6109 else if (STORE_FLAG_VALUE == 1
6110 && new_code == NE
6111 && is_int_mode (mode, &int_mode)
6112 && op1 == const0_rtx
6113 && int_mode == GET_MODE (op0)
6114 && (num_sign_bit_copies (op0, int_mode)
6115 == GET_MODE_PRECISION (int_mode)))
6116 {
6117 op0 = expand_compound_operation (op0);
6118 return simplify_gen_unary (NEG, int_mode,
6119 gen_lowpart (int_mode, op0),
6120 int_mode);
6121 }
6122
6123 else if (STORE_FLAG_VALUE == 1
6124 && new_code == EQ
6125 && is_int_mode (mode, &int_mode)
6126 && op1 == const0_rtx
6127 && int_mode == GET_MODE (op0)
6128 && nonzero_bits (op0, int_mode) == 1)
6129 {
6130 op0 = expand_compound_operation (op0);
6131 return simplify_gen_binary (XOR, int_mode,
6132 gen_lowpart (int_mode, op0),
6133 const1_rtx);
6134 }
6135
6136 else if (STORE_FLAG_VALUE == 1
6137 && new_code == EQ
6138 && is_int_mode (mode, &int_mode)
6139 && op1 == const0_rtx
6140 && int_mode == GET_MODE (op0)
6141 && (num_sign_bit_copies (op0, int_mode)
6142 == GET_MODE_PRECISION (int_mode)))
6143 {
6144 op0 = expand_compound_operation (op0);
6145 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6146 }
6147
6148 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6149 those above. */
6150 if (in_cond)
6151 ;
6152
6153 else if (STORE_FLAG_VALUE == -1
6154 && new_code == NE
6155 && is_int_mode (mode, &int_mode)
6156 && op1 == const0_rtx
6157 && int_mode == GET_MODE (op0)
6158 && (num_sign_bit_copies (op0, int_mode)
6159 == GET_MODE_PRECISION (int_mode)))
6160 return gen_lowpart (int_mode, expand_compound_operation (op0));
6161
6162 else if (STORE_FLAG_VALUE == -1
6163 && new_code == NE
6164 && is_int_mode (mode, &int_mode)
6165 && op1 == const0_rtx
6166 && int_mode == GET_MODE (op0)
6167 && nonzero_bits (op0, int_mode) == 1)
6168 {
6169 op0 = expand_compound_operation (op0);
6170 return simplify_gen_unary (NEG, int_mode,
6171 gen_lowpart (int_mode, op0),
6172 int_mode);
6173 }
6174
6175 else if (STORE_FLAG_VALUE == -1
6176 && new_code == EQ
6177 && is_int_mode (mode, &int_mode)
6178 && op1 == const0_rtx
6179 && int_mode == GET_MODE (op0)
6180 && (num_sign_bit_copies (op0, int_mode)
6181 == GET_MODE_PRECISION (int_mode)))
6182 {
6183 op0 = expand_compound_operation (op0);
6184 return simplify_gen_unary (NOT, int_mode,
6185 gen_lowpart (int_mode, op0),
6186 int_mode);
6187 }
6188
6189 /* If X is 0/1, (eq X 0) is X-1. */
6190 else if (STORE_FLAG_VALUE == -1
6191 && new_code == EQ
6192 && is_int_mode (mode, &int_mode)
6193 && op1 == const0_rtx
6194 && int_mode == GET_MODE (op0)
6195 && nonzero_bits (op0, int_mode) == 1)
6196 {
6197 op0 = expand_compound_operation (op0);
6198 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6199 }
6200
6201 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6202 one bit that might be nonzero, we can convert (ne x 0) to
6203 (ashift x c) where C puts the bit in the sign bit. Remove any
6204 AND with STORE_FLAG_VALUE when we are done, since we are only
6205 going to test the sign bit. */
6206 if (new_code == NE
6207 && is_int_mode (mode, &int_mode)
6208 && HWI_COMPUTABLE_MODE_P (int_mode)
6209 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6210 && op1 == const0_rtx
6211 && int_mode == GET_MODE (op0)
6212 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6213 {
6214 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6215 expand_compound_operation (op0),
6216 GET_MODE_PRECISION (int_mode) - 1 - i);
6217 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6218 return XEXP (x, 0);
6219 else
6220 return x;
6221 }
6222
6223 /* If the code changed, return a whole new comparison.
6224 We also need to avoid using SUBST in cases where
6225 simplify_comparison has widened a comparison with a CONST_INT,
6226 since in that case the wider CONST_INT may fail the sanity
6227 checks in do_SUBST. */
6228 if (new_code != code
6229 || (CONST_INT_P (op1)
6230 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6231 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6232 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6233
6234 /* Otherwise, keep this operation, but maybe change its operands.
6235 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6236 SUBST (XEXP (x, 0), op0);
6237 SUBST (XEXP (x, 1), op1);
6238 }
6239 break;
6240
6241 case IF_THEN_ELSE:
6242 return simplify_if_then_else (x);
6243
6244 case ZERO_EXTRACT:
6245 case SIGN_EXTRACT:
6246 case ZERO_EXTEND:
6247 case SIGN_EXTEND:
6248 /* If we are processing SET_DEST, we are done. */
6249 if (in_dest)
6250 return x;
6251
6252 return expand_compound_operation (x);
6253
6254 case SET:
6255 return simplify_set (x);
6256
6257 case AND:
6258 case IOR:
6259 return simplify_logical (x);
6260
6261 case ASHIFT:
6262 case LSHIFTRT:
6263 case ASHIFTRT:
6264 case ROTATE:
6265 case ROTATERT:
6266 /* If this is a shift by a constant amount, simplify it. */
6267 if (CONST_INT_P (XEXP (x, 1)))
6268 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6269 INTVAL (XEXP (x, 1)));
6270
6271 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6272 SUBST (XEXP (x, 1),
6273 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6274 (HOST_WIDE_INT_1U
6275 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6276 - 1,
6277 0));
6278 break;
6279
6280 default:
6281 break;
6282 }
6283
6284 return x;
6285 }
6286 \f
6287 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6288
6289 static rtx
6290 simplify_if_then_else (rtx x)
6291 {
6292 machine_mode mode = GET_MODE (x);
6293 rtx cond = XEXP (x, 0);
6294 rtx true_rtx = XEXP (x, 1);
6295 rtx false_rtx = XEXP (x, 2);
6296 enum rtx_code true_code = GET_CODE (cond);
6297 int comparison_p = COMPARISON_P (cond);
6298 rtx temp;
6299 int i;
6300 enum rtx_code false_code;
6301 rtx reversed;
6302 scalar_int_mode int_mode, inner_mode;
6303
6304 /* Simplify storing of the truth value. */
6305 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6306 return simplify_gen_relational (true_code, mode, VOIDmode,
6307 XEXP (cond, 0), XEXP (cond, 1));
6308
6309 /* Also when the truth value has to be reversed. */
6310 if (comparison_p
6311 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6312 && (reversed = reversed_comparison (cond, mode)))
6313 return reversed;
6314
6315 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6316 in it is being compared against certain values. Get the true and false
6317 comparisons and see if that says anything about the value of each arm. */
6318
6319 if (comparison_p
6320 && ((false_code = reversed_comparison_code (cond, NULL))
6321 != UNKNOWN)
6322 && REG_P (XEXP (cond, 0)))
6323 {
6324 HOST_WIDE_INT nzb;
6325 rtx from = XEXP (cond, 0);
6326 rtx true_val = XEXP (cond, 1);
6327 rtx false_val = true_val;
6328 int swapped = 0;
6329
6330 /* If FALSE_CODE is EQ, swap the codes and arms. */
6331
6332 if (false_code == EQ)
6333 {
6334 swapped = 1, true_code = EQ, false_code = NE;
6335 std::swap (true_rtx, false_rtx);
6336 }
6337
6338 scalar_int_mode from_mode;
6339 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6340 {
6341 /* If we are comparing against zero and the expression being
6342 tested has only a single bit that might be nonzero, that is
6343 its value when it is not equal to zero. Similarly if it is
6344 known to be -1 or 0. */
6345 if (true_code == EQ
6346 && true_val == const0_rtx
6347 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6348 {
6349 false_code = EQ;
6350 false_val = gen_int_mode (nzb, from_mode);
6351 }
6352 else if (true_code == EQ
6353 && true_val == const0_rtx
6354 && (num_sign_bit_copies (from, from_mode)
6355 == GET_MODE_PRECISION (from_mode)))
6356 {
6357 false_code = EQ;
6358 false_val = constm1_rtx;
6359 }
6360 }
6361
6362 /* Now simplify an arm if we know the value of the register in the
6363 branch and it is used in the arm. Be careful due to the potential
6364 of locally-shared RTL. */
6365
6366 if (reg_mentioned_p (from, true_rtx))
6367 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6368 from, true_val),
6369 pc_rtx, pc_rtx, 0, 0, 0);
6370 if (reg_mentioned_p (from, false_rtx))
6371 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6372 from, false_val),
6373 pc_rtx, pc_rtx, 0, 0, 0);
6374
6375 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6376 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6377
6378 true_rtx = XEXP (x, 1);
6379 false_rtx = XEXP (x, 2);
6380 true_code = GET_CODE (cond);
6381 }
6382
6383 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6384 reversed, do so to avoid needing two sets of patterns for
6385 subtract-and-branch insns. Similarly if we have a constant in the true
6386 arm, the false arm is the same as the first operand of the comparison, or
6387 the false arm is more complicated than the true arm. */
6388
6389 if (comparison_p
6390 && reversed_comparison_code (cond, NULL) != UNKNOWN
6391 && (true_rtx == pc_rtx
6392 || (CONSTANT_P (true_rtx)
6393 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6394 || true_rtx == const0_rtx
6395 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6396 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6397 && !OBJECT_P (false_rtx))
6398 || reg_mentioned_p (true_rtx, false_rtx)
6399 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6400 {
6401 true_code = reversed_comparison_code (cond, NULL);
6402 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6403 SUBST (XEXP (x, 1), false_rtx);
6404 SUBST (XEXP (x, 2), true_rtx);
6405
6406 std::swap (true_rtx, false_rtx);
6407 cond = XEXP (x, 0);
6408
6409 /* It is possible that the conditional has been simplified out. */
6410 true_code = GET_CODE (cond);
6411 comparison_p = COMPARISON_P (cond);
6412 }
6413
6414 /* If the two arms are identical, we don't need the comparison. */
6415
6416 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6417 return true_rtx;
6418
6419 /* Convert a == b ? b : a to "a". */
6420 if (true_code == EQ && ! side_effects_p (cond)
6421 && !HONOR_NANS (mode)
6422 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6423 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6424 return false_rtx;
6425 else if (true_code == NE && ! side_effects_p (cond)
6426 && !HONOR_NANS (mode)
6427 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6428 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6429 return true_rtx;
6430
6431 /* Look for cases where we have (abs x) or (neg (abs X)). */
6432
6433 if (GET_MODE_CLASS (mode) == MODE_INT
6434 && comparison_p
6435 && XEXP (cond, 1) == const0_rtx
6436 && GET_CODE (false_rtx) == NEG
6437 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6438 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6439 && ! side_effects_p (true_rtx))
6440 switch (true_code)
6441 {
6442 case GT:
6443 case GE:
6444 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6445 case LT:
6446 case LE:
6447 return
6448 simplify_gen_unary (NEG, mode,
6449 simplify_gen_unary (ABS, mode, true_rtx, mode),
6450 mode);
6451 default:
6452 break;
6453 }
6454
6455 /* Look for MIN or MAX. */
6456
6457 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6458 && comparison_p
6459 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6460 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6461 && ! side_effects_p (cond))
6462 switch (true_code)
6463 {
6464 case GE:
6465 case GT:
6466 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6467 case LE:
6468 case LT:
6469 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6470 case GEU:
6471 case GTU:
6472 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6473 case LEU:
6474 case LTU:
6475 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6476 default:
6477 break;
6478 }
6479
6480 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6481 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6482 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6483 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6484 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6485 neither 1 or -1, but it isn't worth checking for. */
6486
6487 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6488 && comparison_p
6489 && is_int_mode (mode, &int_mode)
6490 && ! side_effects_p (x))
6491 {
6492 rtx t = make_compound_operation (true_rtx, SET);
6493 rtx f = make_compound_operation (false_rtx, SET);
6494 rtx cond_op0 = XEXP (cond, 0);
6495 rtx cond_op1 = XEXP (cond, 1);
6496 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6497 machine_mode m = int_mode;
6498 rtx z = 0, c1 = NULL_RTX;
6499
6500 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6501 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6502 || GET_CODE (t) == ASHIFT
6503 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6504 && rtx_equal_p (XEXP (t, 0), f))
6505 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6506
6507 /* If an identity-zero op is commutative, check whether there
6508 would be a match if we swapped the operands. */
6509 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6510 || GET_CODE (t) == XOR)
6511 && rtx_equal_p (XEXP (t, 1), f))
6512 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6513 else if (GET_CODE (t) == SIGN_EXTEND
6514 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6515 && (GET_CODE (XEXP (t, 0)) == PLUS
6516 || GET_CODE (XEXP (t, 0)) == MINUS
6517 || GET_CODE (XEXP (t, 0)) == IOR
6518 || GET_CODE (XEXP (t, 0)) == XOR
6519 || GET_CODE (XEXP (t, 0)) == ASHIFT
6520 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6521 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6522 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6523 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6524 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6525 && (num_sign_bit_copies (f, GET_MODE (f))
6526 > (unsigned int)
6527 (GET_MODE_PRECISION (int_mode)
6528 - GET_MODE_PRECISION (inner_mode))))
6529 {
6530 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6531 extend_op = SIGN_EXTEND;
6532 m = inner_mode;
6533 }
6534 else if (GET_CODE (t) == SIGN_EXTEND
6535 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6536 && (GET_CODE (XEXP (t, 0)) == PLUS
6537 || GET_CODE (XEXP (t, 0)) == IOR
6538 || GET_CODE (XEXP (t, 0)) == XOR)
6539 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6540 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6541 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6542 && (num_sign_bit_copies (f, GET_MODE (f))
6543 > (unsigned int)
6544 (GET_MODE_PRECISION (int_mode)
6545 - GET_MODE_PRECISION (inner_mode))))
6546 {
6547 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6548 extend_op = SIGN_EXTEND;
6549 m = inner_mode;
6550 }
6551 else if (GET_CODE (t) == ZERO_EXTEND
6552 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6553 && (GET_CODE (XEXP (t, 0)) == PLUS
6554 || GET_CODE (XEXP (t, 0)) == MINUS
6555 || GET_CODE (XEXP (t, 0)) == IOR
6556 || GET_CODE (XEXP (t, 0)) == XOR
6557 || GET_CODE (XEXP (t, 0)) == ASHIFT
6558 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6559 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6560 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6561 && HWI_COMPUTABLE_MODE_P (int_mode)
6562 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6563 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6564 && ((nonzero_bits (f, GET_MODE (f))
6565 & ~GET_MODE_MASK (inner_mode))
6566 == 0))
6567 {
6568 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6569 extend_op = ZERO_EXTEND;
6570 m = inner_mode;
6571 }
6572 else if (GET_CODE (t) == ZERO_EXTEND
6573 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6574 && (GET_CODE (XEXP (t, 0)) == PLUS
6575 || GET_CODE (XEXP (t, 0)) == IOR
6576 || GET_CODE (XEXP (t, 0)) == XOR)
6577 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6578 && HWI_COMPUTABLE_MODE_P (int_mode)
6579 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6580 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6581 && ((nonzero_bits (f, GET_MODE (f))
6582 & ~GET_MODE_MASK (inner_mode))
6583 == 0))
6584 {
6585 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6586 extend_op = ZERO_EXTEND;
6587 m = inner_mode;
6588 }
6589
6590 if (z)
6591 {
6592 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6593 cond_op0, cond_op1),
6594 pc_rtx, pc_rtx, 0, 0, 0);
6595 temp = simplify_gen_binary (MULT, m, temp,
6596 simplify_gen_binary (MULT, m, c1,
6597 const_true_rtx));
6598 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6599 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6600
6601 if (extend_op != UNKNOWN)
6602 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6603
6604 return temp;
6605 }
6606 }
6607
6608 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6609 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6610 negation of a single bit, we can convert this operation to a shift. We
6611 can actually do this more generally, but it doesn't seem worth it. */
6612
6613 if (true_code == NE
6614 && is_a <scalar_int_mode> (mode, &int_mode)
6615 && XEXP (cond, 1) == const0_rtx
6616 && false_rtx == const0_rtx
6617 && CONST_INT_P (true_rtx)
6618 && ((1 == nonzero_bits (XEXP (cond, 0), int_mode)
6619 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6620 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6621 == GET_MODE_PRECISION (int_mode))
6622 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6623 return
6624 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6625 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6626
6627 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6628 non-zero bit in A is C1. */
6629 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6630 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6631 && is_a <scalar_int_mode> (mode, &int_mode)
6632 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6633 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6634 == nonzero_bits (XEXP (cond, 0), inner_mode)
6635 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6636 {
6637 rtx val = XEXP (cond, 0);
6638 if (inner_mode == int_mode)
6639 return val;
6640 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6641 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6642 }
6643
6644 return x;
6645 }
6646 \f
6647 /* Simplify X, a SET expression. Return the new expression. */
6648
6649 static rtx
6650 simplify_set (rtx x)
6651 {
6652 rtx src = SET_SRC (x);
6653 rtx dest = SET_DEST (x);
6654 machine_mode mode
6655 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6656 rtx_insn *other_insn;
6657 rtx *cc_use;
6658 scalar_int_mode int_mode;
6659
6660 /* (set (pc) (return)) gets written as (return). */
6661 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6662 return src;
6663
6664 /* Now that we know for sure which bits of SRC we are using, see if we can
6665 simplify the expression for the object knowing that we only need the
6666 low-order bits. */
6667
6668 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6669 {
6670 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6671 SUBST (SET_SRC (x), src);
6672 }
6673
6674 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6675 the comparison result and try to simplify it unless we already have used
6676 undobuf.other_insn. */
6677 if ((GET_MODE_CLASS (mode) == MODE_CC
6678 || GET_CODE (src) == COMPARE
6679 || CC0_P (dest))
6680 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6681 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6682 && COMPARISON_P (*cc_use)
6683 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6684 {
6685 enum rtx_code old_code = GET_CODE (*cc_use);
6686 enum rtx_code new_code;
6687 rtx op0, op1, tmp;
6688 int other_changed = 0;
6689 rtx inner_compare = NULL_RTX;
6690 machine_mode compare_mode = GET_MODE (dest);
6691
6692 if (GET_CODE (src) == COMPARE)
6693 {
6694 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6695 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6696 {
6697 inner_compare = op0;
6698 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6699 }
6700 }
6701 else
6702 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6703
6704 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6705 op0, op1);
6706 if (!tmp)
6707 new_code = old_code;
6708 else if (!CONSTANT_P (tmp))
6709 {
6710 new_code = GET_CODE (tmp);
6711 op0 = XEXP (tmp, 0);
6712 op1 = XEXP (tmp, 1);
6713 }
6714 else
6715 {
6716 rtx pat = PATTERN (other_insn);
6717 undobuf.other_insn = other_insn;
6718 SUBST (*cc_use, tmp);
6719
6720 /* Attempt to simplify CC user. */
6721 if (GET_CODE (pat) == SET)
6722 {
6723 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6724 if (new_rtx != NULL_RTX)
6725 SUBST (SET_SRC (pat), new_rtx);
6726 }
6727
6728 /* Convert X into a no-op move. */
6729 SUBST (SET_DEST (x), pc_rtx);
6730 SUBST (SET_SRC (x), pc_rtx);
6731 return x;
6732 }
6733
6734 /* Simplify our comparison, if possible. */
6735 new_code = simplify_comparison (new_code, &op0, &op1);
6736
6737 #ifdef SELECT_CC_MODE
6738 /* If this machine has CC modes other than CCmode, check to see if we
6739 need to use a different CC mode here. */
6740 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6741 compare_mode = GET_MODE (op0);
6742 else if (inner_compare
6743 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6744 && new_code == old_code
6745 && op0 == XEXP (inner_compare, 0)
6746 && op1 == XEXP (inner_compare, 1))
6747 compare_mode = GET_MODE (inner_compare);
6748 else
6749 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6750
6751 /* If the mode changed, we have to change SET_DEST, the mode in the
6752 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6753 a hard register, just build new versions with the proper mode. If it
6754 is a pseudo, we lose unless it is only time we set the pseudo, in
6755 which case we can safely change its mode. */
6756 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6757 {
6758 if (can_change_dest_mode (dest, 0, compare_mode))
6759 {
6760 unsigned int regno = REGNO (dest);
6761 rtx new_dest;
6762
6763 if (regno < FIRST_PSEUDO_REGISTER)
6764 new_dest = gen_rtx_REG (compare_mode, regno);
6765 else
6766 {
6767 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6768 new_dest = regno_reg_rtx[regno];
6769 }
6770
6771 SUBST (SET_DEST (x), new_dest);
6772 SUBST (XEXP (*cc_use, 0), new_dest);
6773 other_changed = 1;
6774
6775 dest = new_dest;
6776 }
6777 }
6778 #endif /* SELECT_CC_MODE */
6779
6780 /* If the code changed, we have to build a new comparison in
6781 undobuf.other_insn. */
6782 if (new_code != old_code)
6783 {
6784 int other_changed_previously = other_changed;
6785 unsigned HOST_WIDE_INT mask;
6786 rtx old_cc_use = *cc_use;
6787
6788 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6789 dest, const0_rtx));
6790 other_changed = 1;
6791
6792 /* If the only change we made was to change an EQ into an NE or
6793 vice versa, OP0 has only one bit that might be nonzero, and OP1
6794 is zero, check if changing the user of the condition code will
6795 produce a valid insn. If it won't, we can keep the original code
6796 in that insn by surrounding our operation with an XOR. */
6797
6798 if (((old_code == NE && new_code == EQ)
6799 || (old_code == EQ && new_code == NE))
6800 && ! other_changed_previously && op1 == const0_rtx
6801 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6802 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6803 {
6804 rtx pat = PATTERN (other_insn), note = 0;
6805
6806 if ((recog_for_combine (&pat, other_insn, &note) < 0
6807 && ! check_asm_operands (pat)))
6808 {
6809 *cc_use = old_cc_use;
6810 other_changed = 0;
6811
6812 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6813 gen_int_mode (mask,
6814 GET_MODE (op0)));
6815 }
6816 }
6817 }
6818
6819 if (other_changed)
6820 undobuf.other_insn = other_insn;
6821
6822 /* Don't generate a compare of a CC with 0, just use that CC. */
6823 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6824 {
6825 SUBST (SET_SRC (x), op0);
6826 src = SET_SRC (x);
6827 }
6828 /* Otherwise, if we didn't previously have the same COMPARE we
6829 want, create it from scratch. */
6830 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6831 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6832 {
6833 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6834 src = SET_SRC (x);
6835 }
6836 }
6837 else
6838 {
6839 /* Get SET_SRC in a form where we have placed back any
6840 compound expressions. Then do the checks below. */
6841 src = make_compound_operation (src, SET);
6842 SUBST (SET_SRC (x), src);
6843 }
6844
6845 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6846 and X being a REG or (subreg (reg)), we may be able to convert this to
6847 (set (subreg:m2 x) (op)).
6848
6849 We can always do this if M1 is narrower than M2 because that means that
6850 we only care about the low bits of the result.
6851
6852 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6853 perform a narrower operation than requested since the high-order bits will
6854 be undefined. On machine where it is defined, this transformation is safe
6855 as long as M1 and M2 have the same number of words. */
6856
6857 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6858 && !OBJECT_P (SUBREG_REG (src))
6859 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6860 / UNITS_PER_WORD)
6861 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6862 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6863 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6864 #ifdef CANNOT_CHANGE_MODE_CLASS
6865 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6866 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6867 GET_MODE (SUBREG_REG (src)),
6868 GET_MODE (src)))
6869 #endif
6870 && (REG_P (dest)
6871 || (GET_CODE (dest) == SUBREG
6872 && REG_P (SUBREG_REG (dest)))))
6873 {
6874 SUBST (SET_DEST (x),
6875 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6876 dest));
6877 SUBST (SET_SRC (x), SUBREG_REG (src));
6878
6879 src = SET_SRC (x), dest = SET_DEST (x);
6880 }
6881
6882 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6883 in SRC. */
6884 if (dest == cc0_rtx
6885 && GET_CODE (src) == SUBREG
6886 && subreg_lowpart_p (src)
6887 && (GET_MODE_PRECISION (GET_MODE (src))
6888 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6889 {
6890 rtx inner = SUBREG_REG (src);
6891 machine_mode inner_mode = GET_MODE (inner);
6892
6893 /* Here we make sure that we don't have a sign bit on. */
6894 if (val_signbit_known_clear_p (GET_MODE (src),
6895 nonzero_bits (inner, inner_mode)))
6896 {
6897 SUBST (SET_SRC (x), inner);
6898 src = SET_SRC (x);
6899 }
6900 }
6901
6902 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6903 would require a paradoxical subreg. Replace the subreg with a
6904 zero_extend to avoid the reload that would otherwise be required. */
6905
6906 enum rtx_code extend_op;
6907 if (paradoxical_subreg_p (src)
6908 && MEM_P (SUBREG_REG (src))
6909 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6910 {
6911 SUBST (SET_SRC (x),
6912 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6913
6914 src = SET_SRC (x);
6915 }
6916
6917 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6918 are comparing an item known to be 0 or -1 against 0, use a logical
6919 operation instead. Check for one of the arms being an IOR of the other
6920 arm with some value. We compute three terms to be IOR'ed together. In
6921 practice, at most two will be nonzero. Then we do the IOR's. */
6922
6923 if (GET_CODE (dest) != PC
6924 && GET_CODE (src) == IF_THEN_ELSE
6925 && is_int_mode (GET_MODE (src), &int_mode)
6926 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6927 && XEXP (XEXP (src, 0), 1) == const0_rtx
6928 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
6929 && (!HAVE_conditional_move
6930 || ! can_conditionally_move_p (int_mode))
6931 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
6932 == GET_MODE_PRECISION (int_mode))
6933 && ! side_effects_p (src))
6934 {
6935 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6936 ? XEXP (src, 1) : XEXP (src, 2));
6937 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6938 ? XEXP (src, 2) : XEXP (src, 1));
6939 rtx term1 = const0_rtx, term2, term3;
6940
6941 if (GET_CODE (true_rtx) == IOR
6942 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6943 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6944 else if (GET_CODE (true_rtx) == IOR
6945 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6946 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6947 else if (GET_CODE (false_rtx) == IOR
6948 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6949 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6950 else if (GET_CODE (false_rtx) == IOR
6951 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6952 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6953
6954 term2 = simplify_gen_binary (AND, int_mode,
6955 XEXP (XEXP (src, 0), 0), true_rtx);
6956 term3 = simplify_gen_binary (AND, int_mode,
6957 simplify_gen_unary (NOT, int_mode,
6958 XEXP (XEXP (src, 0), 0),
6959 int_mode),
6960 false_rtx);
6961
6962 SUBST (SET_SRC (x),
6963 simplify_gen_binary (IOR, int_mode,
6964 simplify_gen_binary (IOR, int_mode,
6965 term1, term2),
6966 term3));
6967
6968 src = SET_SRC (x);
6969 }
6970
6971 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6972 whole thing fail. */
6973 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6974 return src;
6975 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6976 return dest;
6977 else
6978 /* Convert this into a field assignment operation, if possible. */
6979 return make_field_assignment (x);
6980 }
6981 \f
6982 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6983 result. */
6984
6985 static rtx
6986 simplify_logical (rtx x)
6987 {
6988 rtx op0 = XEXP (x, 0);
6989 rtx op1 = XEXP (x, 1);
6990 scalar_int_mode mode;
6991
6992 switch (GET_CODE (x))
6993 {
6994 case AND:
6995 /* We can call simplify_and_const_int only if we don't lose
6996 any (sign) bits when converting INTVAL (op1) to
6997 "unsigned HOST_WIDE_INT". */
6998 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
6999 && CONST_INT_P (op1)
7000 && (HWI_COMPUTABLE_MODE_P (mode)
7001 || INTVAL (op1) > 0))
7002 {
7003 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7004 if (GET_CODE (x) != AND)
7005 return x;
7006
7007 op0 = XEXP (x, 0);
7008 op1 = XEXP (x, 1);
7009 }
7010
7011 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7012 apply the distributive law and then the inverse distributive
7013 law to see if things simplify. */
7014 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7015 {
7016 rtx result = distribute_and_simplify_rtx (x, 0);
7017 if (result)
7018 return result;
7019 }
7020 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7021 {
7022 rtx result = distribute_and_simplify_rtx (x, 1);
7023 if (result)
7024 return result;
7025 }
7026 break;
7027
7028 case IOR:
7029 /* If we have (ior (and A B) C), apply the distributive law and then
7030 the inverse distributive law to see if things simplify. */
7031
7032 if (GET_CODE (op0) == AND)
7033 {
7034 rtx result = distribute_and_simplify_rtx (x, 0);
7035 if (result)
7036 return result;
7037 }
7038
7039 if (GET_CODE (op1) == AND)
7040 {
7041 rtx result = distribute_and_simplify_rtx (x, 1);
7042 if (result)
7043 return result;
7044 }
7045 break;
7046
7047 default:
7048 gcc_unreachable ();
7049 }
7050
7051 return x;
7052 }
7053 \f
7054 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7055 operations" because they can be replaced with two more basic operations.
7056 ZERO_EXTEND is also considered "compound" because it can be replaced with
7057 an AND operation, which is simpler, though only one operation.
7058
7059 The function expand_compound_operation is called with an rtx expression
7060 and will convert it to the appropriate shifts and AND operations,
7061 simplifying at each stage.
7062
7063 The function make_compound_operation is called to convert an expression
7064 consisting of shifts and ANDs into the equivalent compound expression.
7065 It is the inverse of this function, loosely speaking. */
7066
7067 static rtx
7068 expand_compound_operation (rtx x)
7069 {
7070 unsigned HOST_WIDE_INT pos = 0, len;
7071 int unsignedp = 0;
7072 unsigned int modewidth;
7073 rtx tem;
7074 scalar_int_mode inner_mode;
7075
7076 switch (GET_CODE (x))
7077 {
7078 case ZERO_EXTEND:
7079 unsignedp = 1;
7080 /* FALLTHRU */
7081 case SIGN_EXTEND:
7082 /* We can't necessarily use a const_int for a multiword mode;
7083 it depends on implicitly extending the value.
7084 Since we don't know the right way to extend it,
7085 we can't tell whether the implicit way is right.
7086
7087 Even for a mode that is no wider than a const_int,
7088 we can't win, because we need to sign extend one of its bits through
7089 the rest of it, and we don't know which bit. */
7090 if (CONST_INT_P (XEXP (x, 0)))
7091 return x;
7092
7093 /* Reject modes that aren't scalar integers because turning vector
7094 or complex modes into shifts causes problems. */
7095 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7096 return x;
7097
7098 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7099 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7100 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7101 reloaded. If not for that, MEM's would very rarely be safe.
7102
7103 Reject modes bigger than a word, because we might not be able
7104 to reference a two-register group starting with an arbitrary register
7105 (and currently gen_lowpart might crash for a SUBREG). */
7106
7107 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7108 return x;
7109
7110 len = GET_MODE_PRECISION (inner_mode);
7111 /* If the inner object has VOIDmode (the only way this can happen
7112 is if it is an ASM_OPERANDS), we can't do anything since we don't
7113 know how much masking to do. */
7114 if (len == 0)
7115 return x;
7116
7117 break;
7118
7119 case ZERO_EXTRACT:
7120 unsignedp = 1;
7121
7122 /* fall through */
7123
7124 case SIGN_EXTRACT:
7125 /* If the operand is a CLOBBER, just return it. */
7126 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7127 return XEXP (x, 0);
7128
7129 if (!CONST_INT_P (XEXP (x, 1))
7130 || !CONST_INT_P (XEXP (x, 2)))
7131 return x;
7132
7133 /* Reject modes that aren't scalar integers because turning vector
7134 or complex modes into shifts causes problems. */
7135 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7136 return x;
7137
7138 len = INTVAL (XEXP (x, 1));
7139 pos = INTVAL (XEXP (x, 2));
7140
7141 /* This should stay within the object being extracted, fail otherwise. */
7142 if (len + pos > GET_MODE_PRECISION (inner_mode))
7143 return x;
7144
7145 if (BITS_BIG_ENDIAN)
7146 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7147
7148 break;
7149
7150 default:
7151 return x;
7152 }
7153
7154 /* We've rejected non-scalar operations by now. */
7155 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7156
7157 /* Convert sign extension to zero extension, if we know that the high
7158 bit is not set, as this is easier to optimize. It will be converted
7159 back to cheaper alternative in make_extraction. */
7160 if (GET_CODE (x) == SIGN_EXTEND
7161 && HWI_COMPUTABLE_MODE_P (mode)
7162 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7163 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7164 == 0))
7165 {
7166 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7167 rtx temp2 = expand_compound_operation (temp);
7168
7169 /* Make sure this is a profitable operation. */
7170 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7171 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7172 return temp2;
7173 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7174 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7175 return temp;
7176 else
7177 return x;
7178 }
7179
7180 /* We can optimize some special cases of ZERO_EXTEND. */
7181 if (GET_CODE (x) == ZERO_EXTEND)
7182 {
7183 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7184 know that the last value didn't have any inappropriate bits
7185 set. */
7186 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7187 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7188 && HWI_COMPUTABLE_MODE_P (mode)
7189 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7190 & ~GET_MODE_MASK (inner_mode)) == 0)
7191 return XEXP (XEXP (x, 0), 0);
7192
7193 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7194 if (GET_CODE (XEXP (x, 0)) == SUBREG
7195 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7196 && subreg_lowpart_p (XEXP (x, 0))
7197 && HWI_COMPUTABLE_MODE_P (mode)
7198 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7199 & ~GET_MODE_MASK (inner_mode)) == 0)
7200 return SUBREG_REG (XEXP (x, 0));
7201
7202 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7203 is a comparison and STORE_FLAG_VALUE permits. This is like
7204 the first case, but it works even when MODE is larger
7205 than HOST_WIDE_INT. */
7206 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7207 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7208 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7209 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7210 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7211 return XEXP (XEXP (x, 0), 0);
7212
7213 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7214 if (GET_CODE (XEXP (x, 0)) == SUBREG
7215 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7216 && subreg_lowpart_p (XEXP (x, 0))
7217 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7218 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7219 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7220 return SUBREG_REG (XEXP (x, 0));
7221
7222 }
7223
7224 /* If we reach here, we want to return a pair of shifts. The inner
7225 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7226 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7227 logical depending on the value of UNSIGNEDP.
7228
7229 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7230 converted into an AND of a shift.
7231
7232 We must check for the case where the left shift would have a negative
7233 count. This can happen in a case like (x >> 31) & 255 on machines
7234 that can't shift by a constant. On those machines, we would first
7235 combine the shift with the AND to produce a variable-position
7236 extraction. Then the constant of 31 would be substituted in
7237 to produce such a position. */
7238
7239 modewidth = GET_MODE_PRECISION (mode);
7240 if (modewidth >= pos + len)
7241 {
7242 tem = gen_lowpart (mode, XEXP (x, 0));
7243 if (!tem || GET_CODE (tem) == CLOBBER)
7244 return x;
7245 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7246 tem, modewidth - pos - len);
7247 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7248 mode, tem, modewidth - len);
7249 }
7250 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7251 tem = simplify_and_const_int (NULL_RTX, mode,
7252 simplify_shift_const (NULL_RTX, LSHIFTRT,
7253 mode, XEXP (x, 0),
7254 pos),
7255 (HOST_WIDE_INT_1U << len) - 1);
7256 else
7257 /* Any other cases we can't handle. */
7258 return x;
7259
7260 /* If we couldn't do this for some reason, return the original
7261 expression. */
7262 if (GET_CODE (tem) == CLOBBER)
7263 return x;
7264
7265 return tem;
7266 }
7267 \f
7268 /* X is a SET which contains an assignment of one object into
7269 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7270 or certain SUBREGS). If possible, convert it into a series of
7271 logical operations.
7272
7273 We half-heartedly support variable positions, but do not at all
7274 support variable lengths. */
7275
7276 static const_rtx
7277 expand_field_assignment (const_rtx x)
7278 {
7279 rtx inner;
7280 rtx pos; /* Always counts from low bit. */
7281 int len;
7282 rtx mask, cleared, masked;
7283 scalar_int_mode compute_mode;
7284
7285 /* Loop until we find something we can't simplify. */
7286 while (1)
7287 {
7288 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7289 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7290 {
7291 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7292 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7293 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7294 }
7295 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7296 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7297 {
7298 inner = XEXP (SET_DEST (x), 0);
7299 len = INTVAL (XEXP (SET_DEST (x), 1));
7300 pos = XEXP (SET_DEST (x), 2);
7301
7302 /* A constant position should stay within the width of INNER. */
7303 if (CONST_INT_P (pos)
7304 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7305 break;
7306
7307 if (BITS_BIG_ENDIAN)
7308 {
7309 if (CONST_INT_P (pos))
7310 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7311 - INTVAL (pos));
7312 else if (GET_CODE (pos) == MINUS
7313 && CONST_INT_P (XEXP (pos, 1))
7314 && (INTVAL (XEXP (pos, 1))
7315 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7316 /* If position is ADJUST - X, new position is X. */
7317 pos = XEXP (pos, 0);
7318 else
7319 {
7320 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7321 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7322 gen_int_mode (prec - len,
7323 GET_MODE (pos)),
7324 pos);
7325 }
7326 }
7327 }
7328
7329 /* A SUBREG between two modes that occupy the same numbers of words
7330 can be done by moving the SUBREG to the source. */
7331 else if (GET_CODE (SET_DEST (x)) == SUBREG
7332 /* We need SUBREGs to compute nonzero_bits properly. */
7333 && nonzero_sign_valid
7334 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7335 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7336 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7337 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7338 {
7339 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7340 gen_lowpart
7341 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7342 SET_SRC (x)));
7343 continue;
7344 }
7345 else
7346 break;
7347
7348 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7349 inner = SUBREG_REG (inner);
7350
7351 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7352 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7353 {
7354 /* Don't do anything for vector or complex integral types. */
7355 if (! FLOAT_MODE_P (GET_MODE (inner)))
7356 break;
7357
7358 /* Try to find an integral mode to pun with. */
7359 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7360 .exists (&compute_mode))
7361 break;
7362
7363 inner = gen_lowpart (compute_mode, inner);
7364 }
7365
7366 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7367 if (len >= HOST_BITS_PER_WIDE_INT)
7368 break;
7369
7370 /* Don't try to compute in too wide unsupported modes. */
7371 if (!targetm.scalar_mode_supported_p (compute_mode))
7372 break;
7373
7374 /* Now compute the equivalent expression. Make a copy of INNER
7375 for the SET_DEST in case it is a MEM into which we will substitute;
7376 we don't want shared RTL in that case. */
7377 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7378 compute_mode);
7379 cleared = simplify_gen_binary (AND, compute_mode,
7380 simplify_gen_unary (NOT, compute_mode,
7381 simplify_gen_binary (ASHIFT,
7382 compute_mode,
7383 mask, pos),
7384 compute_mode),
7385 inner);
7386 masked = simplify_gen_binary (ASHIFT, compute_mode,
7387 simplify_gen_binary (
7388 AND, compute_mode,
7389 gen_lowpart (compute_mode, SET_SRC (x)),
7390 mask),
7391 pos);
7392
7393 x = gen_rtx_SET (copy_rtx (inner),
7394 simplify_gen_binary (IOR, compute_mode,
7395 cleared, masked));
7396 }
7397
7398 return x;
7399 }
7400 \f
7401 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7402 it is an RTX that represents the (variable) starting position; otherwise,
7403 POS is the (constant) starting bit position. Both are counted from the LSB.
7404
7405 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7406
7407 IN_DEST is nonzero if this is a reference in the destination of a SET.
7408 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7409 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7410 be used.
7411
7412 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7413 ZERO_EXTRACT should be built even for bits starting at bit 0.
7414
7415 MODE is the desired mode of the result (if IN_DEST == 0).
7416
7417 The result is an RTX for the extraction or NULL_RTX if the target
7418 can't handle it. */
7419
7420 static rtx
7421 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7422 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7423 int in_dest, int in_compare)
7424 {
7425 /* This mode describes the size of the storage area
7426 to fetch the overall value from. Within that, we
7427 ignore the POS lowest bits, etc. */
7428 machine_mode is_mode = GET_MODE (inner);
7429 machine_mode inner_mode;
7430 machine_mode wanted_inner_mode;
7431 machine_mode wanted_inner_reg_mode = word_mode;
7432 machine_mode pos_mode = word_mode;
7433 machine_mode extraction_mode = word_mode;
7434 rtx new_rtx = 0;
7435 rtx orig_pos_rtx = pos_rtx;
7436 HOST_WIDE_INT orig_pos;
7437
7438 if (pos_rtx && CONST_INT_P (pos_rtx))
7439 pos = INTVAL (pos_rtx), pos_rtx = 0;
7440
7441 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7442 {
7443 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7444 consider just the QI as the memory to extract from.
7445 The subreg adds or removes high bits; its mode is
7446 irrelevant to the meaning of this extraction,
7447 since POS and LEN count from the lsb. */
7448 if (MEM_P (SUBREG_REG (inner)))
7449 is_mode = GET_MODE (SUBREG_REG (inner));
7450 inner = SUBREG_REG (inner);
7451 }
7452 else if (GET_CODE (inner) == ASHIFT
7453 && CONST_INT_P (XEXP (inner, 1))
7454 && pos_rtx == 0 && pos == 0
7455 && len > UINTVAL (XEXP (inner, 1)))
7456 {
7457 /* We're extracting the least significant bits of an rtx
7458 (ashift X (const_int C)), where LEN > C. Extract the
7459 least significant (LEN - C) bits of X, giving an rtx
7460 whose mode is MODE, then shift it left C times. */
7461 new_rtx = make_extraction (mode, XEXP (inner, 0),
7462 0, 0, len - INTVAL (XEXP (inner, 1)),
7463 unsignedp, in_dest, in_compare);
7464 if (new_rtx != 0)
7465 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7466 }
7467 else if (GET_CODE (inner) == TRUNCATE)
7468 inner = XEXP (inner, 0);
7469
7470 inner_mode = GET_MODE (inner);
7471
7472 /* See if this can be done without an extraction. We never can if the
7473 width of the field is not the same as that of some integer mode. For
7474 registers, we can only avoid the extraction if the position is at the
7475 low-order bit and this is either not in the destination or we have the
7476 appropriate STRICT_LOW_PART operation available.
7477
7478 For MEM, we can avoid an extract if the field starts on an appropriate
7479 boundary and we can change the mode of the memory reference. */
7480
7481 scalar_int_mode tmode;
7482 if (int_mode_for_size (len, 1).exists (&tmode)
7483 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7484 && !MEM_P (inner)
7485 && (pos == 0 || REG_P (inner))
7486 && (inner_mode == tmode
7487 || !REG_P (inner)
7488 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7489 || reg_truncated_to_mode (tmode, inner))
7490 && (! in_dest
7491 || (REG_P (inner)
7492 && have_insn_for (STRICT_LOW_PART, tmode))))
7493 || (MEM_P (inner) && pos_rtx == 0
7494 && (pos
7495 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7496 : BITS_PER_UNIT)) == 0
7497 /* We can't do this if we are widening INNER_MODE (it
7498 may not be aligned, for one thing). */
7499 && !paradoxical_subreg_p (tmode, inner_mode)
7500 && (inner_mode == tmode
7501 || (! mode_dependent_address_p (XEXP (inner, 0),
7502 MEM_ADDR_SPACE (inner))
7503 && ! MEM_VOLATILE_P (inner))))))
7504 {
7505 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7506 field. If the original and current mode are the same, we need not
7507 adjust the offset. Otherwise, we do if bytes big endian.
7508
7509 If INNER is not a MEM, get a piece consisting of just the field
7510 of interest (in this case POS % BITS_PER_WORD must be 0). */
7511
7512 if (MEM_P (inner))
7513 {
7514 HOST_WIDE_INT offset;
7515
7516 /* POS counts from lsb, but make OFFSET count in memory order. */
7517 if (BYTES_BIG_ENDIAN)
7518 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7519 else
7520 offset = pos / BITS_PER_UNIT;
7521
7522 new_rtx = adjust_address_nv (inner, tmode, offset);
7523 }
7524 else if (REG_P (inner))
7525 {
7526 if (tmode != inner_mode)
7527 {
7528 /* We can't call gen_lowpart in a DEST since we
7529 always want a SUBREG (see below) and it would sometimes
7530 return a new hard register. */
7531 if (pos || in_dest)
7532 {
7533 unsigned int offset
7534 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7535
7536 /* Avoid creating invalid subregs, for example when
7537 simplifying (x>>32)&255. */
7538 if (!validate_subreg (tmode, inner_mode, inner, offset))
7539 return NULL_RTX;
7540
7541 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7542 }
7543 else
7544 new_rtx = gen_lowpart (tmode, inner);
7545 }
7546 else
7547 new_rtx = inner;
7548 }
7549 else
7550 new_rtx = force_to_mode (inner, tmode,
7551 len >= HOST_BITS_PER_WIDE_INT
7552 ? HOST_WIDE_INT_M1U
7553 : (HOST_WIDE_INT_1U << len) - 1, 0);
7554
7555 /* If this extraction is going into the destination of a SET,
7556 make a STRICT_LOW_PART unless we made a MEM. */
7557
7558 if (in_dest)
7559 return (MEM_P (new_rtx) ? new_rtx
7560 : (GET_CODE (new_rtx) != SUBREG
7561 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7562 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7563
7564 if (mode == tmode)
7565 return new_rtx;
7566
7567 if (CONST_SCALAR_INT_P (new_rtx))
7568 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7569 mode, new_rtx, tmode);
7570
7571 /* If we know that no extraneous bits are set, and that the high
7572 bit is not set, convert the extraction to the cheaper of
7573 sign and zero extension, that are equivalent in these cases. */
7574 if (flag_expensive_optimizations
7575 && (HWI_COMPUTABLE_MODE_P (tmode)
7576 && ((nonzero_bits (new_rtx, tmode)
7577 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7578 == 0)))
7579 {
7580 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7581 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7582
7583 /* Prefer ZERO_EXTENSION, since it gives more information to
7584 backends. */
7585 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7586 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7587 return temp;
7588 return temp1;
7589 }
7590
7591 /* Otherwise, sign- or zero-extend unless we already are in the
7592 proper mode. */
7593
7594 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7595 mode, new_rtx));
7596 }
7597
7598 /* Unless this is a COMPARE or we have a funny memory reference,
7599 don't do anything with zero-extending field extracts starting at
7600 the low-order bit since they are simple AND operations. */
7601 if (pos_rtx == 0 && pos == 0 && ! in_dest
7602 && ! in_compare && unsignedp)
7603 return 0;
7604
7605 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7606 if the position is not a constant and the length is not 1. In all
7607 other cases, we would only be going outside our object in cases when
7608 an original shift would have been undefined. */
7609 if (MEM_P (inner)
7610 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7611 || (pos_rtx != 0 && len != 1)))
7612 return 0;
7613
7614 enum extraction_pattern pattern = (in_dest ? EP_insv
7615 : unsignedp ? EP_extzv : EP_extv);
7616
7617 /* If INNER is not from memory, we want it to have the mode of a register
7618 extraction pattern's structure operand, or word_mode if there is no
7619 such pattern. The same applies to extraction_mode and pos_mode
7620 and their respective operands.
7621
7622 For memory, assume that the desired extraction_mode and pos_mode
7623 are the same as for a register operation, since at present we don't
7624 have named patterns for aligned memory structures. */
7625 struct extraction_insn insn;
7626 if (get_best_reg_extraction_insn (&insn, pattern,
7627 GET_MODE_BITSIZE (inner_mode), mode))
7628 {
7629 wanted_inner_reg_mode = insn.struct_mode.require ();
7630 pos_mode = insn.pos_mode;
7631 extraction_mode = insn.field_mode;
7632 }
7633
7634 /* Never narrow an object, since that might not be safe. */
7635
7636 if (mode != VOIDmode
7637 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7638 extraction_mode = mode;
7639
7640 if (!MEM_P (inner))
7641 wanted_inner_mode = wanted_inner_reg_mode;
7642 else
7643 {
7644 /* Be careful not to go beyond the extracted object and maintain the
7645 natural alignment of the memory. */
7646 wanted_inner_mode = smallest_int_mode_for_size (len);
7647 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7648 > GET_MODE_BITSIZE (wanted_inner_mode))
7649 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7650 }
7651
7652 orig_pos = pos;
7653
7654 if (BITS_BIG_ENDIAN)
7655 {
7656 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7657 BITS_BIG_ENDIAN style. If position is constant, compute new
7658 position. Otherwise, build subtraction.
7659 Note that POS is relative to the mode of the original argument.
7660 If it's a MEM we need to recompute POS relative to that.
7661 However, if we're extracting from (or inserting into) a register,
7662 we want to recompute POS relative to wanted_inner_mode. */
7663 int width = (MEM_P (inner)
7664 ? GET_MODE_BITSIZE (is_mode)
7665 : GET_MODE_BITSIZE (wanted_inner_mode));
7666
7667 if (pos_rtx == 0)
7668 pos = width - len - pos;
7669 else
7670 pos_rtx
7671 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7672 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7673 pos_rtx);
7674 /* POS may be less than 0 now, but we check for that below.
7675 Note that it can only be less than 0 if !MEM_P (inner). */
7676 }
7677
7678 /* If INNER has a wider mode, and this is a constant extraction, try to
7679 make it smaller and adjust the byte to point to the byte containing
7680 the value. */
7681 if (wanted_inner_mode != VOIDmode
7682 && inner_mode != wanted_inner_mode
7683 && ! pos_rtx
7684 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7685 && MEM_P (inner)
7686 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7687 && ! MEM_VOLATILE_P (inner))
7688 {
7689 int offset = 0;
7690
7691 /* The computations below will be correct if the machine is big
7692 endian in both bits and bytes or little endian in bits and bytes.
7693 If it is mixed, we must adjust. */
7694
7695 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7696 adjust OFFSET to compensate. */
7697 if (BYTES_BIG_ENDIAN
7698 && paradoxical_subreg_p (is_mode, inner_mode))
7699 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7700
7701 /* We can now move to the desired byte. */
7702 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7703 * GET_MODE_SIZE (wanted_inner_mode);
7704 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7705
7706 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7707 && is_mode != wanted_inner_mode)
7708 offset = (GET_MODE_SIZE (is_mode)
7709 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7710
7711 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7712 }
7713
7714 /* If INNER is not memory, get it into the proper mode. If we are changing
7715 its mode, POS must be a constant and smaller than the size of the new
7716 mode. */
7717 else if (!MEM_P (inner))
7718 {
7719 /* On the LHS, don't create paradoxical subregs implicitely truncating
7720 the register unless TRULY_NOOP_TRUNCATION. */
7721 if (in_dest
7722 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7723 wanted_inner_mode))
7724 return NULL_RTX;
7725
7726 if (GET_MODE (inner) != wanted_inner_mode
7727 && (pos_rtx != 0
7728 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7729 return NULL_RTX;
7730
7731 if (orig_pos < 0)
7732 return NULL_RTX;
7733
7734 inner = force_to_mode (inner, wanted_inner_mode,
7735 pos_rtx
7736 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7737 ? HOST_WIDE_INT_M1U
7738 : (((HOST_WIDE_INT_1U << len) - 1)
7739 << orig_pos),
7740 0);
7741 }
7742
7743 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7744 have to zero extend. Otherwise, we can just use a SUBREG.
7745
7746 We dealt with constant rtxes earlier, so pos_rtx cannot
7747 have VOIDmode at this point. */
7748 if (pos_rtx != 0
7749 && (GET_MODE_SIZE (pos_mode)
7750 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7751 {
7752 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7753 GET_MODE (pos_rtx));
7754
7755 /* If we know that no extraneous bits are set, and that the high
7756 bit is not set, convert extraction to cheaper one - either
7757 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7758 cases. */
7759 if (flag_expensive_optimizations
7760 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7761 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7762 & ~(((unsigned HOST_WIDE_INT)
7763 GET_MODE_MASK (GET_MODE (pos_rtx)))
7764 >> 1))
7765 == 0)))
7766 {
7767 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7768 GET_MODE (pos_rtx));
7769
7770 /* Prefer ZERO_EXTENSION, since it gives more information to
7771 backends. */
7772 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7773 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7774 temp = temp1;
7775 }
7776 pos_rtx = temp;
7777 }
7778
7779 /* Make POS_RTX unless we already have it and it is correct. If we don't
7780 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7781 be a CONST_INT. */
7782 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7783 pos_rtx = orig_pos_rtx;
7784
7785 else if (pos_rtx == 0)
7786 pos_rtx = GEN_INT (pos);
7787
7788 /* Make the required operation. See if we can use existing rtx. */
7789 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7790 extraction_mode, inner, GEN_INT (len), pos_rtx);
7791 if (! in_dest)
7792 new_rtx = gen_lowpart (mode, new_rtx);
7793
7794 return new_rtx;
7795 }
7796 \f
7797 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7798 can be commuted with any other operations in X. Return X without
7799 that shift if so. */
7800
7801 static rtx
7802 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7803 {
7804 enum rtx_code code = GET_CODE (x);
7805 rtx tem;
7806
7807 switch (code)
7808 {
7809 case ASHIFT:
7810 /* This is the shift itself. If it is wide enough, we will return
7811 either the value being shifted if the shift count is equal to
7812 COUNT or a shift for the difference. */
7813 if (CONST_INT_P (XEXP (x, 1))
7814 && INTVAL (XEXP (x, 1)) >= count)
7815 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7816 INTVAL (XEXP (x, 1)) - count);
7817 break;
7818
7819 case NEG: case NOT:
7820 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7821 return simplify_gen_unary (code, mode, tem, mode);
7822
7823 break;
7824
7825 case PLUS: case IOR: case XOR: case AND:
7826 /* If we can safely shift this constant and we find the inner shift,
7827 make a new operation. */
7828 if (CONST_INT_P (XEXP (x, 1))
7829 && (UINTVAL (XEXP (x, 1))
7830 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7831 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7832 {
7833 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7834 return simplify_gen_binary (code, mode, tem,
7835 gen_int_mode (val, mode));
7836 }
7837 break;
7838
7839 default:
7840 break;
7841 }
7842
7843 return 0;
7844 }
7845 \f
7846 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7847 level of the expression and MODE is its mode. IN_CODE is as for
7848 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7849 that should be used when recursing on operands of *X_PTR.
7850
7851 There are two possible actions:
7852
7853 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7854 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7855
7856 - Return a new rtx, which the caller returns directly. */
7857
7858 static rtx
7859 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
7860 enum rtx_code in_code,
7861 enum rtx_code *next_code_ptr)
7862 {
7863 rtx x = *x_ptr;
7864 enum rtx_code next_code = *next_code_ptr;
7865 enum rtx_code code = GET_CODE (x);
7866 int mode_width = GET_MODE_PRECISION (mode);
7867 rtx rhs, lhs;
7868 rtx new_rtx = 0;
7869 int i;
7870 rtx tem;
7871 scalar_int_mode inner_mode;
7872 bool equality_comparison = false;
7873
7874 if (in_code == EQ)
7875 {
7876 equality_comparison = true;
7877 in_code = COMPARE;
7878 }
7879
7880 /* Process depending on the code of this operation. If NEW is set
7881 nonzero, it will be returned. */
7882
7883 switch (code)
7884 {
7885 case ASHIFT:
7886 /* Convert shifts by constants into multiplications if inside
7887 an address. */
7888 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7889 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7890 && INTVAL (XEXP (x, 1)) >= 0)
7891 {
7892 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7893 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7894
7895 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7896 if (GET_CODE (new_rtx) == NEG)
7897 {
7898 new_rtx = XEXP (new_rtx, 0);
7899 multval = -multval;
7900 }
7901 multval = trunc_int_for_mode (multval, mode);
7902 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7903 }
7904 break;
7905
7906 case PLUS:
7907 lhs = XEXP (x, 0);
7908 rhs = XEXP (x, 1);
7909 lhs = make_compound_operation (lhs, next_code);
7910 rhs = make_compound_operation (rhs, next_code);
7911 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7912 {
7913 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7914 XEXP (lhs, 1));
7915 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7916 }
7917 else if (GET_CODE (lhs) == MULT
7918 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7919 {
7920 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7921 simplify_gen_unary (NEG, mode,
7922 XEXP (lhs, 1),
7923 mode));
7924 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7925 }
7926 else
7927 {
7928 SUBST (XEXP (x, 0), lhs);
7929 SUBST (XEXP (x, 1), rhs);
7930 }
7931 maybe_swap_commutative_operands (x);
7932 return x;
7933
7934 case MINUS:
7935 lhs = XEXP (x, 0);
7936 rhs = XEXP (x, 1);
7937 lhs = make_compound_operation (lhs, next_code);
7938 rhs = make_compound_operation (rhs, next_code);
7939 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
7940 {
7941 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7942 XEXP (rhs, 1));
7943 return simplify_gen_binary (PLUS, mode, tem, lhs);
7944 }
7945 else if (GET_CODE (rhs) == MULT
7946 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7947 {
7948 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7949 simplify_gen_unary (NEG, mode,
7950 XEXP (rhs, 1),
7951 mode));
7952 return simplify_gen_binary (PLUS, mode, tem, lhs);
7953 }
7954 else
7955 {
7956 SUBST (XEXP (x, 0), lhs);
7957 SUBST (XEXP (x, 1), rhs);
7958 return x;
7959 }
7960
7961 case AND:
7962 /* If the second operand is not a constant, we can't do anything
7963 with it. */
7964 if (!CONST_INT_P (XEXP (x, 1)))
7965 break;
7966
7967 /* If the constant is a power of two minus one and the first operand
7968 is a logical right shift, make an extraction. */
7969 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7970 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7971 {
7972 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7973 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7974 0, in_code == COMPARE);
7975 }
7976
7977 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7978 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7979 && subreg_lowpart_p (XEXP (x, 0))
7980 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
7981 &inner_mode)
7982 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7983 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7984 {
7985 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
7986 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
7987 new_rtx = make_extraction (inner_mode, new_rtx, 0,
7988 XEXP (inner_x0, 1),
7989 i, 1, 0, in_code == COMPARE);
7990
7991 /* If we narrowed the mode when dropping the subreg, then we lose. */
7992 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
7993 new_rtx = NULL;
7994
7995 /* If that didn't give anything, see if the AND simplifies on
7996 its own. */
7997 if (!new_rtx && i >= 0)
7998 {
7999 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8000 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8001 0, in_code == COMPARE);
8002 }
8003 }
8004 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8005 else if ((GET_CODE (XEXP (x, 0)) == XOR
8006 || GET_CODE (XEXP (x, 0)) == IOR)
8007 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8008 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8009 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8010 {
8011 /* Apply the distributive law, and then try to make extractions. */
8012 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8013 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8014 XEXP (x, 1)),
8015 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8016 XEXP (x, 1)));
8017 new_rtx = make_compound_operation (new_rtx, in_code);
8018 }
8019
8020 /* If we are have (and (rotate X C) M) and C is larger than the number
8021 of bits in M, this is an extraction. */
8022
8023 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8024 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8025 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8026 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8027 {
8028 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8029 new_rtx = make_extraction (mode, new_rtx,
8030 (GET_MODE_PRECISION (mode)
8031 - INTVAL (XEXP (XEXP (x, 0), 1))),
8032 NULL_RTX, i, 1, 0, in_code == COMPARE);
8033 }
8034
8035 /* On machines without logical shifts, if the operand of the AND is
8036 a logical shift and our mask turns off all the propagated sign
8037 bits, we can replace the logical shift with an arithmetic shift. */
8038 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8039 && !have_insn_for (LSHIFTRT, mode)
8040 && have_insn_for (ASHIFTRT, mode)
8041 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8042 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8043 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8044 && mode_width <= HOST_BITS_PER_WIDE_INT)
8045 {
8046 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8047
8048 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8049 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8050 SUBST (XEXP (x, 0),
8051 gen_rtx_ASHIFTRT (mode,
8052 make_compound_operation
8053 (XEXP (XEXP (x, 0), 0), next_code),
8054 XEXP (XEXP (x, 0), 1)));
8055 }
8056
8057 /* If the constant is one less than a power of two, this might be
8058 representable by an extraction even if no shift is present.
8059 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8060 we are in a COMPARE. */
8061 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8062 new_rtx = make_extraction (mode,
8063 make_compound_operation (XEXP (x, 0),
8064 next_code),
8065 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8066
8067 /* If we are in a comparison and this is an AND with a power of two,
8068 convert this into the appropriate bit extract. */
8069 else if (in_code == COMPARE
8070 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8071 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8072 new_rtx = make_extraction (mode,
8073 make_compound_operation (XEXP (x, 0),
8074 next_code),
8075 i, NULL_RTX, 1, 1, 0, 1);
8076
8077 /* If the one operand is a paradoxical subreg of a register or memory and
8078 the constant (limited to the smaller mode) has only zero bits where
8079 the sub expression has known zero bits, this can be expressed as
8080 a zero_extend. */
8081 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8082 {
8083 rtx sub;
8084
8085 sub = XEXP (XEXP (x, 0), 0);
8086 machine_mode sub_mode = GET_MODE (sub);
8087 if ((REG_P (sub) || MEM_P (sub))
8088 && GET_MODE_PRECISION (sub_mode) < mode_width)
8089 {
8090 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8091 unsigned HOST_WIDE_INT mask;
8092
8093 /* original AND constant with all the known zero bits set */
8094 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8095 if ((mask & mode_mask) == mode_mask)
8096 {
8097 new_rtx = make_compound_operation (sub, next_code);
8098 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8099 GET_MODE_PRECISION (sub_mode),
8100 1, 0, in_code == COMPARE);
8101 }
8102 }
8103 }
8104
8105 break;
8106
8107 case LSHIFTRT:
8108 /* If the sign bit is known to be zero, replace this with an
8109 arithmetic shift. */
8110 if (have_insn_for (ASHIFTRT, mode)
8111 && ! have_insn_for (LSHIFTRT, mode)
8112 && mode_width <= HOST_BITS_PER_WIDE_INT
8113 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8114 {
8115 new_rtx = gen_rtx_ASHIFTRT (mode,
8116 make_compound_operation (XEXP (x, 0),
8117 next_code),
8118 XEXP (x, 1));
8119 break;
8120 }
8121
8122 /* fall through */
8123
8124 case ASHIFTRT:
8125 lhs = XEXP (x, 0);
8126 rhs = XEXP (x, 1);
8127
8128 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8129 this is a SIGN_EXTRACT. */
8130 if (CONST_INT_P (rhs)
8131 && GET_CODE (lhs) == ASHIFT
8132 && CONST_INT_P (XEXP (lhs, 1))
8133 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8134 && INTVAL (XEXP (lhs, 1)) >= 0
8135 && INTVAL (rhs) < mode_width)
8136 {
8137 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8138 new_rtx = make_extraction (mode, new_rtx,
8139 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8140 NULL_RTX, mode_width - INTVAL (rhs),
8141 code == LSHIFTRT, 0, in_code == COMPARE);
8142 break;
8143 }
8144
8145 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8146 If so, try to merge the shifts into a SIGN_EXTEND. We could
8147 also do this for some cases of SIGN_EXTRACT, but it doesn't
8148 seem worth the effort; the case checked for occurs on Alpha. */
8149
8150 if (!OBJECT_P (lhs)
8151 && ! (GET_CODE (lhs) == SUBREG
8152 && (OBJECT_P (SUBREG_REG (lhs))))
8153 && CONST_INT_P (rhs)
8154 && INTVAL (rhs) >= 0
8155 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8156 && INTVAL (rhs) < mode_width
8157 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8158 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8159 0, NULL_RTX, mode_width - INTVAL (rhs),
8160 code == LSHIFTRT, 0, in_code == COMPARE);
8161
8162 break;
8163
8164 case SUBREG:
8165 /* Call ourselves recursively on the inner expression. If we are
8166 narrowing the object and it has a different RTL code from
8167 what it originally did, do this SUBREG as a force_to_mode. */
8168 {
8169 rtx inner = SUBREG_REG (x), simplified;
8170 enum rtx_code subreg_code = in_code;
8171
8172 /* If the SUBREG is masking of a logical right shift,
8173 make an extraction. */
8174 if (GET_CODE (inner) == LSHIFTRT
8175 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8176 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8177 && CONST_INT_P (XEXP (inner, 1))
8178 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8179 && subreg_lowpart_p (x))
8180 {
8181 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8182 int width = GET_MODE_PRECISION (inner_mode)
8183 - INTVAL (XEXP (inner, 1));
8184 if (width > mode_width)
8185 width = mode_width;
8186 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8187 width, 1, 0, in_code == COMPARE);
8188 break;
8189 }
8190
8191 /* If in_code is COMPARE, it isn't always safe to pass it through
8192 to the recursive make_compound_operation call. */
8193 if (subreg_code == COMPARE
8194 && (!subreg_lowpart_p (x)
8195 || GET_CODE (inner) == SUBREG
8196 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8197 is (const_int 0), rather than
8198 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8199 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8200 for non-equality comparisons against 0 is not equivalent
8201 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8202 || (GET_CODE (inner) == AND
8203 && CONST_INT_P (XEXP (inner, 1))
8204 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8205 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8206 >= GET_MODE_BITSIZE (mode) - 1)))
8207 subreg_code = SET;
8208
8209 tem = make_compound_operation (inner, subreg_code);
8210
8211 simplified
8212 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8213 if (simplified)
8214 tem = simplified;
8215
8216 if (GET_CODE (tem) != GET_CODE (inner)
8217 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8218 && subreg_lowpart_p (x))
8219 {
8220 rtx newer
8221 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8222
8223 /* If we have something other than a SUBREG, we might have
8224 done an expansion, so rerun ourselves. */
8225 if (GET_CODE (newer) != SUBREG)
8226 newer = make_compound_operation (newer, in_code);
8227
8228 /* force_to_mode can expand compounds. If it just re-expanded the
8229 compound, use gen_lowpart to convert to the desired mode. */
8230 if (rtx_equal_p (newer, x)
8231 /* Likewise if it re-expanded the compound only partially.
8232 This happens for SUBREG of ZERO_EXTRACT if they extract
8233 the same number of bits. */
8234 || (GET_CODE (newer) == SUBREG
8235 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8236 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8237 && GET_CODE (inner) == AND
8238 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8239 return gen_lowpart (GET_MODE (x), tem);
8240
8241 return newer;
8242 }
8243
8244 if (simplified)
8245 return tem;
8246 }
8247 break;
8248
8249 default:
8250 break;
8251 }
8252
8253 if (new_rtx)
8254 *x_ptr = gen_lowpart (mode, new_rtx);
8255 *next_code_ptr = next_code;
8256 return NULL_RTX;
8257 }
8258
8259 /* Look at the expression rooted at X. Look for expressions
8260 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8261 Form these expressions.
8262
8263 Return the new rtx, usually just X.
8264
8265 Also, for machines like the VAX that don't have logical shift insns,
8266 try to convert logical to arithmetic shift operations in cases where
8267 they are equivalent. This undoes the canonicalizations to logical
8268 shifts done elsewhere.
8269
8270 We try, as much as possible, to re-use rtl expressions to save memory.
8271
8272 IN_CODE says what kind of expression we are processing. Normally, it is
8273 SET. In a memory address it is MEM. When processing the arguments of
8274 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8275 precisely it is an equality comparison against zero. */
8276
8277 rtx
8278 make_compound_operation (rtx x, enum rtx_code in_code)
8279 {
8280 enum rtx_code code = GET_CODE (x);
8281 const char *fmt;
8282 int i, j;
8283 enum rtx_code next_code;
8284 rtx new_rtx, tem;
8285
8286 /* Select the code to be used in recursive calls. Once we are inside an
8287 address, we stay there. If we have a comparison, set to COMPARE,
8288 but once inside, go back to our default of SET. */
8289
8290 next_code = (code == MEM ? MEM
8291 : ((code == COMPARE || COMPARISON_P (x))
8292 && XEXP (x, 1) == const0_rtx) ? COMPARE
8293 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8294
8295 scalar_int_mode mode;
8296 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8297 {
8298 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8299 &next_code);
8300 if (new_rtx)
8301 return new_rtx;
8302 code = GET_CODE (x);
8303 }
8304
8305 /* Now recursively process each operand of this operation. We need to
8306 handle ZERO_EXTEND specially so that we don't lose track of the
8307 inner mode. */
8308 if (code == ZERO_EXTEND)
8309 {
8310 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8311 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8312 new_rtx, GET_MODE (XEXP (x, 0)));
8313 if (tem)
8314 return tem;
8315 SUBST (XEXP (x, 0), new_rtx);
8316 return x;
8317 }
8318
8319 fmt = GET_RTX_FORMAT (code);
8320 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8321 if (fmt[i] == 'e')
8322 {
8323 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8324 SUBST (XEXP (x, i), new_rtx);
8325 }
8326 else if (fmt[i] == 'E')
8327 for (j = 0; j < XVECLEN (x, i); j++)
8328 {
8329 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8330 SUBST (XVECEXP (x, i, j), new_rtx);
8331 }
8332
8333 maybe_swap_commutative_operands (x);
8334 return x;
8335 }
8336 \f
8337 /* Given M see if it is a value that would select a field of bits
8338 within an item, but not the entire word. Return -1 if not.
8339 Otherwise, return the starting position of the field, where 0 is the
8340 low-order bit.
8341
8342 *PLEN is set to the length of the field. */
8343
8344 static int
8345 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8346 {
8347 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8348 int pos = m ? ctz_hwi (m) : -1;
8349 int len = 0;
8350
8351 if (pos >= 0)
8352 /* Now shift off the low-order zero bits and see if we have a
8353 power of two minus 1. */
8354 len = exact_log2 ((m >> pos) + 1);
8355
8356 if (len <= 0)
8357 pos = -1;
8358
8359 *plen = len;
8360 return pos;
8361 }
8362 \f
8363 /* If X refers to a register that equals REG in value, replace these
8364 references with REG. */
8365 static rtx
8366 canon_reg_for_combine (rtx x, rtx reg)
8367 {
8368 rtx op0, op1, op2;
8369 const char *fmt;
8370 int i;
8371 bool copied;
8372
8373 enum rtx_code code = GET_CODE (x);
8374 switch (GET_RTX_CLASS (code))
8375 {
8376 case RTX_UNARY:
8377 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8378 if (op0 != XEXP (x, 0))
8379 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8380 GET_MODE (reg));
8381 break;
8382
8383 case RTX_BIN_ARITH:
8384 case RTX_COMM_ARITH:
8385 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8386 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8387 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8388 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8389 break;
8390
8391 case RTX_COMPARE:
8392 case RTX_COMM_COMPARE:
8393 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8394 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8395 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8396 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8397 GET_MODE (op0), op0, op1);
8398 break;
8399
8400 case RTX_TERNARY:
8401 case RTX_BITFIELD_OPS:
8402 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8403 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8404 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8405 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8406 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8407 GET_MODE (op0), op0, op1, op2);
8408 /* FALLTHRU */
8409
8410 case RTX_OBJ:
8411 if (REG_P (x))
8412 {
8413 if (rtx_equal_p (get_last_value (reg), x)
8414 || rtx_equal_p (reg, get_last_value (x)))
8415 return reg;
8416 else
8417 break;
8418 }
8419
8420 /* fall through */
8421
8422 default:
8423 fmt = GET_RTX_FORMAT (code);
8424 copied = false;
8425 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8426 if (fmt[i] == 'e')
8427 {
8428 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8429 if (op != XEXP (x, i))
8430 {
8431 if (!copied)
8432 {
8433 copied = true;
8434 x = copy_rtx (x);
8435 }
8436 XEXP (x, i) = op;
8437 }
8438 }
8439 else if (fmt[i] == 'E')
8440 {
8441 int j;
8442 for (j = 0; j < XVECLEN (x, i); j++)
8443 {
8444 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8445 if (op != XVECEXP (x, i, j))
8446 {
8447 if (!copied)
8448 {
8449 copied = true;
8450 x = copy_rtx (x);
8451 }
8452 XVECEXP (x, i, j) = op;
8453 }
8454 }
8455 }
8456
8457 break;
8458 }
8459
8460 return x;
8461 }
8462
8463 /* Return X converted to MODE. If the value is already truncated to
8464 MODE we can just return a subreg even though in the general case we
8465 would need an explicit truncation. */
8466
8467 static rtx
8468 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8469 {
8470 if (!CONST_INT_P (x)
8471 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8472 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8473 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8474 {
8475 /* Bit-cast X into an integer mode. */
8476 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8477 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8478 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8479 x, GET_MODE (x));
8480 }
8481
8482 return gen_lowpart (mode, x);
8483 }
8484
8485 /* See if X can be simplified knowing that we will only refer to it in
8486 MODE and will only refer to those bits that are nonzero in MASK.
8487 If other bits are being computed or if masking operations are done
8488 that select a superset of the bits in MASK, they can sometimes be
8489 ignored.
8490
8491 Return a possibly simplified expression, but always convert X to
8492 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8493
8494 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8495 are all off in X. This is used when X will be complemented, by either
8496 NOT, NEG, or XOR. */
8497
8498 static rtx
8499 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8500 int just_select)
8501 {
8502 enum rtx_code code = GET_CODE (x);
8503 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8504 machine_mode op_mode;
8505 unsigned HOST_WIDE_INT nonzero;
8506
8507 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8508 code below will do the wrong thing since the mode of such an
8509 expression is VOIDmode.
8510
8511 Also do nothing if X is a CLOBBER; this can happen if X was
8512 the return value from a call to gen_lowpart. */
8513 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8514 return x;
8515
8516 /* We want to perform the operation in its present mode unless we know
8517 that the operation is valid in MODE, in which case we do the operation
8518 in MODE. */
8519 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8520 && have_insn_for (code, mode))
8521 ? mode : GET_MODE (x));
8522
8523 /* It is not valid to do a right-shift in a narrower mode
8524 than the one it came in with. */
8525 if ((code == LSHIFTRT || code == ASHIFTRT)
8526 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8527 op_mode = GET_MODE (x);
8528
8529 /* Truncate MASK to fit OP_MODE. */
8530 if (op_mode)
8531 mask &= GET_MODE_MASK (op_mode);
8532
8533 /* Determine what bits of X are guaranteed to be (non)zero. */
8534 nonzero = nonzero_bits (x, mode);
8535
8536 /* If none of the bits in X are needed, return a zero. */
8537 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8538 x = const0_rtx;
8539
8540 /* If X is a CONST_INT, return a new one. Do this here since the
8541 test below will fail. */
8542 if (CONST_INT_P (x))
8543 {
8544 if (SCALAR_INT_MODE_P (mode))
8545 return gen_int_mode (INTVAL (x) & mask, mode);
8546 else
8547 {
8548 x = GEN_INT (INTVAL (x) & mask);
8549 return gen_lowpart_common (mode, x);
8550 }
8551 }
8552
8553 /* If X is narrower than MODE and we want all the bits in X's mode, just
8554 get X in the proper mode. */
8555 if (paradoxical_subreg_p (mode, GET_MODE (x))
8556 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8557 return gen_lowpart (mode, x);
8558
8559 /* We can ignore the effect of a SUBREG if it narrows the mode or
8560 if the constant masks to zero all the bits the mode doesn't have. */
8561 if (GET_CODE (x) == SUBREG
8562 && subreg_lowpart_p (x)
8563 && ((GET_MODE_SIZE (GET_MODE (x))
8564 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8565 || (0 == (mask
8566 & GET_MODE_MASK (GET_MODE (x))
8567 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8568 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8569
8570 scalar_int_mode int_mode, xmode;
8571 if (is_a <scalar_int_mode> (mode, &int_mode)
8572 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8573 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8574 integer too. */
8575 return force_int_to_mode (x, int_mode, xmode,
8576 as_a <scalar_int_mode> (op_mode),
8577 mask, just_select);
8578
8579 return gen_lowpart_or_truncate (mode, x);
8580 }
8581
8582 /* Subroutine of force_to_mode that handles cases in which both X and
8583 the result are scalar integers. MODE is the mode of the result,
8584 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8585 is preferred for simplified versions of X. The other arguments
8586 are as for force_to_mode. */
8587
8588 static rtx
8589 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8590 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8591 int just_select)
8592 {
8593 enum rtx_code code = GET_CODE (x);
8594 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8595 unsigned HOST_WIDE_INT fuller_mask;
8596 rtx op0, op1, temp;
8597
8598 /* When we have an arithmetic operation, or a shift whose count we
8599 do not know, we need to assume that all bits up to the highest-order
8600 bit in MASK will be needed. This is how we form such a mask. */
8601 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8602 fuller_mask = HOST_WIDE_INT_M1U;
8603 else
8604 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8605 - 1);
8606
8607 switch (code)
8608 {
8609 case CLOBBER:
8610 /* If X is a (clobber (const_int)), return it since we know we are
8611 generating something that won't match. */
8612 return x;
8613
8614 case SIGN_EXTEND:
8615 case ZERO_EXTEND:
8616 case ZERO_EXTRACT:
8617 case SIGN_EXTRACT:
8618 x = expand_compound_operation (x);
8619 if (GET_CODE (x) != code)
8620 return force_to_mode (x, mode, mask, next_select);
8621 break;
8622
8623 case TRUNCATE:
8624 /* Similarly for a truncate. */
8625 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8626
8627 case AND:
8628 /* If this is an AND with a constant, convert it into an AND
8629 whose constant is the AND of that constant with MASK. If it
8630 remains an AND of MASK, delete it since it is redundant. */
8631
8632 if (CONST_INT_P (XEXP (x, 1)))
8633 {
8634 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8635 mask & INTVAL (XEXP (x, 1)));
8636 xmode = op_mode;
8637
8638 /* If X is still an AND, see if it is an AND with a mask that
8639 is just some low-order bits. If so, and it is MASK, we don't
8640 need it. */
8641
8642 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8643 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8644 x = XEXP (x, 0);
8645
8646 /* If it remains an AND, try making another AND with the bits
8647 in the mode mask that aren't in MASK turned on. If the
8648 constant in the AND is wide enough, this might make a
8649 cheaper constant. */
8650
8651 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8652 && GET_MODE_MASK (xmode) != mask
8653 && HWI_COMPUTABLE_MODE_P (xmode))
8654 {
8655 unsigned HOST_WIDE_INT cval
8656 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8657 rtx y;
8658
8659 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8660 gen_int_mode (cval, xmode));
8661 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8662 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8663 x = y;
8664 }
8665
8666 break;
8667 }
8668
8669 goto binop;
8670
8671 case PLUS:
8672 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8673 low-order bits (as in an alignment operation) and FOO is already
8674 aligned to that boundary, mask C1 to that boundary as well.
8675 This may eliminate that PLUS and, later, the AND. */
8676
8677 {
8678 unsigned int width = GET_MODE_PRECISION (mode);
8679 unsigned HOST_WIDE_INT smask = mask;
8680
8681 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8682 number, sign extend it. */
8683
8684 if (width < HOST_BITS_PER_WIDE_INT
8685 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8686 smask |= HOST_WIDE_INT_M1U << width;
8687
8688 if (CONST_INT_P (XEXP (x, 1))
8689 && pow2p_hwi (- smask)
8690 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8691 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8692 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8693 (INTVAL (XEXP (x, 1)) & smask)),
8694 mode, smask, next_select);
8695 }
8696
8697 /* fall through */
8698
8699 case MULT:
8700 /* Substituting into the operands of a widening MULT is not likely to
8701 create RTL matching a machine insn. */
8702 if (code == MULT
8703 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8704 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8705 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8706 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8707 && REG_P (XEXP (XEXP (x, 0), 0))
8708 && REG_P (XEXP (XEXP (x, 1), 0)))
8709 return gen_lowpart_or_truncate (mode, x);
8710
8711 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8712 most significant bit in MASK since carries from those bits will
8713 affect the bits we are interested in. */
8714 mask = fuller_mask;
8715 goto binop;
8716
8717 case MINUS:
8718 /* If X is (minus C Y) where C's least set bit is larger than any bit
8719 in the mask, then we may replace with (neg Y). */
8720 if (CONST_INT_P (XEXP (x, 0))
8721 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8722 {
8723 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8724 return force_to_mode (x, mode, mask, next_select);
8725 }
8726
8727 /* Similarly, if C contains every bit in the fuller_mask, then we may
8728 replace with (not Y). */
8729 if (CONST_INT_P (XEXP (x, 0))
8730 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8731 {
8732 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8733 return force_to_mode (x, mode, mask, next_select);
8734 }
8735
8736 mask = fuller_mask;
8737 goto binop;
8738
8739 case IOR:
8740 case XOR:
8741 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8742 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8743 operation which may be a bitfield extraction. Ensure that the
8744 constant we form is not wider than the mode of X. */
8745
8746 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8747 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8748 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8749 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8750 && CONST_INT_P (XEXP (x, 1))
8751 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8752 + floor_log2 (INTVAL (XEXP (x, 1))))
8753 < GET_MODE_PRECISION (xmode))
8754 && (UINTVAL (XEXP (x, 1))
8755 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8756 {
8757 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8758 << INTVAL (XEXP (XEXP (x, 0), 1)),
8759 xmode);
8760 temp = simplify_gen_binary (GET_CODE (x), xmode,
8761 XEXP (XEXP (x, 0), 0), temp);
8762 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8763 XEXP (XEXP (x, 0), 1));
8764 return force_to_mode (x, mode, mask, next_select);
8765 }
8766
8767 binop:
8768 /* For most binary operations, just propagate into the operation and
8769 change the mode if we have an operation of that mode. */
8770
8771 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8772 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8773
8774 /* If we ended up truncating both operands, truncate the result of the
8775 operation instead. */
8776 if (GET_CODE (op0) == TRUNCATE
8777 && GET_CODE (op1) == TRUNCATE)
8778 {
8779 op0 = XEXP (op0, 0);
8780 op1 = XEXP (op1, 0);
8781 }
8782
8783 op0 = gen_lowpart_or_truncate (op_mode, op0);
8784 op1 = gen_lowpart_or_truncate (op_mode, op1);
8785
8786 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8787 {
8788 x = simplify_gen_binary (code, op_mode, op0, op1);
8789 xmode = op_mode;
8790 }
8791 break;
8792
8793 case ASHIFT:
8794 /* For left shifts, do the same, but just for the first operand.
8795 However, we cannot do anything with shifts where we cannot
8796 guarantee that the counts are smaller than the size of the mode
8797 because such a count will have a different meaning in a
8798 wider mode. */
8799
8800 if (! (CONST_INT_P (XEXP (x, 1))
8801 && INTVAL (XEXP (x, 1)) >= 0
8802 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8803 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8804 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8805 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8806 break;
8807
8808 /* If the shift count is a constant and we can do arithmetic in
8809 the mode of the shift, refine which bits we need. Otherwise, use the
8810 conservative form of the mask. */
8811 if (CONST_INT_P (XEXP (x, 1))
8812 && INTVAL (XEXP (x, 1)) >= 0
8813 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8814 && HWI_COMPUTABLE_MODE_P (op_mode))
8815 mask >>= INTVAL (XEXP (x, 1));
8816 else
8817 mask = fuller_mask;
8818
8819 op0 = gen_lowpart_or_truncate (op_mode,
8820 force_to_mode (XEXP (x, 0), op_mode,
8821 mask, next_select));
8822
8823 if (op_mode != xmode || op0 != XEXP (x, 0))
8824 {
8825 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8826 xmode = op_mode;
8827 }
8828 break;
8829
8830 case LSHIFTRT:
8831 /* Here we can only do something if the shift count is a constant,
8832 this shift constant is valid for the host, and we can do arithmetic
8833 in OP_MODE. */
8834
8835 if (CONST_INT_P (XEXP (x, 1))
8836 && INTVAL (XEXP (x, 1)) >= 0
8837 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8838 && HWI_COMPUTABLE_MODE_P (op_mode))
8839 {
8840 rtx inner = XEXP (x, 0);
8841 unsigned HOST_WIDE_INT inner_mask;
8842
8843 /* Select the mask of the bits we need for the shift operand. */
8844 inner_mask = mask << INTVAL (XEXP (x, 1));
8845
8846 /* We can only change the mode of the shift if we can do arithmetic
8847 in the mode of the shift and INNER_MASK is no wider than the
8848 width of X's mode. */
8849 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
8850 op_mode = xmode;
8851
8852 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8853
8854 if (xmode != op_mode || inner != XEXP (x, 0))
8855 {
8856 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8857 xmode = op_mode;
8858 }
8859 }
8860
8861 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8862 shift and AND produces only copies of the sign bit (C2 is one less
8863 than a power of two), we can do this with just a shift. */
8864
8865 if (GET_CODE (x) == LSHIFTRT
8866 && CONST_INT_P (XEXP (x, 1))
8867 /* The shift puts one of the sign bit copies in the least significant
8868 bit. */
8869 && ((INTVAL (XEXP (x, 1))
8870 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8871 >= GET_MODE_PRECISION (xmode))
8872 && pow2p_hwi (mask + 1)
8873 /* Number of bits left after the shift must be more than the mask
8874 needs. */
8875 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8876 <= GET_MODE_PRECISION (xmode))
8877 /* Must be more sign bit copies than the mask needs. */
8878 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8879 >= exact_log2 (mask + 1)))
8880 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
8881 GEN_INT (GET_MODE_PRECISION (xmode)
8882 - exact_log2 (mask + 1)));
8883
8884 goto shiftrt;
8885
8886 case ASHIFTRT:
8887 /* If we are just looking for the sign bit, we don't need this shift at
8888 all, even if it has a variable count. */
8889 if (val_signbit_p (xmode, mask))
8890 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8891
8892 /* If this is a shift by a constant, get a mask that contains those bits
8893 that are not copies of the sign bit. We then have two cases: If
8894 MASK only includes those bits, this can be a logical shift, which may
8895 allow simplifications. If MASK is a single-bit field not within
8896 those bits, we are requesting a copy of the sign bit and hence can
8897 shift the sign bit to the appropriate location. */
8898
8899 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8900 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8901 {
8902 unsigned HOST_WIDE_INT nonzero;
8903 int i;
8904
8905 /* If the considered data is wider than HOST_WIDE_INT, we can't
8906 represent a mask for all its bits in a single scalar.
8907 But we only care about the lower bits, so calculate these. */
8908
8909 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
8910 {
8911 nonzero = HOST_WIDE_INT_M1U;
8912
8913 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8914 is the number of bits a full-width mask would have set.
8915 We need only shift if these are fewer than nonzero can
8916 hold. If not, we must keep all bits set in nonzero. */
8917
8918 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
8919 < HOST_BITS_PER_WIDE_INT)
8920 nonzero >>= INTVAL (XEXP (x, 1))
8921 + HOST_BITS_PER_WIDE_INT
8922 - GET_MODE_PRECISION (xmode);
8923 }
8924 else
8925 {
8926 nonzero = GET_MODE_MASK (xmode);
8927 nonzero >>= INTVAL (XEXP (x, 1));
8928 }
8929
8930 if ((mask & ~nonzero) == 0)
8931 {
8932 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
8933 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8934 if (GET_CODE (x) != ASHIFTRT)
8935 return force_to_mode (x, mode, mask, next_select);
8936 }
8937
8938 else if ((i = exact_log2 (mask)) >= 0)
8939 {
8940 x = simplify_shift_const
8941 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
8942 GET_MODE_PRECISION (xmode) - 1 - i);
8943
8944 if (GET_CODE (x) != ASHIFTRT)
8945 return force_to_mode (x, mode, mask, next_select);
8946 }
8947 }
8948
8949 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8950 even if the shift count isn't a constant. */
8951 if (mask == 1)
8952 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
8953
8954 shiftrt:
8955
8956 /* If this is a zero- or sign-extension operation that just affects bits
8957 we don't care about, remove it. Be sure the call above returned
8958 something that is still a shift. */
8959
8960 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8961 && CONST_INT_P (XEXP (x, 1))
8962 && INTVAL (XEXP (x, 1)) >= 0
8963 && (INTVAL (XEXP (x, 1))
8964 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
8965 && GET_CODE (XEXP (x, 0)) == ASHIFT
8966 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8967 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8968 next_select);
8969
8970 break;
8971
8972 case ROTATE:
8973 case ROTATERT:
8974 /* If the shift count is constant and we can do computations
8975 in the mode of X, compute where the bits we care about are.
8976 Otherwise, we can't do anything. Don't change the mode of
8977 the shift or propagate MODE into the shift, though. */
8978 if (CONST_INT_P (XEXP (x, 1))
8979 && INTVAL (XEXP (x, 1)) >= 0)
8980 {
8981 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8982 xmode, gen_int_mode (mask, xmode),
8983 XEXP (x, 1));
8984 if (temp && CONST_INT_P (temp))
8985 x = simplify_gen_binary (code, xmode,
8986 force_to_mode (XEXP (x, 0), xmode,
8987 INTVAL (temp), next_select),
8988 XEXP (x, 1));
8989 }
8990 break;
8991
8992 case NEG:
8993 /* If we just want the low-order bit, the NEG isn't needed since it
8994 won't change the low-order bit. */
8995 if (mask == 1)
8996 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8997
8998 /* We need any bits less significant than the most significant bit in
8999 MASK since carries from those bits will affect the bits we are
9000 interested in. */
9001 mask = fuller_mask;
9002 goto unop;
9003
9004 case NOT:
9005 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9006 same as the XOR case above. Ensure that the constant we form is not
9007 wider than the mode of X. */
9008
9009 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9010 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9011 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9012 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9013 < GET_MODE_PRECISION (xmode))
9014 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9015 {
9016 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9017 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9018 x = simplify_gen_binary (LSHIFTRT, xmode,
9019 temp, XEXP (XEXP (x, 0), 1));
9020
9021 return force_to_mode (x, mode, mask, next_select);
9022 }
9023
9024 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9025 use the full mask inside the NOT. */
9026 mask = fuller_mask;
9027
9028 unop:
9029 op0 = gen_lowpart_or_truncate (op_mode,
9030 force_to_mode (XEXP (x, 0), mode, mask,
9031 next_select));
9032 if (op_mode != xmode || op0 != XEXP (x, 0))
9033 {
9034 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9035 xmode = op_mode;
9036 }
9037 break;
9038
9039 case NE:
9040 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9041 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9042 which is equal to STORE_FLAG_VALUE. */
9043 if ((mask & ~STORE_FLAG_VALUE) == 0
9044 && XEXP (x, 1) == const0_rtx
9045 && GET_MODE (XEXP (x, 0)) == mode
9046 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9047 && (nonzero_bits (XEXP (x, 0), mode)
9048 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9049 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9050
9051 break;
9052
9053 case IF_THEN_ELSE:
9054 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9055 written in a narrower mode. We play it safe and do not do so. */
9056
9057 op0 = gen_lowpart_or_truncate (xmode,
9058 force_to_mode (XEXP (x, 1), mode,
9059 mask, next_select));
9060 op1 = gen_lowpart_or_truncate (xmode,
9061 force_to_mode (XEXP (x, 2), mode,
9062 mask, next_select));
9063 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9064 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9065 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9066 op0, op1);
9067 break;
9068
9069 default:
9070 break;
9071 }
9072
9073 /* Ensure we return a value of the proper mode. */
9074 return gen_lowpart_or_truncate (mode, x);
9075 }
9076 \f
9077 /* Return nonzero if X is an expression that has one of two values depending on
9078 whether some other value is zero or nonzero. In that case, we return the
9079 value that is being tested, *PTRUE is set to the value if the rtx being
9080 returned has a nonzero value, and *PFALSE is set to the other alternative.
9081
9082 If we return zero, we set *PTRUE and *PFALSE to X. */
9083
9084 static rtx
9085 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9086 {
9087 machine_mode mode = GET_MODE (x);
9088 enum rtx_code code = GET_CODE (x);
9089 rtx cond0, cond1, true0, true1, false0, false1;
9090 unsigned HOST_WIDE_INT nz;
9091 scalar_int_mode int_mode;
9092
9093 /* If we are comparing a value against zero, we are done. */
9094 if ((code == NE || code == EQ)
9095 && XEXP (x, 1) == const0_rtx)
9096 {
9097 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9098 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9099 return XEXP (x, 0);
9100 }
9101
9102 /* If this is a unary operation whose operand has one of two values, apply
9103 our opcode to compute those values. */
9104 else if (UNARY_P (x)
9105 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9106 {
9107 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9108 *pfalse = simplify_gen_unary (code, mode, false0,
9109 GET_MODE (XEXP (x, 0)));
9110 return cond0;
9111 }
9112
9113 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9114 make can't possibly match and would suppress other optimizations. */
9115 else if (code == COMPARE)
9116 ;
9117
9118 /* If this is a binary operation, see if either side has only one of two
9119 values. If either one does or if both do and they are conditional on
9120 the same value, compute the new true and false values. */
9121 else if (BINARY_P (x))
9122 {
9123 rtx op0 = XEXP (x, 0);
9124 rtx op1 = XEXP (x, 1);
9125 cond0 = if_then_else_cond (op0, &true0, &false0);
9126 cond1 = if_then_else_cond (op1, &true1, &false1);
9127
9128 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9129 && (REG_P (op0) || REG_P (op1)))
9130 {
9131 /* Try to enable a simplification by undoing work done by
9132 if_then_else_cond if it converted a REG into something more
9133 complex. */
9134 if (REG_P (op0))
9135 {
9136 cond0 = 0;
9137 true0 = false0 = op0;
9138 }
9139 else
9140 {
9141 cond1 = 0;
9142 true1 = false1 = op1;
9143 }
9144 }
9145
9146 if ((cond0 != 0 || cond1 != 0)
9147 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9148 {
9149 /* If if_then_else_cond returned zero, then true/false are the
9150 same rtl. We must copy one of them to prevent invalid rtl
9151 sharing. */
9152 if (cond0 == 0)
9153 true0 = copy_rtx (true0);
9154 else if (cond1 == 0)
9155 true1 = copy_rtx (true1);
9156
9157 if (COMPARISON_P (x))
9158 {
9159 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9160 true0, true1);
9161 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9162 false0, false1);
9163 }
9164 else
9165 {
9166 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9167 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9168 }
9169
9170 return cond0 ? cond0 : cond1;
9171 }
9172
9173 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9174 operands is zero when the other is nonzero, and vice-versa,
9175 and STORE_FLAG_VALUE is 1 or -1. */
9176
9177 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9178 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9179 || code == UMAX)
9180 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9181 {
9182 rtx op0 = XEXP (XEXP (x, 0), 1);
9183 rtx op1 = XEXP (XEXP (x, 1), 1);
9184
9185 cond0 = XEXP (XEXP (x, 0), 0);
9186 cond1 = XEXP (XEXP (x, 1), 0);
9187
9188 if (COMPARISON_P (cond0)
9189 && COMPARISON_P (cond1)
9190 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9191 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9192 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9193 || ((swap_condition (GET_CODE (cond0))
9194 == reversed_comparison_code (cond1, NULL))
9195 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9196 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9197 && ! side_effects_p (x))
9198 {
9199 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9200 *pfalse = simplify_gen_binary (MULT, mode,
9201 (code == MINUS
9202 ? simplify_gen_unary (NEG, mode,
9203 op1, mode)
9204 : op1),
9205 const_true_rtx);
9206 return cond0;
9207 }
9208 }
9209
9210 /* Similarly for MULT, AND and UMIN, except that for these the result
9211 is always zero. */
9212 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9213 && (code == MULT || code == AND || code == UMIN)
9214 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9215 {
9216 cond0 = XEXP (XEXP (x, 0), 0);
9217 cond1 = XEXP (XEXP (x, 1), 0);
9218
9219 if (COMPARISON_P (cond0)
9220 && COMPARISON_P (cond1)
9221 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9222 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9223 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9224 || ((swap_condition (GET_CODE (cond0))
9225 == reversed_comparison_code (cond1, NULL))
9226 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9227 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9228 && ! side_effects_p (x))
9229 {
9230 *ptrue = *pfalse = const0_rtx;
9231 return cond0;
9232 }
9233 }
9234 }
9235
9236 else if (code == IF_THEN_ELSE)
9237 {
9238 /* If we have IF_THEN_ELSE already, extract the condition and
9239 canonicalize it if it is NE or EQ. */
9240 cond0 = XEXP (x, 0);
9241 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9242 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9243 return XEXP (cond0, 0);
9244 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9245 {
9246 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9247 return XEXP (cond0, 0);
9248 }
9249 else
9250 return cond0;
9251 }
9252
9253 /* If X is a SUBREG, we can narrow both the true and false values
9254 if the inner expression, if there is a condition. */
9255 else if (code == SUBREG
9256 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9257 &true0, &false0)))
9258 {
9259 true0 = simplify_gen_subreg (mode, true0,
9260 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9261 false0 = simplify_gen_subreg (mode, false0,
9262 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9263 if (true0 && false0)
9264 {
9265 *ptrue = true0;
9266 *pfalse = false0;
9267 return cond0;
9268 }
9269 }
9270
9271 /* If X is a constant, this isn't special and will cause confusions
9272 if we treat it as such. Likewise if it is equivalent to a constant. */
9273 else if (CONSTANT_P (x)
9274 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9275 ;
9276
9277 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9278 will be least confusing to the rest of the compiler. */
9279 else if (mode == BImode)
9280 {
9281 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9282 return x;
9283 }
9284
9285 /* If X is known to be either 0 or -1, those are the true and
9286 false values when testing X. */
9287 else if (x == constm1_rtx || x == const0_rtx
9288 || (is_a <scalar_int_mode> (mode, &int_mode)
9289 && (num_sign_bit_copies (x, int_mode)
9290 == GET_MODE_PRECISION (int_mode))))
9291 {
9292 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9293 return x;
9294 }
9295
9296 /* Likewise for 0 or a single bit. */
9297 else if (HWI_COMPUTABLE_MODE_P (mode)
9298 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9299 {
9300 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9301 return x;
9302 }
9303
9304 /* Otherwise fail; show no condition with true and false values the same. */
9305 *ptrue = *pfalse = x;
9306 return 0;
9307 }
9308 \f
9309 /* Return the value of expression X given the fact that condition COND
9310 is known to be true when applied to REG as its first operand and VAL
9311 as its second. X is known to not be shared and so can be modified in
9312 place.
9313
9314 We only handle the simplest cases, and specifically those cases that
9315 arise with IF_THEN_ELSE expressions. */
9316
9317 static rtx
9318 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9319 {
9320 enum rtx_code code = GET_CODE (x);
9321 const char *fmt;
9322 int i, j;
9323
9324 if (side_effects_p (x))
9325 return x;
9326
9327 /* If either operand of the condition is a floating point value,
9328 then we have to avoid collapsing an EQ comparison. */
9329 if (cond == EQ
9330 && rtx_equal_p (x, reg)
9331 && ! FLOAT_MODE_P (GET_MODE (x))
9332 && ! FLOAT_MODE_P (GET_MODE (val)))
9333 return val;
9334
9335 if (cond == UNEQ && rtx_equal_p (x, reg))
9336 return val;
9337
9338 /* If X is (abs REG) and we know something about REG's relationship
9339 with zero, we may be able to simplify this. */
9340
9341 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9342 switch (cond)
9343 {
9344 case GE: case GT: case EQ:
9345 return XEXP (x, 0);
9346 case LT: case LE:
9347 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9348 XEXP (x, 0),
9349 GET_MODE (XEXP (x, 0)));
9350 default:
9351 break;
9352 }
9353
9354 /* The only other cases we handle are MIN, MAX, and comparisons if the
9355 operands are the same as REG and VAL. */
9356
9357 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9358 {
9359 if (rtx_equal_p (XEXP (x, 0), val))
9360 {
9361 std::swap (val, reg);
9362 cond = swap_condition (cond);
9363 }
9364
9365 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9366 {
9367 if (COMPARISON_P (x))
9368 {
9369 if (comparison_dominates_p (cond, code))
9370 return const_true_rtx;
9371
9372 code = reversed_comparison_code (x, NULL);
9373 if (code != UNKNOWN
9374 && comparison_dominates_p (cond, code))
9375 return const0_rtx;
9376 else
9377 return x;
9378 }
9379 else if (code == SMAX || code == SMIN
9380 || code == UMIN || code == UMAX)
9381 {
9382 int unsignedp = (code == UMIN || code == UMAX);
9383
9384 /* Do not reverse the condition when it is NE or EQ.
9385 This is because we cannot conclude anything about
9386 the value of 'SMAX (x, y)' when x is not equal to y,
9387 but we can when x equals y. */
9388 if ((code == SMAX || code == UMAX)
9389 && ! (cond == EQ || cond == NE))
9390 cond = reverse_condition (cond);
9391
9392 switch (cond)
9393 {
9394 case GE: case GT:
9395 return unsignedp ? x : XEXP (x, 1);
9396 case LE: case LT:
9397 return unsignedp ? x : XEXP (x, 0);
9398 case GEU: case GTU:
9399 return unsignedp ? XEXP (x, 1) : x;
9400 case LEU: case LTU:
9401 return unsignedp ? XEXP (x, 0) : x;
9402 default:
9403 break;
9404 }
9405 }
9406 }
9407 }
9408 else if (code == SUBREG)
9409 {
9410 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9411 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9412
9413 if (SUBREG_REG (x) != r)
9414 {
9415 /* We must simplify subreg here, before we lose track of the
9416 original inner_mode. */
9417 new_rtx = simplify_subreg (GET_MODE (x), r,
9418 inner_mode, SUBREG_BYTE (x));
9419 if (new_rtx)
9420 return new_rtx;
9421 else
9422 SUBST (SUBREG_REG (x), r);
9423 }
9424
9425 return x;
9426 }
9427 /* We don't have to handle SIGN_EXTEND here, because even in the
9428 case of replacing something with a modeless CONST_INT, a
9429 CONST_INT is already (supposed to be) a valid sign extension for
9430 its narrower mode, which implies it's already properly
9431 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9432 story is different. */
9433 else if (code == ZERO_EXTEND)
9434 {
9435 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9436 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9437
9438 if (XEXP (x, 0) != r)
9439 {
9440 /* We must simplify the zero_extend here, before we lose
9441 track of the original inner_mode. */
9442 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9443 r, inner_mode);
9444 if (new_rtx)
9445 return new_rtx;
9446 else
9447 SUBST (XEXP (x, 0), r);
9448 }
9449
9450 return x;
9451 }
9452
9453 fmt = GET_RTX_FORMAT (code);
9454 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9455 {
9456 if (fmt[i] == 'e')
9457 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9458 else if (fmt[i] == 'E')
9459 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9460 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9461 cond, reg, val));
9462 }
9463
9464 return x;
9465 }
9466 \f
9467 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9468 assignment as a field assignment. */
9469
9470 static int
9471 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9472 {
9473 if (widen_x && GET_MODE (x) != GET_MODE (y))
9474 {
9475 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9476 return 0;
9477 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9478 return 0;
9479 /* For big endian, adjust the memory offset. */
9480 if (BYTES_BIG_ENDIAN)
9481 x = adjust_address_nv (x, GET_MODE (y),
9482 -subreg_lowpart_offset (GET_MODE (x),
9483 GET_MODE (y)));
9484 else
9485 x = adjust_address_nv (x, GET_MODE (y), 0);
9486 }
9487
9488 if (x == y || rtx_equal_p (x, y))
9489 return 1;
9490
9491 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9492 return 0;
9493
9494 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9495 Note that all SUBREGs of MEM are paradoxical; otherwise they
9496 would have been rewritten. */
9497 if (MEM_P (x) && GET_CODE (y) == SUBREG
9498 && MEM_P (SUBREG_REG (y))
9499 && rtx_equal_p (SUBREG_REG (y),
9500 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9501 return 1;
9502
9503 if (MEM_P (y) && GET_CODE (x) == SUBREG
9504 && MEM_P (SUBREG_REG (x))
9505 && rtx_equal_p (SUBREG_REG (x),
9506 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9507 return 1;
9508
9509 /* We used to see if get_last_value of X and Y were the same but that's
9510 not correct. In one direction, we'll cause the assignment to have
9511 the wrong destination and in the case, we'll import a register into this
9512 insn that might have already have been dead. So fail if none of the
9513 above cases are true. */
9514 return 0;
9515 }
9516 \f
9517 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9518 Return that assignment if so.
9519
9520 We only handle the most common cases. */
9521
9522 static rtx
9523 make_field_assignment (rtx x)
9524 {
9525 rtx dest = SET_DEST (x);
9526 rtx src = SET_SRC (x);
9527 rtx assign;
9528 rtx rhs, lhs;
9529 HOST_WIDE_INT c1;
9530 HOST_WIDE_INT pos;
9531 unsigned HOST_WIDE_INT len;
9532 rtx other;
9533
9534 /* All the rules in this function are specific to scalar integers. */
9535 scalar_int_mode mode;
9536 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9537 return x;
9538
9539 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9540 a clear of a one-bit field. We will have changed it to
9541 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9542 for a SUBREG. */
9543
9544 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9545 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9546 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9547 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9548 {
9549 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9550 1, 1, 1, 0);
9551 if (assign != 0)
9552 return gen_rtx_SET (assign, const0_rtx);
9553 return x;
9554 }
9555
9556 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9557 && subreg_lowpart_p (XEXP (src, 0))
9558 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9559 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9560 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9561 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9562 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9563 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9564 {
9565 assign = make_extraction (VOIDmode, dest, 0,
9566 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9567 1, 1, 1, 0);
9568 if (assign != 0)
9569 return gen_rtx_SET (assign, const0_rtx);
9570 return x;
9571 }
9572
9573 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9574 one-bit field. */
9575 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9576 && XEXP (XEXP (src, 0), 0) == const1_rtx
9577 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9578 {
9579 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9580 1, 1, 1, 0);
9581 if (assign != 0)
9582 return gen_rtx_SET (assign, const1_rtx);
9583 return x;
9584 }
9585
9586 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9587 SRC is an AND with all bits of that field set, then we can discard
9588 the AND. */
9589 if (GET_CODE (dest) == ZERO_EXTRACT
9590 && CONST_INT_P (XEXP (dest, 1))
9591 && GET_CODE (src) == AND
9592 && CONST_INT_P (XEXP (src, 1)))
9593 {
9594 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9595 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9596 unsigned HOST_WIDE_INT ze_mask;
9597
9598 if (width >= HOST_BITS_PER_WIDE_INT)
9599 ze_mask = -1;
9600 else
9601 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9602
9603 /* Complete overlap. We can remove the source AND. */
9604 if ((and_mask & ze_mask) == ze_mask)
9605 return gen_rtx_SET (dest, XEXP (src, 0));
9606
9607 /* Partial overlap. We can reduce the source AND. */
9608 if ((and_mask & ze_mask) != and_mask)
9609 {
9610 src = gen_rtx_AND (mode, XEXP (src, 0),
9611 gen_int_mode (and_mask & ze_mask, mode));
9612 return gen_rtx_SET (dest, src);
9613 }
9614 }
9615
9616 /* The other case we handle is assignments into a constant-position
9617 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9618 a mask that has all one bits except for a group of zero bits and
9619 OTHER is known to have zeros where C1 has ones, this is such an
9620 assignment. Compute the position and length from C1. Shift OTHER
9621 to the appropriate position, force it to the required mode, and
9622 make the extraction. Check for the AND in both operands. */
9623
9624 /* One or more SUBREGs might obscure the constant-position field
9625 assignment. The first one we are likely to encounter is an outer
9626 narrowing SUBREG, which we can just strip for the purposes of
9627 identifying the constant-field assignment. */
9628 scalar_int_mode src_mode = mode;
9629 if (GET_CODE (src) == SUBREG
9630 && subreg_lowpart_p (src)
9631 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9632 src = SUBREG_REG (src);
9633
9634 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9635 return x;
9636
9637 rhs = expand_compound_operation (XEXP (src, 0));
9638 lhs = expand_compound_operation (XEXP (src, 1));
9639
9640 if (GET_CODE (rhs) == AND
9641 && CONST_INT_P (XEXP (rhs, 1))
9642 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9643 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9644 /* The second SUBREG that might get in the way is a paradoxical
9645 SUBREG around the first operand of the AND. We want to
9646 pretend the operand is as wide as the destination here. We
9647 do this by adjusting the MEM to wider mode for the sole
9648 purpose of the call to rtx_equal_for_field_assignment_p. Also
9649 note this trick only works for MEMs. */
9650 else if (GET_CODE (rhs) == AND
9651 && paradoxical_subreg_p (XEXP (rhs, 0))
9652 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9653 && CONST_INT_P (XEXP (rhs, 1))
9654 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9655 dest, true))
9656 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9657 else if (GET_CODE (lhs) == AND
9658 && CONST_INT_P (XEXP (lhs, 1))
9659 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9660 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9661 /* The second SUBREG that might get in the way is a paradoxical
9662 SUBREG around the first operand of the AND. We want to
9663 pretend the operand is as wide as the destination here. We
9664 do this by adjusting the MEM to wider mode for the sole
9665 purpose of the call to rtx_equal_for_field_assignment_p. Also
9666 note this trick only works for MEMs. */
9667 else if (GET_CODE (lhs) == AND
9668 && paradoxical_subreg_p (XEXP (lhs, 0))
9669 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9670 && CONST_INT_P (XEXP (lhs, 1))
9671 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9672 dest, true))
9673 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9674 else
9675 return x;
9676
9677 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9678 if (pos < 0
9679 || pos + len > GET_MODE_PRECISION (mode)
9680 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9681 || (c1 & nonzero_bits (other, mode)) != 0)
9682 return x;
9683
9684 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9685 if (assign == 0)
9686 return x;
9687
9688 /* The mode to use for the source is the mode of the assignment, or of
9689 what is inside a possible STRICT_LOW_PART. */
9690 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9691 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9692
9693 /* Shift OTHER right POS places and make it the source, restricting it
9694 to the proper length and mode. */
9695
9696 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9697 src_mode, other, pos),
9698 dest);
9699 src = force_to_mode (src, new_mode,
9700 len >= HOST_BITS_PER_WIDE_INT
9701 ? HOST_WIDE_INT_M1U
9702 : (HOST_WIDE_INT_1U << len) - 1,
9703 0);
9704
9705 /* If SRC is masked by an AND that does not make a difference in
9706 the value being stored, strip it. */
9707 if (GET_CODE (assign) == ZERO_EXTRACT
9708 && CONST_INT_P (XEXP (assign, 1))
9709 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9710 && GET_CODE (src) == AND
9711 && CONST_INT_P (XEXP (src, 1))
9712 && UINTVAL (XEXP (src, 1))
9713 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9714 src = XEXP (src, 0);
9715
9716 return gen_rtx_SET (assign, src);
9717 }
9718 \f
9719 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9720 if so. */
9721
9722 static rtx
9723 apply_distributive_law (rtx x)
9724 {
9725 enum rtx_code code = GET_CODE (x);
9726 enum rtx_code inner_code;
9727 rtx lhs, rhs, other;
9728 rtx tem;
9729
9730 /* Distributivity is not true for floating point as it can change the
9731 value. So we don't do it unless -funsafe-math-optimizations. */
9732 if (FLOAT_MODE_P (GET_MODE (x))
9733 && ! flag_unsafe_math_optimizations)
9734 return x;
9735
9736 /* The outer operation can only be one of the following: */
9737 if (code != IOR && code != AND && code != XOR
9738 && code != PLUS && code != MINUS)
9739 return x;
9740
9741 lhs = XEXP (x, 0);
9742 rhs = XEXP (x, 1);
9743
9744 /* If either operand is a primitive we can't do anything, so get out
9745 fast. */
9746 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9747 return x;
9748
9749 lhs = expand_compound_operation (lhs);
9750 rhs = expand_compound_operation (rhs);
9751 inner_code = GET_CODE (lhs);
9752 if (inner_code != GET_CODE (rhs))
9753 return x;
9754
9755 /* See if the inner and outer operations distribute. */
9756 switch (inner_code)
9757 {
9758 case LSHIFTRT:
9759 case ASHIFTRT:
9760 case AND:
9761 case IOR:
9762 /* These all distribute except over PLUS. */
9763 if (code == PLUS || code == MINUS)
9764 return x;
9765 break;
9766
9767 case MULT:
9768 if (code != PLUS && code != MINUS)
9769 return x;
9770 break;
9771
9772 case ASHIFT:
9773 /* This is also a multiply, so it distributes over everything. */
9774 break;
9775
9776 /* This used to handle SUBREG, but this turned out to be counter-
9777 productive, since (subreg (op ...)) usually is not handled by
9778 insn patterns, and this "optimization" therefore transformed
9779 recognizable patterns into unrecognizable ones. Therefore the
9780 SUBREG case was removed from here.
9781
9782 It is possible that distributing SUBREG over arithmetic operations
9783 leads to an intermediate result than can then be optimized further,
9784 e.g. by moving the outer SUBREG to the other side of a SET as done
9785 in simplify_set. This seems to have been the original intent of
9786 handling SUBREGs here.
9787
9788 However, with current GCC this does not appear to actually happen,
9789 at least on major platforms. If some case is found where removing
9790 the SUBREG case here prevents follow-on optimizations, distributing
9791 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9792
9793 default:
9794 return x;
9795 }
9796
9797 /* Set LHS and RHS to the inner operands (A and B in the example
9798 above) and set OTHER to the common operand (C in the example).
9799 There is only one way to do this unless the inner operation is
9800 commutative. */
9801 if (COMMUTATIVE_ARITH_P (lhs)
9802 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9803 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9804 else if (COMMUTATIVE_ARITH_P (lhs)
9805 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9806 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9807 else if (COMMUTATIVE_ARITH_P (lhs)
9808 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9809 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9810 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9811 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9812 else
9813 return x;
9814
9815 /* Form the new inner operation, seeing if it simplifies first. */
9816 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9817
9818 /* There is one exception to the general way of distributing:
9819 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9820 if (code == XOR && inner_code == IOR)
9821 {
9822 inner_code = AND;
9823 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9824 }
9825
9826 /* We may be able to continuing distributing the result, so call
9827 ourselves recursively on the inner operation before forming the
9828 outer operation, which we return. */
9829 return simplify_gen_binary (inner_code, GET_MODE (x),
9830 apply_distributive_law (tem), other);
9831 }
9832
9833 /* See if X is of the form (* (+ A B) C), and if so convert to
9834 (+ (* A C) (* B C)) and try to simplify.
9835
9836 Most of the time, this results in no change. However, if some of
9837 the operands are the same or inverses of each other, simplifications
9838 will result.
9839
9840 For example, (and (ior A B) (not B)) can occur as the result of
9841 expanding a bit field assignment. When we apply the distributive
9842 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9843 which then simplifies to (and (A (not B))).
9844
9845 Note that no checks happen on the validity of applying the inverse
9846 distributive law. This is pointless since we can do it in the
9847 few places where this routine is called.
9848
9849 N is the index of the term that is decomposed (the arithmetic operation,
9850 i.e. (+ A B) in the first example above). !N is the index of the term that
9851 is distributed, i.e. of C in the first example above. */
9852 static rtx
9853 distribute_and_simplify_rtx (rtx x, int n)
9854 {
9855 machine_mode mode;
9856 enum rtx_code outer_code, inner_code;
9857 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9858
9859 /* Distributivity is not true for floating point as it can change the
9860 value. So we don't do it unless -funsafe-math-optimizations. */
9861 if (FLOAT_MODE_P (GET_MODE (x))
9862 && ! flag_unsafe_math_optimizations)
9863 return NULL_RTX;
9864
9865 decomposed = XEXP (x, n);
9866 if (!ARITHMETIC_P (decomposed))
9867 return NULL_RTX;
9868
9869 mode = GET_MODE (x);
9870 outer_code = GET_CODE (x);
9871 distributed = XEXP (x, !n);
9872
9873 inner_code = GET_CODE (decomposed);
9874 inner_op0 = XEXP (decomposed, 0);
9875 inner_op1 = XEXP (decomposed, 1);
9876
9877 /* Special case (and (xor B C) (not A)), which is equivalent to
9878 (xor (ior A B) (ior A C)) */
9879 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9880 {
9881 distributed = XEXP (distributed, 0);
9882 outer_code = IOR;
9883 }
9884
9885 if (n == 0)
9886 {
9887 /* Distribute the second term. */
9888 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9889 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9890 }
9891 else
9892 {
9893 /* Distribute the first term. */
9894 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9895 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9896 }
9897
9898 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9899 new_op0, new_op1));
9900 if (GET_CODE (tmp) != outer_code
9901 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9902 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9903 return tmp;
9904
9905 return NULL_RTX;
9906 }
9907 \f
9908 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9909 in MODE. Return an equivalent form, if different from (and VAROP
9910 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9911
9912 static rtx
9913 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
9914 unsigned HOST_WIDE_INT constop)
9915 {
9916 unsigned HOST_WIDE_INT nonzero;
9917 unsigned HOST_WIDE_INT orig_constop;
9918 rtx orig_varop;
9919 int i;
9920
9921 orig_varop = varop;
9922 orig_constop = constop;
9923 if (GET_CODE (varop) == CLOBBER)
9924 return NULL_RTX;
9925
9926 /* Simplify VAROP knowing that we will be only looking at some of the
9927 bits in it.
9928
9929 Note by passing in CONSTOP, we guarantee that the bits not set in
9930 CONSTOP are not significant and will never be examined. We must
9931 ensure that is the case by explicitly masking out those bits
9932 before returning. */
9933 varop = force_to_mode (varop, mode, constop, 0);
9934
9935 /* If VAROP is a CLOBBER, we will fail so return it. */
9936 if (GET_CODE (varop) == CLOBBER)
9937 return varop;
9938
9939 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9940 to VAROP and return the new constant. */
9941 if (CONST_INT_P (varop))
9942 return gen_int_mode (INTVAL (varop) & constop, mode);
9943
9944 /* See what bits may be nonzero in VAROP. Unlike the general case of
9945 a call to nonzero_bits, here we don't care about bits outside
9946 MODE. */
9947
9948 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9949
9950 /* Turn off all bits in the constant that are known to already be zero.
9951 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9952 which is tested below. */
9953
9954 constop &= nonzero;
9955
9956 /* If we don't have any bits left, return zero. */
9957 if (constop == 0)
9958 return const0_rtx;
9959
9960 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9961 a power of two, we can replace this with an ASHIFT. */
9962 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9963 && (i = exact_log2 (constop)) >= 0)
9964 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9965
9966 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9967 or XOR, then try to apply the distributive law. This may eliminate
9968 operations if either branch can be simplified because of the AND.
9969 It may also make some cases more complex, but those cases probably
9970 won't match a pattern either with or without this. */
9971
9972 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9973 {
9974 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
9975 return
9976 gen_lowpart
9977 (mode,
9978 apply_distributive_law
9979 (simplify_gen_binary (GET_CODE (varop), varop_mode,
9980 simplify_and_const_int (NULL_RTX, varop_mode,
9981 XEXP (varop, 0),
9982 constop),
9983 simplify_and_const_int (NULL_RTX, varop_mode,
9984 XEXP (varop, 1),
9985 constop))));
9986 }
9987
9988 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9989 the AND and see if one of the operands simplifies to zero. If so, we
9990 may eliminate it. */
9991
9992 if (GET_CODE (varop) == PLUS
9993 && pow2p_hwi (constop + 1))
9994 {
9995 rtx o0, o1;
9996
9997 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9998 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9999 if (o0 == const0_rtx)
10000 return o1;
10001 if (o1 == const0_rtx)
10002 return o0;
10003 }
10004
10005 /* Make a SUBREG if necessary. If we can't make it, fail. */
10006 varop = gen_lowpart (mode, varop);
10007 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10008 return NULL_RTX;
10009
10010 /* If we are only masking insignificant bits, return VAROP. */
10011 if (constop == nonzero)
10012 return varop;
10013
10014 if (varop == orig_varop && constop == orig_constop)
10015 return NULL_RTX;
10016
10017 /* Otherwise, return an AND. */
10018 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10019 }
10020
10021
10022 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10023 in MODE.
10024
10025 Return an equivalent form, if different from X. Otherwise, return X. If
10026 X is zero, we are to always construct the equivalent form. */
10027
10028 static rtx
10029 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10030 unsigned HOST_WIDE_INT constop)
10031 {
10032 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10033 if (tem)
10034 return tem;
10035
10036 if (!x)
10037 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10038 gen_int_mode (constop, mode));
10039 if (GET_MODE (x) != mode)
10040 x = gen_lowpart (mode, x);
10041 return x;
10042 }
10043 \f
10044 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10045 We don't care about bits outside of those defined in MODE.
10046
10047 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10048 a shift, AND, or zero_extract, we can do better. */
10049
10050 static rtx
10051 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10052 scalar_int_mode mode,
10053 unsigned HOST_WIDE_INT *nonzero)
10054 {
10055 rtx tem;
10056 reg_stat_type *rsp;
10057
10058 /* If X is a register whose nonzero bits value is current, use it.
10059 Otherwise, if X is a register whose value we can find, use that
10060 value. Otherwise, use the previously-computed global nonzero bits
10061 for this register. */
10062
10063 rsp = &reg_stat[REGNO (x)];
10064 if (rsp->last_set_value != 0
10065 && (rsp->last_set_mode == mode
10066 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10067 && GET_MODE_CLASS (mode) == MODE_INT))
10068 && ((rsp->last_set_label >= label_tick_ebb_start
10069 && rsp->last_set_label < label_tick)
10070 || (rsp->last_set_label == label_tick
10071 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10072 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10073 && REGNO (x) < reg_n_sets_max
10074 && REG_N_SETS (REGNO (x)) == 1
10075 && !REGNO_REG_SET_P
10076 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10077 REGNO (x)))))
10078 {
10079 /* Note that, even if the precision of last_set_mode is lower than that
10080 of mode, record_value_for_reg invoked nonzero_bits on the register
10081 with nonzero_bits_mode (because last_set_mode is necessarily integral
10082 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10083 are all valid, hence in mode too since nonzero_bits_mode is defined
10084 to the largest HWI_COMPUTABLE_MODE_P mode. */
10085 *nonzero &= rsp->last_set_nonzero_bits;
10086 return NULL;
10087 }
10088
10089 tem = get_last_value (x);
10090 if (tem)
10091 {
10092 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10093 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10094
10095 return tem;
10096 }
10097
10098 if (nonzero_sign_valid && rsp->nonzero_bits)
10099 {
10100 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10101
10102 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10103 /* We don't know anything about the upper bits. */
10104 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10105
10106 *nonzero &= mask;
10107 }
10108
10109 return NULL;
10110 }
10111
10112 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10113 end of X that are known to be equal to the sign bit. X will be used
10114 in mode MODE; the returned value will always be between 1 and the
10115 number of bits in MODE. */
10116
10117 static rtx
10118 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10119 scalar_int_mode mode,
10120 unsigned int *result)
10121 {
10122 rtx tem;
10123 reg_stat_type *rsp;
10124
10125 rsp = &reg_stat[REGNO (x)];
10126 if (rsp->last_set_value != 0
10127 && rsp->last_set_mode == mode
10128 && ((rsp->last_set_label >= label_tick_ebb_start
10129 && rsp->last_set_label < label_tick)
10130 || (rsp->last_set_label == label_tick
10131 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10132 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10133 && REGNO (x) < reg_n_sets_max
10134 && REG_N_SETS (REGNO (x)) == 1
10135 && !REGNO_REG_SET_P
10136 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10137 REGNO (x)))))
10138 {
10139 *result = rsp->last_set_sign_bit_copies;
10140 return NULL;
10141 }
10142
10143 tem = get_last_value (x);
10144 if (tem != 0)
10145 return tem;
10146
10147 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10148 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10149 *result = rsp->sign_bit_copies;
10150
10151 return NULL;
10152 }
10153 \f
10154 /* Return the number of "extended" bits there are in X, when interpreted
10155 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10156 unsigned quantities, this is the number of high-order zero bits.
10157 For signed quantities, this is the number of copies of the sign bit
10158 minus 1. In both case, this function returns the number of "spare"
10159 bits. For example, if two quantities for which this function returns
10160 at least 1 are added, the addition is known not to overflow.
10161
10162 This function will always return 0 unless called during combine, which
10163 implies that it must be called from a define_split. */
10164
10165 unsigned int
10166 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10167 {
10168 if (nonzero_sign_valid == 0)
10169 return 0;
10170
10171 scalar_int_mode int_mode;
10172 return (unsignedp
10173 ? (is_a <scalar_int_mode> (mode, &int_mode)
10174 && HWI_COMPUTABLE_MODE_P (int_mode)
10175 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10176 - floor_log2 (nonzero_bits (x, int_mode)))
10177 : 0)
10178 : num_sign_bit_copies (x, mode) - 1);
10179 }
10180
10181 /* This function is called from `simplify_shift_const' to merge two
10182 outer operations. Specifically, we have already found that we need
10183 to perform operation *POP0 with constant *PCONST0 at the outermost
10184 position. We would now like to also perform OP1 with constant CONST1
10185 (with *POP0 being done last).
10186
10187 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10188 the resulting operation. *PCOMP_P is set to 1 if we would need to
10189 complement the innermost operand, otherwise it is unchanged.
10190
10191 MODE is the mode in which the operation will be done. No bits outside
10192 the width of this mode matter. It is assumed that the width of this mode
10193 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10194
10195 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10196 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10197 result is simply *PCONST0.
10198
10199 If the resulting operation cannot be expressed as one operation, we
10200 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10201
10202 static int
10203 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10204 {
10205 enum rtx_code op0 = *pop0;
10206 HOST_WIDE_INT const0 = *pconst0;
10207
10208 const0 &= GET_MODE_MASK (mode);
10209 const1 &= GET_MODE_MASK (mode);
10210
10211 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10212 if (op0 == AND)
10213 const1 &= const0;
10214
10215 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10216 if OP0 is SET. */
10217
10218 if (op1 == UNKNOWN || op0 == SET)
10219 return 1;
10220
10221 else if (op0 == UNKNOWN)
10222 op0 = op1, const0 = const1;
10223
10224 else if (op0 == op1)
10225 {
10226 switch (op0)
10227 {
10228 case AND:
10229 const0 &= const1;
10230 break;
10231 case IOR:
10232 const0 |= const1;
10233 break;
10234 case XOR:
10235 const0 ^= const1;
10236 break;
10237 case PLUS:
10238 const0 += const1;
10239 break;
10240 case NEG:
10241 op0 = UNKNOWN;
10242 break;
10243 default:
10244 break;
10245 }
10246 }
10247
10248 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10249 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10250 return 0;
10251
10252 /* If the two constants aren't the same, we can't do anything. The
10253 remaining six cases can all be done. */
10254 else if (const0 != const1)
10255 return 0;
10256
10257 else
10258 switch (op0)
10259 {
10260 case IOR:
10261 if (op1 == AND)
10262 /* (a & b) | b == b */
10263 op0 = SET;
10264 else /* op1 == XOR */
10265 /* (a ^ b) | b == a | b */
10266 {;}
10267 break;
10268
10269 case XOR:
10270 if (op1 == AND)
10271 /* (a & b) ^ b == (~a) & b */
10272 op0 = AND, *pcomp_p = 1;
10273 else /* op1 == IOR */
10274 /* (a | b) ^ b == a & ~b */
10275 op0 = AND, const0 = ~const0;
10276 break;
10277
10278 case AND:
10279 if (op1 == IOR)
10280 /* (a | b) & b == b */
10281 op0 = SET;
10282 else /* op1 == XOR */
10283 /* (a ^ b) & b) == (~a) & b */
10284 *pcomp_p = 1;
10285 break;
10286 default:
10287 break;
10288 }
10289
10290 /* Check for NO-OP cases. */
10291 const0 &= GET_MODE_MASK (mode);
10292 if (const0 == 0
10293 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10294 op0 = UNKNOWN;
10295 else if (const0 == 0 && op0 == AND)
10296 op0 = SET;
10297 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10298 && op0 == AND)
10299 op0 = UNKNOWN;
10300
10301 *pop0 = op0;
10302
10303 /* ??? Slightly redundant with the above mask, but not entirely.
10304 Moving this above means we'd have to sign-extend the mode mask
10305 for the final test. */
10306 if (op0 != UNKNOWN && op0 != NEG)
10307 *pconst0 = trunc_int_for_mode (const0, mode);
10308
10309 return 1;
10310 }
10311 \f
10312 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10313 the shift in. The original shift operation CODE is performed on OP in
10314 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10315 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10316 result of the shift is subject to operation OUTER_CODE with operand
10317 OUTER_CONST. */
10318
10319 static machine_mode
10320 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10321 machine_mode orig_mode, machine_mode mode,
10322 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10323 {
10324 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10325
10326 /* In general we can't perform in wider mode for right shift and rotate. */
10327 switch (code)
10328 {
10329 case ASHIFTRT:
10330 /* We can still widen if the bits brought in from the left are identical
10331 to the sign bit of ORIG_MODE. */
10332 if (num_sign_bit_copies (op, mode)
10333 > (unsigned) (GET_MODE_PRECISION (mode)
10334 - GET_MODE_PRECISION (orig_mode)))
10335 return mode;
10336 return orig_mode;
10337
10338 case LSHIFTRT:
10339 /* Similarly here but with zero bits. */
10340 if (HWI_COMPUTABLE_MODE_P (mode)
10341 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10342 return mode;
10343
10344 /* We can also widen if the bits brought in will be masked off. This
10345 operation is performed in ORIG_MODE. */
10346 if (outer_code == AND)
10347 {
10348 int care_bits = low_bitmask_len (orig_mode, outer_const);
10349
10350 if (care_bits >= 0
10351 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10352 return mode;
10353 }
10354 /* fall through */
10355
10356 case ROTATE:
10357 return orig_mode;
10358
10359 case ROTATERT:
10360 gcc_unreachable ();
10361
10362 default:
10363 return mode;
10364 }
10365 }
10366
10367 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10368 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10369 if we cannot simplify it. Otherwise, return a simplified value.
10370
10371 The shift is normally computed in the widest mode we find in VAROP, as
10372 long as it isn't a different number of words than RESULT_MODE. Exceptions
10373 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10374
10375 static rtx
10376 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10377 rtx varop, int orig_count)
10378 {
10379 enum rtx_code orig_code = code;
10380 rtx orig_varop = varop;
10381 int count;
10382 machine_mode mode = result_mode;
10383 machine_mode shift_mode;
10384 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10385 unsigned int mode_words
10386 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10387 /* We form (outer_op (code varop count) (outer_const)). */
10388 enum rtx_code outer_op = UNKNOWN;
10389 HOST_WIDE_INT outer_const = 0;
10390 int complement_p = 0;
10391 rtx new_rtx, x;
10392
10393 /* Make sure and truncate the "natural" shift on the way in. We don't
10394 want to do this inside the loop as it makes it more difficult to
10395 combine shifts. */
10396 if (SHIFT_COUNT_TRUNCATED)
10397 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10398
10399 /* If we were given an invalid count, don't do anything except exactly
10400 what was requested. */
10401
10402 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10403 return NULL_RTX;
10404
10405 count = orig_count;
10406
10407 /* Unless one of the branches of the `if' in this loop does a `continue',
10408 we will `break' the loop after the `if'. */
10409
10410 while (count != 0)
10411 {
10412 /* If we have an operand of (clobber (const_int 0)), fail. */
10413 if (GET_CODE (varop) == CLOBBER)
10414 return NULL_RTX;
10415
10416 /* Convert ROTATERT to ROTATE. */
10417 if (code == ROTATERT)
10418 {
10419 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10420 code = ROTATE;
10421 count = bitsize - count;
10422 }
10423
10424 shift_mode = result_mode;
10425 if (shift_mode != mode)
10426 {
10427 /* We only change the modes of scalar shifts. */
10428 int_mode = as_a <scalar_int_mode> (mode);
10429 int_result_mode = as_a <scalar_int_mode> (result_mode);
10430 shift_mode = try_widen_shift_mode (code, varop, count,
10431 int_result_mode, int_mode,
10432 outer_op, outer_const);
10433 }
10434
10435 scalar_int_mode shift_unit_mode
10436 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10437
10438 /* Handle cases where the count is greater than the size of the mode
10439 minus 1. For ASHIFT, use the size minus one as the count (this can
10440 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10441 take the count modulo the size. For other shifts, the result is
10442 zero.
10443
10444 Since these shifts are being produced by the compiler by combining
10445 multiple operations, each of which are defined, we know what the
10446 result is supposed to be. */
10447
10448 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10449 {
10450 if (code == ASHIFTRT)
10451 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10452 else if (code == ROTATE || code == ROTATERT)
10453 count %= GET_MODE_PRECISION (shift_unit_mode);
10454 else
10455 {
10456 /* We can't simply return zero because there may be an
10457 outer op. */
10458 varop = const0_rtx;
10459 count = 0;
10460 break;
10461 }
10462 }
10463
10464 /* If we discovered we had to complement VAROP, leave. Making a NOT
10465 here would cause an infinite loop. */
10466 if (complement_p)
10467 break;
10468
10469 if (shift_mode == shift_unit_mode)
10470 {
10471 /* An arithmetic right shift of a quantity known to be -1 or 0
10472 is a no-op. */
10473 if (code == ASHIFTRT
10474 && (num_sign_bit_copies (varop, shift_unit_mode)
10475 == GET_MODE_PRECISION (shift_unit_mode)))
10476 {
10477 count = 0;
10478 break;
10479 }
10480
10481 /* If we are doing an arithmetic right shift and discarding all but
10482 the sign bit copies, this is equivalent to doing a shift by the
10483 bitsize minus one. Convert it into that shift because it will
10484 often allow other simplifications. */
10485
10486 if (code == ASHIFTRT
10487 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10488 >= GET_MODE_PRECISION (shift_unit_mode)))
10489 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10490
10491 /* We simplify the tests below and elsewhere by converting
10492 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10493 `make_compound_operation' will convert it to an ASHIFTRT for
10494 those machines (such as VAX) that don't have an LSHIFTRT. */
10495 if (code == ASHIFTRT
10496 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10497 && val_signbit_known_clear_p (shift_unit_mode,
10498 nonzero_bits (varop,
10499 shift_unit_mode)))
10500 code = LSHIFTRT;
10501
10502 if (((code == LSHIFTRT
10503 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10504 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10505 || (code == ASHIFT
10506 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10507 && !((nonzero_bits (varop, shift_unit_mode) << count)
10508 & GET_MODE_MASK (shift_unit_mode))))
10509 && !side_effects_p (varop))
10510 varop = const0_rtx;
10511 }
10512
10513 switch (GET_CODE (varop))
10514 {
10515 case SIGN_EXTEND:
10516 case ZERO_EXTEND:
10517 case SIGN_EXTRACT:
10518 case ZERO_EXTRACT:
10519 new_rtx = expand_compound_operation (varop);
10520 if (new_rtx != varop)
10521 {
10522 varop = new_rtx;
10523 continue;
10524 }
10525 break;
10526
10527 case MEM:
10528 /* The following rules apply only to scalars. */
10529 if (shift_mode != shift_unit_mode)
10530 break;
10531 int_mode = as_a <scalar_int_mode> (mode);
10532
10533 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10534 minus the width of a smaller mode, we can do this with a
10535 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10536 if ((code == ASHIFTRT || code == LSHIFTRT)
10537 && ! mode_dependent_address_p (XEXP (varop, 0),
10538 MEM_ADDR_SPACE (varop))
10539 && ! MEM_VOLATILE_P (varop)
10540 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10541 .exists (&tmode)))
10542 {
10543 new_rtx = adjust_address_nv (varop, tmode,
10544 BYTES_BIG_ENDIAN ? 0
10545 : count / BITS_PER_UNIT);
10546
10547 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10548 : ZERO_EXTEND, int_mode, new_rtx);
10549 count = 0;
10550 continue;
10551 }
10552 break;
10553
10554 case SUBREG:
10555 /* The following rules apply only to scalars. */
10556 if (shift_mode != shift_unit_mode)
10557 break;
10558 int_mode = as_a <scalar_int_mode> (mode);
10559 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10560
10561 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10562 the same number of words as what we've seen so far. Then store
10563 the widest mode in MODE. */
10564 if (subreg_lowpart_p (varop)
10565 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10566 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10567 && (unsigned int) ((GET_MODE_SIZE (inner_mode)
10568 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10569 == mode_words
10570 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10571 {
10572 varop = SUBREG_REG (varop);
10573 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10574 mode = inner_mode;
10575 continue;
10576 }
10577 break;
10578
10579 case MULT:
10580 /* Some machines use MULT instead of ASHIFT because MULT
10581 is cheaper. But it is still better on those machines to
10582 merge two shifts into one. */
10583 if (CONST_INT_P (XEXP (varop, 1))
10584 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10585 {
10586 varop
10587 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10588 XEXP (varop, 0),
10589 GEN_INT (exact_log2 (
10590 UINTVAL (XEXP (varop, 1)))));
10591 continue;
10592 }
10593 break;
10594
10595 case UDIV:
10596 /* Similar, for when divides are cheaper. */
10597 if (CONST_INT_P (XEXP (varop, 1))
10598 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10599 {
10600 varop
10601 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10602 XEXP (varop, 0),
10603 GEN_INT (exact_log2 (
10604 UINTVAL (XEXP (varop, 1)))));
10605 continue;
10606 }
10607 break;
10608
10609 case ASHIFTRT:
10610 /* If we are extracting just the sign bit of an arithmetic
10611 right shift, that shift is not needed. However, the sign
10612 bit of a wider mode may be different from what would be
10613 interpreted as the sign bit in a narrower mode, so, if
10614 the result is narrower, don't discard the shift. */
10615 if (code == LSHIFTRT
10616 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10617 && (GET_MODE_UNIT_BITSIZE (result_mode)
10618 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10619 {
10620 varop = XEXP (varop, 0);
10621 continue;
10622 }
10623
10624 /* fall through */
10625
10626 case LSHIFTRT:
10627 case ASHIFT:
10628 case ROTATE:
10629 /* The following rules apply only to scalars. */
10630 if (shift_mode != shift_unit_mode)
10631 break;
10632 int_mode = as_a <scalar_int_mode> (mode);
10633 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10634 int_result_mode = as_a <scalar_int_mode> (result_mode);
10635
10636 /* Here we have two nested shifts. The result is usually the
10637 AND of a new shift with a mask. We compute the result below. */
10638 if (CONST_INT_P (XEXP (varop, 1))
10639 && INTVAL (XEXP (varop, 1)) >= 0
10640 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10641 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10642 && HWI_COMPUTABLE_MODE_P (int_mode))
10643 {
10644 enum rtx_code first_code = GET_CODE (varop);
10645 unsigned int first_count = INTVAL (XEXP (varop, 1));
10646 unsigned HOST_WIDE_INT mask;
10647 rtx mask_rtx;
10648
10649 /* We have one common special case. We can't do any merging if
10650 the inner code is an ASHIFTRT of a smaller mode. However, if
10651 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10652 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10653 we can convert it to
10654 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10655 This simplifies certain SIGN_EXTEND operations. */
10656 if (code == ASHIFT && first_code == ASHIFTRT
10657 && count == (GET_MODE_PRECISION (int_result_mode)
10658 - GET_MODE_PRECISION (int_varop_mode)))
10659 {
10660 /* C3 has the low-order C1 bits zero. */
10661
10662 mask = GET_MODE_MASK (int_mode)
10663 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10664
10665 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10666 XEXP (varop, 0), mask);
10667 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10668 int_result_mode, varop, count);
10669 count = first_count;
10670 code = ASHIFTRT;
10671 continue;
10672 }
10673
10674 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10675 than C1 high-order bits equal to the sign bit, we can convert
10676 this to either an ASHIFT or an ASHIFTRT depending on the
10677 two counts.
10678
10679 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10680
10681 if (code == ASHIFTRT && first_code == ASHIFT
10682 && int_varop_mode == shift_unit_mode
10683 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10684 > first_count))
10685 {
10686 varop = XEXP (varop, 0);
10687 count -= first_count;
10688 if (count < 0)
10689 {
10690 count = -count;
10691 code = ASHIFT;
10692 }
10693
10694 continue;
10695 }
10696
10697 /* There are some cases we can't do. If CODE is ASHIFTRT,
10698 we can only do this if FIRST_CODE is also ASHIFTRT.
10699
10700 We can't do the case when CODE is ROTATE and FIRST_CODE is
10701 ASHIFTRT.
10702
10703 If the mode of this shift is not the mode of the outer shift,
10704 we can't do this if either shift is a right shift or ROTATE.
10705
10706 Finally, we can't do any of these if the mode is too wide
10707 unless the codes are the same.
10708
10709 Handle the case where the shift codes are the same
10710 first. */
10711
10712 if (code == first_code)
10713 {
10714 if (int_varop_mode != int_result_mode
10715 && (code == ASHIFTRT || code == LSHIFTRT
10716 || code == ROTATE))
10717 break;
10718
10719 count += first_count;
10720 varop = XEXP (varop, 0);
10721 continue;
10722 }
10723
10724 if (code == ASHIFTRT
10725 || (code == ROTATE && first_code == ASHIFTRT)
10726 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10727 || (int_varop_mode != int_result_mode
10728 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10729 || first_code == ROTATE
10730 || code == ROTATE)))
10731 break;
10732
10733 /* To compute the mask to apply after the shift, shift the
10734 nonzero bits of the inner shift the same way the
10735 outer shift will. */
10736
10737 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10738 int_result_mode);
10739
10740 mask_rtx
10741 = simplify_const_binary_operation (code, int_result_mode,
10742 mask_rtx, GEN_INT (count));
10743
10744 /* Give up if we can't compute an outer operation to use. */
10745 if (mask_rtx == 0
10746 || !CONST_INT_P (mask_rtx)
10747 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10748 INTVAL (mask_rtx),
10749 int_result_mode, &complement_p))
10750 break;
10751
10752 /* If the shifts are in the same direction, we add the
10753 counts. Otherwise, we subtract them. */
10754 if ((code == ASHIFTRT || code == LSHIFTRT)
10755 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10756 count += first_count;
10757 else
10758 count -= first_count;
10759
10760 /* If COUNT is positive, the new shift is usually CODE,
10761 except for the two exceptions below, in which case it is
10762 FIRST_CODE. If the count is negative, FIRST_CODE should
10763 always be used */
10764 if (count > 0
10765 && ((first_code == ROTATE && code == ASHIFT)
10766 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10767 code = first_code;
10768 else if (count < 0)
10769 code = first_code, count = -count;
10770
10771 varop = XEXP (varop, 0);
10772 continue;
10773 }
10774
10775 /* If we have (A << B << C) for any shift, we can convert this to
10776 (A << C << B). This wins if A is a constant. Only try this if
10777 B is not a constant. */
10778
10779 else if (GET_CODE (varop) == code
10780 && CONST_INT_P (XEXP (varop, 0))
10781 && !CONST_INT_P (XEXP (varop, 1)))
10782 {
10783 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10784 sure the result will be masked. See PR70222. */
10785 if (code == LSHIFTRT
10786 && int_mode != int_result_mode
10787 && !merge_outer_ops (&outer_op, &outer_const, AND,
10788 GET_MODE_MASK (int_result_mode)
10789 >> orig_count, int_result_mode,
10790 &complement_p))
10791 break;
10792 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10793 up outer sign extension (often left and right shift) is
10794 hardly more efficient than the original. See PR70429. */
10795 if (code == ASHIFTRT && int_mode != int_result_mode)
10796 break;
10797
10798 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10799 XEXP (varop, 0),
10800 GEN_INT (count));
10801 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10802 count = 0;
10803 continue;
10804 }
10805 break;
10806
10807 case NOT:
10808 /* The following rules apply only to scalars. */
10809 if (shift_mode != shift_unit_mode)
10810 break;
10811
10812 /* Make this fit the case below. */
10813 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10814 continue;
10815
10816 case IOR:
10817 case AND:
10818 case XOR:
10819 /* The following rules apply only to scalars. */
10820 if (shift_mode != shift_unit_mode)
10821 break;
10822 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10823 int_result_mode = as_a <scalar_int_mode> (result_mode);
10824
10825 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10826 with C the size of VAROP - 1 and the shift is logical if
10827 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10828 we have an (le X 0) operation. If we have an arithmetic shift
10829 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10830 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10831
10832 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10833 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10834 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10835 && (code == LSHIFTRT || code == ASHIFTRT)
10836 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10837 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10838 {
10839 count = 0;
10840 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10841 const0_rtx);
10842
10843 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10844 varop = gen_rtx_NEG (int_varop_mode, varop);
10845
10846 continue;
10847 }
10848
10849 /* If we have (shift (logical)), move the logical to the outside
10850 to allow it to possibly combine with another logical and the
10851 shift to combine with another shift. This also canonicalizes to
10852 what a ZERO_EXTRACT looks like. Also, some machines have
10853 (and (shift)) insns. */
10854
10855 if (CONST_INT_P (XEXP (varop, 1))
10856 /* We can't do this if we have (ashiftrt (xor)) and the
10857 constant has its sign bit set in shift_unit_mode with
10858 shift_unit_mode wider than result_mode. */
10859 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10860 && int_result_mode != shift_unit_mode
10861 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10862 shift_unit_mode))
10863 && (new_rtx = simplify_const_binary_operation
10864 (code, int_result_mode,
10865 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
10866 GEN_INT (count))) != 0
10867 && CONST_INT_P (new_rtx)
10868 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10869 INTVAL (new_rtx), int_result_mode,
10870 &complement_p))
10871 {
10872 varop = XEXP (varop, 0);
10873 continue;
10874 }
10875
10876 /* If we can't do that, try to simplify the shift in each arm of the
10877 logical expression, make a new logical expression, and apply
10878 the inverse distributive law. This also can't be done for
10879 (ashiftrt (xor)) where we've widened the shift and the constant
10880 changes the sign bit. */
10881 if (CONST_INT_P (XEXP (varop, 1))
10882 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10883 && int_result_mode != shift_unit_mode
10884 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10885 shift_unit_mode)))
10886 {
10887 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10888 XEXP (varop, 0), count);
10889 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10890 XEXP (varop, 1), count);
10891
10892 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
10893 lhs, rhs);
10894 varop = apply_distributive_law (varop);
10895
10896 count = 0;
10897 continue;
10898 }
10899 break;
10900
10901 case EQ:
10902 /* The following rules apply only to scalars. */
10903 if (shift_mode != shift_unit_mode)
10904 break;
10905 int_result_mode = as_a <scalar_int_mode> (result_mode);
10906
10907 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10908 says that the sign bit can be tested, FOO has mode MODE, C is
10909 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10910 that may be nonzero. */
10911 if (code == LSHIFTRT
10912 && XEXP (varop, 1) == const0_rtx
10913 && GET_MODE (XEXP (varop, 0)) == int_result_mode
10914 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
10915 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10916 && STORE_FLAG_VALUE == -1
10917 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
10918 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
10919 int_result_mode, &complement_p))
10920 {
10921 varop = XEXP (varop, 0);
10922 count = 0;
10923 continue;
10924 }
10925 break;
10926
10927 case NEG:
10928 /* The following rules apply only to scalars. */
10929 if (shift_mode != shift_unit_mode)
10930 break;
10931 int_result_mode = as_a <scalar_int_mode> (result_mode);
10932
10933 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10934 than the number of bits in the mode is equivalent to A. */
10935 if (code == LSHIFTRT
10936 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
10937 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
10938 {
10939 varop = XEXP (varop, 0);
10940 count = 0;
10941 continue;
10942 }
10943
10944 /* NEG commutes with ASHIFT since it is multiplication. Move the
10945 NEG outside to allow shifts to combine. */
10946 if (code == ASHIFT
10947 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
10948 int_result_mode, &complement_p))
10949 {
10950 varop = XEXP (varop, 0);
10951 continue;
10952 }
10953 break;
10954
10955 case PLUS:
10956 /* The following rules apply only to scalars. */
10957 if (shift_mode != shift_unit_mode)
10958 break;
10959 int_result_mode = as_a <scalar_int_mode> (result_mode);
10960
10961 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10962 is one less than the number of bits in the mode is
10963 equivalent to (xor A 1). */
10964 if (code == LSHIFTRT
10965 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
10966 && XEXP (varop, 1) == constm1_rtx
10967 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
10968 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
10969 int_result_mode, &complement_p))
10970 {
10971 count = 0;
10972 varop = XEXP (varop, 0);
10973 continue;
10974 }
10975
10976 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10977 that might be nonzero in BAR are those being shifted out and those
10978 bits are known zero in FOO, we can replace the PLUS with FOO.
10979 Similarly in the other operand order. This code occurs when
10980 we are computing the size of a variable-size array. */
10981
10982 if ((code == ASHIFTRT || code == LSHIFTRT)
10983 && count < HOST_BITS_PER_WIDE_INT
10984 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
10985 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
10986 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
10987 {
10988 varop = XEXP (varop, 0);
10989 continue;
10990 }
10991 else if ((code == ASHIFTRT || code == LSHIFTRT)
10992 && count < HOST_BITS_PER_WIDE_INT
10993 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10994 && 0 == (nonzero_bits (XEXP (varop, 0), int_result_mode)
10995 >> count)
10996 && 0 == (nonzero_bits (XEXP (varop, 0), int_result_mode)
10997 & nonzero_bits (XEXP (varop, 1), int_result_mode)))
10998 {
10999 varop = XEXP (varop, 1);
11000 continue;
11001 }
11002
11003 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11004 if (code == ASHIFT
11005 && CONST_INT_P (XEXP (varop, 1))
11006 && (new_rtx = simplify_const_binary_operation
11007 (ASHIFT, int_result_mode,
11008 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11009 GEN_INT (count))) != 0
11010 && CONST_INT_P (new_rtx)
11011 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11012 INTVAL (new_rtx), int_result_mode,
11013 &complement_p))
11014 {
11015 varop = XEXP (varop, 0);
11016 continue;
11017 }
11018
11019 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11020 signbit', and attempt to change the PLUS to an XOR and move it to
11021 the outer operation as is done above in the AND/IOR/XOR case
11022 leg for shift(logical). See details in logical handling above
11023 for reasoning in doing so. */
11024 if (code == LSHIFTRT
11025 && CONST_INT_P (XEXP (varop, 1))
11026 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11027 && (new_rtx = simplify_const_binary_operation
11028 (code, int_result_mode,
11029 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11030 GEN_INT (count))) != 0
11031 && CONST_INT_P (new_rtx)
11032 && merge_outer_ops (&outer_op, &outer_const, XOR,
11033 INTVAL (new_rtx), int_result_mode,
11034 &complement_p))
11035 {
11036 varop = XEXP (varop, 0);
11037 continue;
11038 }
11039
11040 break;
11041
11042 case MINUS:
11043 /* The following rules apply only to scalars. */
11044 if (shift_mode != shift_unit_mode)
11045 break;
11046 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11047
11048 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11049 with C the size of VAROP - 1 and the shift is logical if
11050 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11051 we have a (gt X 0) operation. If the shift is arithmetic with
11052 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11053 we have a (neg (gt X 0)) operation. */
11054
11055 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11056 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11057 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11058 && (code == LSHIFTRT || code == ASHIFTRT)
11059 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11060 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11061 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11062 {
11063 count = 0;
11064 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11065 const0_rtx);
11066
11067 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11068 varop = gen_rtx_NEG (int_varop_mode, varop);
11069
11070 continue;
11071 }
11072 break;
11073
11074 case TRUNCATE:
11075 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11076 if the truncate does not affect the value. */
11077 if (code == LSHIFTRT
11078 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11079 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11080 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11081 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11082 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11083 {
11084 rtx varop_inner = XEXP (varop, 0);
11085
11086 varop_inner
11087 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11088 XEXP (varop_inner, 0),
11089 GEN_INT
11090 (count + INTVAL (XEXP (varop_inner, 1))));
11091 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11092 count = 0;
11093 continue;
11094 }
11095 break;
11096
11097 default:
11098 break;
11099 }
11100
11101 break;
11102 }
11103
11104 shift_mode = result_mode;
11105 if (shift_mode != mode)
11106 {
11107 /* We only change the modes of scalar shifts. */
11108 int_mode = as_a <scalar_int_mode> (mode);
11109 int_result_mode = as_a <scalar_int_mode> (result_mode);
11110 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11111 int_mode, outer_op, outer_const);
11112 }
11113
11114 /* We have now finished analyzing the shift. The result should be
11115 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11116 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11117 to the result of the shift. OUTER_CONST is the relevant constant,
11118 but we must turn off all bits turned off in the shift. */
11119
11120 if (outer_op == UNKNOWN
11121 && orig_code == code && orig_count == count
11122 && varop == orig_varop
11123 && shift_mode == GET_MODE (varop))
11124 return NULL_RTX;
11125
11126 /* Make a SUBREG if necessary. If we can't make it, fail. */
11127 varop = gen_lowpart (shift_mode, varop);
11128 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11129 return NULL_RTX;
11130
11131 /* If we have an outer operation and we just made a shift, it is
11132 possible that we could have simplified the shift were it not
11133 for the outer operation. So try to do the simplification
11134 recursively. */
11135
11136 if (outer_op != UNKNOWN)
11137 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11138 else
11139 x = NULL_RTX;
11140
11141 if (x == NULL_RTX)
11142 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
11143
11144 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11145 turn off all the bits that the shift would have turned off. */
11146 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11147 /* We only change the modes of scalar shifts. */
11148 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11149 x, GET_MODE_MASK (result_mode) >> orig_count);
11150
11151 /* Do the remainder of the processing in RESULT_MODE. */
11152 x = gen_lowpart_or_truncate (result_mode, x);
11153
11154 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11155 operation. */
11156 if (complement_p)
11157 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11158
11159 if (outer_op != UNKNOWN)
11160 {
11161 int_result_mode = as_a <scalar_int_mode> (result_mode);
11162
11163 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11164 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11165 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11166
11167 if (outer_op == AND)
11168 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11169 else if (outer_op == SET)
11170 {
11171 /* This means that we have determined that the result is
11172 equivalent to a constant. This should be rare. */
11173 if (!side_effects_p (x))
11174 x = GEN_INT (outer_const);
11175 }
11176 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11177 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11178 else
11179 x = simplify_gen_binary (outer_op, int_result_mode, x,
11180 GEN_INT (outer_const));
11181 }
11182
11183 return x;
11184 }
11185
11186 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11187 The result of the shift is RESULT_MODE. If we cannot simplify it,
11188 return X or, if it is NULL, synthesize the expression with
11189 simplify_gen_binary. Otherwise, return a simplified value.
11190
11191 The shift is normally computed in the widest mode we find in VAROP, as
11192 long as it isn't a different number of words than RESULT_MODE. Exceptions
11193 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11194
11195 static rtx
11196 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11197 rtx varop, int count)
11198 {
11199 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11200 if (tem)
11201 return tem;
11202
11203 if (!x)
11204 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11205 if (GET_MODE (x) != result_mode)
11206 x = gen_lowpart (result_mode, x);
11207 return x;
11208 }
11209
11210 \f
11211 /* A subroutine of recog_for_combine. See there for arguments and
11212 return value. */
11213
11214 static int
11215 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11216 {
11217 rtx pat = *pnewpat;
11218 rtx pat_without_clobbers;
11219 int insn_code_number;
11220 int num_clobbers_to_add = 0;
11221 int i;
11222 rtx notes = NULL_RTX;
11223 rtx old_notes, old_pat;
11224 int old_icode;
11225
11226 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11227 we use to indicate that something didn't match. If we find such a
11228 thing, force rejection. */
11229 if (GET_CODE (pat) == PARALLEL)
11230 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11231 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11232 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11233 return -1;
11234
11235 old_pat = PATTERN (insn);
11236 old_notes = REG_NOTES (insn);
11237 PATTERN (insn) = pat;
11238 REG_NOTES (insn) = NULL_RTX;
11239
11240 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11241 if (dump_file && (dump_flags & TDF_DETAILS))
11242 {
11243 if (insn_code_number < 0)
11244 fputs ("Failed to match this instruction:\n", dump_file);
11245 else
11246 fputs ("Successfully matched this instruction:\n", dump_file);
11247 print_rtl_single (dump_file, pat);
11248 }
11249
11250 /* If it isn't, there is the possibility that we previously had an insn
11251 that clobbered some register as a side effect, but the combined
11252 insn doesn't need to do that. So try once more without the clobbers
11253 unless this represents an ASM insn. */
11254
11255 if (insn_code_number < 0 && ! check_asm_operands (pat)
11256 && GET_CODE (pat) == PARALLEL)
11257 {
11258 int pos;
11259
11260 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11261 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11262 {
11263 if (i != pos)
11264 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11265 pos++;
11266 }
11267
11268 SUBST_INT (XVECLEN (pat, 0), pos);
11269
11270 if (pos == 1)
11271 pat = XVECEXP (pat, 0, 0);
11272
11273 PATTERN (insn) = pat;
11274 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11275 if (dump_file && (dump_flags & TDF_DETAILS))
11276 {
11277 if (insn_code_number < 0)
11278 fputs ("Failed to match this instruction:\n", dump_file);
11279 else
11280 fputs ("Successfully matched this instruction:\n", dump_file);
11281 print_rtl_single (dump_file, pat);
11282 }
11283 }
11284
11285 pat_without_clobbers = pat;
11286
11287 PATTERN (insn) = old_pat;
11288 REG_NOTES (insn) = old_notes;
11289
11290 /* Recognize all noop sets, these will be killed by followup pass. */
11291 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11292 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11293
11294 /* If we had any clobbers to add, make a new pattern than contains
11295 them. Then check to make sure that all of them are dead. */
11296 if (num_clobbers_to_add)
11297 {
11298 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11299 rtvec_alloc (GET_CODE (pat) == PARALLEL
11300 ? (XVECLEN (pat, 0)
11301 + num_clobbers_to_add)
11302 : num_clobbers_to_add + 1));
11303
11304 if (GET_CODE (pat) == PARALLEL)
11305 for (i = 0; i < XVECLEN (pat, 0); i++)
11306 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11307 else
11308 XVECEXP (newpat, 0, 0) = pat;
11309
11310 add_clobbers (newpat, insn_code_number);
11311
11312 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11313 i < XVECLEN (newpat, 0); i++)
11314 {
11315 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11316 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11317 return -1;
11318 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11319 {
11320 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11321 notes = alloc_reg_note (REG_UNUSED,
11322 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11323 }
11324 }
11325 pat = newpat;
11326 }
11327
11328 if (insn_code_number >= 0
11329 && insn_code_number != NOOP_MOVE_INSN_CODE)
11330 {
11331 old_pat = PATTERN (insn);
11332 old_notes = REG_NOTES (insn);
11333 old_icode = INSN_CODE (insn);
11334 PATTERN (insn) = pat;
11335 REG_NOTES (insn) = notes;
11336 INSN_CODE (insn) = insn_code_number;
11337
11338 /* Allow targets to reject combined insn. */
11339 if (!targetm.legitimate_combined_insn (insn))
11340 {
11341 if (dump_file && (dump_flags & TDF_DETAILS))
11342 fputs ("Instruction not appropriate for target.",
11343 dump_file);
11344
11345 /* Callers expect recog_for_combine to strip
11346 clobbers from the pattern on failure. */
11347 pat = pat_without_clobbers;
11348 notes = NULL_RTX;
11349
11350 insn_code_number = -1;
11351 }
11352
11353 PATTERN (insn) = old_pat;
11354 REG_NOTES (insn) = old_notes;
11355 INSN_CODE (insn) = old_icode;
11356 }
11357
11358 *pnewpat = pat;
11359 *pnotes = notes;
11360
11361 return insn_code_number;
11362 }
11363
11364 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11365 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11366 Return whether anything was so changed. */
11367
11368 static bool
11369 change_zero_ext (rtx pat)
11370 {
11371 bool changed = false;
11372 rtx *src = &SET_SRC (pat);
11373
11374 subrtx_ptr_iterator::array_type array;
11375 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11376 {
11377 rtx x = **iter;
11378 scalar_int_mode mode, inner_mode;
11379 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11380 continue;
11381 int size;
11382
11383 if (GET_CODE (x) == ZERO_EXTRACT
11384 && CONST_INT_P (XEXP (x, 1))
11385 && CONST_INT_P (XEXP (x, 2))
11386 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11387 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11388 {
11389 size = INTVAL (XEXP (x, 1));
11390
11391 int start = INTVAL (XEXP (x, 2));
11392 if (BITS_BIG_ENDIAN)
11393 start = GET_MODE_PRECISION (inner_mode) - size - start;
11394
11395 if (start)
11396 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0), GEN_INT (start));
11397 else
11398 x = XEXP (x, 0);
11399 if (mode != inner_mode)
11400 x = gen_lowpart_SUBREG (mode, x);
11401 }
11402 else if (GET_CODE (x) == ZERO_EXTEND
11403 && GET_CODE (XEXP (x, 0)) == SUBREG
11404 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11405 && !paradoxical_subreg_p (XEXP (x, 0))
11406 && subreg_lowpart_p (XEXP (x, 0)))
11407 {
11408 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11409 size = GET_MODE_PRECISION (inner_mode);
11410 x = SUBREG_REG (XEXP (x, 0));
11411 if (GET_MODE (x) != mode)
11412 x = gen_lowpart_SUBREG (mode, x);
11413 }
11414 else if (GET_CODE (x) == ZERO_EXTEND
11415 && REG_P (XEXP (x, 0))
11416 && HARD_REGISTER_P (XEXP (x, 0))
11417 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11418 {
11419 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11420 size = GET_MODE_PRECISION (inner_mode);
11421 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11422 }
11423 else
11424 continue;
11425
11426 if (!(GET_CODE (x) == LSHIFTRT
11427 && CONST_INT_P (XEXP (x, 1))
11428 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11429 {
11430 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11431 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11432 }
11433
11434 SUBST (**iter, x);
11435 changed = true;
11436 }
11437
11438 if (changed)
11439 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11440 maybe_swap_commutative_operands (**iter);
11441
11442 rtx *dst = &SET_DEST (pat);
11443 scalar_int_mode mode;
11444 if (GET_CODE (*dst) == ZERO_EXTRACT
11445 && REG_P (XEXP (*dst, 0))
11446 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11447 && CONST_INT_P (XEXP (*dst, 1))
11448 && CONST_INT_P (XEXP (*dst, 2)))
11449 {
11450 rtx reg = XEXP (*dst, 0);
11451 int width = INTVAL (XEXP (*dst, 1));
11452 int offset = INTVAL (XEXP (*dst, 2));
11453 int reg_width = GET_MODE_PRECISION (mode);
11454 if (BITS_BIG_ENDIAN)
11455 offset = reg_width - width - offset;
11456
11457 rtx x, y, z, w;
11458 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11459 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11460 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11461 if (offset)
11462 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11463 else
11464 y = SET_SRC (pat);
11465 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11466 w = gen_rtx_IOR (mode, x, z);
11467 SUBST (SET_DEST (pat), reg);
11468 SUBST (SET_SRC (pat), w);
11469
11470 changed = true;
11471 }
11472
11473 return changed;
11474 }
11475
11476 /* Like recog, but we receive the address of a pointer to a new pattern.
11477 We try to match the rtx that the pointer points to.
11478 If that fails, we may try to modify or replace the pattern,
11479 storing the replacement into the same pointer object.
11480
11481 Modifications include deletion or addition of CLOBBERs. If the
11482 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11483 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11484 (and undo if that fails).
11485
11486 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11487 the CLOBBERs are placed.
11488
11489 The value is the final insn code from the pattern ultimately matched,
11490 or -1. */
11491
11492 static int
11493 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11494 {
11495 rtx pat = *pnewpat;
11496 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11497 if (insn_code_number >= 0 || check_asm_operands (pat))
11498 return insn_code_number;
11499
11500 void *marker = get_undo_marker ();
11501 bool changed = false;
11502
11503 if (GET_CODE (pat) == SET)
11504 changed = change_zero_ext (pat);
11505 else if (GET_CODE (pat) == PARALLEL)
11506 {
11507 int i;
11508 for (i = 0; i < XVECLEN (pat, 0); i++)
11509 {
11510 rtx set = XVECEXP (pat, 0, i);
11511 if (GET_CODE (set) == SET)
11512 changed |= change_zero_ext (set);
11513 }
11514 }
11515
11516 if (changed)
11517 {
11518 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11519
11520 if (insn_code_number < 0)
11521 undo_to_marker (marker);
11522 }
11523
11524 return insn_code_number;
11525 }
11526 \f
11527 /* Like gen_lowpart_general but for use by combine. In combine it
11528 is not possible to create any new pseudoregs. However, it is
11529 safe to create invalid memory addresses, because combine will
11530 try to recognize them and all they will do is make the combine
11531 attempt fail.
11532
11533 If for some reason this cannot do its job, an rtx
11534 (clobber (const_int 0)) is returned.
11535 An insn containing that will not be recognized. */
11536
11537 static rtx
11538 gen_lowpart_for_combine (machine_mode omode, rtx x)
11539 {
11540 machine_mode imode = GET_MODE (x);
11541 unsigned int osize = GET_MODE_SIZE (omode);
11542 unsigned int isize = GET_MODE_SIZE (imode);
11543 rtx result;
11544
11545 if (omode == imode)
11546 return x;
11547
11548 /* We can only support MODE being wider than a word if X is a
11549 constant integer or has a mode the same size. */
11550 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11551 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11552 goto fail;
11553
11554 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11555 won't know what to do. So we will strip off the SUBREG here and
11556 process normally. */
11557 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11558 {
11559 x = SUBREG_REG (x);
11560
11561 /* For use in case we fall down into the address adjustments
11562 further below, we need to adjust the known mode and size of
11563 x; imode and isize, since we just adjusted x. */
11564 imode = GET_MODE (x);
11565
11566 if (imode == omode)
11567 return x;
11568
11569 isize = GET_MODE_SIZE (imode);
11570 }
11571
11572 result = gen_lowpart_common (omode, x);
11573
11574 if (result)
11575 return result;
11576
11577 if (MEM_P (x))
11578 {
11579 int offset = 0;
11580
11581 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11582 address. */
11583 if (MEM_VOLATILE_P (x)
11584 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11585 goto fail;
11586
11587 /* If we want to refer to something bigger than the original memref,
11588 generate a paradoxical subreg instead. That will force a reload
11589 of the original memref X. */
11590 if (paradoxical_subreg_p (omode, imode))
11591 return gen_rtx_SUBREG (omode, x, 0);
11592
11593 if (WORDS_BIG_ENDIAN)
11594 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11595
11596 /* Adjust the address so that the address-after-the-data is
11597 unchanged. */
11598 if (BYTES_BIG_ENDIAN)
11599 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11600
11601 return adjust_address_nv (x, omode, offset);
11602 }
11603
11604 /* If X is a comparison operator, rewrite it in a new mode. This
11605 probably won't match, but may allow further simplifications. */
11606 else if (COMPARISON_P (x))
11607 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11608
11609 /* If we couldn't simplify X any other way, just enclose it in a
11610 SUBREG. Normally, this SUBREG won't match, but some patterns may
11611 include an explicit SUBREG or we may simplify it further in combine. */
11612 else
11613 {
11614 rtx res;
11615
11616 if (imode == VOIDmode)
11617 {
11618 imode = int_mode_for_mode (omode).require ();
11619 x = gen_lowpart_common (imode, x);
11620 if (x == NULL)
11621 goto fail;
11622 }
11623 res = lowpart_subreg (omode, x, imode);
11624 if (res)
11625 return res;
11626 }
11627
11628 fail:
11629 return gen_rtx_CLOBBER (omode, const0_rtx);
11630 }
11631 \f
11632 /* Try to simplify a comparison between OP0 and a constant OP1,
11633 where CODE is the comparison code that will be tested, into a
11634 (CODE OP0 const0_rtx) form.
11635
11636 The result is a possibly different comparison code to use.
11637 *POP1 may be updated. */
11638
11639 static enum rtx_code
11640 simplify_compare_const (enum rtx_code code, machine_mode mode,
11641 rtx op0, rtx *pop1)
11642 {
11643 scalar_int_mode int_mode;
11644 HOST_WIDE_INT const_op = INTVAL (*pop1);
11645
11646 /* Get the constant we are comparing against and turn off all bits
11647 not on in our mode. */
11648 if (mode != VOIDmode)
11649 const_op = trunc_int_for_mode (const_op, mode);
11650
11651 /* If we are comparing against a constant power of two and the value
11652 being compared can only have that single bit nonzero (e.g., it was
11653 `and'ed with that bit), we can replace this with a comparison
11654 with zero. */
11655 if (const_op
11656 && (code == EQ || code == NE || code == GE || code == GEU
11657 || code == LT || code == LTU)
11658 && is_a <scalar_int_mode> (mode, &int_mode)
11659 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11660 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11661 && (nonzero_bits (op0, int_mode)
11662 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11663 {
11664 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11665 const_op = 0;
11666 }
11667
11668 /* Similarly, if we are comparing a value known to be either -1 or
11669 0 with -1, change it to the opposite comparison against zero. */
11670 if (const_op == -1
11671 && (code == EQ || code == NE || code == GT || code == LE
11672 || code == GEU || code == LTU)
11673 && is_a <scalar_int_mode> (mode, &int_mode)
11674 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11675 {
11676 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11677 const_op = 0;
11678 }
11679
11680 /* Do some canonicalizations based on the comparison code. We prefer
11681 comparisons against zero and then prefer equality comparisons.
11682 If we can reduce the size of a constant, we will do that too. */
11683 switch (code)
11684 {
11685 case LT:
11686 /* < C is equivalent to <= (C - 1) */
11687 if (const_op > 0)
11688 {
11689 const_op -= 1;
11690 code = LE;
11691 /* ... fall through to LE case below. */
11692 gcc_fallthrough ();
11693 }
11694 else
11695 break;
11696
11697 case LE:
11698 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11699 if (const_op < 0)
11700 {
11701 const_op += 1;
11702 code = LT;
11703 }
11704
11705 /* If we are doing a <= 0 comparison on a value known to have
11706 a zero sign bit, we can replace this with == 0. */
11707 else if (const_op == 0
11708 && is_a <scalar_int_mode> (mode, &int_mode)
11709 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11710 && (nonzero_bits (op0, int_mode)
11711 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11712 == 0)
11713 code = EQ;
11714 break;
11715
11716 case GE:
11717 /* >= C is equivalent to > (C - 1). */
11718 if (const_op > 0)
11719 {
11720 const_op -= 1;
11721 code = GT;
11722 /* ... fall through to GT below. */
11723 gcc_fallthrough ();
11724 }
11725 else
11726 break;
11727
11728 case GT:
11729 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11730 if (const_op < 0)
11731 {
11732 const_op += 1;
11733 code = GE;
11734 }
11735
11736 /* If we are doing a > 0 comparison on a value known to have
11737 a zero sign bit, we can replace this with != 0. */
11738 else if (const_op == 0
11739 && is_a <scalar_int_mode> (mode, &int_mode)
11740 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11741 && (nonzero_bits (op0, int_mode)
11742 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11743 == 0)
11744 code = NE;
11745 break;
11746
11747 case LTU:
11748 /* < C is equivalent to <= (C - 1). */
11749 if (const_op > 0)
11750 {
11751 const_op -= 1;
11752 code = LEU;
11753 /* ... fall through ... */
11754 }
11755 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11756 else if (is_a <scalar_int_mode> (mode, &int_mode)
11757 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11758 && ((unsigned HOST_WIDE_INT) const_op
11759 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11760 {
11761 const_op = 0;
11762 code = GE;
11763 break;
11764 }
11765 else
11766 break;
11767
11768 case LEU:
11769 /* unsigned <= 0 is equivalent to == 0 */
11770 if (const_op == 0)
11771 code = EQ;
11772 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11773 else if (is_a <scalar_int_mode> (mode, &int_mode)
11774 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11775 && ((unsigned HOST_WIDE_INT) const_op
11776 == ((HOST_WIDE_INT_1U
11777 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11778 {
11779 const_op = 0;
11780 code = GE;
11781 }
11782 break;
11783
11784 case GEU:
11785 /* >= C is equivalent to > (C - 1). */
11786 if (const_op > 1)
11787 {
11788 const_op -= 1;
11789 code = GTU;
11790 /* ... fall through ... */
11791 }
11792
11793 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11794 else if (is_a <scalar_int_mode> (mode, &int_mode)
11795 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11796 && ((unsigned HOST_WIDE_INT) const_op
11797 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11798 {
11799 const_op = 0;
11800 code = LT;
11801 break;
11802 }
11803 else
11804 break;
11805
11806 case GTU:
11807 /* unsigned > 0 is equivalent to != 0 */
11808 if (const_op == 0)
11809 code = NE;
11810 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11811 else if (is_a <scalar_int_mode> (mode, &int_mode)
11812 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11813 && ((unsigned HOST_WIDE_INT) const_op
11814 == (HOST_WIDE_INT_1U
11815 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
11816 {
11817 const_op = 0;
11818 code = LT;
11819 }
11820 break;
11821
11822 default:
11823 break;
11824 }
11825
11826 *pop1 = GEN_INT (const_op);
11827 return code;
11828 }
11829 \f
11830 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11831 comparison code that will be tested.
11832
11833 The result is a possibly different comparison code to use. *POP0 and
11834 *POP1 may be updated.
11835
11836 It is possible that we might detect that a comparison is either always
11837 true or always false. However, we do not perform general constant
11838 folding in combine, so this knowledge isn't useful. Such tautologies
11839 should have been detected earlier. Hence we ignore all such cases. */
11840
11841 static enum rtx_code
11842 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11843 {
11844 rtx op0 = *pop0;
11845 rtx op1 = *pop1;
11846 rtx tem, tem1;
11847 int i;
11848 scalar_int_mode mode, inner_mode, tmode;
11849 opt_scalar_int_mode tmode_iter;
11850
11851 /* Try a few ways of applying the same transformation to both operands. */
11852 while (1)
11853 {
11854 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11855 so check specially. */
11856 if (!WORD_REGISTER_OPERATIONS
11857 && code != GTU && code != GEU && code != LTU && code != LEU
11858 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11859 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11860 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11861 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11862 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11863 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
11864 && (is_a <scalar_int_mode>
11865 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
11866 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
11867 && CONST_INT_P (XEXP (op0, 1))
11868 && XEXP (op0, 1) == XEXP (op1, 1)
11869 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11870 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11871 && (INTVAL (XEXP (op0, 1))
11872 == (GET_MODE_PRECISION (mode)
11873 - GET_MODE_PRECISION (inner_mode))))
11874 {
11875 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11876 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11877 }
11878
11879 /* If both operands are the same constant shift, see if we can ignore the
11880 shift. We can if the shift is a rotate or if the bits shifted out of
11881 this shift are known to be zero for both inputs and if the type of
11882 comparison is compatible with the shift. */
11883 if (GET_CODE (op0) == GET_CODE (op1)
11884 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11885 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11886 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11887 && (code != GT && code != LT && code != GE && code != LE))
11888 || (GET_CODE (op0) == ASHIFTRT
11889 && (code != GTU && code != LTU
11890 && code != GEU && code != LEU)))
11891 && CONST_INT_P (XEXP (op0, 1))
11892 && INTVAL (XEXP (op0, 1)) >= 0
11893 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11894 && XEXP (op0, 1) == XEXP (op1, 1))
11895 {
11896 machine_mode mode = GET_MODE (op0);
11897 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11898 int shift_count = INTVAL (XEXP (op0, 1));
11899
11900 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11901 mask &= (mask >> shift_count) << shift_count;
11902 else if (GET_CODE (op0) == ASHIFT)
11903 mask = (mask & (mask << shift_count)) >> shift_count;
11904
11905 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11906 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11907 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11908 else
11909 break;
11910 }
11911
11912 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11913 SUBREGs are of the same mode, and, in both cases, the AND would
11914 be redundant if the comparison was done in the narrower mode,
11915 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11916 and the operand's possibly nonzero bits are 0xffffff01; in that case
11917 if we only care about QImode, we don't need the AND). This case
11918 occurs if the output mode of an scc insn is not SImode and
11919 STORE_FLAG_VALUE == 1 (e.g., the 386).
11920
11921 Similarly, check for a case where the AND's are ZERO_EXTEND
11922 operations from some narrower mode even though a SUBREG is not
11923 present. */
11924
11925 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11926 && CONST_INT_P (XEXP (op0, 1))
11927 && CONST_INT_P (XEXP (op1, 1)))
11928 {
11929 rtx inner_op0 = XEXP (op0, 0);
11930 rtx inner_op1 = XEXP (op1, 0);
11931 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11932 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11933 int changed = 0;
11934
11935 if (paradoxical_subreg_p (inner_op0)
11936 && GET_CODE (inner_op1) == SUBREG
11937 && (GET_MODE (SUBREG_REG (inner_op0))
11938 == GET_MODE (SUBREG_REG (inner_op1)))
11939 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11940 <= HOST_BITS_PER_WIDE_INT)
11941 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11942 GET_MODE (SUBREG_REG (inner_op0)))))
11943 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11944 GET_MODE (SUBREG_REG (inner_op1))))))
11945 {
11946 op0 = SUBREG_REG (inner_op0);
11947 op1 = SUBREG_REG (inner_op1);
11948
11949 /* The resulting comparison is always unsigned since we masked
11950 off the original sign bit. */
11951 code = unsigned_condition (code);
11952
11953 changed = 1;
11954 }
11955
11956 else if (c0 == c1)
11957 FOR_EACH_MODE_UNTIL (tmode,
11958 as_a <scalar_int_mode> (GET_MODE (op0)))
11959 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11960 {
11961 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11962 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11963 code = unsigned_condition (code);
11964 changed = 1;
11965 break;
11966 }
11967
11968 if (! changed)
11969 break;
11970 }
11971
11972 /* If both operands are NOT, we can strip off the outer operation
11973 and adjust the comparison code for swapped operands; similarly for
11974 NEG, except that this must be an equality comparison. */
11975 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11976 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11977 && (code == EQ || code == NE)))
11978 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11979
11980 else
11981 break;
11982 }
11983
11984 /* If the first operand is a constant, swap the operands and adjust the
11985 comparison code appropriately, but don't do this if the second operand
11986 is already a constant integer. */
11987 if (swap_commutative_operands_p (op0, op1))
11988 {
11989 std::swap (op0, op1);
11990 code = swap_condition (code);
11991 }
11992
11993 /* We now enter a loop during which we will try to simplify the comparison.
11994 For the most part, we only are concerned with comparisons with zero,
11995 but some things may really be comparisons with zero but not start
11996 out looking that way. */
11997
11998 while (CONST_INT_P (op1))
11999 {
12000 machine_mode raw_mode = GET_MODE (op0);
12001 scalar_int_mode int_mode;
12002 int equality_comparison_p;
12003 int sign_bit_comparison_p;
12004 int unsigned_comparison_p;
12005 HOST_WIDE_INT const_op;
12006
12007 /* We only want to handle integral modes. This catches VOIDmode,
12008 CCmode, and the floating-point modes. An exception is that we
12009 can handle VOIDmode if OP0 is a COMPARE or a comparison
12010 operation. */
12011
12012 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12013 && ! (raw_mode == VOIDmode
12014 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12015 break;
12016
12017 /* Try to simplify the compare to constant, possibly changing the
12018 comparison op, and/or changing op1 to zero. */
12019 code = simplify_compare_const (code, raw_mode, op0, &op1);
12020 const_op = INTVAL (op1);
12021
12022 /* Compute some predicates to simplify code below. */
12023
12024 equality_comparison_p = (code == EQ || code == NE);
12025 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12026 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12027 || code == GEU);
12028
12029 /* If this is a sign bit comparison and we can do arithmetic in
12030 MODE, say that we will only be needing the sign bit of OP0. */
12031 if (sign_bit_comparison_p
12032 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12033 && HWI_COMPUTABLE_MODE_P (int_mode))
12034 op0 = force_to_mode (op0, int_mode,
12035 HOST_WIDE_INT_1U
12036 << (GET_MODE_PRECISION (int_mode) - 1),
12037 0);
12038
12039 if (COMPARISON_P (op0))
12040 {
12041 /* We can't do anything if OP0 is a condition code value, rather
12042 than an actual data value. */
12043 if (const_op != 0
12044 || CC0_P (XEXP (op0, 0))
12045 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12046 break;
12047
12048 /* Get the two operands being compared. */
12049 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12050 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12051 else
12052 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12053
12054 /* Check for the cases where we simply want the result of the
12055 earlier test or the opposite of that result. */
12056 if (code == NE || code == EQ
12057 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12058 && (code == LT || code == GE)))
12059 {
12060 enum rtx_code new_code;
12061 if (code == LT || code == NE)
12062 new_code = GET_CODE (op0);
12063 else
12064 new_code = reversed_comparison_code (op0, NULL);
12065
12066 if (new_code != UNKNOWN)
12067 {
12068 code = new_code;
12069 op0 = tem;
12070 op1 = tem1;
12071 continue;
12072 }
12073 }
12074 break;
12075 }
12076
12077 if (raw_mode == VOIDmode)
12078 break;
12079 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12080
12081 /* Now try cases based on the opcode of OP0. If none of the cases
12082 does a "continue", we exit this loop immediately after the
12083 switch. */
12084
12085 unsigned int mode_width = GET_MODE_PRECISION (mode);
12086 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12087 switch (GET_CODE (op0))
12088 {
12089 case ZERO_EXTRACT:
12090 /* If we are extracting a single bit from a variable position in
12091 a constant that has only a single bit set and are comparing it
12092 with zero, we can convert this into an equality comparison
12093 between the position and the location of the single bit. */
12094 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12095 have already reduced the shift count modulo the word size. */
12096 if (!SHIFT_COUNT_TRUNCATED
12097 && CONST_INT_P (XEXP (op0, 0))
12098 && XEXP (op0, 1) == const1_rtx
12099 && equality_comparison_p && const_op == 0
12100 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12101 {
12102 if (BITS_BIG_ENDIAN)
12103 i = BITS_PER_WORD - 1 - i;
12104
12105 op0 = XEXP (op0, 2);
12106 op1 = GEN_INT (i);
12107 const_op = i;
12108
12109 /* Result is nonzero iff shift count is equal to I. */
12110 code = reverse_condition (code);
12111 continue;
12112 }
12113
12114 /* fall through */
12115
12116 case SIGN_EXTRACT:
12117 tem = expand_compound_operation (op0);
12118 if (tem != op0)
12119 {
12120 op0 = tem;
12121 continue;
12122 }
12123 break;
12124
12125 case NOT:
12126 /* If testing for equality, we can take the NOT of the constant. */
12127 if (equality_comparison_p
12128 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12129 {
12130 op0 = XEXP (op0, 0);
12131 op1 = tem;
12132 continue;
12133 }
12134
12135 /* If just looking at the sign bit, reverse the sense of the
12136 comparison. */
12137 if (sign_bit_comparison_p)
12138 {
12139 op0 = XEXP (op0, 0);
12140 code = (code == GE ? LT : GE);
12141 continue;
12142 }
12143 break;
12144
12145 case NEG:
12146 /* If testing for equality, we can take the NEG of the constant. */
12147 if (equality_comparison_p
12148 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12149 {
12150 op0 = XEXP (op0, 0);
12151 op1 = tem;
12152 continue;
12153 }
12154
12155 /* The remaining cases only apply to comparisons with zero. */
12156 if (const_op != 0)
12157 break;
12158
12159 /* When X is ABS or is known positive,
12160 (neg X) is < 0 if and only if X != 0. */
12161
12162 if (sign_bit_comparison_p
12163 && (GET_CODE (XEXP (op0, 0)) == ABS
12164 || (mode_width <= HOST_BITS_PER_WIDE_INT
12165 && (nonzero_bits (XEXP (op0, 0), mode)
12166 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12167 == 0)))
12168 {
12169 op0 = XEXP (op0, 0);
12170 code = (code == LT ? NE : EQ);
12171 continue;
12172 }
12173
12174 /* If we have NEG of something whose two high-order bits are the
12175 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12176 if (num_sign_bit_copies (op0, mode) >= 2)
12177 {
12178 op0 = XEXP (op0, 0);
12179 code = swap_condition (code);
12180 continue;
12181 }
12182 break;
12183
12184 case ROTATE:
12185 /* If we are testing equality and our count is a constant, we
12186 can perform the inverse operation on our RHS. */
12187 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12188 && (tem = simplify_binary_operation (ROTATERT, mode,
12189 op1, XEXP (op0, 1))) != 0)
12190 {
12191 op0 = XEXP (op0, 0);
12192 op1 = tem;
12193 continue;
12194 }
12195
12196 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12197 a particular bit. Convert it to an AND of a constant of that
12198 bit. This will be converted into a ZERO_EXTRACT. */
12199 if (const_op == 0 && sign_bit_comparison_p
12200 && CONST_INT_P (XEXP (op0, 1))
12201 && mode_width <= HOST_BITS_PER_WIDE_INT)
12202 {
12203 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12204 (HOST_WIDE_INT_1U
12205 << (mode_width - 1
12206 - INTVAL (XEXP (op0, 1)))));
12207 code = (code == LT ? NE : EQ);
12208 continue;
12209 }
12210
12211 /* Fall through. */
12212
12213 case ABS:
12214 /* ABS is ignorable inside an equality comparison with zero. */
12215 if (const_op == 0 && equality_comparison_p)
12216 {
12217 op0 = XEXP (op0, 0);
12218 continue;
12219 }
12220 break;
12221
12222 case SIGN_EXTEND:
12223 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12224 (compare FOO CONST) if CONST fits in FOO's mode and we
12225 are either testing inequality or have an unsigned
12226 comparison with ZERO_EXTEND or a signed comparison with
12227 SIGN_EXTEND. But don't do it if we don't have a compare
12228 insn of the given mode, since we'd have to revert it
12229 later on, and then we wouldn't know whether to sign- or
12230 zero-extend. */
12231 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12232 && ! unsigned_comparison_p
12233 && HWI_COMPUTABLE_MODE_P (mode)
12234 && trunc_int_for_mode (const_op, mode) == const_op
12235 && have_insn_for (COMPARE, mode))
12236 {
12237 op0 = XEXP (op0, 0);
12238 continue;
12239 }
12240 break;
12241
12242 case SUBREG:
12243 /* Check for the case where we are comparing A - C1 with C2, that is
12244
12245 (subreg:MODE (plus (A) (-C1))) op (C2)
12246
12247 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12248 comparison in the wider mode. One of the following two conditions
12249 must be true in order for this to be valid:
12250
12251 1. The mode extension results in the same bit pattern being added
12252 on both sides and the comparison is equality or unsigned. As
12253 C2 has been truncated to fit in MODE, the pattern can only be
12254 all 0s or all 1s.
12255
12256 2. The mode extension results in the sign bit being copied on
12257 each side.
12258
12259 The difficulty here is that we have predicates for A but not for
12260 (A - C1) so we need to check that C1 is within proper bounds so
12261 as to perturbate A as little as possible. */
12262
12263 if (mode_width <= HOST_BITS_PER_WIDE_INT
12264 && subreg_lowpart_p (op0)
12265 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12266 &inner_mode)
12267 && GET_MODE_PRECISION (inner_mode) > mode_width
12268 && GET_CODE (SUBREG_REG (op0)) == PLUS
12269 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12270 {
12271 rtx a = XEXP (SUBREG_REG (op0), 0);
12272 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12273
12274 if ((c1 > 0
12275 && (unsigned HOST_WIDE_INT) c1
12276 < HOST_WIDE_INT_1U << (mode_width - 1)
12277 && (equality_comparison_p || unsigned_comparison_p)
12278 /* (A - C1) zero-extends if it is positive and sign-extends
12279 if it is negative, C2 both zero- and sign-extends. */
12280 && ((0 == (nonzero_bits (a, inner_mode)
12281 & ~GET_MODE_MASK (mode))
12282 && const_op >= 0)
12283 /* (A - C1) sign-extends if it is positive and 1-extends
12284 if it is negative, C2 both sign- and 1-extends. */
12285 || (num_sign_bit_copies (a, inner_mode)
12286 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12287 - mode_width)
12288 && const_op < 0)))
12289 || ((unsigned HOST_WIDE_INT) c1
12290 < HOST_WIDE_INT_1U << (mode_width - 2)
12291 /* (A - C1) always sign-extends, like C2. */
12292 && num_sign_bit_copies (a, inner_mode)
12293 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12294 - (mode_width - 1))))
12295 {
12296 op0 = SUBREG_REG (op0);
12297 continue;
12298 }
12299 }
12300
12301 /* If the inner mode is narrower and we are extracting the low part,
12302 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12303 if (paradoxical_subreg_p (op0))
12304 ;
12305 else if (subreg_lowpart_p (op0)
12306 && GET_MODE_CLASS (mode) == MODE_INT
12307 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12308 && (code == NE || code == EQ)
12309 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12310 && !paradoxical_subreg_p (op0)
12311 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12312 & ~GET_MODE_MASK (mode)) == 0)
12313 {
12314 /* Remove outer subregs that don't do anything. */
12315 tem = gen_lowpart (inner_mode, op1);
12316
12317 if ((nonzero_bits (tem, inner_mode)
12318 & ~GET_MODE_MASK (mode)) == 0)
12319 {
12320 op0 = SUBREG_REG (op0);
12321 op1 = tem;
12322 continue;
12323 }
12324 break;
12325 }
12326 else
12327 break;
12328
12329 /* FALLTHROUGH */
12330
12331 case ZERO_EXTEND:
12332 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12333 && (unsigned_comparison_p || equality_comparison_p)
12334 && HWI_COMPUTABLE_MODE_P (mode)
12335 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12336 && const_op >= 0
12337 && have_insn_for (COMPARE, mode))
12338 {
12339 op0 = XEXP (op0, 0);
12340 continue;
12341 }
12342 break;
12343
12344 case PLUS:
12345 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12346 this for equality comparisons due to pathological cases involving
12347 overflows. */
12348 if (equality_comparison_p
12349 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12350 op1, XEXP (op0, 1))))
12351 {
12352 op0 = XEXP (op0, 0);
12353 op1 = tem;
12354 continue;
12355 }
12356
12357 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12358 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12359 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12360 {
12361 op0 = XEXP (XEXP (op0, 0), 0);
12362 code = (code == LT ? EQ : NE);
12363 continue;
12364 }
12365 break;
12366
12367 case MINUS:
12368 /* We used to optimize signed comparisons against zero, but that
12369 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12370 arrive here as equality comparisons, or (GEU, LTU) are
12371 optimized away. No need to special-case them. */
12372
12373 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12374 (eq B (minus A C)), whichever simplifies. We can only do
12375 this for equality comparisons due to pathological cases involving
12376 overflows. */
12377 if (equality_comparison_p
12378 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12379 XEXP (op0, 1), op1)))
12380 {
12381 op0 = XEXP (op0, 0);
12382 op1 = tem;
12383 continue;
12384 }
12385
12386 if (equality_comparison_p
12387 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12388 XEXP (op0, 0), op1)))
12389 {
12390 op0 = XEXP (op0, 1);
12391 op1 = tem;
12392 continue;
12393 }
12394
12395 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12396 of bits in X minus 1, is one iff X > 0. */
12397 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12398 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12399 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12400 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12401 {
12402 op0 = XEXP (op0, 1);
12403 code = (code == GE ? LE : GT);
12404 continue;
12405 }
12406 break;
12407
12408 case XOR:
12409 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12410 if C is zero or B is a constant. */
12411 if (equality_comparison_p
12412 && 0 != (tem = simplify_binary_operation (XOR, mode,
12413 XEXP (op0, 1), op1)))
12414 {
12415 op0 = XEXP (op0, 0);
12416 op1 = tem;
12417 continue;
12418 }
12419 break;
12420
12421
12422 case IOR:
12423 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12424 iff X <= 0. */
12425 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12426 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12427 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12428 {
12429 op0 = XEXP (op0, 1);
12430 code = (code == GE ? GT : LE);
12431 continue;
12432 }
12433 break;
12434
12435 case AND:
12436 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12437 will be converted to a ZERO_EXTRACT later. */
12438 if (const_op == 0 && equality_comparison_p
12439 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12440 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12441 {
12442 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12443 XEXP (XEXP (op0, 0), 1));
12444 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12445 continue;
12446 }
12447
12448 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12449 zero and X is a comparison and C1 and C2 describe only bits set
12450 in STORE_FLAG_VALUE, we can compare with X. */
12451 if (const_op == 0 && equality_comparison_p
12452 && mode_width <= HOST_BITS_PER_WIDE_INT
12453 && CONST_INT_P (XEXP (op0, 1))
12454 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12455 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12456 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12457 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12458 {
12459 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12460 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12461 if ((~STORE_FLAG_VALUE & mask) == 0
12462 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12463 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12464 && COMPARISON_P (tem))))
12465 {
12466 op0 = XEXP (XEXP (op0, 0), 0);
12467 continue;
12468 }
12469 }
12470
12471 /* If we are doing an equality comparison of an AND of a bit equal
12472 to the sign bit, replace this with a LT or GE comparison of
12473 the underlying value. */
12474 if (equality_comparison_p
12475 && const_op == 0
12476 && CONST_INT_P (XEXP (op0, 1))
12477 && mode_width <= HOST_BITS_PER_WIDE_INT
12478 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12479 == HOST_WIDE_INT_1U << (mode_width - 1)))
12480 {
12481 op0 = XEXP (op0, 0);
12482 code = (code == EQ ? GE : LT);
12483 continue;
12484 }
12485
12486 /* If this AND operation is really a ZERO_EXTEND from a narrower
12487 mode, the constant fits within that mode, and this is either an
12488 equality or unsigned comparison, try to do this comparison in
12489 the narrower mode.
12490
12491 Note that in:
12492
12493 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12494 -> (ne:DI (reg:SI 4) (const_int 0))
12495
12496 unless TRULY_NOOP_TRUNCATION allows it or the register is
12497 known to hold a value of the required mode the
12498 transformation is invalid. */
12499 if ((equality_comparison_p || unsigned_comparison_p)
12500 && CONST_INT_P (XEXP (op0, 1))
12501 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12502 & GET_MODE_MASK (mode))
12503 + 1)) >= 0
12504 && const_op >> i == 0
12505 && int_mode_for_size (i, 1).exists (&tmode))
12506 {
12507 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12508 continue;
12509 }
12510
12511 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12512 fits in both M1 and M2 and the SUBREG is either paradoxical
12513 or represents the low part, permute the SUBREG and the AND
12514 and try again. */
12515 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12516 && CONST_INT_P (XEXP (op0, 1)))
12517 {
12518 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12519 /* Require an integral mode, to avoid creating something like
12520 (AND:SF ...). */
12521 if ((is_a <scalar_int_mode>
12522 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12523 /* It is unsafe to commute the AND into the SUBREG if the
12524 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12525 not defined. As originally written the upper bits
12526 have a defined value due to the AND operation.
12527 However, if we commute the AND inside the SUBREG then
12528 they no longer have defined values and the meaning of
12529 the code has been changed.
12530 Also C1 should not change value in the smaller mode,
12531 see PR67028 (a positive C1 can become negative in the
12532 smaller mode, so that the AND does no longer mask the
12533 upper bits). */
12534 && ((WORD_REGISTER_OPERATIONS
12535 && mode_width > GET_MODE_PRECISION (tmode)
12536 && mode_width <= BITS_PER_WORD
12537 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12538 || (mode_width <= GET_MODE_PRECISION (tmode)
12539 && subreg_lowpart_p (XEXP (op0, 0))))
12540 && mode_width <= HOST_BITS_PER_WIDE_INT
12541 && HWI_COMPUTABLE_MODE_P (tmode)
12542 && (c1 & ~mask) == 0
12543 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12544 && c1 != mask
12545 && c1 != GET_MODE_MASK (tmode))
12546 {
12547 op0 = simplify_gen_binary (AND, tmode,
12548 SUBREG_REG (XEXP (op0, 0)),
12549 gen_int_mode (c1, tmode));
12550 op0 = gen_lowpart (mode, op0);
12551 continue;
12552 }
12553 }
12554
12555 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12556 if (const_op == 0 && equality_comparison_p
12557 && XEXP (op0, 1) == const1_rtx
12558 && GET_CODE (XEXP (op0, 0)) == NOT)
12559 {
12560 op0 = simplify_and_const_int (NULL_RTX, mode,
12561 XEXP (XEXP (op0, 0), 0), 1);
12562 code = (code == NE ? EQ : NE);
12563 continue;
12564 }
12565
12566 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12567 (eq (and (lshiftrt X) 1) 0).
12568 Also handle the case where (not X) is expressed using xor. */
12569 if (const_op == 0 && equality_comparison_p
12570 && XEXP (op0, 1) == const1_rtx
12571 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12572 {
12573 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12574 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12575
12576 if (GET_CODE (shift_op) == NOT
12577 || (GET_CODE (shift_op) == XOR
12578 && CONST_INT_P (XEXP (shift_op, 1))
12579 && CONST_INT_P (shift_count)
12580 && HWI_COMPUTABLE_MODE_P (mode)
12581 && (UINTVAL (XEXP (shift_op, 1))
12582 == HOST_WIDE_INT_1U
12583 << INTVAL (shift_count))))
12584 {
12585 op0
12586 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12587 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12588 code = (code == NE ? EQ : NE);
12589 continue;
12590 }
12591 }
12592 break;
12593
12594 case ASHIFT:
12595 /* If we have (compare (ashift FOO N) (const_int C)) and
12596 the high order N bits of FOO (N+1 if an inequality comparison)
12597 are known to be zero, we can do this by comparing FOO with C
12598 shifted right N bits so long as the low-order N bits of C are
12599 zero. */
12600 if (CONST_INT_P (XEXP (op0, 1))
12601 && INTVAL (XEXP (op0, 1)) >= 0
12602 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12603 < HOST_BITS_PER_WIDE_INT)
12604 && (((unsigned HOST_WIDE_INT) const_op
12605 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12606 - 1)) == 0)
12607 && mode_width <= HOST_BITS_PER_WIDE_INT
12608 && (nonzero_bits (XEXP (op0, 0), mode)
12609 & ~(mask >> (INTVAL (XEXP (op0, 1))
12610 + ! equality_comparison_p))) == 0)
12611 {
12612 /* We must perform a logical shift, not an arithmetic one,
12613 as we want the top N bits of C to be zero. */
12614 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12615
12616 temp >>= INTVAL (XEXP (op0, 1));
12617 op1 = gen_int_mode (temp, mode);
12618 op0 = XEXP (op0, 0);
12619 continue;
12620 }
12621
12622 /* If we are doing a sign bit comparison, it means we are testing
12623 a particular bit. Convert it to the appropriate AND. */
12624 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12625 && mode_width <= HOST_BITS_PER_WIDE_INT)
12626 {
12627 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12628 (HOST_WIDE_INT_1U
12629 << (mode_width - 1
12630 - INTVAL (XEXP (op0, 1)))));
12631 code = (code == LT ? NE : EQ);
12632 continue;
12633 }
12634
12635 /* If this an equality comparison with zero and we are shifting
12636 the low bit to the sign bit, we can convert this to an AND of the
12637 low-order bit. */
12638 if (const_op == 0 && equality_comparison_p
12639 && CONST_INT_P (XEXP (op0, 1))
12640 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12641 {
12642 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12643 continue;
12644 }
12645 break;
12646
12647 case ASHIFTRT:
12648 /* If this is an equality comparison with zero, we can do this
12649 as a logical shift, which might be much simpler. */
12650 if (equality_comparison_p && const_op == 0
12651 && CONST_INT_P (XEXP (op0, 1)))
12652 {
12653 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12654 XEXP (op0, 0),
12655 INTVAL (XEXP (op0, 1)));
12656 continue;
12657 }
12658
12659 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12660 do the comparison in a narrower mode. */
12661 if (! unsigned_comparison_p
12662 && CONST_INT_P (XEXP (op0, 1))
12663 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12664 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12665 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12666 .exists (&tmode))
12667 && (((unsigned HOST_WIDE_INT) const_op
12668 + (GET_MODE_MASK (tmode) >> 1) + 1)
12669 <= GET_MODE_MASK (tmode)))
12670 {
12671 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12672 continue;
12673 }
12674
12675 /* Likewise if OP0 is a PLUS of a sign extension with a
12676 constant, which is usually represented with the PLUS
12677 between the shifts. */
12678 if (! unsigned_comparison_p
12679 && CONST_INT_P (XEXP (op0, 1))
12680 && GET_CODE (XEXP (op0, 0)) == PLUS
12681 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12682 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12683 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12684 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12685 .exists (&tmode))
12686 && (((unsigned HOST_WIDE_INT) const_op
12687 + (GET_MODE_MASK (tmode) >> 1) + 1)
12688 <= GET_MODE_MASK (tmode)))
12689 {
12690 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12691 rtx add_const = XEXP (XEXP (op0, 0), 1);
12692 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12693 add_const, XEXP (op0, 1));
12694
12695 op0 = simplify_gen_binary (PLUS, tmode,
12696 gen_lowpart (tmode, inner),
12697 new_const);
12698 continue;
12699 }
12700
12701 /* FALLTHROUGH */
12702 case LSHIFTRT:
12703 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12704 the low order N bits of FOO are known to be zero, we can do this
12705 by comparing FOO with C shifted left N bits so long as no
12706 overflow occurs. Even if the low order N bits of FOO aren't known
12707 to be zero, if the comparison is >= or < we can use the same
12708 optimization and for > or <= by setting all the low
12709 order N bits in the comparison constant. */
12710 if (CONST_INT_P (XEXP (op0, 1))
12711 && INTVAL (XEXP (op0, 1)) > 0
12712 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12713 && mode_width <= HOST_BITS_PER_WIDE_INT
12714 && (((unsigned HOST_WIDE_INT) const_op
12715 + (GET_CODE (op0) != LSHIFTRT
12716 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12717 + 1)
12718 : 0))
12719 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12720 {
12721 unsigned HOST_WIDE_INT low_bits
12722 = (nonzero_bits (XEXP (op0, 0), mode)
12723 & ((HOST_WIDE_INT_1U
12724 << INTVAL (XEXP (op0, 1))) - 1));
12725 if (low_bits == 0 || !equality_comparison_p)
12726 {
12727 /* If the shift was logical, then we must make the condition
12728 unsigned. */
12729 if (GET_CODE (op0) == LSHIFTRT)
12730 code = unsigned_condition (code);
12731
12732 const_op = (unsigned HOST_WIDE_INT) const_op
12733 << INTVAL (XEXP (op0, 1));
12734 if (low_bits != 0
12735 && (code == GT || code == GTU
12736 || code == LE || code == LEU))
12737 const_op
12738 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12739 op1 = GEN_INT (const_op);
12740 op0 = XEXP (op0, 0);
12741 continue;
12742 }
12743 }
12744
12745 /* If we are using this shift to extract just the sign bit, we
12746 can replace this with an LT or GE comparison. */
12747 if (const_op == 0
12748 && (equality_comparison_p || sign_bit_comparison_p)
12749 && CONST_INT_P (XEXP (op0, 1))
12750 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12751 {
12752 op0 = XEXP (op0, 0);
12753 code = (code == NE || code == GT ? LT : GE);
12754 continue;
12755 }
12756 break;
12757
12758 default:
12759 break;
12760 }
12761
12762 break;
12763 }
12764
12765 /* Now make any compound operations involved in this comparison. Then,
12766 check for an outmost SUBREG on OP0 that is not doing anything or is
12767 paradoxical. The latter transformation must only be performed when
12768 it is known that the "extra" bits will be the same in op0 and op1 or
12769 that they don't matter. There are three cases to consider:
12770
12771 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12772 care bits and we can assume they have any convenient value. So
12773 making the transformation is safe.
12774
12775 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12776 In this case the upper bits of op0 are undefined. We should not make
12777 the simplification in that case as we do not know the contents of
12778 those bits.
12779
12780 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12781 In that case we know those bits are zeros or ones. We must also be
12782 sure that they are the same as the upper bits of op1.
12783
12784 We can never remove a SUBREG for a non-equality comparison because
12785 the sign bit is in a different place in the underlying object. */
12786
12787 rtx_code op0_mco_code = SET;
12788 if (op1 == const0_rtx)
12789 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12790
12791 op0 = make_compound_operation (op0, op0_mco_code);
12792 op1 = make_compound_operation (op1, SET);
12793
12794 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12795 && is_int_mode (GET_MODE (op0), &mode)
12796 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12797 && (code == NE || code == EQ))
12798 {
12799 if (paradoxical_subreg_p (op0))
12800 {
12801 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12802 implemented. */
12803 if (REG_P (SUBREG_REG (op0)))
12804 {
12805 op0 = SUBREG_REG (op0);
12806 op1 = gen_lowpart (inner_mode, op1);
12807 }
12808 }
12809 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12810 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12811 & ~GET_MODE_MASK (mode)) == 0)
12812 {
12813 tem = gen_lowpart (inner_mode, op1);
12814
12815 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
12816 op0 = SUBREG_REG (op0), op1 = tem;
12817 }
12818 }
12819
12820 /* We now do the opposite procedure: Some machines don't have compare
12821 insns in all modes. If OP0's mode is an integer mode smaller than a
12822 word and we can't do a compare in that mode, see if there is a larger
12823 mode for which we can do the compare. There are a number of cases in
12824 which we can use the wider mode. */
12825
12826 if (is_int_mode (GET_MODE (op0), &mode)
12827 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12828 && ! have_insn_for (COMPARE, mode))
12829 FOR_EACH_WIDER_MODE (tmode_iter, mode)
12830 {
12831 tmode = tmode_iter.require ();
12832 if (!HWI_COMPUTABLE_MODE_P (tmode))
12833 break;
12834 if (have_insn_for (COMPARE, tmode))
12835 {
12836 int zero_extended;
12837
12838 /* If this is a test for negative, we can make an explicit
12839 test of the sign bit. Test this first so we can use
12840 a paradoxical subreg to extend OP0. */
12841
12842 if (op1 == const0_rtx && (code == LT || code == GE)
12843 && HWI_COMPUTABLE_MODE_P (mode))
12844 {
12845 unsigned HOST_WIDE_INT sign
12846 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12847 op0 = simplify_gen_binary (AND, tmode,
12848 gen_lowpart (tmode, op0),
12849 gen_int_mode (sign, tmode));
12850 code = (code == LT) ? NE : EQ;
12851 break;
12852 }
12853
12854 /* If the only nonzero bits in OP0 and OP1 are those in the
12855 narrower mode and this is an equality or unsigned comparison,
12856 we can use the wider mode. Similarly for sign-extended
12857 values, in which case it is true for all comparisons. */
12858 zero_extended = ((code == EQ || code == NE
12859 || code == GEU || code == GTU
12860 || code == LEU || code == LTU)
12861 && (nonzero_bits (op0, tmode)
12862 & ~GET_MODE_MASK (mode)) == 0
12863 && ((CONST_INT_P (op1)
12864 || (nonzero_bits (op1, tmode)
12865 & ~GET_MODE_MASK (mode)) == 0)));
12866
12867 if (zero_extended
12868 || ((num_sign_bit_copies (op0, tmode)
12869 > (unsigned int) (GET_MODE_PRECISION (tmode)
12870 - GET_MODE_PRECISION (mode)))
12871 && (num_sign_bit_copies (op1, tmode)
12872 > (unsigned int) (GET_MODE_PRECISION (tmode)
12873 - GET_MODE_PRECISION (mode)))))
12874 {
12875 /* If OP0 is an AND and we don't have an AND in MODE either,
12876 make a new AND in the proper mode. */
12877 if (GET_CODE (op0) == AND
12878 && !have_insn_for (AND, mode))
12879 op0 = simplify_gen_binary (AND, tmode,
12880 gen_lowpart (tmode,
12881 XEXP (op0, 0)),
12882 gen_lowpart (tmode,
12883 XEXP (op0, 1)));
12884 else
12885 {
12886 if (zero_extended)
12887 {
12888 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
12889 op0, mode);
12890 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
12891 op1, mode);
12892 }
12893 else
12894 {
12895 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
12896 op0, mode);
12897 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
12898 op1, mode);
12899 }
12900 break;
12901 }
12902 }
12903 }
12904 }
12905
12906 /* We may have changed the comparison operands. Re-canonicalize. */
12907 if (swap_commutative_operands_p (op0, op1))
12908 {
12909 std::swap (op0, op1);
12910 code = swap_condition (code);
12911 }
12912
12913 /* If this machine only supports a subset of valid comparisons, see if we
12914 can convert an unsupported one into a supported one. */
12915 target_canonicalize_comparison (&code, &op0, &op1, 0);
12916
12917 *pop0 = op0;
12918 *pop1 = op1;
12919
12920 return code;
12921 }
12922 \f
12923 /* Utility function for record_value_for_reg. Count number of
12924 rtxs in X. */
12925 static int
12926 count_rtxs (rtx x)
12927 {
12928 enum rtx_code code = GET_CODE (x);
12929 const char *fmt;
12930 int i, j, ret = 1;
12931
12932 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12933 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12934 {
12935 rtx x0 = XEXP (x, 0);
12936 rtx x1 = XEXP (x, 1);
12937
12938 if (x0 == x1)
12939 return 1 + 2 * count_rtxs (x0);
12940
12941 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12942 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12943 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12944 return 2 + 2 * count_rtxs (x0)
12945 + count_rtxs (x == XEXP (x1, 0)
12946 ? XEXP (x1, 1) : XEXP (x1, 0));
12947
12948 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12949 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12950 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12951 return 2 + 2 * count_rtxs (x1)
12952 + count_rtxs (x == XEXP (x0, 0)
12953 ? XEXP (x0, 1) : XEXP (x0, 0));
12954 }
12955
12956 fmt = GET_RTX_FORMAT (code);
12957 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12958 if (fmt[i] == 'e')
12959 ret += count_rtxs (XEXP (x, i));
12960 else if (fmt[i] == 'E')
12961 for (j = 0; j < XVECLEN (x, i); j++)
12962 ret += count_rtxs (XVECEXP (x, i, j));
12963
12964 return ret;
12965 }
12966 \f
12967 /* Utility function for following routine. Called when X is part of a value
12968 being stored into last_set_value. Sets last_set_table_tick
12969 for each register mentioned. Similar to mention_regs in cse.c */
12970
12971 static void
12972 update_table_tick (rtx x)
12973 {
12974 enum rtx_code code = GET_CODE (x);
12975 const char *fmt = GET_RTX_FORMAT (code);
12976 int i, j;
12977
12978 if (code == REG)
12979 {
12980 unsigned int regno = REGNO (x);
12981 unsigned int endregno = END_REGNO (x);
12982 unsigned int r;
12983
12984 for (r = regno; r < endregno; r++)
12985 {
12986 reg_stat_type *rsp = &reg_stat[r];
12987 rsp->last_set_table_tick = label_tick;
12988 }
12989
12990 return;
12991 }
12992
12993 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12994 if (fmt[i] == 'e')
12995 {
12996 /* Check for identical subexpressions. If x contains
12997 identical subexpression we only have to traverse one of
12998 them. */
12999 if (i == 0 && ARITHMETIC_P (x))
13000 {
13001 /* Note that at this point x1 has already been
13002 processed. */
13003 rtx x0 = XEXP (x, 0);
13004 rtx x1 = XEXP (x, 1);
13005
13006 /* If x0 and x1 are identical then there is no need to
13007 process x0. */
13008 if (x0 == x1)
13009 break;
13010
13011 /* If x0 is identical to a subexpression of x1 then while
13012 processing x1, x0 has already been processed. Thus we
13013 are done with x. */
13014 if (ARITHMETIC_P (x1)
13015 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13016 break;
13017
13018 /* If x1 is identical to a subexpression of x0 then we
13019 still have to process the rest of x0. */
13020 if (ARITHMETIC_P (x0)
13021 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13022 {
13023 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13024 break;
13025 }
13026 }
13027
13028 update_table_tick (XEXP (x, i));
13029 }
13030 else if (fmt[i] == 'E')
13031 for (j = 0; j < XVECLEN (x, i); j++)
13032 update_table_tick (XVECEXP (x, i, j));
13033 }
13034
13035 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13036 are saying that the register is clobbered and we no longer know its
13037 value. If INSN is zero, don't update reg_stat[].last_set; this is
13038 only permitted with VALUE also zero and is used to invalidate the
13039 register. */
13040
13041 static void
13042 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13043 {
13044 unsigned int regno = REGNO (reg);
13045 unsigned int endregno = END_REGNO (reg);
13046 unsigned int i;
13047 reg_stat_type *rsp;
13048
13049 /* If VALUE contains REG and we have a previous value for REG, substitute
13050 the previous value. */
13051 if (value && insn && reg_overlap_mentioned_p (reg, value))
13052 {
13053 rtx tem;
13054
13055 /* Set things up so get_last_value is allowed to see anything set up to
13056 our insn. */
13057 subst_low_luid = DF_INSN_LUID (insn);
13058 tem = get_last_value (reg);
13059
13060 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13061 it isn't going to be useful and will take a lot of time to process,
13062 so just use the CLOBBER. */
13063
13064 if (tem)
13065 {
13066 if (ARITHMETIC_P (tem)
13067 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13068 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13069 tem = XEXP (tem, 0);
13070 else if (count_occurrences (value, reg, 1) >= 2)
13071 {
13072 /* If there are two or more occurrences of REG in VALUE,
13073 prevent the value from growing too much. */
13074 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13075 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13076 }
13077
13078 value = replace_rtx (copy_rtx (value), reg, tem);
13079 }
13080 }
13081
13082 /* For each register modified, show we don't know its value, that
13083 we don't know about its bitwise content, that its value has been
13084 updated, and that we don't know the location of the death of the
13085 register. */
13086 for (i = regno; i < endregno; i++)
13087 {
13088 rsp = &reg_stat[i];
13089
13090 if (insn)
13091 rsp->last_set = insn;
13092
13093 rsp->last_set_value = 0;
13094 rsp->last_set_mode = VOIDmode;
13095 rsp->last_set_nonzero_bits = 0;
13096 rsp->last_set_sign_bit_copies = 0;
13097 rsp->last_death = 0;
13098 rsp->truncated_to_mode = VOIDmode;
13099 }
13100
13101 /* Mark registers that are being referenced in this value. */
13102 if (value)
13103 update_table_tick (value);
13104
13105 /* Now update the status of each register being set.
13106 If someone is using this register in this block, set this register
13107 to invalid since we will get confused between the two lives in this
13108 basic block. This makes using this register always invalid. In cse, we
13109 scan the table to invalidate all entries using this register, but this
13110 is too much work for us. */
13111
13112 for (i = regno; i < endregno; i++)
13113 {
13114 rsp = &reg_stat[i];
13115 rsp->last_set_label = label_tick;
13116 if (!insn
13117 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13118 rsp->last_set_invalid = 1;
13119 else
13120 rsp->last_set_invalid = 0;
13121 }
13122
13123 /* The value being assigned might refer to X (like in "x++;"). In that
13124 case, we must replace it with (clobber (const_int 0)) to prevent
13125 infinite loops. */
13126 rsp = &reg_stat[regno];
13127 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13128 {
13129 value = copy_rtx (value);
13130 if (!get_last_value_validate (&value, insn, label_tick, 1))
13131 value = 0;
13132 }
13133
13134 /* For the main register being modified, update the value, the mode, the
13135 nonzero bits, and the number of sign bit copies. */
13136
13137 rsp->last_set_value = value;
13138
13139 if (value)
13140 {
13141 machine_mode mode = GET_MODE (reg);
13142 subst_low_luid = DF_INSN_LUID (insn);
13143 rsp->last_set_mode = mode;
13144 if (GET_MODE_CLASS (mode) == MODE_INT
13145 && HWI_COMPUTABLE_MODE_P (mode))
13146 mode = nonzero_bits_mode;
13147 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13148 rsp->last_set_sign_bit_copies
13149 = num_sign_bit_copies (value, GET_MODE (reg));
13150 }
13151 }
13152
13153 /* Called via note_stores from record_dead_and_set_regs to handle one
13154 SET or CLOBBER in an insn. DATA is the instruction in which the
13155 set is occurring. */
13156
13157 static void
13158 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13159 {
13160 rtx_insn *record_dead_insn = (rtx_insn *) data;
13161
13162 if (GET_CODE (dest) == SUBREG)
13163 dest = SUBREG_REG (dest);
13164
13165 if (!record_dead_insn)
13166 {
13167 if (REG_P (dest))
13168 record_value_for_reg (dest, NULL, NULL_RTX);
13169 return;
13170 }
13171
13172 if (REG_P (dest))
13173 {
13174 /* If we are setting the whole register, we know its value. Otherwise
13175 show that we don't know the value. We can handle SUBREG in
13176 some cases. */
13177 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13178 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13179 else if (GET_CODE (setter) == SET
13180 && GET_CODE (SET_DEST (setter)) == SUBREG
13181 && SUBREG_REG (SET_DEST (setter)) == dest
13182 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13183 && subreg_lowpart_p (SET_DEST (setter)))
13184 record_value_for_reg (dest, record_dead_insn,
13185 gen_lowpart (GET_MODE (dest),
13186 SET_SRC (setter)));
13187 else
13188 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13189 }
13190 else if (MEM_P (dest)
13191 /* Ignore pushes, they clobber nothing. */
13192 && ! push_operand (dest, GET_MODE (dest)))
13193 mem_last_set = DF_INSN_LUID (record_dead_insn);
13194 }
13195
13196 /* Update the records of when each REG was most recently set or killed
13197 for the things done by INSN. This is the last thing done in processing
13198 INSN in the combiner loop.
13199
13200 We update reg_stat[], in particular fields last_set, last_set_value,
13201 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13202 last_death, and also the similar information mem_last_set (which insn
13203 most recently modified memory) and last_call_luid (which insn was the
13204 most recent subroutine call). */
13205
13206 static void
13207 record_dead_and_set_regs (rtx_insn *insn)
13208 {
13209 rtx link;
13210 unsigned int i;
13211
13212 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13213 {
13214 if (REG_NOTE_KIND (link) == REG_DEAD
13215 && REG_P (XEXP (link, 0)))
13216 {
13217 unsigned int regno = REGNO (XEXP (link, 0));
13218 unsigned int endregno = END_REGNO (XEXP (link, 0));
13219
13220 for (i = regno; i < endregno; i++)
13221 {
13222 reg_stat_type *rsp;
13223
13224 rsp = &reg_stat[i];
13225 rsp->last_death = insn;
13226 }
13227 }
13228 else if (REG_NOTE_KIND (link) == REG_INC)
13229 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13230 }
13231
13232 if (CALL_P (insn))
13233 {
13234 hard_reg_set_iterator hrsi;
13235 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13236 {
13237 reg_stat_type *rsp;
13238
13239 rsp = &reg_stat[i];
13240 rsp->last_set_invalid = 1;
13241 rsp->last_set = insn;
13242 rsp->last_set_value = 0;
13243 rsp->last_set_mode = VOIDmode;
13244 rsp->last_set_nonzero_bits = 0;
13245 rsp->last_set_sign_bit_copies = 0;
13246 rsp->last_death = 0;
13247 rsp->truncated_to_mode = VOIDmode;
13248 }
13249
13250 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13251
13252 /* We can't combine into a call pattern. Remember, though, that
13253 the return value register is set at this LUID. We could
13254 still replace a register with the return value from the
13255 wrong subroutine call! */
13256 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13257 }
13258 else
13259 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13260 }
13261
13262 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13263 register present in the SUBREG, so for each such SUBREG go back and
13264 adjust nonzero and sign bit information of the registers that are
13265 known to have some zero/sign bits set.
13266
13267 This is needed because when combine blows the SUBREGs away, the
13268 information on zero/sign bits is lost and further combines can be
13269 missed because of that. */
13270
13271 static void
13272 record_promoted_value (rtx_insn *insn, rtx subreg)
13273 {
13274 struct insn_link *links;
13275 rtx set;
13276 unsigned int regno = REGNO (SUBREG_REG (subreg));
13277 machine_mode mode = GET_MODE (subreg);
13278
13279 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
13280 return;
13281
13282 for (links = LOG_LINKS (insn); links;)
13283 {
13284 reg_stat_type *rsp;
13285
13286 insn = links->insn;
13287 set = single_set (insn);
13288
13289 if (! set || !REG_P (SET_DEST (set))
13290 || REGNO (SET_DEST (set)) != regno
13291 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13292 {
13293 links = links->next;
13294 continue;
13295 }
13296
13297 rsp = &reg_stat[regno];
13298 if (rsp->last_set == insn)
13299 {
13300 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13301 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13302 }
13303
13304 if (REG_P (SET_SRC (set)))
13305 {
13306 regno = REGNO (SET_SRC (set));
13307 links = LOG_LINKS (insn);
13308 }
13309 else
13310 break;
13311 }
13312 }
13313
13314 /* Check if X, a register, is known to contain a value already
13315 truncated to MODE. In this case we can use a subreg to refer to
13316 the truncated value even though in the generic case we would need
13317 an explicit truncation. */
13318
13319 static bool
13320 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13321 {
13322 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13323 machine_mode truncated = rsp->truncated_to_mode;
13324
13325 if (truncated == 0
13326 || rsp->truncation_label < label_tick_ebb_start)
13327 return false;
13328 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
13329 return true;
13330 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13331 return true;
13332 return false;
13333 }
13334
13335 /* If X is a hard reg or a subreg record the mode that the register is
13336 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13337 to turn a truncate into a subreg using this information. Return true
13338 if traversing X is complete. */
13339
13340 static bool
13341 record_truncated_value (rtx x)
13342 {
13343 machine_mode truncated_mode;
13344 reg_stat_type *rsp;
13345
13346 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13347 {
13348 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13349 truncated_mode = GET_MODE (x);
13350
13351 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
13352 return true;
13353
13354 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13355 return true;
13356
13357 x = SUBREG_REG (x);
13358 }
13359 /* ??? For hard-regs we now record everything. We might be able to
13360 optimize this using last_set_mode. */
13361 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13362 truncated_mode = GET_MODE (x);
13363 else
13364 return false;
13365
13366 rsp = &reg_stat[REGNO (x)];
13367 if (rsp->truncated_to_mode == 0
13368 || rsp->truncation_label < label_tick_ebb_start
13369 || (GET_MODE_SIZE (truncated_mode)
13370 < GET_MODE_SIZE (rsp->truncated_to_mode)))
13371 {
13372 rsp->truncated_to_mode = truncated_mode;
13373 rsp->truncation_label = label_tick;
13374 }
13375
13376 return true;
13377 }
13378
13379 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13380 the modes they are used in. This can help truning TRUNCATEs into
13381 SUBREGs. */
13382
13383 static void
13384 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13385 {
13386 subrtx_var_iterator::array_type array;
13387 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13388 if (record_truncated_value (*iter))
13389 iter.skip_subrtxes ();
13390 }
13391
13392 /* Scan X for promoted SUBREGs. For each one found,
13393 note what it implies to the registers used in it. */
13394
13395 static void
13396 check_promoted_subreg (rtx_insn *insn, rtx x)
13397 {
13398 if (GET_CODE (x) == SUBREG
13399 && SUBREG_PROMOTED_VAR_P (x)
13400 && REG_P (SUBREG_REG (x)))
13401 record_promoted_value (insn, x);
13402 else
13403 {
13404 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13405 int i, j;
13406
13407 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13408 switch (format[i])
13409 {
13410 case 'e':
13411 check_promoted_subreg (insn, XEXP (x, i));
13412 break;
13413 case 'V':
13414 case 'E':
13415 if (XVEC (x, i) != 0)
13416 for (j = 0; j < XVECLEN (x, i); j++)
13417 check_promoted_subreg (insn, XVECEXP (x, i, j));
13418 break;
13419 }
13420 }
13421 }
13422 \f
13423 /* Verify that all the registers and memory references mentioned in *LOC are
13424 still valid. *LOC was part of a value set in INSN when label_tick was
13425 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13426 the invalid references with (clobber (const_int 0)) and return 1. This
13427 replacement is useful because we often can get useful information about
13428 the form of a value (e.g., if it was produced by a shift that always
13429 produces -1 or 0) even though we don't know exactly what registers it
13430 was produced from. */
13431
13432 static int
13433 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13434 {
13435 rtx x = *loc;
13436 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13437 int len = GET_RTX_LENGTH (GET_CODE (x));
13438 int i, j;
13439
13440 if (REG_P (x))
13441 {
13442 unsigned int regno = REGNO (x);
13443 unsigned int endregno = END_REGNO (x);
13444 unsigned int j;
13445
13446 for (j = regno; j < endregno; j++)
13447 {
13448 reg_stat_type *rsp = &reg_stat[j];
13449 if (rsp->last_set_invalid
13450 /* If this is a pseudo-register that was only set once and not
13451 live at the beginning of the function, it is always valid. */
13452 || (! (regno >= FIRST_PSEUDO_REGISTER
13453 && regno < reg_n_sets_max
13454 && REG_N_SETS (regno) == 1
13455 && (!REGNO_REG_SET_P
13456 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13457 regno)))
13458 && rsp->last_set_label > tick))
13459 {
13460 if (replace)
13461 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13462 return replace;
13463 }
13464 }
13465
13466 return 1;
13467 }
13468 /* If this is a memory reference, make sure that there were no stores after
13469 it that might have clobbered the value. We don't have alias info, so we
13470 assume any store invalidates it. Moreover, we only have local UIDs, so
13471 we also assume that there were stores in the intervening basic blocks. */
13472 else if (MEM_P (x) && !MEM_READONLY_P (x)
13473 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13474 {
13475 if (replace)
13476 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13477 return replace;
13478 }
13479
13480 for (i = 0; i < len; i++)
13481 {
13482 if (fmt[i] == 'e')
13483 {
13484 /* Check for identical subexpressions. If x contains
13485 identical subexpression we only have to traverse one of
13486 them. */
13487 if (i == 1 && ARITHMETIC_P (x))
13488 {
13489 /* Note that at this point x0 has already been checked
13490 and found valid. */
13491 rtx x0 = XEXP (x, 0);
13492 rtx x1 = XEXP (x, 1);
13493
13494 /* If x0 and x1 are identical then x is also valid. */
13495 if (x0 == x1)
13496 return 1;
13497
13498 /* If x1 is identical to a subexpression of x0 then
13499 while checking x0, x1 has already been checked. Thus
13500 it is valid and so as x. */
13501 if (ARITHMETIC_P (x0)
13502 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13503 return 1;
13504
13505 /* If x0 is identical to a subexpression of x1 then x is
13506 valid iff the rest of x1 is valid. */
13507 if (ARITHMETIC_P (x1)
13508 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13509 return
13510 get_last_value_validate (&XEXP (x1,
13511 x0 == XEXP (x1, 0) ? 1 : 0),
13512 insn, tick, replace);
13513 }
13514
13515 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13516 replace) == 0)
13517 return 0;
13518 }
13519 else if (fmt[i] == 'E')
13520 for (j = 0; j < XVECLEN (x, i); j++)
13521 if (get_last_value_validate (&XVECEXP (x, i, j),
13522 insn, tick, replace) == 0)
13523 return 0;
13524 }
13525
13526 /* If we haven't found a reason for it to be invalid, it is valid. */
13527 return 1;
13528 }
13529
13530 /* Get the last value assigned to X, if known. Some registers
13531 in the value may be replaced with (clobber (const_int 0)) if their value
13532 is known longer known reliably. */
13533
13534 static rtx
13535 get_last_value (const_rtx x)
13536 {
13537 unsigned int regno;
13538 rtx value;
13539 reg_stat_type *rsp;
13540
13541 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13542 then convert it to the desired mode. If this is a paradoxical SUBREG,
13543 we cannot predict what values the "extra" bits might have. */
13544 if (GET_CODE (x) == SUBREG
13545 && subreg_lowpart_p (x)
13546 && !paradoxical_subreg_p (x)
13547 && (value = get_last_value (SUBREG_REG (x))) != 0)
13548 return gen_lowpart (GET_MODE (x), value);
13549
13550 if (!REG_P (x))
13551 return 0;
13552
13553 regno = REGNO (x);
13554 rsp = &reg_stat[regno];
13555 value = rsp->last_set_value;
13556
13557 /* If we don't have a value, or if it isn't for this basic block and
13558 it's either a hard register, set more than once, or it's a live
13559 at the beginning of the function, return 0.
13560
13561 Because if it's not live at the beginning of the function then the reg
13562 is always set before being used (is never used without being set).
13563 And, if it's set only once, and it's always set before use, then all
13564 uses must have the same last value, even if it's not from this basic
13565 block. */
13566
13567 if (value == 0
13568 || (rsp->last_set_label < label_tick_ebb_start
13569 && (regno < FIRST_PSEUDO_REGISTER
13570 || regno >= reg_n_sets_max
13571 || REG_N_SETS (regno) != 1
13572 || REGNO_REG_SET_P
13573 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13574 return 0;
13575
13576 /* If the value was set in a later insn than the ones we are processing,
13577 we can't use it even if the register was only set once. */
13578 if (rsp->last_set_label == label_tick
13579 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13580 return 0;
13581
13582 /* If fewer bits were set than what we are asked for now, we cannot use
13583 the value. */
13584 if (GET_MODE_PRECISION (rsp->last_set_mode)
13585 < GET_MODE_PRECISION (GET_MODE (x)))
13586 return 0;
13587
13588 /* If the value has all its registers valid, return it. */
13589 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13590 return value;
13591
13592 /* Otherwise, make a copy and replace any invalid register with
13593 (clobber (const_int 0)). If that fails for some reason, return 0. */
13594
13595 value = copy_rtx (value);
13596 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13597 return value;
13598
13599 return 0;
13600 }
13601 \f
13602 /* Return nonzero if expression X refers to a REG or to memory
13603 that is set in an instruction more recent than FROM_LUID. */
13604
13605 static int
13606 use_crosses_set_p (const_rtx x, int from_luid)
13607 {
13608 const char *fmt;
13609 int i;
13610 enum rtx_code code = GET_CODE (x);
13611
13612 if (code == REG)
13613 {
13614 unsigned int regno = REGNO (x);
13615 unsigned endreg = END_REGNO (x);
13616
13617 #ifdef PUSH_ROUNDING
13618 /* Don't allow uses of the stack pointer to be moved,
13619 because we don't know whether the move crosses a push insn. */
13620 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13621 return 1;
13622 #endif
13623 for (; regno < endreg; regno++)
13624 {
13625 reg_stat_type *rsp = &reg_stat[regno];
13626 if (rsp->last_set
13627 && rsp->last_set_label == label_tick
13628 && DF_INSN_LUID (rsp->last_set) > from_luid)
13629 return 1;
13630 }
13631 return 0;
13632 }
13633
13634 if (code == MEM && mem_last_set > from_luid)
13635 return 1;
13636
13637 fmt = GET_RTX_FORMAT (code);
13638
13639 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13640 {
13641 if (fmt[i] == 'E')
13642 {
13643 int j;
13644 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13645 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13646 return 1;
13647 }
13648 else if (fmt[i] == 'e'
13649 && use_crosses_set_p (XEXP (x, i), from_luid))
13650 return 1;
13651 }
13652 return 0;
13653 }
13654 \f
13655 /* Define three variables used for communication between the following
13656 routines. */
13657
13658 static unsigned int reg_dead_regno, reg_dead_endregno;
13659 static int reg_dead_flag;
13660
13661 /* Function called via note_stores from reg_dead_at_p.
13662
13663 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13664 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13665
13666 static void
13667 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13668 {
13669 unsigned int regno, endregno;
13670
13671 if (!REG_P (dest))
13672 return;
13673
13674 regno = REGNO (dest);
13675 endregno = END_REGNO (dest);
13676 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13677 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13678 }
13679
13680 /* Return nonzero if REG is known to be dead at INSN.
13681
13682 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13683 referencing REG, it is dead. If we hit a SET referencing REG, it is
13684 live. Otherwise, see if it is live or dead at the start of the basic
13685 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13686 must be assumed to be always live. */
13687
13688 static int
13689 reg_dead_at_p (rtx reg, rtx_insn *insn)
13690 {
13691 basic_block block;
13692 unsigned int i;
13693
13694 /* Set variables for reg_dead_at_p_1. */
13695 reg_dead_regno = REGNO (reg);
13696 reg_dead_endregno = END_REGNO (reg);
13697
13698 reg_dead_flag = 0;
13699
13700 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13701 we allow the machine description to decide whether use-and-clobber
13702 patterns are OK. */
13703 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13704 {
13705 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13706 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13707 return 0;
13708 }
13709
13710 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13711 beginning of basic block. */
13712 block = BLOCK_FOR_INSN (insn);
13713 for (;;)
13714 {
13715 if (INSN_P (insn))
13716 {
13717 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13718 return 1;
13719
13720 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13721 if (reg_dead_flag)
13722 return reg_dead_flag == 1 ? 1 : 0;
13723
13724 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13725 return 1;
13726 }
13727
13728 if (insn == BB_HEAD (block))
13729 break;
13730
13731 insn = PREV_INSN (insn);
13732 }
13733
13734 /* Look at live-in sets for the basic block that we were in. */
13735 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13736 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13737 return 0;
13738
13739 return 1;
13740 }
13741 \f
13742 /* Note hard registers in X that are used. */
13743
13744 static void
13745 mark_used_regs_combine (rtx x)
13746 {
13747 RTX_CODE code = GET_CODE (x);
13748 unsigned int regno;
13749 int i;
13750
13751 switch (code)
13752 {
13753 case LABEL_REF:
13754 case SYMBOL_REF:
13755 case CONST:
13756 CASE_CONST_ANY:
13757 case PC:
13758 case ADDR_VEC:
13759 case ADDR_DIFF_VEC:
13760 case ASM_INPUT:
13761 /* CC0 must die in the insn after it is set, so we don't need to take
13762 special note of it here. */
13763 case CC0:
13764 return;
13765
13766 case CLOBBER:
13767 /* If we are clobbering a MEM, mark any hard registers inside the
13768 address as used. */
13769 if (MEM_P (XEXP (x, 0)))
13770 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13771 return;
13772
13773 case REG:
13774 regno = REGNO (x);
13775 /* A hard reg in a wide mode may really be multiple registers.
13776 If so, mark all of them just like the first. */
13777 if (regno < FIRST_PSEUDO_REGISTER)
13778 {
13779 /* None of this applies to the stack, frame or arg pointers. */
13780 if (regno == STACK_POINTER_REGNUM
13781 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13782 && regno == HARD_FRAME_POINTER_REGNUM)
13783 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13784 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13785 || regno == FRAME_POINTER_REGNUM)
13786 return;
13787
13788 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13789 }
13790 return;
13791
13792 case SET:
13793 {
13794 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13795 the address. */
13796 rtx testreg = SET_DEST (x);
13797
13798 while (GET_CODE (testreg) == SUBREG
13799 || GET_CODE (testreg) == ZERO_EXTRACT
13800 || GET_CODE (testreg) == STRICT_LOW_PART)
13801 testreg = XEXP (testreg, 0);
13802
13803 if (MEM_P (testreg))
13804 mark_used_regs_combine (XEXP (testreg, 0));
13805
13806 mark_used_regs_combine (SET_SRC (x));
13807 }
13808 return;
13809
13810 default:
13811 break;
13812 }
13813
13814 /* Recursively scan the operands of this expression. */
13815
13816 {
13817 const char *fmt = GET_RTX_FORMAT (code);
13818
13819 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13820 {
13821 if (fmt[i] == 'e')
13822 mark_used_regs_combine (XEXP (x, i));
13823 else if (fmt[i] == 'E')
13824 {
13825 int j;
13826
13827 for (j = 0; j < XVECLEN (x, i); j++)
13828 mark_used_regs_combine (XVECEXP (x, i, j));
13829 }
13830 }
13831 }
13832 }
13833 \f
13834 /* Remove register number REGNO from the dead registers list of INSN.
13835
13836 Return the note used to record the death, if there was one. */
13837
13838 rtx
13839 remove_death (unsigned int regno, rtx_insn *insn)
13840 {
13841 rtx note = find_regno_note (insn, REG_DEAD, regno);
13842
13843 if (note)
13844 remove_note (insn, note);
13845
13846 return note;
13847 }
13848
13849 /* For each register (hardware or pseudo) used within expression X, if its
13850 death is in an instruction with luid between FROM_LUID (inclusive) and
13851 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13852 list headed by PNOTES.
13853
13854 That said, don't move registers killed by maybe_kill_insn.
13855
13856 This is done when X is being merged by combination into TO_INSN. These
13857 notes will then be distributed as needed. */
13858
13859 static void
13860 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13861 rtx *pnotes)
13862 {
13863 const char *fmt;
13864 int len, i;
13865 enum rtx_code code = GET_CODE (x);
13866
13867 if (code == REG)
13868 {
13869 unsigned int regno = REGNO (x);
13870 rtx_insn *where_dead = reg_stat[regno].last_death;
13871
13872 /* Don't move the register if it gets killed in between from and to. */
13873 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13874 && ! reg_referenced_p (x, maybe_kill_insn))
13875 return;
13876
13877 if (where_dead
13878 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13879 && DF_INSN_LUID (where_dead) >= from_luid
13880 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13881 {
13882 rtx note = remove_death (regno, where_dead);
13883
13884 /* It is possible for the call above to return 0. This can occur
13885 when last_death points to I2 or I1 that we combined with.
13886 In that case make a new note.
13887
13888 We must also check for the case where X is a hard register
13889 and NOTE is a death note for a range of hard registers
13890 including X. In that case, we must put REG_DEAD notes for
13891 the remaining registers in place of NOTE. */
13892
13893 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13894 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13895 > GET_MODE_SIZE (GET_MODE (x))))
13896 {
13897 unsigned int deadregno = REGNO (XEXP (note, 0));
13898 unsigned int deadend = END_REGNO (XEXP (note, 0));
13899 unsigned int ourend = END_REGNO (x);
13900 unsigned int i;
13901
13902 for (i = deadregno; i < deadend; i++)
13903 if (i < regno || i >= ourend)
13904 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13905 }
13906
13907 /* If we didn't find any note, or if we found a REG_DEAD note that
13908 covers only part of the given reg, and we have a multi-reg hard
13909 register, then to be safe we must check for REG_DEAD notes
13910 for each register other than the first. They could have
13911 their own REG_DEAD notes lying around. */
13912 else if ((note == 0
13913 || (note != 0
13914 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13915 < GET_MODE_SIZE (GET_MODE (x)))))
13916 && regno < FIRST_PSEUDO_REGISTER
13917 && REG_NREGS (x) > 1)
13918 {
13919 unsigned int ourend = END_REGNO (x);
13920 unsigned int i, offset;
13921 rtx oldnotes = 0;
13922
13923 if (note)
13924 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13925 else
13926 offset = 1;
13927
13928 for (i = regno + offset; i < ourend; i++)
13929 move_deaths (regno_reg_rtx[i],
13930 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13931 }
13932
13933 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13934 {
13935 XEXP (note, 1) = *pnotes;
13936 *pnotes = note;
13937 }
13938 else
13939 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13940 }
13941
13942 return;
13943 }
13944
13945 else if (GET_CODE (x) == SET)
13946 {
13947 rtx dest = SET_DEST (x);
13948
13949 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13950
13951 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13952 that accesses one word of a multi-word item, some
13953 piece of everything register in the expression is used by
13954 this insn, so remove any old death. */
13955 /* ??? So why do we test for equality of the sizes? */
13956
13957 if (GET_CODE (dest) == ZERO_EXTRACT
13958 || GET_CODE (dest) == STRICT_LOW_PART
13959 || (GET_CODE (dest) == SUBREG
13960 && (((GET_MODE_SIZE (GET_MODE (dest))
13961 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13962 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13963 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13964 {
13965 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13966 return;
13967 }
13968
13969 /* If this is some other SUBREG, we know it replaces the entire
13970 value, so use that as the destination. */
13971 if (GET_CODE (dest) == SUBREG)
13972 dest = SUBREG_REG (dest);
13973
13974 /* If this is a MEM, adjust deaths of anything used in the address.
13975 For a REG (the only other possibility), the entire value is
13976 being replaced so the old value is not used in this insn. */
13977
13978 if (MEM_P (dest))
13979 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13980 to_insn, pnotes);
13981 return;
13982 }
13983
13984 else if (GET_CODE (x) == CLOBBER)
13985 return;
13986
13987 len = GET_RTX_LENGTH (code);
13988 fmt = GET_RTX_FORMAT (code);
13989
13990 for (i = 0; i < len; i++)
13991 {
13992 if (fmt[i] == 'E')
13993 {
13994 int j;
13995 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13996 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13997 to_insn, pnotes);
13998 }
13999 else if (fmt[i] == 'e')
14000 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14001 }
14002 }
14003 \f
14004 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14005 pattern of an insn. X must be a REG. */
14006
14007 static int
14008 reg_bitfield_target_p (rtx x, rtx body)
14009 {
14010 int i;
14011
14012 if (GET_CODE (body) == SET)
14013 {
14014 rtx dest = SET_DEST (body);
14015 rtx target;
14016 unsigned int regno, tregno, endregno, endtregno;
14017
14018 if (GET_CODE (dest) == ZERO_EXTRACT)
14019 target = XEXP (dest, 0);
14020 else if (GET_CODE (dest) == STRICT_LOW_PART)
14021 target = SUBREG_REG (XEXP (dest, 0));
14022 else
14023 return 0;
14024
14025 if (GET_CODE (target) == SUBREG)
14026 target = SUBREG_REG (target);
14027
14028 if (!REG_P (target))
14029 return 0;
14030
14031 tregno = REGNO (target), regno = REGNO (x);
14032 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14033 return target == x;
14034
14035 endtregno = end_hard_regno (GET_MODE (target), tregno);
14036 endregno = end_hard_regno (GET_MODE (x), regno);
14037
14038 return endregno > tregno && regno < endtregno;
14039 }
14040
14041 else if (GET_CODE (body) == PARALLEL)
14042 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14043 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14044 return 1;
14045
14046 return 0;
14047 }
14048 \f
14049 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14050 as appropriate. I3 and I2 are the insns resulting from the combination
14051 insns including FROM (I2 may be zero).
14052
14053 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14054 not need REG_DEAD notes because they are being substituted for. This
14055 saves searching in the most common cases.
14056
14057 Each note in the list is either ignored or placed on some insns, depending
14058 on the type of note. */
14059
14060 static void
14061 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14062 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14063 {
14064 rtx note, next_note;
14065 rtx tem_note;
14066 rtx_insn *tem_insn;
14067
14068 for (note = notes; note; note = next_note)
14069 {
14070 rtx_insn *place = 0, *place2 = 0;
14071
14072 next_note = XEXP (note, 1);
14073 switch (REG_NOTE_KIND (note))
14074 {
14075 case REG_BR_PROB:
14076 case REG_BR_PRED:
14077 /* Doesn't matter much where we put this, as long as it's somewhere.
14078 It is preferable to keep these notes on branches, which is most
14079 likely to be i3. */
14080 place = i3;
14081 break;
14082
14083 case REG_NON_LOCAL_GOTO:
14084 if (JUMP_P (i3))
14085 place = i3;
14086 else
14087 {
14088 gcc_assert (i2 && JUMP_P (i2));
14089 place = i2;
14090 }
14091 break;
14092
14093 case REG_EH_REGION:
14094 /* These notes must remain with the call or trapping instruction. */
14095 if (CALL_P (i3))
14096 place = i3;
14097 else if (i2 && CALL_P (i2))
14098 place = i2;
14099 else
14100 {
14101 gcc_assert (cfun->can_throw_non_call_exceptions);
14102 if (may_trap_p (i3))
14103 place = i3;
14104 else if (i2 && may_trap_p (i2))
14105 place = i2;
14106 /* ??? Otherwise assume we've combined things such that we
14107 can now prove that the instructions can't trap. Drop the
14108 note in this case. */
14109 }
14110 break;
14111
14112 case REG_ARGS_SIZE:
14113 /* ??? How to distribute between i3-i1. Assume i3 contains the
14114 entire adjustment. Assert i3 contains at least some adjust. */
14115 if (!noop_move_p (i3))
14116 {
14117 int old_size, args_size = INTVAL (XEXP (note, 0));
14118 /* fixup_args_size_notes looks at REG_NORETURN note,
14119 so ensure the note is placed there first. */
14120 if (CALL_P (i3))
14121 {
14122 rtx *np;
14123 for (np = &next_note; *np; np = &XEXP (*np, 1))
14124 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14125 {
14126 rtx n = *np;
14127 *np = XEXP (n, 1);
14128 XEXP (n, 1) = REG_NOTES (i3);
14129 REG_NOTES (i3) = n;
14130 break;
14131 }
14132 }
14133 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14134 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14135 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14136 gcc_assert (old_size != args_size
14137 || (CALL_P (i3)
14138 && !ACCUMULATE_OUTGOING_ARGS
14139 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14140 }
14141 break;
14142
14143 case REG_NORETURN:
14144 case REG_SETJMP:
14145 case REG_TM:
14146 case REG_CALL_DECL:
14147 /* These notes must remain with the call. It should not be
14148 possible for both I2 and I3 to be a call. */
14149 if (CALL_P (i3))
14150 place = i3;
14151 else
14152 {
14153 gcc_assert (i2 && CALL_P (i2));
14154 place = i2;
14155 }
14156 break;
14157
14158 case REG_UNUSED:
14159 /* Any clobbers for i3 may still exist, and so we must process
14160 REG_UNUSED notes from that insn.
14161
14162 Any clobbers from i2 or i1 can only exist if they were added by
14163 recog_for_combine. In that case, recog_for_combine created the
14164 necessary REG_UNUSED notes. Trying to keep any original
14165 REG_UNUSED notes from these insns can cause incorrect output
14166 if it is for the same register as the original i3 dest.
14167 In that case, we will notice that the register is set in i3,
14168 and then add a REG_UNUSED note for the destination of i3, which
14169 is wrong. However, it is possible to have REG_UNUSED notes from
14170 i2 or i1 for register which were both used and clobbered, so
14171 we keep notes from i2 or i1 if they will turn into REG_DEAD
14172 notes. */
14173
14174 /* If this register is set or clobbered in I3, put the note there
14175 unless there is one already. */
14176 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14177 {
14178 if (from_insn != i3)
14179 break;
14180
14181 if (! (REG_P (XEXP (note, 0))
14182 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14183 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14184 place = i3;
14185 }
14186 /* Otherwise, if this register is used by I3, then this register
14187 now dies here, so we must put a REG_DEAD note here unless there
14188 is one already. */
14189 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14190 && ! (REG_P (XEXP (note, 0))
14191 ? find_regno_note (i3, REG_DEAD,
14192 REGNO (XEXP (note, 0)))
14193 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14194 {
14195 PUT_REG_NOTE_KIND (note, REG_DEAD);
14196 place = i3;
14197 }
14198 break;
14199
14200 case REG_EQUAL:
14201 case REG_EQUIV:
14202 case REG_NOALIAS:
14203 /* These notes say something about results of an insn. We can
14204 only support them if they used to be on I3 in which case they
14205 remain on I3. Otherwise they are ignored.
14206
14207 If the note refers to an expression that is not a constant, we
14208 must also ignore the note since we cannot tell whether the
14209 equivalence is still true. It might be possible to do
14210 slightly better than this (we only have a problem if I2DEST
14211 or I1DEST is present in the expression), but it doesn't
14212 seem worth the trouble. */
14213
14214 if (from_insn == i3
14215 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14216 place = i3;
14217 break;
14218
14219 case REG_INC:
14220 /* These notes say something about how a register is used. They must
14221 be present on any use of the register in I2 or I3. */
14222 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14223 place = i3;
14224
14225 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14226 {
14227 if (place)
14228 place2 = i2;
14229 else
14230 place = i2;
14231 }
14232 break;
14233
14234 case REG_LABEL_TARGET:
14235 case REG_LABEL_OPERAND:
14236 /* This can show up in several ways -- either directly in the
14237 pattern, or hidden off in the constant pool with (or without?)
14238 a REG_EQUAL note. */
14239 /* ??? Ignore the without-reg_equal-note problem for now. */
14240 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14241 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14242 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14243 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14244 place = i3;
14245
14246 if (i2
14247 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14248 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14249 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14250 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14251 {
14252 if (place)
14253 place2 = i2;
14254 else
14255 place = i2;
14256 }
14257
14258 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14259 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14260 there. */
14261 if (place && JUMP_P (place)
14262 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14263 && (JUMP_LABEL (place) == NULL
14264 || JUMP_LABEL (place) == XEXP (note, 0)))
14265 {
14266 rtx label = JUMP_LABEL (place);
14267
14268 if (!label)
14269 JUMP_LABEL (place) = XEXP (note, 0);
14270 else if (LABEL_P (label))
14271 LABEL_NUSES (label)--;
14272 }
14273
14274 if (place2 && JUMP_P (place2)
14275 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14276 && (JUMP_LABEL (place2) == NULL
14277 || JUMP_LABEL (place2) == XEXP (note, 0)))
14278 {
14279 rtx label = JUMP_LABEL (place2);
14280
14281 if (!label)
14282 JUMP_LABEL (place2) = XEXP (note, 0);
14283 else if (LABEL_P (label))
14284 LABEL_NUSES (label)--;
14285 place2 = 0;
14286 }
14287 break;
14288
14289 case REG_NONNEG:
14290 /* This note says something about the value of a register prior
14291 to the execution of an insn. It is too much trouble to see
14292 if the note is still correct in all situations. It is better
14293 to simply delete it. */
14294 break;
14295
14296 case REG_DEAD:
14297 /* If we replaced the right hand side of FROM_INSN with a
14298 REG_EQUAL note, the original use of the dying register
14299 will not have been combined into I3 and I2. In such cases,
14300 FROM_INSN is guaranteed to be the first of the combined
14301 instructions, so we simply need to search back before
14302 FROM_INSN for the previous use or set of this register,
14303 then alter the notes there appropriately.
14304
14305 If the register is used as an input in I3, it dies there.
14306 Similarly for I2, if it is nonzero and adjacent to I3.
14307
14308 If the register is not used as an input in either I3 or I2
14309 and it is not one of the registers we were supposed to eliminate,
14310 there are two possibilities. We might have a non-adjacent I2
14311 or we might have somehow eliminated an additional register
14312 from a computation. For example, we might have had A & B where
14313 we discover that B will always be zero. In this case we will
14314 eliminate the reference to A.
14315
14316 In both cases, we must search to see if we can find a previous
14317 use of A and put the death note there. */
14318
14319 if (from_insn
14320 && from_insn == i2mod
14321 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14322 tem_insn = from_insn;
14323 else
14324 {
14325 if (from_insn
14326 && CALL_P (from_insn)
14327 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14328 place = from_insn;
14329 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14330 place = i3;
14331 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14332 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14333 place = i2;
14334 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14335 && !(i2mod
14336 && reg_overlap_mentioned_p (XEXP (note, 0),
14337 i2mod_old_rhs)))
14338 || rtx_equal_p (XEXP (note, 0), elim_i1)
14339 || rtx_equal_p (XEXP (note, 0), elim_i0))
14340 break;
14341 tem_insn = i3;
14342 /* If the new I2 sets the same register that is marked dead
14343 in the note, we do not know where to put the note.
14344 Give up. */
14345 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14346 break;
14347 }
14348
14349 if (place == 0)
14350 {
14351 basic_block bb = this_basic_block;
14352
14353 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14354 {
14355 if (!NONDEBUG_INSN_P (tem_insn))
14356 {
14357 if (tem_insn == BB_HEAD (bb))
14358 break;
14359 continue;
14360 }
14361
14362 /* If the register is being set at TEM_INSN, see if that is all
14363 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14364 into a REG_UNUSED note instead. Don't delete sets to
14365 global register vars. */
14366 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14367 || !global_regs[REGNO (XEXP (note, 0))])
14368 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14369 {
14370 rtx set = single_set (tem_insn);
14371 rtx inner_dest = 0;
14372 rtx_insn *cc0_setter = NULL;
14373
14374 if (set != 0)
14375 for (inner_dest = SET_DEST (set);
14376 (GET_CODE (inner_dest) == STRICT_LOW_PART
14377 || GET_CODE (inner_dest) == SUBREG
14378 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14379 inner_dest = XEXP (inner_dest, 0))
14380 ;
14381
14382 /* Verify that it was the set, and not a clobber that
14383 modified the register.
14384
14385 CC0 targets must be careful to maintain setter/user
14386 pairs. If we cannot delete the setter due to side
14387 effects, mark the user with an UNUSED note instead
14388 of deleting it. */
14389
14390 if (set != 0 && ! side_effects_p (SET_SRC (set))
14391 && rtx_equal_p (XEXP (note, 0), inner_dest)
14392 && (!HAVE_cc0
14393 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14394 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14395 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14396 {
14397 /* Move the notes and links of TEM_INSN elsewhere.
14398 This might delete other dead insns recursively.
14399 First set the pattern to something that won't use
14400 any register. */
14401 rtx old_notes = REG_NOTES (tem_insn);
14402
14403 PATTERN (tem_insn) = pc_rtx;
14404 REG_NOTES (tem_insn) = NULL;
14405
14406 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14407 NULL_RTX, NULL_RTX, NULL_RTX);
14408 distribute_links (LOG_LINKS (tem_insn));
14409
14410 unsigned int regno = REGNO (XEXP (note, 0));
14411 reg_stat_type *rsp = &reg_stat[regno];
14412 if (rsp->last_set == tem_insn)
14413 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14414
14415 SET_INSN_DELETED (tem_insn);
14416 if (tem_insn == i2)
14417 i2 = NULL;
14418
14419 /* Delete the setter too. */
14420 if (cc0_setter)
14421 {
14422 PATTERN (cc0_setter) = pc_rtx;
14423 old_notes = REG_NOTES (cc0_setter);
14424 REG_NOTES (cc0_setter) = NULL;
14425
14426 distribute_notes (old_notes, cc0_setter,
14427 cc0_setter, NULL,
14428 NULL_RTX, NULL_RTX, NULL_RTX);
14429 distribute_links (LOG_LINKS (cc0_setter));
14430
14431 SET_INSN_DELETED (cc0_setter);
14432 if (cc0_setter == i2)
14433 i2 = NULL;
14434 }
14435 }
14436 else
14437 {
14438 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14439
14440 /* If there isn't already a REG_UNUSED note, put one
14441 here. Do not place a REG_DEAD note, even if
14442 the register is also used here; that would not
14443 match the algorithm used in lifetime analysis
14444 and can cause the consistency check in the
14445 scheduler to fail. */
14446 if (! find_regno_note (tem_insn, REG_UNUSED,
14447 REGNO (XEXP (note, 0))))
14448 place = tem_insn;
14449 break;
14450 }
14451 }
14452 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14453 || (CALL_P (tem_insn)
14454 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14455 {
14456 place = tem_insn;
14457
14458 /* If we are doing a 3->2 combination, and we have a
14459 register which formerly died in i3 and was not used
14460 by i2, which now no longer dies in i3 and is used in
14461 i2 but does not die in i2, and place is between i2
14462 and i3, then we may need to move a link from place to
14463 i2. */
14464 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14465 && from_insn
14466 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14467 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14468 {
14469 struct insn_link *links = LOG_LINKS (place);
14470 LOG_LINKS (place) = NULL;
14471 distribute_links (links);
14472 }
14473 break;
14474 }
14475
14476 if (tem_insn == BB_HEAD (bb))
14477 break;
14478 }
14479
14480 }
14481
14482 /* If the register is set or already dead at PLACE, we needn't do
14483 anything with this note if it is still a REG_DEAD note.
14484 We check here if it is set at all, not if is it totally replaced,
14485 which is what `dead_or_set_p' checks, so also check for it being
14486 set partially. */
14487
14488 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14489 {
14490 unsigned int regno = REGNO (XEXP (note, 0));
14491 reg_stat_type *rsp = &reg_stat[regno];
14492
14493 if (dead_or_set_p (place, XEXP (note, 0))
14494 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14495 {
14496 /* Unless the register previously died in PLACE, clear
14497 last_death. [I no longer understand why this is
14498 being done.] */
14499 if (rsp->last_death != place)
14500 rsp->last_death = 0;
14501 place = 0;
14502 }
14503 else
14504 rsp->last_death = place;
14505
14506 /* If this is a death note for a hard reg that is occupying
14507 multiple registers, ensure that we are still using all
14508 parts of the object. If we find a piece of the object
14509 that is unused, we must arrange for an appropriate REG_DEAD
14510 note to be added for it. However, we can't just emit a USE
14511 and tag the note to it, since the register might actually
14512 be dead; so we recourse, and the recursive call then finds
14513 the previous insn that used this register. */
14514
14515 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14516 {
14517 unsigned int endregno = END_REGNO (XEXP (note, 0));
14518 bool all_used = true;
14519 unsigned int i;
14520
14521 for (i = regno; i < endregno; i++)
14522 if ((! refers_to_regno_p (i, PATTERN (place))
14523 && ! find_regno_fusage (place, USE, i))
14524 || dead_or_set_regno_p (place, i))
14525 {
14526 all_used = false;
14527 break;
14528 }
14529
14530 if (! all_used)
14531 {
14532 /* Put only REG_DEAD notes for pieces that are
14533 not already dead or set. */
14534
14535 for (i = regno; i < endregno;
14536 i += hard_regno_nregs[i][reg_raw_mode[i]])
14537 {
14538 rtx piece = regno_reg_rtx[i];
14539 basic_block bb = this_basic_block;
14540
14541 if (! dead_or_set_p (place, piece)
14542 && ! reg_bitfield_target_p (piece,
14543 PATTERN (place)))
14544 {
14545 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14546 NULL_RTX);
14547
14548 distribute_notes (new_note, place, place,
14549 NULL, NULL_RTX, NULL_RTX,
14550 NULL_RTX);
14551 }
14552 else if (! refers_to_regno_p (i, PATTERN (place))
14553 && ! find_regno_fusage (place, USE, i))
14554 for (tem_insn = PREV_INSN (place); ;
14555 tem_insn = PREV_INSN (tem_insn))
14556 {
14557 if (!NONDEBUG_INSN_P (tem_insn))
14558 {
14559 if (tem_insn == BB_HEAD (bb))
14560 break;
14561 continue;
14562 }
14563 if (dead_or_set_p (tem_insn, piece)
14564 || reg_bitfield_target_p (piece,
14565 PATTERN (tem_insn)))
14566 {
14567 add_reg_note (tem_insn, REG_UNUSED, piece);
14568 break;
14569 }
14570 }
14571 }
14572
14573 place = 0;
14574 }
14575 }
14576 }
14577 break;
14578
14579 default:
14580 /* Any other notes should not be present at this point in the
14581 compilation. */
14582 gcc_unreachable ();
14583 }
14584
14585 if (place)
14586 {
14587 XEXP (note, 1) = REG_NOTES (place);
14588 REG_NOTES (place) = note;
14589 }
14590
14591 if (place2)
14592 add_shallow_copy_of_reg_note (place2, note);
14593 }
14594 }
14595 \f
14596 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14597 I3, I2, and I1 to new locations. This is also called to add a link
14598 pointing at I3 when I3's destination is changed. */
14599
14600 static void
14601 distribute_links (struct insn_link *links)
14602 {
14603 struct insn_link *link, *next_link;
14604
14605 for (link = links; link; link = next_link)
14606 {
14607 rtx_insn *place = 0;
14608 rtx_insn *insn;
14609 rtx set, reg;
14610
14611 next_link = link->next;
14612
14613 /* If the insn that this link points to is a NOTE, ignore it. */
14614 if (NOTE_P (link->insn))
14615 continue;
14616
14617 set = 0;
14618 rtx pat = PATTERN (link->insn);
14619 if (GET_CODE (pat) == SET)
14620 set = pat;
14621 else if (GET_CODE (pat) == PARALLEL)
14622 {
14623 int i;
14624 for (i = 0; i < XVECLEN (pat, 0); i++)
14625 {
14626 set = XVECEXP (pat, 0, i);
14627 if (GET_CODE (set) != SET)
14628 continue;
14629
14630 reg = SET_DEST (set);
14631 while (GET_CODE (reg) == ZERO_EXTRACT
14632 || GET_CODE (reg) == STRICT_LOW_PART
14633 || GET_CODE (reg) == SUBREG)
14634 reg = XEXP (reg, 0);
14635
14636 if (!REG_P (reg))
14637 continue;
14638
14639 if (REGNO (reg) == link->regno)
14640 break;
14641 }
14642 if (i == XVECLEN (pat, 0))
14643 continue;
14644 }
14645 else
14646 continue;
14647
14648 reg = SET_DEST (set);
14649
14650 while (GET_CODE (reg) == ZERO_EXTRACT
14651 || GET_CODE (reg) == STRICT_LOW_PART
14652 || GET_CODE (reg) == SUBREG)
14653 reg = XEXP (reg, 0);
14654
14655 /* A LOG_LINK is defined as being placed on the first insn that uses
14656 a register and points to the insn that sets the register. Start
14657 searching at the next insn after the target of the link and stop
14658 when we reach a set of the register or the end of the basic block.
14659
14660 Note that this correctly handles the link that used to point from
14661 I3 to I2. Also note that not much searching is typically done here
14662 since most links don't point very far away. */
14663
14664 for (insn = NEXT_INSN (link->insn);
14665 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14666 || BB_HEAD (this_basic_block->next_bb) != insn));
14667 insn = NEXT_INSN (insn))
14668 if (DEBUG_INSN_P (insn))
14669 continue;
14670 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14671 {
14672 if (reg_referenced_p (reg, PATTERN (insn)))
14673 place = insn;
14674 break;
14675 }
14676 else if (CALL_P (insn)
14677 && find_reg_fusage (insn, USE, reg))
14678 {
14679 place = insn;
14680 break;
14681 }
14682 else if (INSN_P (insn) && reg_set_p (reg, insn))
14683 break;
14684
14685 /* If we found a place to put the link, place it there unless there
14686 is already a link to the same insn as LINK at that point. */
14687
14688 if (place)
14689 {
14690 struct insn_link *link2;
14691
14692 FOR_EACH_LOG_LINK (link2, place)
14693 if (link2->insn == link->insn && link2->regno == link->regno)
14694 break;
14695
14696 if (link2 == NULL)
14697 {
14698 link->next = LOG_LINKS (place);
14699 LOG_LINKS (place) = link;
14700
14701 /* Set added_links_insn to the earliest insn we added a
14702 link to. */
14703 if (added_links_insn == 0
14704 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14705 added_links_insn = place;
14706 }
14707 }
14708 }
14709 }
14710 \f
14711 /* Check for any register or memory mentioned in EQUIV that is not
14712 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14713 of EXPR where some registers may have been replaced by constants. */
14714
14715 static bool
14716 unmentioned_reg_p (rtx equiv, rtx expr)
14717 {
14718 subrtx_iterator::array_type array;
14719 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14720 {
14721 const_rtx x = *iter;
14722 if ((REG_P (x) || MEM_P (x))
14723 && !reg_mentioned_p (x, expr))
14724 return true;
14725 }
14726 return false;
14727 }
14728 \f
14729 DEBUG_FUNCTION void
14730 dump_combine_stats (FILE *file)
14731 {
14732 fprintf
14733 (file,
14734 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14735 combine_attempts, combine_merges, combine_extras, combine_successes);
14736 }
14737
14738 void
14739 dump_combine_total_stats (FILE *file)
14740 {
14741 fprintf
14742 (file,
14743 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14744 total_attempts, total_merges, total_extras, total_successes);
14745 }
14746 \f
14747 /* Try combining insns through substitution. */
14748 static unsigned int
14749 rest_of_handle_combine (void)
14750 {
14751 int rebuild_jump_labels_after_combine;
14752
14753 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14754 df_note_add_problem ();
14755 df_analyze ();
14756
14757 regstat_init_n_sets_and_refs ();
14758 reg_n_sets_max = max_reg_num ();
14759
14760 rebuild_jump_labels_after_combine
14761 = combine_instructions (get_insns (), max_reg_num ());
14762
14763 /* Combining insns may have turned an indirect jump into a
14764 direct jump. Rebuild the JUMP_LABEL fields of jumping
14765 instructions. */
14766 if (rebuild_jump_labels_after_combine)
14767 {
14768 if (dom_info_available_p (CDI_DOMINATORS))
14769 free_dominance_info (CDI_DOMINATORS);
14770 timevar_push (TV_JUMP);
14771 rebuild_jump_labels (get_insns ());
14772 cleanup_cfg (0);
14773 timevar_pop (TV_JUMP);
14774 }
14775
14776 regstat_free_n_sets_and_refs ();
14777 return 0;
14778 }
14779
14780 namespace {
14781
14782 const pass_data pass_data_combine =
14783 {
14784 RTL_PASS, /* type */
14785 "combine", /* name */
14786 OPTGROUP_NONE, /* optinfo_flags */
14787 TV_COMBINE, /* tv_id */
14788 PROP_cfglayout, /* properties_required */
14789 0, /* properties_provided */
14790 0, /* properties_destroyed */
14791 0, /* todo_flags_start */
14792 TODO_df_finish, /* todo_flags_finish */
14793 };
14794
14795 class pass_combine : public rtl_opt_pass
14796 {
14797 public:
14798 pass_combine (gcc::context *ctxt)
14799 : rtl_opt_pass (pass_data_combine, ctxt)
14800 {}
14801
14802 /* opt_pass methods: */
14803 virtual bool gate (function *) { return (optimize > 0); }
14804 virtual unsigned int execute (function *)
14805 {
14806 return rest_of_handle_combine ();
14807 }
14808
14809 }; // class pass_combine
14810
14811 } // anon namespace
14812
14813 rtl_opt_pass *
14814 make_pass_combine (gcc::context *ctxt)
14815 {
14816 return new pass_combine (ctxt);
14817 }