]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/alpha/alpha.h
2c0e0a2d2cc762a99d5b95a767b9f38008413b2b
[thirdparty/gcc.git] / gcc / config / alpha / alpha.h
1 /* Definitions of target machine for GNU compiler, for DEC Alpha.
2 Copyright (C) 1992, 93-98, 1999 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* Write out the correct language type definition for the header files.
24 Unless we have assembler language, write out the symbols for C. */
25 #define CPP_SPEC "\
26 %{!undef:\
27 %{.S:-D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY }}\
28 %{.cc|.cxx|.C:-D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus }\
29 %{.m:-D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C }\
30 %{!.S:%{!.cc:%{!.cxx:%{!.C:%{!.m:-D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C }}}}}}\
31 %{mieee:-D_IEEE_FP }\
32 %{mieee-with-inexact:-D_IEEE_FP -D_IEEE_FP_INEXACT }}\
33 %(cpp_cpu) %(cpp_subtarget)"
34
35 #ifndef CPP_SUBTARGET_SPEC
36 #define CPP_SUBTARGET_SPEC ""
37 #endif
38
39 /* Set the spec to use for signed char. The default tests the above macro
40 but DEC's compiler can't handle the conditional in a "constant"
41 operand. */
42
43 #define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
44
45 #define WORD_SWITCH_TAKES_ARG(STR) \
46 (!strcmp (STR, "rpath") || !strcmp (STR, "include") \
47 || !strcmp (STR, "imacros") || !strcmp (STR, "aux-info") \
48 || !strcmp (STR, "idirafter") || !strcmp (STR, "iprefix") \
49 || !strcmp (STR, "iwithprefix") || !strcmp (STR, "iwithprefixbefore") \
50 || !strcmp (STR, "isystem"))
51
52 /* Print subsidiary information on the compiler version in use. */
53 #define TARGET_VERSION
54
55 /* Run-time compilation parameters selecting different hardware subsets. */
56
57 /* Which processor to schedule for. The cpu attribute defines a list that
58 mirrors this list, so changes to alpha.md must be made at the same time. */
59
60 enum processor_type
61 {PROCESSOR_EV4, /* 2106[46]{a,} */
62 PROCESSOR_EV5, /* 21164{a,pc,} */
63 PROCESSOR_EV6}; /* 21264 */
64
65 extern enum processor_type alpha_cpu;
66
67 enum alpha_trap_precision
68 {
69 ALPHA_TP_PROG, /* No precision (default). */
70 ALPHA_TP_FUNC, /* Trap contained within originating function. */
71 ALPHA_TP_INSN /* Instruction accuracy and code is resumption safe. */
72 };
73
74 enum alpha_fp_rounding_mode
75 {
76 ALPHA_FPRM_NORM, /* Normal rounding mode. */
77 ALPHA_FPRM_MINF, /* Round towards minus-infinity. */
78 ALPHA_FPRM_CHOP, /* Chopped rounding mode (towards 0). */
79 ALPHA_FPRM_DYN /* Dynamic rounding mode. */
80 };
81
82 enum alpha_fp_trap_mode
83 {
84 ALPHA_FPTM_N, /* Normal trap mode. */
85 ALPHA_FPTM_U, /* Underflow traps enabled. */
86 ALPHA_FPTM_SU, /* Software completion, w/underflow traps */
87 ALPHA_FPTM_SUI /* Software completion, w/underflow & inexact traps */
88 };
89
90 extern int target_flags;
91
92 extern enum alpha_trap_precision alpha_tp;
93 extern enum alpha_fp_rounding_mode alpha_fprm;
94 extern enum alpha_fp_trap_mode alpha_fptm;
95
96 /* This means that floating-point support exists in the target implementation
97 of the Alpha architecture. This is usually the default. */
98 #define MASK_FP (1 << 0)
99 #define TARGET_FP (target_flags & MASK_FP)
100
101 /* This means that floating-point registers are allowed to be used. Note
102 that Alpha implementations without FP operations are required to
103 provide the FP registers. */
104
105 #define MASK_FPREGS (1 << 1)
106 #define TARGET_FPREGS (target_flags & MASK_FPREGS)
107
108 /* This means that gas is used to process the assembler file. */
109
110 #define MASK_GAS (1 << 2)
111 #define TARGET_GAS (target_flags & MASK_GAS)
112
113 /* This means that we should mark procedures as IEEE conformant. */
114
115 #define MASK_IEEE_CONFORMANT (1 << 3)
116 #define TARGET_IEEE_CONFORMANT (target_flags & MASK_IEEE_CONFORMANT)
117
118 /* This means we should be IEEE-compliant except for inexact. */
119
120 #define MASK_IEEE (1 << 4)
121 #define TARGET_IEEE (target_flags & MASK_IEEE)
122
123 /* This means we should be fully IEEE-compliant. */
124
125 #define MASK_IEEE_WITH_INEXACT (1 << 5)
126 #define TARGET_IEEE_WITH_INEXACT (target_flags & MASK_IEEE_WITH_INEXACT)
127
128 /* This means we must construct all constants rather than emitting
129 them as literal data. */
130
131 #define MASK_BUILD_CONSTANTS (1 << 6)
132 #define TARGET_BUILD_CONSTANTS (target_flags & MASK_BUILD_CONSTANTS)
133
134 /* This means we handle floating points in VAX F- (float)
135 or G- (double) Format. */
136
137 #define MASK_FLOAT_VAX (1 << 7)
138 #define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
139
140 /* This means that the processor has byte and half word loads and stores
141 (the BWX extension). */
142
143 #define MASK_BWX (1 << 8)
144 #define TARGET_BWX (target_flags & MASK_BWX)
145
146 /* This means that the processor has the MAX extension. */
147 #define MASK_MAX (1 << 9)
148 #define TARGET_MAX (target_flags & MASK_MAX)
149
150 /* This means that the processor has the FIX extension. */
151 #define MASK_FIX (1 << 10)
152 #define TARGET_FIX (target_flags & MASK_FIX)
153
154 /* This means that the processor has the CIX extension. */
155 #define MASK_CIX (1 << 11)
156 #define TARGET_CIX (target_flags & MASK_CIX)
157
158 /* This means that the processor is an EV5, EV56, or PCA56. This is defined
159 only in TARGET_CPU_DEFAULT. */
160 #define MASK_CPU_EV5 (1 << 28)
161
162 /* Likewise for EV6. */
163 #define MASK_CPU_EV6 (1 << 29)
164
165 /* This means we support the .arch directive in the assembler. Only
166 defined in TARGET_CPU_DEFAULT. */
167 #define MASK_SUPPORT_ARCH (1 << 30)
168 #define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
169
170 /* These are for target os support and cannot be changed at runtime. */
171 #ifndef TARGET_WINDOWS_NT
172 #define TARGET_WINDOWS_NT 0
173 #endif
174 #ifndef TARGET_OPEN_VMS
175 #define TARGET_OPEN_VMS 0
176 #endif
177
178 #ifndef TARGET_AS_CAN_SUBTRACT_LABELS
179 #define TARGET_AS_CAN_SUBTRACT_LABELS TARGET_GAS
180 #endif
181 #ifndef TARGET_CAN_FAULT_IN_PROLOGUE
182 #define TARGET_CAN_FAULT_IN_PROLOGUE 0
183 #endif
184
185 /* Macro to define tables used to set the flags.
186 This is a list in braces of pairs in braces,
187 each pair being { "NAME", VALUE }
188 where VALUE is the bits to set or minus the bits to clear.
189 An empty string NAME is used to identify the default VALUE. */
190
191 #define TARGET_SWITCHES \
192 { {"no-soft-float", MASK_FP, "Use hardware fp"}, \
193 {"soft-float", - MASK_FP, "Do not use hardware fp"}, \
194 {"fp-regs", MASK_FPREGS, "Use fp registers"}, \
195 {"no-fp-regs", - (MASK_FP|MASK_FPREGS), "Do not use fp registers"}, \
196 {"alpha-as", -MASK_GAS, "Do not assume GAS"}, \
197 {"gas", MASK_GAS, "Assume GAS"}, \
198 {"ieee-conformant", MASK_IEEE_CONFORMANT, \
199 "Request IEEE-conformant math library routines (OSF/1)"}, \
200 {"ieee", MASK_IEEE|MASK_IEEE_CONFORMANT, \
201 "Emit IEEE-conformant code, without inexact exceptions"}, \
202 {"ieee-with-inexact", MASK_IEEE_WITH_INEXACT|MASK_IEEE_CONFORMANT, \
203 "Emit IEEE-conformant code, with inexact exceptions"}, \
204 {"build-constants", MASK_BUILD_CONSTANTS, \
205 "Do not emit complex integer constants to read-only memory"}, \
206 {"float-vax", MASK_FLOAT_VAX, "Use VAX fp"}, \
207 {"float-ieee", -MASK_FLOAT_VAX, "Do not use VAX fp"}, \
208 {"bwx", MASK_BWX, "Emit code for the byte/word ISA extension"}, \
209 {"no-bwx", -MASK_BWX, ""}, \
210 {"max", MASK_MAX, "Emit code for the motion video ISA extension"}, \
211 {"no-max", -MASK_MAX, ""}, \
212 {"fix", MASK_FIX, "Emit code for the fp move and sqrt ISA extension"}, \
213 {"no-fix", -MASK_FIX, ""}, \
214 {"cix", MASK_CIX, "Emit code for the counting ISA extension"}, \
215 {"no-cix", -MASK_CIX, ""}, \
216 {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT, ""} }
217
218 #define TARGET_DEFAULT MASK_FP|MASK_FPREGS
219
220 #ifndef TARGET_CPU_DEFAULT
221 #define TARGET_CPU_DEFAULT 0
222 #endif
223
224 /* This macro is similar to `TARGET_SWITCHES' but defines names of
225 command options that have values. Its definition is an initializer
226 with a subgrouping for each command option.
227
228 Each subgrouping contains a string constant, that defines the fixed
229 part of the option name, and the address of a variable. The
230 variable, type `char *', is set to the variable part of the given
231 option if the fixed part matches. The actual option name is made
232 by appending `-m' to the specified name.
233
234 Here is an example which defines `-mshort-data-NUMBER'. If the
235 given option is `-mshort-data-512', the variable `m88k_short_data'
236 will be set to the string `"512"'.
237
238 extern char *m88k_short_data;
239 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
240
241 extern const char *alpha_cpu_string; /* For -mcpu= */
242 extern const char *alpha_fprm_string; /* For -mfp-rounding-mode=[n|m|c|d] */
243 extern const char *alpha_fptm_string; /* For -mfp-trap-mode=[n|u|su|sui] */
244 extern const char *alpha_tp_string; /* For -mtrap-precision=[p|f|i] */
245 extern const char *alpha_mlat_string; /* For -mmemory-latency= */
246
247 #define TARGET_OPTIONS \
248 { \
249 {"cpu=", &alpha_cpu_string, \
250 "Generate code for a given CPU"}, \
251 {"fp-rounding-mode=", &alpha_fprm_string, \
252 "Control the generated fp rounding mode"}, \
253 {"fp-trap-mode=", &alpha_fptm_string, \
254 "Control the IEEE trap mode"}, \
255 {"trap-precision=", &alpha_tp_string, \
256 "Control the precision given to fp exceptions"}, \
257 {"memory-latency=", &alpha_mlat_string, \
258 "Tune expected memory latency"}, \
259 }
260
261 /* Attempt to describe CPU characteristics to the preprocessor. */
262
263 /* Corresponding to amask... */
264 #define CPP_AM_BWX_SPEC "-D__alpha_bwx__ -Acpu(bwx)"
265 #define CPP_AM_MAX_SPEC "-D__alpha_max__ -Acpu(max)"
266 #define CPP_AM_FIX_SPEC "-D__alpha_fix__ -Acpu(fix)"
267 #define CPP_AM_CIX_SPEC "-D__alpha_cix__ -Acpu(cix)"
268
269 /* Corresponding to implver... */
270 #define CPP_IM_EV4_SPEC "-D__alpha_ev4__ -Acpu(ev4)"
271 #define CPP_IM_EV5_SPEC "-D__alpha_ev5__ -Acpu(ev5)"
272 #define CPP_IM_EV6_SPEC "-D__alpha_ev6__ -Acpu(ev6)"
273
274 /* Common combinations. */
275 #define CPP_CPU_EV4_SPEC "%(cpp_im_ev4)"
276 #define CPP_CPU_EV5_SPEC "%(cpp_im_ev5)"
277 #define CPP_CPU_EV56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx)"
278 #define CPP_CPU_PCA56_SPEC "%(cpp_im_ev5) %(cpp_am_bwx) %(cpp_am_max)"
279 #define CPP_CPU_EV6_SPEC "%(cpp_im_ev6) %(cpp_am_bwx) %(cpp_am_max) %(cpp_am_fix)"
280
281 #ifndef CPP_CPU_DEFAULT_SPEC
282 # if TARGET_CPU_DEFAULT & MASK_CPU_EV6
283 # define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV6_SPEC
284 # else
285 # if TARGET_CPU_DEFAULT & MASK_CPU_EV5
286 # if TARGET_CPU_DEFAULT & MASK_MAX
287 # define CPP_CPU_DEFAULT_SPEC CPP_CPU_PCA56_SPEC
288 # else
289 # if TARGET_CPU_DEFAULT & MASK_BWX
290 # define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV56_SPEC
291 # else
292 # define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV5_SPEC
293 # endif
294 # endif
295 # else
296 # define CPP_CPU_DEFAULT_SPEC CPP_CPU_EV4_SPEC
297 # endif
298 # endif
299 #endif /* CPP_CPU_DEFAULT_SPEC */
300
301 #ifndef CPP_CPU_SPEC
302 #define CPP_CPU_SPEC "\
303 %{!undef:-Acpu(alpha) -Amachine(alpha) -D__alpha -D__alpha__ \
304 %{mcpu=ev4|mcpu=21064:%(cpp_cpu_ev4) }\
305 %{mcpu=ev5|mcpu=21164:%(cpp_cpu_ev5) }\
306 %{mcpu=ev56|mcpu=21164a:%(cpp_cpu_ev56) }\
307 %{mcpu=pca56|mcpu=21164pc|mcpu=21164PC:%(cpp_cpu_pca56) }\
308 %{mcpu=ev6|mcpu=21264:%(cpp_cpu_ev6) }\
309 %{!mcpu*:%(cpp_cpu_default) }}"
310 #endif
311
312 /* This macro defines names of additional specifications to put in the
313 specs that can be used in various specifications like CC1_SPEC. Its
314 definition is an initializer with a subgrouping for each command option.
315
316 Each subgrouping contains a string constant, that defines the
317 specification name, and a string constant that used by the GNU CC driver
318 program.
319
320 Do not define this macro if it does not need to do anything. */
321
322 #ifndef SUBTARGET_EXTRA_SPECS
323 #define SUBTARGET_EXTRA_SPECS
324 #endif
325
326 #define EXTRA_SPECS \
327 { "cpp_am_bwx", CPP_AM_BWX_SPEC }, \
328 { "cpp_am_max", CPP_AM_MAX_SPEC }, \
329 { "cpp_am_fix", CPP_AM_FIX_SPEC }, \
330 { "cpp_am_cix", CPP_AM_CIX_SPEC }, \
331 { "cpp_im_ev4", CPP_IM_EV4_SPEC }, \
332 { "cpp_im_ev5", CPP_IM_EV5_SPEC }, \
333 { "cpp_im_ev6", CPP_IM_EV6_SPEC }, \
334 { "cpp_cpu_ev4", CPP_CPU_EV4_SPEC }, \
335 { "cpp_cpu_ev5", CPP_CPU_EV5_SPEC }, \
336 { "cpp_cpu_ev56", CPP_CPU_EV56_SPEC }, \
337 { "cpp_cpu_pca56", CPP_CPU_PCA56_SPEC }, \
338 { "cpp_cpu_ev6", CPP_CPU_EV6_SPEC }, \
339 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
340 { "cpp_cpu", CPP_CPU_SPEC }, \
341 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
342 SUBTARGET_EXTRA_SPECS
343
344
345 /* Sometimes certain combinations of command options do not make sense
346 on a particular target machine. You can define a macro
347 `OVERRIDE_OPTIONS' to take account of this. This macro, if
348 defined, is executed once just after all the command options have
349 been parsed.
350
351 On the Alpha, it is used to translate target-option strings into
352 numeric values. */
353
354 extern void override_options ();
355 #define OVERRIDE_OPTIONS override_options ()
356
357
358 /* Define this macro to change register usage conditional on target flags.
359
360 On the Alpha, we use this to disable the floating-point registers when
361 they don't exist. */
362
363 #define CONDITIONAL_REGISTER_USAGE \
364 if (! TARGET_FPREGS) \
365 for (i = 32; i < 63; i++) \
366 fixed_regs[i] = call_used_regs[i] = 1;
367
368 /* Show we can debug even without a frame pointer. */
369 #define CAN_DEBUG_WITHOUT_FP
370 \f
371 /* target machine storage layout */
372
373 /* Define to enable software floating point emulation. */
374 #define REAL_ARITHMETIC
375
376 /* The following #defines are used when compiling the routines in
377 libgcc1.c. Since the Alpha calling conventions require single
378 precision floats to be passed in the floating-point registers
379 (rather than in the general registers) we have to build the
380 libgcc1.c routines in such a way that they know the actual types
381 of their formal arguments and the actual types of their return
382 values. Otherwise, gcc will generate calls to the libgcc1.c
383 routines, passing arguments in the floating-point registers,
384 but the libgcc1.c routines will expect their arguments on the
385 stack (where the Alpha calling conventions require structs &
386 unions to be passed). */
387
388 #define FLOAT_VALUE_TYPE double
389 #define INTIFY(FLOATVAL) (FLOATVAL)
390 #define FLOATIFY(INTVAL) (INTVAL)
391 #define FLOAT_ARG_TYPE double
392
393 /* Define the size of `int'. The default is the same as the word size. */
394 #define INT_TYPE_SIZE 32
395
396 /* Define the size of `long long'. The default is the twice the word size. */
397 #define LONG_LONG_TYPE_SIZE 64
398
399 /* The two floating-point formats we support are S-floating, which is
400 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
401 and `long double' are T. */
402
403 #define FLOAT_TYPE_SIZE 32
404 #define DOUBLE_TYPE_SIZE 64
405 #define LONG_DOUBLE_TYPE_SIZE 64
406
407 #define WCHAR_TYPE "unsigned int"
408 #define WCHAR_TYPE_SIZE 32
409
410 /* Define this macro if it is advisable to hold scalars in registers
411 in a wider mode than that declared by the program. In such cases,
412 the value is constrained to be within the bounds of the declared
413 type, but kept valid in the wider mode. The signedness of the
414 extension may differ from that of the type.
415
416 For Alpha, we always store objects in a full register. 32-bit objects
417 are always sign-extended, but smaller objects retain their signedness. */
418
419 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
420 if (GET_MODE_CLASS (MODE) == MODE_INT \
421 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
422 { \
423 if ((MODE) == SImode) \
424 (UNSIGNEDP) = 0; \
425 (MODE) = DImode; \
426 }
427
428 /* Define this if function arguments should also be promoted using the above
429 procedure. */
430
431 #define PROMOTE_FUNCTION_ARGS
432
433 /* Likewise, if the function return value is promoted. */
434
435 #define PROMOTE_FUNCTION_RETURN
436
437 /* Define this if most significant bit is lowest numbered
438 in instructions that operate on numbered bit-fields.
439
440 There are no such instructions on the Alpha, but the documentation
441 is little endian. */
442 #define BITS_BIG_ENDIAN 0
443
444 /* Define this if most significant byte of a word is the lowest numbered.
445 This is false on the Alpha. */
446 #define BYTES_BIG_ENDIAN 0
447
448 /* Define this if most significant word of a multiword number is lowest
449 numbered.
450
451 For Alpha we can decide arbitrarily since there are no machine instructions
452 for them. Might as well be consistent with bytes. */
453 #define WORDS_BIG_ENDIAN 0
454
455 /* number of bits in an addressable storage unit */
456 #define BITS_PER_UNIT 8
457
458 /* Width in bits of a "word", which is the contents of a machine register.
459 Note that this is not necessarily the width of data type `int';
460 if using 16-bit ints on a 68000, this would still be 32.
461 But on a machine with 16-bit registers, this would be 16. */
462 #define BITS_PER_WORD 64
463
464 /* Width of a word, in units (bytes). */
465 #define UNITS_PER_WORD 8
466
467 /* Width in bits of a pointer.
468 See also the macro `Pmode' defined below. */
469 #define POINTER_SIZE 64
470
471 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
472 #define PARM_BOUNDARY 64
473
474 /* Boundary (in *bits*) on which stack pointer should be aligned. */
475 #define STACK_BOUNDARY 64
476
477 /* Allocation boundary (in *bits*) for the code of a function. */
478 #define FUNCTION_BOUNDARY 256
479
480 /* Alignment of field after `int : 0' in a structure. */
481 #define EMPTY_FIELD_BOUNDARY 64
482
483 /* Every structure's size must be a multiple of this. */
484 #define STRUCTURE_SIZE_BOUNDARY 8
485
486 /* A bitfield declared as `int' forces `int' alignment for the struct. */
487 #define PCC_BITFIELD_TYPE_MATTERS 1
488
489 /* Align loop starts for optimal branching.
490
491 ??? Kludge this and the next macro for the moment by not doing anything if
492 we don't optimize and also if we are writing ECOFF symbols to work around
493 a bug in DEC's assembler. */
494
495 #define LOOP_ALIGN(LABEL) \
496 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
497
498 /* This is how to align an instruction for optimal branching. On
499 Alpha we'll get better performance by aligning on an octaword
500 boundary. */
501
502 #define LABEL_ALIGN_AFTER_BARRIER(FILE) \
503 (optimize > 0 && write_symbols != SDB_DEBUG ? 4 : 0)
504
505 /* No data type wants to be aligned rounder than this. */
506 #define BIGGEST_ALIGNMENT 64
507
508 /* For atomic access to objects, must have at least 32-bit alignment
509 unless the machine has byte operations. */
510 #define MINIMUM_ATOMIC_ALIGNMENT (TARGET_BWX ? 8 : 32)
511
512 /* Align all constants and variables to at least a word boundary so
513 we can pick up pieces of them faster. */
514 /* ??? Only if block-move stuff knows about different source/destination
515 alignment. */
516 #if 0
517 #define CONSTANT_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
518 #define DATA_ALIGNMENT(EXP, ALIGN) MAX ((ALIGN), BITS_PER_WORD)
519 #endif
520
521 /* Set this non-zero if move instructions will actually fail to work
522 when given unaligned data.
523
524 Since we get an error message when we do one, call them invalid. */
525
526 #define STRICT_ALIGNMENT 1
527
528 /* Set this non-zero if unaligned move instructions are extremely slow.
529
530 On the Alpha, they trap. */
531
532 #define SLOW_UNALIGNED_ACCESS 1
533 \f
534 /* Standard register usage. */
535
536 /* Number of actual hardware registers.
537 The hardware registers are assigned numbers for the compiler
538 from 0 to just below FIRST_PSEUDO_REGISTER.
539 All registers that the compiler knows about must be given numbers,
540 even those that are not normally considered general registers.
541
542 We define all 32 integer registers, even though $31 is always zero,
543 and all 32 floating-point registers, even though $f31 is also
544 always zero. We do not bother defining the FP status register and
545 there are no other registers.
546
547 Since $31 is always zero, we will use register number 31 as the
548 argument pointer. It will never appear in the generated code
549 because we will always be eliminating it in favor of the stack
550 pointer or hardware frame pointer.
551
552 Likewise, we use $f31 for the frame pointer, which will always
553 be eliminated in favor of the hardware frame pointer or the
554 stack pointer. */
555
556 #define FIRST_PSEUDO_REGISTER 64
557
558 /* 1 for registers that have pervasive standard uses
559 and are not available for the register allocator. */
560
561 #define FIXED_REGISTERS \
562 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
563 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
564 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
565 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
566
567 /* 1 for registers not available across function calls.
568 These must include the FIXED_REGISTERS and also any
569 registers that can be used without being saved.
570 The latter must include the registers where values are returned
571 and the register where structure-value addresses are passed.
572 Aside from that, you can include as many other registers as you like. */
573 #define CALL_USED_REGISTERS \
574 {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
575 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
576 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
577 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
578
579 /* List the order in which to allocate registers. Each register must be
580 listed once, even those in FIXED_REGISTERS.
581
582 We allocate in the following order:
583 $f10-$f15 (nonsaved floating-point register)
584 $f22-$f30 (likewise)
585 $f21-$f16 (likewise, but input args)
586 $f0 (nonsaved, but return value)
587 $f1 (nonsaved, but immediate before saved)
588 $f2-$f9 (saved floating-point registers)
589 $1-$8 (nonsaved integer registers)
590 $22-$25 (likewise)
591 $28 (likewise)
592 $0 (likewise, but return value)
593 $21-$16 (likewise, but input args)
594 $27 (procedure value in OSF, nonsaved in NT)
595 $9-$14 (saved integer registers)
596 $26 (return PC)
597 $15 (frame pointer)
598 $29 (global pointer)
599 $30, $31, $f31 (stack pointer and always zero/ap & fp) */
600
601 #define REG_ALLOC_ORDER \
602 {42, 43, 44, 45, 46, 47, \
603 54, 55, 56, 57, 58, 59, 60, 61, 62, \
604 53, 52, 51, 50, 49, 48, \
605 32, 33, \
606 34, 35, 36, 37, 38, 39, 40, 41, \
607 1, 2, 3, 4, 5, 6, 7, 8, \
608 22, 23, 24, 25, \
609 28, \
610 0, \
611 21, 20, 19, 18, 17, 16, \
612 27, \
613 9, 10, 11, 12, 13, 14, \
614 26, \
615 15, \
616 29, \
617 30, 31, 63 }
618
619 /* Return number of consecutive hard regs needed starting at reg REGNO
620 to hold something of mode MODE.
621 This is ordinarily the length in words of a value of mode MODE
622 but can be less for certain modes in special long registers. */
623
624 #define HARD_REGNO_NREGS(REGNO, MODE) \
625 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
626
627 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
628 On Alpha, the integer registers can hold any mode. The floating-point
629 registers can hold 32-bit and 64-bit integers as well, but not 16-bit
630 or 8-bit values. */
631
632 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
633 ((REGNO) >= 32 && (REGNO) <= 62 \
634 ? GET_MODE_UNIT_SIZE (MODE) == 8 || GET_MODE_UNIT_SIZE (MODE) == 4 \
635 : 1)
636
637 /* A C expression that is nonzero if a value of mode
638 MODE1 is accessible in mode MODE2 without copying.
639
640 This asymmetric test is true when MODE1 could be put
641 in an FP register but MODE2 could not. */
642
643 #define MODES_TIEABLE_P(MODE1, MODE2) \
644 (HARD_REGNO_MODE_OK (32, (MODE1)) \
645 ? HARD_REGNO_MODE_OK (32, (MODE2)) \
646 : 1)
647
648 /* Specify the registers used for certain standard purposes.
649 The values of these macros are register numbers. */
650
651 /* Alpha pc isn't overloaded on a register that the compiler knows about. */
652 /* #define PC_REGNUM */
653
654 /* Register to use for pushing function arguments. */
655 #define STACK_POINTER_REGNUM 30
656
657 /* Base register for access to local variables of the function. */
658 #define HARD_FRAME_POINTER_REGNUM 15
659
660 /* Value should be nonzero if functions must have frame pointers.
661 Zero means the frame pointer need not be set up (and parms
662 may be accessed via the stack pointer) in functions that seem suitable.
663 This is computed in `reload', in reload1.c. */
664 #define FRAME_POINTER_REQUIRED 0
665
666 /* Base register for access to arguments of the function. */
667 #define ARG_POINTER_REGNUM 31
668
669 /* Base register for access to local variables of function. */
670 #define FRAME_POINTER_REGNUM 63
671
672 /* Register in which static-chain is passed to a function.
673
674 For the Alpha, this is based on an example; the calling sequence
675 doesn't seem to specify this. */
676 #define STATIC_CHAIN_REGNUM 1
677
678 /* Register in which address to store a structure value
679 arrives in the function. On the Alpha, the address is passed
680 as a hidden argument. */
681 #define STRUCT_VALUE 0
682 \f
683 /* Define the classes of registers for register constraints in the
684 machine description. Also define ranges of constants.
685
686 One of the classes must always be named ALL_REGS and include all hard regs.
687 If there is more than one class, another class must be named NO_REGS
688 and contain no registers.
689
690 The name GENERAL_REGS must be the name of a class (or an alias for
691 another name such as ALL_REGS). This is the class of registers
692 that is allowed by "g" or "r" in a register constraint.
693 Also, registers outside this class are allocated only when
694 instructions express preferences for them.
695
696 The classes must be numbered in nondecreasing order; that is,
697 a larger-numbered class must never be contained completely
698 in a smaller-numbered class.
699
700 For any two classes, it is very desirable that there be another
701 class that represents their union. */
702
703 enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
704 LIM_REG_CLASSES };
705
706 #define N_REG_CLASSES (int) LIM_REG_CLASSES
707
708 /* Give names of register classes as strings for dump file. */
709
710 #define REG_CLASS_NAMES \
711 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
712
713 /* Define which registers fit in which classes.
714 This is an initializer for a vector of HARD_REG_SET
715 of length N_REG_CLASSES. */
716
717 #define REG_CLASS_CONTENTS \
718 { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
719
720 /* The same information, inverted:
721 Return the class number of the smallest class containing
722 reg number REGNO. This could be a conditional expression
723 or could index an array. */
724
725 #define REGNO_REG_CLASS(REGNO) \
726 ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
727
728 /* The class value for index registers, and the one for base regs. */
729 #define INDEX_REG_CLASS NO_REGS
730 #define BASE_REG_CLASS GENERAL_REGS
731
732 /* Get reg_class from a letter such as appears in the machine description. */
733
734 #define REG_CLASS_FROM_LETTER(C) \
735 ((C) == 'f' ? FLOAT_REGS : NO_REGS)
736
737 /* Define this macro to change register usage conditional on target flags. */
738 /* #define CONDITIONAL_REGISTER_USAGE */
739
740 /* The letters I, J, K, L, M, N, O, and P in a register constraint string
741 can be used to stand for particular ranges of immediate operands.
742 This macro defines what the ranges are.
743 C is the letter, and VALUE is a constant value.
744 Return 1 if VALUE is in the range specified by C.
745
746 For Alpha:
747 `I' is used for the range of constants most insns can contain.
748 `J' is the constant zero.
749 `K' is used for the constant in an LDA insn.
750 `L' is used for the constant in a LDAH insn.
751 `M' is used for the constants that can be AND'ed with using a ZAP insn.
752 `N' is used for complemented 8-bit constants.
753 `O' is used for negated 8-bit constants.
754 `P' is used for the constants 1, 2 and 3. */
755
756 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
757 ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
758 : (C) == 'J' ? (VALUE) == 0 \
759 : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
760 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
761 && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
762 : (C) == 'M' ? zap_mask (VALUE) \
763 : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
764 : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
765 : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
766 : 0)
767
768 /* Similar, but for floating or large integer constants, and defining letters
769 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
770
771 For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
772 that is the operand of a ZAP insn. */
773
774 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
775 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
776 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
777 : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
778 && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
779 && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
780 : 0)
781
782 /* Optional extra constraints for this machine.
783
784 For the Alpha, `Q' means that this is a memory operand but not a
785 reference to an unaligned location.
786
787 `R' is a SYMBOL_REF that has SYMBOL_REF_FLAG set or is the current
788 function.
789
790 'S' is a 6-bit constant (valid for a shift insn). */
791
792 #define EXTRA_CONSTRAINT(OP, C) \
793 ((C) == 'Q' ? normal_memory_operand (OP, VOIDmode) \
794 : (C) == 'R' ? current_file_function_operand (OP, Pmode) \
795 : (C) == 'S' ? (GET_CODE (OP) == CONST_INT \
796 && (unsigned HOST_WIDE_INT) INTVAL (OP) < 64) \
797 : 0)
798 extern int normal_memory_operand ();
799
800 /* Given an rtx X being reloaded into a reg required to be
801 in class CLASS, return the class of reg to actually use.
802 In general this is just CLASS; but on some machines
803 in some cases it is preferable to use a more restrictive class.
804
805 On the Alpha, all constants except zero go into a floating-point
806 register via memory. */
807
808 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
809 (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
810 ? ((CLASS) == FLOAT_REGS || (CLASS) == NO_REGS ? NO_REGS : GENERAL_REGS)\
811 : (CLASS))
812
813 /* Loading and storing HImode or QImode values to and from memory
814 usually requires a scratch register. The exceptions are loading
815 QImode and HImode from an aligned address to a general register
816 unless byte instructions are permitted.
817 We also cannot load an unaligned address or a paradoxical SUBREG into an
818 FP register. */
819
820 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
821 (((GET_CODE (IN) == MEM \
822 || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
823 || (GET_CODE (IN) == SUBREG \
824 && (GET_CODE (SUBREG_REG (IN)) == MEM \
825 || (GET_CODE (SUBREG_REG (IN)) == REG \
826 && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
827 && (((CLASS) == FLOAT_REGS \
828 && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
829 || (((MODE) == QImode || (MODE) == HImode) \
830 && ! TARGET_BWX && ! aligned_memory_operand (IN, MODE)))) \
831 ? GENERAL_REGS \
832 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
833 && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
834 : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == SUBREG \
835 && (GET_MODE_SIZE (GET_MODE (IN)) \
836 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (IN))))) ? GENERAL_REGS \
837 : NO_REGS)
838
839 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
840 (((GET_CODE (OUT) == MEM \
841 || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
842 || (GET_CODE (OUT) == SUBREG \
843 && (GET_CODE (SUBREG_REG (OUT)) == MEM \
844 || (GET_CODE (SUBREG_REG (OUT)) == REG \
845 && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
846 && ((((MODE) == HImode || (MODE) == QImode) \
847 && (! TARGET_BWX || (CLASS) == FLOAT_REGS)) \
848 || ((MODE) == SImode && (CLASS) == FLOAT_REGS))) \
849 ? GENERAL_REGS \
850 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
851 && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
852 : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == SUBREG \
853 && (GET_MODE_SIZE (GET_MODE (OUT)) \
854 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (OUT))))) ? GENERAL_REGS \
855 : NO_REGS)
856
857 /* If we are copying between general and FP registers, we need a memory
858 location unless the FIX extension is available. */
859
860 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
861 (! TARGET_FIX && (CLASS1) != (CLASS2))
862
863 /* Specify the mode to be used for memory when a secondary memory
864 location is needed. If MODE is floating-point, use it. Otherwise,
865 widen to a word like the default. This is needed because we always
866 store integers in FP registers in quadword format. This whole
867 area is very tricky! */
868 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
869 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
870 : GET_MODE_SIZE (MODE) >= 4 ? (MODE) \
871 : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
872
873 /* Return the maximum number of consecutive registers
874 needed to represent mode MODE in a register of class CLASS. */
875
876 #define CLASS_MAX_NREGS(CLASS, MODE) \
877 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
878
879 /* If defined, gives a class of registers that cannot be used as the
880 operand of a SUBREG that changes the size of the object. */
881
882 #define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
883
884 /* Define the cost of moving between registers of various classes. Moving
885 between FLOAT_REGS and anything else except float regs is expensive.
886 In fact, we make it quite expensive because we really don't want to
887 do these moves unless it is clearly worth it. Optimizations may
888 reduce the impact of not being able to allocate a pseudo to a
889 hard register. */
890
891 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
892 (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) \
893 ? 2 \
894 : TARGET_FIX ? 3 : 4+2*alpha_memory_latency)
895
896 /* A C expressions returning the cost of moving data of MODE from a register to
897 or from memory.
898
899 On the Alpha, bump this up a bit. */
900
901 extern int alpha_memory_latency;
902 #define MEMORY_MOVE_COST(MODE,CLASS,IN) (2*alpha_memory_latency)
903
904 /* Provide the cost of a branch. Exact meaning under development. */
905 #define BRANCH_COST 5
906
907 /* Adjust the cost of dependencies. */
908
909 #define ADJUST_COST(INSN,LINK,DEP,COST) \
910 (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
911 \f
912 /* Stack layout; function entry, exit and calling. */
913
914 /* Define this if pushing a word on the stack
915 makes the stack pointer a smaller address. */
916 #define STACK_GROWS_DOWNWARD
917
918 /* Define this if the nominal address of the stack frame
919 is at the high-address end of the local variables;
920 that is, each additional local variable allocated
921 goes at a more negative offset in the frame. */
922 /* #define FRAME_GROWS_DOWNWARD */
923
924 /* Offset within stack frame to start allocating local variables at.
925 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
926 first local allocated. Otherwise, it is the offset to the BEGINNING
927 of the first local allocated. */
928
929 #define STARTING_FRAME_OFFSET 0
930
931 /* If we generate an insn to push BYTES bytes,
932 this says how many the stack pointer really advances by.
933 On Alpha, don't define this because there are no push insns. */
934 /* #define PUSH_ROUNDING(BYTES) */
935
936 /* Define this to be nonzero if stack checking is built into the ABI. */
937 #define STACK_CHECK_BUILTIN 1
938
939 /* Define this if the maximum size of all the outgoing args is to be
940 accumulated and pushed during the prologue. The amount can be
941 found in the variable current_function_outgoing_args_size. */
942 #define ACCUMULATE_OUTGOING_ARGS
943
944 /* Offset of first parameter from the argument pointer register value. */
945
946 #define FIRST_PARM_OFFSET(FNDECL) 0
947
948 /* Definitions for register eliminations.
949
950 We have two registers that can be eliminated on the Alpha. First, the
951 frame pointer register can often be eliminated in favor of the stack
952 pointer register. Secondly, the argument pointer register can always be
953 eliminated; it is replaced with either the stack or frame pointer. */
954
955 /* This is an array of structures. Each structure initializes one pair
956 of eliminable registers. The "from" register number is given first,
957 followed by "to". Eliminations of the same "from" register are listed
958 in order of preference. */
959
960 #define ELIMINABLE_REGS \
961 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
962 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
963 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
964 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
965
966 /* Given FROM and TO register numbers, say whether this elimination is allowed.
967 Frame pointer elimination is automatically handled.
968
969 All eliminations are valid since the cases where FP can't be
970 eliminated are already handled. */
971
972 #define CAN_ELIMINATE(FROM, TO) 1
973
974 /* Round up to a multiple of 16 bytes. */
975 #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
976
977 /* Define the offset between two registers, one to be eliminated, and the other
978 its replacement, at the start of a routine. */
979 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
980 { if ((FROM) == FRAME_POINTER_REGNUM) \
981 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
982 + alpha_sa_size ()); \
983 else if ((FROM) == ARG_POINTER_REGNUM) \
984 (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
985 + alpha_sa_size () \
986 + (ALPHA_ROUND (get_frame_size () \
987 + current_function_pretend_args_size) \
988 - current_function_pretend_args_size)); \
989 }
990
991 /* Define this if stack space is still allocated for a parameter passed
992 in a register. */
993 /* #define REG_PARM_STACK_SPACE */
994
995 /* Value is the number of bytes of arguments automatically
996 popped when returning from a subroutine call.
997 FUNDECL is the declaration node of the function (as a tree),
998 FUNTYPE is the data type of the function (as a tree),
999 or for a library call it is an identifier node for the subroutine name.
1000 SIZE is the number of bytes of arguments passed on the stack. */
1001
1002 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1003
1004 /* Define how to find the value returned by a function.
1005 VALTYPE is the data type of the value (as a tree).
1006 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1007 otherwise, FUNC is 0.
1008
1009 On Alpha the value is found in $0 for integer functions and
1010 $f0 for floating-point functions. */
1011
1012 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1013 gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE) \
1014 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1015 || POINTER_TYPE_P (VALTYPE)) \
1016 ? word_mode : TYPE_MODE (VALTYPE), \
1017 ((TARGET_FPREGS \
1018 && (TREE_CODE (VALTYPE) == REAL_TYPE \
1019 || TREE_CODE (VALTYPE) == COMPLEX_TYPE)) \
1020 ? 32 : 0))
1021
1022 /* Define how to find the value returned by a library function
1023 assuming the value has mode MODE. */
1024
1025 #define LIBCALL_VALUE(MODE) \
1026 gen_rtx_REG (MODE, \
1027 (TARGET_FPREGS \
1028 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1029 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1030 ? 32 : 0))
1031
1032 /* The definition of this macro implies that there are cases where
1033 a scalar value cannot be returned in registers.
1034
1035 For the Alpha, any structure or union type is returned in memory, as
1036 are integers whose size is larger than 64 bits. */
1037
1038 #define RETURN_IN_MEMORY(TYPE) \
1039 (TYPE_MODE (TYPE) == BLKmode \
1040 || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
1041
1042 /* 1 if N is a possible register number for a function value
1043 as seen by the caller. */
1044
1045 #define FUNCTION_VALUE_REGNO_P(N) \
1046 ((N) == 0 || (N) == 1 || (N) == 32 || (N) == 33)
1047
1048 /* 1 if N is a possible register number for function argument passing.
1049 On Alpha, these are $16-$21 and $f16-$f21. */
1050
1051 #define FUNCTION_ARG_REGNO_P(N) \
1052 (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
1053 \f
1054 /* Define a data type for recording info about an argument list
1055 during the scan of that argument list. This data type should
1056 hold all necessary information about the function itself
1057 and about the args processed so far, enough to enable macros
1058 such as FUNCTION_ARG to determine where the next arg should go.
1059
1060 On Alpha, this is a single integer, which is a number of words
1061 of arguments scanned so far.
1062 Thus 6 or more means all following args should go on the stack. */
1063
1064 #define CUMULATIVE_ARGS int
1065
1066 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1067 for a call to a function whose data type is FNTYPE.
1068 For a library call, FNTYPE is 0. */
1069
1070 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) (CUM) = 0
1071
1072 /* Define intermediate macro to compute the size (in registers) of an argument
1073 for the Alpha. */
1074
1075 #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
1076 ((MODE) != BLKmode \
1077 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1078 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1079
1080 /* Update the data in CUM to advance over an argument
1081 of mode MODE and data type TYPE.
1082 (TYPE is null for libcalls where that information may not be available.) */
1083
1084 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1085 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
1086 (CUM) = 6; \
1087 else \
1088 (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
1089
1090 /* Determine where to put an argument to a function.
1091 Value is zero to push the argument on the stack,
1092 or a hard register in which to store the argument.
1093
1094 MODE is the argument's machine mode.
1095 TYPE is the data type of the argument (as a tree).
1096 This is null for libcalls where that information may
1097 not be available.
1098 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1099 the preceding args and about the function being called.
1100 NAMED is nonzero if this argument is a named parameter
1101 (otherwise it is an extra parameter matching an ellipsis).
1102
1103 On Alpha the first 6 words of args are normally in registers
1104 and the rest are pushed. */
1105
1106 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1107 ((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
1108 ? gen_rtx(REG, (MODE), \
1109 (CUM) + 16 + ((TARGET_FPREGS \
1110 && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1111 || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
1112 * 32)) \
1113 : 0)
1114
1115 /* Specify the padding direction of arguments.
1116
1117 On the Alpha, we must pad upwards in order to be able to pass args in
1118 registers. */
1119
1120 #define FUNCTION_ARG_PADDING(MODE, TYPE) upward
1121
1122 /* For an arg passed partly in registers and partly in memory,
1123 this is the number of registers used.
1124 For args passed entirely in registers or entirely in memory, zero. */
1125
1126 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1127 ((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
1128 ? 6 - (CUM) : 0)
1129
1130 /* Perform any needed actions needed for a function that is receiving a
1131 variable number of arguments.
1132
1133 CUM is as above.
1134
1135 MODE and TYPE are the mode and type of the current parameter.
1136
1137 PRETEND_SIZE is a variable that should be set to the amount of stack
1138 that must be pushed by the prolog to pretend that our caller pushed
1139 it.
1140
1141 Normally, this macro will push all remaining incoming registers on the
1142 stack and set PRETEND_SIZE to the length of the registers pushed.
1143
1144 On the Alpha, we allocate space for all 12 arg registers, but only
1145 push those that are remaining.
1146
1147 However, if NO registers need to be saved, don't allocate any space.
1148 This is not only because we won't need the space, but because AP includes
1149 the current_pretend_args_size and we don't want to mess up any
1150 ap-relative addresses already made.
1151
1152 If we are not to use the floating-point registers, save the integer
1153 registers where we would put the floating-point registers. This is
1154 not the most efficient way to implement varargs with just one register
1155 class, but it isn't worth doing anything more efficient in this rare
1156 case. */
1157
1158
1159 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1160 { if ((CUM) < 6) \
1161 { \
1162 if (! (NO_RTL)) \
1163 { \
1164 rtx tmp; int set = get_varargs_alias_set (); \
1165 tmp = gen_rtx_MEM (BLKmode, \
1166 plus_constant (virtual_incoming_args_rtx, \
1167 ((CUM) + 6)* UNITS_PER_WORD)); \
1168 MEM_ALIAS_SET (tmp) = set; \
1169 move_block_from_reg \
1170 (16 + CUM, tmp, \
1171 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
1172 \
1173 tmp = gen_rtx_MEM (BLKmode, \
1174 plus_constant (virtual_incoming_args_rtx, \
1175 (CUM) * UNITS_PER_WORD)); \
1176 MEM_ALIAS_SET (tmp) = set; \
1177 move_block_from_reg \
1178 (16 + (TARGET_FPREGS ? 32 : 0) + CUM, tmp, \
1179 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
1180 } \
1181 PRETEND_SIZE = 12 * UNITS_PER_WORD; \
1182 } \
1183 }
1184
1185 /* Try to output insns to set TARGET equal to the constant C if it can be
1186 done in less than N insns. Do all computations in MODE. Returns the place
1187 where the output has been placed if it can be done and the insns have been
1188 emitted. If it would take more than N insns, zero is returned and no
1189 insns and emitted. */
1190 extern struct rtx_def *alpha_emit_set_const ();
1191 extern struct rtx_def *alpha_emit_set_long_const ();
1192 extern struct rtx_def *alpha_emit_conditional_branch ();
1193 extern struct rtx_def *alpha_emit_conditional_move ();
1194
1195 /* Define the information needed to generate branch and scc insns. This is
1196 stored from the compare operation. Note that we can't use "rtx" here
1197 since it hasn't been defined! */
1198
1199 extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
1200 extern int alpha_compare_fp_p;
1201
1202 /* Define the information needed to modify the epilogue for EH. */
1203
1204 extern struct rtx_def *alpha_eh_epilogue_sp_ofs;
1205
1206 /* Make (or fake) .linkage entry for function call.
1207 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition. */
1208 extern void alpha_need_linkage ();
1209
1210 /* This macro defines the start of an assembly comment. */
1211
1212 #define ASM_COMMENT_START " #"
1213
1214 /* This macro produces the initial definition of a function. */
1215
1216 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1217 alpha_start_function(FILE,NAME,DECL);
1218 extern void alpha_start_function ();
1219
1220 /* This macro closes up a function definition for the assembler. */
1221
1222 #define ASM_DECLARE_FUNCTION_SIZE(FILE,NAME,DECL) \
1223 alpha_end_function(FILE,NAME,DECL)
1224 extern void alpha_end_function ();
1225
1226 /* This macro notes the end of the prologue. */
1227
1228 #define FUNCTION_END_PROLOGUE(FILE) output_end_prologue (FILE)
1229 extern void output_end_prologue ();
1230
1231 /* Output any profiling code before the prologue. */
1232
1233 #define PROFILE_BEFORE_PROLOGUE 1
1234
1235 /* Output assembler code to FILE to increment profiler label # LABELNO
1236 for profiling a function entry. Under OSF/1, profiling is enabled
1237 by simply passing -pg to the assembler and linker. */
1238
1239 #define FUNCTION_PROFILER(FILE, LABELNO)
1240
1241 /* Output assembler code to FILE to initialize this source file's
1242 basic block profiling info, if that has not already been done.
1243 This assumes that __bb_init_func doesn't garble a1-a5. */
1244
1245 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1246 do { \
1247 ASM_OUTPUT_REG_PUSH (FILE, 16); \
1248 fputs ("\tlda $16,$PBX32\n", (FILE)); \
1249 fputs ("\tldq $26,0($16)\n", (FILE)); \
1250 fputs ("\tbne $26,1f\n", (FILE)); \
1251 fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
1252 fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
1253 fputs ("\tldgp $29,0($26)\n", (FILE)); \
1254 fputs ("1:\n", (FILE)); \
1255 ASM_OUTPUT_REG_POP (FILE, 16); \
1256 } while (0);
1257
1258 /* Output assembler code to FILE to increment the entry-count for
1259 the BLOCKNO'th basic block in this source file. */
1260
1261 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1262 do { \
1263 int blockn = (BLOCKNO); \
1264 fputs ("\tsubq $30,16,$30\n", (FILE)); \
1265 fputs ("\tstq $26,0($30)\n", (FILE)); \
1266 fputs ("\tstq $27,8($30)\n", (FILE)); \
1267 fputs ("\tlda $26,$PBX34\n", (FILE)); \
1268 fprintf ((FILE), "\tldq $27,%d($26)\n", 8*blockn); \
1269 fputs ("\taddq $27,1,$27\n", (FILE)); \
1270 fprintf ((FILE), "\tstq $27,%d($26)\n", 8*blockn); \
1271 fputs ("\tldq $26,0($30)\n", (FILE)); \
1272 fputs ("\tldq $27,8($30)\n", (FILE)); \
1273 fputs ("\taddq $30,16,$30\n", (FILE)); \
1274 } while (0)
1275
1276
1277 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1278 the stack pointer does not matter. The value is tested only in
1279 functions that have frame pointers.
1280 No definition is equivalent to always zero. */
1281
1282 #define EXIT_IGNORE_STACK 1
1283 \f
1284 /* Output assembler code for a block containing the constant parts
1285 of a trampoline, leaving space for the variable parts.
1286
1287 The trampoline should set the static chain pointer to value placed
1288 into the trampoline and should branch to the specified routine.
1289 Note that $27 has been set to the address of the trampoline, so we can
1290 use it for addressability of the two data items. Trampolines are always
1291 aligned to FUNCTION_BOUNDARY, which is 64 bits. */
1292
1293 #define TRAMPOLINE_TEMPLATE(FILE) \
1294 do { \
1295 fprintf (FILE, "\tldq $1,24($27)\n"); \
1296 fprintf (FILE, "\tldq $27,16($27)\n"); \
1297 fprintf (FILE, "\tjmp $31,($27),0\n"); \
1298 fprintf (FILE, "\tnop\n"); \
1299 fprintf (FILE, "\t.quad 0,0\n"); \
1300 } while (0)
1301
1302 /* Section in which to place the trampoline. On Alpha, instructions
1303 may only be placed in a text segment. */
1304
1305 #define TRAMPOLINE_SECTION text_section
1306
1307 /* Length in units of the trampoline for entering a nested function. */
1308
1309 #define TRAMPOLINE_SIZE 32
1310
1311 /* Emit RTL insns to initialize the variable parts of a trampoline.
1312 FNADDR is an RTX for the address of the function's pure code.
1313 CXT is an RTX for the static chain value for the function. */
1314
1315 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1316 alpha_initialize_trampoline (TRAMP, FNADDR, CXT, 16, 24, 8)
1317 extern void alpha_initialize_trampoline ();
1318
1319 /* A C expression whose value is RTL representing the value of the return
1320 address for the frame COUNT steps up from the current frame.
1321 FRAMEADDR is the frame pointer of the COUNT frame, or the frame pointer of
1322 the COUNT-1 frame if RETURN_ADDR_IN_PREVIOUS_FRAME is defined. */
1323
1324 #define RETURN_ADDR_RTX alpha_return_addr
1325 extern struct rtx_def *alpha_return_addr ();
1326
1327 /* Before the prologue, RA lives in $26. */
1328 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 26)
1329
1330 /* Initialize data used by insn expanders. This is called from insn_emit,
1331 once for every function before code is generated. */
1332
1333 #define INIT_EXPANDERS alpha_init_expanders ()
1334 extern void alpha_init_expanders ();
1335 \f
1336 /* Addressing modes, and classification of registers for them. */
1337
1338 /* #define HAVE_POST_INCREMENT 0 */
1339 /* #define HAVE_POST_DECREMENT 0 */
1340
1341 /* #define HAVE_PRE_DECREMENT 0 */
1342 /* #define HAVE_PRE_INCREMENT 0 */
1343
1344 /* Macros to check register numbers against specific register classes. */
1345
1346 /* These assume that REGNO is a hard or pseudo reg number.
1347 They give nonzero only if REGNO is a hard reg of the suitable class
1348 or a pseudo reg currently allocated to a suitable hard reg.
1349 Since they use reg_renumber, they are safe only once reg_renumber
1350 has been allocated, which happens in local-alloc.c. */
1351
1352 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
1353 #define REGNO_OK_FOR_BASE_P(REGNO) \
1354 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
1355 || (REGNO) == 63 || reg_renumber[REGNO] == 63)
1356 \f
1357 /* Maximum number of registers that can appear in a valid memory address. */
1358 #define MAX_REGS_PER_ADDRESS 1
1359
1360 /* Recognize any constant value that is a valid address. For the Alpha,
1361 there are only constants none since we want to use LDA to load any
1362 symbolic addresses into registers. */
1363
1364 #define CONSTANT_ADDRESS_P(X) \
1365 (GET_CODE (X) == CONST_INT \
1366 && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1367
1368 /* Include all constant integers and constant doubles, but not
1369 floating-point, except for floating-point zero. */
1370
1371 #define LEGITIMATE_CONSTANT_P(X) \
1372 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1373 || (X) == CONST0_RTX (GET_MODE (X)))
1374
1375 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1376 and check its validity for a certain class.
1377 We have two alternate definitions for each of them.
1378 The usual definition accepts all pseudo regs; the other rejects
1379 them unless they have been allocated suitable hard regs.
1380 The symbol REG_OK_STRICT causes the latter definition to be used.
1381
1382 Most source files want to accept pseudo regs in the hope that
1383 they will get allocated to the class that the insn wants them to be in.
1384 Source files for reload pass need to be strict.
1385 After reload, it makes no difference, since pseudo regs have
1386 been eliminated by then. */
1387
1388 #ifndef REG_OK_STRICT
1389
1390 /* Nonzero if X is a hard reg that can be used as an index
1391 or if it is a pseudo reg. */
1392 #define REG_OK_FOR_INDEX_P(X) 0
1393
1394 /* Nonzero if X is a hard reg that can be used as a base reg
1395 or if it is a pseudo reg. */
1396 #define REG_OK_FOR_BASE_P(X) \
1397 (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1398
1399 /* ??? Nonzero if X is the frame pointer, or some virtual register
1400 that may eliminate to the frame pointer. These will be allowed to
1401 have offsets greater than 32K. This is done because register
1402 elimination offsets will change the hi/lo split, and if we split
1403 before reload, we will require additional instructions. */
1404 #define REG_OK_FP_BASE_P(X) \
1405 (REGNO (X) == 31 || REGNO (X) == 63 \
1406 || (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1407 && REGNO (X) < LAST_VIRTUAL_REGISTER))
1408
1409 #else
1410
1411 /* Nonzero if X is a hard reg that can be used as an index. */
1412 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1413
1414 /* Nonzero if X is a hard reg that can be used as a base reg. */
1415 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1416
1417 #define REG_OK_FP_BASE_P(X) 0
1418
1419 #endif
1420 \f
1421 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1422 that is a valid memory address for an instruction.
1423 The MODE argument is the machine mode for the MEM expression
1424 that wants to use this address.
1425
1426 For Alpha, we have either a constant address or the sum of a register
1427 and a constant address, or just a register. For DImode, any of those
1428 forms can be surrounded with an AND that clear the low-order three bits;
1429 this is an "unaligned" access.
1430
1431 First define the basic valid address. */
1432
1433 #define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
1434 { \
1435 rtx tmp = (X); \
1436 if (GET_CODE (tmp) == SUBREG \
1437 && (GET_MODE_SIZE (GET_MODE (tmp)) \
1438 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \
1439 tmp = SUBREG_REG (tmp); \
1440 if (REG_P (tmp) && REG_OK_FOR_BASE_P (tmp)) \
1441 goto ADDR; \
1442 if (CONSTANT_ADDRESS_P (X)) \
1443 goto ADDR; \
1444 if (GET_CODE (X) == PLUS) \
1445 { \
1446 tmp = XEXP (X, 0); \
1447 if (GET_CODE (tmp) == SUBREG \
1448 && (GET_MODE_SIZE (GET_MODE (tmp)) \
1449 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tmp))))) \
1450 tmp = SUBREG_REG (tmp); \
1451 if (REG_P (tmp)) \
1452 { \
1453 if (REG_OK_FP_BASE_P (tmp) \
1454 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1455 goto ADDR; \
1456 if (REG_OK_FOR_BASE_P (tmp) \
1457 && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1458 goto ADDR; \
1459 } \
1460 } \
1461 }
1462
1463 /* Now accept the simple address, or, for DImode only, an AND of a simple
1464 address that turns off the low three bits. */
1465
1466 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1467 { GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
1468 if ((MODE) == DImode \
1469 && GET_CODE (X) == AND \
1470 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1471 && INTVAL (XEXP (X, 1)) == -8) \
1472 GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
1473 }
1474
1475 /* Try machine-dependent ways of modifying an illegitimate address
1476 to be legitimate. If we find one, return the new, valid address.
1477 This macro is used in only one place: `memory_address' in explow.c.
1478
1479 OLDX is the address as it was before break_out_memory_refs was called.
1480 In some cases it is useful to look at this to decide what needs to be done.
1481
1482 MODE and WIN are passed so that this macro can use
1483 GO_IF_LEGITIMATE_ADDRESS.
1484
1485 It is always safe for this macro to do nothing. It exists to recognize
1486 opportunities to optimize the output.
1487
1488 For the Alpha, there are three cases we handle:
1489
1490 (1) If the address is (plus reg const_int) and the CONST_INT is not a
1491 valid offset, compute the high part of the constant and add it to the
1492 register. Then our address is (plus temp low-part-const).
1493 (2) If the address is (const (plus FOO const_int)), find the low-order
1494 part of the CONST_INT. Then load FOO plus any high-order part of the
1495 CONST_INT into a register. Our address is (plus reg low-part-const).
1496 This is done to reduce the number of GOT entries.
1497 (3) If we have a (plus reg const), emit the load as in (2), then add
1498 the two registers, and finally generate (plus reg low-part-const) as
1499 our address. */
1500
1501 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1502 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1503 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1504 && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1505 { \
1506 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1507 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1508 HOST_WIDE_INT highpart = val - lowpart; \
1509 rtx high = GEN_INT (highpart); \
1510 rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
1511 high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
1512 \
1513 (X) = plus_constant (temp, lowpart); \
1514 goto WIN; \
1515 } \
1516 else if (GET_CODE (X) == CONST \
1517 && GET_CODE (XEXP (X, 0)) == PLUS \
1518 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
1519 { \
1520 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
1521 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1522 HOST_WIDE_INT highpart = val - lowpart; \
1523 rtx high = XEXP (XEXP (X, 0), 0); \
1524 \
1525 if (highpart) \
1526 high = plus_constant (high, highpart); \
1527 \
1528 (X) = plus_constant (force_reg (Pmode, high), lowpart); \
1529 goto WIN; \
1530 } \
1531 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1532 && GET_CODE (XEXP (X, 1)) == CONST \
1533 && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
1534 && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
1535 { \
1536 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
1537 HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
1538 HOST_WIDE_INT highpart = val - lowpart; \
1539 rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
1540 \
1541 if (highpart) \
1542 high = plus_constant (high, highpart); \
1543 \
1544 high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
1545 force_reg (Pmode, high), \
1546 high, 1, OPTAB_LIB_WIDEN); \
1547 (X) = plus_constant (high, lowpart); \
1548 goto WIN; \
1549 } \
1550 }
1551
1552 /* Try a machine-dependent way of reloading an illegitimate address
1553 operand. If we find one, push the reload and jump to WIN. This
1554 macro is used in only one place: `find_reloads_address' in reload.c.
1555
1556 For the Alpha, we wish to handle large displacements off a base
1557 register by splitting the addend across an ldah and the mem insn.
1558 This cuts number of extra insns needed from 3 to 1. */
1559
1560 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1561 do { \
1562 /* We must recognize output that we have already generated ourselves. */ \
1563 if (GET_CODE (X) == PLUS \
1564 && GET_CODE (XEXP (X, 0)) == PLUS \
1565 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1566 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1567 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1568 { \
1569 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
1570 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1571 OPNUM, TYPE); \
1572 goto WIN; \
1573 } \
1574 if (GET_CODE (X) == PLUS \
1575 && GET_CODE (XEXP (X, 0)) == REG \
1576 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
1577 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
1578 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
1579 { \
1580 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
1581 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
1582 HOST_WIDE_INT high \
1583 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
1584 \
1585 /* Check for 32-bit overflow. */ \
1586 if (high + low != val) \
1587 break; \
1588 \
1589 /* Reload the high part into a base reg; leave the low part \
1590 in the mem directly. */ \
1591 \
1592 X = gen_rtx_PLUS (GET_MODE (X), \
1593 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
1594 GEN_INT (high)), \
1595 GEN_INT (low)); \
1596 \
1597 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
1598 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
1599 OPNUM, TYPE); \
1600 goto WIN; \
1601 } \
1602 } while (0)
1603
1604 /* Go to LABEL if ADDR (a legitimate address expression)
1605 has an effect that depends on the machine mode it is used for.
1606 On the Alpha this is true only for the unaligned modes. We can
1607 simplify this test since we know that the address must be valid. */
1608
1609 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1610 { if (GET_CODE (ADDR) == AND) goto LABEL; }
1611
1612 /* Compute the cost of an address. For the Alpha, all valid addresses are
1613 the same cost. */
1614
1615 #define ADDRESS_COST(X) 0
1616
1617 /* Machine-dependent reorg pass. */
1618 #define MACHINE_DEPENDENT_REORG(X) alpha_reorg(X)
1619 \f
1620 /* Specify the machine mode that this machine uses
1621 for the index in the tablejump instruction. */
1622 #define CASE_VECTOR_MODE SImode
1623
1624 /* Define as C expression which evaluates to nonzero if the tablejump
1625 instruction expects the table to contain offsets from the address of the
1626 table.
1627
1628 Do not define this if the table should contain absolute addresses.
1629 On the Alpha, the table is really GP-relative, not relative to the PC
1630 of the table, but we pretend that it is PC-relative; this should be OK,
1631 but we should try to find some better way sometime. */
1632 #define CASE_VECTOR_PC_RELATIVE 1
1633
1634 /* Specify the tree operation to be used to convert reals to integers. */
1635 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1636
1637 /* This is the kind of divide that is easiest to do in the general case. */
1638 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1639
1640 /* Define this as 1 if `char' should by default be signed; else as 0. */
1641 #define DEFAULT_SIGNED_CHAR 1
1642
1643 /* This flag, if defined, says the same insns that convert to a signed fixnum
1644 also convert validly to an unsigned one.
1645
1646 We actually lie a bit here as overflow conditions are different. But
1647 they aren't being checked anyway. */
1648
1649 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1650
1651 /* Max number of bytes we can move to or from memory
1652 in one reasonably fast instruction. */
1653
1654 #define MOVE_MAX 8
1655
1656 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1657 move-instruction pairs, we will do a movstr or libcall instead.
1658
1659 Without byte/word accesses, we want no more than four instructions;
1660 with, several single byte accesses are better. */
1661
1662 #define MOVE_RATIO (TARGET_BWX ? 7 : 2)
1663
1664 /* Largest number of bytes of an object that can be placed in a register.
1665 On the Alpha we have plenty of registers, so use TImode. */
1666 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1667
1668 /* Nonzero if access to memory by bytes is no faster than for words.
1669 Also non-zero if doing byte operations (specifically shifts) in registers
1670 is undesirable.
1671
1672 On the Alpha, we want to not use the byte operation and instead use
1673 masking operations to access fields; these will save instructions. */
1674
1675 #define SLOW_BYTE_ACCESS 1
1676
1677 /* Define if operations between registers always perform the operation
1678 on the full register even if a narrower mode is specified. */
1679 #define WORD_REGISTER_OPERATIONS
1680
1681 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1682 will either zero-extend or sign-extend. The value of this macro should
1683 be the code that says which one of the two operations is implicitly
1684 done, NIL if none. */
1685 #define LOAD_EXTEND_OP(MODE) ((MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
1686
1687 /* Define if loading short immediate values into registers sign extends. */
1688 #define SHORT_IMMEDIATES_SIGN_EXTEND
1689
1690 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1691 is done just by pretending it is already truncated. */
1692 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1693
1694 /* We assume that the store-condition-codes instructions store 0 for false
1695 and some other value for true. This is the value stored for true. */
1696
1697 #define STORE_FLAG_VALUE 1
1698
1699 /* Define the value returned by a floating-point comparison instruction. */
1700
1701 #define FLOAT_STORE_FLAG_VALUE (TARGET_FLOAT_VAX ? 0.5 : 2.0)
1702
1703 /* Canonicalize a comparison from one we don't have to one we do have. */
1704
1705 #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
1706 do { \
1707 if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
1708 && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
1709 { \
1710 rtx tem = (OP0); \
1711 (OP0) = (OP1); \
1712 (OP1) = tem; \
1713 (CODE) = swap_condition (CODE); \
1714 } \
1715 if (((CODE) == LT || (CODE) == LTU) \
1716 && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
1717 { \
1718 (CODE) = (CODE) == LT ? LE : LEU; \
1719 (OP1) = GEN_INT (255); \
1720 } \
1721 } while (0)
1722
1723 /* Specify the machine mode that pointers have.
1724 After generation of rtl, the compiler makes no further distinction
1725 between pointers and any other objects of this machine mode. */
1726 #define Pmode DImode
1727
1728 /* Mode of a function address in a call instruction (for indexing purposes). */
1729
1730 #define FUNCTION_MODE Pmode
1731
1732 /* Define this if addresses of constant functions
1733 shouldn't be put through pseudo regs where they can be cse'd.
1734 Desirable on machines where ordinary constants are expensive
1735 but a CALL with constant address is cheap.
1736
1737 We define this on the Alpha so that gen_call and gen_call_value
1738 get to see the SYMBOL_REF (for the hint field of the jsr). It will
1739 then copy it into a register, thus actually letting the address be
1740 cse'ed. */
1741
1742 #define NO_FUNCTION_CSE
1743
1744 /* Define this to be nonzero if shift instructions ignore all but the low-order
1745 few bits. */
1746 #define SHIFT_COUNT_TRUNCATED 1
1747
1748 /* Use atexit for static constructors/destructors, instead of defining
1749 our own exit function. */
1750 #define HAVE_ATEXIT
1751
1752 /* The EV4 is dual issue; EV5/EV6 are quad issue. */
1753 #define ISSUE_RATE (alpha_cpu == PROCESSOR_EV4 ? 2 : 4)
1754
1755 /* Describe the fact that MULTI instructions are multiple instructions
1756 and so to assume they don't pair with anything. */
1757 #define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \
1758 if (recog_memoized (INSN) < 0 || get_attr_type (INSN) == TYPE_MULTI) \
1759 (CAN_ISSUE_MORE) = 0
1760
1761 /* Compute the cost of computing a constant rtl expression RTX
1762 whose rtx-code is CODE. The body of this macro is a portion
1763 of a switch statement. If the code is computed here,
1764 return it with a return statement. Otherwise, break from the switch.
1765
1766 If this is an 8-bit constant, return zero since it can be used
1767 nearly anywhere with no cost. If it is a valid operand for an
1768 ADD or AND, likewise return 0 if we know it will be used in that
1769 context. Otherwise, return 2 since it might be used there later.
1770 All other constants take at least two insns. */
1771
1772 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1773 case CONST_INT: \
1774 if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
1775 return 0; \
1776 case CONST_DOUBLE: \
1777 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) \
1778 return 0; \
1779 else if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
1780 || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
1781 return 0; \
1782 else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
1783 return 2; \
1784 else \
1785 return COSTS_N_INSNS (2); \
1786 case CONST: \
1787 case SYMBOL_REF: \
1788 case LABEL_REF: \
1789 switch (alpha_cpu) \
1790 { \
1791 case PROCESSOR_EV4: \
1792 return COSTS_N_INSNS (3); \
1793 case PROCESSOR_EV5: \
1794 case PROCESSOR_EV6: \
1795 return COSTS_N_INSNS (2); \
1796 default: abort(); \
1797 }
1798
1799 /* Provide the costs of a rtl expression. This is in the body of a
1800 switch on CODE. */
1801
1802 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1803 case PLUS: case MINUS: \
1804 if (FLOAT_MODE_P (GET_MODE (X))) \
1805 switch (alpha_cpu) \
1806 { \
1807 case PROCESSOR_EV4: \
1808 return COSTS_N_INSNS (6); \
1809 case PROCESSOR_EV5: \
1810 case PROCESSOR_EV6: \
1811 return COSTS_N_INSNS (4); \
1812 default: abort(); \
1813 } \
1814 else if (GET_CODE (XEXP (X, 0)) == MULT \
1815 && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
1816 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1817 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1818 break; \
1819 case MULT: \
1820 switch (alpha_cpu) \
1821 { \
1822 case PROCESSOR_EV4: \
1823 if (FLOAT_MODE_P (GET_MODE (X))) \
1824 return COSTS_N_INSNS (6); \
1825 return COSTS_N_INSNS (23); \
1826 case PROCESSOR_EV5: \
1827 if (FLOAT_MODE_P (GET_MODE (X))) \
1828 return COSTS_N_INSNS (4); \
1829 else if (GET_MODE (X) == DImode) \
1830 return COSTS_N_INSNS (12); \
1831 else \
1832 return COSTS_N_INSNS (8); \
1833 case PROCESSOR_EV6: \
1834 if (FLOAT_MODE_P (GET_MODE (X))) \
1835 return COSTS_N_INSNS (4); \
1836 else \
1837 return COSTS_N_INSNS (7); \
1838 default: abort(); \
1839 } \
1840 case ASHIFT: \
1841 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1842 && INTVAL (XEXP (X, 1)) <= 3) \
1843 break; \
1844 /* ... fall through ... */ \
1845 case ASHIFTRT: case LSHIFTRT: \
1846 switch (alpha_cpu) \
1847 { \
1848 case PROCESSOR_EV4: \
1849 return COSTS_N_INSNS (2); \
1850 case PROCESSOR_EV5: \
1851 case PROCESSOR_EV6: \
1852 return COSTS_N_INSNS (1); \
1853 default: abort(); \
1854 } \
1855 case IF_THEN_ELSE: \
1856 switch (alpha_cpu) \
1857 { \
1858 case PROCESSOR_EV4: \
1859 case PROCESSOR_EV6: \
1860 return COSTS_N_INSNS (2); \
1861 case PROCESSOR_EV5: \
1862 return COSTS_N_INSNS (1); \
1863 default: abort(); \
1864 } \
1865 case DIV: case UDIV: case MOD: case UMOD: \
1866 switch (alpha_cpu) \
1867 { \
1868 case PROCESSOR_EV4: \
1869 if (GET_MODE (X) == SFmode) \
1870 return COSTS_N_INSNS (34); \
1871 else if (GET_MODE (X) == DFmode) \
1872 return COSTS_N_INSNS (63); \
1873 else \
1874 return COSTS_N_INSNS (70); \
1875 case PROCESSOR_EV5: \
1876 if (GET_MODE (X) == SFmode) \
1877 return COSTS_N_INSNS (15); \
1878 else if (GET_MODE (X) == DFmode) \
1879 return COSTS_N_INSNS (22); \
1880 else \
1881 return COSTS_N_INSNS (70); /* ??? */ \
1882 case PROCESSOR_EV6: \
1883 if (GET_MODE (X) == SFmode) \
1884 return COSTS_N_INSNS (12); \
1885 else if (GET_MODE (X) == DFmode) \
1886 return COSTS_N_INSNS (15); \
1887 else \
1888 return COSTS_N_INSNS (70); /* ??? */ \
1889 default: abort(); \
1890 } \
1891 case MEM: \
1892 switch (alpha_cpu) \
1893 { \
1894 case PROCESSOR_EV4: \
1895 case PROCESSOR_EV6: \
1896 return COSTS_N_INSNS (3); \
1897 case PROCESSOR_EV5: \
1898 return COSTS_N_INSNS (2); \
1899 default: abort(); \
1900 } \
1901 case NEG: case ABS: \
1902 if (! FLOAT_MODE_P (GET_MODE (X))) \
1903 break; \
1904 /* ... fall through ... */ \
1905 case FLOAT: case UNSIGNED_FLOAT: case FIX: case UNSIGNED_FIX: \
1906 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
1907 switch (alpha_cpu) \
1908 { \
1909 case PROCESSOR_EV4: \
1910 return COSTS_N_INSNS (6); \
1911 case PROCESSOR_EV5: \
1912 case PROCESSOR_EV6: \
1913 return COSTS_N_INSNS (4); \
1914 default: abort(); \
1915 }
1916 \f
1917 /* Control the assembler format that we output. */
1918
1919 /* We don't emit these labels, so as to avoid getting linker errors about
1920 missing exception handling info. If we emit a gcc_compiled. label into
1921 text, and the file has no code, then the DEC assembler gives us a zero
1922 sized text section with no associated exception handling info. The
1923 DEC linker sees this text section, and gives a warning saying that
1924 the exception handling info is missing. */
1925 #define ASM_IDENTIFY_GCC(x)
1926 #define ASM_IDENTIFY_LANGUAGE(x)
1927
1928 /* Output to assembler file text saying following lines
1929 may contain character constants, extra white space, comments, etc. */
1930
1931 #define ASM_APP_ON ""
1932
1933 /* Output to assembler file text saying following lines
1934 no longer contain unusual constructs. */
1935
1936 #define ASM_APP_OFF ""
1937
1938 #define TEXT_SECTION_ASM_OP ".text"
1939
1940 /* Output before read-only data. */
1941
1942 #define READONLY_DATA_SECTION_ASM_OP ".rdata"
1943
1944 /* Output before writable data. */
1945
1946 #define DATA_SECTION_ASM_OP ".data"
1947
1948 /* Define an extra section for read-only data, a routine to enter it, and
1949 indicate that it is for read-only data.
1950
1951 The first time we enter the readonly data section for a file, we write
1952 eight bytes of zero. This works around a bug in DEC's assembler in
1953 some versions of OSF/1 V3.x. */
1954
1955 #define EXTRA_SECTIONS readonly_data
1956
1957 #define EXTRA_SECTION_FUNCTIONS \
1958 void \
1959 literal_section () \
1960 { \
1961 if (in_section != readonly_data) \
1962 { \
1963 static int firsttime = 1; \
1964 \
1965 fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
1966 if (firsttime) \
1967 { \
1968 firsttime = 0; \
1969 ASM_OUTPUT_DOUBLE_INT (asm_out_file, const0_rtx); \
1970 } \
1971 \
1972 in_section = readonly_data; \
1973 } \
1974 } \
1975
1976 #define READONLY_DATA_SECTION literal_section
1977
1978 /* If we are referencing a function that is static, make the SYMBOL_REF
1979 special. We use this to see indicate we can branch to this function
1980 without setting PV or restoring GP. */
1981
1982 #define ENCODE_SECTION_INFO(DECL) \
1983 if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
1984 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1985
1986 /* How to refer to registers in assembler output.
1987 This sequence is indexed by compiler's hard-register-number (see above). */
1988
1989 #define REGISTER_NAMES \
1990 {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
1991 "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
1992 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
1993 "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
1994 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
1995 "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
1996 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
1997 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
1998
1999 /* How to renumber registers for dbx and gdb. */
2000
2001 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2002
2003 /* This is how to output the definition of a user-level label named NAME,
2004 such as the label on a static function or variable NAME. */
2005
2006 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2007 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2008
2009 /* This is how to output a command to make the user-level label named NAME
2010 defined for reference from other files. */
2011
2012 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2013 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2014
2015 /* The prefix to add to user-visible assembler symbols. */
2016
2017 #define USER_LABEL_PREFIX ""
2018
2019 /* This is how to output an internal numbered label where
2020 PREFIX is the class of label and NUM is the number within the class. */
2021
2022 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2023 fprintf (FILE, "$%s%d:\n", PREFIX, NUM)
2024
2025 /* This is how to output a label for a jump table. Arguments are the same as
2026 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2027 passed. */
2028
2029 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2030 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2031
2032 /* This is how to store into the string LABEL
2033 the symbol_ref name of an internal numbered label where
2034 PREFIX is the class of label and NUM is the number within the class.
2035 This is suitable for output with `assemble_name'. */
2036
2037 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2038 sprintf ((LABEL), "*$%s%ld", (PREFIX), (long)(NUM))
2039
2040 /* Check a floating-point value for validity for a particular machine mode. */
2041
2042 #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
2043 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
2044
2045 /* This is how to output an assembler line defining a `double' constant. */
2046
2047 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2048 { \
2049 if (REAL_VALUE_ISINF (VALUE) \
2050 || REAL_VALUE_ISNAN (VALUE) \
2051 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2052 { \
2053 long t[2]; \
2054 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2055 fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
2056 t[1] & 0xffffffff, t[0] & 0xffffffff); \
2057 } \
2058 else \
2059 { \
2060 char str[30]; \
2061 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
2062 fprintf (FILE, "\t.%c_floating %s\n", (TARGET_FLOAT_VAX)?'g':'t', str); \
2063 } \
2064 }
2065
2066 /* This is how to output an assembler line defining a `float' constant. */
2067
2068 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2069 do { \
2070 long t; \
2071 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2072 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
2073 } while (0)
2074
2075 /* This is how to output an assembler line defining an `int' constant. */
2076
2077 #define ASM_OUTPUT_INT(FILE,VALUE) \
2078 ( fprintf (FILE, "\t.long "), \
2079 output_addr_const (FILE, (VALUE)), \
2080 fprintf (FILE, "\n"))
2081
2082 /* This is how to output an assembler line defining a `long' constant. */
2083
2084 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2085 ( fprintf (FILE, "\t.quad "), \
2086 output_addr_const (FILE, (VALUE)), \
2087 fprintf (FILE, "\n"))
2088
2089 /* Likewise for `char' and `short' constants. */
2090
2091 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2092 fprintf (FILE, "\t.word %d\n", \
2093 (int)(GET_CODE (VALUE) == CONST_INT \
2094 ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
2095
2096 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2097 fprintf (FILE, "\t.byte %d\n", \
2098 (int)(GET_CODE (VALUE) == CONST_INT \
2099 ? INTVAL (VALUE) & 0xff : (abort (), 0)))
2100
2101 /* We use the default ASCII-output routine, except that we don't write more
2102 than 50 characters since the assembler doesn't support very long lines. */
2103
2104 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
2105 do { \
2106 FILE *_hide_asm_out_file = (MYFILE); \
2107 unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
2108 int _hide_thissize = (MYLENGTH); \
2109 int _size_so_far = 0; \
2110 { \
2111 FILE *asm_out_file = _hide_asm_out_file; \
2112 unsigned char *p = _hide_p; \
2113 int thissize = _hide_thissize; \
2114 int i; \
2115 fprintf (asm_out_file, "\t.ascii \""); \
2116 \
2117 for (i = 0; i < thissize; i++) \
2118 { \
2119 register int c = p[i]; \
2120 \
2121 if (_size_so_far ++ > 50 && i < thissize - 4) \
2122 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
2123 \
2124 if (c == '\"' || c == '\\') \
2125 putc ('\\', asm_out_file); \
2126 if (c >= ' ' && c < 0177) \
2127 putc (c, asm_out_file); \
2128 else \
2129 { \
2130 fprintf (asm_out_file, "\\%o", c); \
2131 /* After an octal-escape, if a digit follows, \
2132 terminate one string constant and start another. \
2133 The Vax assembler fails to stop reading the escape \
2134 after three digits, so this is the only way we \
2135 can get it to parse the data properly. */ \
2136 if (i < thissize - 1 \
2137 && p[i + 1] >= '0' && p[i + 1] <= '9') \
2138 _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
2139 } \
2140 } \
2141 fprintf (asm_out_file, "\"\n"); \
2142 } \
2143 } \
2144 while (0)
2145
2146 /* To get unaligned data, we have to turn off auto alignment. */
2147 #define UNALIGNED_SHORT_ASM_OP ".align 0\n\t.word"
2148 #define UNALIGNED_INT_ASM_OP ".align 0\n\t.long"
2149 #define UNALIGNED_DOUBLE_INT_ASM_OP ".align 0\n\t.quad"
2150
2151 /* This is how to output an insn to push a register on the stack.
2152 It need not be very fast code. */
2153
2154 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2155 fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
2156 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2157 (REGNO) & 31);
2158
2159 /* This is how to output an insn to pop a register from the stack.
2160 It need not be very fast code. */
2161
2162 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2163 fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
2164 (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
2165 (REGNO) & 31);
2166
2167 /* This is how to output an assembler line for a numeric constant byte. */
2168
2169 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2170 fprintf (FILE, "\t.byte 0x%x\n", (int) ((VALUE) & 0xff))
2171
2172 /* This is how to output an element of a case-vector that is absolute.
2173 (Alpha does not use such vectors, but we must define this macro anyway.) */
2174
2175 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) abort ()
2176
2177 /* This is how to output an element of a case-vector that is relative. */
2178
2179 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2180 fprintf (FILE, "\t.%s $L%d\n", TARGET_WINDOWS_NT ? "long" : "gprel32", \
2181 (VALUE))
2182
2183 /* This is how to output an assembler line
2184 that says to advance the location counter
2185 to a multiple of 2**LOG bytes. */
2186
2187 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2188 if ((LOG) != 0) \
2189 fprintf (FILE, "\t.align %d\n", LOG);
2190
2191 /* This is how to advance the location counter by SIZE bytes. */
2192
2193 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2194 fprintf (FILE, "\t.space %d\n", (SIZE))
2195
2196 /* This says how to output an assembler line
2197 to define a global common symbol. */
2198
2199 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2200 ( fputs ("\t.comm ", (FILE)), \
2201 assemble_name ((FILE), (NAME)), \
2202 fprintf ((FILE), ",%d\n", (SIZE)))
2203
2204 /* This says how to output an assembler line
2205 to define a local common symbol. */
2206
2207 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2208 ( fputs ("\t.lcomm ", (FILE)), \
2209 assemble_name ((FILE), (NAME)), \
2210 fprintf ((FILE), ",%d\n", (SIZE)))
2211
2212 /* Store in OUTPUT a string (made with alloca) containing
2213 an assembler-name for a local static variable named NAME.
2214 LABELNO is an integer which is different for each call. */
2215
2216 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2217 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2218 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2219
2220 /* Define the parentheses used to group arithmetic operations
2221 in assembler code. */
2222
2223 #define ASM_OPEN_PAREN "("
2224 #define ASM_CLOSE_PAREN ")"
2225
2226 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2227 Used for C++ multiple inheritance. */
2228
2229 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2230 do { \
2231 char *fn_name = XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0); \
2232 int reg; \
2233 \
2234 /* Mark end of prologue. */ \
2235 output_end_prologue (FILE); \
2236 \
2237 /* Rely on the assembler to macro expand a large delta. */ \
2238 reg = aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION))) ? 17 : 16; \
2239 fprintf (FILE, "\tlda $%d,%ld($%d)\n", reg, (long)(DELTA), reg); \
2240 \
2241 if (current_file_function_operand (XEXP (DECL_RTL (FUNCTION), 0))) \
2242 { \
2243 fprintf (FILE, "\tbr $31,$"); \
2244 assemble_name (FILE, fn_name); \
2245 fprintf (FILE, "..ng\n"); \
2246 } \
2247 else \
2248 { \
2249 fprintf (FILE, "\tjmp $31,"); \
2250 assemble_name (FILE, fn_name); \
2251 fputc ('\n', FILE); \
2252 } \
2253 } while (0)
2254 \f
2255
2256 /* Define results of standard character escape sequences. */
2257 #define TARGET_BELL 007
2258 #define TARGET_BS 010
2259 #define TARGET_TAB 011
2260 #define TARGET_NEWLINE 012
2261 #define TARGET_VT 013
2262 #define TARGET_FF 014
2263 #define TARGET_CR 015
2264
2265 /* Print operand X (an rtx) in assembler syntax to file FILE.
2266 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2267 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2268
2269 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2270
2271 /* Determine which codes are valid without a following integer. These must
2272 not be alphabetic (the characters are chosen so that
2273 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
2274 using ASCII).
2275
2276 & Generates fp-rounding mode suffix: nothing for normal, 'c' for
2277 chopped, 'm' for minus-infinity, and 'd' for dynamic rounding
2278 mode. alpha_fprm controls which suffix is generated.
2279
2280 ' Generates trap-mode suffix for instructions that accept the
2281 su suffix only (cmpt et al).
2282
2283 ` Generates trap-mode suffix for instructions that accept the
2284 v and sv suffix. The only instruction that needs this is cvtql.
2285
2286 ( Generates trap-mode suffix for instructions that accept the
2287 v, sv, and svi suffix. The only instruction that needs this
2288 is cvttq.
2289
2290 ) Generates trap-mode suffix for instructions that accept the
2291 u, su, and sui suffix. This is the bulk of the IEEE floating
2292 point instructions (addt et al).
2293
2294 + Generates trap-mode suffix for instructions that accept the
2295 sui suffix (cvtqt and cvtqs).
2296
2297 , Generates single precision suffix for floating point
2298 instructions (s for IEEE, f for VAX)
2299
2300 - Generates double precision suffix for floating point
2301 instructions (t for IEEE, g for VAX)
2302 */
2303
2304 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2305 ((CODE) == '&' || (CODE) == '`' || (CODE) == '\'' || (CODE) == '(' \
2306 || (CODE) == ')' || (CODE) == '+' || (CODE) == ',' || (CODE) == '-')
2307 \f
2308 /* Print a memory address as an operand to reference that memory location. */
2309
2310 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2311 print_operand_address((FILE), (ADDR))
2312
2313 /* Define the codes that are matched by predicates in alpha.c. */
2314
2315 #define PREDICATE_CODES \
2316 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
2317 {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
2318 {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
2319 {"cint8_operand", {CONST_INT}}, \
2320 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2321 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2322 {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
2323 {"const48_operand", {CONST_INT}}, \
2324 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2325 {"or_operand", {SUBREG, REG, CONST_INT}}, \
2326 {"mode_mask_operand", {CONST_INT}}, \
2327 {"mul8_operand", {CONST_INT}}, \
2328 {"mode_width_operand", {CONST_INT}}, \
2329 {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2330 {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
2331 {"alpha_swapped_comparison_operator", {EQ, GE, GT, GEU, GTU}}, \
2332 {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
2333 {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
2334 {"fp0_operand", {CONST_DOUBLE}}, \
2335 {"current_file_function_operand", {SYMBOL_REF}}, \
2336 {"call_operand", {REG, SYMBOL_REF}}, \
2337 {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2338 SYMBOL_REF, CONST, LABEL_REF}}, \
2339 {"some_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2340 SYMBOL_REF, CONST, LABEL_REF}}, \
2341 {"aligned_memory_operand", {MEM}}, \
2342 {"unaligned_memory_operand", {MEM}}, \
2343 {"reg_or_unaligned_mem_operand", {SUBREG, REG, MEM}}, \
2344 {"any_memory_operand", {MEM}}, \
2345 {"hard_fp_register_operand", {SUBREG, REG}}, \
2346 {"reg_not_elim_operand", {SUBREG, REG}}, \
2347 {"reg_no_subreg_operand", {REG}},
2348 \f
2349 /* Define the `__builtin_va_list' type for the ABI. */
2350 #define BUILD_VA_LIST_TYPE(VALIST) \
2351 (VALIST) = alpha_build_va_list ()
2352
2353 /* Implement `va_start' for varargs and stdarg. */
2354 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2355 alpha_va_start (stdarg, valist, nextarg)
2356
2357 /* Implement `va_arg'. */
2358 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
2359 alpha_va_arg (valist, type)
2360 \f
2361 /* Tell collect that the object format is ECOFF. */
2362 #define OBJECT_FORMAT_COFF
2363 #define EXTENDED_COFF
2364
2365 /* If we use NM, pass -g to it so it only lists globals. */
2366 #define NM_FLAGS "-pg"
2367
2368 /* Definitions for debugging. */
2369
2370 #define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
2371 #define DBX_DEBUGGING_INFO /* generate embedded stabs */
2372 #define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
2373
2374 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
2375 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
2376 #endif
2377
2378
2379 /* Correct the offset of automatic variables and arguments. Note that
2380 the Alpha debug format wants all automatic variables and arguments
2381 to be in terms of two different offsets from the virtual frame pointer,
2382 which is the stack pointer before any adjustment in the function.
2383 The offset for the argument pointer is fixed for the native compiler,
2384 it is either zero (for the no arguments case) or large enough to hold
2385 all argument registers.
2386 The offset for the auto pointer is the fourth argument to the .frame
2387 directive (local_offset).
2388 To stay compatible with the native tools we use the same offsets
2389 from the virtual frame pointer and adjust the debugger arg/auto offsets
2390 accordingly. These debugger offsets are set up in output_prolog. */
2391
2392 extern long alpha_arg_offset;
2393 extern long alpha_auto_offset;
2394 #define DEBUGGER_AUTO_OFFSET(X) \
2395 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
2396 #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
2397
2398
2399 #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2400 alpha_output_lineno (STREAM, LINE)
2401 extern void alpha_output_lineno ();
2402
2403 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2404 alpha_output_filename (STREAM, NAME)
2405 extern void alpha_output_filename ();
2406
2407 /* mips-tfile.c limits us to strings of one page. We must underestimate this
2408 number, because the real length runs past this up to the next
2409 continuation point. This is really a dbxout.c bug. */
2410 #define DBX_CONTIN_LENGTH 3000
2411
2412 /* By default, turn on GDB extensions. */
2413 #define DEFAULT_GDB_EXTENSIONS 1
2414
2415 /* Stabs-in-ECOFF can't handle dbxout_function_end(). */
2416 #define NO_DBX_FUNCTION_END 1
2417
2418 /* If we are smuggling stabs through the ALPHA ECOFF object
2419 format, put a comment in front of the .stab<x> operation so
2420 that the ALPHA assembler does not choke. The mips-tfile program
2421 will correctly put the stab into the object file. */
2422
2423 #define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
2424 #define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
2425 #define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
2426
2427 /* Forward references to tags are allowed. */
2428 #define SDB_ALLOW_FORWARD_REFERENCES
2429
2430 /* Unknown tags are also allowed. */
2431 #define SDB_ALLOW_UNKNOWN_REFERENCES
2432
2433 #define PUT_SDB_DEF(a) \
2434 do { \
2435 fprintf (asm_out_file, "\t%s.def\t", \
2436 (TARGET_GAS) ? "" : "#"); \
2437 ASM_OUTPUT_LABELREF (asm_out_file, a); \
2438 fputc (';', asm_out_file); \
2439 } while (0)
2440
2441 #define PUT_SDB_PLAIN_DEF(a) \
2442 do { \
2443 fprintf (asm_out_file, "\t%s.def\t.%s;", \
2444 (TARGET_GAS) ? "" : "#", (a)); \
2445 } while (0)
2446
2447 #define PUT_SDB_TYPE(a) \
2448 do { \
2449 fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
2450 } while (0)
2451
2452 /* For block start and end, we create labels, so that
2453 later we can figure out where the correct offset is.
2454 The normal .ent/.end serve well enough for functions,
2455 so those are just commented out. */
2456
2457 extern int sdb_label_count; /* block start/end next label # */
2458
2459 #define PUT_SDB_BLOCK_START(LINE) \
2460 do { \
2461 fprintf (asm_out_file, \
2462 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
2463 sdb_label_count, \
2464 (TARGET_GAS) ? "" : "#", \
2465 sdb_label_count, \
2466 (LINE)); \
2467 sdb_label_count++; \
2468 } while (0)
2469
2470 #define PUT_SDB_BLOCK_END(LINE) \
2471 do { \
2472 fprintf (asm_out_file, \
2473 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
2474 sdb_label_count, \
2475 (TARGET_GAS) ? "" : "#", \
2476 sdb_label_count, \
2477 (LINE)); \
2478 sdb_label_count++; \
2479 } while (0)
2480
2481 #define PUT_SDB_FUNCTION_START(LINE)
2482
2483 #define PUT_SDB_FUNCTION_END(LINE)
2484
2485 #define PUT_SDB_EPILOGUE_END(NAME) ((void)(NAME))
2486
2487 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
2488 mips-tdump.c to print them out.
2489
2490 These must match the corresponding definitions in gdb/mipsread.c.
2491 Unfortunately, gcc and gdb do not currently share any directories. */
2492
2493 #define CODE_MASK 0x8F300
2494 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
2495 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
2496 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
2497
2498 /* Override some mips-tfile definitions. */
2499
2500 #define SHASH_SIZE 511
2501 #define THASH_SIZE 55
2502
2503 /* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
2504
2505 #define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
2506
2507 /* The linker will stick __main into the .init section. */
2508 #define HAS_INIT_SECTION
2509 #define LD_INIT_SWITCH "-init"
2510 #define LD_FINI_SWITCH "-fini"
2511
2512 /* The system headers under Alpha systems are generally C++-aware. */
2513 #define NO_IMPLICIT_EXTERN_C
2514
2515 /* Prototypes for alpha.c functions used in the md file & elsewhere. */
2516 extern struct rtx_def *get_unaligned_address ();
2517 extern void alpha_write_verstamp ();
2518 extern void alpha_reorg ();
2519 extern int check_float_value ();
2520 extern int direct_return ();
2521 extern int const48_operand ();
2522 extern int add_operand ();
2523 extern int and_operand ();
2524 extern int unaligned_memory_operand ();
2525 extern int zap_mask ();
2526 extern int current_file_function_operand ();
2527 extern int alpha_sa_size ();
2528 extern int alpha_adjust_cost ();
2529 extern void print_operand ();
2530 extern void print_operand_address ();
2531 extern int reg_or_0_operand ();
2532 extern int reg_or_8bit_operand ();
2533 extern int mul8_operand ();
2534 extern int reg_or_6bit_operand ();
2535 extern int alpha_comparison_operator ();
2536 extern int alpha_swapped_comparison_operator ();
2537 extern int sext_add_operand ();
2538 extern int cint8_operand ();
2539 extern int mode_mask_operand ();
2540 extern int or_operand ();
2541 extern int mode_width_operand ();
2542 extern int reg_or_fp0_operand ();
2543 extern int signed_comparison_operator ();
2544 extern int fp0_operand ();
2545 extern int some_operand ();
2546 extern int input_operand ();
2547 extern int divmod_operator ();
2548 extern int call_operand ();
2549 extern int reg_or_cint_operand ();
2550 extern int hard_fp_register_operand ();
2551 extern int reg_not_elim_operand ();
2552 extern int normal_memory_operand ();
2553 extern int reg_no_subreg_operand ();
2554 extern void alpha_set_memflags ();
2555 extern int aligned_memory_operand ();
2556 extern void get_aligned_mem ();
2557 extern void alpha_expand_unaligned_load ();
2558 extern void alpha_expand_unaligned_store ();
2559 extern int alpha_expand_block_move ();
2560 extern int alpha_expand_block_clear ();
2561 extern void alpha_expand_prologue ();
2562 extern void alpha_expand_epilogue ();
2563 extern union tree_node *alpha_build_va_list ();
2564 extern void alpha_va_start ();
2565 extern struct rtx_def *alpha_va_arg ();