]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/i386/i386.h
2f5ed83c89e637c25559b3c6b39377c3b108f709
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
19
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
24
25 /* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
40 /* Redefines for option macros. */
41
42 #define TARGET_64BIT TARGET_ISA_64BIT
43 #define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x)
44 #define TARGET_MMX TARGET_ISA_MMX
45 #define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x)
46 #define TARGET_3DNOW TARGET_ISA_3DNOW
47 #define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x)
48 #define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
49 #define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x)
50 #define TARGET_SSE TARGET_ISA_SSE
51 #define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x)
52 #define TARGET_SSE2 TARGET_ISA_SSE2
53 #define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x)
54 #define TARGET_SSE3 TARGET_ISA_SSE3
55 #define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x)
56 #define TARGET_SSSE3 TARGET_ISA_SSSE3
57 #define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x)
58 #define TARGET_SSE4_1 TARGET_ISA_SSE4_1
59 #define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x)
60 #define TARGET_SSE4_2 TARGET_ISA_SSE4_2
61 #define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x)
62 #define TARGET_AVX TARGET_ISA_AVX
63 #define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x)
64 #define TARGET_AVX2 TARGET_ISA_AVX2
65 #define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x)
66 #define TARGET_AVX512F TARGET_ISA_AVX512F
67 #define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x)
68 #define TARGET_AVX512PF TARGET_ISA_AVX512PF
69 #define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x)
70 #define TARGET_AVX512ER TARGET_ISA_AVX512ER
71 #define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x)
72 #define TARGET_AVX512CD TARGET_ISA_AVX512CD
73 #define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x)
74 #define TARGET_AVX512DQ TARGET_ISA_AVX512DQ
75 #define TARGET_AVX512DQ_P(x) TARGET_ISA_AVX512DQ_P(x)
76 #define TARGET_AVX512BW TARGET_ISA_AVX512BW
77 #define TARGET_AVX512BW_P(x) TARGET_ISA_AVX512BW_P(x)
78 #define TARGET_AVX512VL TARGET_ISA_AVX512VL
79 #define TARGET_AVX512VL_P(x) TARGET_ISA_AVX512VL_P(x)
80 #define TARGET_AVX512VBMI TARGET_ISA_AVX512VBMI
81 #define TARGET_AVX512VBMI_P(x) TARGET_ISA_AVX512VBMI_P(x)
82 #define TARGET_AVX512IFMA TARGET_ISA_AVX512IFMA
83 #define TARGET_AVX512IFMA_P(x) TARGET_ISA_AVX512IFMA_P(x)
84 #define TARGET_AVX5124FMAPS TARGET_ISA_AVX5124FMAPS
85 #define TARGET_AVX5124FMAPS_P(x) TARGET_ISA_AVX5124FMAPS_P(x)
86 #define TARGET_AVX5124VNNIW TARGET_ISA_AVX5124VNNIW
87 #define TARGET_AVX5124VNNIW_P(x) TARGET_ISA_AVX5124VNNIW_P(x)
88 #define TARGET_AVX512VPOPCNTDQ TARGET_ISA_AVX512VPOPCNTDQ
89 #define TARGET_AVX512VPOPCNTDQ_P(x) TARGET_ISA_AVX512VPOPCNTDQ_P(x)
90 #define TARGET_FMA TARGET_ISA_FMA
91 #define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x)
92 #define TARGET_SSE4A TARGET_ISA_SSE4A
93 #define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x)
94 #define TARGET_FMA4 TARGET_ISA_FMA4
95 #define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x)
96 #define TARGET_XOP TARGET_ISA_XOP
97 #define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x)
98 #define TARGET_LWP TARGET_ISA_LWP
99 #define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x)
100 #define TARGET_ABM TARGET_ISA_ABM
101 #define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x)
102 #define TARGET_SGX TARGET_ISA_SGX
103 #define TARGET_SGX_P(x) TARGET_ISA_SGX_P(x)
104 #define TARGET_RDPID TARGET_ISA_RDPID
105 #define TARGET_RDPID_P(x) TARGET_ISA_RDPID_P(x)
106 #define TARGET_BMI TARGET_ISA_BMI
107 #define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x)
108 #define TARGET_BMI2 TARGET_ISA_BMI2
109 #define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x)
110 #define TARGET_LZCNT TARGET_ISA_LZCNT
111 #define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x)
112 #define TARGET_TBM TARGET_ISA_TBM
113 #define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x)
114 #define TARGET_POPCNT TARGET_ISA_POPCNT
115 #define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x)
116 #define TARGET_SAHF TARGET_ISA_SAHF
117 #define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x)
118 #define TARGET_MOVBE TARGET_ISA_MOVBE
119 #define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x)
120 #define TARGET_CRC32 TARGET_ISA_CRC32
121 #define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x)
122 #define TARGET_AES TARGET_ISA_AES
123 #define TARGET_AES_P(x) TARGET_ISA_AES_P(x)
124 #define TARGET_SHA TARGET_ISA_SHA
125 #define TARGET_SHA_P(x) TARGET_ISA_SHA_P(x)
126 #define TARGET_CLFLUSHOPT TARGET_ISA_CLFLUSHOPT
127 #define TARGET_CLFLUSHOPT_P(x) TARGET_ISA_CLFLUSHOPT_P(x)
128 #define TARGET_CLZERO TARGET_ISA_CLZERO
129 #define TARGET_CLZERO_P(x) TARGET_ISA_CLZERO_P(x)
130 #define TARGET_XSAVEC TARGET_ISA_XSAVEC
131 #define TARGET_XSAVEC_P(x) TARGET_ISA_XSAVEC_P(x)
132 #define TARGET_XSAVES TARGET_ISA_XSAVES
133 #define TARGET_XSAVES_P(x) TARGET_ISA_XSAVES_P(x)
134 #define TARGET_PCLMUL TARGET_ISA_PCLMUL
135 #define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x)
136 #define TARGET_CMPXCHG16B TARGET_ISA_CX16
137 #define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x)
138 #define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
139 #define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x)
140 #define TARGET_RDRND TARGET_ISA_RDRND
141 #define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x)
142 #define TARGET_F16C TARGET_ISA_F16C
143 #define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x)
144 #define TARGET_RTM TARGET_ISA_RTM
145 #define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x)
146 #define TARGET_HLE TARGET_ISA_HLE
147 #define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x)
148 #define TARGET_RDSEED TARGET_ISA_RDSEED
149 #define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x)
150 #define TARGET_PRFCHW TARGET_ISA_PRFCHW
151 #define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x)
152 #define TARGET_ADX TARGET_ISA_ADX
153 #define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x)
154 #define TARGET_FXSR TARGET_ISA_FXSR
155 #define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x)
156 #define TARGET_XSAVE TARGET_ISA_XSAVE
157 #define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x)
158 #define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
159 #define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x)
160 #define TARGET_PREFETCHWT1 TARGET_ISA_PREFETCHWT1
161 #define TARGET_PREFETCHWT1_P(x) TARGET_ISA_PREFETCHWT1_P(x)
162 #define TARGET_MPX TARGET_ISA_MPX
163 #define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x)
164 #define TARGET_CLWB TARGET_ISA_CLWB
165 #define TARGET_CLWB_P(x) TARGET_ISA_CLWB_P(x)
166 #define TARGET_MWAITX TARGET_ISA_MWAITX
167 #define TARGET_MWAITX_P(x) TARGET_ISA_MWAITX_P(x)
168 #define TARGET_PKU TARGET_ISA_PKU
169 #define TARGET_PKU_P(x) TARGET_ISA_PKU_P(x)
170
171 #define TARGET_LP64 TARGET_ABI_64
172 #define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
173 #define TARGET_X32 TARGET_ABI_X32
174 #define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
175 #define TARGET_16BIT TARGET_CODE16
176 #define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
177
178 #include "config/vxworks-dummy.h"
179
180 #include "config/i386/i386-opts.h"
181
182 #define MAX_STRINGOP_ALGS 4
183
184 /* Specify what algorithm to use for stringops on known size.
185 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
186 known at compile time or estimated via feedback, the SIZE array
187 is walked in order until MAX is greater then the estimate (or -1
188 means infinity). Corresponding ALG is used then.
189 When NOALIGN is true the code guaranting the alignment of the memory
190 block is skipped.
191
192 For example initializer:
193 {{256, loop}, {-1, rep_prefix_4_byte}}
194 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
195 be used otherwise. */
196 struct stringop_algs
197 {
198 const enum stringop_alg unknown_size;
199 const struct stringop_strategy {
200 const int max;
201 const enum stringop_alg alg;
202 int noalign;
203 } size [MAX_STRINGOP_ALGS];
204 };
205
206 /* Define the specific costs for a given cpu */
207
208 struct processor_costs {
209 const int add; /* cost of an add instruction */
210 const int lea; /* cost of a lea instruction */
211 const int shift_var; /* variable shift costs */
212 const int shift_const; /* constant shift costs */
213 const int mult_init[5]; /* cost of starting a multiply
214 in QImode, HImode, SImode, DImode, TImode*/
215 const int mult_bit; /* cost of multiply per each bit set */
216 const int divide[5]; /* cost of a divide/mod
217 in QImode, HImode, SImode, DImode, TImode*/
218 int movsx; /* The cost of movsx operation. */
219 int movzx; /* The cost of movzx operation. */
220 const int large_insn; /* insns larger than this cost more */
221 const int move_ratio; /* The threshold of number of scalar
222 memory-to-memory move insns. */
223 const int movzbl_load; /* cost of loading using movzbl */
224 const int int_load[3]; /* cost of loading integer registers
225 in QImode, HImode and SImode relative
226 to reg-reg move (2). */
227 const int int_store[3]; /* cost of storing integer register
228 in QImode, HImode and SImode */
229 const int fp_move; /* cost of reg,reg fld/fst */
230 const int fp_load[3]; /* cost of loading FP register
231 in SFmode, DFmode and XFmode */
232 const int fp_store[3]; /* cost of storing FP register
233 in SFmode, DFmode and XFmode */
234 const int mmx_move; /* cost of moving MMX register. */
235 const int mmx_load[2]; /* cost of loading MMX register
236 in SImode and DImode */
237 const int mmx_store[2]; /* cost of storing MMX register
238 in SImode and DImode */
239 const int sse_move; /* cost of moving SSE register. */
240 const int sse_load[3]; /* cost of loading SSE register
241 in SImode, DImode and TImode*/
242 const int sse_store[3]; /* cost of storing SSE register
243 in SImode, DImode and TImode*/
244 const int mmxsse_to_integer; /* cost of moving mmxsse register to
245 integer and vice versa. */
246 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
247 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
248 const int prefetch_block; /* bytes moved to cache for prefetch. */
249 const int simultaneous_prefetches; /* number of parallel prefetch
250 operations. */
251 const int branch_cost; /* Default value for BRANCH_COST. */
252 const int fadd; /* cost of FADD and FSUB instructions. */
253 const int fmul; /* cost of FMUL instruction. */
254 const int fdiv; /* cost of FDIV instruction. */
255 const int fabs; /* cost of FABS instruction. */
256 const int fchs; /* cost of FCHS instruction. */
257 const int fsqrt; /* cost of FSQRT instruction. */
258 /* Specify what algorithm
259 to use for stringops on unknown size. */
260 struct stringop_algs *memcpy, *memset;
261 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
262 load and store. */
263 const int scalar_load_cost; /* Cost of scalar load. */
264 const int scalar_store_cost; /* Cost of scalar store. */
265 const int vec_stmt_cost; /* Cost of any vector operation, excluding
266 load, store, vector-to-scalar and
267 scalar-to-vector operation. */
268 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
269 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
270 const int vec_align_load_cost; /* Cost of aligned vector load. */
271 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
272 const int vec_store_cost; /* Cost of vector store. */
273 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
274 cost model. */
275 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
276 vectorizer cost model. */
277 };
278
279 extern const struct processor_costs *ix86_cost;
280 extern const struct processor_costs ix86_size_cost;
281
282 #define ix86_cur_cost() \
283 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
284
285 /* Macros used in the machine description to test the flags. */
286
287 /* configure can arrange to change it. */
288
289 #ifndef TARGET_CPU_DEFAULT
290 #define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
291 #endif
292
293 #ifndef TARGET_FPMATH_DEFAULT
294 #define TARGET_FPMATH_DEFAULT \
295 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
296 #endif
297
298 #ifndef TARGET_FPMATH_DEFAULT_P
299 #define TARGET_FPMATH_DEFAULT_P(x) \
300 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
301 #endif
302
303 /* If the i387 is disabled or -miamcu is used , then do not return
304 values in it. */
305 #define TARGET_FLOAT_RETURNS_IN_80387 \
306 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
307 #define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
308 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
309
310 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
311 compile-time constant. */
312 #ifdef IN_LIBGCC2
313 #undef TARGET_64BIT
314 #ifdef __x86_64__
315 #define TARGET_64BIT 1
316 #else
317 #define TARGET_64BIT 0
318 #endif
319 #else
320 #ifndef TARGET_BI_ARCH
321 #undef TARGET_64BIT
322 #undef TARGET_64BIT_P
323 #if TARGET_64BIT_DEFAULT
324 #define TARGET_64BIT 1
325 #define TARGET_64BIT_P(x) 1
326 #else
327 #define TARGET_64BIT 0
328 #define TARGET_64BIT_P(x) 0
329 #endif
330 #endif
331 #endif
332
333 #define HAS_LONG_COND_BRANCH 1
334 #define HAS_LONG_UNCOND_BRANCH 1
335
336 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
337 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
338 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
339 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
340 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
341 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
342 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
343 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
344 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
345 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
346 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
347 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
348 #define TARGET_NEHALEM (ix86_tune == PROCESSOR_NEHALEM)
349 #define TARGET_SANDYBRIDGE (ix86_tune == PROCESSOR_SANDYBRIDGE)
350 #define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
351 #define TARGET_BONNELL (ix86_tune == PROCESSOR_BONNELL)
352 #define TARGET_SILVERMONT (ix86_tune == PROCESSOR_SILVERMONT)
353 #define TARGET_KNL (ix86_tune == PROCESSOR_KNL)
354 #define TARGET_SKYLAKE_AVX512 (ix86_tune == PROCESSOR_SKYLAKE_AVX512)
355 #define TARGET_INTEL (ix86_tune == PROCESSOR_INTEL)
356 #define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC)
357 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
358 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
359 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
360 #define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
361 #define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4)
362 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
363 #define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
364 #define TARGET_ZNVER1 (ix86_tune == PROCESSOR_ZNVER1)
365
366 /* Feature tests against the various tunings. */
367 enum ix86_tune_indices {
368 #undef DEF_TUNE
369 #define DEF_TUNE(tune, name, selector) tune,
370 #include "x86-tune.def"
371 #undef DEF_TUNE
372 X86_TUNE_LAST
373 };
374
375 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
376
377 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
378 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
379 #define TARGET_ZERO_EXTEND_WITH_AND \
380 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
381 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
382 #define TARGET_BRANCH_PREDICTION_HINTS \
383 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
384 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
385 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
386 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
387 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
388 #define TARGET_PARTIAL_FLAG_REG_STALL \
389 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
390 #define TARGET_LCP_STALL \
391 ix86_tune_features[X86_TUNE_LCP_STALL]
392 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
393 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
394 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
395 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
396 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
397 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
398 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
399 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
400 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
401 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
402 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
403 #define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
404 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
405 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
406 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
407 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
408 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
409 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
410 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
411 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
412 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
413 #define TARGET_INTEGER_DFMODE_MOVES \
414 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
415 #define TARGET_PARTIAL_REG_DEPENDENCY \
416 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
417 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
418 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
419 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
420 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
421 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
422 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
423 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
424 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
425 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
426 #define TARGET_SSE_TYPELESS_STORES \
427 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
428 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
429 #define TARGET_MEMORY_MISMATCH_STALL \
430 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
431 #define TARGET_PROLOGUE_USING_MOVE \
432 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
433 #define TARGET_EPILOGUE_USING_MOVE \
434 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
435 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
436 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
437 #define TARGET_INTER_UNIT_MOVES_TO_VEC \
438 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
439 #define TARGET_INTER_UNIT_MOVES_FROM_VEC \
440 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
441 #define TARGET_INTER_UNIT_CONVERSIONS \
442 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
443 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
444 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
445 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
446 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
447 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
448 #define TARGET_PAD_SHORT_FUNCTION \
449 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
450 #define TARGET_EXT_80387_CONSTANTS \
451 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
452 #define TARGET_AVOID_VECTOR_DECODE \
453 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
454 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
455 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
456 #define TARGET_SLOW_IMUL_IMM32_MEM \
457 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
458 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
459 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
460 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
461 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
462 #define TARGET_USE_VECTOR_FP_CONVERTS \
463 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
464 #define TARGET_USE_VECTOR_CONVERTS \
465 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
466 #define TARGET_SLOW_PSHUFB \
467 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
468 #define TARGET_VECTOR_PARALLEL_EXECUTION \
469 ix86_tune_features[X86_TUNE_VECTOR_PARALLEL_EXECUTION]
470 #define TARGET_AVOID_4BYTE_PREFIXES \
471 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
472 #define TARGET_FUSE_CMP_AND_BRANCH_32 \
473 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
474 #define TARGET_FUSE_CMP_AND_BRANCH_64 \
475 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
476 #define TARGET_FUSE_CMP_AND_BRANCH \
477 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
478 : TARGET_FUSE_CMP_AND_BRANCH_32)
479 #define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
480 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
481 #define TARGET_FUSE_ALU_AND_BRANCH \
482 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
483 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
484 #define TARGET_AVOID_LEA_FOR_ADDR \
485 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
486 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
487 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
488 #define TARGET_AVX128_OPTIMAL \
489 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
490 #define TARGET_REASSOC_INT_TO_PARALLEL \
491 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
492 #define TARGET_REASSOC_FP_TO_PARALLEL \
493 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
494 #define TARGET_GENERAL_REGS_SSE_SPILL \
495 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
496 #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
497 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
498 #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
499 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
500 #define TARGET_ADJUST_UNROLL \
501 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
502 #define TARGET_AVOID_FALSE_DEP_FOR_BMI \
503 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
504 #define TARGET_ONE_IF_CONV_INSN \
505 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
506
507 /* Feature tests against the various architecture variations. */
508 enum ix86_arch_indices {
509 X86_ARCH_CMOV,
510 X86_ARCH_CMPXCHG,
511 X86_ARCH_CMPXCHG8B,
512 X86_ARCH_XADD,
513 X86_ARCH_BSWAP,
514
515 X86_ARCH_LAST
516 };
517
518 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
519
520 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
521 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
522 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
523 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
524 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
525
526 /* For sane SSE instruction set generation we need fcomi instruction.
527 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
528 expands to a sequence that includes conditional move. */
529 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
530
531 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
532
533 extern unsigned char x86_prefetch_sse;
534 #define TARGET_PREFETCH_SSE x86_prefetch_sse
535
536 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
537
538 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
539 #define TARGET_MIX_SSE_I387 \
540 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
541
542 #define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
543 #define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
544 #define TARGET_HARD_XF_REGS (TARGET_80387)
545
546 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
547 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
548 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
549 #define TARGET_SUN_TLS 0
550
551 #ifndef TARGET_64BIT_DEFAULT
552 #define TARGET_64BIT_DEFAULT 0
553 #endif
554 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
555 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
556 #endif
557
558 #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
559 #define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
560
561 /* Fence to use after loop using storent. */
562
563 extern tree x86_mfence;
564 #define FENCE_FOLLOWING_MOVNT x86_mfence
565
566 /* Once GDB has been enhanced to deal with functions without frame
567 pointers, we can change this to allow for elimination of
568 the frame pointer in leaf functions. */
569 #define TARGET_DEFAULT 0
570
571 /* Extra bits to force. */
572 #define TARGET_SUBTARGET_DEFAULT 0
573 #define TARGET_SUBTARGET_ISA_DEFAULT 0
574
575 /* Extra bits to force on w/ 32-bit mode. */
576 #define TARGET_SUBTARGET32_DEFAULT 0
577 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
578
579 /* Extra bits to force on w/ 64-bit mode. */
580 #define TARGET_SUBTARGET64_DEFAULT 0
581 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
582
583 /* Replace MACH-O, ifdefs by in-line tests, where possible.
584 (a) Macros defined in config/i386/darwin.h */
585 #define TARGET_MACHO 0
586 #define TARGET_MACHO_BRANCH_ISLANDS 0
587 #define MACHOPIC_ATT_STUB 0
588 /* (b) Macros defined in config/darwin.h */
589 #define MACHO_DYNAMIC_NO_PIC_P 0
590 #define MACHOPIC_INDIRECT 0
591 #define MACHOPIC_PURE 0
592
593 /* For the RDOS */
594 #define TARGET_RDOS 0
595
596 /* For the Windows 64-bit ABI. */
597 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
598
599 /* For the Windows 32-bit ABI. */
600 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
601
602 /* This is re-defined by cygming.h. */
603 #define TARGET_SEH 0
604
605 /* The default abi used by target. */
606 #define DEFAULT_ABI SYSV_ABI
607
608 /* The default TLS segment register used by target. */
609 #define DEFAULT_TLS_SEG_REG \
610 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
611
612 /* Subtargets may reset this to 1 in order to enable 96-bit long double
613 with the rounding mode forced to 53 bits. */
614 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
615
616 /* -march=native handling only makes sense with compiler running on
617 an x86 or x86_64 chip. If changing this condition, also change
618 the condition in driver-i386.c. */
619 #if defined(__i386__) || defined(__x86_64__)
620 /* In driver-i386.c. */
621 extern const char *host_detect_local_cpu (int argc, const char **argv);
622 #define EXTRA_SPEC_FUNCTIONS \
623 { "local_cpu_detect", host_detect_local_cpu },
624 #define HAVE_LOCAL_CPU_DETECT
625 #endif
626
627 #if TARGET_64BIT_DEFAULT
628 #define OPT_ARCH64 "!m32"
629 #define OPT_ARCH32 "m32"
630 #else
631 #define OPT_ARCH64 "m64|mx32"
632 #define OPT_ARCH32 "m64|mx32:;"
633 #endif
634
635 /* Support for configure-time defaults of some command line options.
636 The order here is important so that -march doesn't squash the
637 tune or cpu values. */
638 #define OPTION_DEFAULT_SPECS \
639 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
640 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
641 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
642 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
643 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
644 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
645 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
646 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
647 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
648
649 /* Specs for the compiler proper */
650
651 #ifndef CC1_CPU_SPEC
652 #define CC1_CPU_SPEC_1 ""
653
654 #ifndef HAVE_LOCAL_CPU_DETECT
655 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
656 #else
657 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
658 "%{march=native:%>march=native %:local_cpu_detect(arch) \
659 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
660 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
661 #endif
662 #endif
663 \f
664 /* Target CPU builtins. */
665 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
666
667 /* Target Pragmas. */
668 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
669
670 #ifndef CC1_SPEC
671 #define CC1_SPEC "%(cc1_cpu) "
672 #endif
673
674 /* This macro defines names of additional specifications to put in the
675 specs that can be used in various specifications like CC1_SPEC. Its
676 definition is an initializer with a subgrouping for each command option.
677
678 Each subgrouping contains a string constant, that defines the
679 specification name, and a string constant that used by the GCC driver
680 program.
681
682 Do not define this macro if it does not need to do anything. */
683
684 #ifndef SUBTARGET_EXTRA_SPECS
685 #define SUBTARGET_EXTRA_SPECS
686 #endif
687
688 #define EXTRA_SPECS \
689 { "cc1_cpu", CC1_CPU_SPEC }, \
690 SUBTARGET_EXTRA_SPECS
691 \f
692
693 /* Whether to allow x87 floating-point arithmetic on MODE (one of
694 SFmode, DFmode and XFmode) in the current excess precision
695 configuration. */
696 #define X87_ENABLE_ARITH(MODE) \
697 (flag_unsafe_math_optimizations \
698 || flag_excess_precision == EXCESS_PRECISION_FAST \
699 || (MODE) == XFmode)
700
701 /* Likewise, whether to allow direct conversions from integer mode
702 IMODE (HImode, SImode or DImode) to MODE. */
703 #define X87_ENABLE_FLOAT(MODE, IMODE) \
704 (flag_unsafe_math_optimizations \
705 || flag_excess_precision == EXCESS_PRECISION_FAST \
706 || (MODE) == XFmode \
707 || ((MODE) == DFmode && (IMODE) == SImode) \
708 || (IMODE) == HImode)
709
710 /* target machine storage layout */
711
712 #define SHORT_TYPE_SIZE 16
713 #define INT_TYPE_SIZE 32
714 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
715 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
716 #define LONG_LONG_TYPE_SIZE 64
717 #define FLOAT_TYPE_SIZE 32
718 #define DOUBLE_TYPE_SIZE 64
719 #define LONG_DOUBLE_TYPE_SIZE \
720 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
721
722 #define WIDEST_HARDWARE_FP_SIZE 80
723
724 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
725 #define MAX_BITS_PER_WORD 64
726 #else
727 #define MAX_BITS_PER_WORD 32
728 #endif
729
730 /* Define this if most significant byte of a word is the lowest numbered. */
731 /* That is true on the 80386. */
732
733 #define BITS_BIG_ENDIAN 0
734
735 /* Define this if most significant byte of a word is the lowest numbered. */
736 /* That is not true on the 80386. */
737 #define BYTES_BIG_ENDIAN 0
738
739 /* Define this if most significant word of a multiword number is the lowest
740 numbered. */
741 /* Not true for 80386 */
742 #define WORDS_BIG_ENDIAN 0
743
744 /* Width of a word, in units (bytes). */
745 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
746
747 #ifndef IN_LIBGCC2
748 #define MIN_UNITS_PER_WORD 4
749 #endif
750
751 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
752 #define PARM_BOUNDARY BITS_PER_WORD
753
754 /* Boundary (in *bits*) on which stack pointer should be aligned. */
755 #define STACK_BOUNDARY \
756 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
757
758 /* Stack boundary of the main function guaranteed by OS. */
759 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
760
761 /* Minimum stack boundary. */
762 #define MIN_STACK_BOUNDARY BITS_PER_WORD
763
764 /* Boundary (in *bits*) on which the stack pointer prefers to be
765 aligned; the compiler cannot rely on having this alignment. */
766 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
767
768 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
769 both 32bit and 64bit, to support codes that need 128 bit stack
770 alignment for SSE instructions, but can't realign the stack. */
771 #define PREFERRED_STACK_BOUNDARY_DEFAULT \
772 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
773
774 /* 1 if -mstackrealign should be turned on by default. It will
775 generate an alternate prologue and epilogue that realigns the
776 runtime stack if nessary. This supports mixing codes that keep a
777 4-byte aligned stack, as specified by i386 psABI, with codes that
778 need a 16-byte aligned stack, as required by SSE instructions. */
779 #define STACK_REALIGN_DEFAULT 0
780
781 /* Boundary (in *bits*) on which the incoming stack is aligned. */
782 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
783
784 /* According to Windows x64 software convention, the maximum stack allocatable
785 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
786 instructions allowed to adjust the stack pointer in the epilog, forcing the
787 use of frame pointer for frames larger than 2 GB. This theorical limit
788 is reduced by 256, an over-estimated upper bound for the stack use by the
789 prologue.
790 We define only one threshold for both the prolog and the epilog. When the
791 frame size is larger than this threshold, we allocate the area to save SSE
792 regs, then save them, and then allocate the remaining. There is no SEH
793 unwind info for this later allocation. */
794 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
795
796 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
797 mandatory for the 64-bit ABI, and may or may not be true for other
798 operating systems. */
799 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
800
801 /* Minimum allocation boundary for the code of a function. */
802 #define FUNCTION_BOUNDARY 8
803
804 /* C++ stores the virtual bit in the lowest bit of function pointers. */
805 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
806
807 /* Minimum size in bits of the largest boundary to which any
808 and all fundamental data types supported by the hardware
809 might need to be aligned. No data type wants to be aligned
810 rounder than this.
811
812 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
813 and Pentium Pro XFmode values at 128 bit boundaries.
814
815 When increasing the maximum, also update
816 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
817
818 #define BIGGEST_ALIGNMENT \
819 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
820
821 /* Maximum stack alignment. */
822 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
823
824 /* Alignment value for attribute ((aligned)). It is a constant since
825 it is the part of the ABI. We shouldn't change it with -mavx. */
826 #define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
827
828 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
829 #define ALIGN_MODE_128(MODE) \
830 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
831
832 /* The published ABIs say that doubles should be aligned on word
833 boundaries, so lower the alignment for structure fields unless
834 -malign-double is set. */
835
836 /* ??? Blah -- this macro is used directly by libobjc. Since it
837 supports no vector modes, cut out the complexity and fall back
838 on BIGGEST_FIELD_ALIGNMENT. */
839 #ifdef IN_TARGET_LIBS
840 #ifdef __x86_64__
841 #define BIGGEST_FIELD_ALIGNMENT 128
842 #else
843 #define BIGGEST_FIELD_ALIGNMENT 32
844 #endif
845 #else
846 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
847 x86_field_alignment ((TYPE), (COMPUTED))
848 #endif
849
850 /* If defined, a C expression to compute the alignment given to a
851 constant that is being placed in memory. EXP is the constant
852 and ALIGN is the alignment that the object would ordinarily have.
853 The value of this macro is used instead of that alignment to align
854 the object.
855
856 If this macro is not defined, then ALIGN is used.
857
858 The typical use of this macro is to increase alignment for string
859 constants to be word aligned so that `strcpy' calls that copy
860 constants can be done inline. */
861
862 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
863
864 /* If defined, a C expression to compute the alignment for a static
865 variable. TYPE is the data type, and ALIGN is the alignment that
866 the object would ordinarily have. The value of this macro is used
867 instead of that alignment to align the object.
868
869 If this macro is not defined, then ALIGN is used.
870
871 One use of this macro is to increase alignment of medium-size
872 data to make it all fit in fewer cache lines. Another is to
873 cause character arrays to be word-aligned so that `strcpy' calls
874 that copy constants to character arrays can be done inline. */
875
876 #define DATA_ALIGNMENT(TYPE, ALIGN) \
877 ix86_data_alignment ((TYPE), (ALIGN), true)
878
879 /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
880 some alignment increase, instead of optimization only purposes. E.g.
881 AMD x86-64 psABI says that variables with array type larger than 15 bytes
882 must be aligned to 16 byte boundaries.
883
884 If this macro is not defined, then ALIGN is used. */
885
886 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
887 ix86_data_alignment ((TYPE), (ALIGN), false)
888
889 /* If defined, a C expression to compute the alignment for a local
890 variable. TYPE is the data type, and ALIGN is the alignment that
891 the object would ordinarily have. The value of this macro is used
892 instead of that alignment to align the object.
893
894 If this macro is not defined, then ALIGN is used.
895
896 One use of this macro is to increase alignment of medium-size
897 data to make it all fit in fewer cache lines. */
898
899 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
900 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
901
902 /* If defined, a C expression to compute the alignment for stack slot.
903 TYPE is the data type, MODE is the widest mode available, and ALIGN
904 is the alignment that the slot would ordinarily have. The value of
905 this macro is used instead of that alignment to align the slot.
906
907 If this macro is not defined, then ALIGN is used when TYPE is NULL,
908 Otherwise, LOCAL_ALIGNMENT will be used.
909
910 One use of this macro is to set alignment of stack slot to the
911 maximum alignment of all possible modes which the slot may have. */
912
913 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
914 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
915
916 /* If defined, a C expression to compute the alignment for a local
917 variable DECL.
918
919 If this macro is not defined, then
920 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
921
922 One use of this macro is to increase alignment of medium-size
923 data to make it all fit in fewer cache lines. */
924
925 #define LOCAL_DECL_ALIGNMENT(DECL) \
926 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
927
928 /* If defined, a C expression to compute the minimum required alignment
929 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
930 MODE, assuming normal alignment ALIGN.
931
932 If this macro is not defined, then (ALIGN) will be used. */
933
934 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
935 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
936
937
938 /* Set this nonzero if move instructions will actually fail to work
939 when given unaligned data. */
940 #define STRICT_ALIGNMENT 0
941
942 /* If bit field type is int, don't let it cross an int,
943 and give entire struct the alignment of an int. */
944 /* Required on the 386 since it doesn't have bit-field insns. */
945 #define PCC_BITFIELD_TYPE_MATTERS 1
946 \f
947 /* Standard register usage. */
948
949 /* This processor has special stack-like registers. See reg-stack.c
950 for details. */
951
952 #define STACK_REGS
953
954 #define IS_STACK_MODE(MODE) \
955 (X87_FLOAT_MODE_P (MODE) \
956 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
957 || TARGET_MIX_SSE_I387))
958
959 /* Number of actual hardware registers.
960 The hardware registers are assigned numbers for the compiler
961 from 0 to just below FIRST_PSEUDO_REGISTER.
962 All registers that the compiler knows about must be given numbers,
963 even those that are not normally considered general registers.
964
965 In the 80386 we give the 8 general purpose registers the numbers 0-7.
966 We number the floating point registers 8-15.
967 Note that registers 0-7 can be accessed as a short or int,
968 while only 0-3 may be used with byte `mov' instructions.
969
970 Reg 16 does not correspond to any hardware register, but instead
971 appears in the RTL as an argument pointer prior to reload, and is
972 eliminated during reloading in favor of either the stack or frame
973 pointer. */
974
975 #define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
976
977 /* Number of hardware registers that go into the DWARF-2 unwind info.
978 If not defined, equals FIRST_PSEUDO_REGISTER. */
979
980 #define DWARF_FRAME_REGISTERS 17
981
982 /* 1 for registers that have pervasive standard uses
983 and are not available for the register allocator.
984 On the 80386, the stack pointer is such, as is the arg pointer.
985
986 REX registers are disabled for 32bit targets in
987 TARGET_CONDITIONAL_REGISTER_USAGE. */
988
989 #define FIXED_REGISTERS \
990 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
991 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
992 /*arg,flags,fpsr,fpcr,frame*/ \
993 1, 1, 1, 1, 1, \
994 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
995 0, 0, 0, 0, 0, 0, 0, 0, \
996 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
997 0, 0, 0, 0, 0, 0, 0, 0, \
998 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
999 0, 0, 0, 0, 0, 0, 0, 0, \
1000 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
1001 0, 0, 0, 0, 0, 0, 0, 0, \
1002 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1003 0, 0, 0, 0, 0, 0, 0, 0, \
1004 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
1005 0, 0, 0, 0, 0, 0, 0, 0, \
1006 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
1007 0, 0, 0, 0, 0, 0, 0, 0, \
1008 /* b0, b1, b2, b3*/ \
1009 0, 0, 0, 0 }
1010
1011 /* 1 for registers not available across function calls.
1012 These must include the FIXED_REGISTERS and also any
1013 registers that can be used without being saved.
1014 The latter must include the registers where values are returned
1015 and the register where structure-value addresses are passed.
1016 Aside from that, you can include as many other registers as you like.
1017
1018 Value is set to 1 if the register is call used unconditionally.
1019 Bit one is set if the register is call used on TARGET_32BIT ABI.
1020 Bit two is set if the register is call used on TARGET_64BIT ABI.
1021 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
1022
1023 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
1024
1025 #define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
1026 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
1027
1028 #define CALL_USED_REGISTERS \
1029 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
1030 { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1031 /*arg,flags,fpsr,fpcr,frame*/ \
1032 1, 1, 1, 1, 1, \
1033 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
1034 1, 1, 1, 1, 1, 1, 6, 6, \
1035 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
1036 1, 1, 1, 1, 1, 1, 1, 1, \
1037 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
1038 1, 1, 1, 1, 2, 2, 2, 2, \
1039 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
1040 6, 6, 6, 6, 6, 6, 6, 6, \
1041 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
1042 6, 6, 6, 6, 6, 6, 6, 6, \
1043 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
1044 6, 6, 6, 6, 6, 6, 6, 6, \
1045 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
1046 1, 1, 1, 1, 1, 1, 1, 1, \
1047 /* b0, b1, b2, b3*/ \
1048 1, 1, 1, 1 }
1049
1050 /* Order in which to allocate registers. Each register must be
1051 listed once, even those in FIXED_REGISTERS. List frame pointer
1052 late and fixed registers last. Note that, in general, we prefer
1053 registers listed in CALL_USED_REGISTERS, keeping the others
1054 available for storage of persistent values.
1055
1056 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
1057 so this is just empty initializer for array. */
1058
1059 #define REG_ALLOC_ORDER \
1060 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1061 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
1062 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1063 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \
1064 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \
1065 78, 79, 80 }
1066
1067 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1068 to be rearranged based on a particular function. When using sse math,
1069 we want to allocate SSE before x87 registers and vice versa. */
1070
1071 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
1072
1073
1074 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1075
1076 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1077 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1078 && GENERAL_REGNO_P (REGNO) \
1079 && ((MODE) == XFmode || (MODE) == XCmode))
1080
1081 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1082
1083 #define VALID_AVX256_REG_MODE(MODE) \
1084 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1085 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1086 || (MODE) == V4DFmode)
1087
1088 #define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1089 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1090
1091 #define VALID_AVX512F_SCALAR_MODE(MODE) \
1092 ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \
1093 || (MODE) == SFmode)
1094
1095 #define VALID_AVX512F_REG_MODE(MODE) \
1096 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
1097 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1098 || (MODE) == V4TImode)
1099
1100 #define VALID_AVX512VL_128_REG_MODE(MODE) \
1101 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
1102 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1103 || (MODE) == TFmode || (MODE) == V1TImode)
1104
1105 #define VALID_SSE2_REG_MODE(MODE) \
1106 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1107 || (MODE) == V2DImode || (MODE) == DFmode)
1108
1109 #define VALID_SSE_REG_MODE(MODE) \
1110 ((MODE) == V1TImode || (MODE) == TImode \
1111 || (MODE) == V4SFmode || (MODE) == V4SImode \
1112 || (MODE) == SFmode || (MODE) == TFmode)
1113
1114 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1115 ((MODE) == V2SFmode || (MODE) == SFmode)
1116
1117 #define VALID_MMX_REG_MODE(MODE) \
1118 ((MODE == V1DImode) || (MODE) == DImode \
1119 || (MODE) == V2SImode || (MODE) == SImode \
1120 || (MODE) == V4HImode || (MODE) == V8QImode)
1121
1122 #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1123
1124 #define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1125
1126 #define VALID_BND_REG_MODE(MODE) \
1127 (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode)
1128
1129 #define VALID_DFP_MODE_P(MODE) \
1130 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1131
1132 #define VALID_FP_MODE_P(MODE) \
1133 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1134 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1135
1136 #define VALID_INT_MODE_P(MODE) \
1137 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1138 || (MODE) == DImode \
1139 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1140 || (MODE) == CDImode \
1141 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1142 || (MODE) == TFmode || (MODE) == TCmode)))
1143
1144 /* Return true for modes passed in SSE registers. */
1145 #define SSE_REG_MODE_P(MODE) \
1146 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1147 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1148 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1149 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1150 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1151 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1152 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1153 || (MODE) == V16SFmode)
1154
1155 #define X87_FLOAT_MODE_P(MODE) \
1156 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1157
1158 #define SSE_FLOAT_MODE_P(MODE) \
1159 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1160
1161 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1162 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1163 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1164
1165 /* It is possible to write patterns to move flags; but until someone
1166 does it, */
1167 #define AVOID_CCMODE_COPIES
1168
1169 /* Specify the modes required to caller save a given hard regno.
1170 We do this on i386 to prevent flags from being saved at all.
1171
1172 Kill any attempts to combine saving of modes. */
1173
1174 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1175 (CC_REGNO_P (REGNO) ? VOIDmode \
1176 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1177 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1178 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1179 && TARGET_PARTIAL_REG_STALL) \
1180 || MASK_REGNO_P (REGNO)) ? SImode \
1181 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
1182 || MASK_REGNO_P (REGNO)) ? SImode \
1183 : (MODE))
1184
1185 /* Specify the registers used for certain standard purposes.
1186 The values of these macros are register numbers. */
1187
1188 /* on the 386 the pc register is %eip, and is not usable as a general
1189 register. The ordinary mov instructions won't work */
1190 /* #define PC_REGNUM */
1191
1192 /* Base register for access to arguments of the function. */
1193 #define ARG_POINTER_REGNUM ARGP_REG
1194
1195 /* Register to use for pushing function arguments. */
1196 #define STACK_POINTER_REGNUM SP_REG
1197
1198 /* Base register for access to local variables of the function. */
1199 #define FRAME_POINTER_REGNUM FRAME_REG
1200 #define HARD_FRAME_POINTER_REGNUM BP_REG
1201
1202 #define FIRST_INT_REG AX_REG
1203 #define LAST_INT_REG SP_REG
1204
1205 #define FIRST_QI_REG AX_REG
1206 #define LAST_QI_REG BX_REG
1207
1208 /* First & last stack-like regs */
1209 #define FIRST_STACK_REG ST0_REG
1210 #define LAST_STACK_REG ST7_REG
1211
1212 #define FIRST_SSE_REG XMM0_REG
1213 #define LAST_SSE_REG XMM7_REG
1214
1215 #define FIRST_MMX_REG MM0_REG
1216 #define LAST_MMX_REG MM7_REG
1217
1218 #define FIRST_REX_INT_REG R8_REG
1219 #define LAST_REX_INT_REG R15_REG
1220
1221 #define FIRST_REX_SSE_REG XMM8_REG
1222 #define LAST_REX_SSE_REG XMM15_REG
1223
1224 #define FIRST_EXT_REX_SSE_REG XMM16_REG
1225 #define LAST_EXT_REX_SSE_REG XMM31_REG
1226
1227 #define FIRST_MASK_REG MASK0_REG
1228 #define LAST_MASK_REG MASK7_REG
1229
1230 #define FIRST_BND_REG BND0_REG
1231 #define LAST_BND_REG BND3_REG
1232
1233 /* Override this in other tm.h files to cope with various OS lossage
1234 requiring a frame pointer. */
1235 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1236 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1237 #endif
1238
1239 /* Make sure we can access arbitrary call frames. */
1240 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1241
1242 /* Register to hold the addressing base for position independent
1243 code access to data items. We don't use PIC pointer for 64bit
1244 mode. Define the regnum to dummy value to prevent gcc from
1245 pessimizing code dealing with EBX.
1246
1247 To avoid clobbering a call-saved register unnecessarily, we renumber
1248 the pic register when possible. The change is visible after the
1249 prologue has been emitted. */
1250
1251 #define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
1252
1253 #define PIC_OFFSET_TABLE_REGNUM \
1254 (ix86_use_pseudo_pic_reg () \
1255 ? (pic_offset_table_rtx \
1256 ? INVALID_REGNUM \
1257 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1258 : INVALID_REGNUM)
1259
1260 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1261
1262 /* This is overridden by <cygwin.h>. */
1263 #define MS_AGGREGATE_RETURN 0
1264
1265 #define KEEP_AGGREGATE_RETURN_POINTER 0
1266 \f
1267 /* Define the classes of registers for register constraints in the
1268 machine description. Also define ranges of constants.
1269
1270 One of the classes must always be named ALL_REGS and include all hard regs.
1271 If there is more than one class, another class must be named NO_REGS
1272 and contain no registers.
1273
1274 The name GENERAL_REGS must be the name of a class (or an alias for
1275 another name such as ALL_REGS). This is the class of registers
1276 that is allowed by "g" or "r" in a register constraint.
1277 Also, registers outside this class are allocated only when
1278 instructions express preferences for them.
1279
1280 The classes must be numbered in nondecreasing order; that is,
1281 a larger-numbered class must never be contained completely
1282 in a smaller-numbered class. This is why CLOBBERED_REGS class
1283 is listed early, even though in 64-bit mode it contains more
1284 registers than just %eax, %ecx, %edx.
1285
1286 For any two classes, it is very desirable that there be another
1287 class that represents their union.
1288
1289 It might seem that class BREG is unnecessary, since no useful 386
1290 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1291 and the "b" register constraint is useful in asms for syscalls.
1292
1293 The flags, fpsr and fpcr registers are in no class. */
1294
1295 enum reg_class
1296 {
1297 NO_REGS,
1298 AREG, DREG, CREG, BREG, SIREG, DIREG,
1299 AD_REGS, /* %eax/%edx for DImode */
1300 CLOBBERED_REGS, /* call-clobbered integer registers */
1301 Q_REGS, /* %eax %ebx %ecx %edx */
1302 NON_Q_REGS, /* %esi %edi %ebp %esp */
1303 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
1304 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1305 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1306 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1307 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1308 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1309 FLOAT_REGS,
1310 SSE_FIRST_REG,
1311 NO_REX_SSE_REGS,
1312 SSE_REGS,
1313 EVEX_SSE_REGS,
1314 BND_REGS,
1315 ALL_SSE_REGS,
1316 MMX_REGS,
1317 FP_TOP_SSE_REGS,
1318 FP_SECOND_SSE_REGS,
1319 FLOAT_SSE_REGS,
1320 FLOAT_INT_REGS,
1321 INT_SSE_REGS,
1322 FLOAT_INT_SSE_REGS,
1323 MASK_EVEX_REGS,
1324 MASK_REGS,
1325 MOD4_SSE_REGS,
1326 ALL_REGS, LIM_REG_CLASSES
1327 };
1328
1329 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1330
1331 #define INTEGER_CLASS_P(CLASS) \
1332 reg_class_subset_p ((CLASS), GENERAL_REGS)
1333 #define FLOAT_CLASS_P(CLASS) \
1334 reg_class_subset_p ((CLASS), FLOAT_REGS)
1335 #define SSE_CLASS_P(CLASS) \
1336 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1337 #define MMX_CLASS_P(CLASS) \
1338 ((CLASS) == MMX_REGS)
1339 #define MASK_CLASS_P(CLASS) \
1340 reg_class_subset_p ((CLASS), MASK_REGS)
1341 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1342 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1343 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1344 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1345 #define MAYBE_SSE_CLASS_P(CLASS) \
1346 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1347 #define MAYBE_MMX_CLASS_P(CLASS) \
1348 reg_classes_intersect_p ((CLASS), MMX_REGS)
1349 #define MAYBE_MASK_CLASS_P(CLASS) \
1350 reg_classes_intersect_p ((CLASS), MASK_REGS)
1351
1352 #define Q_CLASS_P(CLASS) \
1353 reg_class_subset_p ((CLASS), Q_REGS)
1354
1355 #define MAYBE_NON_Q_CLASS_P(CLASS) \
1356 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1357
1358 /* Give names of register classes as strings for dump file. */
1359
1360 #define REG_CLASS_NAMES \
1361 { "NO_REGS", \
1362 "AREG", "DREG", "CREG", "BREG", \
1363 "SIREG", "DIREG", \
1364 "AD_REGS", \
1365 "CLOBBERED_REGS", \
1366 "Q_REGS", "NON_Q_REGS", \
1367 "TLS_GOTBASE_REGS", \
1368 "INDEX_REGS", \
1369 "LEGACY_REGS", \
1370 "GENERAL_REGS", \
1371 "FP_TOP_REG", "FP_SECOND_REG", \
1372 "FLOAT_REGS", \
1373 "SSE_FIRST_REG", \
1374 "NO_REX_SSE_REGS", \
1375 "SSE_REGS", \
1376 "EVEX_SSE_REGS", \
1377 "BND_REGS", \
1378 "ALL_SSE_REGS", \
1379 "MMX_REGS", \
1380 "FP_TOP_SSE_REGS", \
1381 "FP_SECOND_SSE_REGS", \
1382 "FLOAT_SSE_REGS", \
1383 "FLOAT_INT_REGS", \
1384 "INT_SSE_REGS", \
1385 "FLOAT_INT_SSE_REGS", \
1386 "MASK_EVEX_REGS", \
1387 "MASK_REGS", \
1388 "MOD4_SSE_REGS", \
1389 "ALL_REGS" }
1390
1391 /* Define which registers fit in which classes. This is an initializer
1392 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1393
1394 Note that CLOBBERED_REGS are calculated by
1395 TARGET_CONDITIONAL_REGISTER_USAGE. */
1396
1397 #define REG_CLASS_CONTENTS \
1398 { { 0x00, 0x0, 0x0 }, \
1399 { 0x01, 0x0, 0x0 }, /* AREG */ \
1400 { 0x02, 0x0, 0x0 }, /* DREG */ \
1401 { 0x04, 0x0, 0x0 }, /* CREG */ \
1402 { 0x08, 0x0, 0x0 }, /* BREG */ \
1403 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1404 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1405 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1406 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1407 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1408 { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \
1409 { 0x7e, 0x1fe0, 0x0 }, /* TLS_GOTBASE_REGS */ \
1410 { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \
1411 { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1412 { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \
1413 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1414 { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1415 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1416 { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1417 { 0x1fe00000, 0x000000, 0x0 }, /* NO_REX_SSE_REGS */ \
1418 { 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \
1419 { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \
1420 { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \
1421 { 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \
1422 { 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \
1423 { 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \
1424 { 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \
1425 { 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \
1426 { 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \
1427 { 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \
1428 { 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \
1429 { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \
1430 { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \
1431 { 0x1fe00000,0xffffe000, 0x1f }, /* MOD4_SSE_REGS */ \
1432 { 0xffffffff,0xffffffff,0x1ffff } \
1433 }
1434
1435 /* The same information, inverted:
1436 Return the class number of the smallest class containing
1437 reg number REGNO. This could be a conditional expression
1438 or could index an array. */
1439
1440 #define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
1441
1442 /* When this hook returns true for MODE, the compiler allows
1443 registers explicitly used in the rtl to be used as spill registers
1444 but prevents the compiler from extending the lifetime of these
1445 registers. */
1446 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1447
1448 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1449 #define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1450
1451 #define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1452 #define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1453
1454 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1455 #define REX_INT_REGNO_P(N) \
1456 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1457
1458 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1459 #define GENERAL_REGNO_P(N) \
1460 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
1461
1462 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1463 #define ANY_QI_REGNO_P(N) \
1464 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1465
1466 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1467 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1468
1469 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1470 #define SSE_REGNO_P(N) \
1471 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1472 || REX_SSE_REGNO_P (N) \
1473 || EXT_REX_SSE_REGNO_P (N))
1474
1475 #define REX_SSE_REGNO_P(N) \
1476 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1477
1478 #define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1479
1480 #define EXT_REX_SSE_REGNO_P(N) \
1481 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1482
1483 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1484 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1485
1486 #define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1487 #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1488
1489 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1490 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1491
1492 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1493 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1494
1495 #define BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X)))
1496 #define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG)
1497
1498 #define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1499 #define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1500 || (N) == XMM4_REG \
1501 || (N) == XMM8_REG \
1502 || (N) == XMM12_REG \
1503 || (N) == XMM16_REG \
1504 || (N) == XMM20_REG \
1505 || (N) == XMM24_REG \
1506 || (N) == XMM28_REG)
1507
1508 /* First floating point reg */
1509 #define FIRST_FLOAT_REG FIRST_STACK_REG
1510 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1511
1512 #define SSE_REGNO(N) \
1513 ((N) < 8 ? FIRST_SSE_REG + (N) \
1514 : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \
1515 : (FIRST_EXT_REX_SSE_REG + (N) - 16))
1516
1517 /* The class value for index registers, and the one for base regs. */
1518
1519 #define INDEX_REG_CLASS INDEX_REGS
1520 #define BASE_REG_CLASS GENERAL_REGS
1521 \f
1522 /* Stack layout; function entry, exit and calling. */
1523
1524 /* Define this if pushing a word on the stack
1525 makes the stack pointer a smaller address. */
1526 #define STACK_GROWS_DOWNWARD 1
1527
1528 /* Define this to nonzero if the nominal address of the stack frame
1529 is at the high-address end of the local variables;
1530 that is, each additional local variable allocated
1531 goes at a more negative offset in the frame. */
1532 #define FRAME_GROWS_DOWNWARD 1
1533
1534 /* Offset within stack frame to start allocating local variables at.
1535 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1536 first local allocated. Otherwise, it is the offset to the BEGINNING
1537 of the first local allocated. */
1538 #define STARTING_FRAME_OFFSET 0
1539
1540 /* If we generate an insn to push BYTES bytes, this says how many the stack
1541 pointer really advances by. On 386, we have pushw instruction that
1542 decrements by exactly 2 no matter what the position was, there is no pushb.
1543
1544 But as CIE data alignment factor on this arch is -4 for 32bit targets
1545 and -8 for 64bit targets, we need to make sure all stack pointer adjustments
1546 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
1547
1548 #define PUSH_ROUNDING(BYTES) ROUND_UP ((BYTES), UNITS_PER_WORD)
1549
1550 /* If defined, the maximum amount of space required for outgoing arguments
1551 will be computed and placed into the variable `crtl->outgoing_args_size'.
1552 No space will be pushed onto the stack for each call; instead, the
1553 function prologue should increase the stack frame size by this amount.
1554
1555 In 32bit mode enabling argument accumulation results in about 5% code size
1556 growth because move instructions are less compact than push. In 64bit
1557 mode the difference is less drastic but visible.
1558
1559 FIXME: Unlike earlier implementations, the size of unwind info seems to
1560 actually grow with accumulation. Is that because accumulated args
1561 unwind info became unnecesarily bloated?
1562
1563 With the 64-bit MS ABI, we can generate correct code with or without
1564 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1565 generated without accumulated args is terrible.
1566
1567 If stack probes are required, the space used for large function
1568 arguments on the stack must also be probed, so enable
1569 -maccumulate-outgoing-args so this happens in the prologue.
1570
1571 We must use argument accumulation in interrupt function if stack
1572 may be realigned to avoid DRAP. */
1573
1574 #define ACCUMULATE_OUTGOING_ARGS \
1575 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1576 && optimize_function_for_speed_p (cfun)) \
1577 || (cfun->machine->func_type != TYPE_NORMAL \
1578 && crtl->stack_realign_needed) \
1579 || TARGET_STACK_PROBE \
1580 || TARGET_64BIT_MS_ABI \
1581 || (TARGET_MACHO && crtl->profile))
1582
1583 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1584 instructions to pass outgoing arguments. */
1585
1586 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1587
1588 /* We want the stack and args grow in opposite directions, even if
1589 PUSH_ARGS is 0. */
1590 #define PUSH_ARGS_REVERSED 1
1591
1592 /* Offset of first parameter from the argument pointer register value. */
1593 #define FIRST_PARM_OFFSET(FNDECL) 0
1594
1595 /* Define this macro if functions should assume that stack space has been
1596 allocated for arguments even when their values are passed in registers.
1597
1598 The value of this macro is the size, in bytes, of the area reserved for
1599 arguments passed in registers for the function represented by FNDECL.
1600
1601 This space can be allocated by the caller, or be a part of the
1602 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1603 which. */
1604 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1605
1606 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1607 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1608
1609 /* Define how to find the value returned by a library function
1610 assuming the value has mode MODE. */
1611
1612 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1613
1614 /* Define the size of the result block used for communication between
1615 untyped_call and untyped_return. The block contains a DImode value
1616 followed by the block used by fnsave and frstor. */
1617
1618 #define APPLY_RESULT_SIZE (8+108)
1619
1620 /* 1 if N is a possible register number for function argument passing. */
1621 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1622
1623 /* Define a data type for recording info about an argument list
1624 during the scan of that argument list. This data type should
1625 hold all necessary information about the function itself
1626 and about the args processed so far, enough to enable macros
1627 such as FUNCTION_ARG to determine where the next arg should go. */
1628
1629 typedef struct ix86_args {
1630 int words; /* # words passed so far */
1631 int nregs; /* # registers available for passing */
1632 int regno; /* next available register number */
1633 int fastcall; /* fastcall or thiscall calling convention
1634 is used */
1635 int sse_words; /* # sse words passed so far */
1636 int sse_nregs; /* # sse registers available for passing */
1637 int warn_avx512f; /* True when we want to warn
1638 about AVX512F ABI. */
1639 int warn_avx; /* True when we want to warn about AVX ABI. */
1640 int warn_sse; /* True when we want to warn about SSE ABI. */
1641 int warn_mmx; /* True when we want to warn about MMX ABI. */
1642 int sse_regno; /* next available sse register number */
1643 int mmx_words; /* # mmx words passed so far */
1644 int mmx_nregs; /* # mmx registers available for passing */
1645 int mmx_regno; /* next available mmx register number */
1646 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1647 int caller; /* true if it is caller. */
1648 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1649 SFmode/DFmode arguments should be passed
1650 in SSE registers. Otherwise 0. */
1651 int bnd_regno; /* next available bnd register number */
1652 int bnds_in_bt; /* number of bounds expected in BT. */
1653 int force_bnd_pass; /* number of bounds expected for stdarg arg. */
1654 int stdarg; /* Set to 1 if function is stdarg. */
1655 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1656 MS_ABI for ms abi. */
1657 tree decl; /* Callee decl. */
1658 } CUMULATIVE_ARGS;
1659
1660 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1661 for a call to a function whose data type is FNTYPE.
1662 For a library call, FNTYPE is 0. */
1663
1664 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1665 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1666 (N_NAMED_ARGS) != -1)
1667
1668 /* Output assembler code to FILE to increment profiler label # LABELNO
1669 for profiling a function entry. */
1670
1671 #define FUNCTION_PROFILER(FILE, LABELNO) \
1672 x86_function_profiler ((FILE), (LABELNO))
1673
1674 #define MCOUNT_NAME "_mcount"
1675
1676 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1677
1678 #define PROFILE_COUNT_REGISTER "edx"
1679
1680 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1681 the stack pointer does not matter. The value is tested only in
1682 functions that have frame pointers.
1683 No definition is equivalent to always zero. */
1684 /* Note on the 386 it might be more efficient not to define this since
1685 we have to restore it ourselves from the frame pointer, in order to
1686 use pop */
1687
1688 #define EXIT_IGNORE_STACK 1
1689
1690 /* Define this macro as a C expression that is nonzero for registers
1691 used by the epilogue or the `return' pattern. */
1692
1693 #define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1694
1695 /* Output assembler code for a block containing the constant parts
1696 of a trampoline, leaving space for the variable parts. */
1697
1698 /* On the 386, the trampoline contains two instructions:
1699 mov #STATIC,ecx
1700 jmp FUNCTION
1701 The trampoline is generated entirely at runtime. The operand of JMP
1702 is the address of FUNCTION relative to the instruction following the
1703 JMP (which is 5 bytes long). */
1704
1705 /* Length in units of the trampoline for entering a nested function. */
1706
1707 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1708 \f
1709 /* Definitions for register eliminations.
1710
1711 This is an array of structures. Each structure initializes one pair
1712 of eliminable registers. The "from" register number is given first,
1713 followed by "to". Eliminations of the same "from" register are listed
1714 in order of preference.
1715
1716 There are two registers that can always be eliminated on the i386.
1717 The frame pointer and the arg pointer can be replaced by either the
1718 hard frame pointer or to the stack pointer, depending upon the
1719 circumstances. The hard frame pointer is not used before reload and
1720 so it is not eligible for elimination. */
1721
1722 #define ELIMINABLE_REGS \
1723 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1724 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1725 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1726 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1727
1728 /* Define the offset between two registers, one to be eliminated, and the other
1729 its replacement, at the start of a routine. */
1730
1731 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1732 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1733 \f
1734 /* Addressing modes, and classification of registers for them. */
1735
1736 /* Macros to check register numbers against specific register classes. */
1737
1738 /* These assume that REGNO is a hard or pseudo reg number.
1739 They give nonzero only if REGNO is a hard reg of the suitable class
1740 or a pseudo reg currently allocated to a suitable hard reg.
1741 Since they use reg_renumber, they are safe only once reg_renumber
1742 has been allocated, which happens in reginfo.c during register
1743 allocation. */
1744
1745 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1746 ((REGNO) < STACK_POINTER_REGNUM \
1747 || REX_INT_REGNO_P (REGNO) \
1748 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1749 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1750
1751 #define REGNO_OK_FOR_BASE_P(REGNO) \
1752 (GENERAL_REGNO_P (REGNO) \
1753 || (REGNO) == ARG_POINTER_REGNUM \
1754 || (REGNO) == FRAME_POINTER_REGNUM \
1755 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1756
1757 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1758 and check its validity for a certain class.
1759 We have two alternate definitions for each of them.
1760 The usual definition accepts all pseudo regs; the other rejects
1761 them unless they have been allocated suitable hard regs.
1762 The symbol REG_OK_STRICT causes the latter definition to be used.
1763
1764 Most source files want to accept pseudo regs in the hope that
1765 they will get allocated to the class that the insn wants them to be in.
1766 Source files for reload pass need to be strict.
1767 After reload, it makes no difference, since pseudo regs have
1768 been eliminated by then. */
1769
1770
1771 /* Non strict versions, pseudos are ok. */
1772 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1773 (REGNO (X) < STACK_POINTER_REGNUM \
1774 || REX_INT_REGNO_P (REGNO (X)) \
1775 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1776
1777 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1778 (GENERAL_REGNO_P (REGNO (X)) \
1779 || REGNO (X) == ARG_POINTER_REGNUM \
1780 || REGNO (X) == FRAME_POINTER_REGNUM \
1781 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1782
1783 /* Strict versions, hard registers only */
1784 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1785 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1786
1787 #ifndef REG_OK_STRICT
1788 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1789 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1790
1791 #else
1792 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1793 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1794 #endif
1795
1796 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1797 that is a valid memory address for an instruction.
1798 The MODE argument is the machine mode for the MEM expression
1799 that wants to use this address.
1800
1801 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1802 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1803
1804 See legitimize_pic_address in i386.c for details as to what
1805 constitutes a legitimate address when -fpic is used. */
1806
1807 #define MAX_REGS_PER_ADDRESS 2
1808
1809 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1810
1811 /* If defined, a C expression to determine the base term of address X.
1812 This macro is used in only one place: `find_base_term' in alias.c.
1813
1814 It is always safe for this macro to not be defined. It exists so
1815 that alias analysis can understand machine-dependent addresses.
1816
1817 The typical use of this macro is to handle addresses containing
1818 a label_ref or symbol_ref within an UNSPEC. */
1819
1820 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1821
1822 /* Nonzero if the constant value X is a legitimate general operand
1823 when generating PIC code. It is given that flag_pic is on and
1824 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1825
1826 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1827
1828 #define SYMBOLIC_CONST(X) \
1829 (GET_CODE (X) == SYMBOL_REF \
1830 || GET_CODE (X) == LABEL_REF \
1831 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1832 \f
1833 /* Max number of args passed in registers. If this is more than 3, we will
1834 have problems with ebx (register #4), since it is a caller save register and
1835 is also used as the pic register in ELF. So for now, don't allow more than
1836 3 registers to be passed in registers. */
1837
1838 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1839 #define X86_64_REGPARM_MAX 6
1840 #define X86_64_MS_REGPARM_MAX 4
1841
1842 #define X86_32_REGPARM_MAX 3
1843
1844 #define REGPARM_MAX \
1845 (TARGET_64BIT \
1846 ? (TARGET_64BIT_MS_ABI \
1847 ? X86_64_MS_REGPARM_MAX \
1848 : X86_64_REGPARM_MAX) \
1849 : X86_32_REGPARM_MAX)
1850
1851 #define X86_64_SSE_REGPARM_MAX 8
1852 #define X86_64_MS_SSE_REGPARM_MAX 4
1853
1854 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1855
1856 #define SSE_REGPARM_MAX \
1857 (TARGET_64BIT \
1858 ? (TARGET_64BIT_MS_ABI \
1859 ? X86_64_MS_SSE_REGPARM_MAX \
1860 : X86_64_SSE_REGPARM_MAX) \
1861 : X86_32_SSE_REGPARM_MAX)
1862
1863 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1864 \f
1865 /* Specify the machine mode that this machine uses
1866 for the index in the tablejump instruction. */
1867 #define CASE_VECTOR_MODE \
1868 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1869
1870 /* Define this as 1 if `char' should by default be signed; else as 0. */
1871 #define DEFAULT_SIGNED_CHAR 1
1872
1873 /* Max number of bytes we can move from memory to memory
1874 in one reasonably fast instruction. */
1875 #define MOVE_MAX 16
1876
1877 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1878 move efficiently, as opposed to MOVE_MAX which is the maximum
1879 number of bytes we can move with a single instruction.
1880
1881 ??? We should use TImode in 32-bit mode and use OImode or XImode
1882 if they are available. But since by_pieces_ninsns determines the
1883 widest mode with MAX_FIXED_MODE_SIZE, we can only use TImode in
1884 64-bit mode. */
1885 #define MOVE_MAX_PIECES \
1886 ((TARGET_64BIT \
1887 && TARGET_SSE2 \
1888 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1889 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1890 ? GET_MODE_SIZE (TImode) : UNITS_PER_WORD)
1891
1892 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1893 move-instruction pairs, we will do a movmem or libcall instead.
1894 Increasing the value will always make code faster, but eventually
1895 incurs high cost in increased code size.
1896
1897 If you don't define this, a reasonable default is used. */
1898
1899 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1900
1901 /* If a clear memory operation would take CLEAR_RATIO or more simple
1902 move-instruction sequences, we will do a clrmem or libcall instead. */
1903
1904 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1905
1906 /* Define if shifts truncate the shift count which implies one can
1907 omit a sign-extension or zero-extension of a shift count.
1908
1909 On i386, shifts do truncate the count. But bit test instructions
1910 take the modulo of the bit offset operand. */
1911
1912 /* #define SHIFT_COUNT_TRUNCATED */
1913
1914 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1915 is done just by pretending it is already truncated. */
1916 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1917
1918 /* A macro to update M and UNSIGNEDP when an object whose type is
1919 TYPE and which has the specified mode and signedness is to be
1920 stored in a register. This macro is only called when TYPE is a
1921 scalar type.
1922
1923 On i386 it is sometimes useful to promote HImode and QImode
1924 quantities to SImode. The choice depends on target type. */
1925
1926 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1927 do { \
1928 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1929 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1930 (MODE) = SImode; \
1931 } while (0)
1932
1933 /* Specify the machine mode that pointers have.
1934 After generation of rtl, the compiler makes no further distinction
1935 between pointers and any other objects of this machine mode. */
1936 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1937
1938 /* Specify the machine mode that bounds have. */
1939 #define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode)
1940
1941 /* A C expression whose value is zero if pointers that need to be extended
1942 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1943 greater then zero if they are zero-extended and less then zero if the
1944 ptr_extend instruction should be used. */
1945
1946 #define POINTERS_EXTEND_UNSIGNED 1
1947
1948 /* A function address in a call instruction
1949 is a byte address (for indexing purposes)
1950 so give the MEM rtx a byte's mode. */
1951 #define FUNCTION_MODE QImode
1952 \f
1953
1954 /* A C expression for the cost of a branch instruction. A value of 1
1955 is the default; other values are interpreted relative to that. */
1956
1957 #define BRANCH_COST(speed_p, predictable_p) \
1958 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1959
1960 /* An integer expression for the size in bits of the largest integer machine
1961 mode that should actually be used. We allow pairs of registers. */
1962 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1963
1964 /* Define this macro as a C expression which is nonzero if accessing
1965 less than a word of memory (i.e. a `char' or a `short') is no
1966 faster than accessing a word of memory, i.e., if such access
1967 require more than one instruction or if there is no difference in
1968 cost between byte and (aligned) word loads.
1969
1970 When this macro is not defined, the compiler will access a field by
1971 finding the smallest containing object; when it is defined, a
1972 fullword load will be used if alignment permits. Unless bytes
1973 accesses are faster than word accesses, using word accesses is
1974 preferable since it may eliminate subsequent memory access if
1975 subsequent accesses occur to other fields in the same word of the
1976 structure, but to different bytes. */
1977
1978 #define SLOW_BYTE_ACCESS 0
1979
1980 /* Nonzero if access to memory by shorts is slow and undesirable. */
1981 #define SLOW_SHORT_ACCESS 0
1982
1983 /* Define this macro if it is as good or better to call a constant
1984 function address than to call an address kept in a register.
1985
1986 Desirable on the 386 because a CALL with a constant address is
1987 faster than one with a register address. */
1988
1989 #define NO_FUNCTION_CSE 1
1990 \f
1991 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1992 return the mode to be used for the comparison.
1993
1994 For floating-point equality comparisons, CCFPEQmode should be used.
1995 VOIDmode should be used in all other cases.
1996
1997 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1998 possible, to allow for more combinations. */
1999
2000 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2001
2002 /* Return nonzero if MODE implies a floating point inequality can be
2003 reversed. */
2004
2005 #define REVERSIBLE_CC_MODE(MODE) 1
2006
2007 /* A C expression whose value is reversed condition code of the CODE for
2008 comparison done in CC_MODE mode. */
2009 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
2010
2011 \f
2012 /* Control the assembler format that we output, to the extent
2013 this does not vary between assemblers. */
2014
2015 /* How to refer to registers in assembler output.
2016 This sequence is indexed by compiler's hard-register-number (see above). */
2017
2018 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
2019 For non floating point regs, the following are the HImode names.
2020
2021 For float regs, the stack top is sometimes referred to as "%st(0)"
2022 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
2023 "y" code. */
2024
2025 #define HI_REGISTER_NAMES \
2026 {"ax","dx","cx","bx","si","di","bp","sp", \
2027 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
2028 "argp", "flags", "fpsr", "fpcr", "frame", \
2029 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2030 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
2031 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2032 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
2033 "xmm16", "xmm17", "xmm18", "xmm19", \
2034 "xmm20", "xmm21", "xmm22", "xmm23", \
2035 "xmm24", "xmm25", "xmm26", "xmm27", \
2036 "xmm28", "xmm29", "xmm30", "xmm31", \
2037 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \
2038 "bnd0", "bnd1", "bnd2", "bnd3" }
2039
2040 #define REGISTER_NAMES HI_REGISTER_NAMES
2041
2042 /* Table of additional register names to use in user input. */
2043
2044 #define ADDITIONAL_REGISTER_NAMES \
2045 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2046 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2047 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2048 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2049 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2050 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2051 { "ymm0", 21}, { "ymm1", 22}, { "ymm2", 23}, { "ymm3", 24}, \
2052 { "ymm4", 25}, { "ymm5", 26}, { "ymm6", 27}, { "ymm7", 28}, \
2053 { "ymm8", 45}, { "ymm9", 46}, { "ymm10", 47}, { "ymm11", 48}, \
2054 { "ymm12", 49}, { "ymm13", 50}, { "ymm14", 51}, { "ymm15", 52}, \
2055 { "ymm16", 53}, { "ymm17", 54}, { "ymm18", 55}, { "ymm19", 56}, \
2056 { "ymm20", 57}, { "ymm21", 58}, { "ymm22", 59}, { "ymm23", 60}, \
2057 { "ymm24", 61}, { "ymm25", 62}, { "ymm26", 63}, { "ymm27", 64}, \
2058 { "ymm28", 65}, { "ymm29", 66}, { "ymm30", 67}, { "ymm31", 68}, \
2059 { "zmm0", 21}, { "zmm1", 22}, { "zmm2", 23}, { "zmm3", 24}, \
2060 { "zmm4", 25}, { "zmm5", 26}, { "zmm6", 27}, { "zmm7", 28}, \
2061 { "zmm8", 45}, { "zmm9", 46}, { "zmm10", 47}, { "zmm11", 48}, \
2062 { "zmm12", 49}, { "zmm13", 50}, { "zmm14", 51}, { "zmm15", 52}, \
2063 { "zmm16", 53}, { "zmm17", 54}, { "zmm18", 55}, { "zmm19", 56}, \
2064 { "zmm20", 57}, { "zmm21", 58}, { "zmm22", 59}, { "zmm23", 60}, \
2065 { "zmm24", 61}, { "zmm25", 62}, { "zmm26", 63}, { "zmm27", 64}, \
2066 { "zmm28", 65}, { "zmm29", 66}, { "zmm30", 67}, { "zmm31", 68} }
2067
2068 /* Note we are omitting these since currently I don't know how
2069 to get gcc to use these, since they want the same but different
2070 number as al, and ax.
2071 */
2072
2073 #define QI_REGISTER_NAMES \
2074 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2075
2076 /* These parallel the array above, and can be used to access bits 8:15
2077 of regs 0 through 3. */
2078
2079 #define QI_HIGH_REGISTER_NAMES \
2080 {"ah", "dh", "ch", "bh", }
2081
2082 /* How to renumber registers for dbx and gdb. */
2083
2084 #define DBX_REGISTER_NUMBER(N) \
2085 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2086
2087 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2088 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2089 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2090
2091 /* Before the prologue, RA is at 0(%esp). */
2092 #define INCOMING_RETURN_ADDR_RTX \
2093 gen_rtx_MEM (Pmode, stack_pointer_rtx)
2094
2095 /* After the prologue, RA is at -4(AP) in the current frame. */
2096 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2097 ((COUNT) == 0 \
2098 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2099 -UNITS_PER_WORD)) \
2100 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
2101
2102 /* PC is dbx register 8; let's use that column for RA. */
2103 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2104
2105 /* Before the prologue, there are return address and error code for
2106 exception handler on the top of the frame. */
2107 #define INCOMING_FRAME_SP_OFFSET \
2108 (cfun->machine->func_type == TYPE_EXCEPTION \
2109 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
2110
2111 /* Describe how we implement __builtin_eh_return. */
2112 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2113 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
2114
2115
2116 /* Select a format to encode pointers in exception handling data. CODE
2117 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2118 true if the symbol may be affected by dynamic relocations.
2119
2120 ??? All x86 object file formats are capable of representing this.
2121 After all, the relocation needed is the same as for the call insn.
2122 Whether or not a particular assembler allows us to enter such, I
2123 guess we'll have to see. */
2124 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2125 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2126
2127 /* These are a couple of extensions to the formats accepted
2128 by asm_fprintf:
2129 %z prints out opcode suffix for word-mode instruction
2130 %r prints out word-mode name for reg_names[arg] */
2131 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2132 case 'z': \
2133 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2134 break; \
2135 \
2136 case 'r': \
2137 { \
2138 unsigned int regno = va_arg ((ARGS), int); \
2139 if (LEGACY_INT_REGNO_P (regno)) \
2140 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2141 fputs (reg_names[regno], (FILE)); \
2142 break; \
2143 }
2144
2145 /* This is how to output an insn to push a register on the stack. */
2146
2147 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2148 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2149
2150 /* This is how to output an insn to pop a register from the stack. */
2151
2152 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2153 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
2154
2155 /* This is how to output an element of a case-vector that is absolute. */
2156
2157 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2158 ix86_output_addr_vec_elt ((FILE), (VALUE))
2159
2160 /* This is how to output an element of a case-vector that is relative. */
2161
2162 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2163 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2164
2165 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
2166
2167 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2168 { \
2169 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2170 (PTR) += TARGET_AVX ? 1 : 2; \
2171 }
2172
2173 /* A C statement or statements which output an assembler instruction
2174 opcode to the stdio stream STREAM. The macro-operand PTR is a
2175 variable of type `char *' which points to the opcode name in
2176 its "internal" form--the form that is written in the machine
2177 description. */
2178
2179 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2180 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2181
2182 /* A C statement to output to the stdio stream FILE an assembler
2183 command to pad the location counter to a multiple of 1<<LOG
2184 bytes if it is within MAX_SKIP bytes. */
2185
2186 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2187 #undef ASM_OUTPUT_MAX_SKIP_PAD
2188 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2189 if ((LOG) != 0) \
2190 { \
2191 if ((MAX_SKIP) == 0) \
2192 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2193 else \
2194 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2195 }
2196 #endif
2197
2198 /* Write the extra assembler code needed to declare a function
2199 properly. */
2200
2201 #undef ASM_OUTPUT_FUNCTION_LABEL
2202 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2203 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
2204
2205 /* Under some conditions we need jump tables in the text section,
2206 because the assembler cannot handle label differences between
2207 sections. This is the case for x86_64 on Mach-O for example. */
2208
2209 #define JUMP_TABLES_IN_TEXT_SECTION \
2210 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2211 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2212
2213 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2214 and switch back. For x86 we do this only to save a few bytes that
2215 would otherwise be unused in the text section. */
2216 #define CRT_MKSTR2(VAL) #VAL
2217 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2218
2219 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2220 asm (SECTION_OP "\n\t" \
2221 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2222 TEXT_SECTION_ASM_OP);
2223
2224 /* Default threshold for putting data in large sections
2225 with x86-64 medium memory model */
2226 #define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2227
2228 /* Adjust the length of the insn with the length of BND prefix. */
2229
2230 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2231 do { \
2232 if (NONDEBUG_INSN_P (INSN) && INSN_CODE (INSN) >= 0 \
2233 && get_attr_maybe_prefix_bnd (INSN)) \
2234 LENGTH += ix86_bnd_prefixed_insn_p (INSN); \
2235 } while (0)
2236 \f
2237 /* Which processor to tune code generation for. These must be in sync
2238 with processor_target_table in i386.c. */
2239
2240 enum processor_type
2241 {
2242 PROCESSOR_GENERIC = 0,
2243 PROCESSOR_I386, /* 80386 */
2244 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2245 PROCESSOR_PENTIUM,
2246 PROCESSOR_LAKEMONT,
2247 PROCESSOR_PENTIUMPRO,
2248 PROCESSOR_PENTIUM4,
2249 PROCESSOR_NOCONA,
2250 PROCESSOR_CORE2,
2251 PROCESSOR_NEHALEM,
2252 PROCESSOR_SANDYBRIDGE,
2253 PROCESSOR_HASWELL,
2254 PROCESSOR_BONNELL,
2255 PROCESSOR_SILVERMONT,
2256 PROCESSOR_KNL,
2257 PROCESSOR_SKYLAKE_AVX512,
2258 PROCESSOR_INTEL,
2259 PROCESSOR_GEODE,
2260 PROCESSOR_K6,
2261 PROCESSOR_ATHLON,
2262 PROCESSOR_K8,
2263 PROCESSOR_AMDFAM10,
2264 PROCESSOR_BDVER1,
2265 PROCESSOR_BDVER2,
2266 PROCESSOR_BDVER3,
2267 PROCESSOR_BDVER4,
2268 PROCESSOR_BTVER1,
2269 PROCESSOR_BTVER2,
2270 PROCESSOR_ZNVER1,
2271 PROCESSOR_max
2272 };
2273
2274 extern enum processor_type ix86_tune;
2275 extern enum processor_type ix86_arch;
2276
2277 /* Size of the RED_ZONE area. */
2278 #define RED_ZONE_SIZE 128
2279 /* Reserved area of the red zone for temporaries. */
2280 #define RED_ZONE_RESERVE 8
2281
2282 extern unsigned int ix86_preferred_stack_boundary;
2283 extern unsigned int ix86_incoming_stack_boundary;
2284
2285 /* Smallest class containing REGNO. */
2286 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2287
2288 enum ix86_fpcmp_strategy {
2289 IX86_FPCMP_SAHF,
2290 IX86_FPCMP_COMI,
2291 IX86_FPCMP_ARITH
2292 };
2293 \f
2294 /* To properly truncate FP values into integers, we need to set i387 control
2295 word. We can't emit proper mode switching code before reload, as spills
2296 generated by reload may truncate values incorrectly, but we still can avoid
2297 redundant computation of new control word by the mode switching pass.
2298 The fldcw instructions are still emitted redundantly, but this is probably
2299 not going to be noticeable problem, as most CPUs do have fast path for
2300 the sequence.
2301
2302 The machinery is to emit simple truncation instructions and split them
2303 before reload to instructions having USEs of two memory locations that
2304 are filled by this code to old and new control word.
2305
2306 Post-reload pass may be later used to eliminate the redundant fildcw if
2307 needed. */
2308
2309 enum ix86_stack_slot
2310 {
2311 SLOT_TEMP = 0,
2312 SLOT_CW_STORED,
2313 SLOT_CW_TRUNC,
2314 SLOT_CW_FLOOR,
2315 SLOT_CW_CEIL,
2316 SLOT_CW_MASK_PM,
2317 SLOT_STV_TEMP,
2318 MAX_386_STACK_LOCALS
2319 };
2320
2321 enum ix86_entity
2322 {
2323 X86_DIRFLAG = 0,
2324 AVX_U128,
2325 I387_TRUNC,
2326 I387_FLOOR,
2327 I387_CEIL,
2328 I387_MASK_PM,
2329 MAX_386_ENTITIES
2330 };
2331
2332 enum x86_dirflag_state
2333 {
2334 X86_DIRFLAG_RESET,
2335 X86_DIRFLAG_ANY
2336 };
2337
2338 enum avx_u128_state
2339 {
2340 AVX_U128_CLEAN,
2341 AVX_U128_DIRTY,
2342 AVX_U128_ANY
2343 };
2344
2345 /* Define this macro if the port needs extra instructions inserted
2346 for mode switching in an optimizing compilation. */
2347
2348 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2349 ix86_optimize_mode_switching[(ENTITY)]
2350
2351 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2352 initializer for an array of integers. Each initializer element N
2353 refers to an entity that needs mode switching, and specifies the
2354 number of different modes that might need to be set for this
2355 entity. The position of the initializer in the initializer -
2356 starting counting at zero - determines the integer that is used to
2357 refer to the mode-switched entity in question. */
2358
2359 #define NUM_MODES_FOR_MODE_SWITCHING \
2360 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
2361 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2362
2363 \f
2364 /* Avoid renaming of stack registers, as doing so in combination with
2365 scheduling just increases amount of live registers at time and in
2366 the turn amount of fxch instructions needed.
2367
2368 ??? Maybe Pentium chips benefits from renaming, someone can try....
2369
2370 Don't rename evex to non-evex sse registers. */
2371
2372 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2373 (!STACK_REGNO_P (SRC) \
2374 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
2375
2376 \f
2377 #define FASTCALL_PREFIX '@'
2378 \f
2379 #ifndef USED_FOR_TARGET
2380 /* Structure describing stack frame layout.
2381 Stack grows downward:
2382
2383 [arguments]
2384 <- ARG_POINTER
2385 saved pc
2386
2387 saved static chain if ix86_static_chain_on_stack
2388
2389 saved frame pointer if frame_pointer_needed
2390 <- HARD_FRAME_POINTER
2391 [saved regs]
2392 <- reg_save_offset
2393 [padding0]
2394 <- stack_realign_offset
2395 [saved SSE regs]
2396 OR
2397 [stub-saved registers for ms x64 --> sysv clobbers
2398 <- Start of out-of-line, stub-saved/restored regs
2399 (see libgcc/config/i386/(sav|res)ms64*.S)
2400 [XMM6-15]
2401 [RSI]
2402 [RDI]
2403 [?RBX] only if RBX is clobbered
2404 [?RBP] only if RBP and RBX are clobbered
2405 [?R12] only if R12 and all previous regs are clobbered
2406 [?R13] only if R13 and all previous regs are clobbered
2407 [?R14] only if R14 and all previous regs are clobbered
2408 [?R15] only if R15 and all previous regs are clobbered
2409 <- end of stub-saved/restored regs
2410 [padding1]
2411 ]
2412 <- sse_reg_save_offset
2413 [padding2]
2414 | <- FRAME_POINTER
2415 [va_arg registers] |
2416 |
2417 [frame] |
2418 |
2419 [padding2] | = to_allocate
2420 <- STACK_POINTER
2421 */
2422 struct GTY(()) ix86_frame
2423 {
2424 int nsseregs;
2425 int nregs;
2426 int va_arg_size;
2427 int red_zone_size;
2428 int outgoing_arguments_size;
2429
2430 /* The offsets relative to ARG_POINTER. */
2431 HOST_WIDE_INT frame_pointer_offset;
2432 HOST_WIDE_INT hard_frame_pointer_offset;
2433 HOST_WIDE_INT stack_pointer_offset;
2434 HOST_WIDE_INT hfp_save_offset;
2435 HOST_WIDE_INT reg_save_offset;
2436 HOST_WIDE_INT stack_realign_allocate;
2437 HOST_WIDE_INT stack_realign_offset;
2438 HOST_WIDE_INT sse_reg_save_offset;
2439
2440 /* When save_regs_using_mov is set, emit prologue using
2441 move instead of push instructions. */
2442 bool save_regs_using_mov;
2443 };
2444
2445 /* Machine specific frame tracking during prologue/epilogue generation. All
2446 values are positive, but since the x86 stack grows downward, are subtratced
2447 from the CFA to produce a valid address. */
2448
2449 struct GTY(()) machine_frame_state
2450 {
2451 /* This pair tracks the currently active CFA as reg+offset. When reg
2452 is drap_reg, we don't bother trying to record here the real CFA when
2453 it might really be a DW_CFA_def_cfa_expression. */
2454 rtx cfa_reg;
2455 HOST_WIDE_INT cfa_offset;
2456
2457 /* The current offset (canonically from the CFA) of ESP and EBP.
2458 When stack frame re-alignment is active, these may not be relative
2459 to the CFA. However, in all cases they are relative to the offsets
2460 of the saved registers stored in ix86_frame. */
2461 HOST_WIDE_INT sp_offset;
2462 HOST_WIDE_INT fp_offset;
2463
2464 /* The size of the red-zone that may be assumed for the purposes of
2465 eliding register restore notes in the epilogue. This may be zero
2466 if no red-zone is in effect, or may be reduced from the real
2467 red-zone value by a maximum runtime stack re-alignment value. */
2468 int red_zone_offset;
2469
2470 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2471 value within the frame. If false then the offset above should be
2472 ignored. Note that DRAP, if valid, *always* points to the CFA and
2473 thus has an offset of zero. */
2474 BOOL_BITFIELD sp_valid : 1;
2475 BOOL_BITFIELD fp_valid : 1;
2476 BOOL_BITFIELD drap_valid : 1;
2477
2478 /* Indicate whether the local stack frame has been re-aligned. When
2479 set, the SP/FP offsets above are relative to the aligned frame
2480 and not the CFA. */
2481 BOOL_BITFIELD realigned : 1;
2482
2483 /* Indicates whether the stack pointer has been re-aligned. When set,
2484 SP/FP continue to be relative to the CFA, but the stack pointer
2485 should only be used for offsets > sp_realigned_offset, while
2486 the frame pointer should be used for offsets <= sp_realigned_fp_last.
2487 The flags realigned and sp_realigned are mutually exclusive. */
2488 BOOL_BITFIELD sp_realigned : 1;
2489
2490 /* If sp_realigned is set, this is the last valid offset from the CFA
2491 that can be used for access with the frame pointer. */
2492 HOST_WIDE_INT sp_realigned_fp_last;
2493
2494 /* If sp_realigned is set, this is the offset from the CFA that the stack
2495 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2496 Access via the stack pointer is only valid for offsets that are greater than
2497 this value. */
2498 HOST_WIDE_INT sp_realigned_offset;
2499 };
2500
2501 /* Private to winnt.c. */
2502 struct seh_frame_state;
2503
2504 enum function_type
2505 {
2506 TYPE_UNKNOWN = 0,
2507 TYPE_NORMAL,
2508 /* The current function is an interrupt service routine with a
2509 pointer argument as specified by the "interrupt" attribute. */
2510 TYPE_INTERRUPT,
2511 /* The current function is an interrupt service routine with a
2512 pointer argument and an integer argument as specified by the
2513 "interrupt" attribute. */
2514 TYPE_EXCEPTION
2515 };
2516
2517 struct GTY(()) machine_function {
2518 struct stack_local_entry *stack_locals;
2519 int varargs_gpr_size;
2520 int varargs_fpr_size;
2521 int optimize_mode_switching[MAX_386_ENTITIES];
2522
2523 /* Cached initial frame layout for the current function. */
2524 struct ix86_frame frame;
2525
2526 /* For -fsplit-stack support: A stack local which holds a pointer to
2527 the stack arguments for a function with a variable number of
2528 arguments. This is set at the start of the function and is used
2529 to initialize the overflow_arg_area field of the va_list
2530 structure. */
2531 rtx split_stack_varargs_pointer;
2532
2533 /* This value is used for amd64 targets and specifies the current abi
2534 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2535 ENUM_BITFIELD(calling_abi) call_abi : 8;
2536
2537 /* Nonzero if the function accesses a previous frame. */
2538 BOOL_BITFIELD accesses_prev_frame : 1;
2539
2540 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2541 expander to determine the style used. */
2542 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2543
2544 /* Nonzero if the current function calls pc thunk and
2545 must not use the red zone. */
2546 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2547
2548 /* If true, the current function needs the default PIC register, not
2549 an alternate register (on x86) and must not use the red zone (on
2550 x86_64), even if it's a leaf function. We don't want the
2551 function to be regarded as non-leaf because TLS calls need not
2552 affect register allocation. This flag is set when a TLS call
2553 instruction is expanded within a function, and never reset, even
2554 if all such instructions are optimized away. Use the
2555 ix86_current_function_calls_tls_descriptor macro for a better
2556 approximation. */
2557 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2558
2559 /* If true, the current function has a STATIC_CHAIN is placed on the
2560 stack below the return address. */
2561 BOOL_BITFIELD static_chain_on_stack : 1;
2562
2563 /* If true, it is safe to not save/restore DRAP register. */
2564 BOOL_BITFIELD no_drap_save_restore : 1;
2565
2566 /* Function type. */
2567 ENUM_BITFIELD(function_type) func_type : 2;
2568
2569 /* If true, the current function is a function specified with
2570 the "interrupt" or "no_caller_saved_registers" attribute. */
2571 BOOL_BITFIELD no_caller_saved_registers : 1;
2572
2573 /* If true, there is register available for argument passing. This
2574 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2575 if there is scratch register available for indirect sibcall. In
2576 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2577 pass arguments and can be used for indirect sibcall. */
2578 BOOL_BITFIELD arg_reg_available : 1;
2579
2580 /* If true, we're out-of-lining reg save/restore for regs clobbered
2581 by 64-bit ms_abi functions calling a sysv_abi function. */
2582 BOOL_BITFIELD call_ms2sysv : 1;
2583
2584 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
2585 needs padding prior to out-of-line stub save/restore area. */
2586 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2587
2588 /* This is the number of extra registers saved by stub (valid range is
2589 0-6). Each additional register is only saved/restored by the stubs
2590 if all successive ones are. (Will always be zero when using a hard
2591 frame pointer.) */
2592 unsigned int call_ms2sysv_extra_regs:3;
2593
2594 /* Nonzero if the function places outgoing arguments on stack. */
2595 BOOL_BITFIELD outgoing_args_on_stack : 1;
2596
2597 /* During prologue/epilogue generation, the current frame state.
2598 Otherwise, the frame state at the end of the prologue. */
2599 struct machine_frame_state fs;
2600
2601 /* During SEH output, this is non-null. */
2602 struct seh_frame_state * GTY((skip(""))) seh;
2603 };
2604 #endif
2605
2606 #define ix86_stack_locals (cfun->machine->stack_locals)
2607 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2608 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2609 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2610 #define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
2611 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2612 (cfun->machine->tls_descriptor_call_expanded_p)
2613 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2614 calls are optimized away, we try to detect cases in which it was
2615 optimized away. Since such instructions (use (reg REG_SP)), we can
2616 verify whether there's any such instruction live by testing that
2617 REG_SP is live. */
2618 #define ix86_current_function_calls_tls_descriptor \
2619 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2620 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2621
2622 /* Control behavior of x86_file_start. */
2623 #define X86_FILE_START_VERSION_DIRECTIVE false
2624 #define X86_FILE_START_FLTUSED false
2625
2626 /* Flag to mark data that is in the large address area. */
2627 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2628 #define SYMBOL_REF_FAR_ADDR_P(X) \
2629 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2630
2631 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2632 have defined always, to avoid ifdefing. */
2633 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2634 #define SYMBOL_REF_DLLIMPORT_P(X) \
2635 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2636
2637 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2638 #define SYMBOL_REF_DLLEXPORT_P(X) \
2639 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2640
2641 #define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2642 #define SYMBOL_REF_STUBVAR_P(X) \
2643 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2644
2645 extern void debug_ready_dispatch (void);
2646 extern void debug_dispatch_window (int);
2647
2648 /* The value at zero is only defined for the BMI instructions
2649 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2650 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2651 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 1 : 0)
2652 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2653 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 1 : 0)
2654
2655
2656 /* Flags returned by ix86_get_callcvt (). */
2657 #define IX86_CALLCVT_CDECL 0x1
2658 #define IX86_CALLCVT_STDCALL 0x2
2659 #define IX86_CALLCVT_FASTCALL 0x4
2660 #define IX86_CALLCVT_THISCALL 0x8
2661 #define IX86_CALLCVT_REGPARM 0x10
2662 #define IX86_CALLCVT_SSEREGPARM 0x20
2663
2664 #define IX86_BASE_CALLCVT(FLAGS) \
2665 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2666 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2667
2668 #define RECIP_MASK_NONE 0x00
2669 #define RECIP_MASK_DIV 0x01
2670 #define RECIP_MASK_SQRT 0x02
2671 #define RECIP_MASK_VEC_DIV 0x04
2672 #define RECIP_MASK_VEC_SQRT 0x08
2673 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2674 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2675 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2676
2677 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2678 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2679 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2680 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2681
2682 #define IX86_HLE_ACQUIRE (1 << 16)
2683 #define IX86_HLE_RELEASE (1 << 17)
2684
2685 /* For switching between functions with different target attributes. */
2686 #define SWITCHABLE_TARGET 1
2687
2688 #define TARGET_SUPPORTS_WIDE_INT 1
2689
2690 /*
2691 Local variables:
2692 version-control: t
2693 End:
2694 */