]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/i386/i386.h
5bd41539c4aabd1c4d260d54318fddb634fedbd6
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
21
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
26
27 /* The purpose of this file is to define the characteristics of the i386,
28 independent of assembler syntax or operating system.
29
30 Three other files build on this one to describe a specific assembler syntax:
31 bsd386.h, att386.h, and sun386.h.
32
33 The actual tm.h file for a particular system should include
34 this file, and then the file for the appropriate assembler syntax.
35
36 Many macros that specify assembler syntax are omitted entirely from
37 this file because they really belong in the files for particular
38 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
39 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
40 that start with ASM_ or end in ASM_OP. */
41
42 /* Redefines for option macros. */
43
44 #define TARGET_64BIT OPTION_ISA_64BIT
45 #define TARGET_MMX OPTION_ISA_MMX
46 #define TARGET_3DNOW OPTION_ISA_3DNOW
47 #define TARGET_3DNOW_A OPTION_ISA_3DNOW_A
48 #define TARGET_SSE OPTION_ISA_SSE
49 #define TARGET_SSE2 OPTION_ISA_SSE2
50 #define TARGET_SSE3 OPTION_ISA_SSE3
51 #define TARGET_SSSE3 OPTION_ISA_SSSE3
52 #define TARGET_SSE4_1 OPTION_ISA_SSE4_1
53 #define TARGET_SSE4_2 OPTION_ISA_SSE4_2
54 #define TARGET_AVX OPTION_ISA_AVX
55 #define TARGET_FMA OPTION_ISA_FMA
56 #define TARGET_SSE4A OPTION_ISA_SSE4A
57 #define TARGET_FMA4 OPTION_ISA_FMA4
58 #define TARGET_XOP OPTION_ISA_XOP
59 #define TARGET_LWP OPTION_ISA_LWP
60 #define TARGET_ROUND OPTION_ISA_ROUND
61 #define TARGET_ABM OPTION_ISA_ABM
62 #define TARGET_POPCNT OPTION_ISA_POPCNT
63 #define TARGET_SAHF OPTION_ISA_SAHF
64 #define TARGET_MOVBE OPTION_ISA_MOVBE
65 #define TARGET_CRC32 OPTION_ISA_CRC32
66 #define TARGET_AES OPTION_ISA_AES
67 #define TARGET_PCLMUL OPTION_ISA_PCLMUL
68 #define TARGET_CMPXCHG16B OPTION_ISA_CX16
69 #define TARGET_FSGSBASE OPTION_ISA_FSGSBASE
70 #define TARGET_RDRND OPTION_ISA_RDRND
71 #define TARGET_F16C OPTION_ISA_F16C
72
73
74 /* SSE4.1 defines round instructions */
75 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
76 #define OPTION_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
77
78 #include "config/vxworks-dummy.h"
79
80 /* Algorithm to expand string function with. */
81 enum stringop_alg
82 {
83 no_stringop,
84 libcall,
85 rep_prefix_1_byte,
86 rep_prefix_4_byte,
87 rep_prefix_8_byte,
88 loop_1_byte,
89 loop,
90 unrolled_loop
91 };
92
93 #define NAX_STRINGOP_ALGS 4
94
95 /* Specify what algorithm to use for stringops on known size.
96 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
97 known at compile time or estimated via feedback, the SIZE array
98 is walked in order until MAX is greater then the estimate (or -1
99 means infinity). Corresponding ALG is used then.
100 For example initializer:
101 {{256, loop}, {-1, rep_prefix_4_byte}}
102 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
103 be used otherwise. */
104 struct stringop_algs
105 {
106 const enum stringop_alg unknown_size;
107 const struct stringop_strategy {
108 const int max;
109 const enum stringop_alg alg;
110 } size [NAX_STRINGOP_ALGS];
111 };
112
113 /* Define the specific costs for a given cpu */
114
115 struct processor_costs {
116 const int add; /* cost of an add instruction */
117 const int lea; /* cost of a lea instruction */
118 const int shift_var; /* variable shift costs */
119 const int shift_const; /* constant shift costs */
120 const int mult_init[5]; /* cost of starting a multiply
121 in QImode, HImode, SImode, DImode, TImode*/
122 const int mult_bit; /* cost of multiply per each bit set */
123 const int divide[5]; /* cost of a divide/mod
124 in QImode, HImode, SImode, DImode, TImode*/
125 int movsx; /* The cost of movsx operation. */
126 int movzx; /* The cost of movzx operation. */
127 const int large_insn; /* insns larger than this cost more */
128 const int move_ratio; /* The threshold of number of scalar
129 memory-to-memory move insns. */
130 const int movzbl_load; /* cost of loading using movzbl */
131 const int int_load[3]; /* cost of loading integer registers
132 in QImode, HImode and SImode relative
133 to reg-reg move (2). */
134 const int int_store[3]; /* cost of storing integer register
135 in QImode, HImode and SImode */
136 const int fp_move; /* cost of reg,reg fld/fst */
137 const int fp_load[3]; /* cost of loading FP register
138 in SFmode, DFmode and XFmode */
139 const int fp_store[3]; /* cost of storing FP register
140 in SFmode, DFmode and XFmode */
141 const int mmx_move; /* cost of moving MMX register. */
142 const int mmx_load[2]; /* cost of loading MMX register
143 in SImode and DImode */
144 const int mmx_store[2]; /* cost of storing MMX register
145 in SImode and DImode */
146 const int sse_move; /* cost of moving SSE register. */
147 const int sse_load[3]; /* cost of loading SSE register
148 in SImode, DImode and TImode*/
149 const int sse_store[3]; /* cost of storing SSE register
150 in SImode, DImode and TImode*/
151 const int mmxsse_to_integer; /* cost of moving mmxsse register to
152 integer and vice versa. */
153 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
154 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
155 const int prefetch_block; /* bytes moved to cache for prefetch. */
156 const int simultaneous_prefetches; /* number of parallel prefetch
157 operations. */
158 const int branch_cost; /* Default value for BRANCH_COST. */
159 const int fadd; /* cost of FADD and FSUB instructions. */
160 const int fmul; /* cost of FMUL instruction. */
161 const int fdiv; /* cost of FDIV instruction. */
162 const int fabs; /* cost of FABS instruction. */
163 const int fchs; /* cost of FCHS instruction. */
164 const int fsqrt; /* cost of FSQRT instruction. */
165 /* Specify what algorithm
166 to use for stringops on unknown size. */
167 struct stringop_algs memcpy[2], memset[2];
168 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
169 load and store. */
170 const int scalar_load_cost; /* Cost of scalar load. */
171 const int scalar_store_cost; /* Cost of scalar store. */
172 const int vec_stmt_cost; /* Cost of any vector operation, excluding
173 load, store, vector-to-scalar and
174 scalar-to-vector operation. */
175 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
176 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
177 const int vec_align_load_cost; /* Cost of aligned vector load. */
178 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
179 const int vec_store_cost; /* Cost of vector store. */
180 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
181 cost model. */
182 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
183 vectorizer cost model. */
184 };
185
186 extern const struct processor_costs *ix86_cost;
187 extern const struct processor_costs ix86_size_cost;
188
189 #define ix86_cur_cost() \
190 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
191
192 /* Macros used in the machine description to test the flags. */
193
194 /* configure can arrange to make this 2, to force a 486. */
195
196 #ifndef TARGET_CPU_DEFAULT
197 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
198 #endif
199
200 #ifndef TARGET_FPMATH_DEFAULT
201 #define TARGET_FPMATH_DEFAULT \
202 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
203 #endif
204
205 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
206
207 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
208 compile-time constant. */
209 #ifdef IN_LIBGCC2
210 #undef TARGET_64BIT
211 #ifdef __x86_64__
212 #define TARGET_64BIT 1
213 #else
214 #define TARGET_64BIT 0
215 #endif
216 #else
217 #ifndef TARGET_BI_ARCH
218 #undef TARGET_64BIT
219 #if TARGET_64BIT_DEFAULT
220 #define TARGET_64BIT 1
221 #else
222 #define TARGET_64BIT 0
223 #endif
224 #endif
225 #endif
226
227 #define HAS_LONG_COND_BRANCH 1
228 #define HAS_LONG_UNCOND_BRANCH 1
229
230 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
231 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
232 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
233 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
234 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
235 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
236 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
237 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
238 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
239 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
240 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
241 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
242 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
243 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
244 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
245 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
246 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
247 #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
248
249 /* Feature tests against the various tunings. */
250 enum ix86_tune_indices {
251 X86_TUNE_USE_LEAVE,
252 X86_TUNE_PUSH_MEMORY,
253 X86_TUNE_ZERO_EXTEND_WITH_AND,
254 X86_TUNE_UNROLL_STRLEN,
255 X86_TUNE_DEEP_BRANCH_PREDICTION,
256 X86_TUNE_BRANCH_PREDICTION_HINTS,
257 X86_TUNE_DOUBLE_WITH_ADD,
258 X86_TUNE_USE_SAHF,
259 X86_TUNE_MOVX,
260 X86_TUNE_PARTIAL_REG_STALL,
261 X86_TUNE_PARTIAL_FLAG_REG_STALL,
262 X86_TUNE_USE_HIMODE_FIOP,
263 X86_TUNE_USE_SIMODE_FIOP,
264 X86_TUNE_USE_MOV0,
265 X86_TUNE_USE_CLTD,
266 X86_TUNE_USE_XCHGB,
267 X86_TUNE_SPLIT_LONG_MOVES,
268 X86_TUNE_READ_MODIFY_WRITE,
269 X86_TUNE_READ_MODIFY,
270 X86_TUNE_PROMOTE_QIMODE,
271 X86_TUNE_FAST_PREFIX,
272 X86_TUNE_SINGLE_STRINGOP,
273 X86_TUNE_QIMODE_MATH,
274 X86_TUNE_HIMODE_MATH,
275 X86_TUNE_PROMOTE_QI_REGS,
276 X86_TUNE_PROMOTE_HI_REGS,
277 X86_TUNE_SINGLE_POP,
278 X86_TUNE_DOUBLE_POP,
279 X86_TUNE_SINGLE_PUSH,
280 X86_TUNE_DOUBLE_PUSH,
281 X86_TUNE_INTEGER_DFMODE_MOVES,
282 X86_TUNE_PARTIAL_REG_DEPENDENCY,
283 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
284 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
285 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
286 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
287 X86_TUNE_SSE_SPLIT_REGS,
288 X86_TUNE_SSE_TYPELESS_STORES,
289 X86_TUNE_SSE_LOAD0_BY_PXOR,
290 X86_TUNE_MEMORY_MISMATCH_STALL,
291 X86_TUNE_PROLOGUE_USING_MOVE,
292 X86_TUNE_EPILOGUE_USING_MOVE,
293 X86_TUNE_SHIFT1,
294 X86_TUNE_USE_FFREEP,
295 X86_TUNE_INTER_UNIT_MOVES,
296 X86_TUNE_INTER_UNIT_CONVERSIONS,
297 X86_TUNE_FOUR_JUMP_LIMIT,
298 X86_TUNE_SCHEDULE,
299 X86_TUNE_USE_BT,
300 X86_TUNE_USE_INCDEC,
301 X86_TUNE_PAD_RETURNS,
302 X86_TUNE_EXT_80387_CONSTANTS,
303 X86_TUNE_SHORTEN_X87_SSE,
304 X86_TUNE_AVOID_VECTOR_DECODE,
305 X86_TUNE_PROMOTE_HIMODE_IMUL,
306 X86_TUNE_SLOW_IMUL_IMM32_MEM,
307 X86_TUNE_SLOW_IMUL_IMM8,
308 X86_TUNE_MOVE_M1_VIA_OR,
309 X86_TUNE_NOT_UNPAIRABLE,
310 X86_TUNE_NOT_VECTORMODE,
311 X86_TUNE_USE_VECTOR_FP_CONVERTS,
312 X86_TUNE_USE_VECTOR_CONVERTS,
313 X86_TUNE_FUSE_CMP_AND_BRANCH,
314 X86_TUNE_OPT_AGU,
315
316 X86_TUNE_LAST
317 };
318
319 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
320
321 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
322 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
323 #define TARGET_ZERO_EXTEND_WITH_AND \
324 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
325 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
326 #define TARGET_DEEP_BRANCH_PREDICTION \
327 ix86_tune_features[X86_TUNE_DEEP_BRANCH_PREDICTION]
328 #define TARGET_BRANCH_PREDICTION_HINTS \
329 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
330 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
331 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
332 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
333 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
334 #define TARGET_PARTIAL_FLAG_REG_STALL \
335 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
336 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
337 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
338 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
339 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
340 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
341 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
342 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
343 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
344 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
345 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
346 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
347 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
348 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
349 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
350 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
351 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
352 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
353 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
354 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
355 #define TARGET_INTEGER_DFMODE_MOVES \
356 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
357 #define TARGET_PARTIAL_REG_DEPENDENCY \
358 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
359 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
360 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
361 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
362 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
363 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
364 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
365 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
366 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
367 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
368 #define TARGET_SSE_TYPELESS_STORES \
369 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
370 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
371 #define TARGET_MEMORY_MISMATCH_STALL \
372 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
373 #define TARGET_PROLOGUE_USING_MOVE \
374 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
375 #define TARGET_EPILOGUE_USING_MOVE \
376 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
377 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
378 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
379 #define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
380 #define TARGET_INTER_UNIT_CONVERSIONS\
381 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
382 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
383 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
384 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
385 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
386 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
387 #define TARGET_EXT_80387_CONSTANTS \
388 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
389 #define TARGET_SHORTEN_X87_SSE ix86_tune_features[X86_TUNE_SHORTEN_X87_SSE]
390 #define TARGET_AVOID_VECTOR_DECODE \
391 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
392 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
393 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
394 #define TARGET_SLOW_IMUL_IMM32_MEM \
395 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
396 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
397 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
398 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
399 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
400 #define TARGET_USE_VECTOR_FP_CONVERTS \
401 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
402 #define TARGET_USE_VECTOR_CONVERTS \
403 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
404 #define TARGET_FUSE_CMP_AND_BRANCH \
405 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
406 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
407
408 /* Feature tests against the various architecture variations. */
409 enum ix86_arch_indices {
410 X86_ARCH_CMOVE, /* || TARGET_SSE */
411 X86_ARCH_CMPXCHG,
412 X86_ARCH_CMPXCHG8B,
413 X86_ARCH_XADD,
414 X86_ARCH_BSWAP,
415
416 X86_ARCH_LAST
417 };
418
419 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
420
421 #define TARGET_CMOVE ix86_arch_features[X86_ARCH_CMOVE]
422 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
423 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
424 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
425 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
426
427 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
428
429 extern int x86_prefetch_sse;
430
431 #define TARGET_PREFETCH_SSE x86_prefetch_sse
432
433 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
434
435 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
436 #define TARGET_MIX_SSE_I387 \
437 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
438
439 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
440 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
441 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
442 #define TARGET_SUN_TLS 0
443
444 extern int ix86_isa_flags;
445
446 #ifndef TARGET_64BIT_DEFAULT
447 #define TARGET_64BIT_DEFAULT 0
448 #endif
449 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
450 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
451 #endif
452
453 /* Fence to use after loop using storent. */
454
455 extern tree x86_mfence;
456 #define FENCE_FOLLOWING_MOVNT x86_mfence
457
458 /* Once GDB has been enhanced to deal with functions without frame
459 pointers, we can change this to allow for elimination of
460 the frame pointer in leaf functions. */
461 #define TARGET_DEFAULT 0
462
463 /* Extra bits to force. */
464 #define TARGET_SUBTARGET_DEFAULT 0
465 #define TARGET_SUBTARGET_ISA_DEFAULT 0
466
467 /* Extra bits to force on w/ 32-bit mode. */
468 #define TARGET_SUBTARGET32_DEFAULT 0
469 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
470
471 /* Extra bits to force on w/ 64-bit mode. */
472 #define TARGET_SUBTARGET64_DEFAULT 0
473 #define TARGET_SUBTARGET64_ISA_DEFAULT 0
474
475 /* This is not really a target flag, but is done this way so that
476 it's analogous to similar code for Mach-O on PowerPC. darwin.h
477 redefines this to 1. */
478 #define TARGET_MACHO 0
479
480 /* Branch island 'stubs' are emitted for earlier versions of darwin.
481 This provides a default (over-ridden in darwin.h.) */
482 #ifndef TARGET_MACHO_BRANCH_ISLANDS
483 #define TARGET_MACHO_BRANCH_ISLANDS 0
484 #endif
485
486 /* For the Windows 64-bit ABI. */
487 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
488
489 /* Available call abi. */
490 enum calling_abi
491 {
492 SYSV_ABI = 0,
493 MS_ABI = 1
494 };
495
496 /* The abi used by target. */
497 extern enum calling_abi ix86_abi;
498
499 /* The default abi used by target. */
500 #define DEFAULT_ABI SYSV_ABI
501
502 /* Subtargets may reset this to 1 in order to enable 96-bit long double
503 with the rounding mode forced to 53 bits. */
504 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
505
506 /* Sometimes certain combinations of command options do not make
507 sense on a particular target machine. You can define a macro
508 `OVERRIDE_OPTIONS' to take account of this. This macro, if
509 defined, is executed once just after all the command options have
510 been parsed.
511
512 Don't use this macro to turn on various extra optimizations for
513 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
514
515 #define OVERRIDE_OPTIONS override_options (true)
516
517 /* Define this to change the optimizations performed by default. */
518 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
519 optimization_options ((LEVEL), (SIZE))
520
521 /* -march=native handling only makes sense with compiler running on
522 an x86 or x86_64 chip. If changing this condition, also change
523 the condition in driver-i386.c. */
524 #if defined(__i386__) || defined(__x86_64__)
525 /* In driver-i386.c. */
526 extern const char *host_detect_local_cpu (int argc, const char **argv);
527 #define EXTRA_SPEC_FUNCTIONS \
528 { "local_cpu_detect", host_detect_local_cpu },
529 #define HAVE_LOCAL_CPU_DETECT
530 #endif
531
532 #if TARGET_64BIT_DEFAULT
533 #define OPT_ARCH64 "!m32"
534 #define OPT_ARCH32 "m32"
535 #else
536 #define OPT_ARCH64 "m64"
537 #define OPT_ARCH32 "!m64"
538 #endif
539
540 /* Support for configure-time defaults of some command line options.
541 The order here is important so that -march doesn't squash the
542 tune or cpu values. */
543 #define OPTION_DEFAULT_SPECS \
544 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
545 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
546 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
547 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
548 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
549 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
550 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
551 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
552 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
553
554 /* Specs for the compiler proper */
555
556 #ifndef CC1_CPU_SPEC
557 #define CC1_CPU_SPEC_1 "\
558 %{msse5:-mavx \
559 %n'-msse5' was removed.\n}"
560
561 #ifndef HAVE_LOCAL_CPU_DETECT
562 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
563 #else
564 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
565 "%{march=native:%<march=native %:local_cpu_detect(arch) \
566 %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
567 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
568 #endif
569 #endif
570 \f
571 /* Target CPU builtins. */
572 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
573
574 /* Target Pragmas. */
575 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
576
577 enum target_cpu_default
578 {
579 TARGET_CPU_DEFAULT_generic = 0,
580
581 TARGET_CPU_DEFAULT_i386,
582 TARGET_CPU_DEFAULT_i486,
583 TARGET_CPU_DEFAULT_pentium,
584 TARGET_CPU_DEFAULT_pentium_mmx,
585 TARGET_CPU_DEFAULT_pentiumpro,
586 TARGET_CPU_DEFAULT_pentium2,
587 TARGET_CPU_DEFAULT_pentium3,
588 TARGET_CPU_DEFAULT_pentium4,
589 TARGET_CPU_DEFAULT_pentium_m,
590 TARGET_CPU_DEFAULT_prescott,
591 TARGET_CPU_DEFAULT_nocona,
592 TARGET_CPU_DEFAULT_core2,
593 TARGET_CPU_DEFAULT_atom,
594
595 TARGET_CPU_DEFAULT_geode,
596 TARGET_CPU_DEFAULT_k6,
597 TARGET_CPU_DEFAULT_k6_2,
598 TARGET_CPU_DEFAULT_k6_3,
599 TARGET_CPU_DEFAULT_athlon,
600 TARGET_CPU_DEFAULT_athlon_sse,
601 TARGET_CPU_DEFAULT_k8,
602 TARGET_CPU_DEFAULT_amdfam10,
603 TARGET_CPU_DEFAULT_bdver1,
604
605 TARGET_CPU_DEFAULT_max
606 };
607
608 #ifndef CC1_SPEC
609 #define CC1_SPEC "%(cc1_cpu) "
610 #endif
611
612 /* This macro defines names of additional specifications to put in the
613 specs that can be used in various specifications like CC1_SPEC. Its
614 definition is an initializer with a subgrouping for each command option.
615
616 Each subgrouping contains a string constant, that defines the
617 specification name, and a string constant that used by the GCC driver
618 program.
619
620 Do not define this macro if it does not need to do anything. */
621
622 #ifndef SUBTARGET_EXTRA_SPECS
623 #define SUBTARGET_EXTRA_SPECS
624 #endif
625
626 #define EXTRA_SPECS \
627 { "cc1_cpu", CC1_CPU_SPEC }, \
628 SUBTARGET_EXTRA_SPECS
629 \f
630
631 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
632 FPU, assume that the fpcw is set to extended precision; when using
633 only SSE, rounding is correct; when using both SSE and the FPU,
634 the rounding precision is indeterminate, since either may be chosen
635 apparently at random. */
636 #define TARGET_FLT_EVAL_METHOD \
637 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
638
639 /* Whether to allow x87 floating-point arithmetic on MODE (one of
640 SFmode, DFmode and XFmode) in the current excess precision
641 configuration. */
642 #define X87_ENABLE_ARITH(MODE) \
643 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
644
645 /* Likewise, whether to allow direct conversions from integer mode
646 IMODE (HImode, SImode or DImode) to MODE. */
647 #define X87_ENABLE_FLOAT(MODE, IMODE) \
648 (flag_excess_precision == EXCESS_PRECISION_FAST \
649 || (MODE) == XFmode \
650 || ((MODE) == DFmode && (IMODE) == SImode) \
651 || (IMODE) == HImode)
652
653 /* target machine storage layout */
654
655 #define SHORT_TYPE_SIZE 16
656 #define INT_TYPE_SIZE 32
657 #define LONG_LONG_TYPE_SIZE 64
658 #define FLOAT_TYPE_SIZE 32
659 #define DOUBLE_TYPE_SIZE 64
660 #define LONG_DOUBLE_TYPE_SIZE 80
661
662 #define WIDEST_HARDWARE_FP_SIZE LONG_DOUBLE_TYPE_SIZE
663
664 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
665 #define MAX_BITS_PER_WORD 64
666 #else
667 #define MAX_BITS_PER_WORD 32
668 #endif
669
670 /* Define this if most significant byte of a word is the lowest numbered. */
671 /* That is true on the 80386. */
672
673 #define BITS_BIG_ENDIAN 0
674
675 /* Define this if most significant byte of a word is the lowest numbered. */
676 /* That is not true on the 80386. */
677 #define BYTES_BIG_ENDIAN 0
678
679 /* Define this if most significant word of a multiword number is the lowest
680 numbered. */
681 /* Not true for 80386 */
682 #define WORDS_BIG_ENDIAN 0
683
684 /* Width of a word, in units (bytes). */
685 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
686 #ifdef IN_LIBGCC2
687 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
688 #else
689 #define MIN_UNITS_PER_WORD 4
690 #endif
691
692 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
693 #define PARM_BOUNDARY BITS_PER_WORD
694
695 /* Boundary (in *bits*) on which stack pointer should be aligned. */
696 #define STACK_BOUNDARY \
697 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
698
699 /* Stack boundary of the main function guaranteed by OS. */
700 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
701
702 /* Minimum stack boundary. */
703 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
704
705 /* Boundary (in *bits*) on which the stack pointer prefers to be
706 aligned; the compiler cannot rely on having this alignment. */
707 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
708
709 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
710 both 32bit and 64bit, to support codes that need 128 bit stack
711 alignment for SSE instructions, but can't realign the stack. */
712 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128
713
714 /* 1 if -mstackrealign should be turned on by default. It will
715 generate an alternate prologue and epilogue that realigns the
716 runtime stack if nessary. This supports mixing codes that keep a
717 4-byte aligned stack, as specified by i386 psABI, with codes that
718 need a 16-byte aligned stack, as required by SSE instructions. */
719 #define STACK_REALIGN_DEFAULT 0
720
721 /* Boundary (in *bits*) on which the incoming stack is aligned. */
722 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
723
724 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
725 mandatory for the 64-bit ABI, and may or may not be true for other
726 operating systems. */
727 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
728
729 /* Minimum allocation boundary for the code of a function. */
730 #define FUNCTION_BOUNDARY 8
731
732 /* C++ stores the virtual bit in the lowest bit of function pointers. */
733 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
734
735 /* Minimum size in bits of the largest boundary to which any
736 and all fundamental data types supported by the hardware
737 might need to be aligned. No data type wants to be aligned
738 rounder than this.
739
740 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
741 and Pentium Pro XFmode values at 128 bit boundaries. */
742
743 #define BIGGEST_ALIGNMENT (TARGET_AVX ? 256: 128)
744
745 /* Maximum stack alignment. */
746 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
747
748 /* Alignment value for attribute ((aligned)). It is a constant since
749 it is the part of the ABI. We shouldn't change it with -mavx. */
750 #define ATTRIBUTE_ALIGNED_VALUE 128
751
752 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
753 #define ALIGN_MODE_128(MODE) \
754 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
755
756 /* The published ABIs say that doubles should be aligned on word
757 boundaries, so lower the alignment for structure fields unless
758 -malign-double is set. */
759
760 /* ??? Blah -- this macro is used directly by libobjc. Since it
761 supports no vector modes, cut out the complexity and fall back
762 on BIGGEST_FIELD_ALIGNMENT. */
763 #ifdef IN_TARGET_LIBS
764 #ifdef __x86_64__
765 #define BIGGEST_FIELD_ALIGNMENT 128
766 #else
767 #define BIGGEST_FIELD_ALIGNMENT 32
768 #endif
769 #else
770 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
771 x86_field_alignment (FIELD, COMPUTED)
772 #endif
773
774 /* If defined, a C expression to compute the alignment given to a
775 constant that is being placed in memory. EXP is the constant
776 and ALIGN is the alignment that the object would ordinarily have.
777 The value of this macro is used instead of that alignment to align
778 the object.
779
780 If this macro is not defined, then ALIGN is used.
781
782 The typical use of this macro is to increase alignment for string
783 constants to be word aligned so that `strcpy' calls that copy
784 constants can be done inline. */
785
786 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
787
788 /* If defined, a C expression to compute the alignment for a static
789 variable. TYPE is the data type, and ALIGN is the alignment that
790 the object would ordinarily have. The value of this macro is used
791 instead of that alignment to align the object.
792
793 If this macro is not defined, then ALIGN is used.
794
795 One use of this macro is to increase alignment of medium-size
796 data to make it all fit in fewer cache lines. Another is to
797 cause character arrays to be word-aligned so that `strcpy' calls
798 that copy constants to character arrays can be done inline. */
799
800 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
801
802 /* If defined, a C expression to compute the alignment for a local
803 variable. TYPE is the data type, and ALIGN is the alignment that
804 the object would ordinarily have. The value of this macro is used
805 instead of that alignment to align the object.
806
807 If this macro is not defined, then ALIGN is used.
808
809 One use of this macro is to increase alignment of medium-size
810 data to make it all fit in fewer cache lines. */
811
812 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
813 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
814
815 /* If defined, a C expression to compute the alignment for stack slot.
816 TYPE is the data type, MODE is the widest mode available, and ALIGN
817 is the alignment that the slot would ordinarily have. The value of
818 this macro is used instead of that alignment to align the slot.
819
820 If this macro is not defined, then ALIGN is used when TYPE is NULL,
821 Otherwise, LOCAL_ALIGNMENT will be used.
822
823 One use of this macro is to set alignment of stack slot to the
824 maximum alignment of all possible modes which the slot may have. */
825
826 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
827 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
828
829 /* If defined, a C expression to compute the alignment for a local
830 variable DECL.
831
832 If this macro is not defined, then
833 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
834
835 One use of this macro is to increase alignment of medium-size
836 data to make it all fit in fewer cache lines. */
837
838 #define LOCAL_DECL_ALIGNMENT(DECL) \
839 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
840
841 /* If defined, a C expression to compute the minimum required alignment
842 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
843 MODE, assuming normal alignment ALIGN.
844
845 If this macro is not defined, then (ALIGN) will be used. */
846
847 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
848 ix86_minimum_alignment (EXP, MODE, ALIGN)
849
850
851 /* If defined, a C expression that gives the alignment boundary, in
852 bits, of an argument with the specified mode and type. If it is
853 not defined, `PARM_BOUNDARY' is used for all arguments. */
854
855 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
856 ix86_function_arg_boundary ((MODE), (TYPE))
857
858 /* Set this nonzero if move instructions will actually fail to work
859 when given unaligned data. */
860 #define STRICT_ALIGNMENT 0
861
862 /* If bit field type is int, don't let it cross an int,
863 and give entire struct the alignment of an int. */
864 /* Required on the 386 since it doesn't have bit-field insns. */
865 #define PCC_BITFIELD_TYPE_MATTERS 1
866 \f
867 /* Standard register usage. */
868
869 /* This processor has special stack-like registers. See reg-stack.c
870 for details. */
871
872 #define STACK_REGS
873
874 #define IS_STACK_MODE(MODE) \
875 (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH)) \
876 || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH)) \
877 || (MODE) == XFmode)
878
879 /* Cover class containing the stack registers. */
880 #define STACK_REG_COVER_CLASS FLOAT_REGS
881
882 /* Number of actual hardware registers.
883 The hardware registers are assigned numbers for the compiler
884 from 0 to just below FIRST_PSEUDO_REGISTER.
885 All registers that the compiler knows about must be given numbers,
886 even those that are not normally considered general registers.
887
888 In the 80386 we give the 8 general purpose registers the numbers 0-7.
889 We number the floating point registers 8-15.
890 Note that registers 0-7 can be accessed as a short or int,
891 while only 0-3 may be used with byte `mov' instructions.
892
893 Reg 16 does not correspond to any hardware register, but instead
894 appears in the RTL as an argument pointer prior to reload, and is
895 eliminated during reloading in favor of either the stack or frame
896 pointer. */
897
898 #define FIRST_PSEUDO_REGISTER 53
899
900 /* Number of hardware registers that go into the DWARF-2 unwind info.
901 If not defined, equals FIRST_PSEUDO_REGISTER. */
902
903 #define DWARF_FRAME_REGISTERS 17
904
905 /* 1 for registers that have pervasive standard uses
906 and are not available for the register allocator.
907 On the 80386, the stack pointer is such, as is the arg pointer.
908
909 The value is zero if the register is not fixed on either 32 or
910 64 bit targets, one if the register if fixed on both 32 and 64
911 bit targets, two if it is only fixed on 32bit targets and three
912 if its only fixed on 64bit targets.
913 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
914 */
915 #define FIXED_REGISTERS \
916 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
917 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
918 /*arg,flags,fpsr,fpcr,frame*/ \
919 1, 1, 1, 1, 1, \
920 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
921 0, 0, 0, 0, 0, 0, 0, 0, \
922 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
923 0, 0, 0, 0, 0, 0, 0, 0, \
924 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
925 2, 2, 2, 2, 2, 2, 2, 2, \
926 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
927 2, 2, 2, 2, 2, 2, 2, 2 }
928
929
930 /* 1 for registers not available across function calls.
931 These must include the FIXED_REGISTERS and also any
932 registers that can be used without being saved.
933 The latter must include the registers where values are returned
934 and the register where structure-value addresses are passed.
935 Aside from that, you can include as many other registers as you like.
936
937 The value is zero if the register is not call used on either 32 or
938 64 bit targets, one if the register if call used on both 32 and 64
939 bit targets, two if it is only call used on 32bit targets and three
940 if its only call used on 64bit targets.
941 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
942 */
943 #define CALL_USED_REGISTERS \
944 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
945 { 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
946 /*arg,flags,fpsr,fpcr,frame*/ \
947 1, 1, 1, 1, 1, \
948 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
949 1, 1, 1, 1, 1, 1, 1, 1, \
950 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
951 1, 1, 1, 1, 1, 1, 1, 1, \
952 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
953 1, 1, 1, 1, 2, 2, 2, 2, \
954 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
955 1, 1, 1, 1, 1, 1, 1, 1 }
956
957 /* Order in which to allocate registers. Each register must be
958 listed once, even those in FIXED_REGISTERS. List frame pointer
959 late and fixed registers last. Note that, in general, we prefer
960 registers listed in CALL_USED_REGISTERS, keeping the others
961 available for storage of persistent values.
962
963 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
964 so this is just empty initializer for array. */
965
966 #define REG_ALLOC_ORDER \
967 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
968 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
969 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
970 48, 49, 50, 51, 52 }
971
972 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
973 to be rearranged based on a particular function. When using sse math,
974 we want to allocate SSE before x87 registers and vice versa. */
975
976 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
977
978
979 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
980
981 /* Macro to conditionally modify fixed_regs/call_used_regs. */
982 #define CONDITIONAL_REGISTER_USAGE ix86_conditional_register_usage ()
983
984 /* Return number of consecutive hard regs needed starting at reg REGNO
985 to hold something of mode MODE.
986 This is ordinarily the length in words of a value of mode MODE
987 but can be less for certain modes in special long registers.
988
989 Actually there are no two word move instructions for consecutive
990 registers. And only registers 0-3 may have mov byte instructions
991 applied to them.
992 */
993
994 #define HARD_REGNO_NREGS(REGNO, MODE) \
995 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
996 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
997 : ((MODE) == XFmode \
998 ? (TARGET_64BIT ? 2 : 3) \
999 : (MODE) == XCmode \
1000 ? (TARGET_64BIT ? 4 : 6) \
1001 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1002
1003 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1004 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
1005 ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
1006 ? 0 \
1007 : ((MODE) == XFmode || (MODE) == XCmode)) \
1008 : 0)
1009
1010 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1011
1012 #define VALID_AVX256_REG_MODE(MODE) \
1013 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1014 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1015
1016 #define VALID_SSE2_REG_MODE(MODE) \
1017 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1018 || (MODE) == V2DImode || (MODE) == DFmode)
1019
1020 #define VALID_SSE_REG_MODE(MODE) \
1021 ((MODE) == V1TImode || (MODE) == TImode \
1022 || (MODE) == V4SFmode || (MODE) == V4SImode \
1023 || (MODE) == SFmode || (MODE) == TFmode)
1024
1025 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1026 ((MODE) == V2SFmode || (MODE) == SFmode)
1027
1028 #define VALID_MMX_REG_MODE(MODE) \
1029 ((MODE == V1DImode) || (MODE) == DImode \
1030 || (MODE) == V2SImode || (MODE) == SImode \
1031 || (MODE) == V4HImode || (MODE) == V8QImode)
1032
1033 /* ??? No autovectorization into MMX or 3DNOW until we can reliably
1034 place emms and femms instructions.
1035 FIXME: AVX has 32byte floating point vector operations and 16byte
1036 integer vector operations. But vectorizer doesn't support
1037 different sizes for integer and floating point vectors. We limit
1038 vector size to 16byte. */
1039 #define UNITS_PER_SIMD_WORD(MODE) \
1040 (TARGET_AVX ? (((MODE) == DFmode || (MODE) == SFmode) ? 16 : 16) \
1041 : (TARGET_SSE ? 16 : UNITS_PER_WORD))
1042
1043 #define VALID_DFP_MODE_P(MODE) \
1044 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
1045
1046 #define VALID_FP_MODE_P(MODE) \
1047 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1048 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
1049
1050 #define VALID_INT_MODE_P(MODE) \
1051 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
1052 || (MODE) == DImode \
1053 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
1054 || (MODE) == CDImode \
1055 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
1056 || (MODE) == TFmode || (MODE) == TCmode)))
1057
1058 /* Return true for modes passed in SSE registers. */
1059 #define SSE_REG_MODE_P(MODE) \
1060 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1061 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1062 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1063 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1064 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode)
1065
1066 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
1067
1068 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1069 ix86_hard_regno_mode_ok ((REGNO), (MODE))
1070
1071 /* Value is 1 if it is a good idea to tie two pseudo registers
1072 when one has mode MODE1 and one has mode MODE2.
1073 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1074 for any hard reg, then this must be 0 for correct output. */
1075
1076 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
1077
1078 /* It is possible to write patterns to move flags; but until someone
1079 does it, */
1080 #define AVOID_CCMODE_COPIES
1081
1082 /* Specify the modes required to caller save a given hard regno.
1083 We do this on i386 to prevent flags from being saved at all.
1084
1085 Kill any attempts to combine saving of modes. */
1086
1087 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1088 (CC_REGNO_P (REGNO) ? VOIDmode \
1089 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1090 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
1091 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1092 : (MODE) == QImode && (REGNO) > BX_REG && !TARGET_64BIT ? SImode \
1093 : (MODE))
1094
1095 /* The only ABI that saves SSE registers across calls is Win64 (thus no
1096 need to check the current ABI here), and with AVX enabled Win64 only
1097 guarantees that the low 16 bytes are saved. */
1098 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1099 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
1100
1101 /* Specify the registers used for certain standard purposes.
1102 The values of these macros are register numbers. */
1103
1104 /* on the 386 the pc register is %eip, and is not usable as a general
1105 register. The ordinary mov instructions won't work */
1106 /* #define PC_REGNUM */
1107
1108 /* Register to use for pushing function arguments. */
1109 #define STACK_POINTER_REGNUM 7
1110
1111 /* Base register for access to local variables of the function. */
1112 #define HARD_FRAME_POINTER_REGNUM 6
1113
1114 /* Base register for access to local variables of the function. */
1115 #define FRAME_POINTER_REGNUM 20
1116
1117 /* First floating point reg */
1118 #define FIRST_FLOAT_REG 8
1119
1120 /* First & last stack-like regs */
1121 #define FIRST_STACK_REG FIRST_FLOAT_REG
1122 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1123
1124 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1125 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1126
1127 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1128 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1129
1130 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1131 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1132
1133 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1134 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1135
1136 /* Override this in other tm.h files to cope with various OS lossage
1137 requiring a frame pointer. */
1138 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1139 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1140 #endif
1141
1142 /* Make sure we can access arbitrary call frames. */
1143 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1144
1145 /* Base register for access to arguments of the function. */
1146 #define ARG_POINTER_REGNUM 16
1147
1148 /* Register to hold the addressing base for position independent
1149 code access to data items. We don't use PIC pointer for 64bit
1150 mode. Define the regnum to dummy value to prevent gcc from
1151 pessimizing code dealing with EBX.
1152
1153 To avoid clobbering a call-saved register unnecessarily, we renumber
1154 the pic register when possible. The change is visible after the
1155 prologue has been emitted. */
1156
1157 #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
1158
1159 #define PIC_OFFSET_TABLE_REGNUM \
1160 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
1161 || !flag_pic ? INVALID_REGNUM \
1162 : reload_completed ? REGNO (pic_offset_table_rtx) \
1163 : REAL_PIC_OFFSET_TABLE_REGNUM)
1164
1165 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1166
1167 /* This is overridden by <cygwin.h>. */
1168 #define MS_AGGREGATE_RETURN 0
1169
1170 /* This is overridden by <netware.h>. */
1171 #define KEEP_AGGREGATE_RETURN_POINTER 0
1172 \f
1173 /* Define the classes of registers for register constraints in the
1174 machine description. Also define ranges of constants.
1175
1176 One of the classes must always be named ALL_REGS and include all hard regs.
1177 If there is more than one class, another class must be named NO_REGS
1178 and contain no registers.
1179
1180 The name GENERAL_REGS must be the name of a class (or an alias for
1181 another name such as ALL_REGS). This is the class of registers
1182 that is allowed by "g" or "r" in a register constraint.
1183 Also, registers outside this class are allocated only when
1184 instructions express preferences for them.
1185
1186 The classes must be numbered in nondecreasing order; that is,
1187 a larger-numbered class must never be contained completely
1188 in a smaller-numbered class.
1189
1190 For any two classes, it is very desirable that there be another
1191 class that represents their union.
1192
1193 It might seem that class BREG is unnecessary, since no useful 386
1194 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1195 and the "b" register constraint is useful in asms for syscalls.
1196
1197 The flags, fpsr and fpcr registers are in no class. */
1198
1199 enum reg_class
1200 {
1201 NO_REGS,
1202 AREG, DREG, CREG, BREG, SIREG, DIREG,
1203 AD_REGS, /* %eax/%edx for DImode */
1204 CLOBBERED_REGS, /* call-clobbered integers */
1205 Q_REGS, /* %eax %ebx %ecx %edx */
1206 NON_Q_REGS, /* %esi %edi %ebp %esp */
1207 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1208 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1209 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1210 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1211 FLOAT_REGS,
1212 SSE_FIRST_REG,
1213 SSE_REGS,
1214 MMX_REGS,
1215 FP_TOP_SSE_REGS,
1216 FP_SECOND_SSE_REGS,
1217 FLOAT_SSE_REGS,
1218 FLOAT_INT_REGS,
1219 INT_SSE_REGS,
1220 FLOAT_INT_SSE_REGS,
1221 ALL_REGS, LIM_REG_CLASSES
1222 };
1223
1224 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1225
1226 #define INTEGER_CLASS_P(CLASS) \
1227 reg_class_subset_p ((CLASS), GENERAL_REGS)
1228 #define FLOAT_CLASS_P(CLASS) \
1229 reg_class_subset_p ((CLASS), FLOAT_REGS)
1230 #define SSE_CLASS_P(CLASS) \
1231 reg_class_subset_p ((CLASS), SSE_REGS)
1232 #define MMX_CLASS_P(CLASS) \
1233 ((CLASS) == MMX_REGS)
1234 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1235 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1236 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1237 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1238 #define MAYBE_SSE_CLASS_P(CLASS) \
1239 reg_classes_intersect_p (SSE_REGS, (CLASS))
1240 #define MAYBE_MMX_CLASS_P(CLASS) \
1241 reg_classes_intersect_p (MMX_REGS, (CLASS))
1242
1243 #define Q_CLASS_P(CLASS) \
1244 reg_class_subset_p ((CLASS), Q_REGS)
1245
1246 /* Give names of register classes as strings for dump file. */
1247
1248 #define REG_CLASS_NAMES \
1249 { "NO_REGS", \
1250 "AREG", "DREG", "CREG", "BREG", \
1251 "SIREG", "DIREG", \
1252 "AD_REGS", \
1253 "CLOBBERED_REGS", \
1254 "Q_REGS", "NON_Q_REGS", \
1255 "INDEX_REGS", \
1256 "LEGACY_REGS", \
1257 "GENERAL_REGS", \
1258 "FP_TOP_REG", "FP_SECOND_REG", \
1259 "FLOAT_REGS", \
1260 "SSE_FIRST_REG", \
1261 "SSE_REGS", \
1262 "MMX_REGS", \
1263 "FP_TOP_SSE_REGS", \
1264 "FP_SECOND_SSE_REGS", \
1265 "FLOAT_SSE_REGS", \
1266 "FLOAT_INT_REGS", \
1267 "INT_SSE_REGS", \
1268 "FLOAT_INT_SSE_REGS", \
1269 "ALL_REGS" }
1270
1271 /* Define which registers fit in which classes. This is an initializer
1272 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1273
1274 Note that the default setting of CLOBBERED_REGS is for 32-bit; this
1275 is adjusted by CONDITIONAL_REGISTER_USAGE for the 64-bit ABI in effect. */
1276
1277 #define REG_CLASS_CONTENTS \
1278 { { 0x00, 0x0 }, \
1279 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1280 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1281 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1282 { 0x03, 0x0 }, /* AD_REGS */ \
1283 { 0x07, 0x0 }, /* CLOBBERED_REGS */ \
1284 { 0x0f, 0x0 }, /* Q_REGS */ \
1285 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1286 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1287 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1288 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1289 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1290 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1291 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
1292 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1293 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1294 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1295 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1296 { 0x1fe0ff00,0x3fe000 }, /* FLOAT_SSE_REGS */ \
1297 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1298 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1299 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1300 { 0xffffffff,0x1fffff } \
1301 }
1302
1303 /* The same information, inverted:
1304 Return the class number of the smallest class containing
1305 reg number REGNO. This could be a conditional expression
1306 or could index an array. */
1307
1308 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1309
1310 /* When this hook returns true for MODE, the compiler allows
1311 registers explicitly used in the rtl to be used as spill registers
1312 but prevents the compiler from extending the lifetime of these
1313 registers. */
1314 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1315
1316 #define QI_REG_P(X) (REG_P (X) && REGNO (X) <= BX_REG)
1317
1318 #define GENERAL_REGNO_P(N) \
1319 ((N) <= STACK_POINTER_REGNUM || REX_INT_REGNO_P (N))
1320
1321 #define GENERAL_REG_P(X) \
1322 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1323
1324 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1325
1326 #define REX_INT_REGNO_P(N) \
1327 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1328 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1329
1330 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1331 #define FP_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1332 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1333 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1334
1335 #define X87_FLOAT_MODE_P(MODE) \
1336 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1337
1338 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1339 #define SSE_REGNO_P(N) \
1340 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
1341 || REX_SSE_REGNO_P (N))
1342
1343 #define REX_SSE_REGNO_P(N) \
1344 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1345
1346 #define SSE_REGNO(N) \
1347 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1348
1349 #define SSE_FLOAT_MODE_P(MODE) \
1350 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1351
1352 #define SSE_VEC_FLOAT_MODE_P(MODE) \
1353 ((TARGET_SSE && (MODE) == V4SFmode) || (TARGET_SSE2 && (MODE) == V2DFmode))
1354
1355 #define AVX_FLOAT_MODE_P(MODE) \
1356 (TARGET_AVX && ((MODE) == SFmode || (MODE) == DFmode))
1357
1358 #define AVX128_VEC_FLOAT_MODE_P(MODE) \
1359 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode))
1360
1361 #define AVX256_VEC_FLOAT_MODE_P(MODE) \
1362 (TARGET_AVX && ((MODE) == V8SFmode || (MODE) == V4DFmode))
1363
1364 #define AVX_VEC_FLOAT_MODE_P(MODE) \
1365 (TARGET_AVX && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1366 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1367
1368 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1369 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1370 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1371
1372 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1373 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1374
1375 #define STACK_REG_P(XOP) (REG_P (XOP) && STACK_REGNO_P (REGNO (XOP)))
1376 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1377
1378 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1379
1380 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1381 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1382
1383 /* The class value for index registers, and the one for base regs. */
1384
1385 #define INDEX_REG_CLASS INDEX_REGS
1386 #define BASE_REG_CLASS GENERAL_REGS
1387
1388 /* Place additional restrictions on the register class to use when it
1389 is necessary to be able to hold a value of mode MODE in a reload
1390 register for which class CLASS would ordinarily be used. */
1391
1392 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1393 ((MODE) == QImode && !TARGET_64BIT \
1394 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1395 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1396 ? Q_REGS : (CLASS))
1397
1398 /* Given an rtx X being reloaded into a reg required to be
1399 in class CLASS, return the class of reg to actually use.
1400 In general this is just CLASS; but on some machines
1401 in some cases it is preferable to use a more restrictive class.
1402 On the 80386 series, we prevent floating constants from being
1403 reloaded into floating registers (since no move-insn can do that)
1404 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1405
1406 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1407 QImode must go into class Q_REGS.
1408 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1409 movdf to do mem-to-mem moves through integer regs. */
1410
1411 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1412 ix86_preferred_reload_class ((X), (CLASS))
1413
1414 /* Discourage putting floating-point values in SSE registers unless
1415 SSE math is being used, and likewise for the 387 registers. */
1416
1417 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1418 ix86_preferred_output_reload_class ((X), (CLASS))
1419
1420 /* If we are copying between general and FP registers, we need a memory
1421 location. The same is true for SSE and MMX registers. */
1422 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1423 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1424
1425 /* Get_secondary_mem widens integral modes to BITS_PER_WORD.
1426 There is no need to emit full 64 bit move on 64 bit targets
1427 for integral modes that can be moved using 32 bit move. */
1428 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1429 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
1430 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1431 : MODE)
1432
1433 /* Return the maximum number of consecutive registers
1434 needed to represent mode MODE in a register of class CLASS. */
1435 /* On the 80386, this is the size of MODE in words,
1436 except in the FP regs, where a single reg is always enough. */
1437 #define CLASS_MAX_NREGS(CLASS, MODE) \
1438 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1439 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1440 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1441 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1442
1443 /* A C expression whose value is nonzero if pseudos that have been
1444 assigned to registers of class CLASS would likely be spilled
1445 because registers of CLASS are needed for spill registers.
1446
1447 The default value of this macro returns 1 if CLASS has exactly one
1448 register and zero otherwise. On most machines, this default
1449 should be used. Only define this macro to some other expression
1450 if pseudo allocated by `local-alloc.c' end up in memory because
1451 their hard registers were needed for spill registers. If this
1452 macro returns nonzero for those classes, those pseudos will only
1453 be allocated by `global.c', which knows how to reallocate the
1454 pseudo to another register. If there would not be another
1455 register available for reallocation, you should not change the
1456 definition of this macro since the only effect of such a
1457 definition would be to slow down register allocation. */
1458
1459 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1460 (((CLASS) == AREG) \
1461 || ((CLASS) == DREG) \
1462 || ((CLASS) == CREG) \
1463 || ((CLASS) == BREG) \
1464 || ((CLASS) == AD_REGS) \
1465 || ((CLASS) == SIREG) \
1466 || ((CLASS) == DIREG) \
1467 || ((CLASS) == SSE_FIRST_REG) \
1468 || ((CLASS) == FP_TOP_REG) \
1469 || ((CLASS) == FP_SECOND_REG))
1470
1471 /* Return a class of registers that cannot change FROM mode to TO mode. */
1472
1473 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1474 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1475 \f
1476 /* Stack layout; function entry, exit and calling. */
1477
1478 /* Define this if pushing a word on the stack
1479 makes the stack pointer a smaller address. */
1480 #define STACK_GROWS_DOWNWARD
1481
1482 /* Define this to nonzero if the nominal address of the stack frame
1483 is at the high-address end of the local variables;
1484 that is, each additional local variable allocated
1485 goes at a more negative offset in the frame. */
1486 #define FRAME_GROWS_DOWNWARD 1
1487
1488 /* Offset within stack frame to start allocating local variables at.
1489 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1490 first local allocated. Otherwise, it is the offset to the BEGINNING
1491 of the first local allocated. */
1492 #define STARTING_FRAME_OFFSET 0
1493
1494 /* If we generate an insn to push BYTES bytes,
1495 this says how many the stack pointer really advances by.
1496 On 386, we have pushw instruction that decrements by exactly 2 no
1497 matter what the position was, there is no pushb.
1498 But as CIE data alignment factor on this arch is -4, we need to make
1499 sure all stack pointer adjustments are in multiple of 4.
1500
1501 For 64bit ABI we round up to 8 bytes.
1502 */
1503
1504 #define PUSH_ROUNDING(BYTES) \
1505 (TARGET_64BIT \
1506 ? (((BYTES) + 7) & (-8)) \
1507 : (((BYTES) + 3) & (-4)))
1508
1509 /* If defined, the maximum amount of space required for outgoing arguments will
1510 be computed and placed into the variable
1511 `crtl->outgoing_args_size'. No space will be pushed onto the
1512 stack for each call; instead, the function prologue should increase the stack
1513 frame size by this amount.
1514
1515 MS ABI seem to require 16 byte alignment everywhere except for function
1516 prologue and apilogue. This is not possible without
1517 ACCUMULATE_OUTGOING_ARGS. */
1518
1519 #define ACCUMULATE_OUTGOING_ARGS \
1520 (TARGET_ACCUMULATE_OUTGOING_ARGS || ix86_cfun_abi () == MS_ABI)
1521
1522 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1523 instructions to pass outgoing arguments. */
1524
1525 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1526
1527 /* We want the stack and args grow in opposite directions, even if
1528 PUSH_ARGS is 0. */
1529 #define PUSH_ARGS_REVERSED 1
1530
1531 /* Offset of first parameter from the argument pointer register value. */
1532 #define FIRST_PARM_OFFSET(FNDECL) 0
1533
1534 /* Define this macro if functions should assume that stack space has been
1535 allocated for arguments even when their values are passed in registers.
1536
1537 The value of this macro is the size, in bytes, of the area reserved for
1538 arguments passed in registers for the function represented by FNDECL.
1539
1540 This space can be allocated by the caller, or be a part of the
1541 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1542 which. */
1543 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1544
1545 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1546 (ix86_function_type_abi (FNTYPE) == MS_ABI)
1547
1548 /* Define how to find the value returned by a library function
1549 assuming the value has mode MODE. */
1550
1551 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1552
1553 /* Define the size of the result block used for communication between
1554 untyped_call and untyped_return. The block contains a DImode value
1555 followed by the block used by fnsave and frstor. */
1556
1557 #define APPLY_RESULT_SIZE (8+108)
1558
1559 /* 1 if N is a possible register number for function argument passing. */
1560 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1561
1562 /* Define a data type for recording info about an argument list
1563 during the scan of that argument list. This data type should
1564 hold all necessary information about the function itself
1565 and about the args processed so far, enough to enable macros
1566 such as FUNCTION_ARG to determine where the next arg should go. */
1567
1568 typedef struct ix86_args {
1569 int words; /* # words passed so far */
1570 int nregs; /* # registers available for passing */
1571 int regno; /* next available register number */
1572 int fastcall; /* fastcall or thiscall calling convention
1573 is used */
1574 int sse_words; /* # sse words passed so far */
1575 int sse_nregs; /* # sse registers available for passing */
1576 int warn_avx; /* True when we want to warn about AVX ABI. */
1577 int warn_sse; /* True when we want to warn about SSE ABI. */
1578 int warn_mmx; /* True when we want to warn about MMX ABI. */
1579 int sse_regno; /* next available sse register number */
1580 int mmx_words; /* # mmx words passed so far */
1581 int mmx_nregs; /* # mmx registers available for passing */
1582 int mmx_regno; /* next available mmx register number */
1583 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1584 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1585 be passed in SSE registers. Otherwise 0. */
1586 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1587 MS_ABI for ms abi. */
1588 } CUMULATIVE_ARGS;
1589
1590 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1591 for a call to a function whose data type is FNTYPE.
1592 For a library call, FNTYPE is 0. */
1593
1594 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1595 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1596
1597 /* Output assembler code to FILE to increment profiler label # LABELNO
1598 for profiling a function entry. */
1599
1600 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1601
1602 #define MCOUNT_NAME "_mcount"
1603
1604 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1605
1606 #define PROFILE_COUNT_REGISTER "edx"
1607
1608 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1609 the stack pointer does not matter. The value is tested only in
1610 functions that have frame pointers.
1611 No definition is equivalent to always zero. */
1612 /* Note on the 386 it might be more efficient not to define this since
1613 we have to restore it ourselves from the frame pointer, in order to
1614 use pop */
1615
1616 #define EXIT_IGNORE_STACK 1
1617
1618 /* Output assembler code for a block containing the constant parts
1619 of a trampoline, leaving space for the variable parts. */
1620
1621 /* On the 386, the trampoline contains two instructions:
1622 mov #STATIC,ecx
1623 jmp FUNCTION
1624 The trampoline is generated entirely at runtime. The operand of JMP
1625 is the address of FUNCTION relative to the instruction following the
1626 JMP (which is 5 bytes long). */
1627
1628 /* Length in units of the trampoline for entering a nested function. */
1629
1630 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
1631 \f
1632 /* Definitions for register eliminations.
1633
1634 This is an array of structures. Each structure initializes one pair
1635 of eliminable registers. The "from" register number is given first,
1636 followed by "to". Eliminations of the same "from" register are listed
1637 in order of preference.
1638
1639 There are two registers that can always be eliminated on the i386.
1640 The frame pointer and the arg pointer can be replaced by either the
1641 hard frame pointer or to the stack pointer, depending upon the
1642 circumstances. The hard frame pointer is not used before reload and
1643 so it is not eligible for elimination. */
1644
1645 #define ELIMINABLE_REGS \
1646 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1647 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1648 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1649 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1650
1651 /* Define the offset between two registers, one to be eliminated, and the other
1652 its replacement, at the start of a routine. */
1653
1654 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1655 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1656 \f
1657 /* Addressing modes, and classification of registers for them. */
1658
1659 /* Macros to check register numbers against specific register classes. */
1660
1661 /* These assume that REGNO is a hard or pseudo reg number.
1662 They give nonzero only if REGNO is a hard reg of the suitable class
1663 or a pseudo reg currently allocated to a suitable hard reg.
1664 Since they use reg_renumber, they are safe only once reg_renumber
1665 has been allocated, which happens in local-alloc.c. */
1666
1667 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1668 ((REGNO) < STACK_POINTER_REGNUM \
1669 || REX_INT_REGNO_P (REGNO) \
1670 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1671 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1672
1673 #define REGNO_OK_FOR_BASE_P(REGNO) \
1674 (GENERAL_REGNO_P (REGNO) \
1675 || (REGNO) == ARG_POINTER_REGNUM \
1676 || (REGNO) == FRAME_POINTER_REGNUM \
1677 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1678
1679 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1680 and check its validity for a certain class.
1681 We have two alternate definitions for each of them.
1682 The usual definition accepts all pseudo regs; the other rejects
1683 them unless they have been allocated suitable hard regs.
1684 The symbol REG_OK_STRICT causes the latter definition to be used.
1685
1686 Most source files want to accept pseudo regs in the hope that
1687 they will get allocated to the class that the insn wants them to be in.
1688 Source files for reload pass need to be strict.
1689 After reload, it makes no difference, since pseudo regs have
1690 been eliminated by then. */
1691
1692
1693 /* Non strict versions, pseudos are ok. */
1694 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1695 (REGNO (X) < STACK_POINTER_REGNUM \
1696 || REX_INT_REGNO_P (REGNO (X)) \
1697 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1698
1699 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1700 (GENERAL_REGNO_P (REGNO (X)) \
1701 || REGNO (X) == ARG_POINTER_REGNUM \
1702 || REGNO (X) == FRAME_POINTER_REGNUM \
1703 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1704
1705 /* Strict versions, hard registers only */
1706 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1707 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1708
1709 #ifndef REG_OK_STRICT
1710 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1711 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1712
1713 #else
1714 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1715 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1716 #endif
1717
1718 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1719 that is a valid memory address for an instruction.
1720 The MODE argument is the machine mode for the MEM expression
1721 that wants to use this address.
1722
1723 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1724 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1725
1726 See legitimize_pic_address in i386.c for details as to what
1727 constitutes a legitimate address when -fpic is used. */
1728
1729 #define MAX_REGS_PER_ADDRESS 2
1730
1731 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1732
1733 /* Nonzero if the constant value X is a legitimate general operand.
1734 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1735
1736 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1737
1738 /* If defined, a C expression to determine the base term of address X.
1739 This macro is used in only one place: `find_base_term' in alias.c.
1740
1741 It is always safe for this macro to not be defined. It exists so
1742 that alias analysis can understand machine-dependent addresses.
1743
1744 The typical use of this macro is to handle addresses containing
1745 a label_ref or symbol_ref within an UNSPEC. */
1746
1747 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1748
1749 /* Nonzero if the constant value X is a legitimate general operand
1750 when generating PIC code. It is given that flag_pic is on and
1751 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1752
1753 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1754
1755 #define SYMBOLIC_CONST(X) \
1756 (GET_CODE (X) == SYMBOL_REF \
1757 || GET_CODE (X) == LABEL_REF \
1758 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1759 \f
1760 /* Max number of args passed in registers. If this is more than 3, we will
1761 have problems with ebx (register #4), since it is a caller save register and
1762 is also used as the pic register in ELF. So for now, don't allow more than
1763 3 registers to be passed in registers. */
1764
1765 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1766 #define X86_64_REGPARM_MAX 6
1767 #define X86_64_MS_REGPARM_MAX 4
1768
1769 #define X86_32_REGPARM_MAX 3
1770
1771 #define REGPARM_MAX \
1772 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X86_64_MS_REGPARM_MAX \
1773 : X86_64_REGPARM_MAX) \
1774 : X86_32_REGPARM_MAX)
1775
1776 #define X86_64_SSE_REGPARM_MAX 8
1777 #define X86_64_MS_SSE_REGPARM_MAX 4
1778
1779 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1780
1781 #define SSE_REGPARM_MAX \
1782 (TARGET_64BIT ? (TARGET_64BIT_MS_ABI ? X86_64_MS_SSE_REGPARM_MAX \
1783 : X86_64_SSE_REGPARM_MAX) \
1784 : X86_32_SSE_REGPARM_MAX)
1785
1786 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1787
1788 \f
1789 /* Specify the machine mode that this machine uses
1790 for the index in the tablejump instruction. */
1791 #define CASE_VECTOR_MODE \
1792 (!TARGET_64BIT || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1793
1794 /* Define this as 1 if `char' should by default be signed; else as 0. */
1795 #define DEFAULT_SIGNED_CHAR 1
1796
1797 /* Max number of bytes we can move from memory to memory
1798 in one reasonably fast instruction. */
1799 #define MOVE_MAX 16
1800
1801 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1802 move efficiently, as opposed to MOVE_MAX which is the maximum
1803 number of bytes we can move with a single instruction. */
1804 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1805
1806 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1807 move-instruction pairs, we will do a movmem or libcall instead.
1808 Increasing the value will always make code faster, but eventually
1809 incurs high cost in increased code size.
1810
1811 If you don't define this, a reasonable default is used. */
1812
1813 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1814
1815 /* If a clear memory operation would take CLEAR_RATIO or more simple
1816 move-instruction sequences, we will do a clrmem or libcall instead. */
1817
1818 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
1819
1820 /* Define if shifts truncate the shift count which implies one can
1821 omit a sign-extension or zero-extension of a shift count.
1822
1823 On i386, shifts do truncate the count. But bit test instructions
1824 take the modulo of the bit offset operand. */
1825
1826 /* #define SHIFT_COUNT_TRUNCATED */
1827
1828 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1829 is done just by pretending it is already truncated. */
1830 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1831
1832 /* A macro to update M and UNSIGNEDP when an object whose type is
1833 TYPE and which has the specified mode and signedness is to be
1834 stored in a register. This macro is only called when TYPE is a
1835 scalar type.
1836
1837 On i386 it is sometimes useful to promote HImode and QImode
1838 quantities to SImode. The choice depends on target type. */
1839
1840 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1841 do { \
1842 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1843 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1844 (MODE) = SImode; \
1845 } while (0)
1846
1847 /* Specify the machine mode that pointers have.
1848 After generation of rtl, the compiler makes no further distinction
1849 between pointers and any other objects of this machine mode. */
1850 #define Pmode (TARGET_64BIT ? DImode : SImode)
1851
1852 /* A function address in a call instruction
1853 is a byte address (for indexing purposes)
1854 so give the MEM rtx a byte's mode. */
1855 #define FUNCTION_MODE QImode
1856 \f
1857
1858 /* A C expression for the cost of a branch instruction. A value of 1
1859 is the default; other values are interpreted relative to that. */
1860
1861 #define BRANCH_COST(speed_p, predictable_p) \
1862 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1863
1864 /* Define this macro as a C expression which is nonzero if accessing
1865 less than a word of memory (i.e. a `char' or a `short') is no
1866 faster than accessing a word of memory, i.e., if such access
1867 require more than one instruction or if there is no difference in
1868 cost between byte and (aligned) word loads.
1869
1870 When this macro is not defined, the compiler will access a field by
1871 finding the smallest containing object; when it is defined, a
1872 fullword load will be used if alignment permits. Unless bytes
1873 accesses are faster than word accesses, using word accesses is
1874 preferable since it may eliminate subsequent memory access if
1875 subsequent accesses occur to other fields in the same word of the
1876 structure, but to different bytes. */
1877
1878 #define SLOW_BYTE_ACCESS 0
1879
1880 /* Nonzero if access to memory by shorts is slow and undesirable. */
1881 #define SLOW_SHORT_ACCESS 0
1882
1883 /* Define this macro to be the value 1 if unaligned accesses have a
1884 cost many times greater than aligned accesses, for example if they
1885 are emulated in a trap handler.
1886
1887 When this macro is nonzero, the compiler will act as if
1888 `STRICT_ALIGNMENT' were nonzero when generating code for block
1889 moves. This can cause significantly more instructions to be
1890 produced. Therefore, do not set this macro nonzero if unaligned
1891 accesses only add a cycle or two to the time for a memory access.
1892
1893 If the value of this macro is always zero, it need not be defined. */
1894
1895 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1896
1897 /* Define this macro if it is as good or better to call a constant
1898 function address than to call an address kept in a register.
1899
1900 Desirable on the 386 because a CALL with a constant address is
1901 faster than one with a register address. */
1902
1903 #define NO_FUNCTION_CSE
1904 \f
1905 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1906 return the mode to be used for the comparison.
1907
1908 For floating-point equality comparisons, CCFPEQmode should be used.
1909 VOIDmode should be used in all other cases.
1910
1911 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1912 possible, to allow for more combinations. */
1913
1914 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1915
1916 /* Return nonzero if MODE implies a floating point inequality can be
1917 reversed. */
1918
1919 #define REVERSIBLE_CC_MODE(MODE) 1
1920
1921 /* A C expression whose value is reversed condition code of the CODE for
1922 comparison done in CC_MODE mode. */
1923 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1924
1925 \f
1926 /* Control the assembler format that we output, to the extent
1927 this does not vary between assemblers. */
1928
1929 /* How to refer to registers in assembler output.
1930 This sequence is indexed by compiler's hard-register-number (see above). */
1931
1932 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1933 For non floating point regs, the following are the HImode names.
1934
1935 For float regs, the stack top is sometimes referred to as "%st(0)"
1936 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1937 "y" code. */
1938
1939 #define HI_REGISTER_NAMES \
1940 {"ax","dx","cx","bx","si","di","bp","sp", \
1941 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1942 "argp", "flags", "fpsr", "fpcr", "frame", \
1943 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1944 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
1945 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1946 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1947
1948 #define REGISTER_NAMES HI_REGISTER_NAMES
1949
1950 /* Table of additional register names to use in user input. */
1951
1952 #define ADDITIONAL_REGISTER_NAMES \
1953 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1954 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
1955 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1956 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
1957 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
1958 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1959
1960 /* Note we are omitting these since currently I don't know how
1961 to get gcc to use these, since they want the same but different
1962 number as al, and ax.
1963 */
1964
1965 #define QI_REGISTER_NAMES \
1966 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1967
1968 /* These parallel the array above, and can be used to access bits 8:15
1969 of regs 0 through 3. */
1970
1971 #define QI_HIGH_REGISTER_NAMES \
1972 {"ah", "dh", "ch", "bh", }
1973
1974 /* How to renumber registers for dbx and gdb. */
1975
1976 #define DBX_REGISTER_NUMBER(N) \
1977 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1978
1979 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1980 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1981 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1982
1983 /* Before the prologue, RA is at 0(%esp). */
1984 #define INCOMING_RETURN_ADDR_RTX \
1985 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1986
1987 /* After the prologue, RA is at -4(AP) in the current frame. */
1988 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1989 ((COUNT) == 0 \
1990 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1991 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
1992
1993 /* PC is dbx register 8; let's use that column for RA. */
1994 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
1995
1996 /* Before the prologue, the top of the frame is at 4(%esp). */
1997 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
1998
1999 /* Describe how we implement __builtin_eh_return. */
2000 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2001 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2002
2003
2004 /* Select a format to encode pointers in exception handling data. CODE
2005 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2006 true if the symbol may be affected by dynamic relocations.
2007
2008 ??? All x86 object file formats are capable of representing this.
2009 After all, the relocation needed is the same as for the call insn.
2010 Whether or not a particular assembler allows us to enter such, I
2011 guess we'll have to see. */
2012 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2013 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2014
2015 /* This is how to output an insn to push a register on the stack.
2016 It need not be very fast code. */
2017
2018 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2019 do { \
2020 if (TARGET_64BIT) \
2021 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2022 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2023 else \
2024 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2025 } while (0)
2026
2027 /* This is how to output an insn to pop a register from the stack.
2028 It need not be very fast code. */
2029
2030 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2031 do { \
2032 if (TARGET_64BIT) \
2033 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2034 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2035 else \
2036 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2037 } while (0)
2038
2039 /* This is how to output an element of a case-vector that is absolute. */
2040
2041 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2042 ix86_output_addr_vec_elt ((FILE), (VALUE))
2043
2044 /* This is how to output an element of a case-vector that is relative. */
2045
2046 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2047 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2048
2049 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is
2050 true. */
2051
2052 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2053 { \
2054 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2055 { \
2056 if (TARGET_AVX) \
2057 (PTR) += 1; \
2058 else \
2059 (PTR) += 2; \
2060 } \
2061 }
2062
2063 /* A C statement or statements which output an assembler instruction
2064 opcode to the stdio stream STREAM. The macro-operand PTR is a
2065 variable of type `char *' which points to the opcode name in
2066 its "internal" form--the form that is written in the machine
2067 description. */
2068
2069 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2070 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2071
2072 /* A C statement to output to the stdio stream FILE an assembler
2073 command to pad the location counter to a multiple of 1<<LOG
2074 bytes if it is within MAX_SKIP bytes. */
2075
2076 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2077 #undef ASM_OUTPUT_MAX_SKIP_PAD
2078 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
2079 if ((LOG) != 0) \
2080 { \
2081 if ((MAX_SKIP) == 0) \
2082 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2083 else \
2084 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2085 }
2086 #endif
2087
2088 /* Write the extra assembler code needed to declare a function
2089 properly. */
2090
2091 #undef ASM_OUTPUT_FUNCTION_LABEL
2092 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2093 ix86_asm_output_function_label (FILE, NAME, DECL)
2094
2095 /* Under some conditions we need jump tables in the text section,
2096 because the assembler cannot handle label differences between
2097 sections. This is the case for x86_64 on Mach-O for example. */
2098
2099 #define JUMP_TABLES_IN_TEXT_SECTION \
2100 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2101 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2102
2103 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2104 and switch back. For x86 we do this only to save a few bytes that
2105 would otherwise be unused in the text section. */
2106 #define CRT_MKSTR2(VAL) #VAL
2107 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2108
2109 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2110 asm (SECTION_OP "\n\t" \
2111 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2112 TEXT_SECTION_ASM_OP);
2113 \f
2114 /* Which processor to schedule for. The cpu attribute defines a list that
2115 mirrors this list, so changes to i386.md must be made at the same time. */
2116
2117 enum processor_type
2118 {
2119 PROCESSOR_I386 = 0, /* 80386 */
2120 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2121 PROCESSOR_PENTIUM,
2122 PROCESSOR_PENTIUMPRO,
2123 PROCESSOR_GEODE,
2124 PROCESSOR_K6,
2125 PROCESSOR_ATHLON,
2126 PROCESSOR_PENTIUM4,
2127 PROCESSOR_K8,
2128 PROCESSOR_NOCONA,
2129 PROCESSOR_CORE2,
2130 PROCESSOR_GENERIC32,
2131 PROCESSOR_GENERIC64,
2132 PROCESSOR_AMDFAM10,
2133 PROCESSOR_BDVER1,
2134 PROCESSOR_ATOM,
2135 PROCESSOR_max
2136 };
2137
2138 extern enum processor_type ix86_tune;
2139 extern enum processor_type ix86_arch;
2140
2141 enum fpmath_unit
2142 {
2143 FPMATH_387 = 1,
2144 FPMATH_SSE = 2
2145 };
2146
2147 extern enum fpmath_unit ix86_fpmath;
2148
2149 enum tls_dialect
2150 {
2151 TLS_DIALECT_GNU,
2152 TLS_DIALECT_GNU2,
2153 TLS_DIALECT_SUN
2154 };
2155
2156 extern enum tls_dialect ix86_tls_dialect;
2157
2158 enum cmodel {
2159 CM_32, /* The traditional 32-bit ABI. */
2160 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2161 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2162 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2163 CM_LARGE, /* No assumptions. */
2164 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
2165 CM_MEDIUM_PIC,/* Assumes code+got/plt fits in a 31 bit region. */
2166 CM_LARGE_PIC /* No assumptions. */
2167 };
2168
2169 extern enum cmodel ix86_cmodel;
2170
2171 /* Size of the RED_ZONE area. */
2172 #define RED_ZONE_SIZE 128
2173 /* Reserved area of the red zone for temporaries. */
2174 #define RED_ZONE_RESERVE 8
2175
2176 enum asm_dialect {
2177 ASM_ATT,
2178 ASM_INTEL
2179 };
2180
2181 extern enum asm_dialect ix86_asm_dialect;
2182 extern unsigned int ix86_preferred_stack_boundary;
2183 extern unsigned int ix86_incoming_stack_boundary;
2184 extern int ix86_branch_cost, ix86_section_threshold;
2185
2186 /* Smallest class containing REGNO. */
2187 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2188
2189 enum ix86_fpcmp_strategy {
2190 IX86_FPCMP_SAHF,
2191 IX86_FPCMP_COMI,
2192 IX86_FPCMP_ARITH
2193 };
2194 \f
2195 /* To properly truncate FP values into integers, we need to set i387 control
2196 word. We can't emit proper mode switching code before reload, as spills
2197 generated by reload may truncate values incorrectly, but we still can avoid
2198 redundant computation of new control word by the mode switching pass.
2199 The fldcw instructions are still emitted redundantly, but this is probably
2200 not going to be noticeable problem, as most CPUs do have fast path for
2201 the sequence.
2202
2203 The machinery is to emit simple truncation instructions and split them
2204 before reload to instructions having USEs of two memory locations that
2205 are filled by this code to old and new control word.
2206
2207 Post-reload pass may be later used to eliminate the redundant fildcw if
2208 needed. */
2209
2210 enum ix86_entity
2211 {
2212 I387_TRUNC = 0,
2213 I387_FLOOR,
2214 I387_CEIL,
2215 I387_MASK_PM,
2216 MAX_386_ENTITIES
2217 };
2218
2219 enum ix86_stack_slot
2220 {
2221 SLOT_VIRTUAL = 0,
2222 SLOT_TEMP,
2223 SLOT_CW_STORED,
2224 SLOT_CW_TRUNC,
2225 SLOT_CW_FLOOR,
2226 SLOT_CW_CEIL,
2227 SLOT_CW_MASK_PM,
2228 MAX_386_STACK_LOCALS
2229 };
2230
2231 /* Define this macro if the port needs extra instructions inserted
2232 for mode switching in an optimizing compilation. */
2233
2234 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2235 ix86_optimize_mode_switching[(ENTITY)]
2236
2237 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2238 initializer for an array of integers. Each initializer element N
2239 refers to an entity that needs mode switching, and specifies the
2240 number of different modes that might need to be set for this
2241 entity. The position of the initializer in the initializer -
2242 starting counting at zero - determines the integer that is used to
2243 refer to the mode-switched entity in question. */
2244
2245 #define NUM_MODES_FOR_MODE_SWITCHING \
2246 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2247
2248 /* ENTITY is an integer specifying a mode-switched entity. If
2249 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2250 return an integer value not larger than the corresponding element
2251 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2252 must be switched into prior to the execution of INSN. */
2253
2254 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2255
2256 /* This macro specifies the order in which modes for ENTITY are
2257 processed. 0 is the highest priority. */
2258
2259 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2260
2261 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2262 is the set of hard registers live at the point where the insn(s)
2263 are to be inserted. */
2264
2265 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2266 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2267 ? emit_i387_cw_initialization (MODE), 0 \
2268 : 0)
2269
2270 \f
2271 /* Avoid renaming of stack registers, as doing so in combination with
2272 scheduling just increases amount of live registers at time and in
2273 the turn amount of fxch instructions needed.
2274
2275 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2276
2277 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2278 (! IN_RANGE ((SRC), FIRST_STACK_REG, LAST_STACK_REG))
2279
2280 \f
2281 #define FASTCALL_PREFIX '@'
2282 \f
2283 /* Machine specific frame tracking during prologue/epilogue generation. */
2284
2285 #ifndef USED_FOR_TARGET
2286 struct GTY(()) machine_frame_state
2287 {
2288 /* This pair tracks the currently active CFA as reg+offset. When reg
2289 is drap_reg, we don't bother trying to record here the real CFA when
2290 it might really be a DW_CFA_def_cfa_expression. */
2291 rtx cfa_reg;
2292 HOST_WIDE_INT cfa_offset;
2293
2294 /* The current offset (canonically from the CFA) of ESP and EBP.
2295 When stack frame re-alignment is active, these may not be relative
2296 to the CFA. However, in all cases they are relative to the offsets
2297 of the saved registers stored in ix86_frame. */
2298 HOST_WIDE_INT sp_offset;
2299 HOST_WIDE_INT fp_offset;
2300
2301 /* The size of the red-zone that may be assumed for the purposes of
2302 eliding register restore notes in the epilogue. This may be zero
2303 if no red-zone is in effect, or may be reduced from the real
2304 red-zone value by a maximum runtime stack re-alignment value. */
2305 int red_zone_offset;
2306
2307 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2308 value within the frame. If false then the offset above should be
2309 ignored. Note that DRAP, if valid, *always* points to the CFA and
2310 thus has an offset of zero. */
2311 BOOL_BITFIELD sp_valid : 1;
2312 BOOL_BITFIELD fp_valid : 1;
2313 BOOL_BITFIELD drap_valid : 1;
2314
2315 /* Indicate whether the local stack frame has been re-aligned. When
2316 set, the SP/FP offsets above are relative to the aligned frame
2317 and not the CFA. */
2318 BOOL_BITFIELD realigned : 1;
2319 };
2320
2321 struct GTY(()) machine_function {
2322 struct stack_local_entry *stack_locals;
2323 const char *some_ld_name;
2324 int varargs_gpr_size;
2325 int varargs_fpr_size;
2326 int optimize_mode_switching[MAX_386_ENTITIES];
2327
2328 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
2329 has been computed for. */
2330 int use_fast_prologue_epilogue_nregs;
2331
2332 /* This value is used for amd64 targets and specifies the current abi
2333 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2334 ENUM_BITFIELD(calling_abi) call_abi : 8;
2335
2336 /* Nonzero if the function accesses a previous frame. */
2337 BOOL_BITFIELD accesses_prev_frame : 1;
2338
2339 /* Nonzero if the function requires a CLD in the prologue. */
2340 BOOL_BITFIELD needs_cld : 1;
2341
2342 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2343 expander to determine the style used. */
2344 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2345
2346 /* If true, the current function needs the default PIC register, not
2347 an alternate register (on x86) and must not use the red zone (on
2348 x86_64), even if it's a leaf function. We don't want the
2349 function to be regarded as non-leaf because TLS calls need not
2350 affect register allocation. This flag is set when a TLS call
2351 instruction is expanded within a function, and never reset, even
2352 if all such instructions are optimized away. Use the
2353 ix86_current_function_calls_tls_descriptor macro for a better
2354 approximation. */
2355 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2356
2357 /* If true, the current function has a STATIC_CHAIN is placed on the
2358 stack below the return address. */
2359 BOOL_BITFIELD static_chain_on_stack : 1;
2360
2361 /* During prologue/epilogue generation, the current frame state.
2362 Otherwise, the frame state at the end of the prologue. */
2363 struct machine_frame_state fs;
2364 };
2365 #endif
2366
2367 #define ix86_stack_locals (cfun->machine->stack_locals)
2368 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2369 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2370 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2371 #define ix86_current_function_needs_cld (cfun->machine->needs_cld)
2372 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2373 (cfun->machine->tls_descriptor_call_expanded_p)
2374 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2375 calls are optimized away, we try to detect cases in which it was
2376 optimized away. Since such instructions (use (reg REG_SP)), we can
2377 verify whether there's any such instruction live by testing that
2378 REG_SP is live. */
2379 #define ix86_current_function_calls_tls_descriptor \
2380 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2381 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2382
2383 /* Control behavior of x86_file_start. */
2384 #define X86_FILE_START_VERSION_DIRECTIVE false
2385 #define X86_FILE_START_FLTUSED false
2386
2387 /* Flag to mark data that is in the large address area. */
2388 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2389 #define SYMBOL_REF_FAR_ADDR_P(X) \
2390 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2391
2392 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2393 have defined always, to avoid ifdefing. */
2394 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2395 #define SYMBOL_REF_DLLIMPORT_P(X) \
2396 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2397
2398 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2399 #define SYMBOL_REF_DLLEXPORT_P(X) \
2400 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2401
2402 /*
2403 Local variables:
2404 version-control: t
2405 End:
2406 */