]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/i386/i386.h
d865fcb9466832049418de2607652051e8b407ee
[thirdparty/gcc.git] / gcc / config / i386 / i386.h
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988-2022 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
19
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
24
25 /* The purpose of this file is to define the characteristics of the i386,
26 independent of assembler syntax or operating system.
27
28 Three other files build on this one to describe a specific assembler syntax:
29 bsd386.h, att386.h, and sun386.h.
30
31 The actual tm.h file for a particular system should include
32 this file, and then the file for the appropriate assembler syntax.
33
34 Many macros that specify assembler syntax are omitted entirely from
35 this file because they really belong in the files for particular
36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
38 that start with ASM_ or end in ASM_OP. */
39
40 /* Redefines for option macros. */
41
42 #define TARGET_CMPXCHG16B TARGET_CX16
43 #define TARGET_CMPXCHG16B_P(x) TARGET_CX16_P(x)
44
45 #define TARGET_LP64 TARGET_ABI_64
46 #define TARGET_LP64_P(x) TARGET_ABI_64_P(x)
47 #define TARGET_X32 TARGET_ABI_X32
48 #define TARGET_X32_P(x) TARGET_ABI_X32_P(x)
49 #define TARGET_16BIT TARGET_CODE16
50 #define TARGET_16BIT_P(x) TARGET_CODE16_P(x)
51
52 #define TARGET_MMX_WITH_SSE (TARGET_64BIT && TARGET_SSE2)
53
54 #include "config/vxworks-dummy.h"
55
56 #include "config/i386/i386-opts.h"
57
58 #define MAX_STRINGOP_ALGS 4
59
60 /* Specify what algorithm to use for stringops on known size.
61 When size is unknown, the UNKNOWN_SIZE alg is used. When size is
62 known at compile time or estimated via feedback, the SIZE array
63 is walked in order until MAX is greater then the estimate (or -1
64 means infinity). Corresponding ALG is used then.
65 When NOALIGN is true the code guaranting the alignment of the memory
66 block is skipped.
67
68 For example initializer:
69 {{256, loop}, {-1, rep_prefix_4_byte}}
70 will use loop for blocks smaller or equal to 256 bytes, rep prefix will
71 be used otherwise. */
72 struct stringop_algs
73 {
74 const enum stringop_alg unknown_size;
75 const struct stringop_strategy {
76 /* Several older compilers delete the default constructor because of the
77 const entries (see PR100246). Manually specifying a CTOR works around
78 this issue. Since this header is used by code compiled with the C
79 compiler we must guard the addition. */
80 #ifdef __cplusplus
81 constexpr
82 stringop_strategy (int _max = -1, enum stringop_alg _alg = libcall,
83 int _noalign = false)
84 : max (_max), alg (_alg), noalign (_noalign) {}
85 #endif
86 const int max;
87 const enum stringop_alg alg;
88 int noalign;
89 } size [MAX_STRINGOP_ALGS];
90 };
91
92 /* Analog of COSTS_N_INSNS when optimizing for size. */
93 #ifndef COSTS_N_BYTES
94 #define COSTS_N_BYTES(N) ((N) * 2)
95 #endif
96
97 /* Define the specific costs for a given cpu. NB: hard_register is used
98 by TARGET_REGISTER_MOVE_COST and TARGET_MEMORY_MOVE_COST to compute
99 hard register move costs by register allocator. Relative costs of
100 pseudo register load and store versus pseudo register moves in RTL
101 expressions for TARGET_RTX_COSTS can be different from relative
102 costs of hard registers to get the most efficient operations with
103 pseudo registers. */
104
105 struct processor_costs {
106 /* Costs used by register allocator. integer->integer register move
107 cost is 2. */
108 struct
109 {
110 const int movzbl_load; /* cost of loading using movzbl */
111 const int int_load[3]; /* cost of loading integer registers
112 in QImode, HImode and SImode relative
113 to reg-reg move (2). */
114 const int int_store[3]; /* cost of storing integer register
115 in QImode, HImode and SImode */
116 const int fp_move; /* cost of reg,reg fld/fst */
117 const int fp_load[3]; /* cost of loading FP register
118 in SFmode, DFmode and XFmode */
119 const int fp_store[3]; /* cost of storing FP register
120 in SFmode, DFmode and XFmode */
121 const int mmx_move; /* cost of moving MMX register. */
122 const int mmx_load[2]; /* cost of loading MMX register
123 in SImode and DImode */
124 const int mmx_store[2]; /* cost of storing MMX register
125 in SImode and DImode */
126 const int xmm_move; /* cost of moving XMM register. */
127 const int ymm_move; /* cost of moving XMM register. */
128 const int zmm_move; /* cost of moving XMM register. */
129 const int sse_load[5]; /* cost of loading SSE register
130 in 32bit, 64bit, 128bit, 256bit and 512bit */
131 const int sse_store[5]; /* cost of storing SSE register
132 in SImode, DImode and TImode. */
133 const int sse_to_integer; /* cost of moving SSE register to integer. */
134 const int integer_to_sse; /* cost of moving integer register to SSE. */
135 const int mask_to_integer; /* cost of moving mask register to integer. */
136 const int integer_to_mask; /* cost of moving integer register to mask. */
137 const int mask_load[3]; /* cost of loading mask registers
138 in QImode, HImode and SImode. */
139 const int mask_store[3]; /* cost of storing mask register
140 in QImode, HImode and SImode. */
141 const int mask_move; /* cost of moving mask register. */
142 } hard_register;
143
144 const int add; /* cost of an add instruction */
145 const int lea; /* cost of a lea instruction */
146 const int shift_var; /* variable shift costs */
147 const int shift_const; /* constant shift costs */
148 const int mult_init[5]; /* cost of starting a multiply
149 in QImode, HImode, SImode, DImode, TImode*/
150 const int mult_bit; /* cost of multiply per each bit set */
151 const int divide[5]; /* cost of a divide/mod
152 in QImode, HImode, SImode, DImode, TImode*/
153 int movsx; /* The cost of movsx operation. */
154 int movzx; /* The cost of movzx operation. */
155 const int large_insn; /* insns larger than this cost more */
156 const int move_ratio; /* The threshold of number of scalar
157 memory-to-memory move insns. */
158 const int clear_ratio; /* The threshold of number of scalar
159 memory clearing insns. */
160 const int int_load[3]; /* cost of loading integer registers
161 in QImode, HImode and SImode relative
162 to reg-reg move (2). */
163 const int int_store[3]; /* cost of storing integer register
164 in QImode, HImode and SImode */
165 const int sse_load[5]; /* cost of loading SSE register
166 in 32bit, 64bit, 128bit, 256bit and 512bit */
167 const int sse_store[5]; /* cost of storing SSE register
168 in 32bit, 64bit, 128bit, 256bit and 512bit */
169 const int sse_unaligned_load[5];/* cost of unaligned load. */
170 const int sse_unaligned_store[5];/* cost of unaligned store. */
171 const int xmm_move, ymm_move, /* cost of moving XMM and YMM register. */
172 zmm_move;
173 const int sse_to_integer; /* cost of moving SSE register to integer. */
174 const int gather_static, gather_per_elt; /* Cost of gather load is computed
175 as static + per_item * nelts. */
176 const int scatter_static, scatter_per_elt; /* Cost of gather store is
177 computed as static + per_item * nelts. */
178 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
179 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
180 const int prefetch_block; /* bytes moved to cache for prefetch. */
181 const int simultaneous_prefetches; /* number of parallel prefetch
182 operations. */
183 const int branch_cost; /* Default value for BRANCH_COST. */
184 const int fadd; /* cost of FADD and FSUB instructions. */
185 const int fmul; /* cost of FMUL instruction. */
186 const int fdiv; /* cost of FDIV instruction. */
187 const int fabs; /* cost of FABS instruction. */
188 const int fchs; /* cost of FCHS instruction. */
189 const int fsqrt; /* cost of FSQRT instruction. */
190 /* Specify what algorithm
191 to use for stringops on unknown size. */
192 const int sse_op; /* cost of cheap SSE instruction. */
193 const int addss; /* cost of ADDSS/SD SUBSS/SD instructions. */
194 const int mulss; /* cost of MULSS instructions. */
195 const int mulsd; /* cost of MULSD instructions. */
196 const int fmass; /* cost of FMASS instructions. */
197 const int fmasd; /* cost of FMASD instructions. */
198 const int divss; /* cost of DIVSS instructions. */
199 const int divsd; /* cost of DIVSD instructions. */
200 const int sqrtss; /* cost of SQRTSS instructions. */
201 const int sqrtsd; /* cost of SQRTSD instructions. */
202 const int reassoc_int, reassoc_fp, reassoc_vec_int, reassoc_vec_fp;
203 /* Specify reassociation width for integer,
204 fp, vector integer and vector fp
205 operations. Generally should correspond
206 to number of instructions executed in
207 parallel. See also
208 ix86_reassociation_width. */
209 struct stringop_algs *memcpy, *memset;
210 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
211 cost model. */
212 const int cond_not_taken_branch_cost;/* Cost of not taken branch for
213 vectorizer cost model. */
214
215 /* The "0:0:8" label alignment specified for some processors generates
216 secondary 8-byte alignment only for those label/jump/loop targets
217 which have primary alignment. */
218 const char *const align_loop; /* Loop alignment. */
219 const char *const align_jump; /* Jump alignment. */
220 const char *const align_label; /* Label alignment. */
221 const char *const align_func; /* Function alignment. */
222
223 const unsigned small_unroll_ninsns; /* Insn count limit for small loop
224 to be unrolled. */
225 const unsigned small_unroll_factor; /* Unroll factor for small loop to
226 be unrolled. */
227 };
228
229 extern const struct processor_costs *ix86_cost;
230 extern const struct processor_costs ix86_size_cost;
231
232 #define ix86_cur_cost() \
233 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
234
235 /* Macros used in the machine description to test the flags. */
236
237 /* configure can arrange to change it. */
238
239 #ifndef TARGET_CPU_DEFAULT
240 #define TARGET_CPU_DEFAULT PROCESSOR_GENERIC
241 #endif
242
243 #ifndef TARGET_FPMATH_DEFAULT
244 #define TARGET_FPMATH_DEFAULT \
245 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
246 #endif
247
248 #ifndef TARGET_FPMATH_DEFAULT_P
249 #define TARGET_FPMATH_DEFAULT_P(x) \
250 (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387)
251 #endif
252
253 /* If the i387 is disabled or -miamcu is used , then do not return
254 values in it. */
255 #define TARGET_FLOAT_RETURNS_IN_80387 \
256 (TARGET_FLOAT_RETURNS && TARGET_80387 && !TARGET_IAMCU)
257 #define TARGET_FLOAT_RETURNS_IN_80387_P(x) \
258 (TARGET_FLOAT_RETURNS_P(x) && TARGET_80387_P(x) && !TARGET_IAMCU_P(x))
259
260 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
261 compile-time constant. */
262 #ifdef IN_LIBGCC2
263 #undef TARGET_64BIT
264 #ifdef __x86_64__
265 #define TARGET_64BIT 1
266 #else
267 #define TARGET_64BIT 0
268 #endif
269 #else
270 #ifndef TARGET_BI_ARCH
271 #undef TARGET_64BIT
272 #undef TARGET_64BIT_P
273 #if TARGET_64BIT_DEFAULT
274 #define TARGET_64BIT 1
275 #define TARGET_64BIT_P(x) 1
276 #else
277 #define TARGET_64BIT 0
278 #define TARGET_64BIT_P(x) 0
279 #endif
280 #endif
281 #endif
282
283 #define HAS_LONG_COND_BRANCH 1
284 #define HAS_LONG_UNCOND_BRANCH 1
285
286 #define TARGET_CPU_P(CPU) (ix86_tune == PROCESSOR_ ## CPU)
287
288 /* Feature tests against the various tunings. */
289 enum ix86_tune_indices {
290 #undef DEF_TUNE
291 #define DEF_TUNE(tune, name, selector) tune,
292 #include "x86-tune.def"
293 #undef DEF_TUNE
294 X86_TUNE_LAST
295 };
296
297 extern unsigned char ix86_tune_features[X86_TUNE_LAST];
298
299 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
300 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
301 #define TARGET_ZERO_EXTEND_WITH_AND \
302 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
303 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
304 #define TARGET_BRANCH_PREDICTION_HINTS \
305 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
306 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
307 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
308 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
309 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
310 #define TARGET_PARTIAL_FLAG_REG_STALL \
311 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
312 #define TARGET_LCP_STALL \
313 ix86_tune_features[X86_TUNE_LCP_STALL]
314 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
315 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
316 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
317 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
318 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
319 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
320 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
321 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
322 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
323 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
324 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
325 #define TARGET_PREFER_KNOWN_REP_MOVSB_STOSB \
326 ix86_tune_features[X86_TUNE_PREFER_KNOWN_REP_MOVSB_STOSB]
327 #define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \
328 ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES]
329 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
330 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
331 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
332 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
333 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
334 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
335 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
336 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
337 #define TARGET_INTEGER_DFMODE_MOVES \
338 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
339 #define TARGET_PARTIAL_REG_DEPENDENCY \
340 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
341 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
342 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
343 #define TARGET_SSE_PARTIAL_REG_FP_CONVERTS_DEPENDENCY \
344 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_FP_CONVERTS_DEPENDENCY]
345 #define TARGET_SSE_PARTIAL_REG_CONVERTS_DEPENDENCY \
346 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_CONVERTS_DEPENDENCY]
347 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
348 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
349 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
350 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
351 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
352 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
353 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
354 #define TARGET_SSE_TYPELESS_STORES \
355 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
356 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
357 #define TARGET_MEMORY_MISMATCH_STALL \
358 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
359 #define TARGET_PROLOGUE_USING_MOVE \
360 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
361 #define TARGET_EPILOGUE_USING_MOVE \
362 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
363 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
364 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
365 #define TARGET_INTER_UNIT_MOVES_TO_VEC \
366 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC]
367 #define TARGET_INTER_UNIT_MOVES_FROM_VEC \
368 ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC]
369 #define TARGET_INTER_UNIT_CONVERSIONS \
370 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
371 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
372 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
373 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
374 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
375 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
376 #define TARGET_PAD_SHORT_FUNCTION \
377 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
378 #define TARGET_EXT_80387_CONSTANTS \
379 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
380 #define TARGET_AVOID_VECTOR_DECODE \
381 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
382 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
383 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
384 #define TARGET_SLOW_IMUL_IMM32_MEM \
385 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
386 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
387 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
388 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
389 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
390 #define TARGET_USE_VECTOR_FP_CONVERTS \
391 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
392 #define TARGET_USE_VECTOR_CONVERTS \
393 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
394 #define TARGET_SLOW_PSHUFB \
395 ix86_tune_features[X86_TUNE_SLOW_PSHUFB]
396 #define TARGET_AVOID_4BYTE_PREFIXES \
397 ix86_tune_features[X86_TUNE_AVOID_4BYTE_PREFIXES]
398 #define TARGET_USE_GATHER_2PARTS \
399 ix86_tune_features[X86_TUNE_USE_GATHER_2PARTS]
400 #define TARGET_USE_GATHER_4PARTS \
401 ix86_tune_features[X86_TUNE_USE_GATHER_4PARTS]
402 #define TARGET_USE_GATHER \
403 ix86_tune_features[X86_TUNE_USE_GATHER]
404 #define TARGET_FUSE_CMP_AND_BRANCH_32 \
405 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32]
406 #define TARGET_FUSE_CMP_AND_BRANCH_64 \
407 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64]
408 #define TARGET_FUSE_CMP_AND_BRANCH \
409 (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \
410 : TARGET_FUSE_CMP_AND_BRANCH_32)
411 #define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \
412 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS]
413 #define TARGET_FUSE_ALU_AND_BRANCH \
414 ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH]
415 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
416 #define TARGET_AVOID_LEA_FOR_ADDR \
417 ix86_tune_features[X86_TUNE_AVOID_LEA_FOR_ADDR]
418 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
419 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
420 #define TARGET_AVX256_SPLIT_REGS \
421 ix86_tune_features[X86_TUNE_AVX256_SPLIT_REGS]
422 #define TARGET_GENERAL_REGS_SSE_SPILL \
423 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
424 #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
425 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
426 #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \
427 ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS]
428 #define TARGET_ADJUST_UNROLL \
429 ix86_tune_features[X86_TUNE_ADJUST_UNROLL]
430 #define TARGET_AVOID_FALSE_DEP_FOR_BMI \
431 ix86_tune_features[X86_TUNE_AVOID_FALSE_DEP_FOR_BMI]
432 #define TARGET_ONE_IF_CONV_INSN \
433 ix86_tune_features[X86_TUNE_ONE_IF_CONV_INSN]
434 #define TARGET_AVOID_MFENCE ix86_tune_features[X86_TUNE_AVOID_MFENCE]
435 #define TARGET_EMIT_VZEROUPPER \
436 ix86_tune_features[X86_TUNE_EMIT_VZEROUPPER]
437 #define TARGET_EXPAND_ABS \
438 ix86_tune_features[X86_TUNE_EXPAND_ABS]
439 #define TARGET_V2DF_REDUCTION_PREFER_HADDPD \
440 ix86_tune_features[X86_TUNE_V2DF_REDUCTION_PREFER_HADDPD]
441 #define TARGET_DEST_FALSE_DEP_FOR_GLC \
442 ix86_tune_features[X86_TUNE_DEST_FALSE_DEP_FOR_GLC]
443
444 /* Feature tests against the various architecture variations. */
445 enum ix86_arch_indices {
446 X86_ARCH_CMOV,
447 X86_ARCH_CMPXCHG,
448 X86_ARCH_CMPXCHG8B,
449 X86_ARCH_XADD,
450 X86_ARCH_BSWAP,
451
452 X86_ARCH_LAST
453 };
454
455 extern unsigned char ix86_arch_features[X86_ARCH_LAST];
456
457 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
458 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
459 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
460 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
461 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
462
463 /* For sane SSE instruction set generation we need fcomi instruction.
464 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
465 expands to a sequence that includes conditional move. */
466 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
467
468 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
469
470 extern unsigned char ix86_prefetch_sse;
471 #define TARGET_PREFETCH_SSE ix86_prefetch_sse
472
473 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
474
475 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
476 #define TARGET_MIX_SSE_I387 \
477 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
478
479 #define TARGET_HARD_SF_REGS (TARGET_80387 || TARGET_MMX || TARGET_SSE)
480 #define TARGET_HARD_DF_REGS (TARGET_80387 || TARGET_SSE)
481 #define TARGET_HARD_XF_REGS (TARGET_80387)
482
483 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
484 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
485 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
486 #define TARGET_SUN_TLS 0
487
488 #ifndef TARGET_64BIT_DEFAULT
489 #define TARGET_64BIT_DEFAULT 0
490 #endif
491 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
492 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
493 #endif
494
495 #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL)
496 #define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS)
497
498 /* Fence to use after loop using storent. */
499
500 extern GTY(()) tree x86_mfence;
501 #define FENCE_FOLLOWING_MOVNT x86_mfence
502
503 /* Once GDB has been enhanced to deal with functions without frame
504 pointers, we can change this to allow for elimination of
505 the frame pointer in leaf functions. */
506 #define TARGET_DEFAULT 0
507
508 /* Extra bits to force. */
509 #define TARGET_SUBTARGET_DEFAULT 0
510 #define TARGET_SUBTARGET_ISA_DEFAULT 0
511
512 /* Extra bits to force on w/ 32-bit mode. */
513 #define TARGET_SUBTARGET32_DEFAULT 0
514 #define TARGET_SUBTARGET32_ISA_DEFAULT 0
515
516 /* Extra bits to force on w/ 64-bit mode. */
517 #define TARGET_SUBTARGET64_DEFAULT 0
518 /* Enable MMX, SSE and SSE2 by default. */
519 #define TARGET_SUBTARGET64_ISA_DEFAULT \
520 (OPTION_MASK_ISA_MMX | OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_SSE2)
521
522 /* Replace MACH-O, ifdefs by in-line tests, where possible.
523 (a) Macros defined in config/i386/darwin.h */
524 #define TARGET_MACHO 0
525 #define TARGET_MACHO_SYMBOL_STUBS 0
526 #define MACHOPIC_ATT_STUB 0
527 /* (b) Macros defined in config/darwin.h */
528 #define MACHO_DYNAMIC_NO_PIC_P 0
529 #define MACHOPIC_INDIRECT 0
530 #define MACHOPIC_PURE 0
531
532 /* For the RDOS */
533 #define TARGET_RDOS 0
534
535 /* For the Windows 64-bit ABI. */
536 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
537
538 /* For the Windows 32-bit ABI. */
539 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
540
541 /* This is re-defined by cygming.h. */
542 #define TARGET_SEH 0
543
544 /* The default abi used by target. */
545 #define DEFAULT_ABI SYSV_ABI
546
547 /* The default TLS segment register used by target. */
548 #define DEFAULT_TLS_SEG_REG \
549 (TARGET_64BIT ? ADDR_SPACE_SEG_FS : ADDR_SPACE_SEG_GS)
550
551 /* Subtargets may reset this to 1 in order to enable 96-bit long double
552 with the rounding mode forced to 53 bits. */
553 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
554
555 #ifndef SUBTARGET_DRIVER_SELF_SPECS
556 # define SUBTARGET_DRIVER_SELF_SPECS ""
557 #endif
558
559 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS
560
561 /* -march=native handling only makes sense with compiler running on
562 an x86 or x86_64 chip. If changing this condition, also change
563 the condition in driver-i386.cc. */
564 #if defined(__i386__) || defined(__x86_64__)
565 /* In driver-i386.cc. */
566 extern const char *host_detect_local_cpu (int argc, const char **argv);
567 #define EXTRA_SPEC_FUNCTIONS \
568 { "local_cpu_detect", host_detect_local_cpu },
569 #define HAVE_LOCAL_CPU_DETECT
570 #endif
571
572 #if TARGET_64BIT_DEFAULT
573 #define OPT_ARCH64 "!m32"
574 #define OPT_ARCH32 "m32"
575 #else
576 #define OPT_ARCH64 "m64|mx32"
577 #define OPT_ARCH32 "m64|mx32:;"
578 #endif
579
580 /* Support for configure-time defaults of some command line options.
581 The order here is important so that -march doesn't squash the
582 tune or cpu values. */
583 #define OPTION_DEFAULT_SPECS \
584 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
585 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
586 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
587 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
588 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
589 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
590 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
591 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
592 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
593
594 /* Specs for the compiler proper */
595
596 #ifndef CC1_CPU_SPEC
597 #define CC1_CPU_SPEC_1 ""
598
599 #ifndef HAVE_LOCAL_CPU_DETECT
600 #define CC1_CPU_SPEC CC1_CPU_SPEC_1
601 #else
602 #define ARCH_ARG "%{" OPT_ARCH64 ":64;:32}"
603 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
604 "%{march=native:%>march=native %:local_cpu_detect(arch " ARCH_ARG ") \
605 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune " ARCH_ARG ")}} \
606 %{mtune=native:%>mtune=native %:local_cpu_detect(tune " ARCH_ARG ")}"
607 #endif
608 #endif
609 \f
610 /* Target CPU builtins. */
611 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
612
613 /* Target Pragmas. */
614 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
615
616 #ifndef CC1_SPEC
617 #define CC1_SPEC "%(cc1_cpu) "
618 #endif
619
620 /* This macro defines names of additional specifications to put in the
621 specs that can be used in various specifications like CC1_SPEC. Its
622 definition is an initializer with a subgrouping for each command option.
623
624 Each subgrouping contains a string constant, that defines the
625 specification name, and a string constant that used by the GCC driver
626 program.
627
628 Do not define this macro if it does not need to do anything. */
629
630 #ifndef SUBTARGET_EXTRA_SPECS
631 #define SUBTARGET_EXTRA_SPECS
632 #endif
633
634 #define EXTRA_SPECS \
635 { "cc1_cpu", CC1_CPU_SPEC }, \
636 SUBTARGET_EXTRA_SPECS
637 \f
638
639 /* Whether to allow x87 floating-point arithmetic on MODE (one of
640 SFmode, DFmode and XFmode) in the current excess precision
641 configuration. */
642 #define X87_ENABLE_ARITH(MODE) \
643 (ix86_unsafe_math_optimizations \
644 || ix86_excess_precision == EXCESS_PRECISION_FAST \
645 || (MODE) == XFmode)
646
647 /* Likewise, whether to allow direct conversions from integer mode
648 IMODE (HImode, SImode or DImode) to MODE. */
649 #define X87_ENABLE_FLOAT(MODE, IMODE) \
650 (ix86_unsafe_math_optimizations \
651 || ix86_excess_precision == EXCESS_PRECISION_FAST \
652 || (MODE) == XFmode \
653 || ((MODE) == DFmode && (IMODE) == SImode) \
654 || (IMODE) == HImode)
655
656 /* target machine storage layout */
657
658 #define SHORT_TYPE_SIZE 16
659 #define INT_TYPE_SIZE 32
660 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
661 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
662 #define LONG_LONG_TYPE_SIZE 64
663 #define FLOAT_TYPE_SIZE 32
664 #define DOUBLE_TYPE_SIZE 64
665 #define LONG_DOUBLE_TYPE_SIZE \
666 (TARGET_LONG_DOUBLE_64 ? 64 : (TARGET_LONG_DOUBLE_128 ? 128 : 80))
667
668 #define WIDEST_HARDWARE_FP_SIZE 80
669
670 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
671 #define MAX_BITS_PER_WORD 64
672 #else
673 #define MAX_BITS_PER_WORD 32
674 #endif
675
676 /* Define this if most significant byte of a word is the lowest numbered. */
677 /* That is true on the 80386. */
678
679 #define BITS_BIG_ENDIAN 0
680
681 /* Define this if most significant byte of a word is the lowest numbered. */
682 /* That is not true on the 80386. */
683 #define BYTES_BIG_ENDIAN 0
684
685 /* Define this if most significant word of a multiword number is the lowest
686 numbered. */
687 /* Not true for 80386 */
688 #define WORDS_BIG_ENDIAN 0
689
690 /* Width of a word, in units (bytes). */
691 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
692
693 #ifndef IN_LIBGCC2
694 #define MIN_UNITS_PER_WORD 4
695 #endif
696
697 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
698 #define PARM_BOUNDARY BITS_PER_WORD
699
700 /* Boundary (in *bits*) on which stack pointer should be aligned. */
701 #define STACK_BOUNDARY (TARGET_64BIT_MS_ABI ? 128 : BITS_PER_WORD)
702
703 /* Stack boundary of the main function guaranteed by OS. */
704 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
705
706 /* Minimum stack boundary. */
707 #define MIN_STACK_BOUNDARY BITS_PER_WORD
708
709 /* Boundary (in *bits*) on which the stack pointer prefers to be
710 aligned; the compiler cannot rely on having this alignment. */
711 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
712
713 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
714 both 32bit and 64bit, to support codes that need 128 bit stack
715 alignment for SSE instructions, but can't realign the stack. */
716 #define PREFERRED_STACK_BOUNDARY_DEFAULT \
717 (TARGET_IAMCU ? MIN_STACK_BOUNDARY : 128)
718
719 /* 1 if -mstackrealign should be turned on by default. It will
720 generate an alternate prologue and epilogue that realigns the
721 runtime stack if nessary. This supports mixing codes that keep a
722 4-byte aligned stack, as specified by i386 psABI, with codes that
723 need a 16-byte aligned stack, as required by SSE instructions. */
724 #define STACK_REALIGN_DEFAULT 0
725
726 /* Boundary (in *bits*) on which the incoming stack is aligned. */
727 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
728
729 /* According to Windows x64 software convention, the maximum stack allocatable
730 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
731 instructions allowed to adjust the stack pointer in the epilog, forcing the
732 use of frame pointer for frames larger than 2 GB. This theorical limit
733 is reduced by 256, an over-estimated upper bound for the stack use by the
734 prologue.
735 We define only one threshold for both the prolog and the epilog. When the
736 frame size is larger than this threshold, we allocate the area to save SSE
737 regs, then save them, and then allocate the remaining. There is no SEH
738 unwind info for this later allocation. */
739 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
740
741 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
742 mandatory for the 64-bit ABI, and may or may not be true for other
743 operating systems. */
744 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
745
746 /* Minimum allocation boundary for the code of a function. */
747 #define FUNCTION_BOUNDARY 8
748
749 /* C++ stores the virtual bit in the lowest bit of function pointers. */
750 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
751
752 /* Minimum size in bits of the largest boundary to which any
753 and all fundamental data types supported by the hardware
754 might need to be aligned. No data type wants to be aligned
755 rounder than this.
756
757 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
758 and Pentium Pro XFmode values at 128 bit boundaries.
759
760 When increasing the maximum, also update
761 TARGET_ABSOLUTE_BIGGEST_ALIGNMENT. */
762
763 #define BIGGEST_ALIGNMENT \
764 (TARGET_IAMCU ? 32 : (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)))
765
766 /* Maximum stack alignment. */
767 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
768
769 /* Alignment value for attribute ((aligned)). It is a constant since
770 it is the part of the ABI. We shouldn't change it with -mavx. */
771 #define ATTRIBUTE_ALIGNED_VALUE (TARGET_IAMCU ? 32 : 128)
772
773 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
774 #define ALIGN_MODE_128(MODE) \
775 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
776
777 /* The published ABIs say that doubles should be aligned on word
778 boundaries, so lower the alignment for structure fields unless
779 -malign-double is set. */
780
781 /* ??? Blah -- this macro is used directly by libobjc. Since it
782 supports no vector modes, cut out the complexity and fall back
783 on BIGGEST_FIELD_ALIGNMENT. */
784 #ifdef IN_TARGET_LIBS
785 #ifdef __x86_64__
786 #define BIGGEST_FIELD_ALIGNMENT 128
787 #else
788 #define BIGGEST_FIELD_ALIGNMENT 32
789 #endif
790 #else
791 #define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) \
792 x86_field_alignment ((TYPE), (COMPUTED))
793 #endif
794
795 /* If defined, a C expression to compute the alignment for a static
796 variable. TYPE is the data type, and ALIGN is the alignment that
797 the object would ordinarily have. The value of this macro is used
798 instead of that alignment to align the object.
799
800 If this macro is not defined, then ALIGN is used.
801
802 One use of this macro is to increase alignment of medium-size
803 data to make it all fit in fewer cache lines. Another is to
804 cause character arrays to be word-aligned so that `strcpy' calls
805 that copy constants to character arrays can be done inline. */
806
807 #define DATA_ALIGNMENT(TYPE, ALIGN) \
808 ix86_data_alignment ((TYPE), (ALIGN), true)
809
810 /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates
811 some alignment increase, instead of optimization only purposes. E.g.
812 AMD x86-64 psABI says that variables with array type larger than 15 bytes
813 must be aligned to 16 byte boundaries.
814
815 If this macro is not defined, then ALIGN is used. */
816
817 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
818 ix86_data_alignment ((TYPE), (ALIGN), false)
819
820 /* If defined, a C expression to compute the alignment for a local
821 variable. TYPE is the data type, and ALIGN is the alignment that
822 the object would ordinarily have. The value of this macro is used
823 instead of that alignment to align the object.
824
825 If this macro is not defined, then ALIGN is used.
826
827 One use of this macro is to increase alignment of medium-size
828 data to make it all fit in fewer cache lines. */
829
830 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
831 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
832
833 /* If defined, a C expression to compute the alignment for stack slot.
834 TYPE is the data type, MODE is the widest mode available, and ALIGN
835 is the alignment that the slot would ordinarily have. The value of
836 this macro is used instead of that alignment to align the slot.
837
838 If this macro is not defined, then ALIGN is used when TYPE is NULL,
839 Otherwise, LOCAL_ALIGNMENT will be used.
840
841 One use of this macro is to set alignment of stack slot to the
842 maximum alignment of all possible modes which the slot may have. */
843
844 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
845 ix86_local_alignment ((TYPE), (MODE), (ALIGN))
846
847 /* If defined, a C expression to compute the alignment for a local
848 variable DECL.
849
850 If this macro is not defined, then
851 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
852
853 One use of this macro is to increase alignment of medium-size
854 data to make it all fit in fewer cache lines. */
855
856 #define LOCAL_DECL_ALIGNMENT(DECL) \
857 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
858
859 /* If defined, a C expression to compute the minimum required alignment
860 for dynamic stack realignment purposes for EXP (a TYPE or DECL),
861 MODE, assuming normal alignment ALIGN.
862
863 If this macro is not defined, then (ALIGN) will be used. */
864
865 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
866 ix86_minimum_alignment ((EXP), (MODE), (ALIGN))
867
868
869 /* Set this nonzero if move instructions will actually fail to work
870 when given unaligned data. */
871 #define STRICT_ALIGNMENT 0
872
873 /* If bit field type is int, don't let it cross an int,
874 and give entire struct the alignment of an int. */
875 /* Required on the 386 since it doesn't have bit-field insns. */
876 #define PCC_BITFIELD_TYPE_MATTERS 1
877 \f
878 /* Standard register usage. */
879
880 /* This processor has special stack-like registers. See reg-stack.cc
881 for details. */
882
883 #define STACK_REGS
884
885 #define IS_STACK_MODE(MODE) \
886 (X87_FLOAT_MODE_P (MODE) \
887 && (!(SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
888 || TARGET_MIX_SSE_I387))
889
890 /* Number of actual hardware registers.
891 The hardware registers are assigned numbers for the compiler
892 from 0 to just below FIRST_PSEUDO_REGISTER.
893 All registers that the compiler knows about must be given numbers,
894 even those that are not normally considered general registers.
895
896 In the 80386 we give the 8 general purpose registers the numbers 0-7.
897 We number the floating point registers 8-15.
898 Note that registers 0-7 can be accessed as a short or int,
899 while only 0-3 may be used with byte `mov' instructions.
900
901 Reg 16 does not correspond to any hardware register, but instead
902 appears in the RTL as an argument pointer prior to reload, and is
903 eliminated during reloading in favor of either the stack or frame
904 pointer. */
905
906 #define FIRST_PSEUDO_REGISTER FIRST_PSEUDO_REG
907
908 /* Number of hardware registers that go into the DWARF-2 unwind info.
909 If not defined, equals FIRST_PSEUDO_REGISTER. */
910
911 #define DWARF_FRAME_REGISTERS 17
912
913 /* 1 for registers that have pervasive standard uses
914 and are not available for the register allocator.
915 On the 80386, the stack pointer is such, as is the arg pointer.
916
917 REX registers are disabled for 32bit targets in
918 TARGET_CONDITIONAL_REGISTER_USAGE. */
919
920 #define FIXED_REGISTERS \
921 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
922 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
923 /*arg,flags,fpsr,frame*/ \
924 1, 1, 1, 1, \
925 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
926 0, 0, 0, 0, 0, 0, 0, 0, \
927 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
928 0, 0, 0, 0, 0, 0, 0, 0, \
929 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
930 0, 0, 0, 0, 0, 0, 0, 0, \
931 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
932 0, 0, 0, 0, 0, 0, 0, 0, \
933 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
934 0, 0, 0, 0, 0, 0, 0, 0, \
935 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
936 0, 0, 0, 0, 0, 0, 0, 0, \
937 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
938 0, 0, 0, 0, 0, 0, 0, 0 }
939
940 /* 1 for registers not available across function calls.
941 These must include the FIXED_REGISTERS and also any
942 registers that can be used without being saved.
943 The latter must include the registers where values are returned
944 and the register where structure-value addresses are passed.
945 Aside from that, you can include as many other registers as you like.
946
947 Value is set to 1 if the register is call used unconditionally.
948 Bit one is set if the register is call used on TARGET_32BIT ABI.
949 Bit two is set if the register is call used on TARGET_64BIT ABI.
950 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
951
952 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
953
954 #define CALL_USED_REGISTERS_MASK(IS_64BIT_MS_ABI) \
955 ((IS_64BIT_MS_ABI) ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1))
956
957 #define CALL_USED_REGISTERS \
958 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
959 { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
960 /*arg,flags,fpsr,frame*/ \
961 1, 1, 1, 1, \
962 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
963 1, 1, 1, 1, 1, 1, 6, 6, \
964 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
965 1, 1, 1, 1, 1, 1, 1, 1, \
966 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
967 1, 1, 1, 1, 2, 2, 2, 2, \
968 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
969 6, 6, 6, 6, 6, 6, 6, 6, \
970 /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \
971 1, 1, 1, 1, 1, 1, 1, 1, \
972 /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \
973 1, 1, 1, 1, 1, 1, 1, 1, \
974 /* k0, k1, k2, k3, k4, k5, k6, k7*/ \
975 1, 1, 1, 1, 1, 1, 1, 1 }
976
977 /* Order in which to allocate registers. Each register must be
978 listed once, even those in FIXED_REGISTERS. List frame pointer
979 late and fixed registers last. Note that, in general, we prefer
980 registers listed in CALL_USED_REGISTERS, keeping the others
981 available for storage of persistent values.
982
983 The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
984 so this is just empty initializer for array. */
985
986 #define REG_ALLOC_ORDER \
987 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
988 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
989 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
990 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
991 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 }
992
993 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
994 to be rearranged based on a particular function. When using sse math,
995 we want to allocate SSE before x87 registers and vice versa. */
996
997 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
998
999
1000 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
1001
1002 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
1003 (TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT \
1004 && GENERAL_REGNO_P (REGNO) \
1005 && ((MODE) == XFmode || (MODE) == XCmode))
1006
1007 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
1008
1009 #define REGMODE_NATURAL_SIZE(MODE) ix86_regmode_natural_size (MODE)
1010
1011 #define VALID_AVX256_REG_MODE(MODE) \
1012 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1013 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
1014 || (MODE) == V4DFmode || (MODE) == V16HFmode || (MODE) == V16BFmode)
1015
1016 #define VALID_AVX256_REG_OR_OI_MODE(MODE) \
1017 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
1018
1019 #define VALID_AVX512F_SCALAR_MODE(MODE) \
1020 ((MODE) == DImode || (MODE) == DFmode \
1021 || (MODE) == SImode || (MODE) == SFmode \
1022 || (MODE) == HImode || (MODE) == HFmode || (MODE) == BFmode)
1023
1024 #define VALID_AVX512F_REG_MODE(MODE) \
1025 ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \
1026 || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode \
1027 || (MODE) == V4TImode || (MODE) == V32HFmode || (MODE) == V32BFmode)
1028
1029 #define VALID_AVX512F_REG_OR_XI_MODE(MODE) \
1030 (VALID_AVX512F_REG_MODE (MODE) || (MODE) == XImode)
1031
1032 #define VALID_AVX512VL_128_REG_MODE(MODE) \
1033 ((MODE) == V2DImode || (MODE) == V2DFmode || (MODE) == V16QImode \
1034 || (MODE) == V4SImode || (MODE) == V4SFmode || (MODE) == V8HImode \
1035 || (MODE) == TFmode || (MODE) == V1TImode || (MODE) == V8HFmode \
1036 || (MODE) == V8BFmode || (MODE) == TImode)
1037
1038 #define VALID_AVX512FP16_REG_MODE(MODE) \
1039 ((MODE) == V8HFmode || (MODE) == V16HFmode || (MODE) == V32HFmode)
1040
1041 #define VALID_SSE2_REG_MODE(MODE) \
1042 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
1043 || (MODE) == V8HFmode || (MODE) == V4HFmode || (MODE) == V2HFmode \
1044 || (MODE) == V8BFmode || (MODE) == V4BFmode || (MODE) == V2BFmode \
1045 || (MODE) == V4QImode || (MODE) == V2HImode || (MODE) == V1SImode \
1046 || (MODE) == V2DImode || (MODE) == V2QImode \
1047 || (MODE) == DFmode || (MODE) == DImode \
1048 || (MODE) == HFmode || (MODE) == BFmode)
1049
1050 #define VALID_SSE_REG_MODE(MODE) \
1051 ((MODE) == V1TImode || (MODE) == TImode \
1052 || (MODE) == V4SFmode || (MODE) == V4SImode \
1053 || (MODE) == SFmode || (MODE) == SImode \
1054 || (MODE) == TFmode || (MODE) == TDmode)
1055
1056 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
1057 ((MODE) == V2SFmode || (MODE) == SFmode)
1058
1059 /* To match ia32 psABI, V4HFmode should be added here. */
1060 #define VALID_MMX_REG_MODE(MODE) \
1061 ((MODE) == V1DImode || (MODE) == DImode \
1062 || (MODE) == V2SImode || (MODE) == SImode \
1063 || (MODE) == V4HImode || (MODE) == V8QImode \
1064 || (MODE) == V4HFmode || (MODE) == V4BFmode)
1065
1066 #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode)
1067
1068 #define VALID_MASK_AVX512BW_MODE(MODE) ((MODE) == SImode || (MODE) == DImode)
1069
1070 #define VALID_FP_MODE_P(MODE) \
1071 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
1072 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)
1073
1074 #define VALID_INT_MODE_P(MODE) \
1075 ((MODE) == QImode || (MODE) == HImode \
1076 || (MODE) == SImode || (MODE) == DImode \
1077 || (MODE) == CQImode || (MODE) == CHImode \
1078 || (MODE) == CSImode || (MODE) == CDImode \
1079 || (MODE) == SDmode || (MODE) == DDmode \
1080 || (MODE) == HFmode || (MODE) == HCmode || (MODE) == BFmode \
1081 || (MODE) == V2HImode || (MODE) == V2HFmode || (MODE) == V2BFmode \
1082 || (MODE) == V1SImode || (MODE) == V4QImode || (MODE) == V2QImode \
1083 || (TARGET_64BIT \
1084 && ((MODE) == TImode || (MODE) == CTImode \
1085 || (MODE) == TFmode || (MODE) == TCmode \
1086 || (MODE) == V8QImode || (MODE) == V4HImode \
1087 || (MODE) == V2SImode || (MODE) == TDmode)))
1088
1089 /* Return true for modes passed in SSE registers. */
1090 #define SSE_REG_MODE_P(MODE) \
1091 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
1092 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
1093 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
1094 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
1095 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
1096 || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \
1097 || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \
1098 || (MODE) == V16SFmode \
1099 || (MODE) == V32HFmode || (MODE) == V16HFmode || (MODE) == V8HFmode \
1100 || (MODE) == V32BFmode || (MODE) == V16BFmode || (MODE) == V8BFmode)
1101
1102 #define X87_FLOAT_MODE_P(MODE) \
1103 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
1104
1105 #define SSE_FLOAT_MODE_P(MODE) \
1106 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1107
1108 #define SSE_FLOAT_MODE_SSEMATH_OR_HF_P(MODE) \
1109 ((SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH) \
1110 || (TARGET_AVX512FP16 && (MODE) == HFmode))
1111
1112 #define FMA4_VEC_FLOAT_MODE_P(MODE) \
1113 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
1114 || (MODE) == V8SFmode || (MODE) == V4DFmode))
1115
1116 #define VALID_BCST_MODE_P(MODE) \
1117 ((MODE) == SFmode || (MODE) == DFmode \
1118 || (MODE) == SImode || (MODE) == DImode \
1119 || (MODE) == HFmode)
1120
1121 /* It is possible to write patterns to move flags; but until someone
1122 does it, */
1123 #define AVOID_CCMODE_COPIES
1124
1125 /* Specify the modes required to caller save a given hard regno.
1126 We do this on i386 to prevent flags from being saved at all.
1127
1128 Kill any attempts to combine saving of modes. */
1129
1130 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1131 (CC_REGNO_P (REGNO) ? VOIDmode \
1132 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1133 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), NULL) \
1134 : (MODE) == HImode && !((GENERAL_REGNO_P (REGNO) \
1135 && TARGET_PARTIAL_REG_STALL) \
1136 || MASK_REGNO_P (REGNO)) ? SImode \
1137 : (MODE) == QImode && !(ANY_QI_REGNO_P (REGNO) \
1138 || MASK_REGNO_P (REGNO)) ? SImode \
1139 : (MODE))
1140
1141 /* Specify the registers used for certain standard purposes.
1142 The values of these macros are register numbers. */
1143
1144 /* on the 386 the pc register is %eip, and is not usable as a general
1145 register. The ordinary mov instructions won't work */
1146 /* #define PC_REGNUM */
1147
1148 /* Base register for access to arguments of the function. */
1149 #define ARG_POINTER_REGNUM ARGP_REG
1150
1151 /* Register to use for pushing function arguments. */
1152 #define STACK_POINTER_REGNUM SP_REG
1153
1154 /* Base register for access to local variables of the function. */
1155 #define FRAME_POINTER_REGNUM FRAME_REG
1156 #define HARD_FRAME_POINTER_REGNUM BP_REG
1157
1158 #define FIRST_INT_REG AX_REG
1159 #define LAST_INT_REG SP_REG
1160
1161 #define FIRST_QI_REG AX_REG
1162 #define LAST_QI_REG BX_REG
1163
1164 /* First & last stack-like regs */
1165 #define FIRST_STACK_REG ST0_REG
1166 #define LAST_STACK_REG ST7_REG
1167
1168 #define FIRST_SSE_REG XMM0_REG
1169 #define LAST_SSE_REG XMM7_REG
1170
1171 #define FIRST_MMX_REG MM0_REG
1172 #define LAST_MMX_REG MM7_REG
1173
1174 #define FIRST_REX_INT_REG R8_REG
1175 #define LAST_REX_INT_REG R15_REG
1176
1177 #define FIRST_REX_SSE_REG XMM8_REG
1178 #define LAST_REX_SSE_REG XMM15_REG
1179
1180 #define FIRST_EXT_REX_SSE_REG XMM16_REG
1181 #define LAST_EXT_REX_SSE_REG XMM31_REG
1182
1183 #define FIRST_MASK_REG MASK0_REG
1184 #define LAST_MASK_REG MASK7_REG
1185
1186 /* Override this in other tm.h files to cope with various OS lossage
1187 requiring a frame pointer. */
1188 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1189 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1190 #endif
1191
1192 /* Define the shadow offset for asan. Other OS's can override in the
1193 respective tm.h files. */
1194 #ifndef SUBTARGET_SHADOW_OFFSET
1195 #define SUBTARGET_SHADOW_OFFSET \
1196 (TARGET_LP64 ? HOST_WIDE_INT_C (0x7fff8000) : HOST_WIDE_INT_1 << 29)
1197 #endif
1198
1199 /* Make sure we can access arbitrary call frames. */
1200 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1201
1202 /* Register to hold the addressing base for position independent
1203 code access to data items. We don't use PIC pointer for 64bit
1204 mode. Define the regnum to dummy value to prevent gcc from
1205 pessimizing code dealing with EBX.
1206
1207 To avoid clobbering a call-saved register unnecessarily, we renumber
1208 the pic register when possible. The change is visible after the
1209 prologue has been emitted. */
1210
1211 #define REAL_PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? R15_REG : BX_REG)
1212
1213 #define PIC_OFFSET_TABLE_REGNUM \
1214 (ix86_use_pseudo_pic_reg () \
1215 ? (pic_offset_table_rtx \
1216 ? INVALID_REGNUM \
1217 : REAL_PIC_OFFSET_TABLE_REGNUM) \
1218 : INVALID_REGNUM)
1219
1220 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1221
1222 /* This is overridden by <cygwin.h>. */
1223 #define MS_AGGREGATE_RETURN 0
1224
1225 #define KEEP_AGGREGATE_RETURN_POINTER 0
1226 \f
1227 /* Define the classes of registers for register constraints in the
1228 machine description. Also define ranges of constants.
1229
1230 One of the classes must always be named ALL_REGS and include all hard regs.
1231 If there is more than one class, another class must be named NO_REGS
1232 and contain no registers.
1233
1234 The name GENERAL_REGS must be the name of a class (or an alias for
1235 another name such as ALL_REGS). This is the class of registers
1236 that is allowed by "g" or "r" in a register constraint.
1237 Also, registers outside this class are allocated only when
1238 instructions express preferences for them.
1239
1240 The classes must be numbered in nondecreasing order; that is,
1241 a larger-numbered class must never be contained completely
1242 in a smaller-numbered class. This is why CLOBBERED_REGS class
1243 is listed early, even though in 64-bit mode it contains more
1244 registers than just %eax, %ecx, %edx.
1245
1246 For any two classes, it is very desirable that there be another
1247 class that represents their union.
1248
1249 The flags and fpsr registers are in no class. */
1250
1251 enum reg_class
1252 {
1253 NO_REGS,
1254 AREG, DREG, CREG, BREG, SIREG, DIREG,
1255 AD_REGS, /* %eax/%edx for DImode */
1256 CLOBBERED_REGS, /* call-clobbered integer registers */
1257 Q_REGS, /* %eax %ebx %ecx %edx */
1258 NON_Q_REGS, /* %esi %edi %ebp %esp */
1259 TLS_GOTBASE_REGS, /* %ebx %ecx %edx %esi %edi %ebp */
1260 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1261 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1262 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
1263 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
1264 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1265 FLOAT_REGS,
1266 SSE_FIRST_REG,
1267 NO_REX_SSE_REGS,
1268 SSE_REGS,
1269 ALL_SSE_REGS,
1270 MMX_REGS,
1271 FLOAT_SSE_REGS,
1272 FLOAT_INT_REGS,
1273 INT_SSE_REGS,
1274 FLOAT_INT_SSE_REGS,
1275 MASK_REGS,
1276 ALL_MASK_REGS,
1277 INT_MASK_REGS,
1278 ALL_REGS,
1279 LIM_REG_CLASSES
1280 };
1281
1282 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1283
1284 #define INTEGER_CLASS_P(CLASS) \
1285 reg_class_subset_p ((CLASS), GENERAL_REGS)
1286 #define FLOAT_CLASS_P(CLASS) \
1287 reg_class_subset_p ((CLASS), FLOAT_REGS)
1288 #define SSE_CLASS_P(CLASS) \
1289 reg_class_subset_p ((CLASS), ALL_SSE_REGS)
1290 #define INT_SSE_CLASS_P(CLASS) \
1291 reg_class_subset_p ((CLASS), INT_SSE_REGS)
1292 #define MMX_CLASS_P(CLASS) \
1293 ((CLASS) == MMX_REGS)
1294 #define MASK_CLASS_P(CLASS) \
1295 reg_class_subset_p ((CLASS), ALL_MASK_REGS)
1296 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1297 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1298 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1299 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1300 #define MAYBE_SSE_CLASS_P(CLASS) \
1301 reg_classes_intersect_p ((CLASS), ALL_SSE_REGS)
1302 #define MAYBE_MMX_CLASS_P(CLASS) \
1303 reg_classes_intersect_p ((CLASS), MMX_REGS)
1304 #define MAYBE_MASK_CLASS_P(CLASS) \
1305 reg_classes_intersect_p ((CLASS), ALL_MASK_REGS)
1306
1307 #define Q_CLASS_P(CLASS) \
1308 reg_class_subset_p ((CLASS), Q_REGS)
1309
1310 #define MAYBE_NON_Q_CLASS_P(CLASS) \
1311 reg_classes_intersect_p ((CLASS), NON_Q_REGS)
1312
1313 /* Give names of register classes as strings for dump file. */
1314
1315 #define REG_CLASS_NAMES \
1316 { "NO_REGS", \
1317 "AREG", "DREG", "CREG", "BREG", \
1318 "SIREG", "DIREG", \
1319 "AD_REGS", \
1320 "CLOBBERED_REGS", \
1321 "Q_REGS", "NON_Q_REGS", \
1322 "TLS_GOTBASE_REGS", \
1323 "INDEX_REGS", \
1324 "LEGACY_REGS", \
1325 "GENERAL_REGS", \
1326 "FP_TOP_REG", "FP_SECOND_REG", \
1327 "FLOAT_REGS", \
1328 "SSE_FIRST_REG", \
1329 "NO_REX_SSE_REGS", \
1330 "SSE_REGS", \
1331 "ALL_SSE_REGS", \
1332 "MMX_REGS", \
1333 "FLOAT_SSE_REGS", \
1334 "FLOAT_INT_REGS", \
1335 "INT_SSE_REGS", \
1336 "FLOAT_INT_SSE_REGS", \
1337 "MASK_REGS", \
1338 "ALL_MASK_REGS", \
1339 "INT_MASK_REGS", \
1340 "ALL_REGS" }
1341
1342 /* Define which registers fit in which classes. This is an initializer
1343 for a vector of HARD_REG_SET of length N_REG_CLASSES.
1344
1345 Note that CLOBBERED_REGS are calculated by
1346 TARGET_CONDITIONAL_REGISTER_USAGE. */
1347
1348 #define REG_CLASS_CONTENTS \
1349 { { 0x0, 0x0, 0x0 }, /* NO_REGS */ \
1350 { 0x01, 0x0, 0x0 }, /* AREG */ \
1351 { 0x02, 0x0, 0x0 }, /* DREG */ \
1352 { 0x04, 0x0, 0x0 }, /* CREG */ \
1353 { 0x08, 0x0, 0x0 }, /* BREG */ \
1354 { 0x10, 0x0, 0x0 }, /* SIREG */ \
1355 { 0x20, 0x0, 0x0 }, /* DIREG */ \
1356 { 0x03, 0x0, 0x0 }, /* AD_REGS */ \
1357 { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \
1358 { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \
1359 { 0x900f0, 0x0, 0x0 }, /* NON_Q_REGS */ \
1360 { 0x7e, 0xff0, 0x0 }, /* TLS_GOTBASE_REGS */ \
1361 { 0x7f, 0xff0, 0x0 }, /* INDEX_REGS */ \
1362 { 0x900ff, 0x0, 0x0 }, /* LEGACY_REGS */ \
1363 { 0x900ff, 0xff0, 0x0 }, /* GENERAL_REGS */ \
1364 { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \
1365 { 0x200, 0x0, 0x0 }, /* FP_SECOND_REG */ \
1366 { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \
1367 { 0x100000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \
1368 { 0xff00000, 0x0, 0x0 }, /* NO_REX_SSE_REGS */ \
1369 { 0xff00000, 0xff000, 0x0 }, /* SSE_REGS */ \
1370 { 0xff00000, 0xfffff000, 0xf }, /* ALL_SSE_REGS */ \
1371 { 0xf0000000, 0xf, 0x0 }, /* MMX_REGS */ \
1372 { 0xff0ff00, 0xfffff000, 0xf }, /* FLOAT_SSE_REGS */ \
1373 { 0x9ffff, 0xff0, 0x0 }, /* FLOAT_INT_REGS */ \
1374 { 0xff900ff, 0xfffffff0, 0xf }, /* INT_SSE_REGS */ \
1375 { 0xff9ffff, 0xfffffff0, 0xf }, /* FLOAT_INT_SSE_REGS */ \
1376 { 0x0, 0x0, 0xfe0 }, /* MASK_REGS */ \
1377 { 0x0, 0x0, 0xff0 }, /* ALL_MASK_REGS */ \
1378 { 0x900ff, 0xff0, 0xff0 }, /* INT_MASK_REGS */ \
1379 { 0xffffffff, 0xffffffff, 0xfff } /* ALL_REGS */ \
1380 }
1381
1382 /* The same information, inverted:
1383 Return the class number of the smallest class containing
1384 reg number REGNO. This could be a conditional expression
1385 or could index an array. */
1386
1387 #define REGNO_REG_CLASS(REGNO) (regclass_map[(REGNO)])
1388
1389 /* When this hook returns true for MODE, the compiler allows
1390 registers explicitly used in the rtl to be used as spill registers
1391 but prevents the compiler from extending the lifetime of these
1392 registers. */
1393 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
1394
1395 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
1396 #define QI_REGNO_P(N) IN_RANGE ((N), FIRST_QI_REG, LAST_QI_REG)
1397
1398 #define LEGACY_INT_REG_P(X) (REG_P (X) && LEGACY_INT_REGNO_P (REGNO (X)))
1399 #define LEGACY_INT_REGNO_P(N) (IN_RANGE ((N), FIRST_INT_REG, LAST_INT_REG))
1400
1401 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1402 #define REX_INT_REGNO_P(N) \
1403 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
1404
1405 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1406 #define GENERAL_REGNO_P(N) \
1407 (LEGACY_INT_REGNO_P (N) || REX_INT_REGNO_P (N))
1408
1409 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
1410 #define ANY_QI_REGNO_P(N) \
1411 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
1412
1413 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
1414 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
1415
1416 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
1417 #define SSE_REGNO_P(N) \
1418 (LEGACY_SSE_REGNO_P (N) \
1419 || REX_SSE_REGNO_P (N) \
1420 || EXT_REX_SSE_REGNO_P (N))
1421
1422 #define LEGACY_SSE_REGNO_P(N) \
1423 IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG)
1424
1425 #define REX_SSE_REGNO_P(N) \
1426 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
1427
1428 #define EXT_REX_SSE_REG_P(X) (REG_P (X) && EXT_REX_SSE_REGNO_P (REGNO (X)))
1429
1430 #define EXT_REX_SSE_REGNO_P(N) \
1431 IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG)
1432
1433 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1434 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
1435
1436 #define MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X)))
1437 #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG)
1438 #define MASK_PAIR_REGNO_P(N) ((((N) - FIRST_MASK_REG) & 1) == 0)
1439
1440 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
1441 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
1442
1443 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1444 #define CC_REGNO_P(X) ((X) == FLAGS_REG)
1445
1446 #define MOD4_SSE_REG_P(X) (REG_P (X) && MOD4_SSE_REGNO_P (REGNO (X)))
1447 #define MOD4_SSE_REGNO_P(N) ((N) == XMM0_REG \
1448 || (N) == XMM4_REG \
1449 || (N) == XMM8_REG \
1450 || (N) == XMM12_REG \
1451 || (N) == XMM16_REG \
1452 || (N) == XMM20_REG \
1453 || (N) == XMM24_REG \
1454 || (N) == XMM28_REG)
1455
1456 /* First floating point reg */
1457 #define FIRST_FLOAT_REG FIRST_STACK_REG
1458 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_FLOAT_REG)
1459
1460 #define GET_SSE_REGNO(N) \
1461 ((N) < 8 ? FIRST_SSE_REG + (N) \
1462 : (N) < 16 ? FIRST_REX_SSE_REG + (N) - 8 \
1463 : FIRST_EXT_REX_SSE_REG + (N) - 16)
1464
1465 /* The class value for index registers, and the one for base regs. */
1466
1467 #define INDEX_REG_CLASS INDEX_REGS
1468 #define BASE_REG_CLASS GENERAL_REGS
1469 \f
1470 /* Stack layout; function entry, exit and calling. */
1471
1472 /* Define this if pushing a word on the stack
1473 makes the stack pointer a smaller address. */
1474 #define STACK_GROWS_DOWNWARD 1
1475
1476 /* Define this to nonzero if the nominal address of the stack frame
1477 is at the high-address end of the local variables;
1478 that is, each additional local variable allocated
1479 goes at a more negative offset in the frame. */
1480 #define FRAME_GROWS_DOWNWARD 1
1481
1482 #define PUSH_ROUNDING(BYTES) ix86_push_rounding (BYTES)
1483
1484 /* If defined, the maximum amount of space required for outgoing arguments
1485 will be computed and placed into the variable `crtl->outgoing_args_size'.
1486 No space will be pushed onto the stack for each call; instead, the
1487 function prologue should increase the stack frame size by this amount.
1488
1489 In 32bit mode enabling argument accumulation results in about 5% code size
1490 growth because move instructions are less compact than push. In 64bit
1491 mode the difference is less drastic but visible.
1492
1493 FIXME: Unlike earlier implementations, the size of unwind info seems to
1494 actually grow with accumulation. Is that because accumulated args
1495 unwind info became unnecesarily bloated?
1496
1497 With the 64-bit MS ABI, we can generate correct code with or without
1498 accumulated args, but because of OUTGOING_REG_PARM_STACK_SPACE the code
1499 generated without accumulated args is terrible.
1500
1501 If stack probes are required, the space used for large function
1502 arguments on the stack must also be probed, so enable
1503 -maccumulate-outgoing-args so this happens in the prologue.
1504
1505 We must use argument accumulation in interrupt function if stack
1506 may be realigned to avoid DRAP. */
1507
1508 #define ACCUMULATE_OUTGOING_ARGS \
1509 ((TARGET_ACCUMULATE_OUTGOING_ARGS \
1510 && optimize_function_for_speed_p (cfun)) \
1511 || (cfun->machine->func_type != TYPE_NORMAL \
1512 && crtl->stack_realign_needed) \
1513 || TARGET_STACK_PROBE \
1514 || TARGET_64BIT_MS_ABI \
1515 || (TARGET_MACHO && crtl->profile))
1516
1517 /* We want the stack and args grow in opposite directions, even if
1518 targetm.calls.push_argument returns false. */
1519 #define PUSH_ARGS_REVERSED 1
1520
1521 /* Offset of first parameter from the argument pointer register value. */
1522 #define FIRST_PARM_OFFSET(FNDECL) 0
1523
1524 /* Define this macro if functions should assume that stack space has been
1525 allocated for arguments even when their values are passed in registers.
1526
1527 The value of this macro is the size, in bytes, of the area reserved for
1528 arguments passed in registers for the function represented by FNDECL.
1529
1530 This space can be allocated by the caller, or be a part of the
1531 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1532 which. */
1533 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
1534
1535 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
1536 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
1537
1538 /* Define how to find the value returned by a library function
1539 assuming the value has mode MODE. */
1540
1541 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
1542
1543 /* Define the size of the result block used for communication between
1544 untyped_call and untyped_return. The block contains a DImode value
1545 followed by the block used by fnsave and frstor. */
1546
1547 #define APPLY_RESULT_SIZE (8+108)
1548
1549 /* 1 if N is a possible register number for function argument passing. */
1550 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1551
1552 /* Define a data type for recording info about an argument list
1553 during the scan of that argument list. This data type should
1554 hold all necessary information about the function itself
1555 and about the args processed so far, enough to enable macros
1556 such as FUNCTION_ARG to determine where the next arg should go. */
1557
1558 typedef struct ix86_args {
1559 int words; /* # words passed so far */
1560 int nregs; /* # registers available for passing */
1561 int regno; /* next available register number */
1562 int fastcall; /* fastcall or thiscall calling convention
1563 is used */
1564 int sse_words; /* # sse words passed so far */
1565 int sse_nregs; /* # sse registers available for passing */
1566 int warn_avx512f; /* True when we want to warn
1567 about AVX512F ABI. */
1568 int warn_avx; /* True when we want to warn about AVX ABI. */
1569 int warn_sse; /* True when we want to warn about SSE ABI. */
1570 int warn_mmx; /* True when we want to warn about MMX ABI. */
1571 int warn_empty; /* True when we want to warn about empty classes
1572 passing ABI change. */
1573 int sse_regno; /* next available sse register number */
1574 int mmx_words; /* # mmx words passed so far */
1575 int mmx_nregs; /* # mmx registers available for passing */
1576 int mmx_regno; /* next available mmx register number */
1577 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1578 int caller; /* true if it is caller. */
1579 int float_in_sse; /* Set to 1 or 2 for 32bit targets if
1580 SFmode/DFmode arguments should be passed
1581 in SSE registers. Otherwise 0. */
1582 int stdarg; /* Set to 1 if function is stdarg. */
1583 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
1584 MS_ABI for ms abi. */
1585 tree decl; /* Callee decl. */
1586 } CUMULATIVE_ARGS;
1587
1588 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1589 for a call to a function whose data type is FNTYPE.
1590 For a library call, FNTYPE is 0. */
1591
1592 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1593 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
1594 (N_NAMED_ARGS) != -1)
1595
1596 /* Output assembler code to FILE to increment profiler label # LABELNO
1597 for profiling a function entry. */
1598
1599 #define FUNCTION_PROFILER(FILE, LABELNO) \
1600 x86_function_profiler ((FILE), (LABELNO))
1601
1602 #define MCOUNT_NAME "_mcount"
1603
1604 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
1605
1606 #define PROFILE_COUNT_REGISTER "edx"
1607
1608 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1609 the stack pointer does not matter. The value is tested only in
1610 functions that have frame pointers.
1611 No definition is equivalent to always zero. */
1612 /* Note on the 386 it might be more efficient not to define this since
1613 we have to restore it ourselves from the frame pointer, in order to
1614 use pop */
1615
1616 #define EXIT_IGNORE_STACK 1
1617
1618 /* Define this macro as a C expression that is nonzero for registers
1619 used by the epilogue or the `return' pattern. */
1620
1621 #define EPILOGUE_USES(REGNO) ix86_epilogue_uses (REGNO)
1622
1623 /* Output assembler code for a block containing the constant parts
1624 of a trampoline, leaving space for the variable parts. */
1625
1626 /* On the 386, the trampoline contains two instructions:
1627 mov #STATIC,ecx
1628 jmp FUNCTION
1629 The trampoline is generated entirely at runtime. The operand of JMP
1630 is the address of FUNCTION relative to the instruction following the
1631 JMP (which is 5 bytes long). */
1632
1633 /* Length in units of the trampoline for entering a nested function. */
1634
1635 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 28 : 14)
1636 \f
1637 /* Definitions for register eliminations.
1638
1639 This is an array of structures. Each structure initializes one pair
1640 of eliminable registers. The "from" register number is given first,
1641 followed by "to". Eliminations of the same "from" register are listed
1642 in order of preference.
1643
1644 There are two registers that can always be eliminated on the i386.
1645 The frame pointer and the arg pointer can be replaced by either the
1646 hard frame pointer or to the stack pointer, depending upon the
1647 circumstances. The hard frame pointer is not used before reload and
1648 so it is not eligible for elimination. */
1649
1650 #define ELIMINABLE_REGS \
1651 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1652 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1653 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1654 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1655
1656 /* Define the offset between two registers, one to be eliminated, and the other
1657 its replacement, at the start of a routine. */
1658
1659 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1660 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1661 \f
1662 /* Addressing modes, and classification of registers for them. */
1663
1664 /* Macros to check register numbers against specific register classes. */
1665
1666 /* These assume that REGNO is a hard or pseudo reg number.
1667 They give nonzero only if REGNO is a hard reg of the suitable class
1668 or a pseudo reg currently allocated to a suitable hard reg.
1669 Since they use reg_renumber, they are safe only once reg_renumber
1670 has been allocated, which happens in reginfo.cc during register
1671 allocation. */
1672
1673 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1674 ((REGNO) < STACK_POINTER_REGNUM \
1675 || REX_INT_REGNO_P (REGNO) \
1676 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
1677 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1678
1679 #define REGNO_OK_FOR_BASE_P(REGNO) \
1680 (GENERAL_REGNO_P (REGNO) \
1681 || (REGNO) == ARG_POINTER_REGNUM \
1682 || (REGNO) == FRAME_POINTER_REGNUM \
1683 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
1684
1685 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1686 and check its validity for a certain class.
1687 We have two alternate definitions for each of them.
1688 The usual definition accepts all pseudo regs; the other rejects
1689 them unless they have been allocated suitable hard regs.
1690 The symbol REG_OK_STRICT causes the latter definition to be used.
1691
1692 Most source files want to accept pseudo regs in the hope that
1693 they will get allocated to the class that the insn wants them to be in.
1694 Source files for reload pass need to be strict.
1695 After reload, it makes no difference, since pseudo regs have
1696 been eliminated by then. */
1697
1698
1699 /* Non strict versions, pseudos are ok. */
1700 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1701 (REGNO (X) < STACK_POINTER_REGNUM \
1702 || REX_INT_REGNO_P (REGNO (X)) \
1703 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1704
1705 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1706 (GENERAL_REGNO_P (REGNO (X)) \
1707 || REGNO (X) == ARG_POINTER_REGNUM \
1708 || REGNO (X) == FRAME_POINTER_REGNUM \
1709 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1710
1711 /* Strict versions, hard registers only */
1712 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1713 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1714
1715 #ifndef REG_OK_STRICT
1716 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1717 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1718
1719 #else
1720 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1721 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1722 #endif
1723
1724 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
1725 that is a valid memory address for an instruction.
1726 The MODE argument is the machine mode for the MEM expression
1727 that wants to use this address.
1728
1729 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
1730 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1731
1732 See legitimize_pic_address in i386.cc for details as to what
1733 constitutes a legitimate address when -fpic is used. */
1734
1735 #define MAX_REGS_PER_ADDRESS 2
1736
1737 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1738
1739 /* If defined, a C expression to determine the base term of address X.
1740 This macro is used in only one place: `find_base_term' in alias.cc.
1741
1742 It is always safe for this macro to not be defined. It exists so
1743 that alias analysis can understand machine-dependent addresses.
1744
1745 The typical use of this macro is to handle addresses containing
1746 a label_ref or symbol_ref within an UNSPEC. */
1747
1748 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1749
1750 /* Nonzero if the constant value X is a legitimate general operand
1751 when generating PIC code. It is given that flag_pic is on and
1752 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1753
1754 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1755
1756 #define STRIP_UNARY(X) (UNARY_P (X) ? XEXP (X, 0) : X)
1757
1758 #define SYMBOLIC_CONST(X) \
1759 (GET_CODE (X) == SYMBOL_REF \
1760 || GET_CODE (X) == LABEL_REF \
1761 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1762 \f
1763 /* Max number of args passed in registers. If this is more than 3, we will
1764 have problems with ebx (register #4), since it is a caller save register and
1765 is also used as the pic register in ELF. So for now, don't allow more than
1766 3 registers to be passed in registers. */
1767
1768 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
1769 #define X86_64_REGPARM_MAX 6
1770 #define X86_64_MS_REGPARM_MAX 4
1771
1772 #define X86_32_REGPARM_MAX 3
1773
1774 #define REGPARM_MAX \
1775 (TARGET_64BIT \
1776 ? (TARGET_64BIT_MS_ABI \
1777 ? X86_64_MS_REGPARM_MAX \
1778 : X86_64_REGPARM_MAX) \
1779 : X86_32_REGPARM_MAX)
1780
1781 #define X86_64_SSE_REGPARM_MAX 8
1782 #define X86_64_MS_SSE_REGPARM_MAX 4
1783
1784 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
1785
1786 #define SSE_REGPARM_MAX \
1787 (TARGET_64BIT \
1788 ? (TARGET_64BIT_MS_ABI \
1789 ? X86_64_MS_SSE_REGPARM_MAX \
1790 : X86_64_SSE_REGPARM_MAX) \
1791 : X86_32_SSE_REGPARM_MAX)
1792
1793 #define X86_32_MMX_REGPARM_MAX (TARGET_MMX ? (TARGET_MACHO ? 0 : 3) : 0)
1794
1795 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : X86_32_MMX_REGPARM_MAX)
1796 \f
1797 /* Specify the machine mode that this machine uses
1798 for the index in the tablejump instruction. */
1799 #define CASE_VECTOR_MODE \
1800 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
1801
1802 /* Define this as 1 if `char' should by default be signed; else as 0. */
1803 #define DEFAULT_SIGNED_CHAR 1
1804
1805 /* The constant maximum number of bytes that a single instruction can
1806 move quickly between memory and registers or between two memory
1807 locations. */
1808 #define MAX_MOVE_MAX 64
1809
1810 /* Max number of bytes we can move from memory to memory in one
1811 reasonably fast instruction, as opposed to MOVE_MAX_PIECES which
1812 is the number of bytes at a time which we can move efficiently.
1813 MOVE_MAX_PIECES defaults to MOVE_MAX. */
1814
1815 #define MOVE_MAX \
1816 ((TARGET_AVX512F \
1817 && (ix86_move_max == PVW_AVX512 \
1818 || ix86_store_max == PVW_AVX512)) \
1819 ? 64 \
1820 : ((TARGET_AVX \
1821 && (ix86_move_max >= PVW_AVX256 \
1822 || ix86_store_max >= PVW_AVX256)) \
1823 ? 32 \
1824 : ((TARGET_SSE2 \
1825 && TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
1826 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1827 ? 16 : UNITS_PER_WORD)))
1828
1829 /* STORE_MAX_PIECES is the number of bytes at a time that we can store
1830 efficiently. Allow 16/32/64 bytes only if inter-unit move is enabled
1831 since vec_duplicate enabled by inter-unit move is used to implement
1832 store_by_pieces of 16/32/64 bytes. */
1833 #define STORE_MAX_PIECES \
1834 (TARGET_INTER_UNIT_MOVES_TO_VEC \
1835 ? ((TARGET_AVX512F && ix86_store_max == PVW_AVX512) \
1836 ? 64 \
1837 : ((TARGET_AVX \
1838 && ix86_store_max >= PVW_AVX256) \
1839 ? 32 \
1840 : ((TARGET_SSE2 \
1841 && TARGET_SSE_UNALIGNED_STORE_OPTIMAL) \
1842 ? 16 : UNITS_PER_WORD))) \
1843 : UNITS_PER_WORD)
1844
1845 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1846 move-instruction pairs, we will do a cpymem or libcall instead.
1847 Increasing the value will always make code faster, but eventually
1848 incurs high cost in increased code size.
1849
1850 If you don't define this, a reasonable default is used. */
1851
1852 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
1853
1854 /* If a clear memory operation would take CLEAR_RATIO or more simple
1855 move-instruction sequences, we will do a clrmem or libcall instead. */
1856
1857 #define CLEAR_RATIO(speed) ((speed) ? ix86_cost->clear_ratio : 2)
1858
1859 /* Define if shifts truncate the shift count which implies one can
1860 omit a sign-extension or zero-extension of a shift count.
1861
1862 On i386, shifts do truncate the count. But bit test instructions
1863 take the modulo of the bit offset operand. */
1864
1865 /* #define SHIFT_COUNT_TRUNCATED */
1866
1867 /* A macro to update M and UNSIGNEDP when an object whose type is
1868 TYPE and which has the specified mode and signedness is to be
1869 stored in a register. This macro is only called when TYPE is a
1870 scalar type.
1871
1872 On i386 it is sometimes useful to promote HImode and QImode
1873 quantities to SImode. The choice depends on target type. */
1874
1875 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1876 do { \
1877 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1878 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1879 (MODE) = SImode; \
1880 } while (0)
1881
1882 /* Specify the machine mode that pointers have.
1883 After generation of rtl, the compiler makes no further distinction
1884 between pointers and any other objects of this machine mode. */
1885 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
1886
1887 /* Supply a definition of STACK_SAVEAREA_MODE for emit_stack_save.
1888 NONLOCAL needs space to save both shadow stack and stack pointers.
1889
1890 FIXME: We only need to save and restore stack pointer in ptr_mode.
1891 But expand_builtin_setjmp_setup and expand_builtin_longjmp use Pmode
1892 to save and restore stack pointer. See
1893 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84150
1894 */
1895 #define STACK_SAVEAREA_MODE(LEVEL) \
1896 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? TImode : DImode) : Pmode)
1897
1898 /* Specify the machine_mode of the size increment
1899 operand of an 'allocate_stack' named pattern. */
1900 #define STACK_SIZE_MODE Pmode
1901
1902 /* A C expression whose value is zero if pointers that need to be extended
1903 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
1904 greater then zero if they are zero-extended and less then zero if the
1905 ptr_extend instruction should be used. */
1906
1907 #define POINTERS_EXTEND_UNSIGNED 1
1908
1909 /* A function address in a call instruction
1910 is a byte address (for indexing purposes)
1911 so give the MEM rtx a byte's mode. */
1912 #define FUNCTION_MODE QImode
1913 \f
1914
1915 /* A C expression for the cost of a branch instruction. A value of 1
1916 is the default; other values are interpreted relative to that. */
1917
1918 #define BRANCH_COST(speed_p, predictable_p) \
1919 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
1920
1921 /* An integer expression for the size in bits of the largest integer machine
1922 mode that should actually be used. We allow pairs of registers. */
1923 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
1924
1925 /* Define this macro as a C expression which is nonzero if accessing
1926 less than a word of memory (i.e. a `char' or a `short') is no
1927 faster than accessing a word of memory, i.e., if such access
1928 require more than one instruction or if there is no difference in
1929 cost between byte and (aligned) word loads.
1930
1931 When this macro is not defined, the compiler will access a field by
1932 finding the smallest containing object; when it is defined, a
1933 fullword load will be used if alignment permits. Unless bytes
1934 accesses are faster than word accesses, using word accesses is
1935 preferable since it may eliminate subsequent memory access if
1936 subsequent accesses occur to other fields in the same word of the
1937 structure, but to different bytes. */
1938
1939 #define SLOW_BYTE_ACCESS 0
1940
1941 /* Define this macro if it is as good or better to call a constant
1942 function address than to call an address kept in a register.
1943
1944 Desirable on the 386 because a CALL with a constant address is
1945 faster than one with a register address. */
1946
1947 #define NO_FUNCTION_CSE 1
1948 \f
1949 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1950 return the mode to be used for the comparison.
1951
1952 For floating-point equality comparisons, CCFPEQmode should be used.
1953 VOIDmode should be used in all other cases.
1954
1955 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1956 possible, to allow for more combinations. */
1957
1958 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1959
1960 /* Return nonzero if MODE implies a floating point inequality can be
1961 reversed. */
1962
1963 #define REVERSIBLE_CC_MODE(MODE) 1
1964
1965 /* A C expression whose value is reversed condition code of the CODE for
1966 comparison done in CC_MODE mode. */
1967 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1968
1969 \f
1970 /* Control the assembler format that we output, to the extent
1971 this does not vary between assemblers. */
1972
1973 /* How to refer to registers in assembler output.
1974 This sequence is indexed by compiler's hard-register-number (see above). */
1975
1976 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
1977 For non floating point regs, the following are the HImode names.
1978
1979 For float regs, the stack top is sometimes referred to as "%st(0)"
1980 instead of just "%st". TARGET_PRINT_OPERAND handles this with the
1981 "y" code. */
1982
1983 #define HI_REGISTER_NAMES \
1984 {"ax","dx","cx","bx","si","di","bp","sp", \
1985 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1986 "argp", "flags", "fpsr", "frame", \
1987 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1988 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
1989 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1990 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \
1991 "xmm16", "xmm17", "xmm18", "xmm19", \
1992 "xmm20", "xmm21", "xmm22", "xmm23", \
1993 "xmm24", "xmm25", "xmm26", "xmm27", \
1994 "xmm28", "xmm29", "xmm30", "xmm31", \
1995 "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" }
1996
1997 #define REGISTER_NAMES HI_REGISTER_NAMES
1998
1999 #define QI_REGISTER_NAMES \
2000 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl"}
2001
2002 #define QI_HIGH_REGISTER_NAMES \
2003 {"ah", "dh", "ch", "bh"}
2004
2005 /* Table of additional register names to use in user input. */
2006
2007 #define ADDITIONAL_REGISTER_NAMES \
2008 { \
2009 { "eax", AX_REG }, { "edx", DX_REG }, { "ecx", CX_REG }, { "ebx", BX_REG }, \
2010 { "esi", SI_REG }, { "edi", DI_REG }, { "ebp", BP_REG }, { "esp", SP_REG }, \
2011 { "rax", AX_REG }, { "rdx", DX_REG }, { "rcx", CX_REG }, { "rbx", BX_REG }, \
2012 { "rsi", SI_REG }, { "rdi", DI_REG }, { "rbp", BP_REG }, { "rsp", SP_REG }, \
2013 { "al", AX_REG }, { "dl", DX_REG }, { "cl", CX_REG }, { "bl", BX_REG }, \
2014 { "sil", SI_REG }, { "dil", DI_REG }, { "bpl", BP_REG }, { "spl", SP_REG }, \
2015 { "ah", AX_REG }, { "dh", DX_REG }, { "ch", CX_REG }, { "bh", BX_REG }, \
2016 { "ymm0", XMM0_REG }, { "ymm1", XMM1_REG }, { "ymm2", XMM2_REG }, { "ymm3", XMM3_REG }, \
2017 { "ymm4", XMM4_REG }, { "ymm5", XMM5_REG }, { "ymm6", XMM6_REG }, { "ymm7", XMM7_REG }, \
2018 { "ymm8", XMM8_REG }, { "ymm9", XMM9_REG }, { "ymm10", XMM10_REG }, { "ymm11", XMM11_REG }, \
2019 { "ymm12", XMM12_REG }, { "ymm13", XMM13_REG }, { "ymm14", XMM14_REG }, { "ymm15", XMM15_REG }, \
2020 { "ymm16", XMM16_REG }, { "ymm17", XMM17_REG }, { "ymm18", XMM18_REG }, { "ymm19", XMM19_REG }, \
2021 { "ymm20", XMM20_REG }, { "ymm21", XMM21_REG }, { "ymm22", XMM22_REG }, { "ymm23", XMM23_REG }, \
2022 { "ymm24", XMM24_REG }, { "ymm25", XMM25_REG }, { "ymm26", XMM26_REG }, { "ymm27", XMM27_REG }, \
2023 { "ymm28", XMM28_REG }, { "ymm29", XMM29_REG }, { "ymm30", XMM30_REG }, { "ymm31", XMM31_REG }, \
2024 { "zmm0", XMM0_REG }, { "zmm1", XMM1_REG }, { "zmm2", XMM2_REG }, { "zmm3", XMM3_REG }, \
2025 { "zmm4", XMM4_REG }, { "zmm5", XMM5_REG }, { "zmm6", XMM6_REG }, { "zmm7", XMM7_REG }, \
2026 { "zmm8", XMM8_REG }, { "zmm9", XMM9_REG }, { "zmm10", XMM10_REG }, { "zmm11", XMM11_REG }, \
2027 { "zmm12", XMM12_REG }, { "zmm13", XMM13_REG }, { "zmm14", XMM14_REG }, { "zmm15", XMM15_REG }, \
2028 { "zmm16", XMM16_REG }, { "zmm17", XMM17_REG }, { "zmm18", XMM18_REG }, { "zmm19", XMM19_REG }, \
2029 { "zmm20", XMM20_REG }, { "zmm21", XMM21_REG }, { "zmm22", XMM22_REG }, { "zmm23", XMM23_REG }, \
2030 { "zmm24", XMM24_REG }, { "zmm25", XMM25_REG }, { "zmm26", XMM26_REG }, { "zmm27", XMM27_REG }, \
2031 { "zmm28", XMM28_REG }, { "zmm29", XMM29_REG }, { "zmm30", XMM30_REG }, { "zmm31", XMM31_REG } \
2032 }
2033
2034 /* How to renumber registers for gdb. */
2035
2036 #define DEBUGGER_REGNO(N) \
2037 (TARGET_64BIT ? debugger64_register_map[(N)] : debugger_register_map[(N)])
2038
2039 extern int const debugger_register_map[FIRST_PSEUDO_REGISTER];
2040 extern int const debugger64_register_map[FIRST_PSEUDO_REGISTER];
2041 extern int const svr4_debugger_register_map[FIRST_PSEUDO_REGISTER];
2042
2043 /* Before the prologue, RA is at 0(%esp). */
2044 #define INCOMING_RETURN_ADDR_RTX \
2045 gen_rtx_MEM (Pmode, stack_pointer_rtx)
2046
2047 /* After the prologue, RA is at -4(AP) in the current frame. */
2048 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2049 ((COUNT) == 0 \
2050 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
2051 -UNITS_PER_WORD)) \
2052 : gen_rtx_MEM (Pmode, plus_constant (Pmode, (FRAME), UNITS_PER_WORD)))
2053
2054 /* PC is dbx register 8; let's use that column for RA. */
2055 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2056
2057 /* Before the prologue, there are return address and error code for
2058 exception handler on the top of the frame. */
2059 #define INCOMING_FRAME_SP_OFFSET \
2060 (cfun->machine->func_type == TYPE_EXCEPTION \
2061 ? 2 * UNITS_PER_WORD : UNITS_PER_WORD)
2062
2063 /* The value of INCOMING_FRAME_SP_OFFSET the assembler assumes in
2064 .cfi_startproc. */
2065 #define DEFAULT_INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2066
2067 /* Describe how we implement __builtin_eh_return. */
2068 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
2069 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
2070
2071
2072 /* Select a format to encode pointers in exception handling data. CODE
2073 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2074 true if the symbol may be affected by dynamic relocations.
2075
2076 ??? All x86 object file formats are capable of representing this.
2077 After all, the relocation needed is the same as for the call insn.
2078 Whether or not a particular assembler allows us to enter such, I
2079 guess we'll have to see. */
2080 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2081 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2082
2083 /* These are a couple of extensions to the formats accepted
2084 by asm_fprintf:
2085 %z prints out opcode suffix for word-mode instruction
2086 %r prints out word-mode name for reg_names[arg] */
2087 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
2088 case 'z': \
2089 fputc (TARGET_64BIT ? 'q' : 'l', (FILE)); \
2090 break; \
2091 \
2092 case 'r': \
2093 { \
2094 unsigned int regno = va_arg ((ARGS), int); \
2095 if (LEGACY_INT_REGNO_P (regno)) \
2096 fputc (TARGET_64BIT ? 'r' : 'e', (FILE)); \
2097 fputs (reg_names[regno], (FILE)); \
2098 break; \
2099 }
2100
2101 /* This is how to output an insn to push a register on the stack. */
2102
2103 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2104 asm_fprintf ((FILE), "\tpush%z\t%%%r\n", (REGNO))
2105
2106 /* This is how to output an insn to pop a register from the stack. */
2107
2108 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2109 asm_fprintf ((FILE), "\tpop%z\t%%%r\n", (REGNO))
2110
2111 /* This is how to output an element of a case-vector that is absolute. */
2112
2113 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2114 ix86_output_addr_vec_elt ((FILE), (VALUE))
2115
2116 /* This is how to output an element of a case-vector that is relative. */
2117
2118 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2119 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2120
2121 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
2122
2123 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
2124 { \
2125 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
2126 (PTR) += TARGET_AVX ? 1 : 2; \
2127 }
2128
2129 /* A C statement or statements which output an assembler instruction
2130 opcode to the stdio stream STREAM. The macro-operand PTR is a
2131 variable of type `char *' which points to the opcode name in
2132 its "internal" form--the form that is written in the machine
2133 description. */
2134
2135 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
2136 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
2137
2138 /* A C statement to output to the stdio stream FILE an assembler
2139 command to pad the location counter to a multiple of 1<<LOG
2140 bytes if it is within MAX_SKIP bytes. */
2141
2142 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2143 # define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE,LOG,MAX_SKIP) \
2144 do { \
2145 if ((LOG) != 0) { \
2146 if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1) \
2147 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
2148 else \
2149 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
2150 } \
2151 } while (0)
2152 #endif
2153
2154 /* Write the extra assembler code needed to declare a function
2155 properly. */
2156
2157 #undef ASM_OUTPUT_FUNCTION_LABEL
2158 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
2159 ix86_asm_output_function_label ((FILE), (NAME), (DECL))
2160
2161 /* A C statement (sans semicolon) to output a reference to SYMBOL_REF SYM.
2162 If not defined, assemble_name will be used to output the name of the
2163 symbol. This macro may be used to modify the way a symbol is referenced
2164 depending on information encoded by TARGET_ENCODE_SECTION_INFO. */
2165
2166 #ifndef ASM_OUTPUT_SYMBOL_REF
2167 #define ASM_OUTPUT_SYMBOL_REF(FILE, SYM) \
2168 do { \
2169 const char *name \
2170 = assemble_name_resolve (XSTR (x, 0)); \
2171 /* In -masm=att wrap identifiers that start with $ \
2172 into parens. */ \
2173 if (ASSEMBLER_DIALECT == ASM_ATT \
2174 && name[0] == '$' \
2175 && user_label_prefix[0] == '\0') \
2176 { \
2177 fputc ('(', (FILE)); \
2178 assemble_name_raw ((FILE), name); \
2179 fputc (')', (FILE)); \
2180 } \
2181 else \
2182 assemble_name_raw ((FILE), name); \
2183 } while (0)
2184 #endif
2185
2186 /* Under some conditions we need jump tables in the text section,
2187 because the assembler cannot handle label differences between
2188 sections. */
2189
2190 #define JUMP_TABLES_IN_TEXT_SECTION \
2191 (flag_pic && !(TARGET_64BIT || HAVE_AS_GOTOFF_IN_DATA))
2192
2193 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2194 and switch back. For x86 we do this only to save a few bytes that
2195 would otherwise be unused in the text section. */
2196 #define CRT_MKSTR2(VAL) #VAL
2197 #define CRT_MKSTR(x) CRT_MKSTR2(x)
2198
2199 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2200 asm (SECTION_OP "\n\t" \
2201 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
2202 TEXT_SECTION_ASM_OP);
2203
2204 /* Default threshold for putting data in large sections
2205 with x86-64 medium memory model */
2206 #define DEFAULT_LARGE_SECTION_THRESHOLD 65536
2207 \f
2208 /* Which processor to tune code generation for. These must be in sync
2209 with processor_target_table in i386.cc. */
2210
2211 enum processor_type
2212 {
2213 PROCESSOR_GENERIC = 0,
2214 PROCESSOR_I386, /* 80386 */
2215 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2216 PROCESSOR_PENTIUM,
2217 PROCESSOR_LAKEMONT,
2218 PROCESSOR_PENTIUMPRO,
2219 PROCESSOR_PENTIUM4,
2220 PROCESSOR_NOCONA,
2221 PROCESSOR_CORE2,
2222 PROCESSOR_NEHALEM,
2223 PROCESSOR_SANDYBRIDGE,
2224 PROCESSOR_HASWELL,
2225 PROCESSOR_BONNELL,
2226 PROCESSOR_SILVERMONT,
2227 PROCESSOR_GOLDMONT,
2228 PROCESSOR_GOLDMONT_PLUS,
2229 PROCESSOR_TREMONT,
2230 PROCESSOR_SIERRAFOREST,
2231 PROCESSOR_GRANDRIDGE,
2232 PROCESSOR_KNL,
2233 PROCESSOR_KNM,
2234 PROCESSOR_SKYLAKE,
2235 PROCESSOR_SKYLAKE_AVX512,
2236 PROCESSOR_CANNONLAKE,
2237 PROCESSOR_ICELAKE_CLIENT,
2238 PROCESSOR_ICELAKE_SERVER,
2239 PROCESSOR_CASCADELAKE,
2240 PROCESSOR_TIGERLAKE,
2241 PROCESSOR_COOPERLAKE,
2242 PROCESSOR_SAPPHIRERAPIDS,
2243 PROCESSOR_ALDERLAKE,
2244 PROCESSOR_ROCKETLAKE,
2245 PROCESSOR_GRANITERAPIDS,
2246 PROCESSOR_INTEL,
2247 PROCESSOR_LUJIAZUI,
2248 PROCESSOR_GEODE,
2249 PROCESSOR_K6,
2250 PROCESSOR_ATHLON,
2251 PROCESSOR_K8,
2252 PROCESSOR_AMDFAM10,
2253 PROCESSOR_BDVER1,
2254 PROCESSOR_BDVER2,
2255 PROCESSOR_BDVER3,
2256 PROCESSOR_BDVER4,
2257 PROCESSOR_BTVER1,
2258 PROCESSOR_BTVER2,
2259 PROCESSOR_ZNVER1,
2260 PROCESSOR_ZNVER2,
2261 PROCESSOR_ZNVER3,
2262 PROCESSOR_ZNVER4,
2263 PROCESSOR_max
2264 };
2265
2266 #if !defined(IN_LIBGCC2) && !defined(IN_TARGET_LIBS) && !defined(IN_RTS)
2267 extern const char *const processor_names[];
2268
2269 #include "wide-int-bitmask.h"
2270
2271 enum pta_flag
2272 {
2273 #define DEF_PTA(NAME) _ ## NAME,
2274 #include "i386-isa.def"
2275 #undef DEF_PTA
2276 END_PTA
2277 };
2278
2279 /* wide_int_bitmask can handle only 128 flags. */
2280 STATIC_ASSERT (END_PTA <= 128);
2281
2282 #define WIDE_INT_BITMASK_FROM_NTH(N) (N < 64 ? wide_int_bitmask (0, 1ULL << N) \
2283 : wide_int_bitmask (1ULL << (N - 64), 0))
2284
2285 #define DEF_PTA(NAME) constexpr wide_int_bitmask PTA_ ## NAME \
2286 = WIDE_INT_BITMASK_FROM_NTH ((pta_flag) _ ## NAME);
2287 #include "i386-isa.def"
2288 #undef DEF_PTA
2289
2290 constexpr wide_int_bitmask PTA_X86_64_BASELINE = PTA_64BIT | PTA_MMX | PTA_SSE
2291 | PTA_SSE2 | PTA_NO_SAHF | PTA_FXSR;
2292 constexpr wide_int_bitmask PTA_X86_64_V2 = (PTA_X86_64_BASELINE
2293 & (~PTA_NO_SAHF))
2294 | PTA_CX16 | PTA_POPCNT | PTA_SSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_SSSE3;
2295 constexpr wide_int_bitmask PTA_X86_64_V3 = PTA_X86_64_V2
2296 | PTA_AVX | PTA_AVX2 | PTA_BMI | PTA_BMI2 | PTA_F16C | PTA_FMA | PTA_LZCNT
2297 | PTA_MOVBE | PTA_XSAVE;
2298 constexpr wide_int_bitmask PTA_X86_64_V4 = PTA_X86_64_V3
2299 | PTA_AVX512F | PTA_AVX512BW | PTA_AVX512CD | PTA_AVX512DQ | PTA_AVX512VL;
2300
2301 constexpr wide_int_bitmask PTA_CORE2 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
2302 | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_FXSR;
2303 constexpr wide_int_bitmask PTA_NEHALEM = PTA_CORE2 | PTA_SSE4_1 | PTA_SSE4_2
2304 | PTA_POPCNT;
2305 constexpr wide_int_bitmask PTA_WESTMERE = PTA_NEHALEM | PTA_PCLMUL;
2306 constexpr wide_int_bitmask PTA_SANDYBRIDGE = PTA_WESTMERE | PTA_AVX | PTA_XSAVE
2307 | PTA_XSAVEOPT;
2308 constexpr wide_int_bitmask PTA_IVYBRIDGE = PTA_SANDYBRIDGE | PTA_FSGSBASE
2309 | PTA_RDRND | PTA_F16C;
2310 constexpr wide_int_bitmask PTA_HASWELL = PTA_IVYBRIDGE | PTA_AVX2 | PTA_BMI
2311 | PTA_BMI2 | PTA_LZCNT | PTA_FMA | PTA_MOVBE | PTA_HLE;
2312 constexpr wide_int_bitmask PTA_BROADWELL = PTA_HASWELL | PTA_ADX | PTA_RDSEED
2313 | PTA_PRFCHW;
2314 constexpr wide_int_bitmask PTA_SKYLAKE = PTA_BROADWELL | PTA_AES
2315 | PTA_CLFLUSHOPT | PTA_XSAVEC | PTA_XSAVES | PTA_SGX;
2316 constexpr wide_int_bitmask PTA_SKYLAKE_AVX512 = PTA_SKYLAKE | PTA_AVX512F
2317 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2318 | PTA_CLWB;
2319 constexpr wide_int_bitmask PTA_CASCADELAKE = PTA_SKYLAKE_AVX512
2320 | PTA_AVX512VNNI;
2321 constexpr wide_int_bitmask PTA_COOPERLAKE = PTA_CASCADELAKE | PTA_AVX512BF16;
2322 constexpr wide_int_bitmask PTA_CANNONLAKE = PTA_SKYLAKE | PTA_AVX512F
2323 | PTA_AVX512CD | PTA_AVX512VL | PTA_AVX512BW | PTA_AVX512DQ | PTA_PKU
2324 | PTA_AVX512VBMI | PTA_AVX512IFMA | PTA_SHA;
2325 constexpr wide_int_bitmask PTA_ICELAKE_CLIENT = PTA_CANNONLAKE | PTA_AVX512VNNI
2326 | PTA_GFNI | PTA_VAES | PTA_AVX512VBMI2 | PTA_VPCLMULQDQ | PTA_AVX512BITALG
2327 | PTA_RDPID | PTA_AVX512VPOPCNTDQ;
2328 constexpr wide_int_bitmask PTA_ROCKETLAKE = PTA_ICELAKE_CLIENT & ~PTA_SGX;
2329 constexpr wide_int_bitmask PTA_ICELAKE_SERVER = PTA_ICELAKE_CLIENT
2330 | PTA_PCONFIG | PTA_WBNOINVD | PTA_CLWB;
2331 constexpr wide_int_bitmask PTA_TIGERLAKE = PTA_ICELAKE_CLIENT | PTA_MOVDIRI
2332 | PTA_MOVDIR64B | PTA_CLWB | PTA_AVX512VP2INTERSECT | PTA_KL | PTA_WIDEKL;
2333 constexpr wide_int_bitmask PTA_SAPPHIRERAPIDS = PTA_ICELAKE_SERVER | PTA_MOVDIRI
2334 | PTA_MOVDIR64B | PTA_ENQCMD | PTA_CLDEMOTE | PTA_PTWRITE | PTA_WAITPKG
2335 | PTA_SERIALIZE | PTA_TSXLDTRK | PTA_AMX_TILE | PTA_AMX_INT8 | PTA_AMX_BF16
2336 | PTA_UINTR | PTA_AVXVNNI | PTA_AVX512FP16 | PTA_AVX512BF16;
2337 constexpr wide_int_bitmask PTA_KNL = PTA_BROADWELL | PTA_AVX512PF
2338 | PTA_AVX512ER | PTA_AVX512F | PTA_AVX512CD | PTA_PREFETCHWT1;
2339 constexpr wide_int_bitmask PTA_BONNELL = PTA_CORE2 | PTA_MOVBE;
2340 constexpr wide_int_bitmask PTA_SILVERMONT = PTA_WESTMERE | PTA_MOVBE
2341 | PTA_RDRND | PTA_PRFCHW;
2342 constexpr wide_int_bitmask PTA_GOLDMONT = PTA_SILVERMONT | PTA_AES | PTA_SHA
2343 | PTA_XSAVE | PTA_RDSEED | PTA_XSAVEC | PTA_XSAVES | PTA_CLFLUSHOPT
2344 | PTA_XSAVEOPT | PTA_FSGSBASE;
2345 constexpr wide_int_bitmask PTA_GOLDMONT_PLUS = PTA_GOLDMONT | PTA_RDPID
2346 | PTA_SGX | PTA_PTWRITE;
2347 constexpr wide_int_bitmask PTA_TREMONT = PTA_GOLDMONT_PLUS | PTA_CLWB
2348 | PTA_GFNI | PTA_MOVDIRI | PTA_MOVDIR64B | PTA_CLDEMOTE | PTA_WAITPKG;
2349 constexpr wide_int_bitmask PTA_ALDERLAKE = PTA_TREMONT | PTA_ADX | PTA_AVX
2350 | PTA_AVX2 | PTA_BMI | PTA_BMI2 | PTA_F16C | PTA_FMA | PTA_LZCNT
2351 | PTA_PCONFIG | PTA_PKU | PTA_VAES | PTA_VPCLMULQDQ | PTA_SERIALIZE
2352 | PTA_HRESET | PTA_KL | PTA_WIDEKL | PTA_AVXVNNI;
2353 constexpr wide_int_bitmask PTA_SIERRAFOREST = PTA_ALDERLAKE | PTA_AVXIFMA
2354 | PTA_AVXVNNIINT8 | PTA_AVXNECONVERT | PTA_CMPCCXADD;
2355 constexpr wide_int_bitmask PTA_GRANITERAPIDS = PTA_SAPPHIRERAPIDS | PTA_AMX_FP16
2356 | PTA_PREFETCHI;
2357 constexpr wide_int_bitmask PTA_GRANDRIDGE = PTA_SIERRAFOREST | PTA_RAOINT;
2358 constexpr wide_int_bitmask PTA_KNM = PTA_KNL | PTA_AVX5124VNNIW
2359 | PTA_AVX5124FMAPS | PTA_AVX512VPOPCNTDQ;
2360 constexpr wide_int_bitmask PTA_ZNVER1 = PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2
2361 | PTA_SSE3 | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_SSSE3 | PTA_SSE4_1
2362 | PTA_SSE4_2 | PTA_AES | PTA_PCLMUL | PTA_AVX | PTA_AVX2 | PTA_BMI | PTA_BMI2
2363 | PTA_F16C | PTA_FMA | PTA_PRFCHW | PTA_FXSR | PTA_XSAVE | PTA_XSAVEOPT
2364 | PTA_FSGSBASE | PTA_RDRND | PTA_MOVBE | PTA_MWAITX | PTA_ADX | PTA_RDSEED
2365 | PTA_CLZERO | PTA_CLFLUSHOPT | PTA_XSAVEC | PTA_XSAVES | PTA_SHA | PTA_LZCNT
2366 | PTA_POPCNT;
2367 constexpr wide_int_bitmask PTA_ZNVER2 = PTA_ZNVER1 | PTA_CLWB | PTA_RDPID
2368 | PTA_WBNOINVD;
2369 constexpr wide_int_bitmask PTA_ZNVER3 = PTA_ZNVER2 | PTA_VAES | PTA_VPCLMULQDQ
2370 | PTA_PKU;
2371 constexpr wide_int_bitmask PTA_ZNVER4 = PTA_ZNVER3 | PTA_AVX512F | PTA_AVX512DQ
2372 | PTA_AVX512IFMA | PTA_AVX512CD | PTA_AVX512BW | PTA_AVX512VL
2373 | PTA_AVX512BF16 | PTA_AVX512VBMI | PTA_AVX512VBMI2 | PTA_GFNI
2374 | PTA_AVX512VNNI | PTA_AVX512BITALG | PTA_AVX512VPOPCNTDQ;
2375
2376 #ifndef GENERATOR_FILE
2377
2378 #include "insn-attr-common.h"
2379
2380 #include "common/config/i386/i386-cpuinfo.h"
2381
2382 class pta
2383 {
2384 public:
2385 const char *const name; /* processor name or nickname. */
2386 const enum processor_type processor;
2387 const enum attr_cpu schedule;
2388 const wide_int_bitmask flags;
2389 const int model;
2390 const enum feature_priority priority;
2391 };
2392
2393 extern const pta processor_alias_table[];
2394 extern unsigned int const pta_size;
2395 extern unsigned int const num_arch_names;
2396 #endif
2397
2398 #endif
2399
2400 extern enum processor_type ix86_tune;
2401 extern enum processor_type ix86_arch;
2402
2403 /* Size of the RED_ZONE area. */
2404 #define RED_ZONE_SIZE 128
2405 /* Reserved area of the red zone for temporaries. */
2406 #define RED_ZONE_RESERVE 8
2407
2408 extern unsigned int ix86_preferred_stack_boundary;
2409 extern unsigned int ix86_incoming_stack_boundary;
2410
2411 /* Smallest class containing REGNO. */
2412 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2413
2414 enum ix86_fpcmp_strategy {
2415 IX86_FPCMP_SAHF,
2416 IX86_FPCMP_COMI,
2417 IX86_FPCMP_ARITH
2418 };
2419 \f
2420 /* To properly truncate FP values into integers, we need to set i387 control
2421 word. We can't emit proper mode switching code before reload, as spills
2422 generated by reload may truncate values incorrectly, but we still can avoid
2423 redundant computation of new control word by the mode switching pass.
2424 The fldcw instructions are still emitted redundantly, but this is probably
2425 not going to be noticeable problem, as most CPUs do have fast path for
2426 the sequence.
2427
2428 The machinery is to emit simple truncation instructions and split them
2429 before reload to instructions having USEs of two memory locations that
2430 are filled by this code to old and new control word.
2431
2432 Post-reload pass may be later used to eliminate the redundant fildcw if
2433 needed. */
2434
2435 enum ix86_stack_slot
2436 {
2437 SLOT_TEMP = 0,
2438 SLOT_CW_STORED,
2439 SLOT_CW_ROUNDEVEN,
2440 SLOT_CW_TRUNC,
2441 SLOT_CW_FLOOR,
2442 SLOT_CW_CEIL,
2443 SLOT_STV_TEMP,
2444 SLOT_FLOATxFDI_387,
2445 MAX_386_STACK_LOCALS
2446 };
2447
2448 enum ix86_entity
2449 {
2450 X86_DIRFLAG = 0,
2451 AVX_U128,
2452 I387_ROUNDEVEN,
2453 I387_TRUNC,
2454 I387_FLOOR,
2455 I387_CEIL,
2456 MAX_386_ENTITIES
2457 };
2458
2459 enum x86_dirflag_state
2460 {
2461 X86_DIRFLAG_RESET,
2462 X86_DIRFLAG_ANY
2463 };
2464
2465 enum avx_u128_state
2466 {
2467 AVX_U128_CLEAN,
2468 AVX_U128_DIRTY,
2469 AVX_U128_ANY
2470 };
2471
2472 /* Define this macro if the port needs extra instructions inserted
2473 for mode switching in an optimizing compilation. */
2474
2475 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2476 ix86_optimize_mode_switching[(ENTITY)]
2477
2478 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2479 initializer for an array of integers. Each initializer element N
2480 refers to an entity that needs mode switching, and specifies the
2481 number of different modes that might need to be set for this
2482 entity. The position of the initializer in the initializer -
2483 starting counting at zero - determines the integer that is used to
2484 refer to the mode-switched entity in question. */
2485
2486 #define NUM_MODES_FOR_MODE_SWITCHING \
2487 { X86_DIRFLAG_ANY, AVX_U128_ANY, \
2488 I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2489
2490 \f
2491 /* Avoid renaming of stack registers, as doing so in combination with
2492 scheduling just increases amount of live registers at time and in
2493 the turn amount of fxch instructions needed.
2494
2495 ??? Maybe Pentium chips benefits from renaming, someone can try....
2496
2497 Don't rename evex to non-evex sse registers. */
2498
2499 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2500 (!STACK_REGNO_P (SRC) \
2501 && EXT_REX_SSE_REGNO_P (SRC) == EXT_REX_SSE_REGNO_P (TARGET))
2502
2503 \f
2504 #define FASTCALL_PREFIX '@'
2505 \f
2506 #ifndef USED_FOR_TARGET
2507 /* Structure describing stack frame layout.
2508 Stack grows downward:
2509
2510 [arguments]
2511 <- ARG_POINTER
2512 saved pc
2513
2514 saved static chain if ix86_static_chain_on_stack
2515
2516 saved frame pointer if frame_pointer_needed
2517 <- HARD_FRAME_POINTER
2518 [saved regs]
2519 <- reg_save_offset
2520 [padding0]
2521 <- stack_realign_offset
2522 [saved SSE regs]
2523 OR
2524 [stub-saved registers for ms x64 --> sysv clobbers
2525 <- Start of out-of-line, stub-saved/restored regs
2526 (see libgcc/config/i386/(sav|res)ms64*.S)
2527 [XMM6-15]
2528 [RSI]
2529 [RDI]
2530 [?RBX] only if RBX is clobbered
2531 [?RBP] only if RBP and RBX are clobbered
2532 [?R12] only if R12 and all previous regs are clobbered
2533 [?R13] only if R13 and all previous regs are clobbered
2534 [?R14] only if R14 and all previous regs are clobbered
2535 [?R15] only if R15 and all previous regs are clobbered
2536 <- end of stub-saved/restored regs
2537 [padding1]
2538 ]
2539 <- sse_reg_save_offset
2540 [padding2]
2541 | <- FRAME_POINTER
2542 [va_arg registers] |
2543 |
2544 [frame] |
2545 |
2546 [padding2] | = to_allocate
2547 <- STACK_POINTER
2548 */
2549 struct GTY(()) ix86_frame
2550 {
2551 int nsseregs;
2552 int nregs;
2553 int va_arg_size;
2554 int red_zone_size;
2555 int outgoing_arguments_size;
2556
2557 /* The offsets relative to ARG_POINTER. */
2558 HOST_WIDE_INT frame_pointer_offset;
2559 HOST_WIDE_INT hard_frame_pointer_offset;
2560 HOST_WIDE_INT stack_pointer_offset;
2561 HOST_WIDE_INT hfp_save_offset;
2562 HOST_WIDE_INT reg_save_offset;
2563 HOST_WIDE_INT stack_realign_allocate;
2564 HOST_WIDE_INT stack_realign_offset;
2565 HOST_WIDE_INT sse_reg_save_offset;
2566
2567 /* When save_regs_using_mov is set, emit prologue using
2568 move instead of push instructions. */
2569 bool save_regs_using_mov;
2570
2571 /* Assume without checking that:
2572 EXPENSIVE_P = expensive_function_p (EXPENSIVE_COUNT). */
2573 bool expensive_p;
2574 int expensive_count;
2575 };
2576
2577 /* Machine specific frame tracking during prologue/epilogue generation. All
2578 values are positive, but since the x86 stack grows downward, are subtratced
2579 from the CFA to produce a valid address. */
2580
2581 struct GTY(()) machine_frame_state
2582 {
2583 /* This pair tracks the currently active CFA as reg+offset. When reg
2584 is drap_reg, we don't bother trying to record here the real CFA when
2585 it might really be a DW_CFA_def_cfa_expression. */
2586 rtx cfa_reg;
2587 HOST_WIDE_INT cfa_offset;
2588
2589 /* The current offset (canonically from the CFA) of ESP and EBP.
2590 When stack frame re-alignment is active, these may not be relative
2591 to the CFA. However, in all cases they are relative to the offsets
2592 of the saved registers stored in ix86_frame. */
2593 HOST_WIDE_INT sp_offset;
2594 HOST_WIDE_INT fp_offset;
2595
2596 /* The size of the red-zone that may be assumed for the purposes of
2597 eliding register restore notes in the epilogue. This may be zero
2598 if no red-zone is in effect, or may be reduced from the real
2599 red-zone value by a maximum runtime stack re-alignment value. */
2600 int red_zone_offset;
2601
2602 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
2603 value within the frame. If false then the offset above should be
2604 ignored. Note that DRAP, if valid, *always* points to the CFA and
2605 thus has an offset of zero. */
2606 BOOL_BITFIELD sp_valid : 1;
2607 BOOL_BITFIELD fp_valid : 1;
2608 BOOL_BITFIELD drap_valid : 1;
2609
2610 /* Indicate whether the local stack frame has been re-aligned. When
2611 set, the SP/FP offsets above are relative to the aligned frame
2612 and not the CFA. */
2613 BOOL_BITFIELD realigned : 1;
2614
2615 /* Indicates whether the stack pointer has been re-aligned. When set,
2616 SP/FP continue to be relative to the CFA, but the stack pointer
2617 should only be used for offsets > sp_realigned_offset, while
2618 the frame pointer should be used for offsets <= sp_realigned_fp_last.
2619 The flags realigned and sp_realigned are mutually exclusive. */
2620 BOOL_BITFIELD sp_realigned : 1;
2621
2622 /* If sp_realigned is set, this is the last valid offset from the CFA
2623 that can be used for access with the frame pointer. */
2624 HOST_WIDE_INT sp_realigned_fp_last;
2625
2626 /* If sp_realigned is set, this is the offset from the CFA that the stack
2627 pointer was realigned, and may or may not be equal to sp_realigned_fp_last.
2628 Access via the stack pointer is only valid for offsets that are greater than
2629 this value. */
2630 HOST_WIDE_INT sp_realigned_offset;
2631 };
2632
2633 /* Private to winnt.cc. */
2634 struct seh_frame_state;
2635
2636 enum function_type
2637 {
2638 TYPE_UNKNOWN = 0,
2639 TYPE_NORMAL,
2640 /* The current function is an interrupt service routine with a
2641 pointer argument as specified by the "interrupt" attribute. */
2642 TYPE_INTERRUPT,
2643 /* The current function is an interrupt service routine with a
2644 pointer argument and an integer argument as specified by the
2645 "interrupt" attribute. */
2646 TYPE_EXCEPTION
2647 };
2648
2649 enum queued_insn_type
2650 {
2651 TYPE_NONE = 0,
2652 TYPE_ENDBR,
2653 TYPE_PATCHABLE_AREA
2654 };
2655
2656 struct GTY(()) machine_function {
2657 struct stack_local_entry *stack_locals;
2658 int varargs_gpr_size;
2659 int varargs_fpr_size;
2660 int optimize_mode_switching[MAX_386_ENTITIES];
2661
2662 /* Cached initial frame layout for the current function. */
2663 struct ix86_frame frame;
2664
2665 /* For -fsplit-stack support: A stack local which holds a pointer to
2666 the stack arguments for a function with a variable number of
2667 arguments. This is set at the start of the function and is used
2668 to initialize the overflow_arg_area field of the va_list
2669 structure. */
2670 rtx split_stack_varargs_pointer;
2671
2672 /* This value is used for amd64 targets and specifies the current abi
2673 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
2674 ENUM_BITFIELD(calling_abi) call_abi : 8;
2675
2676 /* Nonzero if the function accesses a previous frame. */
2677 BOOL_BITFIELD accesses_prev_frame : 1;
2678
2679 /* Set by ix86_compute_frame_layout and used by prologue/epilogue
2680 expander to determine the style used. */
2681 BOOL_BITFIELD use_fast_prologue_epilogue : 1;
2682
2683 /* Nonzero if the current function calls pc thunk and
2684 must not use the red zone. */
2685 BOOL_BITFIELD pc_thunk_call_expanded : 1;
2686
2687 /* If true, the current function needs the default PIC register, not
2688 an alternate register (on x86) and must not use the red zone (on
2689 x86_64), even if it's a leaf function. We don't want the
2690 function to be regarded as non-leaf because TLS calls need not
2691 affect register allocation. This flag is set when a TLS call
2692 instruction is expanded within a function, and never reset, even
2693 if all such instructions are optimized away. Use the
2694 ix86_current_function_calls_tls_descriptor macro for a better
2695 approximation. */
2696 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
2697
2698 /* If true, the current function has a STATIC_CHAIN is placed on the
2699 stack below the return address. */
2700 BOOL_BITFIELD static_chain_on_stack : 1;
2701
2702 /* If true, it is safe to not save/restore DRAP register. */
2703 BOOL_BITFIELD no_drap_save_restore : 1;
2704
2705 /* Function type. */
2706 ENUM_BITFIELD(function_type) func_type : 2;
2707
2708 /* How to generate indirec branch. */
2709 ENUM_BITFIELD(indirect_branch) indirect_branch_type : 3;
2710
2711 /* If true, the current function has local indirect jumps, like
2712 "indirect_jump" or "tablejump". */
2713 BOOL_BITFIELD has_local_indirect_jump : 1;
2714
2715 /* How to generate function return. */
2716 ENUM_BITFIELD(indirect_branch) function_return_type : 3;
2717
2718 /* If true, the current function is a function specified with
2719 the "interrupt" or "no_caller_saved_registers" attribute. */
2720 BOOL_BITFIELD no_caller_saved_registers : 1;
2721
2722 /* If true, there is register available for argument passing. This
2723 is used only in ix86_function_ok_for_sibcall by 32-bit to determine
2724 if there is scratch register available for indirect sibcall. In
2725 64-bit, rax, r10 and r11 are scratch registers which aren't used to
2726 pass arguments and can be used for indirect sibcall. */
2727 BOOL_BITFIELD arg_reg_available : 1;
2728
2729 /* If true, we're out-of-lining reg save/restore for regs clobbered
2730 by 64-bit ms_abi functions calling a sysv_abi function. */
2731 BOOL_BITFIELD call_ms2sysv : 1;
2732
2733 /* If true, the incoming 16-byte aligned stack has an offset (of 8) and
2734 needs padding prior to out-of-line stub save/restore area. */
2735 BOOL_BITFIELD call_ms2sysv_pad_in : 1;
2736
2737 /* This is the number of extra registers saved by stub (valid range is
2738 0-6). Each additional register is only saved/restored by the stubs
2739 if all successive ones are. (Will always be zero when using a hard
2740 frame pointer.) */
2741 unsigned int call_ms2sysv_extra_regs:3;
2742
2743 /* Nonzero if the function places outgoing arguments on stack. */
2744 BOOL_BITFIELD outgoing_args_on_stack : 1;
2745
2746 /* If true, ENDBR or patchable area is queued at function entrance. */
2747 ENUM_BITFIELD(queued_insn_type) insn_queued_at_entrance : 2;
2748
2749 /* If true, the function label has been emitted. */
2750 BOOL_BITFIELD function_label_emitted : 1;
2751
2752 /* True if the function needs a stack frame. */
2753 BOOL_BITFIELD stack_frame_required : 1;
2754
2755 /* True if we should act silently, rather than raise an error for
2756 invalid calls. */
2757 BOOL_BITFIELD silent_p : 1;
2758
2759 /* True if red zone is used. */
2760 BOOL_BITFIELD red_zone_used : 1;
2761
2762 /* The largest alignment, in bytes, of stack slot actually used. */
2763 unsigned int max_used_stack_alignment;
2764
2765 /* During prologue/epilogue generation, the current frame state.
2766 Otherwise, the frame state at the end of the prologue. */
2767 struct machine_frame_state fs;
2768
2769 /* During SEH output, this is non-null. */
2770 struct seh_frame_state * GTY((skip(""))) seh;
2771 };
2772
2773 extern GTY(()) tree sysv_va_list_type_node;
2774 extern GTY(()) tree ms_va_list_type_node;
2775 #endif
2776
2777 #define ix86_stack_locals (cfun->machine->stack_locals)
2778 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
2779 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
2780 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2781 #define ix86_pc_thunk_call_expanded (cfun->machine->pc_thunk_call_expanded)
2782 #define ix86_tls_descriptor_calls_expanded_in_cfun \
2783 (cfun->machine->tls_descriptor_call_expanded_p)
2784 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2785 calls are optimized away, we try to detect cases in which it was
2786 optimized away. Since such instructions (use (reg REG_SP)), we can
2787 verify whether there's any such instruction live by testing that
2788 REG_SP is live. */
2789 #define ix86_current_function_calls_tls_descriptor \
2790 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
2791 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
2792 #define ix86_red_zone_used (cfun->machine->red_zone_used)
2793
2794 /* Control behavior of x86_file_start. */
2795 #define X86_FILE_START_VERSION_DIRECTIVE false
2796 #define X86_FILE_START_FLTUSED false
2797
2798 /* Flag to mark data that is in the large address area. */
2799 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2800 #define SYMBOL_REF_FAR_ADDR_P(X) \
2801 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2802
2803 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
2804 have defined always, to avoid ifdefing. */
2805 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
2806 #define SYMBOL_REF_DLLIMPORT_P(X) \
2807 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
2808
2809 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
2810 #define SYMBOL_REF_DLLEXPORT_P(X) \
2811 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
2812
2813 #define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4)
2814 #define SYMBOL_REF_STUBVAR_P(X) \
2815 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0)
2816
2817 extern void debug_ready_dispatch (void);
2818 extern void debug_dispatch_window (int);
2819
2820 /* The value at zero is only defined for the BMI instructions
2821 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
2822 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2823 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI ? 2 : 0)
2824 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2825 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT ? 2 : 0)
2826
2827
2828 /* Flags returned by ix86_get_callcvt (). */
2829 #define IX86_CALLCVT_CDECL 0x1
2830 #define IX86_CALLCVT_STDCALL 0x2
2831 #define IX86_CALLCVT_FASTCALL 0x4
2832 #define IX86_CALLCVT_THISCALL 0x8
2833 #define IX86_CALLCVT_REGPARM 0x10
2834 #define IX86_CALLCVT_SSEREGPARM 0x20
2835
2836 #define IX86_BASE_CALLCVT(FLAGS) \
2837 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
2838 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
2839
2840 #define RECIP_MASK_NONE 0x00
2841 #define RECIP_MASK_DIV 0x01
2842 #define RECIP_MASK_SQRT 0x02
2843 #define RECIP_MASK_VEC_DIV 0x04
2844 #define RECIP_MASK_VEC_SQRT 0x08
2845 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
2846 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2847 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
2848
2849 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
2850 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
2851 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
2852 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
2853
2854 /* Use 128-bit AVX instructions in the auto-vectorizer. */
2855 #define TARGET_PREFER_AVX128 (prefer_vector_width_type == PVW_AVX128)
2856 /* Use 256-bit AVX instructions in the auto-vectorizer. */
2857 #define TARGET_PREFER_AVX256 (TARGET_PREFER_AVX128 \
2858 || prefer_vector_width_type == PVW_AVX256)
2859
2860 #define TARGET_INDIRECT_BRANCH_REGISTER \
2861 (ix86_indirect_branch_register \
2862 || cfun->machine->indirect_branch_type != indirect_branch_keep)
2863
2864 #define IX86_HLE_ACQUIRE (1 << 16)
2865 #define IX86_HLE_RELEASE (1 << 17)
2866
2867 /* For switching between functions with different target attributes. */
2868 #define SWITCHABLE_TARGET 1
2869
2870 #define TARGET_SUPPORTS_WIDE_INT 1
2871
2872 #if !defined(GENERATOR_FILE) && !defined(IN_LIBGCC2)
2873 extern enum attr_cpu ix86_schedule;
2874
2875 #define NUM_X86_64_MS_CLOBBERED_REGS 12
2876 #endif
2877
2878 /* __builtin_eh_return can't handle stack realignment, so disable MMX/SSE
2879 in 32-bit libgcc functions that call it. */
2880 #ifndef __x86_64__
2881 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((target ("no-mmx,no-sse")))
2882 #endif
2883
2884 /*
2885 Local variables:
2886 version-control: t
2887 End:
2888 */